Chen, Juan
2008-01-01
This report is the result of a Master Thesis work done at Seaward Electronics Inc. in Beijing, China from June to December in 2007. The main goal for this thesis is to verify and improve the performance of Honey-PWM DC-DC converter, which has been fabricated by a standard 0.6um CMOS processes. The project was started with studying of Buck converter structure. After the understanding of the converter structure, the project goes in to the analyses phase for each sub-cells, including the theory,...
Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller
Sreenivasappa Veeranna Bhupasandra
2010-01-01
Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.
A digitally controlled PWM/PSM dual-mode DC/DC converter
Zhen Shaowei; Zhang Bo; Luo Ping; Hou Sijian; Ye Jingxin; Ma Xiao
2011-01-01
A digitally controlled pulse width modulation/pulse skip modulation (PWM/PSM) dual-mode buck DC/DC converter is proposed.Its operation mode can be automatically chosen as continuous conduction mode (CCM) or discontinuous conduction mode (DCM).The converter works in PSM at DCM and in 2 MHz PWM at CCM.Switching loss is reduced at a light load by skipping cycles.Thus high conversion efficiency is realized in a wide load current.The implementations of PWM control blocks,such as the ADC,the digital pulse width modulator (DPWM) and the loop compensator,and PSM control blocks are described in detail.The parameters of the loop compensator can be programmed for different external component values and switching frequencies,which is much more flexible than its analog rivals.The chip is manufactured in 0.13 μm CMOS technology and the chip area is 1.21 mm2.Experimental results show that the conversion efficiency is high,being 90% at 200 mA and 67% at 20 mA.Meanwhile,the measured load step response shows that the proposed dual-mode converter has good stability.
Closed loop control of ZVS half bridge DC-DC converter with DCS PWM Control
JANAPATI SIVAVARA PRASAD
2012-10-01
Full Text Available
The main drawback of the conventional symmetric control is that both primary switches in the converter operate at hard switching condition. Moreover, during the off-time period of two switches, the oscillation between the transformer leakage inductance and junction capacitance of the switches results in energy dissipation and electromagnetic interference (EMI emissions due to reverse recovery of MOSFETs body diodes. The asymmetric (complementary control was proposed to achieve ZVS operation for HB switches. However, asymmetric stresses distribution on the corresponding components may occur due to the asymmetric duty cycle distribution for the two primary switches. A new control scheme, to be known as duty-cycle shifted PWM (DCS PWM control, is proposed and applied to the conventional HB dc–dc converters to achieve ZVS for both the switches without adding extra components and without adding asymmetric penalties of the complementary control. The concept of this new control scheme is shifting one of the two symmetric PWM driving signals close to the other, such that ZVS may be achieved for the lagging switch due to the shortened resonant interval. Moreover, based on the DCS PWM control, a new half-bridge topology is proposed to achieve ZVS for both the main switches and auxiliary switch by adding an auxiliary switch and diode in the proposed half bridge. ZVS for the switch is achieved by utilizing the energy trapped in the leakage inductance. There are two control schemes. One is open loop and the other is closed loop. In open loop scheme, the given dc-dc converter is operating under disturbance. This disturbance effect is eliminated in closed loop scheme.
Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo
1992-04-01
The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.
Liu, Dong; Deng, Fujin; Chen, Zhe
2017-01-01
The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...
Bifurcation boundary conditions for current programmed PWM DC-DC converters at light loading
Fang, Chung-Chieh
2012-10-01
Three types of bifurcations (instabilities) in the PWM DC-DC converter at light loading under current mode control in continuous-conduction mode (CCM) or discontinuous-conduction mode (DCM) are analysed: saddle-node bifurcation (SNB) in CCM or DCM, border-collision bifurcation during the CCM-DCM transition, and period-doubling bifurcation in CCM. Different bifurcations occur in some particular loading ranges. Bifurcation boundary conditions separating stable regions from unstable regions in the parametric space are derived. A new methodology to analyse the SNB in the buck converter based on the peak inductor current is proposed. The same methodology is applied to analyse the other types of bifurcations and converters. In the buck converter, multiple stable/unstable CCM/DCM steady-state solutions may coexist. Possibility of multiple solutions deserves careful study, because an ignored solution may merge with a desired stable solution and make both disappear. Understanding of SNB can explain some sudden disappearances or jumps of steady-state solutions observed in switching converters.
Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter
Choe, Song-Yul; Ahn, Jong-Woo [Mechanical Engineering Department, Auburn University, Auburn, AL 36848 (United States); Lee, Jung-Gi [Electrical Engineering Department, Pohang University of Science and Technology, Pohang (Korea); Baek, Soo-Hyun [Electrical Engineering Department, Dong-guk University, Seoul (Korea)
2007-02-10
A fuel cell powered system is regarded as a high current and low voltage source. To boost the output voltage of a fuel cell, a DC/DC converter is employed. Since these two systems show different dynamics, they need to be coordinated to meet the demand of a load. This paper proposes models for the two systems with associated controls, which take into account a PEM fuel cell stack with air supply and thermal systems, and a PWM DC/DC converter. The integrated simulation facilitates optimization of the power control strategy, and analyses of interrelated effects between the electric load and the temperature of cell components. In addition, the results show that the proposed power control can coordinate the two sources with improved dynamics and efficiency at a given dynamic load. (author)
Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
This paper presents an isolated dual-input DC-DC converter with a PWM plus phase-shift control for fuel cell hybrid energy systems. The power switches are controlled by phase shifted PWM signals with a variable duty cycle, and thus the two input voltages as well as the output voltage can...
A High-Precision Control for a ZVT PWM Soft-Switching Inverter to Eliminate the Dead-Time Effect
Baoquan Kou
2016-07-01
Full Text Available Attributing to the advantages of high efficiency, low electromagnetic interference (EMI noise and closest to the pulse-width-modulation (PWM converter counterpart, zero-voltage-transition (ZVT PWM soft-switching inverters are very suitable for high-performance applications. However, the conventional control algorithms intended for high efficiency generally results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary resonant snubber inverter (ARSI, which is a typical ZVT PWM inverter. The dead-time effect of ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision control is introduced based on the investigation of dead-time effect. A prototype was developed to verify the effectiveness of the proposed control. The experimental results shows that the total harmonic distortion (THD of the output current of the ARSI can be reduced compared with that of the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output current and voltage can be further improved by utilizing the proposed control method.
Simple digital PWM and PSM controlled DC-DC boost converter for luminance-regulated WLED driver
LIU Xin; GUO Shu-xu; CHANG Yu-chun; ZHU Shun-dong; WANG Shuai
2009-01-01
This article presents a control strategy based on simple digital pulse-width modulation (DPWM) and pulse-skip modulation (PSM) for a DC-DC boost converter, to drive a luminance-regulated white light emitting diodes (WLEDs). The presented control strategy not only retains most of the advantages and flexibilities of traditional digital PWM, but also reduces complexity and cost. Based on analyzing the principle of the presented control strategy, the white light emitting diode (WLED) driver is designed and simulated using the 0.6 (m CMOS process. Simulation results of the boost converter show that the power efficiency is above 76% for a full load, with a peak efficiency of 88% when supply voltage varies from 2.7 V to 5.5 V. The control strategy overcomes low efficiency for PWM mode with light load.
Taizhou Bei
2014-01-01
Full Text Available Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.
Lorentz, V. R. H.; Schwarzmann, H.; März, M.; Bauer, A. J.; Ryssel, H.; Frey, L.; Poure, P.; Braun, F.
2011-08-01
A novel CMOS integrated pulse-width modulation (PWM) control circuit allowing smooth transitions between conversion modes in full-bridge based bi-directional DC-DC converters operating at high switching frequencies is presented. The novel PWM control circuit is able to drive full-bridge based DC-DC converters performing step-down (i.e. buck) and step-up (i.e. boost) voltage conversion in both directions, thus allowing charging and discharging of the batteries in mobile systems. It provides smooth transitions between buck, buck-boost and boost modes. Additionally, the novel PWM control loop circuit uses a symmetrical triangular carrier, which overcomes the necessity of using an output phasing circuit previously required in PWM controllers based on sawtooth oscillators. The novel PWM control also enables to build bi-directional DC-DC converters operating at high switching frequencies (i.e. up to 10 MHz and above). Finally, the proposed PWM control circuit also allows the use of an average lossless inductor-current sensor for sensing the average load current even at very high switching frequencies. In this article, the proposed PWM control circuit is modelled and the integrated CMOS schematic is given. The corresponding theory is analysed and presented in detail. The circuit simulations realised in the Cadence Spectre software with a commercially available 0.18 µm mixed-signal CMOS technology from UMC are shown. The PWM control circuit was implemented in a monolithic integrated bi-directional CMOS DC-DC converter ASIC prototype. The fabricated prototype was tested experimentally and has shown performances in accordance with the theory.
Liu, Dong; Deng, Fujin; Zhang, Qi
2017-01-01
The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...... modes is proposed. Based on the proposed ZVS PWM strategy, a capacitor current-balancing control is proposed for the HBTL DC/DC converter, where the currents on the two input capacitors can be kept balanced by alternating the two operation modes of the proposed ZVS PWM strategy. Therefore, the proposed...... control strategy can improve the performance and reliability of the converter in the aspect of balancing the thermal stresses and lifetimes among the two input capacitors. Finally, simulation and experimental studies are conducted and results verify the proposed control strategy....
Soft Switching Full-Bridge PWM DC/DC Converter Using Secondary Snubber
Jaroslav Dudrik
2009-05-01
Full Text Available A novel full-bridge PWM DC/DCconverter with controlled secondary side rectifier usingsecondary snubber is presented in this paper.Limitation of the circulating current as well as softswitching for all power switches of the inverter isachieved for full load range from no-load to shortcircuit by using controlled rectifier and snubber on thesecondary side. Phase shift PWM control strategy isused for the converter. The principle of operation isexplained and analyzed and the experimental resultson a 1kW, 50 kHz laboratory model of the converterare presented.
R. Silva-Ortigoza
2014-01-01
Full Text Available Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM and, more recently, the sigma-delta-modulator (Σ-Δ-modulator. Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a Σ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE index shows that, at frequencies with similar efficiency, the Σ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research.
Morimoto, Keiki; Doi, Toshimitsu; Manabe, Haruhiko; Ahmed, Tarek; Hiraki, Eiji; Lee, Hyun-Woo; Nakaoka, Mutsuo
This paper presents a new circuit topology of full-bridge soft-switching PWM inverter linked DC-DC power converter composed of conventional full-bridge high frequency PWM inverter with high frequency transformer and an active quasi-resonant snubber consisting of an additional power switching device in series with DC busline and a lossless capacitor in parallel with DC busline. Under this proposed high frequency soft-switching PWM inverter linked DC-DC converter, four power switches in the full-bridge arms and DC busline series switch can achieve ZVS at turn-off commutation. By developing the advanced soft-switching PWM high frequency inverter type DC-DC converter, although the conduction power loss of DC busline series power switch increases a little, the total turn-off switching loss of full-bridge high frequency inverter power modules can be sufficiently lowered more and more in the higher frequency range of 60kHz. As a result, when the switching frequency of high frequency inverter power stage using IGBT power modules is designed so as to be more than about 10kHz, the more the switching frequency of inverter increases, the more this high frequency soft-switching DC-DC converter has remarkable advantage as for the power conversion efficiency as compared with the conventional hard-switching PWM inverter DC-DC converter. Its practical effectiveness of high power density and high performance is actually proved for TIG arc welding equipment in industry.
High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit
C. P. Sai Kiran
2014-10-01
Full Text Available This thesis presents High frequency Soft Switching DC-DC boost Converter. The circuit consists of a general Boost Converter with an additional resonant circuit which has a switch, inductor, capacitor and a diode.In general Boost Converter circuits have snubber circuits where switching losses are dissipated in external passive resistors; which is known as hard switching. As the switching frequency of PWM converters is increased its switching losses and conduction losses also increases. This restricts the use of PWM technique. New Zero Voltage Transition-Zero Current Transition (ZVT-ZCT PWM converter equipped with the snubber provides the most desirable features of both ZVT and ZCT converters presented previously. Moreover all semiconductors devices operate with soft switching and hence losses are reduced.
零电压转换PWMDC/DC变换器的研究%Research on Zero-voltage-transition PWM DC/DC Converters
高原; 邱新芸
2005-01-01
介绍了PWM DC/DC变换器的软开关控制.阐述了零电压转换PWM DC/DC变换器的缺点.研究了带吸收电容的零电压转换PWM DC/DC变换器电路.给出了仿真电路和仿真结果.
Mechouma Rabiaa
2014-01-01
Full Text Available In recent years, power demand of industrial applications has increased significantly reaching some megawatts. The use of multilevel converters for applications of medium and high powers is proposed as a solution to drawback semiconductor technology. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic can be easily interfaced to a multilevel converter system for a high power application. This paper presents the simulation study in Matlab/Simulink of a grid connected photovoltaic three phase Neutral Point Clamped (NPC inverter with DC/DC boost converter for constant and variable solar radiation.
Hysteretic Current Controlled Zvs Dc/Dc Converter For Automobile
Cernat, M.; Scortarul, P.; Tanase, A.
2007-01-01
A novel bi-directional dc-dc converter with ZVS and interleaving for dual voltage systems in automobiles is presented. A variable frequency extended band hysteretic current control method is proposed. In comparison with classical fixed frequency current control PWM, the reverse polarity peak curr...
Full Bridge ZVT—PWM DC—DC Converter①
WEIYanjun; QIHanhong; 等
1997-01-01
A new FB-ZVT-PWM converter is proposed.The new converter operates at a fixed frequency and implements ZVS for power devices without increasing voltage in both turn-on and turn-off transient.A 80kHz/50 W FB-ZVT-PWM boost converter using MOSFETs is analysed theoretically.
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-01
We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.
Luo, Fang Lin
2003-01-01
INTRODUCTIONHistorical ReviewMultiple Quadrant ChoppersPump CircuitsDevelopment of DC/DC Conversion TechniqueCategorize Prototypes and DC/DC Converters Family TreeVOLTAGE-LIFT CONVERTERSIntroductionSeven Self-Lift ConvertersPositive Output Luo-ConvertersNegative Output Luo-ConvertersModified Positive Output Luo-Converters Double Output Luo-ConvertersPOSITIVE OUTPUT SUPER-LIFT LUO-CONVERTERS IntroductionMain SeriesAdditional SeriesEnhanced Series Re-Enhanced Series Multiple-Enhanced Series Summary of Positive Output
Laboratory manual for pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2015-01-01
Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters. Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program
Robust DC/DC converter control for polymer electrolyte membrane fuel cell application
Wang, Ya-Xiong; Yu, Duck-Hyun; Chen, Shi-An; Kim, Young-Bae
2014-09-01
This study investigates a robust controller in regulating the pulse width modulation (PWM) of a DC/DC converter for a polymer electrolyte membrane fuel cell (PEMFC) application. A significant variation in the output voltage of a PEMFC depends on the power requirement and prevents a PEMFC from directly connecting to a subsequent power bus. DC/DC converters are utilized to step-up or step-down voltage to match the subsequent power bus voltage. In this study, a full dynamic model, which includes a PEMFC and boost and buck DC/DC converters, is developed under MATLAB/Simulink environment for control. A robust PWM duty ratio control for the converters is designed using time delay control (TDC). This control enables state variables to accurately follow the dynamics of a reference model using time-delayed information of plant input and output information within a few sampling periods. To prove the superiority of the TDC performance, traditional proportional-integral control (PIC) and model predictive control (MPC) are designed and implemented, and the simulation results are compared. The efficacies of TDC for the PEMFC-fed PWM DC/DC converters are validated through experimental test results using a 100 W PEMFC as well as boost and buck DC/DC converters.
适用于纹波控制型DC-DC变换器的比较器设计%Design of PWM Comparator for DC-DC Converter Based on Ripple Control
杨靖; 冯全源
2014-01-01
设计一种适用于纹波控制( Output-Ripple-Based Control)的Buck型DC-DC变换器的比较器,根据PSIM搭建的仿真模型,分析主环比较器性能对系统的影响,设计具有三级预放大的高增益,低延时,低失调电压的比较器电路,采用两种温度系数的电流补偿比较器增益,稳定增益,采用0.5μm BiCOMS工艺进行仿真验证,下降沿延时27 ns,增益123 dB,随温度最大增益变化3.2%,失调电压90μV,达到系统要求。%A kind of comparator applicable to Output-Ripple-Based Control DC-DC Converter was put forward. By using PSIM to build simulation model,and analysing the main loop comparator's performance,the influence of the system,a comparator circuit with preamplifier of high gain,low delay,low disorder voltage were designed. The two kinds of temperature coefficient of bias current are using to compensate the comparator's gain,By using 0. 5 μm BiCOMS process to simulation verification,the falling edge delay is 27 ns,gain is 123 dB,the biggest gain 3. 2%with temperature changes,offset voltage 90 μV and they all reach the system requirements.
Andersson, Martin
2011-01-01
1 SammanfattningCrossControl är ett företag som bland annat tillverkar integrerade datorlösningar. Datorerna drivs normalt med 18-30 VDC och förbrukar som mest 50W. Datorerna säljs till flertalet olika kunder som monterar dem i allt från skogsmaskiner till tåg. I de olika fordonen varierar spänningen i de befintliga elnäten. Detta skapar behovet av att omvandla spänningen till en nivå som datorerna klarar av. En sådan apparat kallas DC/DC-omvandlare. Spänningsomvandling kan utföras genom linj...
Cosp Vilella, Jordi; Martínez García, Herminio
2015-01-01
Hybrid DC-DC regulators are structures that combine both a linear voltage regulator and a switching DC-DC converter. The main objective of this hybrid topology is to converge, in a single circuit topology, the best of both alternatives: a small voltage output ripple, which is a common characteristic of linear regulator circuits, and good energy efficiency, as in switching alternatives. While the linear regulator fixes the required output voltage to a fixed value with negligible steady-state r...
Local Bifurcations in DC-DC Converters
2012-01-01
Three local bifurcations in DC-DC converters are reviewed. They are period-doubling bifurcation, saddle-node bifurcation, and Neimark bifurcation. A general sampled-data model is employed to study the types of loss of stability of the nominal (periodic) solution and their connection with local bifurcations. More accurate prediction of instability and bifurcation than using the averaging approach is obtained. Examples of bifurcations associated with instabilities in DC-DC converters are given.
Modified Multiport Dc-Dc Converter Topology For Smart Grid
Dhamodharan Shanmugam
2013-10-01
Full Text Available The development of a Solid State Transformer (SST that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad active-bridge (QAB converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-widthmodulated (PWM single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB converter controlled through phase-shift modulation (PSM. Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR and singleinput-single-output (SISO types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models.
Novel Full-bridge ZVS DC-DC Converter with an Clamp Diodes
Guangqun, Nan; Xue, Hu
The two arms of this converter all work at zero-voltage switching condition, that bring many advantages, such as little loss of power, simple control, etc. But these also exists some problems, such as parasitic oscillation on the output rectifier diodes. A novel full-bridge ZVS PWM DC-DC converter which adopts two clamping diodes in the first side of the transformer is proposed to reduce the parasitic oscillation in this paper. In this paper, It heavily analyzes the realization process of their soft-switching and the reason of related issues and solution, we establishes simulation model and simulates using orCAD. Finally,a 5 kW ZVS PWM DC-DC converter Prototype in that TMS320F2812 is the core controlled chip has been set up, and the experiments showed us the validation of the correlative theory.
Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface
Adib, Ehsan; Farzanehfard, Hosein [Dept. of Electrical and Computer Engineering, Isfahan Univ. of Technology (Iran)
2009-12-15
In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis. (author)
王建华; 张方华; 龚春英
2014-01-01
提出了双向功率流动场合的PWM Switch模型,同时选取典型的Buck/Boost双向变换器作为评估平台.小信号分析结果表明,Buck/Boost双向直直变换器通过仅控制Buck模式主控管可以对电池充放电模式进行切换.其提供了对变换器稳态及动态性能研究的一种快速仿真方法.基于改进PWM Switch模型及器件级电路的详尽仿真对比验证了模型的精确性.
CMOS Integrated Capacitive DC-DC Converters
Van Breussegem, Tom
2013-01-01
This book provides a detailed analysis of all aspects of capacitive DC-DC converter design: topology selection, control loop design and noise mitigation. Readers will benefit from the authors’ systematic overview that starts from the ground up, in-depth circuit analysis and a thorough review of recently proposed techniques and design methodologies. Not only design techniques are discussed, but also implementation in CMOS is shown, by pinpointing the technological opportunities of CMOS and demonstrating the implementation based on four state-of-the-art prototypes. Provides a detailed analysis of all aspects of capacitive DC-DC converter design; Analyzes the potential of this type of DC-DC converter and introduces a number of techniques to unleash their full potential; Combines system theory with practical implementation techniques; Includes unique analysis of CMOS technology for this application; Provides in-depth analysis of four fabricated prototypes.
DC/DC Converter Stability Testing Study
Wang, Bright L.
2008-01-01
This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.
High-Efficiency dc/dc Converter
Sturman, J.
1982-01-01
High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.
Simulation and Implementation of Quasi Resonant DC-DC Converter
N. Devarajan
2012-01-01
Full Text Available Problem statement: A half-bridge LLC resonant converter with a voltage doubler rectifier has a simple structure and its Zero-Voltage-Switching (ZVS capability is excellent from zero to full load condition. But conduction loss is more due to high circulating energy thus reducing the system efficiency. Moreover a variable frequency control method makes the control circuits more complicated than those using the Pulse Width Modulation (PWM control method. Thus, DC drive has lower efficiency when it operates on light loads. Approach: To improve the efficiency of the DC drive under light loads, a PWM-controlled quasi-resonant converter is proposed .It has simple control circuits and less conduction loss compared to a half-bridge LLC resonant converter under light load conditions. The proposed converter has a half-bridge LLC resonant converter along with an auxiliary circuit. The load regulation of the proposed converter can be achieved by an auxiliary circuit. Thus the proposed converter is expected to be suitable sustaining power module for the efficiency enhancement of DC drives. As the magnetizing inductance of the proposed converter is larger the circulating energy is considerably reduced under light load conditions. In this study the operational principle, design and modeling of QRC DC-DC converters for DC drives are presented. The PWM controlled quasi resonant converter is implemented using PIC microcontroller 16F184A. Results: The capacitor filter in the output is replaced by pi filter to produce DC with minimum ripple. The experimental results and simulation results are compared. This converter has the advantages like reduced number of switches, reduced transformer and filter size, reduced ripple, reduced switching losses, reduced switching stresses and increased power density. Conclusion: The experimental results closely agree with the simulation results.
A resonant dc-dc power converter assembly
2015-01-01
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...... and second resonant DC-DC power converters. The first and second inductors are corresponding components of the first and second resonant DC-DC power converters....
Charge pump DC-DC converter comprising solid state batteries
Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.
2013-01-01
An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).
Multiport Resonant DC-DC Converter
Tran, Yan-Kim; Dujic, Drazen; Barrade, Philippe
2015-01-01
his paper presents a multiport galvanically isolated LLC resonant DC-DC converter suitable for DC applications. A three-port structure is analyzed, with full bidirectional power flow capabilities, simple control and behavior similar to that expected from a DC transformer. Each port is equipped with half-bridge modules accompanied with tuned resonant tank, partly realized with elements of a multi- winding high frequency transformer. With some restrictions that are explained in the paper, each ...
A Nonlinear Digital Control Solution for a DC/DC Power Converter
Zhu, Minshao
2002-01-01
A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.
ASIC and FPGA based DPWM architectures for single-phase and single-output DC-DC converter: a review
Chander, Subhash; Agarwal, Pramod; Gupta, Indra
2013-12-01
Pulse width modulation (PWM) has been widely used in power converter control. This paper presents a review of architectures of the Digital Pulse Width Modulators (DPWM) targeting digital control of switching DC-DC converters. An attempt is made to review the reported architectures with emphasis on the ASIC and FPGA implementations in single phase and single-output DC-DC converters. Recent architectures using FPGA's advanced resources for achieving the resolution higher than classical methods have also been discussed. The merits and demerits of different architectures, and their relative comparative performance, are also presented. The Authors intention is to uncover the groundwork and the related references through this review for the benefit of readers and researchers targeting different DPWM architectures for the DC-DC converters.
Zheng Wang
2016-01-01
Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.
Radiation Effects on DC-DC Converters
Zhang, De-Xin; AbdulMazid, M. D.; Attia, John O.; Kankam, Mark D. (Technical Monitor)
2001-01-01
In this work, several DC-DC converters were designed and built. The converters are Buck Buck-Boost, Cuk, Flyback, and full-bridge zero-voltage switched. The total ionizing dose radiation and single event effects on the converters were investigated. The experimental results for the TID effects tests show that the voltages of the Buck Buck-Boost, Cuk, and Flyback converters increase as total dose increased when using power MOSFET IRF250 as a switching transistor. The change in output voltage with total dose is highest for the Buck converter and the lowest for Flyback converter. The trend of increase in output voltages with total dose in the present work agrees with those of the literature. The trends of the experimental results also agree with those obtained from PSPICE simulation. For the full-bridge zero-voltage switch converter, it was observed that the dc-dc converter with IRF250 power MOSFET did not show a significant change of output voltage with total dose. In addition, for the dc-dc converter with FSF254R4 radiation-hardened power MOSFET, the output voltage did not change significantly with total dose. The experimental results were confirmed by PSPICE simulation that showed that FB-ZVS converter with IRF250 power MOSFET's was not affected with the increase in total ionizing dose. Single Event Effects (SEE) radiation tests were performed on FB-ZVS converters. It was observed that the FB-ZVS converter with the IRF250 power MOSFET, when the device was irradiated with Krypton ion with ion-energy of 150 MeV and LET of 41.3 MeV-square cm/mg, the output voltage increased with the increase in fluence. However, for Krypton with ion-energy of 600 MeV and LET of 33.65 MeV-square cm/mg, and two out of four transistors of the converter were permanently damaged. The dc-dc converter with FSF254R4 radiation hardened power MOSFET's did not show significant change at the output voltage with fluence while being irradiated by Krypton with ion energy of 1.20 GeV and LET of 25
Radiation effects on DC-DC Converters
Zhang, Dexin; Attia, John O.; Kankam, Mark D. (Technical Monitor)
2000-01-01
DC-DC switching converters are circuits that can be used to convert a DC voltage of one value to another by switching action. They are increasing being used in space systems. Most of the popular DC-DC switching converters utilize power MOSFETs. However power MOSFETs, when subjected to radiation, are susceptible to degradation of device characteristics or catastrophic failure. This work focuses on the effects of total ionizing dose on converter performance. Four fundamental switching converters (buck converter, buck-boost converter, cuk converter, and flyback converter) were built using Harris IRF250 power MOSFETs. These converters were designed for converting an input of 60 volts to an output of about 12 volts with a switching frequency of 100 kHz. The four converters were irradiated with a Co-60 gamma source at dose rate of 217 rad/min. The performances of the four converters were examined during the exposure to the radiation. The experimental results show that the output voltage of the converters increases as total dose increases. However, the increases of the output voltage were different for the four different converters, with the buck converter and cuk converter the highest and the flyback converter the lowest. We observed significant increases in output voltage for cuk converter at a total dose of 24 krad (si).
A low noise high efficiency buck DC-DC converter with sigma-delta modulation
Cai Shujiang; Pi Changming; Yan Wei; Li Wenhong, E-mail: wenhongli@fudan.edu.cn [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)
2011-07-15
Some research efforts to improve the efficiency and noise performance of buck DC-DC converters are explored. A carefully designed power MOSFET driver, including a dead time controller, discontinuous current mode (DCM) controller and gate width controller, is proposed to improve efficiency. Instead of PWM modulation, sigma-delta modulation is introduced into the feedback loop of the converter to move out the clock-referred harmonic spike. The proposed converter has been designed and fabricated by a 0.35 {mu}m CMOS process. Measured results show that the peak efficiency of the converter can reach 93% and sigma-delta modulation suppresses the harmonic spike by 30 dB over PWM modulation. (semiconductor integrated circuits)
Radiation-Tolerant DC-DC Converters
Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn
2012-01-01
A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).
Intelligent dc-dc Converter Technology Developed and Tested
Button, Robert M.
2001-01-01
The NASA Glenn Research Center and the Cleveland State University have developed a digitally controlled dc-dc converter to research the benefits of flexible, digital control on power electronics and systems. Initial research and testing has shown that conventional dc-dc converters can benefit from improved performance by using digital-signal processors and nonlinear control algorithms.
DC-DC powering for the CMS pixel upgrade
Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael
2013-12-01
The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.
DC-DC Powering for the CMS Pixel Upgrade
Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael
2013-01-01
The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV
Teresa R. Granados-Luna
2014-01-01
Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.
An FPGA Based Controller for a SOFC DC-DC Power System
Kanhu Charan Bhuyan
2013-01-01
Full Text Available Fuel cells are an attractive option for alternative power and of use in a variety of applications. This paper proposes a state space model for the solid oxide fuel cell (SOFC based power system that comprises fuel cell, DC-DC buck converter, and load. In this investigation we have taken up a case study for SOFC feeding a DC load where a DC-DC buck converter acts as the interface between the load and the source. A proportional-integral (PI controller is used in conjunction with pulse width modulation (PWM that computes the pulse width and switches the MOSFET at the right instant so that the desired voltage is obtained. The proposed model is validated through extensive simulation using MATLAB/SIMULINK. Controller for the fuel cell power system (FCPS is prototyped using XC3S500E development board containing a SPARTAN 3E Xilinx FPGA that simplifies the entire control circuit besides providing additional flexibility for further improvement. The results clearly indicate improved performance and validate our proposed model.
Time delay control for fuel cells with bidirectional DC/DC converter and battery
Kim, Y.B. [Mechanical Engineering Department, Chonnam National University, Gwangju (Korea); Kang, S.J. [Mechatronics Engineering Department, Korea Polytechnic College V, Gwangju (Korea)
2010-08-15
Transient behavior is a key property in the vehicular application of proton exchange membrane (PEM) fuel cells. A better control technology is constructed to increase the transient performance of PEM fuel cells. A steady-state isothermal analytical fuel cell model is constructed to analyze mass transfer and water transport in the membrane. To prevent the starvation of air in the PEM fuel cell, time delay control is used to regulate the optimum stoichiometric amount of oxygen, although dynamic fluctuations exist in the PEM fuel cell power. A bidirectional DC/DC converter connects the battery to the DC link to manage the power distribution between the fuel cell and the battery. Dynamic evolution control (DEC) allows for adequate pulse-width modulation (PWM) control of the bidirectional DC/DC converter with fast response. Matlab/Simulink/Simpower simulation is performed to validate the proposed methodology, increase the transient performance of the PEM fuel cell system and satisfy the requirement of energy management. (author)
Buck DC DC converter using fuzzy logic control for no linear load
Rubén Darío Bonilla Isaza
2016-06-01
Method: Through Simulink MATLAB was built a DC-DC converter of closed loop, which is placed in series with a controller based on fuzzy logic. The control inputs are the voltage signal and its derivative, and the output is a constant value, which tunes the duty cycle of a pulse modulator (PWM. This adjust the output of voltage of the controller according to a desired reference. The fuzzy controller was built with membership functions in which linguistic variables that explain when a value of output of voltage must be corrected and when the voltage variation is out of the established ranges between -1 and 1 percent of allowable variation were integrated. Results: To evaluate the performance of this type of control compared to a DC-DC converter with control of closed loop of unity gain, obtaining a 40% improvement in the integral of area regarding the fuzzy controller, with a stabilization time of 0.01s. In non-linear loads, there are random phenomena or own unwanted effects of resonance circuit, then was emulated by interrupting cycles of a time-controlled switch.
A New Zero Voltage Switching Buck-Boost Type DC-DC Converter
Majid Delshad
2010-03-01
Full Text Available In this paper, a new zero voltage switching isolated buck-boost DC-DC converter with active clamp circuit is proposed. The active clamp circuit in this converter not only absorbs voltage spikes across the main switch but also provides soft switching conditions for all switches. All switches are PWM controlled which simplifies the control implementation. One of the main advantages of this converter is the that it operating can operate at high power levels while soft switching conditions exist in both buck and boost modes of converter operation. Since this converter can operate over a wide input voltage range, it can be employed in power factor correction. The experimental results obtained from a 150W prototype circuit operating at 100KHz are presented to confirm the integrity of the proposed circuit.
Analysis of Discontinuity Induced Bifurcations in a Dual Input DC-DC Converter
Giaouris, Damian; Banerjee, Soumitro; Mandal, Kuntal; Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; El Aroudi, Abdelali
DC-DC power converters with multiple inputs and a single output are used in numerous applications where multiple sources, e.g. two or more renewable energy sources and/or a battery, feed a single load. In this work, a classical boost converter topology with two input branches connected to two different sources is chosen, with each branch independently being controlled by a separate peak current mode controller. We demonstrate for the first time that even though this converter is similar to other well known topologies that have been studied before, it exhibits many complex nonlinear behaviors that are not found in any other standard PWM controlled power converter. The system undergoes period incrementing cascade as a parameter is varied, with discontinuous hard transitions between consecutive periodicities. We show that the system can be described by a discontinuous map, which explains the observed bifurcation phenomena. The results have been experimentally validated.
Low-temperature operation of a Buck DC/DC converter
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.
Design of high efficiency dual-mode buck DC-DC converter
Lai Xinquan; Zeng Huali; Ye Qiang; He Huisen; Zhang Shasha; Sun Yuqing, E-mail: zenghuali4213@126.com, E-mail: xqlai@mail.xidian.edu.cn [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China)
2010-11-15
A buck DC-DC switching regulator with high efficiency is implemented by automatically altering the modulation mode according to load current, and it can operate with an input range of 4.5 to 30 V. At light load current, the converter operates in skip mode. The converter enters PWM mode operation with increasing load current. It reduces the switching loss at light load and standby state, which results in prolonging battery lifetime and stand-by time. Meanwhile, externally adjustable soft-start minimizes the inrush supply current and avoids the overshoot of output voltage at initial startup. The regulator is fabricated by a 0.6 {mu}m CDMOS process. The test results show that, under the condition of 3.3 V output, the efficiency is up to 64% at 5 mA and the maximum efficiency is 95.5%.
A.S. Oshaba
2013-05-01
Full Text Available This study presents an approach for the speed control of a permanent magnet DC motor drive via Pulse Width Modulation (PWM technique and a DC/DC converter. The Particle Swarm Optimization (PSO technique is used to minimize a time domain objective function and obtain the optimal controller parameters. The performance of the proposed technique has been evaluated using various types of disturbances including load torque variations. Simulation results illustrate clearly the robustness of the controller and validity of the design technique for controlling the speed of permanent magnet motors.
Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application
2006-06-13
34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation
A Dual-Mode Step-up DC/DC Converter IC with Current-Limiting and EMI Reduction Techniques
Wan-Rone Liou; Chun-Ting Kuo; Mei-Ling Yeh; Ping-Hsing Chen; Marynelle L. Z. Rosales
2008-01-01
This paper presents a novel dual-mode step-up (boost) DC/DC converter. Pulse-frequency modulation (PFM) is used to improve the efficiency at light load. This converter can operate between pulse-width modulation (PWM) and pulse-frequency modulation. The converter will operate in PFM mode at light load and in PWM mode at heavy load. The maximum conversion efficiency of this converter is 96%. The conversion efficiency is greatly improved when load current is below 100 mA. Additionally, a soft-start circuit and a variable-sawtooth frequency circuit are proposed in this paper. The former is used to avoid the large switching current at the start up of the converter and the latter is utilized to reduce the EMI of the converter.
A Dual-Mode Step-up DC/DC Converter IC with Current-Limiting and EMI Reduction Techniques
Wan-Rone Liou; Chun-Ting Kuo; Mei-Ling Yeh; Ping-Hsing Chen; Marynelle L. Z. Rosales
2008-01-01
This paper presents a novel dual-modestep-up (boost) DC/DC converter. Pulse-frequencymodulation (PFM) is used to improve the efficiency atlight load. This converter can operate betweenpulse-width modulation (PWM) and pulse-frequencymodulation. The converter will operate in PFM mode atlight load and in PWM mode at heavy load. Themaximum conversion efficiency of this converter is 96%.The conversion efficiency is greatly improved when loadcurrent is below 100 mA. Additionally, a soft-startcircuit and a variable-sawtooth frequency circuit areproposed in this paper. The former is used to avoid thelarge switching current at the start up of the converterand the latter is utilized to reduce the EMI of theconverter.
A Novel FPSM Controller for DC-DC Switching Converters
Yong Feng; Shun-Ping Wang; Ping Luo; Quan-Ming Niu; Zhao-Ji Li
2007-01-01
This paper presents a novel fuzzy pulse skip modulation (FPSM) controller for switching direct current to direct current (DC-DC) converters based on fuzzy ratiocination modeling approach. Owing to the optimal consideration during the design and the nonlinear characteristics of the controller, improved dynamic responses of the FPSM controller can be achieved over conventional controllers. Compared with conventional proportion integral derivative (PID) control, FPSM control has 60% lower overshoot and 10% lower setting time under the same input voltage and output load change. The presented approach is general and can be applied to other types of DC-DC converters.
High performance dc-dc conversion with voltage multipliers
Harrigill, W. T.; Myers, I. T.
1974-01-01
The voltage multipliers using capacitors and diodes first developed by Cockcroft and Walton in 1932 were reexamined in terms of state of the art fast switching transistors and diodes, and high energy density capacitors. Because of component improvements, the voltage multiplier, used without a transformer, now appears superior in weight to systems now in use for dc-dc conversion. An experimental 100-watt 1000-volt dc-dc converter operating at 100 kHz was built, with a component weight of about 1 kg/kW. Calculated and measured values of output voltage and efficiency agreed within experimental error.
Mono-switch AC-DC/DC-DC converter for single-phase UPS%单相UPS的单开关AC-DC/DC-DC变换电路
李宋; 叶满园; 袁义生
2011-01-01
A mono-switch AC-DC/DC-DC converter used in single-phase UPS system is introduced,which consists of one power switch and six diodes. As both AC-DC rectifier and DC-DC booster,its operating modes and working principle are detailed. The single-cycle nonlinear control is adopted,which applies two low-speed PI regulators to control the voltage of two capacitors on DC link and a high-speed PI regulator to control the input current. Simulative results prove that,being simple and reliable,it outputs stable DC bus voltage with high input power factor and low THD.%介绍了一种应用在单相UPS系统中的新型单开关AC-DC/DC-DC变换电路,该电路由1个功率开关器件和6个二极管组成,能够实现AC/DC整流和DC/DC升压2种功能.在详细分析了该电路运行模式及工作原理的基础上,采用了单周期非线性控制理论对其进行控制,利于2个低速PI调节器对直流母线上的2个电容器电压进行控制,1个高速PI调节器对输入电流进行控制.仿真结果表明,该电路简单可靠,输入功率因数高,电流谐波失真小,可以获得稳定的正负直流母线电压.
Simple PWM modulator topology with excellent dynamic behavior
Poulsen, Søren; Andersen, Michael Andreas E.
2004-01-01
This paper proposes a new PWM modulator topology. The modulator is used in switch mode audio power amplifiers, but the topology can be used in a wide range of applications. Due to excellent transient behavior, the modulator is very suited for VRMs or other types of DC-DC or DC-AC applications....
Very High Frequency Half Bridge DC/DC Converter
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2014-01-01
This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...
A Plasma-Based DC-DC Electrical Transformer
Nebel, Richard; Finn, John
2013-10-01
Previous work has indicated that it may be possible to make DC-DC electrical transformers using plasmas. The mechanism is an MHD electromagnetic relaxation process induced by helical electrodes. This process is now being tested on the Bismark device at Tibbar Technologies.
A Current-Fed Isolated Bidirectional DC-DC Converter
Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng;
2017-01-01
This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes of th...
An organic integrated capacitive DC-DC up-converter
Marien, H.; Steyaert, M.; Steudel, S.; Vicca, P.; Smout, S.; Gelinck, G.H.; Heremans, P.L.
2010-01-01
In this paper a fully integrated organic DC-DC upconverter is presented in a pentacene p-type only technology. This 3-stage Dickson converter reaches a voltage conversion factor of 3 for a purely capacitive load and 2.5 for a 10 μA load current. The maximal output voltage goes up to 75 V and the Dic
Sheppard-Taylor Isolated High Boost DC-DC Converter
Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri
2017-01-01
This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can b...
Early Oscillation Detection Technique for Hybrid DC/DC Converters
Wang, Bright L.
2011-01-01
Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s
Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex, multiple-output, DC-DC converter systems can be configured through use of only 2 standard product hybrid DC-DC...
GaN Microwave DC-DC Converters
Ramos Franco, Ignacio
Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any
Fuzzy Control of DC-DC Converters with Input Constraint
D. Saifia
2012-01-01
Full Text Available This paper proposes a method for designing fuzzy control of DC-DC converters under actuator saturation. Because linear control design methods do not take into account the nonlinearity of the system, a T-S fuzzy model and a controller design approach is used. The designed control not only handles the external disturbance but also the saturation of duty cycle. The input constraint is first transformed into a symmetric saturation which is represented by a polytopic model. Stabilization conditions for the state feedback system of DC-DC converters under actuator saturation are established using the Lyapunov approach. The proposed method has been compared and verified with a simulation example.
General-purpose fuzzy controller for dc-dc converters
Mattavelli, P.; Rossetto, L.; Spiazzi, G.; Tenti, P. [Univ. of Padova (Italy)
1997-01-01
In this paper, a general-purpose fuzzy controller for dc-dc converters is investigated. Based on a qualitative description of the system to be controlled, fuzzy controllers are capable of good performances, even for those systems where linear control techniques fail, e.g., when a mathematical description is not available or is in the presence of wide parameter variations. The presented approach is general and can be applied to any dc-dc converter topologies. Controller implementation is relatively simple and can guarantee a small-signal response as fast and stable as other standard regulators and an improved large-signal response. Simulation results of Buck-Boost and Sepic converters show control potentialities.
2015-01-01
The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...... capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...
A Novel High Gain DC-DC Step up Converter
M. Al Mamun
2016-07-01
Full Text Available High gain dc-dc converters are widely used to maximize the energy harvest for renewable energy systems, for example, photovoltaic systems and fuel cell. Conventional boost converters usually operates at extreme duty cycle to obtain high voltage gain. Operation at extreme duty cycle leads to reverse recovery problem at the switches, high conduction loss, electromagnetic interference etc. This paper proposes a very high gain dc-dc step up converter operating at very low duty cycle (i.e. duty cycle <0.5. The additional advantage of the proposed converter is that a single control signal is used for the switches which reduces the operation complexity. The steady-state theoretical analysis described in this paper is finally verified by simulation results
Active pre-filters for dc/dc Boost regulators
Carlos Andrés Ramos-Paja
2014-07-01
Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.
Conception de convertisseurs DC/DC à base de MEMS
Ghandour, Sahar
2011-01-01
Current trends towards miniaturization of electronic circuits had led to the advent of System onChip containing different types of circuits indented to perform different functions. These sub-systemsrequire different supply voltages that are delivered from the SoC supply voltage using several DC/DCconverters. Currently, most of the electronic circuits of portable applications use conventional SMPS(switch mode power supply) DC/DC converters containing an inductor element to stock temporally the...
Hybrid battery with bi-directional DC/DC converter
DUDRIK Jaroslav
2010-05-01
Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.
Digital Control Technologies for Modular DC-DC Converters
Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon
2002-01-01
Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.
A new Zero-Voltage-Transition PWM switching cell
Grigore, V. [Electronics and Telecommunications Faculty `Politebuica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics
1997-12-31
In this paper a new Zero-Voltage-Transition (ZVT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus an auxiliary circuit (consisting of one active switch and some reactive components). The auxiliary circuit is inactive during the ON and OFF intervals of the switches in the normal PWM switch. However, the transitions between the two states are controlled by the auxiliary circuit. Prior to turn-on, the voltage across the active switch in the PWM cell is forced to zero, thus the turn-on losses of the active switch are practically eliminated. At turn-off the auxiliary circuit behaves like a non-dissipative passive snubber reducing the turn-off losses to a great extent. Zero-Voltage-Transition switching technique almost eliminates switching losses. The active switch operates under ZVT conditions, the passive switch (diode) has a controlled reverse recovery, and the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 6 refs.
Zhang Chunhong; Yang Haigang; Richard Shi
2013-01-01
A synchronous buck DC-DC converter with an adaptive multi-mode controller is proposed.In order to achieve high efficiency over its entire load range,pulse-width modulation (PWM),pulse-skip modulation (PSM)and pulse-frequency modulation (PFM) modes were integrated in the proposed DC-DC converter.With a highly accurate current sensor and a dynamic mode controller on chip,the converter can dynamically change among PWM,PSM and PFM control according to the load requirements.In addition,to avoid power device damage caused by inrush current at the start up state,a soft-start circuit is presented to suppress the inrush current.Furthermore,an adaptive slope compensation (SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50％,and improve the degraded load capability due to traditional slope compensation.The buck converter chip was simulated and manufactured under a 0.35μm standard CMOS process.Experimental results show that the chip can achieve 79％ to 91％ efficiency over the load range of 0.1 to 1000 mA.
Pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2008-01-01
This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,
Radiated electromagnetic emissions of DC-DC converters
Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J; Wlochal, M, E-mail: sammet@cern.ch [Physikalisches Institut IB, RWTH Aachen University, Aachen (Germany)
2010-12-15
For the CMS tracker at SLHC a new powering scheme is considered to be mandatory to allow the detector to provide at least the same performance as today at the LHC. The baseline solution of CMS foresees the use of DC-DC converters to provide larger currents with smaller losses. An important component of most converters are inductors which, however, tend to radiate the switching noise generated by the converter. The emissions of different inductors have been measured and simulated, the coil design has been optimized and noise susceptibility measurements, with present CMS hardware, have been performed. This article summarizes the results.
Radiated electromagnetic emissions of DC-DC converters
Sammet, Jan Domenik
2010-01-01
A new powering scheme is considered to be mandatory for the CMS tracker at SLHC. The baseline solution of CMS foresees the use of DC-DC converters, allowing to provide larger currents while reducing losses. An important component of most converters are inductors, which, however, tend to radiate the switching noise generated by the converter. The radiated emissions of several converters have been measured and simulated. In addition noise susceptibility measurements with radiated noise and present CMS hardware have been performed. A summary of the results will be presented.
Low dose failures of hardened DC-DC power converters
Lehman, J.; Yui, C.; Rax, B. G.; Miyahira, T. F.; Weideman, M.; Schrick, P.; Swift, G. M.; Johnston, A. H.
2002-01-01
Box-level total dose testing of the FOG (Fiber Optic Gyro) by IXSEA at ESA's GammabeamFacility were abruptly terminated at 8krad (Si) due to catastrophic failure (complete shutdown). This was unexpected because all components within the gyro were supposedly radiation tolerant. Further testing showed that the components responsible for the failure were two DC-DC converters, manufactured by Interpoint, that stopped regulating shortly before shutdown. This paper summarizes diagnostic test results for the converters to determine the underlying cause of the unexpected failure at low levels of radiation.
Bi-Directional DC-DC Converter for PHEV Applications
Abas Goodarzi
2011-01-31
Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.
Kroeger, Claus [Hochschule Aalen (Germany). Wirtschaftsingenieurwesen
2009-07-01
DC-DC-Converters are used in power electronics to adapt different voltage levels of electrical sources and sinks with respect of high efficiency. To minimize electrical losses these power electronic converters always work with switching power semiconductors. This switching principle of the converter is causing a control constraint which limits the achievable performance for the voltage control drastically. This paper presents an optimization for the control sequence in a high dynamic converter control which is based on the dead-beat control design. Thus the non-avoidable control constraint will not be violated. (orig.)
On the Well-posedness of the PWM Control System
FAN Qi-fu; SHI Song-jiao
2006-01-01
One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems.This paper addresses this problem for a class of piecewise affine discontinuous systems with affine inequalities such as systems with pulse-width modulator under the definition lexicographic inequalities and the smooth continuation property of solutions.Furthermore,it is clear that when carrier signal h(t)=0,closed-loop pulse-width modulation (PWM) DC-DC converters are not well posed,and when some condition is satisfied,the closed-loop PWM DC-DC converters with a P controller are well posed.
An Efficient DC- DC Converter with Bidirectional Power Flow
N.RAJARAJESWARI
2008-07-01
Full Text Available This paper introduces a Bi-directional DC-DC converter with adaptive fuzzy logic controller. Bidirectional power flow is obtained by same power components and provides a simple, efficient, and galvanically isolated converter. In the presence of DC mains the converter operates as buck converter and charges the battery. When the DC mains fails, the converter operates as boost converter and the down stream converter is fed by the battery. The power switches are controlled by Pulse Width Modulation technique and the pulses are generated by the application of fuzzy logic with an adoption algorithm. The proposed converter is simulated using MATLAB and laboratory prototype was developed to validate the simulation results.
Optimization of DC-DC Converters via Geometric Programming
U. Ribes-Mallada
2011-01-01
Full Text Available The paper presents a new methodology for optimizing the design of DC-DC converters. The magnitudes that we take into account are efficiency, ripples, bandwidth, and RHP zero placement. We apply a geometric programming approach, because the variables are positives and the constraints can be expressed in a posynomial form. This approach has all the advantages of convex optimization. We apply the proposed methodology to a boost converter. The paper also describes the optimum designs of a buck converter and a synchronous buck converter, and the method can be easily extended to other converters. The last example allows us to compare the efficiency and bandwidth between these optimal-designed topologies.
RESONANT STEP-DOWN DC-DC POWER CONVERTERS
2015-01-01
charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short...... of the primary side circuit thereby establishing in both the first and second cases a series coupling of the output capacitor and the input capacitor. A load connection is established, in the first case, between the first positive electrode of the output capacitor and the positive input terminal or......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...
DC/DC converter with improved rectification for higher efficiency
Maisel, Peter; Saliternig, Martin [Continental AG, Nuernberg (Germany)
2010-07-01
High-power dc-dc converters are an important element of the electrical system of electric vehicles and hybrid electric vehicles. These complex modular components provide the link between the high-voltage level used for the powertrain and the low-voltage bus for the lighting system, engine management and auxiliary needs in the vehicle. The essential requirements for all converters are high efficiency, compact size, lightweight and reliability. A very popular method to increase the efficiency is the synchronous rectification. Parasitic inductances in the commutation circuit and reverse recovery effects can produce a ringing with voltage overshoots at the diodes and the transistors. These spikes can cause higher average power dissipation in the seminconductors and higher EMI (electromagnetic interference).
DC-DC converter for discharging energy storage magnets
Eyssa, Yehia M.; Huang, Xianrui
1994-07-01
A new DC-DC converter to control the output power delivered from a magnetic energy storage magnet or an equivalent current source is discussed. The circuit consists of: (1) highly coupled transformer (air or iron core) with coupling coefficient better than 0.95; (2) low frequency mechanical or superconducting switches (0.1 - 10 Hz) or high frequency (10 - 1000 Hz) GTO switches depending on the application; and (3) small voltage source (capacitor or battery) to control the output voltage. Two examples illustrating the application of this circuit are discussed. They are a step up dc current converter for use in uninterruptible power supplies and a step down one for use in discharging large current storage coil into a small current load. The efficiency expected to exceed 90%.
Study of nonlinear phenomena in switching DC/DC converters
Iu, Herbert Ho-Ching
This thesis studies some nonlinear phenomena such as bifurcation and chaos in DC/DC switching converters. Five phases of investigations are described. The first phase reviews the existing tools for analyzing nonlinear systems that are helpful to the investigation of nonlinear phenomena in power electronic circuits. Some of these existing tools are employed to study the nonlinear behaviour of power electronic circuits in the subsequent phases. The second phase focuses on the analysis of bifurcation behaviour of parallel-connected DC/DC converters under a master-slave current sharing scheme. An iterative discrete-time map and its Jacobian are established to predict the onset of period-doubling or Neimark-Sacker bifurcation. Both parallel-connected buck converters and boost converters are studied. The third phase studies an autonomous free-running Cuk converter under a hysteretic current-mode control. Hopf bifurcation is observed, for the first time, in this kind of autonomous power electronic circuits. The method of state-space averaging is employed to predict the occurrence of such bifurcation. Extensive simulations and experiments confirm the predicted results. A typical bifurcation sequence from stable fixed points to chaos, via limit cycles and quasiperiodic orbits, is demonstrated. The fourth phase investigates the possibility of synchronization of two chaotic autonomous free-running Cuk converters. With a particular capacitor voltage as driving signal, synchronization is found possible. Averaged state equations and conditional Lyapunov exponents are used to predict the possibility of synchronization while computer simulations and PSPICE simulations provide the verification. The last phase gives suggestions for future research.
DC-DC conversion powering for the CMS tracker at SLHC
Feld, L., E-mail: Lutz.Feld@cern.c [RWTH Aachen University, Sommerfeldstrasse 14, D-52074 Aachen (Germany); Jussen, R.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J. [RWTH Aachen University, Sommerfeldstrasse 14, D-52074 Aachen (Germany)
2011-02-01
A tracker powering scheme based on DC-DC converters close to the detector modules can supply more power through thinner cables. This will allow to satisfy the increased power demands of tracking systems at the SLHC. This article describes the development of DC-DC converters for upgrades of the CMS pixel and tracking systems and addresses system integration issues.
DC-DC Conversion Powering for the CMS Tracker at SLHC
Feld, Lutz
2010-01-01
A tracker powering scheme based on DC-DC converters close to the detector modules can supply more power through thinner cables. This will allow to satisfy the increased power demands of tracking systems at the SLHC. This article describes the development of DC-DC converters for upgrades of the CMS pixel and tracking systems and addresses system integration issues.
Three-port DC-DC converter with new integrated transformer for DC Distribution Systems
Ouyang, Ziwei; Andersen, Michael A. E.
2014-01-01
A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...
A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade
Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Sammet, Jan Domenik; Wlochal, Michael
2012-01-01
The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking betwe...
The DC-DC Conversion Power System of the CMS Phase-1 Pixel Upgrade
Klein, Katja
2014-01-01
The power system of the Phase-1 pixel detector will be described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, will be detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance will be discussed.
A Survey on Voltage Boosting Techniques for Step-Up DC-DC Converters
Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Gorji, Saman Asghari;
2016-01-01
Step-up dc-dc converters are used to boost the voltage level of the input to a higher output level. Despite of its features such as simplicity of implementation, the fundamental boost dc-dc converter has shortcomings such as low boost ability and low power density. With these limitations, researc...
Power Network impedance effects on noise emission of DC-DC converters
Esteban, M. C.; Arteche, F.; Iglesias, M.; Gimeno, A.; Arcega, F. J.; Johnson, M.; Cooper, W. E.
2012-01-01
The characterization of electromagnetic noise emissions of DC-DC converters is a critical issue that has been analyzed during the desing phase of CMS tracker upgrade. Previous simulation studies showed important variations in the level of conducted emissions when DC-DC converters are loaded/driven by different impedances and power network topologies. Several tests have been performed on real DC-DC converters to validate the Pspice model and simulation results. This paper presents these test results. Conducted noise emissions at the input and at the output terminals of DC-DC converters has been measured for different types of power and FEE impedances. Special attention has been paid to influence on the common-mode emissions by the carbon fiber material used to build the mechanical structure of the central detector. These study results show important recommendations and criteria to be applied in order to decrease the system noise level when integrating the DC-DC.
Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja
2014-09-09
A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.
Kanimozhi Kannabiran
2016-01-01
Full Text Available El objetivo de esta investigación es mejorar la respuesta dinámica del sistema de convertidor DC-DC con incertidumbres en los parámetros internos. La metodología de control por modo deslizante en las obras existentes se basa en un sistema de control proporcional-integral-derivativo (PID. El presente trabajo aborda diversas cuestiones en un enfoque unificado para el diseño y la aplicación de la modulación de ancho de pulso (PWM basado en control digital por modos deslizantes adaptativos (CMD, técnica de control para el controlador buck para los teléfonos móviles que funcionan en modo continuo de conducción (MCC y el modo de conducción discontinua (MCD. El controlador está programado para controlar la ganancia de la condición de carga de salida y cambiar adaptativamente los parámetros de control para dar un rendimiento dinámico óptimo correspondiente a las variaciones de carga. Además, la estabilidad se verifica analíticamente utilizando el criterio de estabilidad de Lyapunov y se prueba que el sistema es global y asintóticamente estable. Finalmente, la eficacia del método propuesto se verifica mediante la simulación y experimentación. Se obtiene una respuesta estable en estado estacionario con ondulación reducida.
Energy Factor and Mathematical Modeling for Power DC/DC Converters
Fang Lin LUO; Hong YE
2004-01-01
Mathematical modelling for power DC/DC converters is a historical problem accompanying DC/DC conversion technology since 1940's. The traditional mathematical modelling is not available for complex structure converters since the differential equation order increases very high. We have to search other way to establish mathematical modelling for power DC/DC converters. We have theoretically defined a new concept - Energy Factor (EF) in this paper and researched the relations between EF and the mathematical modelling for power DC/DC converters. EF is a new concept in power DC/DC conversion technology, which thoroughly differs from the traditional concepts such as power factor (PF), power transfer efficiency (η), total harmonic distortion (THD) and ripple factor (RF). EF and the subsequential EFv (and EFvD ) can illustrate the system stability, reference response and interference recovery. This investigation is very helpful for system design and DC/DC converters characteristics foreseeing. Two DC/DC converters: Buck converter and Super-Lift Luo-Converter as the samples are analysed in this paper to demonstrate the applications of EF, EFv (and EFvD), PE,SE, VE (and VED ), time constant τ and damping time constant τd .
Soft-switching PWM full-bridge converters topologies, control, and design
Ruan, Xinbo
2014-01-01
Soft-switching PWM full-bridge converters have been widely used in medium-to-high power dc-dc conversions for topological simplicity, easy control and high efficiency. Early works on soft-switching PWM full-bridge converter by many researchers included various topologies and modulation strategies. However, these works were scattered, and the relationship among these topologies and modulation strategies had not been revealed. This book intends to describe systematically the soft-switching techniques for pulse-width modulation (PWM) full-bridge converters, including the topologies, control and
Silicon carbide DC-DC multilevel Cuk converter
Almalaq, Yasser; Alateeq, Ayoob; Matin, Mohammad
2016-09-01
In this paper, DC-DC multilevel cuk converter using silicon carbide (SiC) Components is presented. Cuk converter gives output voltage with negative polarity. This topology is useful for applications require high gain with limitation on duty cycle. The gain of the design can be enhanced by increasing the number of multiplier level (N). This relation between the gain and the number of levels is the major advantage of this multilevel cuk converter. In the proposed cuk converter, a single SiC MOSFET, 2N-1 SiC schottky diodes, 2N capacitors, 2 inductors, and single input voltage are used to supply a load with negative polarity. 300V input voltage, 50KHz switching frequency, and 75% duty cycle are the main parameters used in the design. The output parameters are 3KW power and -5.7 KV voltage. Because this design can be used in applications which temperature plays a critical role, the relation between increasing temperature and output voltage and power are tested. The design is simulated using LTspice software and the results are discussed.
Chaos analysis and chaotic EMI suppression of DC-DC converters
Zhang, Bo
2014-01-01
Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co
Design of a High Efficiency Boost DC-DC Converter
GAO Jing; YAO Suying; XU Jiangtao; SHI Zaifeng
2009-01-01
An accurate circuit of PWM/PFM mode converting and a circuit of auto-adaptively adjusting dimension of power transistor are described. The duty cycle of the signal when the control mode converts can be gained accu-rately by using ratios of currents and capacitances, and an optimal dimension of power transistor is derived with different loads. The converter is designed by 0.35 μm standard CMOS technology. Simulation results indicate that the converter starts work at 0.8 V input voltage. Combined with synchronized rectification, the transfer efficiency is higher than 90% with full load range, and achieves 97.5% at rating output.
Modular Power System Configured with Standard Product Hybrid DC-DC Converters Project
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...
Improved Control Strategy for T-type Isolated DC/DC Converters
Liu, Dong; Deng, Fujin; Wang, Yanbo
2017-01-01
T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters....... Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal–oxide–semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC....../DC converters. The operation principles and performances of T-type isolated DC/DC converters under the proposed control strategy are analyzed in detail and verified through the simulation and experimental results....
Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade
Feld, L.; Fimmers, C.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Rittich, D.; Sammet, J.; Wlochal, M.
2014-01-01
A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.
Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project
National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...
Digitally intensive DC-DC converter for extreme space environments Project
National Aeronautics and Space Administration — The Space Micro Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator...
National Aeronautics and Space Administration — Studying and analyzing the ageing mechanisms of electronic components avionics in systems such as the GPS and INAV are of critical importance. In DC-DC power...
Decentralized Nonlinear Controller Based SiC Parallel DC-DC Converter Project
National Aeronautics and Space Administration — This proposal is aimed at demonstrating the feasibility of a Decentralized Control based SiC Parallel DC-DC Converter Unit (DDCU) with targeted application for...
Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade
Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Max Rauch; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael
2014-01-01
A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.
Sona P
2014-02-01
Full Text Available A high efficiency interleaved ZVS active clamped current fed dc-dc converter is proposed in this paper specially used for fuel cell applications. As the fuel cell output is very low we are in need of a step up dc-dc converter. Here a current fed dc-dc converter is used. Two current fed dc-dc converters are interleaved by connecting their inputs in parallel and outputs in series. With this proposed methodology input current ripples in the fuel cell stacks can be reduced and a regulated output voltage ripples can be obtained. The active clamping circuit used in this model absorbs the turn off voltage spikes hence low voltage devices with low on state resistance can be used.Voltage doubler circuits will give double the output voltage than normal with smaller transformer turns ratio and flexibility. The proposed method is simulated in MATLAB for verifying the accuracy of the proposed design.
Digitally intensive DC-DC converter for extreme space environments Project
National Aeronautics and Space Administration — The Space Micro-Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...
Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid
Deng, Fujin; Chen, Zhe
2013-01-01
transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...... in a dc-grid system is presented. Finally, a small-scale IFBTL dc/dc converter prototype was built and tested in the laboratory, and the results verify the theoretical analysis....
Studies of Interleaved DC-DC Boost Converters with Coupled Inductors
2011-04-01
power density requirements, interleaved buck and boost converters have been studied in recent years for their potential to improve power converter ...duty ratio of switch S1. Figure 1: Conventional DC-DC Boost Converter Topology (1) Vout/Vin...interleaved DC-DC boost converters with coupled inductors. Included are discussions on a 10kW prototype, a 2kW high temperature prototype, and two 2kW
A Family of Four Quadrant DC/DC Converters with Reduced Number of Components
Mostaan, Ali; Soltani, Mohsen
2015-01-01
A family of four quadrant DC/DC converters is presented in this paper. Compare with existing four quadrant DC/DC converters that have been introduced in literature, the proposed converters have lower number of components. There are two bidirectional switches, two coupled inductors and one capacit...... effect is minimized in these converters. The effectiveness of the proposed converters is validated with simulation using MATLAB/SIMULINK....
A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range
Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed;
2017-01-01
This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....
Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy
K. Rajambal
2009-01-01
Full Text Available This paper presents the topology of operating DC-DC buck converter in boost mode for extra-high-voltage applications. Traditional DC-DC boost converters are used in high-voltage applications, but they are not economical due to the limited output voltage, efficiency and they require two sensors with complex control algorithm. Moreover, due to the effect of parasitic elements the output voltage and power transfer efficiency of DC-DC converters are limited. These limitations are overcome by using the voltage lift technique, opens a good way to improve the performance characteristics of DC-DC converter. The technique is applied to DC-DC converter and a simplified control algorithm in this paper. The performance of the controller is studied for both line and load disturbances. These converters perform positive DC-DC voltage increasing conversion with high power density, high efficiency, low cost in simple structure, small ripples, and wide range of control. Simulation results along theoretical analysis are provided to verify its performance.
Polenov, Dieter
2010-01-15
The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.
High Performance ZVT with Bus Clamping Modulation Technique for Single Phase Full Bridge Inverters
Xia, Yinglai; Ayyanar, Raja
2016-03-20
This paper proposes a topology based on bus clamping modulation and zero-voltage-transition (ZVT) technique to realize zero-voltage-switching (ZVS) for all the main switches of the full bridge inverters, and inherent ZVS and/or ZCS for the auxiliary switches. The advantages of the strategy include significant reduction in the turn-on loss of the ZVT auxiliary switches which typically account for a major part of the total loss in other ZVT circuits, and reduction in the voltage ratings of auxiliary switches. The modulation scheme and the commutation stages are analyzed in detail. Finally, a 1kW, 500 kHz switching frequency inverter of the proposed topology using SiC MOSFETs has been built to validate the theoretical analysis. The ZVT with bus clamping modulation technique of fixed timing and adaptive timing schemes are implemented in DSP TMS320F28335 resulting in full ZVS for the main switches in the full bridge inverter. The proposed scheme can save up to 33 % of the switching loss compared with no ZVT case.
Miller, Douglas P.
1990-06-01
Space power supply manufacturers have tried to increase power density and construct smaller, highly efficient power supplies by increasing switching frequency. Incorporation of a power MOSFET as a switching element alleviates switching loss. However, values of R sub DS(on) (drain-to-source resistance in the on-state) for MOSFET's are of such magnitude to produce greater on-state losses than an equivalent BJT operated in saturation. This research serves to introduce a design concept, pertinent to low-voltage relatively-high-current applications, that minimizes the peak current through the switching element in order to reduce average power loss. Basic waveforms produced by different PWM and resonant mode topologies were examined. Theoretical analysis reveals that a ramp-sine current waveform could cut conduction power loss by at least 18 percent over a conventional Buck switching converter. A 14V, 14W combination quasi-resonant Buck/ZCS, Quasi-Resonant Buck dc-dc converter with an unregulated input voltage of 28 V was built for simplicity to demonstrate one particular waveshaping technique. This converter represents a useful example of an actual circuit which is capable of producing the desired ramp-sine switch-current waveform. Final results confirm improvement in conduction loss enhancing existing power MOSFET technology for use in dc-dc power conversion.
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
High power density dc/dc converter: Selection of converter topology
Divan, Deepakraj M.
1990-01-01
The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.
Novel bidirectional DC-DC converters based on the three-state switching cell
da Silva Júnior, José Carlos; Robles Balestero, Juan Paulo; Lessa Tofoli, Fernando
2016-05-01
It is well known that there is an increasing demand for bidirectional DC-DC converters for applications that range from renewable energy sources to electric vehicles. Within this context, this work proposes novel DC-DC converter topologies that use the three-state switching cell (3SSC), whose well-known advantages over conventional existing structures are ability to operate at high current levels, while current sharing is maintained by a high frequency transformer; reduction of cost and dimensions of magnetics; improved distribution of losses, with consequent increase of global efficiency and reduction of cost associated to the need of semiconductors with lower current ratings. Three distinct topologies can be derived from the 3SSC: one DC-DC converter with reversible current characteristic able to operate in the first and second quadrants; one DC-DC converter with reversible voltage characteristic able to operate in the first and third quadrants and one DC-DC converter with reversible current and voltage characteristics able to operate in four quadrants. Only the topology with bidirectional current characteristic is analysed in detail in terms of the operating stages in both nonoverlapping and overlapping modes, while the design procedure of the power stage elements is obtained. In order to validate the theoretical assumptions, an experimental prototype is also implemented, so that relevant issues can be properly discussed.
Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles
Changhao Piao
2014-01-01
Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.
Martínez García, Herminio; Grau Saldes, Antoni
2015-01-01
Hybrid DC-DC regulators or linear–assisted DC-DC regulators are structures that combine both a linear voltage regulator and a switching DC-DC converter. The main objective of this hybrid topology is to converge, in a single circuit topology, the best of both alternatives: One the one hand, obtaining small voltage output ripple, which is typical of linear regulator structures, and, on the other, achieving good energy efficiency, as in switching alternatives. While the linear regulator fixes th...
Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding
Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso
2016-01-01
This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.
Nonlinear Phenomena and Resonant Parametric Perturbation Control in QR-ZCS Buck DC-DC Converters
Hsieh, Fei-Hu; Liu, Feng-Shao; Hsieh, Hui-Chang
The purpose of this study is to investigate the chaotic phenomena and to control in current-mode controlled quasi-resonant zero-current-switching (QR-ZCS) DC-DC buck converters, and to present control of chaos by resonant parametric perturbation control methods. First of all, MATLAB/SIMULINK is used to derive a mathematical model for QR-ZCS DC-DC buck converters, and to simulate the converters to observe the waveform of output voltages, inductance currents and phase-plane portraits from the period-doubling bifurcation to chaos by changing the load resistances. Secondly, using resonant parametric perturbation control in QR-ZCS buck DC-DC converters, the simulation results of the chaotic converter form chaos state turn into stable state period 1, and improve ripple amplitudes of converters under the chaos, to verify the validity of the proposes method.
DC-DC Conversion Powering Schemes for the CMS Tracker at Super-LHC
Klein, Katja; Jussen, Rüdiger; Karpinski, Waclaw; Merz, Jennifer; Sammet, Jan
2010-01-01
The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as th...
The DC-DC conversion power system of the CMS Phase-1 pixel upgrade
Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, St.; Wlochal, M.
2015-01-01
The pixel detector of the CMS experiment will be exchanged during the year-end technical stop in 2016/2017, as part of the experiment's Phase-1 upgrade. The new device will feature approximately twice the number of readout channels, and consequently the power consumption will be doubled. By moving to a DC-DC conversion powering scheme, it is possible to power the new pixel detector with the existing power supplies and cable plant. The power system of the Phase-1 pixel detector is described and the performance of the new components, including DC-DC converters, DC-DC converter motherboards and various power distribution boards, is detailed. The outcome of system tests in terms of electrical behaviour, thermal management and pixel module performance is discussed.
Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI
Li Hong [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany)], E-mail: hong.li@FernUni-Hagen.de; Zhang Bo [School of Electric Power, South China University of Technology, Guangzhou (China); Li Zhong; Halang, Wolfgang A. [Department of Mathematics and Computer Science, FernUniversitaet in Hagen, 58084 Hagen (Germany); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China)
2009-11-15
In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.
Modelling and Simulation of Digital Compensation Technique for dc-dc Converter by Pole Placement
Shenbagalakshmi, R.; Sree Renga Raja, T.
2015-09-01
A thorough and effective analysis of the dc-dc converters is carried out in order to achieve the system stability and to improve the dynamic performance. A small signal modelling based on state space averaging technique for dc-dc converters is carried out. A digital state feedback gain matrix is derived by pole placement technique in order to achieve the stability of a completely controllable system. A prediction observer for the dc-dc converters is designed and a dynamic compensation (observer plus control law) is provided using separation principle. The output is very much improved with zero output voltage ripples, zero peak overshoot, and much lesser settling time in the range of ms and with higher overall efficiency (>90 %).
DC-DC converters with reduced mass for trackers at the HL-LHC
Affolder, A.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Greenall, A.; Michelis, S.
2011-11-01
The development at CERN of low noise DC-DC converters for the powering of front-end systems enables the implementation of efficient powering schemes for the physics experiments at the HL-LHC. Recent tests made on the ATLAS short strip tracker modules confirm the full electromagnetic compatibility of the DC-DC converter prototypes with front-end detectors. The integration of the converters in the trackers front-ends needs to address also the material budget constraints. The impact of the DC-DC converters onto the material budget of the ATLAS tracker modules is discussed and mass reduction techniques are explored, leading to a compromise between electromagnetic compatibility and mass. Low mass shield implementations and Aluminum core inductors are proposed. Also, the impact on emitted noise due to a size reduction of critical components is discussed. Finally, material reduction techniques are discussed at the board layout and manufacturing levels.
Efficient and ripple-mitigating dc-dc converter for residential fuel cell system
Wang, Yong [Danfoss Solar Inverters, Hardware, Jyllandsgade 28, 6400 Soenderborg (Denmark); Choi, Seeyoung [Digital Appliance Division, Samsung Electronics Co. Ltd., Maetan-3Dong, Suwon, Gyeonggi (Korea); Lee, Eunchul [Willings Co. Ltd., SK Ventium, 522 Dangjung-Dong, Gunpo-Si, Gyeonggi-Do (Korea)
2009-01-15
Proton exchange membrane fuel cell (PEMFC) systems for residential application require efficient and ripple-mitigating power conditioning system (PCS). The key point to reach it, is the design and control of the dc-dc converter. Based on the theoretical and experimental analysis of the traditional converter, this paper proposes a novel parallel-series full bridge (P-SFB) dc-dc converter, and improves its phase shifting scheme. This paper also proposes a novel controller for low frequency ripple current suppressing applied on the converter. The experimental results verify that, the dc-dc converter achieves a peak efficiency of 95.5%. Therefore PCS's maximum efficiency reaches 92.9%. And the input current ripple is reduced significantly with the new controller. (author)
Critical conditions of saddle-node bifurcations in switching DC-DC converters
Fang, Chung-Chieh
2013-08-01
Although existence of multiple periodic orbits in some DC-DC converters have been known for decades, linking the multiple periodic orbits with the saddle-node bifurcation (SNB) is rarely reported. The SNB occurs in popular DC-DC converters, but it is generally reported as a strange instability. Recently, design-oriented instability critical conditions are of great interest. In this article, average, sampled-data and harmonic balance analyses are applied and they lead to equivalent results. Many new critical conditions are derived. They facilitate future research on the instability associated with multiple periodic orbits, sudden voltage jumps or disappearances of periodic orbits observed in DC-DC converters. The effects of various converter parameters on the instability can be readily seen from the derived critical conditions. New Nyquist-like plots are also proposed to predict or prevent the occurrence of the instability.
Simulation and Implementation of Interleaved Boost DC-DC Converter for Fuel Cell Application
Ahmad Saudi Samosir
2011-10-01
Full Text Available This paper deals with a boost dc-dc converter for fuel cell application. In fuel cell electric vehicles application, a high power boost dc-dc converter is adopted to adjust the output voltage, current and power of fuel cell engine to meet the vehicle requirements. One of challenge in designing a boost converter for high power application is how to handle the high current at the input side. In this paper an interleaved boost dc-dc converter is proposed for current sharing on high power application. Moreover, this converter also reduces the fuel ripple current. Performance of the interleaved boost converter is tested through simulation and experimental results. Keywords: component; Interleaved Boost Converter; Fuel Cell Electric Vehicle; high power application.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2014-01-01
Efficiency is one of the main concerns during the design phase of switch mode power supply. Planar magnetics based on PCB windings have the potential to reduce the magnetic manufacturing cost however, one of their main drawbacks comes from their low filling factor and high stray capacitance....... This paper presents an analysis of different planar windings configurations focusing on dc and ac resistances in order to achieve highly efficiency in dc-dc converters. The analysis considers different copper thicknesses form 70 μm up to 1500 μm (extreme copper PCB) taking into account manufacturing...... complexity and challenges. The analysis is focused on a high current inductor for a dc-dc converter for fuel cell applications and it is based on FEM simulations. Analysis and results are verified on a 6 kW dc-dc isolated full bridge boost converter prototype based on fully planar magnetics achieving a peak...
Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter
Garcia-Valverde, R.; Miguel, C.; Urbina, A. [Universidad Politecnica de Cartagena, Departamento de Electronica, Tecnologia de Computadoras y Proyectos, Plaza del Hospital, 1, Cartagena, 30203 Murcia (Spain); Martinez-Bejar, R. [Universidad de Murcia, Departamento de Ingenieria de la Informacion y las Comunicaciones, Facultad de Informatica, Campus de Espinardo, 30071 Murcia (Spain)
2008-10-15
The coupling of a photovoltaic generator and an electrolyser is one of the most promising options for obtaining hydrogen from a renewable energy source. Both are well known technologies, however, since the high variability of the solar radiation, an efficient coupling still presents some challenges. Direct or through a DC-DC converter couplings are the options in isolated applications. In this work, three models, respectively, for a photovoltaic (PV) generator, a controlled DC-DC converter and a complete proton exchange membrane (PEM) electrolyser have been designed by using Matlab/Simulink. A PV-electrolyser specific algorithm to search for the optimum and safe working point for both elements is presented. Simulation results demonstrate that the use of a controlled DC-DC converter with the proposed algorithm shows better adaptability to the variable radiation conditions than the other coupling options. Therefore, it leads to a better compliance between the electrolyser and the sizing of the PV generator. (author)
Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest
Patterson, Richard; Hammoud, Ahmad
2010-01-01
DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.
Advanced DC/DC Converters Towards Higher Volumetric Efficiencies For Space Applications
Shaw, Harry; Shue, Jack; Liu, David; Wang, Bright; Plante, Jeanette
2005-01-01
A new emphasis on planetary exploration by NASA drives the need for small, high power DC/DC converters which are functionally modular. NASA GSFC and other government space organizations are supporting technology development in the DC/DC converter area to both meet new needs and to promote more sources of supply. New technologies which enable miniaturization such as embedded passive technologies and thermal management using high thermal conductivity materials are features of the new designs. Construction of some simple DC/DC converter core circuits using embedded components was found to be successful for increasing volumetric efficiency to 37 W/inch. The embedded passives were also able to perform satisfactorily in this application in cryogenic temperatures.
Ultra-high Efficiency DC-DC Converter using GaN Devices
Ramachandran, Rakesh
2016-01-01
The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga......N devices. Simple replacement of Si or SiC devices with GaN devices in the converter will not give an expected increase in efficiency or any improvement in the performance of the converter. The use of GaN devices has defined another dimension in the design of power converters, which mainly deals...
Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters
Cravero, Jean-Marc
2013-01-01
This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.
A Reduced-Part, Triple-Voltage DC-DC Converter for Electric Vehicle Power Management
Su, Gui-Jia [ORNL; Tang, Lixin [ORNL
2007-01-01
Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets; 14 V, 42 V and high voltage (>200 V) buses. A soft-switched, bi-directional dc-dc converter using only four switches was proposed for interconnecting the three nets. This paper presents a reduced- part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Simulation and experimental data are included to verify a simple power flow control scheme.
High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation
Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick
2017-01-01
This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...
A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter
Qin, Zian; Pang, Ying; Wang, Huai;
2016-01-01
The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...
Efficiency and Regulation of Commercial Low Power DC/DC Converter Modules at Low Temperatures
Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.
2000-01-01
DC/DC converters that are capable of operating at cryogenic temperatures are anticipated to play an important role in the power systems of future NASA deep space missions. Design of these converters to survive cryogenic temperatures will improve the power system performance, and reduce development and launch costs. At the NASA Glenn Research Center Low Temperature Electronics Laboratory, several commercial off-the-shelf dc/dc converter modules were evaluated for their low temperature performance. Various parameters were investigated as a function of temperature, in the range of 20 C to -190 C. Data pertaining to the efficiency and voltage regulation of the tested converters is presented and discussed.
High power density dc/dc converter: Component selection and design
Divan, Deepakraj M.
1989-01-01
Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.
Analysis of high voltage step-up nonisolated DC-DC boost converters
Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo
2016-05-01
A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.
Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control
Kroics, K.; Sokolovs, A.
2016-08-01
The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM) but close to boundary conduction mode (BCM). The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.
Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control
Kroics K.
2016-08-01
Full Text Available The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM but close to boundary conduction mode (BCM. The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.
PWM Converter Power Density Barriers
Kolar, Johann W.; Drofenik, Uwe; Biela, Juergen; Heldwein, Marcelo; Ertl, Hans; Friedli, Thomas; Round, Simon
Power density of power electronic converters has roughly doubled every 10 years since 1970. Behind this trajectory is the continuous advancement of power semiconductor devices, which has increased the converter switching frequencies by a factor of 10 every decade. However, today's cooling concepts and passive components are major barriers for a continuation of this trend. To identify such technological barriers, this paper investigates the volume of the cooling system and passive components as a function of the switching frequency for power electronic converters and determines the switching frequency that minimizes the total volume. A power density limit of 28kW/dm3 at 300kHz is calculated for an isolated DC-DC converter, 44kW/dm3 at 820kHz for a three-phase unity power factor PWM rectifier, and 26kW/dm3 at 21kHz for a sparse matrix converter. For single-phase AC-DC conversion a general limit of 35kW/dm3 results from the DC link capacitor. These power density limits highlight the need to broaden the scope of power electronics research to include cooling systems, high frequency electromagnetics, interconnection and packaging technology, and multi-domain modelling and simulation to ensure further advancement along the power density trajectory.
Design of current source DC/DC converter and inverter for 2kW fuel cell application
Andreiciks, A.; Steiks, I.; Krievs, O.
2013-01-01
of a DC/DC converter and an inverter. In this paper a detailed simulation study of such interfacing converter system comprising a double inductor push-pull step-up DC/DC converter and a cascaded H-bridge inverter has been carried out and further confirmed with experimental results. The power converter...
Yang, Xi-jun; Qu, Hao; Yao, Chen
2014-01-01
As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...
Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen
2014-01-01
Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state and the v...
Pelan, Ovidiu; Cornea, Octavian; Muntean, Nicolae
2014-01-01
This paper presents and discusses design considerations and efficiency investigation of a conventional step-down and a hybrid switched-capacitor DC-DC converter. Three MOSFETs with low on-resistance have been tested for each converter in order to find the most adequate switch for this application...
Single Event Burnout in DC-DC Converters for the LHC Experiments
Claudio H. Rivetta et al.
2001-09-24
High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.
Very High Frequency Resonant DC/DC Converters for LED Lighting
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...
Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters
Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold
2016-01-01
This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss...
A novel DC-DC convertor using LTCC technology for magnetic integration application
Xu, Z Q [Research Institutes, University of Electronic Science and Technology of China, Chengdu (China); Shi, Y; Guo, H P; Yang, B C, E-mail: nanterxu@uestc.edu.cn [State key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)
2011-01-01
A compact DC-DC convertor is proposed and fabricated in multilayer ferrite substrate using LTCC technology. The spiral conductors are buried into the ferrite substrate with a multilayer 3-D structure to reduce the volume of convertor. The passive integration of magnetic components and surface circuitry are achieved in a whole substrate and the size of module can be reduced markedly. The whole height of module is only 3mm, 1/3 of the height of conventional modules. Testing results indicate that the performance of the module is excellent in Point-of-Load (POL) field. The step-down DC-DC converter converts input voltage of 5V to output voltage of 3.3V. It is confirmed that the maximum conversion efficiency of 93.2% is sufficient for actual DC-DC converter application. Such a compact DC-DC convertor provides a compact, low cost and high reliability approach for power supply and magnetic integration application.
Five-Level Active-Neutral-Point-Clamped DC/DC Converter
Liu, Dong; Deng, Fujin; Chen, Zhe
Multi-level converters are getting more and more attentions because of their obvious merits such as lower voltage stress and harmonic, smaller size of output filters, and so on. In this paper, a five-level active-neutral-point-clamped (5L-ANPC) dc/dc converter is proposed for power transfer...
Model predictive control of bidirectional isolated DC-DC converter for energy conversion system
Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi
2015-08-01
Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.
DC-DC conversion powering schemes for the CMS tracker at Super-LHC
Klein, K; Feld, L; Jussen, R; Karpinski, W; Merz, J; Sammet, J, E-mail: katja.klein@cern.c [I. Physikalisches Institut B, RWTH Aachen University, Aachen (Germany)
2010-07-15
The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as the power efficiency, conducted and radiated noise levels, and material budget are presented, and a possible implementation of DC-DC buck converters into one proposed track trigger layout is sketched.
Computer-aided analysis and simulation of switched dc-dc converters
Lee, F. C.; Yu, Y.
1978-01-01
State space techniques are employed to derive an equivalent nonlinear recurrent time-domain model that describes the switched dc-dc converter behavior exactly. This model is employed effectively to analyze both large signal behavior by propagating the recurrence equation and matching boundary conditions through digital computation and small signal behavior by linearizing it about the equilibrium state.
A DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade
Feld, L.; Fleck, M.; Friedrichs, M.; Hensch, R.; Karpinski, W.; Klein, K.; Sammet, J.; Wlochal, M.
2013-02-01
The CMS pixel detector was designed for a nominal instantaneous LHC luminosity of 1ṡ1034 cm-2s-1. During Phase-1 of the LHC upgrade, the instantaneous luminosity will be increased to about twice this value. To preserve the excellent performance of the pixel detector despite the increase in particle rates and track densities, the CMS Collaboration foresees the exchange of its pixel detector in the shutdown 2016/2017. The new pixel detector will be improved in many respects, and will comprise twice the number of readout channels. A powering scheme based on DC-DC conversion will be adopted, which will enable the provision of the required power with the present cable plant. The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking between DC-DC converters.
A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer
Chen, Jianfei; Hou, Shiying; Deng, Fujin
2015-01-01
with a uniform voltage level while eliminating the voltage imbalance. In addition, high step-down and step-up ratios with low component voltage stress can be achieved in the proposed converter. A bidirectional four-port dc-dc converter is presented to do theoretical analysis for the voltage equalization of three...
DC-DC converter with a wide load range and a wide input-voltage range
Ting, Y.
2015-01-01
This thesis investigated the possibility of increasing the efficiency of a DC-DC converter over a wide load range and a wide input-voltage range based on the Single Active Bridge (SAB) topology with two approaches. The first approach involved making changes to the topology whereas the second made us
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter
Siwakoti, Yam Prasad; N. Soltani, Mohsen; Mostaan, Ali
2017-01-01
This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar v...
Trans-inverse (Tx−1) high step-up DC-DC converter
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2015-01-01
In this paper, a new magnetically coupled single-switch non-isolated dc-dc converter with a high voltage gain is proposed. The new topology utilizes a transformer to boost the output voltage. However, unlike other converter topologies with transformer or coupled magnetics, the voltage gain in the...
Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a high step-up voltage gain without extreme...
Y-source impedance-network-based isolated boost DC/DC converter
Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang
2014-01-01
A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved ev...
Magnetically coupled high-gain Y-source isolated DC/DC converter
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede
2014-01-01
A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...
A high voltage gain quasi Z-source isolated DC/DC converter
Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...
Planar integrated magnetics design in wide input range DC-DC converter for fuel cell application
Ouyang, Ziwei; Zhang, Zhe; Thomsen, Ole Cornelius
2010-01-01
, hereby increasing the power density of converters. A new planar integrated magnetics (PIM) technique for a phase-shift plus duty cycle controlled hybrid bi-directional DC/DC converter is presented and investigated in this paper. The main magnetic components including one boost inductor and two...
Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter
Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik
2007-01-01
This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...
Characterization of diode valve in medium voltage dc/dc converter for wind turbines
Dincan, Catalin Gabriel; Kjær, Philip Carne
2016-01-01
This paper proposes a methodology for characterization of medium voltage (MV), medium frequency (MF) rectifier diode valve. The intended application is for 10MW dc/dc converters used in DC offshore wind turbines. Sensitivity to semiconductor component parameter variation, snubber component...
Multistability and hidden attractors in a multilevel DC/DC converter
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2015-01-01
for the hidden set in most cases has been so complicated that special analytic and/or numerical techniques have been required to locate the set. By simulating the model of a multilevel DC/DC converter that operates in the regime of high feedback gain, the paper illustrates how pulse-width modulated control can...
Analysis and design of PPFHB bidirectional DC-DC converter with coupled inductors
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
In this paper, a novel push-pull-forward half-bridge (PPFHB) bi-directional DC-DC converter with coupled inductors is proposed. All switches can operate under zero-voltage-switching (ZVS). The operation principle with phase-shift modulation scheme, characteristics of coupled inductors, the steady...
Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...
A VHF Class E DC-DC Converter with Self-Oscillating Gate Driver
Andersen, Toke Meyer; Christensen, Søren K.; Knott, Arnold
2011-01-01
This paper describes the analysis and design of a DC-DC converter topology which is operational at frequencies in the Very High Frequency (VHF) band ranging from 30 MHz − 300 MHz. The presented topology, which consists of a class E inverter, class E rectifier, and self-oscillating gate driver, is...
A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems
M. Sarvi
2013-01-01
Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.
Interleaved Self-Oscillating Class E Derived Resonant DC/DC Converters
Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.
2012-01-01
A new method for achieving self-oscillating, self-interleaved operation of class E derived resonant DC/DC converters is presented. The proposed method is suitable for operation at frequencies in the Very High Frequency (VHF) band. Interleaved and self-oscillating modes of operation are achieved...
Integrated S-band transmitter with on-chip DC-DC converter and control loop
Brouzes, H.; Geurts, S.; Besselink, M.; Telli, A.; Hek, A.P. de; Bent, G. van der; Vliet, F.E. van
2012-01-01
A highly integrated high-power transmitter has been designed in a high breakdown GaAs MMIC technology. The transmitter includes, on top of an S-Band 10 W class-F HPA, a DC/DC converter and its associated gate driver, the full voltage regulation control loop, which provides a significant step for pha
Eka Prasetyono
2015-09-01
Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.
Y-Source Boost DC/DC Converter for Distributed Generation
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...
Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter
Harrigill, W. T., Jr.; Myers, I. T.
1976-01-01
A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.
Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.
A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.
Theory of multi-phase PWM DC/DC converter%多相PWM控制DC/DC变换器
陈小明
2001-01-01
@@ 概述 近年来,随着一些高性能CPU的出现,如Pentium 4、Athlon等,需要输出电压更小,更大电流的DC/DC变换器,对热性能、EMI及负载瞬变应答(Load Transient)的要求也不断提高.传统的单相DC/DC变换器日益显示出局限性.多相DC/DC变换器以其独特的性能,为高性能CPU电源的解决方案开辟的一条新路.
Igel, Juergen; Ollhaeuser, Helmut; Jeuck, Marc; Apfelbacher, Thomas [Alcoa/AFL Europe GmbH, Frickenhausen (Germany)
2008-09-15
Start-stop systems may be made more efficient, and energy recovery in regenerative brakes may be made more economical. The contribution describes a new DC/DC current inverter with integrated double-layer condensers developed by the electric/electronics department of Alcoa. The so-called Energy Conversion Module (ECM) will result in considerable fuel savings and also help to stabilize board grids which are nearing their limits because of the increasing number of electrified service aggregates. Motor car producers are currently testing the module. (orig.)
The good routing of a non-insulated DC/DC converter; Bien router un convertisseur DC/DC non-isole
Lenoir, E.
2001-03-01
DC to DC converters are important sources of magnetic and electric fields with frequencies that can exceed 100 MHz. Thus, their positioning on a circuit board is of prime importance to minimize the magnetic and capacitive couplings with other parts and components of the circuit. This article summarizes the important rules to follow for a good routing of non-insulated switching DC/DC converters: taking the ohmic voltage drops into consideration, managing the MOSFET commutation, limiting the current loop disturbances, correct routing of power tracks. (J.S.)
Ultra-high Efficiency DC-DC Converter using GaN Devices
Ramachandran, Rakesh
2016-01-01
with the PCB layout and the magnetics. This thesis mainly covers the design and implementation of various high efficiency isolated dcdc converters in the range of 1 to 2.5 kW of output power. Both hard-switched and soft-switched topologies in isolated dc-dc converters has been studied and realized......The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...
5 kW DC/DC converter for hydrogen generation from photovoltaic sources
Garrigos, A.; Blanes, J.M.; Carrasco, J.A.; Lizan, J.L. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Beneito, R. [AIJU, Avda. de la Industria 23, 03440 Ibi, Alicante (Spain); Molina, J.A. [Grupo SITEC, Calle Cadiz 38, Poligono Industrial L' Alfac III, 03440 Ibi, Alicante (Spain)
2010-06-15
This paper covers the design of a DC-DC power converter aimed for hydrogen production from photovoltaic sources. Power conditioning for such application is usually driven by different constraints: high step-down conversion ratio is required if the input voltage of such equipment has to be compatible with photovoltaic sources that are connected to grid-connected inverters; galvanic isolation; high efficiency and low mass. Taking into account those factors, this work proposes a push-pull DC/DC converter for power levels up to 5 kW. The operation and features of the converter are presented and analyzed. Design guidelines are suggested and experimental validation is also given. (author)
Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters
Achim Kienle
2009-03-01
Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.
Embedded Controlled Isolated Bidirectional Full-Bridge DC-DC Converter with Flyback Snubber
D. Kirubakaran
2012-01-01
Full Text Available An isolated bidirectional full-bridge DC-DC converter with flyback snubber for supplying a resistive load is simulated and experimentally verified. The DC-DC converter for high conversion ratio, high output power, and soft start-up capability is presented in this paper. The circuit consists of a capacitor, a diode, and a flyback converter. These components help to clamp the voltage spikes caused by the current difference between the current fed inductor and leakage inductance of the isolation transformer. The switches are operated by soft-switching technology. The suppression of inrush current which is usually found in the boost mode start-up transition is presented here. The simulated and experimental results for output voltage, output current, and power for both buck and boost modes are presented.
Analysis of the coupling behavior of PEM fuel cells and DC-DC converters
Groetsch, M.; Mangold, M.; Kienle, A. [Max Planck Institute for Dynamics of Complex Technical Systems, Process Synthesis and Process Dynamics Group, Sandtorstrasse 1, 39106 Magdeburg (Germany); Kienle, A. [Otto-von-Guericke-Universitaet Magdeburg, Lehrstuhl fuer Automatisierungstechnik / Modellbildung, Universitaetsplatz 2, 39106 Magdeburg (Germany)
2009-07-01
The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable. (author)
DC-DC buck converters for the CMS Tracker upgrade at SLHC
Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J, E-mail: Katja.Klein@cern.ch [1. Physikalisches Institut B, RWTH Aachen University, Sommerfeldstrasse 14, 52074 Aachen (Germany)
2011-01-15
The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, is planning major upgrades of its current pixel and strip detectors for the LHC luminosity upgrade, known as the SLHC. Due to the larger channel count and - in case of the strip tracker - increased functionality, the powering scheme adopted today, namely parallel powering of several detector modules, has to be abandoned. Instead, a powering scheme based on the DC-DC conversion technique is foreseen, which would lead to lower power losses in the supply cables, and would allow to reduce the material budget of cables and associated electronic boards in the sensitive detector volume. This paper deals with the development, characterisation and optimisation of DC-DC buck converter prototypes for the upgrades of the CMS pixel and strip detectors at the SLHC.
Development of DC-DC converters for the upgrade of the CMS pixel detector
Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Sammet, Jan; Wlochal, Michael [RWTH Aachen University (Germany)
2012-07-01
Around 2017, the pixel detector of the CMS experiment at LHC will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the available supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing to provide the power at higher voltages and thereby to facilitate the supply of the required currents with the present cable plant. The talk introduces the foreseen powering scheme of the pixel upgrade and summarizes the results of system test measurements with CMS pixel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, measurements of the converter efficiency and performance before, after and during thermal cycling are presented.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers
Bochenek, M; Faccio, F; Michelis, S [CERN, CH-1211 Geneve 23 (Switzerland); Dabrowski, W, E-mail: Michal.Bochenek@cern.ch [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30 30-059 Krakow (Poland)
2010-12-15
The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved.
Deivasundari, P.; Geetha, R.; Uma, G.; Murali, K.
2013-07-01
DC-DC converters act as a black box to study various bifurcations. In the present study, the influence of external periodic interference signal in the input of DC-DC voltage-mode controlled buck converter has been considered. It is found that the presence of sinusoidal or saw-tooth interference signal whose frequency is comparable with the switching frequency of the converter or its rational multiples manifests as remerging chaotic band attractors (or Feigenbaum trees) and intermittent chaos. However, the presence of sinusoidal interference signal having irrational frequency ratios with the switching frequency of the converter leads to quasi-periodic route to chaos. The study was carried out both theoretically and experimentally.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers
Bochenek, M; Faccio, F; Michelis, S
2010-01-01
The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved
Voltage Tracking of a DC-DC Flyback Converter Using Neural Network Control
Wahyu Mulyo Utomo
2012-01-01
Full Text Available This paper proposes a neural network control scheme of a DC-DC Flyback converter that will step up a 12V DC and applied it on brushless DC motor with 12 and 24V dc. In this technique, a back propagation learning algorithm is derived. The controller is designed to track the output voltage of the DC-DC converter and to improve performance of the Flyback converter during transient operations. Furthermore, to investigate the effectiveness of the proposed controller, some operations such as starting-up and reference voltage variations are verified. The numerical simulation results show that the proposed controller has a better performance compare to the conventional PI-Controller method.
SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles
Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO
2007-07-01
The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.
Module DC/DC phase-shift réversible haute fréquence
Guepratte, Kevin; Stephan, Hervé; Delaine, Johan
2014-01-01
Cet article présente les travaux menés sur la réalisation d'un module industriel de conversion DC/DC 42V vers 8V. Ce convertisseur est destiné aux applications aéronautiques militaires, et est amené à se généraliser dans les différentes activités. Ce convertisseur, appelé module DC/DC, fonctionne à une fréquence de découpage comprise entre 1,5MHz et 3MHz. La structure de puissance choisie est un demi-pont capacitif quasi-résonnant à déphasage primaire / secondaire. Le redressement au secondai...
A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.
DC-DC power converter research for Orbiter/Station power exchange
Ehsani, M.
1993-01-01
This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.
Cryogenic Evaluation of an Advanced DC/DC Converter Module for Deep Space Applications
Elbuluk, Malik E.; Hammoud, Ahmad; Gerber, Scott S.; Patterson, Richard
2003-01-01
DC/DC converters are widely used in power management, conditioning, and control of space power systems. Deep space applications require electronics that withstand cryogenic temperature and meet a stringent radiation tolerance. In this work, the performance of an advanced, radiation-hardened (rad-hard) commercial DC/DC converter module was investigated at cryogenic temperatures. The converter was investigated in terms of its steady state and dynamic operations. The output voltage regulation, efficiency, terminal current ripple characteristics, and output voltage response to load changes were determined in the temperature range of 20 to -140 C. These parameters were obtained at various load levels and at different input voltages. The experimental procedures along with the results obtained on the investigated converter are presented and discussed.
Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter
Makda, Ishtiyaq Ahmed; Nymand, Morten
2014-01-01
is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical......A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...
A suitable model plant for control of the set fuel cell-DC/DC converter
Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)
2008-04-15
In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)
Optimization of Shielded PCB Air-Core Toroids for High-Efficiency DC-DC Converters
Orlandi, S; Buso, S; Michelis, S; Fuentes, C A; Kayal, M; Faccio, F; Spiazzi, G
2011-01-01
The paper describes the design of optimized printed circuit board (PCB) air-core toroids for high-frequency dc-dc converters with strict requirements in terms of volume and noise. The effect of several design parameters on the overall inductor volume, on dc and ac winding resistance, and on the radiated noise will be investigated. PCB toroids are compared to standard air-core solenoids and other state-of-the-art air-core toroids both theoretically and experimentally: at first, using ANSOFT Maxwell and ANSOFT Q3D simulation tools, and subsequently, with laboratory measurements (irradiated noise, efficiency, and frequency response) on several prototypes. These very flexible and rather easy to manufacture inductors appear very attractive for compact high-frequency dc-dc converters where high efficiency, low volume, and low noise are of primary concern.
Design and Implementation of Digital Current Mode Controller for DC-DC Converters
Taeed, Fazel
to be regulated by a closed-loop controller. The Peak Current Mode Control (PCMC) is one of the most promising control methods for dc-dc converters. It has been known for high bandwidth (speed), and inherent current protection. Increasing the controller bandwidth decreases the output filter size and cost. Analog...... a bandwidth of 1/10 of the switching frequency. In the current state-of-the-art, the best reported digital PCMC has crossover frequency of 1/15 of the switching frequency. In this PhD study a novel digital PCMC with negligible delay in the inner current loop has been proposed. The proposed solution has...... are eliminated in current mode control; applying the current mode control in high efficiency dc-dc converters results in much higher controller bandwidth....
High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC
M. Drinovsky
2015-12-01
Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.
2014-01-01
The two basic topologies of switch mode DC-DC converters (Buck and Boost) are analyzed with a view of their use in PV (photovoltaic) systems, as the photovoltaic generator exhibits non-linear characteristics due to the change in environmental condition and load variation. As the efficiency of PV panels is low it becomes mandatory to extract maximum power from the PV panel at a given period of time. Several MPPT algorithms with different types of converters are being proposed f...
Inductor based switching DC-DC converter for low voltage power distribution in SLHC
Michelis, S; Marchioro, A; Kayal, M; PH-EP
2007-01-01
In view of a power distribution scheme compatible with the requirements of the SLHC environment, we are evaluating the feasibility of on-board inductor-based DC-DC step-down conversion. Such converter should be an integrated circuit and capable of operating in harsh radiation environments and in the high magnetic field of the experiments. In this paper we present results concerning the choice of the technology, the search for the magnetic components and the calculations of the expected efficiency.
Linearized stability analysis and design of a flyback dc-dc boost regulator.
Wester, G. W.
1973-01-01
Analytic expressions for the small-signal power-stage describing functions of a switched dc-dc boost regulator are derived from an approximate continuous circuit model which is developed by a time-averaging technique. Closed-loop stability is attained through the design of frequency compensation of the loop gain. Open- and closed-loop regulator output impedances are derived from the linearized models for the given configuration. The analysis and design are compared with and confirmed by breadboard measurements.
Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters
Harrigill, W. T., Jr.; Myers, I. T.
1975-01-01
An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.
Custom DC-DC converters for distributing power in SLHC trackers
Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G
2008-01-01
A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.
Harrigill, W. T., Jr.; Myers, I. T.
1974-01-01
An experimental 100W 1000V dc-dc converter using a capacitor diode voltage multipler (CDVM) with a nominal frequency of 100 kHz is studied. A component weight of about 1 kg/kW was obtained. Design equations for current, output -ripple and -power, efficiency and output voltage are derived. Agreement between experimental results and calculations is fairly good except for ripple.
A Three-Phase Bidirectional DC-DC Converter for Automotive Applications
Su, Gui-Jia [ORNL; Tang, Lixin [ORNL
2008-01-01
This paper presents a three-phase soft-switching, bidirectional dc-dc converter for high-power automotive applications. The converter employs dual three-phase active bridges and operates with a novel asymmetrical but fixed duty cycle for the top and bottom switches of each phase leg. Simulation and experimental data on a 6-kW prototype are included to verify the novel operating and power flow control principles.
Reliability-Oriented Design of LC Filter in Buck DC-DC Converter
Liu, Yi; Huang, Meng; Wang, Huai;
2015-01-01
State-of-the-art LC filter design of buck DC-DC converter is based on the specifications of voltage and current ripples and constrains in power density and cost. Since lifetime is an important performance factor in reliability critical applications, this digest proposes a method to optimize...... an optimized LC filter design to fulfill the required lifetime. The theoretical analysis and simulation study are presented which are verified by the experimental results from a buck converter prototype....
Informational model verification of ZVS Buck quasi-resonant DC-DC converter
Vakovsky, Dimiter; Hinov, Nikolay
2016-12-01
The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.
Distributed maximum power point tracking in photovoltaic applications: active bypass DC/DC converter
Carlos Andrés Ramos-Paja
2012-01-01
Full Text Available Se propone una estructura de desvío activo para maximizar la producción de potencia en sistemas fotovoltaicos bajo condiciones irregulares de operación, comparando su eficiencia con soluciones individuales y distribuidas basadas en convertidores DC/DC convencionales. Los análisis y simulaciones realistas demuestran las ventajas del nuevo convertidor de desvío activo sobre soluciones basadas en convertidores Boost, Buck y Buck-Boost.
Wong, Yan Chiew
2014-01-01
Tunability and adaptability for radio frequency (RF) front-ends are highly desirable because they not only enhance functionality and performance but also reduce the circuit size and cost. This thesis presents a number of novel design strategies in DC-DC converters, impedance networks and adaptive algorithms for tunable and adaptable RF based mobile telecommunication systems. Specifically, the studies are divided into three major directions: (a) high voltage switch controller ba...
System Tests with DC-DC Converters for the CMS Silicon Strip Tracker at SLHC
Klein, K; Karpinski, W; Merz, J; Sammet, J
2008-01-01
The delivery of power is considered to be one of the major challenges for the upgrade of the CMS silicon strip tracker for SLHC. The inevitable increase in granularity and complexity of the device is expected to result in a power consumption comparable or even higher than the power consumption of todays' strip tracker. However, the space available for cables will remain the same. In addition, a further increase of the tracker material budget due to cables and cooling is considered inacceptable, as the performance of the CMS detector must not be compromised for the upgrade. Novel powering schemes such as serial powering or usage of DC-DC converters have been proposed to solve the problem. To test the second option, substructures of the current CMS silicon strip tracker have been operated for the first time with off-the-shelf DC-DC buck converters as well as with first prototypes of custom-designed DC-DC converters. The tests are described and the results are discussed.
DC-DC Conversion Powering Schemes for the CMS Tracker Upgrade
Feld, Lutz; Klein, Katja; Merz, Jennifer; Sammet, Jan; Wlochal,Michael
2011-01-01
The CMS experiment foresees upgrades of its silicon pixel and strip detectors for the luminosity upgrade of the Large Hadron Collider (LHC), CERN. Due to an increase in the number of readout channels and higher complexity, larger currents will have to be provided to the detector. Since cable channels are difficult to access and space for cables is limited, this would lead to excessively large resistive power losses in the supply cables, which increase with the current squared. CMS has therefore chosen a novel powering scheme based on DC-DC converters, which allows power to be delivered at a higher voltage and consequently lower current. The development of low-mass, low-noise DC-DC converters for application in CMS is presented, including studies of switching noise, magnetic emissions and power efficiency as well as system tests with silicon strip and pixel modules. A scheme for the integration of DC-DC converters in the silicon pixel detector, currently foreseen to be exchanged around 2016, will be discussed.
A DC-DC Converter Efficiency Model for System Level Analysis in Ultra Low Power Applications
Benton H. Calhoun
2013-06-01
Full Text Available This paper presents a model of inductor based DC-DC converters that can be used to study the impact of power management techniques such as dynamic voltage and frequency scaling (DVFS. System level power models of low power systems on chip (SoCs and power management strategies cannot be correctly established without accounting for the associated overhead related to the DC-DC converters that provide regulated power to the system. The proposed model accurately predicts the efficiency of inductor based DC-DC converters with varying topologies and control schemes across a range of output voltage and current loads. It also accounts for the energy and timing overhead associated with the change in the operating condition of the regulator. Since modern SoCs employ power management techniques that vary the voltage and current loads seen by the converter, accurate modeling of the impact on the converter efficiency becomes critical. We use this model to compute the overall cost of two power distribution strategies for a SoC with multiple voltage islands. The proposed model helps us to obtain the energy benefits of a power management technique and can also be used as a basis for comparison between power management techniques or as a tool for design space exploration early in a SoC design cycle.
A buck DC-DC controller based on WSAR-ADC%基于 WSAR-ADC的降压型 DC-DC 控制器设计
田登尧; 冯全源
2014-01-01
设计了一种基于加窗逐次逼近寄存器（ WSAR）模拟数字转换器（ ADC）的降压型DC-DC控制器，这种WSAR-ADC适用于数字电源系统，通过对输入电压进行加窗处理，能有效地降低芯片的复杂度；并利用蚁群算法，对该DC-DC控制器的比例积分微分（PID）参数进行了整定，使得整个系统能够稳定工作。电路使用BCD（Bipolar/CMOS/DMOS）0．5μm工艺，输入电压3．3 V，输出电压1 V，设计最大负载电流2 A，纹波小于9 mV，开关频率500 kHz。经过验证，该降压型DC-DC控制器能满足数字电源的采样需求。%A buck DC-DC controller based on window successive approximation register ( WSAR) and analog-to-digital converter ( ADC) was designed.It is applicable to digital power system.The circuit complexity can be re-duced by adding the window function to process input voltage;and the PID (proportion integration differentiation) parameters setting of the DC-DC controller is completed using the ant colony algorithm, which makes the whole sys-tem work stably.The circuit is implemented under Bipolar/CMOS/DMOS ( BCD) 0.5μm process, the input volt-age is 3.3 V, and the output voltage is 1 V.The designed maximum load current is 2 A, the ripple of output voltage is less than 9 mV.After verification, the switch frequency is 500 kHz.This buck DC-DC controller can meet the demand of digital power sampling.
Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael
2016-01-01
The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.
Kim, Ho-sung [Department of Electrical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jong-Hyun; Min, Byung-Duk; Yoo, Dong-Wook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Hee-Je [Department of Electrical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea)
2009-11-15
A photovoltaic (PV) power conditioning system (PCS) must have high conversion efficiency and low cost. Generally, a PV PCS uses either a single string converter or a multilevel module integrated converter (MIC). Each of these approaches has both advantages and disadvantages. For a high conversion efficiency and low cost PV module, a series connection of a module integrated DC-DC converter output with a photovoltaic panel was proposed. The output voltage of the PV panel is connected to the output capacitor of the fly-back converter. Thus, the converter output voltage is added to the output voltage of the PV panel. The isolated DC-DC converter generates only the difference voltage between the PV panel voltage and the required total output voltage. This method reduces the power level of the DC-DC converter and enhances energy conversion efficiency compared with a conventional DC-DC converter. (author)
National Aeronautics and Space Administration — The Space Micro ?Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...
V.V.Subrahmanya Kumar Bhajana
2012-06-01
Full Text Available A novel active clamp dual half bridge DC/DC converter with bidirectional power flow is proposed in this paper and comparative analysis between active clamp DHB ZVZCS and ZVS-ZCS bidirectional DC-DC converter topologies is also presented. By adding active clamping circuits to both bridges, zero voltage and zero current switching are achieved to improve the performance of the bidirectional DC/DC converter. The principle of operation is analyzed and simulated. With the proposed active clamp ZVZCS concept, the MATLAB simulation results of the applications of the fuel cell and battery have been obtained and compared with those of ZVS-ZCS bidirectional converter. The simulation results of proposed converter is compared with the ZVS-ZCS bidirectional DC-DC converter, efficiency, switching losses are the key parameters compared.
Wang, Haojie; Han, Minxiao; Yan, Wenli
2016-01-01
It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed for stor......It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...
沙金; 许建平; 陈一鸣
2015-01-01
Phase-shift full-bridge (PSFB) DC-DC converter benefits from high eﬃciency by zero-voltage switching turn-on of all switches without any additional auxiliary circuit, and PSFB DC-DC converter has been widely used in high power applications. In this paper, the operating mode of PSFB DC-DC converter is studied, and the energy iteration model of PSFB DC-DC converter is established. The discrete phase shift (DPS) control technique for PSFB DC-DC converter is proposed and discussed. Unlike the conventional PWM PSFB control technique, the DPS control technique uses two preset phase shift times tpsH and tpsL as control variables where 0 < tpsH < tpsL 6 Tw with Tw being the switching period. When output voltage is lower than the reference voltage, phase shift time tpsH is selected, and a large duty cycle DH is obtained on the secondary side, which makes output voltage increase. Similarly, when output voltage is higher than the reference voltage, phase shift time tpsL is selected, and a small duty cycle DL is obtained on the secondary side, which makes output voltage decrease. With the energy iteration model, the energy iteration process is clearly revealed, steady-state and transient performances are studied. From the analysis results it can be known that the DPS controlled PSFB DC-DC converter always operates in a multi-periodic state. The simulation reasults show that the proposed control technique has an advantage over the conventional PWM PSFB control technique in simple design, great robust and excellent transient performance.%针对移相全桥DC-DC变换器，提出一种离散移相控制方法。通过建立移相全桥DC-DC变换器输出滤波电容能量模型，分析了离散移相控制全桥DC-DC变换器的能量迭代过程和控制原理。通过对离散移相控制全桥DC-DC变换器能量迭代过程的研究，揭示了其多周期态工作特性。与传统PWM移相全桥DC-DC变换器的仿真对比分析结果表明，离散移相控制全桥DC
Funabiki, Shigeyuki; Yamamoto, Masayoshi
Renewable energy such as wind force and solar light has collected the attention as alternative energy sources of fossil fuel. An energy storage system with an electric double-layer capacitor (EDLC), which balances the demand and supply power, is required in order to introduce the electric power generating system that utilizes renewable energy. Currently, the research and development of these energy storage systems are actively carried out. In the energy storage system with an EDLC, the DC/DC converter having the function of the bidirectional power flow and the buck/boost performance is essential as an interface and power control circuit. There are two types of the bidirectional buck/boost DC/DC converters. One type consists of two buck/boost DC/DC converters with one reactor. The other type consists of two sets of two-quadrant DC/DC converters with one reactor. This paper discusses the comparison of these types of DC/DC converters with bidirectional power flow and buck/boost performance. The two types of DC/DC converters are estimated for their application to the energy storage system with the EDLC. As the voltage endurance of the device is lower and the mean current is smaller in the latter type of converter despite of having twice the number of devices compared to the former, the latter type of converter has the advantage of a smaller reactor, i.e., core volume and loss, and lower loss in the converter.
The low-temperature performance of DC/DC converter for spacecraft%航天器二次电源的低温工作特性研究
任海英; 李廷中; 万成安
2013-01-01
As the spacecraft operates in a low-temperature environment in deep space, the low-temperature performance of the spacecraft DC/DC converter is a very important issue. This paper discusses the configuration of the DC/DC converter of the spacecraft, its key components, and the low-temperature performance of the power semiconductor (power MOS and power diode) and the PWM control chip. The experimental data for the 25W/5.8V DC/DC converter of a spacecraft during -35~80 ℃ are analyzed. These analyses provide some guidance for the future deep space exploration.%由于航天器在深空探测中处于低温环境中,其二次电源的低温工作特性尤为重要.文章首先介绍了航天器二次电源的供电结构；再从组成二次电源的关键元器件着手,对功率半导体器件(功率MOS管和功率二极管)、PWM控制芯片的低温特性进行深入探讨；最后对一个25 W/5.8V输出的航天器二次电源在-35～80℃温度范围内工作的试验数据展开分析,这些工作可为后续深空探测任务的实施提供技术储备.
刘雁飞
2007-01-01
A unified large signal and small signal model for DC/DC converters under average current control is presented in the paper. The model can be applied to Buck, Boost and Buck-Boost converters. The proposed model consists of two parts. The first part is an averaged circuit model, and the second part is a model for average current mode control with pulse width modulation (PWM). The model is verified by a Boost converter prototype under average current mode control. The experimental results demonstrate that the model can accurately predict the steady-state, small signal and large signal dynamic behavior of DC/DC converter under average current control.%提出了适合平均电流控制下DC/DC开关变换器的大小信号统一模型.此模型可用于Buck、Boost和Buck-Boost变换器.它由两部份组成:一部份是开关变换器的平均电路模型;另一部分是平均电流控制器的电路模型.以平均电流控制下的Boost变换器为例,通过实验证明所提出的模型能够准确地预测平均电流控制下DC/DC变换器的稳态、小信号和大信号动态特性.
Sliding-mode control of single input multiple output DC-DC converter
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
A New Approach for High Efficiency Buck-Boost DC/DC Converters Using Series Compensation
Itoh, Jun-Ichi; Fujii, Takashi
This paper proposes a novel concept for non-isolated buck-boost DC/DC converter and control method. The proposed concept uses a series connection converter that only regulates the differential voltage between the input and output voltage. As a result, the power converter capacity is decreased. Moreover, the proposed circuit has advantages such as improved efficiency and losses reduction. The fundamental operation, control method, and design method of the proposed circuit are described in this paper. In addition, the validity of the proposed circuit is confirmed by carrying out simulations and experiments.
Modeling and Analysis of Transformerless High Gain Buck-boost DC-DC Converters
Vu Tran
2014-12-01
Full Text Available This paper proposes a transfomerless switched capacitor buck boost converter model, which provides higher voltage gain and higher efficiency when compared to the conventional buck boost converter. The averaged model based on state-space description is analyzed in the paper. The simulation results are presented to confirm the capability of the converter to generate high voltage ratios. The comparison between the proposed model and the traditional model is also provided to reveal the improvement. The proposed converter is suitable for for a wide application which requires high step-up DC-DC converters such as DC micro-grids and solar electrical energy.
Finite-time control of DC-DC buck converters via integral terminal sliding modes
Chiu, Chian-Song; Shen, Chih-Teng
2012-05-01
This article presents novel terminal sliding modes for finite-time output tracking control of DC-DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.
A High Power Density DC-DC Converter for Distributed PV Architectures
Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng
2012-06-01
In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.
Analysis and Experimental Study of Proportional-Integral Sliding Mode Control for DC/DC Converter
ZHANG Li; QIU Shui-sheng
2005-01-01
DC/DC converter using the proportional-integral (PI) sliding mode control (SMC) scheme is investigated, including the selection of the switching surface, the proof of the reaching condition and the existence condition of sliding motion. The sliding regime and the local stability are given. The implementation of the PI SMC is simpler than other SMC schemes and the steady-state error is eliminated. A prototype based on Buck converter is built up. The experimental results show that the dynamic performance and robustness to the parameter variations and external disturbances are improved.
Optimal Design and Tradeoffs Analysis for Planar Transformer in High Power DC-DC Converters
Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2010-01-01
A planar magnetic is a low profile transformer or inductor utilizing planar windings instead of the traditional windings made of Cu-wires. In this paper, the important factors for planar transformer design including winding loss, core loss, leakage inductance and stray capacitance have been.......2-kW full-bridge DC-DC converter prototype employing the improved planar transformer structure has been constructed, over 96% efficiency is achieved and a 2.7% improvement compared to the non-interleaving structure is obtained....
High-voltage boost quasi-Z-source isolated DC/DC converter
Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A high-voltage gain two-switch quasi-Z-source isolated DC/DC converter has been presented in this study. It consists of a quasi-Z-source network at its input, a push-pull square-wave inverter at its middle, and a voltage-doubler rectifier at its output. When coordinated appropriately, the new...... converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...
Ouyang, Ziwei; Zhang, Zhe; Thomsen, Ole Cornelius
2011-01-01
, hereby increasing the power density of converters. In this paper, a new planar integrated magnetics (PIM) module for a phase-shift plus duty cycle controlled hybrid bi-directional dc-dc converter is proposed, which assembles one boost inductor and two transformers into an E-I-E core geometry, reducing...... and theoretical analysis, a lab prototype employing the PIM module is implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. Detailed results from the experimental comparisons demonstrate that the PIM module is fully functional and electromagnetically equivalent...
A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side...... and voltage doubler circuit in secondary side. Boost type converter can limit the output ripple current of the fuel cells; hybrid full-bridge structure can change operating modes according to the different input voltage; phase-shift with duty cycle control scheme is utilized to control the bidirectional power...
Analysis and Implementation of Dual-ZCS forward DC/DC Converter
WANG Jing-mei; LAN Zhong-wei; YU Zhong; WANG Hao-cai
2005-01-01
As the switching frequency in DC/DC converter increases, original 'hard-switch' working mode is not compatible. Another problem is the reliability, which is puzzled in single-ended forward, push-pull or bridge-like structures. In this paper, a new dual-ZCS (zero current switches) forward topology is proposed. The operating principle of soft-switch is analyzed, showing the relationship between voltage and current in time domain. Then how to calculate the key parameters of resonant network is . Finally, a prototype ZCS SMPS is implemented and tested. The results consisted with the analyzing results well, and illustrated the advantages of the proposed structure.
Research on transient hysteresis current control strategy of DC-DC converter
Zhang, Ting; Wang, Zu-liang; Zhao, Yu-kai
2017-01-01
In order to improve the dynamic performance of DC-DC converter, transient hysteresis current control strategy is proposed which is based on parallel computing and combinational logic. By making a comparison between the real-time inductor current and the threshold inductor current, the switch is controlled more accurately. Under the Matlab/Simulink environment, the process of the Buck-Boost converter was simulated. The simulation results show that the transient hysteresis current control strategy can effectively overcome the disadvantages when load changes or input voltage disturbance occurs, it posses high load regulation and short dynamic response time, and it verifies the feasibility of the proposed strategy.
A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter
Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen
2017-01-01
A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...... converter is analyzed in steady-state. Then, its performance is validated using simulations in MATLAB/SIMULINK software. Finally, an experimental prototype is built for further verification....
A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter
无
2006-01-01
This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. It generates a wide range of voltage reference ranging from sub- 1V to 1.221 7 V and has a low temperature coefficient of 2.3 × 10 - 5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1.221 685 ± 0.055 mV.
High voltage conversion ratio, switched C & L cells, step-down DC-DC converter
Pelan, Ovidiu; Muntean, Nicolae; Cornea, Octavian;
2013-01-01
The paper presents a high voltage conversion ratio DC-DC step-down topology obtained from a classical buck converter associated with an input switched-capacitor cell and an output switched-inductor cell. Analytical descriptions, the voltage and current limits of the main components are synthesized...... in a comparative form, related to the classical buck structure, in order to emphasis the advantages of the proposed converter. Digital simulations and experimental results obtained with a built prototype are compared. From the first evaluation, the proposed converter is expected to be effectively used at input...
Point-of-load switched-capacitor DC-DC converter for distributed power systems
Shunkov, V. E.; Kus, O. N.; Prokopyev, V. Y.; Butuzov, V. A.; Bocharov, Y. I.; Shunkov, V. E.
2016-10-01
Integrated circuit (IC) of point-of-load DC-DC converter is presented. It is intended mainly for use in distributed power systems as a stand-along IC or as an on-chip block of the system-on-chip. The converter is based on multiphase switched-capacitor architecture and implemented in commercially available, 180 nm bulk-CMOS process. The paper discusses features of output voltage control in the multiphase system over a wide range of input and output voltages and load currents as well as output noise reducing techniques. The results of the test samples evaluation are presented.
A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase......-shift modulation scheme, all the switches can realize zero-voltageswitching (ZVS) turn-on and bidirectional power flow can be controlled with phase-shift angle. The operating principles of the converter are described in detail, ZVS conditions are discussed, parameters are designed, and the experimental results...
Soft-start mechanism with coefficients Ki optimization for DC-DC power converters
Wang, Qian; Hu, Jiajun; Chen, Houpeng; Li, Xi; Fan, Xi; Miao, Jie; Song, Zhitang
2016-10-01
This paper presents a fully digital-control soft start mechanism with coefficients Ki optimization for DC-DC power converters. During the soft start phase, a ladder reference voltage steps up gradually to make inductor current ramp up smoothly and overshoot voltage is minimized with the proposed coefficients Ki distribution. Simulation results show that massive inductor current can be well avoided during the soft start process with the proposed soft start mechanism, which only occupies a chip area of 300um×120um.
Non-Smooth Bifurcation and Chaos in a DC-DC Buck Converter
QIN Zhi-Ying; LU Qi-Shao
2007-01-01
A direct-current-dorect-current (DC-DC)buck converter with integrated load current feedback is studied with three kinds of Poicaré maps.The external corner-collision bifurcation occurs when the crossing number per period varies,and the internal corner-collision bifurcations occur along with period-doubling and period-tripling bifurcations in this model.The multi-band chaos roots in external corner-collision bifurcation and often grows into l-band chaos.A new kind of chaotic sliding orbits,which is more complex for non-smooth systems,is also found in this model.
DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram
2011-07-01
Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.
Comparison of two different high performance mixed signal controllers for DC/DC converters
Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.
2006-01-01
This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have...... an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 k......Hz implemented in the 16 MIPS, 8-bit ATTiny26 microcontroller is demonstrated....
Reliability-Oriented Optimization of the LC Filter Design of a Buck DC-DC Converter
Liu, Yi; Huang, Meng; Wang, Huai
2017-01-01
Lifetime is an important performance factor in the reliable operation of power converters. However, the state-of-the-art LC filter design of a buck DC-DC converter is limited to the specifications of voltage and current ripples and constrains in power density and cost without reliability...... considerations. This paper proposes a method to optimize the design of the LC filters from a reliability perspective, besides other considerations. An enhanced model is derived to quantify the lifetime of the capacitor in the filter considering the electro-thermal stress on it. Furthermore, the influence...
Five-Level Active-Neutral-Point-Clamped DC/DC Converter
Liu, Dong; Deng, Fujin; Chen, Zhe
2016-01-01
reliability. Furthermore, a capacitor voltage control strategy by alternating two operation modes of the proposed modulation strategy is proposed to balance the voltage of the flying capacitor, which ensures multi-level voltages producing. Finally, the performance of the proposed converter and control......Multi-level converters are getting more and more attentions because of their obvious merits such as lower voltage stress and harmonic, smaller size of output filters, and so on. In this paper, a five-level active-neutral-point-clamped (5L-ANPC) dc/dc converter is proposed for power transfer...
A Stable Control Strategy for Input-Series Output-Series Connected Boost half Bridge DC-DC Converter
Shahnawaz Farhan Khahro
2013-07-01
Full Text Available Boost half bridge DC-DC converters in the combination of an input-series and output-series (ISOS connected configuration with a stable control strategy has been investigated in this paper. A stable control strategy comprises of two loops that are current loop and voltage loop. The reference to the current loop has been chosen from the input side of the DC-DC converter. The reference to the voltage loop has been selected from the output side of the DC-DC converter. Such a reference makes the circuit configuration simple, easy and eventually results in reduced cost. The control strategy for input-series output-series (ISOS configuration of DC-DC converters is proposed to achieve equal input voltage sharing (IVS as well output voltage sharing (OVS. Furthermore, in this paper, the performance of the stable control strategy for input-series output-series (ISOS boost half bridge DC-DC converter has been observed not only for the fixed but also for the varying and continuously varying load. The proposed Stable control scheme has been developed by modeling it on MATLAB using Simulink and Simpower toolboxes. The operation of the proposed stable control strategy has been found to be satisfactory.
A current-mode DC-DC buck converter with adaptive zero compensation
Yang Ling; Dai Guoding; Xu Chongwei; Liu Yuezhi
2013-01-01
To achieve fast transient response for a DC-DC buck converter,an adaptive zero compensation circuit is presented.The compensation resistance is dynamically adjusted according to the different output load conditions,and achieves an adequate system phase margin under the different conditions.An improved capacitor multiplier circuit is adopted to realize the minimized compensation capacitance size.In addition,analysis of the small-signal model shows the correctness of the mechanism of the proposed adaptive zero compensation technique.A currentmode DC-DC buck converter with the proposed structure has been implemented in a 0.35 μm CMOS process,and the die size is only 800 × 1040 μm2.The experimental results show that the transient undershoot/overshoot voltage and the recovery times do not exceed 40 mV and 30 μs for a load current variation from 100 mA to 1 A.
Performance Analysis of Various DC-DC Converters with Optimum Controllers for PV Applications
R. Sankarganesh
2014-08-01
Full Text Available Alternative vehicles to Internal Combustion Engines (ICE, for instance the electric vehicle is becoming popular. Electric Vehicles (EV are pollution free and cost effective because the fossil fuel cost increases day by day. These factors make people passion for electric vehicles. Electrical energy demand necessitates charging of electric vehicles using renewable energy. Among the different renewable energy resources, Photovoltaic (PV cells are suitable for EV. The PV output power capacity is still low, so efforts continue to develop the PV converter and its controller, aiming for higher power-extracting efficiency. The PV system requires a proper DC-DC converter with optimum controller to deliver its maximum power. This study analyses the various DC-DC converters such as buck, boost, cuk and modified cuk converters to find the solution for maximum efficiency. In this study in addition to converters, various Maximum Power Point Tracking (MPPT methods, such as Perturb and Observe, Incremental Conductance along with a proposed algorithm called Brain Emotional Learning Based Intelligent Controller (BELBIC has been analyzed. The operation of the BELBIC is based on the emotion processing mechanism in the brain. This intelligent control is stimulated by the limbic system of the mammalian brain. The performance analysis of the converters and MPPT methods are simulated using MATLAB/SIMULINK. Furthermore, experimental results are presented in order to validate the modified cuk converter with proposed BELBIC algorithm.
Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications
Olalla, C; Clement, D; Rodriguez, M; Maksimovic, D
2013-06-01
This paper describes photovoltaic (PV) module architectures with parallel-connected submodule-integrated dc-dc converters (subMICs) that improve efficiency of energy capture in the presence of partial shading or other mismatch conditions. The subMICs are bidirectional isolated dc-dc converters capable of injecting or subtracting currents to balance the module substring voltages. When no mismatches are present, the subMICs are simply shut down, resulting in zero insertion losses. It is shown that the objective of minimum subMIC power processing can be solved as a linear programming problem. A simple close-to-optimal distributed control approach is presented that allows autonomous subMIC control without the need for a central controller or any communication among the subMICs. Furthermore, the proposed control approach is well suited for an isolated-port architecture, which yields additional practical advantages including reduced subMIC power and voltage ratings. The architectures and the control approach are validated by simulations and experimental results using three bidirectional flyback subMICs attached to a standard 180-W, 72-cell PV module, yielding greater than 98% module-level power processing efficiency for a mismatch less than 25%.
A DC-DC converter based powering scheme for the upgrade of the CMS pixel detector
Feld, L.; Karpinski, W.; Klein, K.; Merz, J.; Sammet, J.; Wlochal, M.
2011-11-01
Around 2016, the pixel detector of the CMS experiment will be upgraded. The amount of current that has to be provided to the front-end electronics is expected to increase by a factor of two. Since the space available for cables is limited, this would imply unacceptable power losses in the currently installed supply cables. Therefore it is foreseen to place DC-DC converters close to the front-end electronics, allowing the provision of power at higher voltages, thereby facilitating the supply of the required currents with the present cable plant. This conference report introduces the foreseen powering scheme of the pixel upgrade. For the first time, system tests have been conducted with pixel barrel sensor modules, radiation tolerant DC-DC converters and the full power supply chain of the pixel detector. In addition, studies of the stability of different powering schemes under various conditions are summarized. In particular the impact of large and fast load variations, which are related to the bunch structure of the LHC beam, has been studied.
Microfabricated Thin-Film Inductors for High-Frequency DC-DC Power Conversion
Yao, Di
2011-12-01
Microfabricated V-groove inductors targeted to operate above 10 MHz are investigated. Multilayer nano-granular Co-Zr-O/ZrO2 magnetic thin films are used as the core material of the inductors to improve the magnetic performance of the films deposited on the sidewalls of V-grooves and to control eddy-current loss in the core, which goes up very quickly as frequency increases. A loss model is developed to estimate eddy-current loss in multilayer magnetic thin films considering the effect of displacement current at high frequencies, and the model is applied in the design of V-groove inductors. V-groove inductors using multilayer magnetic thin films are co-optimized with power MOSFETs for 7-V to 3.3-V, 1-A DC-DC buck converters to maximize power handling capability per unit substrate area for given efficiencies. Prototype V-groove inductors are fabricated based on the optimization results, and measured and predicted performance of the inductors match well. The prototype inductors are a promising candidate for high-power-density high-efficiency DC-DC converters. The 7-V to 3.3-V, 1-A converters using prototype V-groove inductors are expected to exhibit power density of 2.5 W/mm2 and efficiency of 86% at 100 MHz, and power density of 0.36 W/mm2 and efficiency of 91% at 11 MHz.
Direct switching control of DC-DC power electronic converters using hybrid system theory
Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology
2010-07-01
A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.
Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters
Fernandez, L.M.; Garcia, P.; Garcia, C.A. [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n, 11202 Algeciras (Cadiz) (Spain); Torreglosa, J.P.; Jurado, F. [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, n 28. 23700 Linares (Jaen) (Spain)
2010-06-15
This paper describes a comparative study of two control schemes for the energy management system of a hybrid tramway powered by a Polymer Electrolyte Membrane (PEM) Fuel Cell (FC) and an Ni-MH battery. The hybrid system was designed for a real surface tramway of 400 kW. It is composed of a PEM FC system with a unidirectional dc/dc boost converter (FC converter) and a rechargeable Ni-MH battery with a bidirectional dc/dc converter (battery converter), both of which are coupled to a traction dc bus. The PEM FC and Ni-MH battery models were designed from commercially available components. The function of the two control architectures was to effectively distribute the power of the electrical sources. One of these control architectures was a state machine control strategy, based on eight states. The other was a cascade control strategy which was used to validate the results obtained. The simulation results for the real driving cycle of the tramway reflected the optimal performance of the control systems compared in this study. (author)
Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator
Mircea R. Stan
2013-07-01
Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.
An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters
Fard, Miad
In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.
Jayaweera, H. M. P. C.; Muhtaroğlu, Ali
2016-11-01
A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.
Light weight, high power, high voltage dc/dc converter technologies
Kraus, Robert; Myers, Ira; Baumann, Eric
1990-01-01
Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.
A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications
Li-Kun Xue
2015-06-01
Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.
Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System
G. Shiny Vikram
2014-09-01
Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step-up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper a coupled inductor dc-dc converter for photovoltaic system is proposed. The circuit configuration of the proposed converter is very simple. Thus, the proposed converter has higher step-up and step-down voltage gains than the conventional bidirectional dc–dc boost/buck converter. Under same electric specifications for the proposed converter and the conventional bidirectional boost/buck converter, the average value of the switch current in the proposed converter is less than the conventional bidirectional boost/buck converter. The operating principles have been applied to multi input photovoltaic system and outputs have been observed.
Load Dump Analysis in a 42/14V DC-DC Converter for Automotive Applications
Mohamed Abdualla Shrud
2013-07-01
Full Text Available The paper presents a model for a dc-dc centralised based architecture using Matlab/Simulink for load dump analysis. As the electrical load varies for various driving conditions such as day or night, summer or winter; and city or country side, the analysis of load change is a very important parameter for system behaviour. In order to study the 42V power generation dynamic performance under load variations, step change in loads have been investigated. A detailed mathematical model for a 3-phase, 4 kW and 42V Lundell alternator average electrical equivalent circuit along with the DC/DC converter based architectures for dual-voltage systems has been covered in previous publications. Aspects of the steady-state output current capabilities, transient behaviour due to load dump on the 14/42V buses and the behaviour of the system model under different loads are assessed and results discussed. The performance of the 42V Lundell alternator with the interleaved six-phase buck dc-to-dc converter system is modelled using Simulink software to assess the effectiveness of the model and its transient behaviour. The simulated results are presented for the transient characteristics of the system for load dumps.
High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2014-01-01
This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...
Thermoelectric-Generator-Based DC-DC Conversion Networks for Automotive Applications
Li, Molan; Xu, Shaohui; Chen, Qiang; Zheng, Li-Rong
2011-05-01
Maximizing electrical energy generation through waste heat recovery is one of the modern research questions within automotive applications of thermoelectric (TE) technologies. This paper proposes a novel concept of distributed multisection multilevel DC-DC conversion networks based on thermoelectric generators (TEGs) for automotive applications. The concept incorporates a bottom-up design approach to collect, convert, and manage vehicle waste heat efficiently. Several state-of-the-art thermoelectric materials are analyzed for the purpose of power generation at each waste heat harvesting location on a vehicle. Optimal materials and TE couple configurations are suggested. Moreover, a comparison of prevailing DC-DC conversion techniques was made with respect to applications at each conversion level within the network. Furthermore, higher-level design considerations are discussed according to system specifications. Finally, a case study is performed to compare the performance of the proposed network and a traditional single-stage system. The results show that the proposed network enhances the system conversion efficiency by up to 400%.
Transformerless DC-DC Converter Using Cockcroft-Walton Voltage Multiplier to Obtain High DC Voltage
Meghana G Naik,
2014-11-01
Full Text Available In the present scenario the use of transformer for high voltages in converter circuit reduces the overall operating efficiency due to leakage inductance and use of transformer also increases the operational cost. . Therefore the proposed system is implemented with transformer less DC-DC converter so as to obtain high DC voltage with the use of nine stage Cockcroft-Walton (CW voltage multiplier. The proposed converter operates in CCM (continuous conduction mode, so that the converter switch stress, the switching losses are reduced. The DC voltage at the input of the proposed model is low and is boosted up by boost inductor (Ls in DC-DC converter stage and performs inverter operation. The number of stages in CW-voltage multiplier circuit is applied with low input pulsating DC (AC Voltage voltage where it is getting converted to high DC output voltage. The proposed converter switches operates at two independent frequencies, modulating (fsm andalternating (fsc frequency. The fsm operates at higher frequency of the output while the fsc operates at lower frequency of the desired output voltage ripple and the output ripples can be adjusted by the switch Sc1 and Sc2. The regulation of the output voltage is achieved by controlling the Duty ratio.The simulation is carried over by the MATLABSIMULINK.
Pledl, Georg; Lutter, Peter [Finepower GmbH, Ismaning (Germany)
2010-07-01
Especially in automotive engineering, the big aim of electronic device development is to combine minimum possible weight, highest efficiency and low electromagnetic interference. Since there is a wide range of energy storage devices and power consumption requirements are very versatile, there are many possible solutions for electronic power devices, but not all of them will be appropriate for each system. One possible solution concerning dc/dc converters is represented by the phase shift operation for full bridge topologies. This procedure is used for supplying the electrical 14 V system from the high voltage energy storage or, in the other direction, charge the HV battery from the 14 V net or even from an external 230 V / 400 ac net. Finepower has developed 2 prototypes for research, which are presented in this contribution. Another new topology, a bidirectional LLC Converter, is presented as well. Energy consumption is growing and the available space for electronic power devices is held very small, so the power density increases and thermal management becomes more difficult. As dimensions of bus bars, semiconductors or inductive components are shrinking, parasitic influence becomes more and more significant. For getting information about function and influence of parasitics of electronic power devices, simulation is a very important tool since it saves much time and gives the possibility to extract internal dimensions of electrical circuits which cannot be measured in reality. (orig.)
Klein, Katja; Jussen, Ruediger; Karpinski, Waclaw; Merz, Jennifer; Sammet, J
2009-01-01
The upgrade of the CMS silicon tracker for the Super-LHC presents many challenges. The distribution of power to the tracker is considered particularly difficult, as the tracker power consumption is expected to be similar to or higher than today, while the operating voltage will decrease and power cables cannot be exchanged or added. The CMS tracker has adopted parallel powering with DC-DC conversion as the baseline solution to the powering problem. In this paper, experimental studies of such a DC-DC conversion powering scheme are presented, including system test measurements with custom DC-DC converters and current strip tracker structures, studies of the detector susceptibility to conductive noise, and simulations of the effect of novel powering schemes on the strip tracker material budget.
I Wayan Arta Wijaya
2009-05-01
Full Text Available Pengubah daya DC-DC topologi boost dapat menghasilkan tegangan yang lebih tinggi dari tegangan input dengan riak (ripple yang kecil dan efisiensi yang cukup tinggi. Nilai dari sebuah induktansi dan kapasitansi dari pengubah daya DC-DC dengan menggunakan topologi boost dioptimalkan menggunakan analisa transien. Fungsi ini diatur berdasarkan pada analisa dari pengubah daya selama kondisi transien. Nilai induktansi dan kapasitansi yang telah dioptimalkan dengan perhitungan dibandingkan dalam simulasi pada pengubah daya DC-DC dan hasilnya akan dibuktikan dengan menggunakan hasil percobaan. Nilai optimal untuk kapasitor dan induktor pada frekuensi 666,7 Hz, siklus kerja (duty cycle 66,7 %, resistansi output 36 Î dan tegangan input 12 volt adalah 1038 Î¼F dan 11,9 mH
Bhaskar, Mahajan Sagar; Kulkarni, Rishi M.; Padmanaban, Sanjeevi Kumar;
2016-01-01
In this paper hybrid non isolated/ non inverting Nx interleaved DC-DC multilevel Boost Converter for renewable energy applications is presented. The presented hybrid topology is derived from the conventional interleaved converter and the Nx Multilevel boost converter. In renewable energy...... applications, generated energy cannot be directly used at application end. In most of the cases it needs to be stepped up with DC-DC converter at operating voltage levels as per the requirement of the application. Though conventional boost converter can theoretically be used for this purpose, but obtaining....... The advantages of presenting topology of DC-DC converter are high voltage conversion, reduce ripple, low voltage stress, non inverting without utilizing the high duty and transformer. The main advantage of presented topology is more number of levels can be increased by adding capacitor and diode circuitry...
AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter
Moh. Zaenal Efendi
2014-06-01
Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.
Park, Jungyong; Kim, Shiho
2012-06-01
An analog maximum power point tracking (MPPT) circuit for a thermoelectric generator (TEG) is proposed. We show that the peak point of the voltage conversion gain of a boost DC-DC converter with an input voltage source having an internal resistor is the maximum power point of the TEG. The key characteristic of the proposed MPPT controller is that the duty ratio of the input clock pulse to the boost DC-DC converter shifts toward the maximum power point of the TEG by seeking the peak gain point of the boost DC-DC converters. The proposed MPPT technique provides a simple and useful analog MPPT solution, without employing digital microcontroller units.
Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids
Liu, Dong; Deng, Fujin; Chen, Zhe
2017-01-01
effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies......This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... are conducted, and the results have verified the proposed converter and control strategies....
Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick
2015-01-01
This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... of DC-DC converters for PV integration. Hence, to overcome these difficulties this paper investigates a DC-DC boost converter together with the additional parasitic component within the circuit to provide high output voltages for maximizing the PV power generation. The proposed power system circuit...... substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software...
Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi
2016-01-01
converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter......This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...
A Reduced-Part, Triple-Voltage DC-DC Converter for EV/HEV Power Management
Su, Gui-Jia [ORNL; Tang, Lixin [ORNL
2009-01-01
Electrical power systems in future hybrid and fuel cell vehicles may consist of three voltage nets: 14 V, 42 V, and high voltage (>200 V) buses. A soft-switched, bidirectional dc-dc converter that uses only four switches was proposed for interconnecting the three nets. This paper presents a reduced-part dc-dc converter, which decreases the converter cost while retaining all the favorable features of the original topology. Experimental data are included to verify a simple power flow control scheme.
Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D....... In order to verify the feasibility of the FQIT in multiple-input converter, a dual-input isolated boost dc-dc converter employing with the FQIT is designed and tested. The results have excellently demonstrated that the two input power stages can be operated independently and the correctness of all...
High-Voltage 1-kW dc/dc Converter Developed for Low-Temperature Operation
Patterson, Richard L.
1998-01-01
Recently, Lewis developed and demonstrated a high-voltage, 1-kW dc/dc converter that operates from room temperature to -184 C. A power supply designed for use in a NASA ion beam propulsion system was utilized as a starting point for the design of a low- (wide-) temperature dc/dc converter. For safety, we decided to halve the output voltage and power level, so the converter was designed for an 80-Vdc input and a 550-Vdc output at 1 kW.
Garcerá Sanfeliú, Gabriel; González Medina, Raul; Figueres Amorós, Emilio; Sandia Paredes, Jesús
2012-01-01
In photovoltaic (PV) double-stage grid-connected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling and control design of DC-DC converters with Peak Current mode Control (PCC) and an external control loop of the PV panel voltage, which works following a voltage reference provided by a maximum power point tracking (MPPT) algorithm. In the proposed overall control structur...
MPP-Tracking DC-DC converters in Photovoltaic applications. Implementation, modeling and analysis
Leppaeaho, J.
2011-07-01
This thesis provides a comprehensive study of switched-mode dc-dc converters in terms of dynamic characterization, implementation and operational constraints. The study concentrates on the maximum-power-point-tracking converters used in photovoltaic interfacing in order to maximize the power generation. The main objective is to emphasize the differences between the four basic conversion schemes and to analyze the dynamical characteristics of the current-fed converters. Harvesting of solar energy directly into electrical energy is known to be challenging due to the highly varying terminal characteristics of the energy harvesting unit, i.e., generally a photovoltaic generator. The environmental conditions as well as the load determine its characteristics. The operation point of PV generator has to be kept at its maximum-power point in order to maximize the harvested energy. The dc-dc switched-mode converters are conventionally used to interface the energy sources possessing constant-voltage behavior such as batteries or voltage buses but the same converters are also used as a basis for the maximum-power-point-tracking devices. It is observed, however, that such voltage-fed converters are not capable of interfacing a photovoltaic generator optimally because of its current-source nature. Therefore, an additional capacitor is usually added between the source and converter to enhance the constant-voltage properties of the source and to enable the input-voltage-based feedback control. It is known that the dual nature of PV generator enables the use of either input-voltage or input-current feedback control. It is observed, that the input-current control is prone to saturation of the controller and therefore, the input-voltage control is recommended to be used. The use of input-voltage control will, however, force the converter operate as a current-fed converter causing also significant changes to its static and dynamic properties as well as constraints related to the
Dhananjay Choudhary
2014-08-01
Full Text Available The two basic topologies of switch mode DC-DC converters (Buck and Boost are analyzed with a view of their use in PV (photovoltaic systems, as the photovoltaic generator exhibits non-linear characteristics due to the change in environmental condition and load variation. As the efficiency of PV panels is low it becomes mandatory to extract maximum power from the PV panel at a given period of time. Several MPPT algorithms with different types of converters are being proposed for extracting maximum power from the PV panel. It is found that the nature of load plays an important role in the choice of topology. This paper investigates the implementation issues of Incremental Conductance method with Buck and Boost Converters. Mathematical analysis and desirable steady-state operating point of the converters are derived to give satisfactory maximum power point tracking operation.
Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters
LASCU, D.
2013-11-01
Full Text Available The paper investigates predictive digital average current control (PDACC in dc/dc converters using trailing-edge modulation (TEM. The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.. The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.
Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter
Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel
2010-01-01
This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.
Comparison of control structures for a bidirectional high-frequency dc-dc converter
Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.
1989-08-01
A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.
High efficiency interleaved bi-directional ZVS DC-DC converter
Zafarullah Khan, M.; Mohsin Naveed, M.; Akbar Hussain, D. M.
2013-06-01
A high efficiency interleaved bi-directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the CoolMOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode and simulation results are verified.
DC-DC switching converter based power distribution vs serial power distribution EMC strategies
Arteche, F; Iglesias, M; Rivetta, C; Arcega, F G; Vila, I
2009-01-01
This paper presents a detailed and comparative analysis from the electromagnetic compatibility point of view of the proposed power distributions for the SLHC tracker up-grade. The main idea is to identify and quantify the noise sources, noise distribution at the system level and the sensitive areas in the front-end electronics corresponding to both proposed topologies: The DC-DC converter based power distribution and the serial power distribution. These studies will be used to define critical points on both systems to be studied and prototyped to ensure the correct integration of the system taking critically into account the electromagnetic compatibility. This analysis at the system level is crucial to ensure the final performance of the detector using non conventional power distributions, avoiding interference problems and excessive losses that can lead to catastrophic failures or expensive and un-practical solutions.
Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter
Liu Zhi; Yu Hongbo; Liu Youbao [Xi' an Institute of Microelectronics Technology, Xi' an 710054 (China); Ning Hongying, E-mail: liuzhi6048@126.com [Xi' an University of Technology, Xi' an 710048 (China)
2011-07-15
This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 {mu}m CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance. (semiconductor integrated circuits)
DC-DC converters in 0.35μm CMOS technology
Michelis, S.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Orlandi, S.; Saggini, S.; Cengarle, S.; Ongaro, F.
2012-01-01
In view of the upgrade of the LHC experiments, we are developing custom DC/DC converters for a more efficient power distribution scheme. A new prototype have been integrated in ASICs in the selected 0.35μm commercial high voltage technology that has been successfully tested for all radiation effects: TID, displacement damage and Single Event Burnout. This converter has been optimized for high efficiency and improved radiation tolerance. Amongst the new features the most relevant are the presence of internal linear regulators, protection circuits with a state-machine and a new pinout for a modified assembly in package in order to reduce conductive losses. This paper illustrates the design of the prototype followed by functional and radiation tests.
Electrothermal model of choking-coils for the analysis of dc-dc converters
Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland)
2012-09-01
The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.
A current-mode buck DC-DC controller with adaptive on-time control
Li Yanming; Lai Xinquan; Ye Qiang; Yuan Bing; Chen Fuji [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China); Jia Xinzhang, E-mail: ymli2004@126.co, E-mail: xqlai@mail.xidian.edu.c [Microelectronics Institute, Xidian University, Xi' an 710071 (China)
2009-02-15
A current-mode buck DC-DC controller based on adaptive on-time (AOT) control is presented. The on-time is obtained by the techniques of input feedforward and output feedback, and the adaptive control is achieved by a sample-hold and time-ahead circuit. The AOT current-mode control scheme not only obtains excellent transient response speed, but also achieves the independence of loop stability on output capacitor ESR. In addition, the AOT current-mode control does not have subharmonic oscillation phenomenon seen in fixed frequency peak current-mode control, so there is no need of the slope compensation circuit. The auto-skip pulse frequency modulation (PFM) mode improves the conversion efficiency of light load effectively. The controller has been fabricated with UMC 0.6-mum BCD process successfully and the detailed experimental results are shown.
Online humidification diagnosis of a PEMFC using a static DC-DC converter
Hinaje, M.; Sadli, I.; Martin, J.-P.; Thounthong, P.; Rael, S.; Davat, B. [GREEN - Institut National Polytechnique de Lorraine 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)
2009-03-15
This paper deals with the online checking of the humidification of a Proton Exchange Membrane Fuel Cell (PEMFC). Indeed, drying or flooding can decrease the performance of the PEMFC and even lead to its destruction. An online humidification diagnosis can allow a real-time control. A good indicator of the membrane humidification state is its internal resistance. As known, the membrane ionic conductivity increases with the membrane water content. This resistance can be calculated at high frequency by dividing the voltage variation by the current variation. The proposed scheme makes use of measurements of current and voltage ripples coming from the association of a static DC-DC converter and the fuel cell. The experiment thus consists in computing the internal resistance in wet and dry conditions. (author)
DC/DC-teholähde kiskokalustokäyttöön
Puranen, Lauri
2010-01-01
Kiskokalustokäyttöön tarkoitetut elektroniset laitteet altistuvat erittäin vaativille käyttöolosuhteille, sillä jatkuva tärinä sekä vaihtelevat ympäristöolosuhteet asettavat erittäin suuren haasteen laitteen luotettavuudelle sekä käytettävyydelle. Tässä työssä suunnitellaan DC/DC-teholähde noin 200 W lähtöteholle, jolla on tarkoitus korvata alkuperäinen epäluotettavaksi osoittautunut teholähde. Suunnitellulla teholähteellä muutetaan veturin akuston jännite (20,6 – 50,4 V) veturin moottorin-oh...
Conventional control and fuzzy control of a dc-dc converter for machine drive
Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)
1997-12-31
Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.
SOFT-SWITCHED HIGH STEP-UP DC-DC CONVERTER WITH HIGH VOLTAGE GAIN
J.C. PAUL IMMANUEL
2013-04-01
Full Text Available This paper presents a new design of soft switched high step-up dc-dc converter with high voltage gain which is suitable for high power applications such as Uninterruptible Power System (UPS, Photo Voltaic system and hybrid electric vehicles. The emergence of this front-end converter is to improve the shape of active input current given to the system. This converter proposes Soft-Switching technique to achieve ZVS turn on of active switches and ZCS turn off of diodes using Lr - Cr resonance in the auxiliary circuit. Therefore reduces the switching losses. Comparatively the voltage conversion ratio of this converter is higher when compared with the ordinary boost converter. Hence the voltage gain of this converter is also higher. A simulation platform is created using MATLAB which illustrates the ZVS and ZCS operation of the switches and diodes. Open loop and closed loop controlled converter systems are modelled and simulated.
A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter
Xin, Tian; Xiangxin, Liu; Wenhong, Li
2010-07-01
This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 μm CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.
Sliding mode controller with modified sliding function for DC-DC Buck Converter.
Naik, B B; Mehta, A J
2017-09-01
This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
New topology for DC/DC bidirectional converter for hybrid systems in renewable energy
Lopez, Juan Carlos; Ortega, Manuel; Jurado, Francisco
2015-03-01
This article presents a new isolated DC/DC bidirectional converter with soft switching, using a transformer with two voltage taps and two full bridges with insulated-gate bipolar transistors (IGBTs), one on each side of the transformer to be integrated in hybrid systems of renewable energy. A large voltage conversion ratio can be achieved using this converter, in buck and booster modes. Also medium and high DC power can be converted with a good efficiency. Analysis and switching techniques have been reported. To verify the principle of operation, a laboratory prototype of 10 kW has been performed. Experimental results are presented, operating in boost mode. The switching algorithm used has been modelled in MATLAB-Simulink to generate C code. This code has been implemented in a DSP F2812, which has been used to build the prototype.
A dual VCDL DLL based gate driver for zero-voltage-switching DC-DC converter
Tian Xin; Liu Xiangxin; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)
2010-07-15
This paper presents a dual voltage-controlled-delay-line (VCDL) delay-lock-loop (DLL) based gate driver for a zero-voltage-switching (ZVS) DC-DC converter. Using the delay difference of two VCDLs for the dead time control, the dual VCDL DLL is able to implement ZVS control with high accuracy while keeping good linearity performance of the DLL and low power consumption. The design is implemented in the CSM 2P4M 0.35 {mu}m CMOS process. The measurement results indicate that an efficiency improvement of 2%-4% is achieved over the load current range from 100 to 600 mA at 4 MHz switching frequency with 3.3 V input and 1.3 V output voltage.
Automated synthesis of power circuit single ended DC-DC converters
Vakovsky, Dimiter; Hinov, Nikolay
2016-12-01
Guaranteeng the parameters in the output of the power electronics device is of great importance for achieving the desired quality of the process of energy conversion. The combined methods for realization of the electronic devices with guaranteed parameters requires the usage of systematic approach in the realization of the power electronics device - from the stage of the parameter formulation to the receiving of the end product. In the investigation the application of the modelling and software products for the research are growing more and more. In that relation it is necessary the creation of a common programming environment in which the diversity of application programs can operate. In the paper is present an automated synthesis and design of single-transistor dc-dc converters.
Low Temperature Performance of High Power Density DC/DC Converter Modules
Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric
2001-01-01
In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.
SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS
2009-01-01
A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end...
A Compact, Soft-Switching DC-DC Converter for Electric Propulsion
Button, Robert; Redilla, Jack; Ayyanar, Raja
2003-01-01
A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.
SSP Technology Investigation of a High-Voltage DC-DC Converter
Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)
2002-01-01
The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.
Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation
Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit
1996-01-01
A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.
GaN-based High Efficiency Bidirectional DC-DC Converter with 10 MHz Switching Frequency
Kruse, Kristian; Zhang, Zhe; Elbo, Mads
2017-01-01
-isolated bidirectional DC-DC converter equipped with Gallium Nitride (GaN) semiconductor transistors is presented. The converter’s operation principles, zero-voltage switching (ZVS) constraints and dead-time effects are studied. Moreover, the optimization and tradeoffs on the adopted high-frequency inductor...... are investigated. Based on the theoretical analysis and calculation, a laboratory prototype with a switching frequency up to 10 MHz and the maximum output power of 100 W is constructed and tested. Switching at 10 MHz, a power density of approximately 6.25W/cm3 and an efficiency of 94.4% in the Buck mode...... is still very challenging due to complex ZVS control, lacks of feasible magnetic materials, and limited thermal dissipation area....
Systematic design approach of fuzzy PID stabilizer for DC-DC converters
Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)
2008-10-15
DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)
State space analysis of boost DC/DC converter with voltage mode control
Shenoy, K. Latha; Nayak, C. Gurudas; Mandi, Rajashekar P.
2017-07-01
The boost converter belongs to the family of indirect energy transfer converters. The inductor stores energy during switch on and the output capacitor deliver power to the load. During switch off condition, the stored inductive energy appears in series with the input source and supply the output. The paper deals with the small signal analysis of dc-dc boost converter. It is used in modeling the closed loop converter parameters. The boost converter produces an undesirable Right-Half Plane Zero (RHPZ) in the small signal analysis due to which the implementation of voltage mode control needs attention. This requires compensating the regulator such that the crossover frequency occurs well below the frequency of the RHP zero. The paper describes modeling of voltage mode control boost converter operating in continuous conduction mode.
A High Voltage-lift Efficient Isolated Full Bridge DC-DC Converter
A. Gopi
2014-05-01
Full Text Available The aim of this study is to propose a high voltage lift isolated full bridge dc-dc converter. The proposed converter consists of an isolation transformer a low turn ratio to obtain high step up voltage gain. The secondary of the transformer connected with two boosting capacitors which connects parallel when power switches switch on period and discharged in series during the switch off period. In addition full bridge converter on primary side consists of clamping diode and capacitor, leakage energy is recycled there by improving conversion efficiency. The proposed circuits simulated using PSIM software form input voltage of 48V, an output of 410 V obtained. These results and operations experimented and validated by implementing in hardware model at 20/40 Vdc, 20 Watts.
Rødgaard, Martin Schøler; Andersen, Thomas; Meyer, Kaspar Sinding
2012-01-01
Research and development within piezoelectric transformer (PT) based converters are rapidly increasing as the technology is maturing and starts to prove its capabilities. Especially for high voltage and high step-up applications, PT based converters have demonstrated good performance and DC....../AC converters are widely used commercially. The availability of PT based converters for DC/DC applications are very limited and are not that developed yet. I this paper an interleaved multi layer Rosen-type PT for high step-up and high output voltage is developed, for driving a 2.5kV dielectric electro active...... and obtain soft switching capabilities. This can be achieved by utilising an advantageous PT structure, which is the main advantage of the interleaved Rosen-type PT. Furthermore the design should be further optimised, in order to achieve soft switching capability. The goal of this paper is to develop a soft...
Load adaptive start-up scheme for synchronous boost DC-DC converter
Guoding, Dai; Wenliang, Xiu; Yuezhi, Liu; Yawei, Qi; Zuqi, Dong
2016-10-01
This paper presents a load adaptive soft-start scheme through which the inductor current of the synchronous boost DC-DC converter can trace the load current at the start-up stage. This scheme effectively eliminates the inrush-current and over-shoot voltage and improves the load capability of the converter. According to the output voltage, the start-up process is divided into three phases and at each phase the inductor current is limited to match the load. In the pre-charge phase, a step-increasing constant current gives a smooth rise of the output voltage which avoids inrush current and ensures the converter successfully starts up at different load situations. An additional ring oscillator operation phase enables the converter to start up as low as 1.4 V. When the converter enters into the system loop soft-start phase, an output voltage and inductor current detection methods make the transition of the phases smooth and the inductor current and output voltage rise steadily. Effective protection circuits such as short-circuit protection, current limit circuit and over-temperature protection circuit are designed to guarantee the safety and reliability of the chip during the start-up process. The proposed start-up circuit is implemented in a synchronous boost DC-DC converter based on TSMC 0.35 μm CMOS process with an input voltage range 1.4-4.2 V, and a steady output voltage 5 V, and the switching frequency is 1 MHz. Simulation results show that inrush current and overshoot voltage are suppressed with a load range from 0-2.1 A, and inductor current is as low as 259 mA when the output shorts to the ground.
Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.
2011-01-01
In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…
A Reconfigurable Series Resonant DC-DC Converter for Wide-Input and Wide-Output Voltages
Shen, Yanfeng; Wang, Huai; Qin, Zian;
2017-01-01
This paper proposes a dual-bridge based LC series resonant dc-dc converter. The input inverter unit incorporates two bridge structures, i.e., a full-bridge inverter and a half-bridge inverter. For the output rectifier, it can be a full-bridge rectifier or an asymmetric half-bridge rectifier. Diff...
Novel family of quasi-Z-source DC/DC converters derived from current-fed push-pull converters
Chub, Andrii; Husev, Oleksandr; Vinnikov, Dmitri
2014-01-01
This paper is devoted to the step-up quasi-Z-source dc/dc push-pull converter family. The topologies in the family are derived from the isolated boost converter family by replacing input inductors with the quasi-Z-source network. Two new topologies are proposed, analyzed and compared. Theoretical...
Quasi-Periodicity and Border-Collision Bifurcations in a DC-DC Converter with Pulsewidth Modulation
Zhusubalaliyev, Zh. T.; Soukhoterin, E.A.; Mosekilde, Erik
2003-01-01
The paper considers the dynamics of a dc-dc converter with pulsewidth modulation. The typical scenario for the transition to chaos in such systems proceeds via quasi-periodicity, resonance cycles, and torus destruction. Detailed bifurcation analysis shows that the resonance solutions arise via...
A 10 kW dc-dc converter using IGBTs with active snubbers. [Insulated Gate Bipolar Transistor
Masserant, Brian J.; Shriver, Jeffrey L.; Stuart, Thomas A.
1993-01-01
This full bridge dc-dc converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low IGBT switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10 kW, 20 kHz converter.
Coetzer, A
2016-01-01
Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...
Bankov Dimitrov Nikolay
2012-01-01
Full Text Available This work examines a series resonant DC/DC optimal trajectory controlled converter during operation above resonant frequency, taking into account the influence of the snubbers and matching transformer. We obtain expressions for the load characteristics, boundary curves between possible modes and limits of the soft commutation area. Computer simulation and experimental observation confirm the theoretical results.
Bankov Dimitrov Nikolay; Vuchev Stoyanov Aleksandar
2012-01-01
This work examines a series resonant DC/DC optimal trajectory controlled converter during operation above resonant frequency, taking into account the influence of the snubbers and matching transformer. We obtain expressions for the load characteristics, boundary curves between possible modes and limits of the soft commutation area. Computer simulation and experimental observation confirm the theoretical results.
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede
2017-01-01
Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output v...
High reliability DC/DC converter module for electronic boards equipped with FPGAs
Viganò, W.; Boccardi, A.; Zamantzas, C.
2015-01-01
The Beam Instrumentation Group at CERN is designing a new general-purpose VME carrier module utilising several PTH04T230W DC/DC converters. These off-the-shelf converters are built with unshielded inductors and need to be mounted on the printed circuit board as stand-alone components. Thus, reducing the global manageability and increasing the total cost of the carrier module. The new design aims to develop a module with better power dissipation, efficiency and reliability. In the future, it should be also possible to be directly integrated on the mainboard. For this reason, a Buck DC/DC converter has been implemented with the following main characteristics: input range from 3.0 V to 5.5 V; output range from 0.6 V to 3.3 V, settable by means of an external resistor; output current protection at 6 A; maximum output ripple ± 50 mVpp; switching frequency of 300KHz; short circuit protection; On/Off function; EMI reduction with frequency spread spectrum; soft-start function and thermal shutdown, in a 16 × 19 mm compact size. The selected buck controller is the TPS40303 integrated circuit and drives the CSD16321 power MOSFET, both from Texas Instruments. All selected components have been used at a minimum derating of 50% to reduce component stress and increase the reliability of this module. The selected inductors, i.e. Bourns SRP1055, are the main contributor for the high efficiency (95%), due to their very low equivalent series resistance. On the 4-layer PCB comprising all the components of this module, a snubber circuit, for further reduction of the output ripple due to the MOSFET ringing, can be mounted optionally. It is left as an option due to its effect on the total efficiency. The board layout has been optimized for maximum heat transfer and it can be used without active cooling. The board can maintain the maximum temperature on its surface, while at maximum current output, below 55°C at 25°C ambient temperature. An example of the electrical performance
Modeling and Design of Single-Inductor Multiple-Output DC-DC Converter%单电感多路输出DC-DC转换器的建模与设计
杨建明; 李琰
2013-01-01
A mathematical model of single-inductor multi-output (SIMO) DC-DC converter was established,and its feasibility was verified with Matlab.A methodology for designing SIMO DC-DC converter in current domain was presented to simplify SIMO controller circuit and reduce its quiescent current.In this method,SIMO voltage signals were converted into current signals,which,along with reference and inductor current signals,were input into multiloop PWM controller for required operation.Simulation results showed that the method was simple and robust,and the triple-channel SIMO,which was only 0.76 mm2 in chip size,had a quiescent current of 110 μA and driving current of 200 mA.%建立了单电感多路输出(SIMO) DC-DC转换器的数学模型,通过Matlab验证了SIMO模型的可行性.为解决SIMO控制电路复杂以及静态工作电流大的问题,提出在电流域设计SIMO控制器的方法.该方法将SIMO多路输出电压反馈信号转换为电流信号,与基准电流信号和电感电流信号一并输入多环路PWM控制器,PWM控制器在电流域完成需要的运算及环路频率补偿.仿真结果表明,该算法可行,电路设计方法简洁,在0.13 μm CMOS工艺下,三通道SIMO的面积为0.76 mm2,静态电流为110 μA,驱动能力为200 mA.
A study of DC-DC converters with MCT's for arcjet power supplies
Stuart, Thomas A.
1994-01-01
Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.
Scalar Controlled Boost PWM Rectifier for Micro Wind Energy Systems
J. Chelladurai
2015-05-01
Full Text Available Uses of Permanent Magnet Synchronous Generators (PMSG are increasing in variable speed micro-Wind Energy Conversion Systems (WECS. In stand-alone or grid-connected Micro-WECS, extraction of maximum power is vital. To extract maximum power output and to obtain a constant DC bus voltage from variable magnitude and variable frequency voltage output of PMSG and generally a two stage scheme namely i conventional diode bridge rectifier and ii DC-DC Boost/Buck/Buck-Boost converters are used. In this study, a single stage Scalar Controlled PWM (SCPWM Boost Rectifier is proposed in order to minimize the current harmonics and to improve the power factor on source side. The modeling and simulation of PMSG based wind generator and SCPWM Boost rectifier was developed in MATLAB. The harmonic content in the input current waveform of the proposed SCPWM rectifier is compared with the conventional three-phase bridge rectifier. The Simulation results show the effectiveness of the PWM Boost rectifier in terms of effective utilization of source, improved efficiency and harmonic mitigation for PMSG based Wind Generator. Simulation results demonstrate the effectiveness of the proposed system in reducing the current and voltage THD on source side.
Boost Full Bridge Bidirectional DC/DC Converter for Supervised Aeronautical Applications
Alberto Cavallo
2014-01-01
Full Text Available The More Electrical Aircraft concept requires electronic devices able to efficiently and safely convert electrical power between different voltage levels. The entire realization of a bidirectional DC/DC converter, from design to validation phase, is here discussed in detail. First, a boost full bridge electrical structure is selected, adopting a Parallel Input Parallel Output (PIPO interleaving technique and an optimal turns ratio selection for the transformers in order to reduce both weight and size of the equipment. Next, modulation schemes in both step-down and step-up modes are discussed. Successively ad hoc PI regulators for both operative modes are presented. A key idea of the paper is that the converter behavior must be related not only to the control strategy but also to a global supervision logic able to safely conduct the converter operations and to react from external stimuli. Thus, a finite state machine (FSM approach is employed. An innovative strategy called buffer mode is presented, defined as an intelligent combination of buck and boost modes. Extensive simulations and experimental results are shown, in order to confirm the effectiveness of the proposed approach.
Performance of a Voltage Step-Up/Step-Down Transformerless DC/DC Converter: Analytical Model
Suskis, P.; Rankis, I.
2012-01-01
The authors present an analytical model for a voltage step-up/step-down DC/DC converter without transformers. The proposed topology is a combination of classic buck and boost converters in one single circuit but with differing operational principles. The converter is developed for a wind power autonomous supply system equipped with a hydrogen electrolytic tank and a fuel cell for energy stabilization. The main power source of the hydrogen-based autonomous supply system is energized by a synchronous generator operating on permanent magnets and equipped with a diode bridge. The input voltage of the converter in this case varies in the range 0-700 V, while its output DC voltage must be 540 V according to the demand of other parts of the system. To maintain the rated voltage, a special electrical load regulation is introduced. The calculations of the converter, the generator (equipped with a diode bridge) as element of the power system supply joint, and the load replaced by resistance are verified with PSIM software.
Skoupý, Petr
2010-01-01
Bakalářská práce je zaměřena na návrh a realizaci univerzálních DC/DC měničů se třemi integrovanými obvody. Hlavní část popisuje postupný rozbor silové a řídící části, jakožto funkčních bloků a jednotlivých schémat. Největší důraz je kladen na tři obvodová zapojení pro snižující, zvyšující a invertující měnič a vybrání vhodných řídících obvodů, které jsou dostupné na trhu s elektronickými součástkami a splňují všechny námi zadané požadavky. Výslednou realizací je postupný rozbor výpočtu vnějš...
Advanced DC-DC converter for power conditioning in hydrogen fuel cell systems
Kovacevic, G.; Tenconi, A.; Bojoi, R. [Department of Electrical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
2008-06-15
The fuel cell (FC) generators can produce electric energy directly from hydrogen and oxygen. The DC voltage generated by FC is generally low amplitude and it is not constant, depending on the operating conditions. Furthermore, FC systems have dynamic response that is slower than the transient responses typically requested by the load. For this reason, in many applications the FC generators must be interfaced with other energy/power sources by means of an electronic power converter. An advanced full-bridge (FB) DC-DC converter, which effectively achieves zero-voltage switching and zero-current switching (ZVS-ZCS), is proposed for power-conditioning (PC) in hydrogen FC applications. The operation and features of the converter are analyzed and verified by simulations results. The ZVS-ZCS operation is obtained by means of a simple auxiliary circuit. Introduction of the soft-switching operation in PC unit brings improvements not only from the converter efficiency point of view, but also in terms of increased converter power density. Quantitative analysis of hard and soft-switching operating of the proposed converter is also made, bringing in evidence the benefits of soft-switching operation mode. The proposed converter can be a suitable solution for PC in hydrogen FC systems, especially for the medium to high-power applications. (author)
Design and implementation of a switched capacitor-based embedded hybrid DC-DC converter
Bhattacharyya, Kaushik; Mandal, Pradip
2012-06-01
Here, we propose an integrated hybrid DC-DC converter suitable for high drop-out energy conscious applications. In the hybrid converter topology, along with a linear regulator two switched capacitors are used to store and recycle charge for better power efficiency. Without significant power loss the switched capacitors step down the supply voltage for the linear regulator working in low drop-out mode. The linear regulator, on the other hand, attenuates the voltage ripple that originates from the switched capacitors converter on its power supply rejection ratio. It also helps for line and load regulation. Additionally, a synthesised counter ripple is injected through the linear regulator to further reduce the output ripple. With these two techniques, for a moderate load current and an acceptable output ripple, the switching and load capacitors are reduced to a value which can be implemented within the chip. The proposed integrated converter circuit has been designed, implemented and tested in a 0.18 mm CMOS process for 3.3-1.3V conversion. With two switching capacitors of 210 pF each and 100 pF load capacitor, more than 13 mA of load current, measured peak-to-peak output voltage ripple is 146 mV. The achieved measured power efficiency is 64.97%. Exhaustive silicon characterisation of the converter is done to observe the power efficiency and ripple variation at different frequency of operations.
High efficiency and low electromagnetic interference boost DC-DC converter
Yajun, Li; Xinquan, Lai; Qiang, Ye; Bing, Yuan
2014-04-01
A synchronous boost DC-DC converter with an adaptive dead time control (DTC) circuit and anti-ringing circuit is presented. The DTC circuit is used to provide adjustable dead time and zero inductor current detection for power transistors and therefore, a high efficiency is achieved by minimizing power losses, such as the shoot-through current loss, the body diode conduction loss, the charge-sharing loss and the reverse inductor current loss. Simultaneously, a novel anti-ringing circuit controlled by the switching sequence of power transistors is developed to suppress the ringing when the converter enters the discontinuous conduction mode (DCM) for low electromagnetic interference (EMI) and additional power savings. The proposed converter has been fabricated in a 0.6 μm CDMOS technology. Simulation and experimental results show that the power efficiency of the boost converter is above 81% under different load currents from 10 to 250 mA and a peak efficiency of 90% is achieved at about 100 mA. Moreover, the ringing is easily suppressed by the anti-ringing circuit and therefore the EMI noise is attenuated.
DC-DC converters for the upgrades of the CMS tracker
Sammet, Jan; Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Merz, Jennifer; Wehner, Jakob; Wlochal, Michael [RWTH Aachen University, I. Physikalisches Instiut B (Germany)
2011-07-01
Within the present decade, it is foreseen to gradually increase the instantaneous luminosity of the LHC to 1-2.10{sup 34} cm{sup -2}s{sup -1}. Around 2020, it is intended to increase the luminosity further, to about 5.10{sup 34} cm{sup -2}s{sup -1}. To ensure and improve its physics performance, CMS is going to exchange its pixel detector around 2016. Four years later the complete tracker is going to be replaced by a new development. The use of DC-DC converters is foreseen for both of these upgrades. Radiation tolerant converters developed by working groups at CERN and Aachen match the requirements of the new pixel detector already. However, further work is required to integrate the converters on system level and to ensure their save and reliable operation. The status of this work is presented. Building a new tracking detector equipped with converters, raises several additional challenges. In particular the noise performance of the converters and their efficiency at large conversion ratios still has to be improved. The coil, used by the converters to buffer energy, has a significant impact on both of these issues. Effort has been put into the optimization of converter coils, as well as into the exploration and minimization of noise radiated by the coils. The talk gives a summary of the results of this work.
Large step-down DC-DC converters with reduced current stress
Ismail, Esam H. [Department of Electrical Engineering, College of Technological Studies, P.O. Box 35007, 36051 Al-Shaab (Kuwait)
2009-02-15
In this paper, several DC-DC converters with large voltage step-down ratios are introduced. A simple modification in the output section of the conventional buck and quadratic converters can effectively extend the duty-cycle range. Only two additional components (an inductor and diode) are necessary for extending the duty-cycle range. The topologies presented in this paper show an improvement in the duty-cycle (about 40%) over the conventional buck and quadratic converters. Consequently, they are well suited for extreme step-down voltage conversion ratio applications. With extended duty-cycle, the current stress on all components is reduced, leading to a significant improvement of the system losses. The principle of operation, theoretical analysis, and comparison of circuit performances with other step-down converters is discussed regarding voltage and current stress. Experimental results of one prototype rated 40-W and operating at 100 kHz are provided in this paper to verify the performance of this new family of converters. The efficiency of the proposed converters is higher than the quadratic converters. (author)
Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade
Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M
2009-01-01
There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...
Fast response double series resonant high-voltage DC-DC converter
Lee, S. S.; Iqbal, S.; Kamarol, M.
2012-10-01
In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.
A Multiphase, Modular, Bidirectional, Triple-Voltage DC-DC Converter Power Systems
Su, Gui-Jia [ORNL; Tang, Lixin [ORNL
2008-01-01
Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage [14 V, 42 V, and high voltage (HV)] nets. These will be necessary to accommodate existing 14-V loads as well as efficiently handle new heavy loads at the 42-V net and a traction drive on the HV bus. A low-cost DC-DC converter was proposed for connecting the three voltage nets. It minimizes the number of switches and their associated gate driver components by using two half-bridges and a high-frequency transformer. Another salient feature is that the half bridge on the 42-V bus is also utilized to provide the 14-V bus by operating at duty ratios around an atypical value of 1/3. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft switching. The use of half bridges makes the topology well suited for interleaved multiphase modular configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with an atypical duty ratio on the transformer and a preferred multiphase configuration to minimize capacitor ripple currents.
Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft
Diab-Marzouk, Ahmad
A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.
Adaptive terminal sliding-mode control strategy for DC-DC buck converters.
Komurcugil, Hasan
2012-11-01
This paper presents an adaptive terminal sliding mode control (ATSMC) strategy for DC-DC buck converters. The idea behind this strategy is to use the terminal sliding mode control (TSMC) approach to assure finite time convergence of the output voltage error to the equilibrium point and integrate an adaptive law to the TSMC strategy so as to achieve a dynamic sliding line during the load variations. In addition, the influence of the controller parameters on the performance of closed-loop system is investigated. It is observed that the start up response of the output voltage becomes faster with increasing value of the fractional power used in the sliding function. On the other hand, the transient response of the output voltage, caused by the step change in the load, becomes faster with decreasing the value of the fractional power. Therefore, the value of fractional power is to be chosen to make a compromise between start up and transient responses of the converter. Performance of the proposed ATSMC strategy has been tested through computer simulations and experiments. The simulation results of the proposed ATSMC strategy are compared with the conventional SMC and TSMC strategies. It is shown that the ATSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes.
Evaluating neural control with optimal architecture for DC/DC converter
Fredy Hernán Martínez Sarmiento
2010-05-01
-power equipment raises great design challenges due to the mathematical model’s complexity and its highly nonlinear dynamic characteristics. Artificial intelligence techniques, such as neuronal networks, suppose great improvements in design and final per- formance, given their capacity for learning complex dynamics and generalising their behaviour. This work was aimed at propo- sing (and evaluating dynamic response later on direct control link with neuronal networks which also allowed eliminating test ele- ments and error in its design. Artificial neuronal network-based direct control was designed as well as possible using bio-inspired search models. This simultaneously optimised two different but fundamental aspects of the network: architecture and the weight of the connections. The control was applied to a boost converter. The results led to observing the scheme’s dynamic performan- ce; response time and exit voltage delta led to concluding that the criteria selected for designing the control were appropriate and represented a contribution towards developing control applications of DC/DC switchmode systems.
A Protection Circuit for DC-DC Converter with Voltage Doubler
D.Elangovan
2012-12-01
Full Text Available This paper proposes a method to obtain a protected voltage gain by employing a protection circuit for the voltage doubler or multiplier circuit in an isolated tyde DC-DC Converter. The entire set up consists of a phase shift converter with a protected bridge/voltage doubler rectifier on the output side. The operating frequency of the phase shift converter is 20-25kHz (depending on the requirement of the application which is high enough to improve the efficiency. Ferrite core transformer is used in place of ordinary air core transformer, which is small in size with number of turns of the transformer is reduced and the overall power density is increased. The doubler circuit consists of electrolytic capacitors, which are rated at 400V in order to comply with IEC65 requirements. This paper proposes an “electrolytic capacitor protection circuit”, which enables the voltage rating of the electrolytics to be reduced to 250V. This circuit results in cost savings of more than 50% in the price of the electrolytic filter capacitors. The circuits were simulated using PSPICE SOFTWARE and the following results were obtained. For an input voltage of 200V, an output of 200V and400V were obtained in bridge mode and doubler mode respectively.
Multiphase High-Frequency Isolated DC-DC Converter for Industrial Applications
Maurya, Rakesh; Srivastava, S. P.; Agarwal, Pramod
2014-01-01
Industrial applications such as welding, plasma cutting, and surface hardening require a large DC current at low voltage. In such applications, the rating of power supply varies from few kilowatts to hundreds of kilowatts. The power supply employs in such applications particularly in arc welding process is expected to operate from open-circuit (no-load) to short-circuit (when the electrode sticks to the workpiece for a short span of time) quickly. In this paper, high-frequency isolated multiphase DC-DC converter is proposed which is well suited for aforementioned applications. Based on mathematical analysis, a simulation study with 5 kW, 5 V/1,000 A proposed model is carried out using Simulink block set and Sim Power System tool box and its performances are evaluated under symmetrical control methods. To verify the simulation results, scaled prototype model of rating 1.5 V/100 A is developed and tested with aforementioned control method under different operating conditions. In comparison with conventional welding power supply employed in many industries, the performance of proposed converter is improved significantly in terms of size and weight, efficiency and dynamic response.
A Low-Power Asynchronous Step-Down DC-DC Converter for Implantable Devices.
Al-Terkawi Hasib, Omar; Sawan, M; Savaria, Y
2011-06-01
In this paper, we present a fully integrated asynchronous step-down switched capacitor dc-dc conversion structure suitable for supporting ultra-low-power circuits commonly found in biomedical implants. The proposed converter uses a fully digital asynchronous state machine as the heart of the control circuitry to generate the drive signals. To minimize the switching losses, the asynchronous controller scales the switching frequency of the drive signals according to the loading conditions. It also turns on additional parallel switches when needed and has a backup synchronous drive mode. This circuit regulates load voltages from 300 mV to 1.1 V derived from a 1.2-V input voltage. A total of 350 pF on-chip capacitance was implemented to support a maximum of 230-μ W load power, while providing efficiency up to 80%. The circuit validating the proposed concepts was fabricated in 0.13- μm complementary metal-oxide semiconductor technology. Experimental test results confirm the expected functionality and performance of the proposed circuit.
An optimal current observer for predictive current controlled buck DC-DC converters.
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-05-19
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally.
Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads
Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique
Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.
A Monolithically Integrated 12V/5V Switch-Capacitor DC-DC Converter
耿莉; 陈治明; 刘先锋
2000-01-01
A monolithically integrated 12V/SV switch capacitor DC-DC converter with structure-simplified main circuit and control circuit is presented. Its topological circuit and basic operating principle are discussed in detail. It is shown that elevated operating frequency, increased capacitance and reduced turn-on voltage of the diodes can make the converter's output characteristics improved. Reducing resistance of the equivalent resistors and other parasitic parameters can make the operation frequency higher. As a feasible efficient method to fabricate monolithically integrated converter with high frequency and high output power, several basic circuits are parallelly combined where the serial-parallel capacitance is optimized for the maximum output power. The device selection and its fabrication method are presented. A feasible integration process and its corresponding layout are designed. All active devices including switching transistors and diodes are integrated together with all passive cells including capacitors and resistor on a single chip based on BiMOS process,as has been verified to be correct and practical by simulation and chip test.
Integrated Circuit of CMOS DC-DC Buck Converter with Differential Active Inductor
Kaoutar Elbakkar
2011-11-01
Full Text Available In this paper, we propose a new design of DC-DC buck converter (BC, which the spiral inductor is replaced by a differential gyrator with capacitor load (gyrator-C implemented in 0.18um CMOS process. The gyrator-C transforms the capacitor load (which is the parasitic capacitor of MOSFETS to differential active inductor DAI. The low-Q value of DAI at switching frequency of converter (few hundred kHz is boosted by adding a negative impedance converter (NIC. The transistor parameters of DAI and NIC can be properly chosen to achieve the desirable value of equivalent inductance L (few tens H, and the maximum-Q value at the switching frequency, and thus the efficiency of converter is improved. Experimental results show that the converter supplied with an input voltage of 1V, provides an output voltage of 0.74V and output ripple voltage of 10mV at 155 kHz and Q-value is maximum (#8776;4226 at this frequency.
Design of piezoelectric transformer for DC/DC converter with stochastic optimization method
Vasic, Dejan; Vido, Lionel
2016-04-01
Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.
Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion
Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG
2015-09-01
Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.
A High-Efficiency Monolithic DC-DC PFM Boost Converter with Parallel Power MOS Technique
Hou-Ming Chen
2013-01-01
Full Text Available This paper presents a high-efficiency monolithic dc-dc PFM boost converter designed with a standard TSMC 3.3/5V 0.35 μm CMOS technology. The proposed boost converter combines the parallel power MOS technique with pulse-frequency modulation (PFM technique to achieve high efficiency over a wide load current range, extending battery life and reducing the cost for the portable systems. The proposed parallel power MOS controller and load current detector exactly determine the size of power MOS to increase power conversion efficiency in different loads. Postlayout simulation results of the designed circuit show that the power conversion is 74.9–90.7% efficiency over a load range from 1 mA to 420 mA with 1.5 V supply. Moreover, the proposed boost converter has a smaller area and lower cost than those of the existing boost converter circuits.
Liwen Pan
2016-06-01
Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.
High step-up isolated efficient single switch DC-DC converter for renewable energy source
A. Gopi
2014-12-01
Full Text Available In this paper, an isolated high step-up single switch DC-DC converter for renewable energy source is proposed. In the proposed converter high step-up voltage is obtained by single power switching technique that operates low duty cycle with isolated transformer inductors and switched capacitors and power diodes. The disadvantage of conventional converters is that it has high duty ratio and high voltage stress on power devices with less efficiency. The proposed converter eliminates the switching losses and recycles the leakage energy which includes reverse recovery energy of the power diode by using passive clamp circuit. To achieve high output voltage gain, the isolated transformer primary terminal and secondary terminal are connected in series during switching operation. PSIM software has been used for simulation. Simulation circuit is analyzed at 40Vdc/400Vdc, 200 W and this operation is validated by implementing in the hardware model at 12Vdc/120Vdc, 60 W.
Analysis and Controller Design of a Universal Bidirectional DC-DC Converter
Kou-Bin Liu
2016-06-01
Full Text Available In this paper, first the operating principles of a non-isolated universal bidirectional DC-DC converter are studied and analyzed. The presented power converter is capable of operating in all power transferring directions in buck/boost modes. Zero voltage switching can be achieved for all the power switches through proper modulation strategy design, therefore, the presented converter can achieve high efficiency. To further improve the efficiency, the relationship between the phase-shift angle and the overall system efficiency is analyzed in detail, an adaptive phase-shift (APS control method which determines the phase-shift value between gating signals according to the load level is then proposed. As the modulation strategy is a software-based solution, there is no requirement for additional circuits, therefore, it can be implemented easily and instability and noise susceptibility problems can be reduced. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is implemented and tested. A low cost dsPIC33FJ16GS502 digital signal controller is adopted in this paper to realize the power flow control, DC-bus voltage regulation and APS control. According to the experimental results, a 12.2% efficiency improvement at light load and 4.0% efficiency improvement at half load can be achieved.
Liao Xiaozhong
2013-02-01
Full Text Available High Output Voltage Based Multiphase Step-Up DC-DC Converter topology with voltage doubler rectifiers is presented in this paper. High output voltage is obtained due to the series combination of voltage doubler rectifiers on the secondary side of high frequency transformers. This topology is useful in the application where the output voltage is greater than the input. The two loop control strategy has been developed in order to analyze the stable and effective working of the converter topology. Therefore the working mode analysis of the converter topology has been described in detail. The multiphase step-up DC-DC converter topology is first simulated on MATLAB and then a prototype has been designed in order to verify the simulation and experimental results. Finally the simulation and experimental results are found to be satisfactory.
A fast novel soft-start circuit for peak current-mode DC-DC buck converters
Li Jie; Yang Miao; Sun Weifeng; Lu Xiaoxia; Xu Shen; Lu Shengli
2013-01-01
A fully integrated soft-start circuit for DC-DC buck converters is presented.The proposed high speed soft-start circuit is made of two sections:an overshoot suppression circuit and an inrush current suppression circuit.The overshoot suppression circuit is presented to control the input of the error amplifier to make output voltage limit increase in steps without using an external capacitor.A variable clock signal is adopted in the inrush current suppression circuit to increase the duty cycle of the system and suppress the inrush current.The DC-DC converter with the proposed soft-start circuit has been fabricated with a standard 0.13 μm CMOS process.Experimental results show that the proposed high speed soft-start circuit has achieved less than 50 μs start-up time.The inductor current and the output voltage increase smoothly over the whole load range.
Haojie Wang
2016-07-01
Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.
Muh. Zakiyullah Romdlony
2012-07-01
Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.
Perra, Andre
1992-04-01
The use of pulse-width-modulated (PWM) inverter technology by on-line uninterruptible power supplies (UPSs) of 250 VA-750 kVA rating improves transient performance, lowers harmonic distortion, and enhances nonlinear load performance. An account is presently given of the means employed for optimization of a PWM inverter used in a multi-kHz UPS. By using computer modeling to optimize the feedback control loop, the best level of response was furnished, while minimizing switching losses and achieving the highest level of efficiency.
A new approach to improve dynamic characteristics of digitally controlled buck-boost dc-dc converter
2010-01-01
This paper presents a new digital control buck-boost dc-dc converter with bias model to improve dynamic characteristics. The buck-boost converter needs to respond appropriately to changing input voltage and load change with wide input voltage. This approach makes adjustment to the bias value by input voltage and output current. As a result, it is revealed that not only the dynamic characteristics but also static characteristics can be improved and it is effective for wide range input voltage.
Dhawan, S; Tipton, P; Kierstead, J; Lynn, D; rescia, S; Weber, M
2007-01-01
For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying higher DC voltage and using local DC-DC conversion to 1.3 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC.
A brief review of models of DC-DC power electronic converters for analysis of their stability
Siewniak, Piotr; Grzesik, Bogusław
2014-10-01
A brief review of models of DC-DC power electronic converters (PECs) is presented in this paper. It contains the most popular, continuous-time and discrete-time models used for PEC simulation, design, stability analysis and other applications. Both large-signal and small-signal models are considered. Special attention is paid to models that are used in practice for the analysis of the global and local stability of PECs.
Tang, Lixin [ORNL; Su, Gui-Jia [ORNL
2008-01-01
An interleaved reduced-component-count dc/dc converter is proposed for power management in fuel cell powered vehicles with a multivoltage electric net. The converter is based on a simplified topology and can handle more power with less ripple current, therefore reducing the capacitor requirements, making it more suited for fuel cell powered vehicles in the near future. A prototype rated at 4.3 kW was built and tested to verify the proposed topology.
A 1.6-kW, 110-kHz dc-dc converter optimized for IGBT's
Chen, Keming; Stuart, Thomas A.
1993-01-01
A full bridge dc-dc converter using a zero-current and zero-voltage switching technique is described. This circuit utilizes the characteristics of the IGBT to achieve power and frequency combinations that are much higher than previously reported for this device. Experimental results are included for a 1.6-kW, 110-kHz converter with 95 percent efficiency.
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank
2012-09-01
In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements
DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle
Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana
2016-01-01
In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.
Zhou Yu-Fei(周宇飞); Tse C K; Qiu Shui-Sheng(丘水生); Chen Jun-Ning(陈军宁)
2005-01-01
This paper presents an improved resonant parametric perturbation method based on the modulation of a nonlinear map for controlling chaos. The control target can be any periodic orbit, which is not necessarily what is embedded in the chaotic attractor. Application of the method is illustrated for a common current-programmed DC/DC converter which has been known to easily become chaotic for a wide parameter range. The control effects of chaos are demonstrated with computer simulations.
Quasi-Periodicity, Chaos and Coexistence in the Time Delay Controlled Two-Cell DC-DC Buck Converter
Koubaâ, Karama; Feki, Moez
In addition to border collision bifurcation, the time delay controlled two-cell DC/DC buck converter is shown to exhibit a chaotic behavior as well. The time delay controller adds new design parameters to the system and therefore the variation of a parameter may lead to different types of bifurcation. In this work, we present a thorough analysis of different scenarios leading to bifurcation and chaos. We show that the time delay controlled two-cell DC/DC buck converter may also exhibit a Neimark-Sacker bifurcation which for some parameter set may lead to a 2D torus that may then break yielding a chaotic behavior. Besides, the saturation of the controller can also lead to the coexistence of a stable focus and a chaotic attractor. The results are presented using numerical simulation of a discrete map of the two-cell DC/DC buck converter obtained by expressing successive crossings of Poincaré section in terms of each other.
R. Silva-Ortigoza
2014-01-01
Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.
多路输出DC-DC电路设计%Design of multiple-output DC-DC circuit
郑晓庆; 杨日杰; 杨立永; 赵轩坤
2012-01-01
In order to convert a single input voltage to multiple outputs,a multiple-output DC-DC conversion circuit based LTC1624 and AMS1117 was designed in this paper. The circuit can convert the input voltage of 12V offered by a lead-acid battery to 5 V,3. 3 V and 1. 8 V as the output,and as tested,the output voltage of the DC-DC circuit designed in this paper is stable and reliable. Supplying power to different modules of a temperature measurement system, the circuit performance meets system requirements.%为了将单一输入电压变换为多路稳压输出,设计了基于LTC1624和AMS1117的DC-DC变换电路,该电路能够将铅酸蓄电池12V输入电压经过DC-DC变换后得到5V、3.3V和1.8V三路输出电压,经测试,设计的DC-DC电路输出电压稳定可靠.该电路应用于某温度测试系统的不同模块供电,电路性能满足系统要求.
Energy Conversion Module (ECM) - DC/DC converter with integrated supercaps
Ollhaeuser, Helmut [ALCOA/AFL Europe GmbH (Germany)
2008-07-01
In the light of increasing hybridization of future vehicle generations mainly those functionalities will be realized which contribute to fuel- and at the end emission-reduction. Recuperation, Start-Stop, E-steering and EDS-stabilization therefore constitute applications for which an efficient energy management has to be provided In this context ALCOA / AFL Europe GmbH developed a patent pending system solution, by which in one single unit a powerful DC/DC converter is integrated with the storage medium EDLC or Super-/Ultracap - on the one hand the restrictive packaging and on the other hand high performance requirements of the OEM can be met in a high degree. Possible issues arising from the compact integration of the supercaps such as heat dissipation and EMI are solved in a unique way - even the impacts in case of a defect cell are eliminated by a sophisticated balancing. The main performance characteristics of the current finished 1 KW solution being in test operation at various OEM are: - Output: 1 KW bidirectional - Capacity: 29,8 F / 12 Cells a 350 F - Additional fused power output - Optional output for consumers during motor start - Protection class IP 6K7 - Buck/Boost converter 2-phases - Operating frequency 125 kHz - Current control and phase monitoring realized in HW With its scaleable approach and the possibility to be integrated rapidly and cost-efficient in new carlines, the ECM just today combines the advantages of an intelligent electric power management. New prospective application-ranges - i.e. up to 5 KW for commercial vehicles and/or buses - are right now under development and clear its way for series implementation, soon. (orig.)
Adell, Philippe
. This design is the first radiation-hardened DC/DC power converter in this power range that integrates the switch, controller, and rectifier. The design has been fabricated, simulated and tested.
Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.
2016-02-01
The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R&D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.
Park, Kiwoo; Chen, Zhe
2015-01-01
This study presents a control strategy and its dynamic analysis of a high-power dc-dc converter, which is constructed with the parallel-connected single active bridge (SAB) dc-dc converters for dc-grid wind farm applications. The structural and operational characteristics of the SAB dc-dc converter...... have several advantages for high-power applications, and the modular concept of the parallel-connected converter is highly beneficial especially for offshore wind farm applications in terms of maintenance cost and fault tolerance. To justify the feasibility of the parallel-connected SAB dc-dc converter...... for dc-grid wind farm applications, an input voltage control method based on the PI control will be introduced and the dynamics of the overall system will be analysed. The analysis results are to be verified by means of simulations and experiments....
Ali Asghar Memon; Imtiaz Hussain; Muhammad Aslam Uqaili
2013-01-01
This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is al...
Rui Li
2016-12-01
Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.
Energy Evaluation for DC/DC Converters in DC-Based Wind Farms
Max, Lena
2007-02-15
In this thesis the suitability of three topologies for DC/DC converters in a DC wind farm grid is investigated from an energy efficiency and energy production cost point of view. The three selected topologies are the fullbridge converter, the single active bridge converter and the series parallel resonant converter. The losses are calculated for all three topologies as a function of the wind speed considering the losses in the semiconductor components and in the transformer. To obtain the average losses, the losses for each converter are integrated over the wind distribution for different average wind speeds. It is found that the resonant converter has the lowest losses of the three types for the DC wind farm application with power losses of about 2.0 - 2.5 % of the input power and the fullbridge converter has slightly higher losses with 2.3 - 3.5 % losses depending on the position in the wind turbine grid. The single active bridge converter has considerably higher losses than the other two topologies with 3.5 - 5.0 % losses. It is shown that the variable operating conditions create problems for all three converters, and as mentioned the single active bridge converter is most affected by the wide range of operation conditions. When comparing the resonant converter and the fullbridge converter, the fullbridge converter has a smaller transformer as well as lower peak current and peak voltage, but also a higher number of diode modules in the output bridge. Comparing the contribution to the energy production cost for the converters, the topology with the lowest contribution varies between the positions in the wind turbine grid. For some positions, the cost of the higher losses for the fullbridge converter are compensated by lower investment cost for the fullbridge converter compared to the resonant converter. Considering the resonant capacitor, the higher peak voltage and the variable frequency control for the resonant converter, the fullbridge converter is here found
Vaisanen, V.
2012-07-01
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding
Optimal Control with Complete Load-Decoupled Design for the Buck DC-DC Switching Converter
Fei-Hu; Hsieh; Yau-Tarng; Juang
2002-01-01
This paper describes a new controller design procedure and turning method for the buck PWM DCDCswitching converter taking into consideration the equivalent series resistance of components. First, the linearoptimal feedback is designed by the LQR approach. Then the designed control law is implemented by aphase-lag lead controller incorporated with a complete load-decoupled PD compensator. The phase-lag lead controlleris tuned to achieve the optimal design based on the output error voltage directly, instead of using an estimator.With the proposed PD compensator, the converter is robust with respect to the load changes and parameterperturbations. We also provide the conditions for the robust stability assurance of the closed-loop system.
Design of high efficiency dual-mode buck DC-DC converter
Xinquan, Lai; Huali, Zeng; Qiang, Ye; Huisen, He; Shasha, Zhang; Yuqing, Sun
2010-11-01
A buck DC—DC switching regulator with high efficiency is implemented by automatically altering the modulation mode according to load current, and it can operate with an input range of 4.5 to 30 V. At light load current, the converter operates in skip mode. The converter enters PWM mode operation with increasing load current. It reduces the switching loss at light load and standby state, which results in prolonging battery lifetime and stand-by time. Meanwhile, externally adjustable soft-start minimizes the inrush supply current and avoids the overshoot of output voltage at initial startup. The regulator is fabricated by a 0.6 μm CDMOS process. The test results show that, under the condition of 3.3 V output, the efficiency is up to 64% at 5 mA and the maximum efficiency is 95.5%.
Floettmann, B.; Weghaus, L.; Schoellmann, M. [Hella KGaA Hueck und Co., Lippstadt (Germany)
2007-07-01
DC to DC converter in vehicles are more and more enabling technologies for innovative powernet architectures which are required by new approaches to reduce fuel consumption. Increasing fuel prices and legislative requirements concerning emission are demanding for a close realization on the existing powernet. Applications like Stop/Start which can be implemented into todays powernet solutions requiring slight modifications only contribute already to reduction of CO{sub 2} emissions. This article describes different powernet architectures, which provide significant saving potential, on the basis of DC/DC-converter without representing a convenience limitation to the passenger. (orig.)
Design of a Circuit in Boost DC-DC for Fast Transient Response%增强升压型 DC -DC 瞬态响应的电路设计
刘跃智; 黄月娥
2014-01-01
A circuit is designed to improve the transient response of the boost DC-DC converters .The output voltage of the DC-DC converter is sensed to adjust the transconductance and compensation resistors in the error ampli -fier and to improve the loop bandwidth , thus enhancing the system's transient response .The circuit is implemented in a synchronous boost DC-DC converter with input voltage as low as 1.4 V and with output voltage 2.5~6.5 V. Based on 0.25 μm CMOS technology , the chip simulation results demonstrate the settling time of the chip is de-creased by 45%and the overshoot and undershoot voltage is cut down by 35%under 200 mA to 2 A load transient condition compared with the traditional synchronous boost DC-DC converter .%设计了一种增强升压型DC-DC转换器瞬态响应电路，该电路通过检测负载跳变条件下输出电压的变化，调节误差放大器的跨导和补偿电阻，提高升压DC-DC转换器环路带宽，加快系统的瞬态响应。同时将该电路应用于一款输入电压＜至1.4 V，输出电压2.5～6.5 V的同步升压型DC-DC转换器中，其在0.25μm CMOS 工艺条件下，芯片仿真结果表明，在500 mA～2 A的负载跳变条件下，与传统同步升压DC-DC转换器相比，芯片的响应恢复时间减小了45％，输出电压的下降和过冲值减少了35％。
A PWM Buck Converter with High-efficiency under Light-load%一种具有高轻载效率的PWM Buck变换器
刘南; 梁亮
2013-01-01
本文提出了一种在轻载工作环境下依然高效的PWM DC/DC buck变换器.该变换器由TSMC 1.8/3.3 V 0.18 μmCMOS技术设计而成.通过DCM操作,不仅能在满载时达到高效率,而且在不利用任何PFM技术的情况下大大提升轻载下的效率.这种变换器轻载时的输出精确性和输出纹波都优于PFM变换器,而在满载时与普通的PWM变换器同样稳定、高效,通过Saber仿真与电路实验验证了变换器的可行性.
PWM型DC/DC变换器的Washout滤波器混沌控制方法%Controlling Chaos in PWM DC/DC Converter with Washout Filter
汪剑鸣; 许镇琳
2005-01-01
研究如何利用Washout滤波器控制技术来控制PWM型DC/DC变换器中的混沌现象.首先分析了利用Ott-Grebogi-Yorke(OGY)方法对DC/DC变换器进行混沌控制存在的不足,然后以Henon系统为例说明了如何利用Washout滤波器进行混沌控制.最后,应用Washout滤波器对两种采用不同控制策略的DC/DC变换器实施控制,将其从混沌状态控制到周期状态.理论分析和计算机仿真表明,该控制技术不但可以很好用于DC/DC变换器中的混沌控制,而且能够克服OGY方法的不足.
Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)
2011-05-15
Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.
Startup Capability of Boost DC/DC Converter%Boost DC/DC的低压启动能力
向乾尹; 冯全源
2011-01-01
An analytical model was proposed to calculate the minimum startup voltage of a boost DC/ DC converter under a constant current load. The factors, such as the current load, the parasitic parameters, the saturation current and on-resistance of the power switch, the switching frequency, and the minimum startup voltage, etc. , which affect the startup capability of the boost DC/DC converter were analyzed with a steady-state analysis method. The model was applied to the design of a boost DC/ DC converter with a 0. 6 jxm CMOS process, and the maximum error of the minimum startup voltage calculated by the proposed model was 4. 5% compared with that by the HSPICE simulator.%为了准确预测Boost DC/DC低压启动能力,采用稳态分析方法,分析了电流负载、寄生参数、功率开关饱和电流及导通阻抗、开关频率、启动电路最低工作电压等因素对Boost DC/DC低压启动能力的影响,提出了预测Boost DC/DC恒流负载下最小启动电压的解析模型.将该模型应用于采用0.6 μm CMOS工艺的Boost DC/DC设计中,模型计算结果相对HSPICE仿真结果的最大误差为4.5%.本模型可推广至恒定电阻负载的情况.
Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications
N. Soltani, Mohsen; Mostaan, Ali; Siwakoti, Yam Prasad
2016-01-01
This study presents a family of novel step-up DC/DC converters which do not have a right half plane zero in their transfer function resulting in faster dynamic behaviour of the converters under the load variation. In addition, the voltage stress on all the active switches and diodes is as low...... is presence of only two switches in the basic converter and its derivatives. The dynamic performance of the proposed converter and its first derivative is analysed by small-signal model using the state-space averaging method. The theoretical model is verified by experiments using GaN high...
Son, Young Ik
Output voltage regulation problem of DC-DC boost power converters is studied based on an averaged model with a practical inductor. This paper exploits the effect of inductor's parasitic resistance on the performance of an existing parallel-damped (PD) passivity-based controller (PBC) under load variations. As an attempt to apply the passivity-based framework to the converter with parasitic resistance we have combined a new proportional-integral (PI) controller with the PBC. Simulation results show that the combined (PBC and PI) dynamic output feedback controller successfully achieves the performance improvement under reference step changes and load variations.
Iwens, R. P.; Lee, F. C.; Triner, J. E.
1977-01-01
Using discrete time state variable representation, a generalized computer-aided modeling and analysis of dc-dc converters is presented. The methodology provides exact modeling and is applicable to all types of power stages and duty-cycle control, including continuous and discontinuous inductor current operation. Converter stability, transient behavior and audio susceptibility can be analytically evaluated and predicted. The generalized theory of the proposed approach to converter modeling and analysis is presented first, followed by a demonstrative example applying the theory to a constant frequency buck converter operating in continuous and discontinuous inductor current mode. Excellent agreement with laboratory test data has been observed.
Ohnishi, Yoshihiro; Ikemoto, Takahiro; Yamamoto, Toru
This paper proposes an adaptive PID controller which is driven by current control performance. The calculations of the PID parameters are based on the generalized minimum variance control(GMVC) algorithm. The current control performance is obtained in an online manner over a user-specified time-window with some overlap. The retuning of PID parameters are only carried out when controller performance deteriorates below a user-specified threshold. Experimental evaluations on the voltage control of the DC-DC converter demonstrates the practicality and utility of this idea.
Application of Multi-port Bidirectional DC-DC Converter to Fuel Cell Vehicle Driving in JC08 Mode
Tanaka, Katsunori; Katayama, Noboru; Kogoshi, Sumio; Fukada, Takafumi; Ogawa, Makoto
A fuel cell-EDLC hybrid power system with a multi-port bidirectional DC-DC converter has been recently proposed for extending lifetime of a fuel cell due to smoothing the output current of the fuel cell. This paper studies the performance of the hybrid power system when a fuel cell vehicle drives in the JC08 mode using a simulation model. The simulation results indicate that even if the load current fluctuates, the output current of the fuel cell could be maintained at almost constant values with an assist from the EDLC although small spikes are observed.
Natsheh, Ammar N.; Kettleborough, J. Gordon [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Nazzal, Jamal M. [Faculty of Engineering, Al-Ahliyya Amman University, Post Code 19328 Amman (Jordan)], E-mail: jnazzal@ammanu.edu.jo
2009-03-15
The paper describes an experimental study of the bifurcation behaviour of a modular peak current-mode controlled DC-DC boost converter. The parallel-input/parallel-output converter comprises two identical boost circuits and operates in the continuous-current conduction mode. A comparison is made between the results obtained from an experimental converter with those obtained from bifurcation diagrams generated from previous work and waveforms from a new MATLAB/SIMULINK simulation presented in this paper. Another comparison is made between the modular converter diagrams with those of the single boost converter.
Iwens, R. P.; Lee, F. C.; Triner, J. E.
1977-01-01
Using discrete time state variable representation, a generalized computer-aided modeling and analysis of dc-dc converters is presented. The methodology provides exact modeling and is applicable to all types of power stages and duty-cycle control, including continuous and discontinuous inductor current operation. Converter stability, transient behavior and audio susceptibility can be analytically evaluated and predicted. The generalized theory of the proposed approach to converter modeling and analysis is presented first, followed by a demonstrative example applying the theory to a constant frequency buck converter operating in continuous and discontinuous inductor current mode. Excellent agreement with laboratory test data has been observed.
Kawa Adam
2014-09-01
Full Text Available The paper treats about main problems of one phase DC-AC microinverters that allow single solar cell to be joined with the grid. One of the issues is to achieve high voltage gain with high efficiency in DC circuit, which is necessary for proper operation of inverter. The operating principles, results of practical implementation and investigations on boost-flyback converter, which meets mentioned demands, are presented. (high step-up DC-DC boost-flyback converter for single phase grid microinverter
Bifurcation and chaos in multi-parallel-connected current-mode controlled boost DC-DC converters
CHEN Ming-liang; MA Wei-ming
2006-01-01
This paper studied the bifurcation and chaos phenomenon in a multi-parallel-connected current-mode controlled boost DC-DC converter system with the use of nonlinear mapping bifurcation theory of two dimensions,and the changing rules of the bifurcation charts with the increase of the control parallels and control parameters were concluded.The method of discrete mapping modeling was utilized to construct the difference equations of the system operating in continuous conduction mode (CCM).Analyses and computer emulations were made.
A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2010-01-01
In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy......, the proposed converter can draw power from two different DC sources with lower voltage and deliver it to the higher voltage DC bus or load individually and simultaneously. The detailed operation principle of the proposed converter has been analyzed in dual-input mode and single-input mode, respectively...
V. V. Subrahmanya Kumar Bhajana
2010-08-01
Full Text Available A closed loop ZVS-ZCS bidirectional dc-dc converter is modeled and appropriate digital simulations are provided. With the ZVS-ZCS concept, the MATLAB simulation results of application to a fuel cell and battery application have been obtained whenever the input voltage exceeds the given 24V, at that time the load voltage will change from 180V to 230V. But due to this usage the load is disturbed and there is instability in the model. Using closed loop the output voltage is stabilized.
Ahteshamul Haque
2016-02-01
Full Text Available The energy crisis concern leads to look for alternate source of energy. Solar energy is considered as most reliable among the all renewable energy sources. Solar PV (Photovoltaic is used to convert solar energy into electric energy. The efficiency of solar PV is very low and its characteristic is nonlinear. To overcome these drawbacks a technique known as maximum power point tracking is used. This algorithm is implemented in the control circuit of DC – DC converter. The objective of this paper is to evaluate the MPPT (Maximum Power Point Tracking with buck DC-DC converter under load varying conditions. The simulation work is done using PSIM simulation software.
Issues in dynamic analysis and design of interconnected DC-DC power supply systems
Karppanen, M.
2008-07-01
This thesis studies issues in dynamic analysis and design of interconnected DC-DC power supply systems. The history of the dynamic analysis dates back to the 1970s, when the modeling method for an individual switched-mode converter was introduced. Later on, the methods to analyze stability and performance of interconnected systems have been widely discussed in literature. However, a full understanding of many issues regarding the impedance interactions within the systems still seems to be missing. Therefore, the main objective of the thesis is to show that the minor-loop gain, which is commonly used in the interaction analysis, contains perfect information on the stability of the interconnected system but not necessarily much information on the robustness of the stability and the interactions taken place inside the converters. As a consequence of this, the second objective is to introduce techniques with which the interactions can be reduced or totally removed, thus making the dynamic analysis and design of the systems deterministic. The thesis utilizes two-port networks and the concept of dynamic profile introduced recently in the analyses of converters. Comprehensive formalism is derived to analyze also the effect of output-voltage remote sensing on converter dynamics. Such formalism is not found in literature, although remote sensing is widely used to improve voltage regulation of a converter. The effect of source and load interactions on the converter dynamics are discussed by the general interaction formalisms and the minor-loop gains defined at the input and output of the converter. Peak-current-mode, input-voltage feedforward and output-current feedforward controls are treated in the thesis as an example of the methods with which the interactions can be reduced. It is shown that a converter under peak-current-mode or input-voltage feedforward control can have ideal input-voltage noise attenuation. Dynamically, this means that the converter would be invariant
Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors
Shepard, Kenneth L
2013-03-31
In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile
New DC/DC High Step Up Isolated Converter with ZVS
Ehsan Movahedi
2014-10-01
Full Text Available In this paper we presents a soft switch sepic, flyback converter. At first the converter have hard switching in main switch and completely analysis then added auxiliary circuit for soft switching Auxiliary circuit in the converter is not only soft switching condition for the main switch but also prevents the spike voltage across the main switch when turned off that because leakage inductance. Therefore, the proposed converter efficiency in comparison with the previous converters increased and voltage stress on the main switch is reduced. Also the auxiliary switch in the converter have soft switching and thereby decrese losses. this converter Control with pwm.These converter have higher efficiency than the similar converters and the cost is low. Auxiliary circuit in the converter is not only soft switching condition for the main switch but also prevents the spike voltage across the main switch when turned off that because leakage inductance. Therefore, the proposed converter efficiency in comparison with the previous converters increased and voltage stress on the main switch is reduced.
DC/DC开关变换器混沌现象研究综述%Summary of the Research on Chaos Phenomena of DC/DC Converter
蔚洋; 冯平
2012-01-01
DC/DC功率开关变换器是开关电源的核心部分,通过对其混沌现象的研究可以更加深刻地认识DC/DC变换器的本质,也会在将来基于混沌现象提出新的设计方法和控制策略,实现现有DC/DC变换器无法达到的性能.本文介绍了DC/DC变换器混沌现象的研究现状,对DC/DC变换器混沌现象的基本建模方法进行了综合对比分析,展望了DC/DC变换器混沌研究的发展和未来应用前景.%DC/DC power switch converter is the core part of switch power supply. Through the study of chaos phenomena, the essence of DC/DC converter can be more deeply understand, the new design methods and control strategies based on chaos phenomena will be put forward in the future, to achieve the existing DC/DC converter that cannot reach. This paper introduces the research status of the DC/DC converter chaos phenomena, makes comprehensive comparative analysis of the basic modeling method of DC/DC converter chaos phenomena, and looks to its development and future application prospect.
Boumediène Allaoua
2013-01-01
Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.
1V.Chaitanya,P.G.scholar,
2015-10-01
Full Text Available : Even though electrical vehicle concept is introduced in early 1800’s, it gained importance in past couple of decades due to growing conscience on environmental aspects. Different types of electrical vehicles are manufactured in the past centuries and now onboard generation is seems to be promising by fulfilling the needs of a vehicle. Fuel cells or fuel cell stack produces typically 32-68V of EMF, which has to be conditioned before it fed to motor. The conditioning involves two stages DCDC conversion and then to DC-AC conversion .DC-AC conversion is done through inverter. For DC-DC to conversion various topologies are proposed such as fly back, forward, buck-boost are proposed. This paper deals with the front end DC-DC converter and inverter switching. A hybrid modulation scheme is used to produce pulses to switch the source end full bridge rectifier and inverter at load end. In this modulation scheme high frequency pulses given to full bridge rectifier and 33% modulation scheme based pulses are produced for inverter switching.
LLC resonant half-bridge circuit design with DC-DC%LLC谐振半桥DC-DC电路设计
杨磊; 吴晓光; 羊彦
2013-01-01
LED drive power level after the DC-DC constant current circuit using LLC resonant half-bridge topology structure, and through the output current and voltage feedback loop to achieve constant current limiting function.LLC resonant half-bridge DC-DC constant current circuit power part comprises a resonant circuit and the output of the rectifier circuit, the control part chip power supply circuit, the control chip peripheral circuit, an output feedback loop, the test shows that the system has stable output can be good, long time working with high efficiency.%LED驱动电源的后级DC-DC恒流电路采用LLC谐振半桥的拓扑结构,并通过输出的电流电压双环反馈来实现恒流限压功能.LLC谐振半桥DC-DC恒流电路的功率部分包括了谐振电路和输出整流电路,控制部分有芯片供电电路、控制芯片外围电路、输出反馈回路等,经试验证明该系统输出稳定好,能够长时间高效工作.
Todri, A; Rivera, R; Kwan, S [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Perera, L, E-mail: atodri@gmail.co [University of Mississippi, University, MS 38677 (United States)
2010-12-15
The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversion powering schemes are provided.
System Test Measurements with a DC-DC Conversion Powering Scheme for the CMS Tracker at SLHC
Sammet, Jan; Feld, Lutz
2009-01-01
A potential luminosity upgrade of the LHC, the so-called SLHC implies challenging upgrades for the experiments at the LHC. Concerning the upgrade of the CMS silicon strip tracker, the delivery of power isconsidered to be one of the major challenges. The higher instantaneous luminosity makes an increase ingranularity and complexity of the device inevitable. Both are expected to result in a power consumptioncomparable or even higher than the power consumption of today’s strip tracker. However, the space availablefor cables will remain the same. In addition, a further increase of the tracker material budget due to cablesand cooling is considered unacceptable, as the performance of the CMS detector must not be compromisedfor the upgrade. Novel powering schemes such as serial powering or the usage of DC-DC converters havebeen proposed to solve the problem. To test the second option, substructures of the current CMS siliconstrip tracker have been operated for the ﬁrst time with oﬀ-the-shelf DC-DC buck convert...
Todri, A; Rivera, R; Kwan, S; 10.1088/1748-0221/5/12/C12010
2010-01-01
The upgrades of the Large Hadron Collider (LHC) introduce a significant challenge to the power distribution of the detectors. DC-DC conversion is the preferred powering scheme proposed to be integrated for the CMS tracker to deliver high input voltage levels and performing a step-down conversion nearby the detector modules. In this work, we propose a step-up/step-down powering scheme by performing voltage step up at the CAEN supply unit and voltage step down near the detector. We designed step-up converters and investigate the pixel performance and power loss on the FPIX power distribution system. Tests are performed using the PSI46 pixel readout chips on a forward pixel panel module and the DC-DC converters developed at CERN and Fermilab. Reliability studies include the voltage drop measurements on the readout chips and the power supply noise generated from the converter. Performance studies include pixel noise and threshold dispersion results. Comparison between step-down only and step-up/step-down conversi...
Mathe, Laszlo; Lungeanu, Florin; Rasmussen, Peter Omand;
2010-01-01
This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on the measurements, it is shown that the spread effect of the discrete components from the motor current spectra is very effective independent of the modulation...... index. The flat motor current spectrum generates an acoustical noise close to the white noise, which may improve the acoustical performance of the drive. The new carrier wave is easy to implement digitally, without employing any external circuits. The modulation method can be used in open, as well...
Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan
2010-06-01
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.
Pi Changming; Yan Wei; Zhang Ke; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)
2010-08-15
This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 {mu}m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)
Changming, Pi; Wei, Yan; Ke, Zhang; Wenhong, Li
2010-08-01
This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 μm CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency.
三重交错并联DC／DC变换器设计%Design of a triple interleaving DC/DC converter of composite power electric cars
张智林; 张彦会; 张群
2012-01-01
DC／DC变换器是复合电源电动汽车的重要组成部分之一，为了提高DC／DC变换器的功率密度，DC／DC变换器正在向高频化发展，研究在单相DC／DC变换器的基础上，设计了一种三重交错并联DC／DC变换器，可以提高系统的开关频率、降低纹波电压，从而减小滤波器的体积、提高功率密度．最后通过Simulink进仿真分析，结果表明：三重交错并联DC／DC变换器的纹波电压明显小于单相DC／DC变换器，有利于功率密度的提高．%DC/DC converter is the important part of composite power electric cars. In order to improve the power density of DC/DC converter, high frequency is required. This paper designs a triple inter/earing DC/DC converter based on the single phase DC/DC converter. It can reduce the ripple voltage effectively, reduce the volume of the filter and improve the switch frequency of the system. Finally, through the simulation analysis, the results show that the system efficiency of the triple interleaving DC/DC converter is better than the single phase DC/DC converter, thus the power density is increased.
Benlafkih Abdessamad
2013-01-01
Full Text Available this paper presents comparative performance between Analog and digital controller on DC/DC buck-boost converter four switch. The design of power electronic converter circuit with the use of closed loop scheme needs modeling and then simulating the converter using the modeled equations. This can easily be done with the help of state equations and MATLAB/SIMULINK as a tool for simulation of those state equations. DC/DC Buckboost converter in this study is operated in buck (step-down and boost (step-up modes.
Feld, Lutz Werner; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schmitz, Stefan Antonius; Wlochal, Michael
2016-01-01
The CMS pixel detector will be exchanged during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion is employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience from the production phase.
Feld, Lutz; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael
2017-02-01
The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC-DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC-DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.
Yusuke Hayashi
2016-01-01
Full Text Available An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection switch is fabricated by using a SiC-MOSFET with a high frequency buck chopper for the active gate controller. The effectiveness of the proposed protection switch is verified, taking the impact of the volume reduction into account.
Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S
2010-01-01
TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.
Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications
Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)
2015-01-01
A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.
Yigeng Huangfu
2016-06-01
Full Text Available This paper aims to focus on the smooth output of DC-DC buck converters in wireless power transfer systems under input perturbations and load disturbances using the high-order sliding mode controller (HOSM and HOSM with super-twisting differentiator (HOSM + STD. The proposed control approach needs only measurement of converter output voltage. Theoretical analysis and design procedures, as well as the super-twisting differentiator of the proposed controller are presented in detail with the prescribed convergence law of high-order sliding modes. Comparisons of both simulation and experimental results among conventional proportional-integral (PI control, traditional sliding mode control (SMC, HOSM and HOSM + STD under various test conditions such as steady state, input voltage perturbations and output load disturbances, are presented and discussed. The results demonstrate and validate the effectiveness and robustness of the proposed control method.
ZVS Full-Bridge Based DC-DC Converter with Linear Voltage Gain According to Duty Cycle
Do, Hyun-Lark
2013-09-01
This paper presents a zero-voltage-switching (ZVS) full-bridge based DC-DC converter with linear voltage gain according to duty cycle. The proposed converter is based on an asymmetrical pulse-width-modulation (APWM) full-bridge converter which has various advantages over other converters. However, it has some drawbacks such as limited maximum duty cycle to 0.5 and narrow input range. The proposed converter overcomes these problems. The duty cycle is not limited and input voltage range is wide. Also, the ZVS operation of all power switches is achieved. Therefore, switching losses are significantly reduced and high-efficiency is obtained. Steady-state analysis and experimental results for the proposed converter are presented to validate the feasibility and the performance of the proposed converter.
Lai, Jih-Sheng (Blacksburg, VA); Liu, Changrong (Sunnyvale, CA); Ridenour, Amy (Salem, VA)
2009-04-14
DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.
Optimizing the dynamics of a two-cell DC-DC buck converter by time delayed feedback control
Feki, M.; El Aroudi, A.; Robert, B. G. M.; Martínez-Salamero, L.
2011-11-01
A study of the dynamical behavior of a two-cell DC-DC buck converter under a digital time delayed feedback control (TDFC) is presented. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without TDFC, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. TDFC is able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.
Wide-range 7-switch flying capacitor based dc-dc converter for point-of-load applications
Jain, Parth
In this thesis a dc-dc converter referred to as the 7-switch flying capacitor (7SFC) based multi-level buck converter intended for point-of-load applications is presented. The 7SFC operates with the principle of "transformability" which allows it to run in several switching modes when paired with a digital controller. The mode is selected based on input and output conditions by estimating the highest efficiency mode. The 7SFC converter utilizes a flying capacitor, which for certain modes allows for a large reduction in switching losses, especially when the converter is operated with high-input voltages. Compared to the conventional 2-phase interleaved buck converter, the 7SFC is able to reduce the size of the output inductors and capacitor by 33%. The 7SFC discrete prototype is able to achieve efficiencies greater than 90% over the majority of the operating range.
Shimer, Daniel W.; Lange, Arnold C.
1995-01-01
A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.
Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2012-01-01
and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers......In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely......, so the proposed converter can draw the power from the two different dc sources, which have low output voltage, and transfer it to the dc bus, which has high voltage, separately or simultaneously. The detailed operation principles of the proposed converter have been analyzed in the dual-input mode...
A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2010-01-01
In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy......, the proposed converter can draw power from two different DC sources with lower voltage and deliver it to the higher voltage DC bus or load individually and simultaneously. The detailed operation principle of the proposed converter has been analyzed in dual-input mode and single-input mode, respectively....... Furthermore, the method to increase the number of input ports, the magnetic integration structure, and ground loop decoupling are discussed. Experimental results from the lab prototype converter with two DC voltage sources verify the validity of the theoretical analysis and design of the converter....
Han Yang
2012-10-01
Full Text Available The power electronics course is a rather challenging subject for instructors and undergraduate students pursuing Bachelor’s Degree in Electrical Engineering. To enhance teaching effectiveness and motivate self-learning capabilities of the students, this paper presents a pedagogical approach for mathematical modeling and simulation of switching mode DC-DC converters. The Buck and Boost converters are analyzed as benchmark systems to study the power converter modeling methodologies. And a comparative analysis using digital simulation from Matlab/Simulink and ATP/EMTP is presented. A summary of student survey is also presented, which shows a high level of satisfaction. The presented pedagogical approach would be useful for classroom teaching for the power electronics course and similar engineering courses.
Fuentes, C; Michelis, S; Blanchot, G; Allongue, B; Faccio, F; Orlandi, S; Kayal, M; Pontt, J
2011-01-01
The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.
Interleaved Flyback DC-DC Converter Design with 350 W Power Output Using LT 3757 in LT Spice
Rahayu, S.; Firmansyah, E.; Isnaeni, M.
2017-04-01
DC-DC converter becomes one important part in micro-inverter used in solar panel application. Its function is to convert output voltage level of solar panel 42-48 Vdc to a voltage level of 350 Vdc before being converted into an AC voltage at the inverter. The proposed converter topology is a flyback because the number of components used is not too much which can suppress the production cost. In this paper, simulation of flyback converter on the interleaved operating mode with a maximum output power of 350 W using software Ltspicewas conducted. From the simulation results, obtained that by applying a switching frequency of 100 kHz, the obtained value of the components of the primary inductor (LP) 3.3 μH, the secondary inductor (LS) 27 μH, the output capacitor (Cout) 47μF and ripple voltage (Vr) 212.65 mV.
Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter
Park, Kiwoo; Chen, Zhe
2014-01-01
This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applications....... By paralleling modular converters, the power and current ratings of each modular converter can be lowered and by interleaving the switching patterns, the input and output current ripples can be significantly reduced without increasing switching losses or device stresses. Apart from these, the PCSAB converter...... of the converter unaffected or to improve the quality of the output current under the fault condition. The feasibility of the proposed fault detection and fault-tolerant methods are verified by simulations and experiments....
SUPPRESSING CONDUCTED EMI FROM A DC/DC HIGH POWER CONVERTER BASED ON MIXED-MODE FILTER
无
2005-01-01
Conducted electromagnetic interference (EMI) from a 7.5kVA DC/DC high power converter is investigated to agree with EN class A. Here in some passive methods of suppressing conducted EM Noise, such as mixed-mode (MM) EMI filters, snubbing circuits and other means, are used. Based on measurement, the sources of noise are detected with the characteristics analyzed in detail. The MM EMI filters is valuable means with which low-frequency part and some of the high frequency part of conducted EM Noise can be efficiently reduced. How to lay out the MM filters on both sides of the converter is outlined in detail. In addition, multiple grounding and RDC snubbing circuits are employed to improve the performance in high frequency. The experimental results confirm the methods adopted.
Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter
Moamaei, Parvin
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2016-09-01
The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.
AUTHOR|(CDS)2069786; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schmitz, Stefan Antonius; Wlochal, Michael
2016-01-01
The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.
Zhang, Zhe; Mira Albert, Maria del Carmen; Andersen, Michael A. E.
2017-01-01
This paper presents two configurations of dualinput (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter...
Electrical machine PWM loss evaluation basics
Ruderman, A. [The School of Engineering, Bar-Ilan Univ., Ramat-Gan (Israel); Welch, R. Jr. [IEEE, Welch Enterprise, Oakdale (United States)
2005-07-01
Modern power converters utilize pulse-width modulation (PWM) voltage control. Output voltage high frequency harmonics induce additional electrical machine loss. As there is no accepted PWM loss theory, PWM loss is usually accounted for by machine power de-rating. In-depth understanding of PWM loss mechanisms is important for predicting losses and improving energy efficiency of electrical machines. In this paper we suggest a new time domain PWM loss approach. It assumes that PWM eddy current iron loss dominates over PWM copper and hysteresis iron losses and comprises theoretical normalized PWM loss evaluation and experimental characterization. Once maximal PWM loss is measured, it can be scaled for an arbitrary operating point using simple formula. Theoretical results are shown to be in a good agreement with a published experimental data. (orig.)
Advanced Control for Steady State and Dynamic Performance of DC-DC Converters%先进数字控制技术在DC-DC变换器中的应用
刘雁飞; 葛芦生
2008-01-01
综述了数字控制技术在直流-直流变换器中的应用,集中于两个方面,如何产生数字脉宽调制信号,以满足输出电压的稳态精度,以及新的控制策略以发挥数字电路的优点.在前者,本文介绍了几种技术,它们都可以用有限的时钟频率来产生足够精度的脉宽调制信号.在后者,本文介绍了几种数字控制技术,以大大改进开关电源的动态性能.%This paper reviews the latest advanced control technologies in DC-DC converters, which is mainly focused on two areas: digital control technologies directly to treat power waveforms and intelligent control strategies to treat system implemented by means of digital technology. The former emphasizes the methods to generate digital PWM (DPWM) signals to meet the output voltage accuracy requirement. Various techniques have been developed to improve the output voltage accuracy at a reasonable clock frequency. The latter develops new control methods that can utilize the advan- tages of the digital controller so as to improve the dynamic performance of the switching power converters. Several new digital control methods are proposed and significant dynamic performance improvement is achieved.
Design of a new phase-shift PWM generator based on FPGA%一种基于FPGA的新型移相PWM发生器
李再兴
2012-01-01
在逆变开关电源中,隔离变压器通常要求正、反方向的磁通变化量相等,以防止偏磁等现象发生,在移相全桥DC-DC开关电源中尤为重要.介绍了一种基于FPGA的移相PWM(pulse width modulation)发生器,该发生器主要包括分频模块、计数模块、比较模块和死区控制模块等；该发生器不仅将移相PWM数字化,且考虑了逆变全桥DC-DC开关电源中隔离变压器的工作特点.仿真结果表明,该发生器实现了移相PWM输出,可以满足逆变电源的工作要求.%In inverter switch power,the magnetic change in positive and negative in insulating transformer is needed equal,which prevent magnetic flow,specially in phase shift full bridge DC-DC switch power. A phase shift PWM pulse width modulation generator based on FPGA is introduced in this paper,which consists of dividing frequency module,counter module,composition module,and dead area control module, etc .The design of the generator not only make phase shift PWM with digitization, but also consider the working characteristics of insulating transformer in inverter full bridge DC-DC switch power.The simulation results show that realize the output of phase shift PWM, and meet the working requirements of inverter power source.
Thermal analysis of spacecraft DC/DC converters%航天器DC/DC变换器热分析研究
艾华斌; 王卫国; 袁亚飞
2013-01-01
为了解决航天器DC/DC变换器的热可靠性问题，利用有限元分析软件ANSYS对实际的航天器DC/DC变换器进行热仿真分析，得到了其内部的温度分布特性。并对其进行了红外成像测试实验，通过红外成像测试结果与仿真分析结果对比分析，验证了热仿真的准确性。使用有限元分析方法为航天器DC/DC变换器合理热设计提供了依据，也为同类电子设备的热设计提供了一种思路。%In order to improve the thermal reliability of spacecraft DC/DC converters,the finite element analysis software (ANSYS)was used to conduct the thermal simulation and analysis for the actual spacecraft DC/DC converters,by which the in-ternal temperature distribution of spacecraft DC/DC converters was obtained. Furthermore,the infrared imaging testing experi-ment was performed for the DC/DC converters. the accuracy of the thermal simulation was verified by comparing the simulation analysis result with the infrared imaging testing result. The finite element analysis is adopted in this paper to provide an evi-dence for rationality of thermal design of spacecraft DC/DC converters,and a method for the thermal design of similar electronic equipments.
Modeling and Design of Five Level Cascaded H-Bridge Multilevel Inverter with DC/DC Boost Converter
Vinayaka B.C
2014-06-01
Full Text Available Power electronic converters, especially DC/AC Sinusoidal Pulse Width Modulation inverters have been extending their range of use in industry because of their numerous advantages. They typically synthesize the stair –case voltage waveform (from several dc sources which has reduced harmonic content. This paper aims to extend the knowledge about the performance of Five level Cascaded H-Bridge MLI topology with DC/DC Boost Converter using SPWM for fixed DC Source. The output voltage is the sum of the voltage that is generated by each bridge. The switching angles can be chosen in such a way that the total harmonic distortion is minimized. This topology incorporates Boost Converter in the input side which magnifies the fundamental output voltage with reduction in total harmonic distortion. It also incorporates LC filter and hence output is drawn near the sine wave because of more levels. Results of experiments proved efficiency of 95%.The performance of the proposed SPWM strategy in terms of output voltage and THD has studied successfully and shown using MATLAB/Simulink.
New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio
Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)
2010-01-15
In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
Analysis of a Multilevel Dual Active Bridge (ML-DAB DC-DC Converter Using Symmetric Modulation
M. A. Moonem
2015-04-01
Full Text Available Dual active bridge (DAB converters have been popular in high voltage, low and medium power DC-DC applications, as well as an intermediate high frequency link in solid state transformers. In this paper, a multilevel DAB (ML-DAB has been proposed in which two active bridges produce two-level (2L-5L, 5L-2L and 3L-5L voltage waveforms across the high frequency transformer. The proposed ML-DAB has the advantage of being used in high step-up/down converters, which deal with higher voltages, as compared to conventional two-level DABs. A three-level neutral point diode clamped (NPC topology has been used in the high voltage bridge, which enables the semiconductor switches to be operated within a higher voltage range without the need for cascaded bridges or multiple two-level DAB converters. A symmetric modulation scheme, based on the least number of angular parameters rather than the duty-ratio, has been proposed for a different combination of bridge voltages. This ML-DAB is also suitable for maximum power point tracking (MPPT control in photovoltaic applications. Steady-state analysis of the converter with symmetric phase-shift modulation is presented and verified using simulation and hardware experiments.
Eliana Arango
2011-01-01
Full Text Available Este artículo propone un pre-amplificador basado en convertidores DC-DC conectados en paralelo para la reducción de armónicos inyectados a fuentes de potencia. Las principales características del pre-amplificador son la reducción del rizado de corriente de entrada en convertidores de potencia, incrementado además la eficiencia del sistema de conversión. Se describe el cálculo de las condiciones óptimas de operación del pre-amplificador, así como su modelado matemático y control para operar en las condiciones seleccionadas. Así mismo, se analiza el pre-amplificador con un convertidor elevador clásico, obteniendo una reducción significativa en el rizado de corriente inyectado a la fuente, así como un incremento en la eficiencia del sistema. Finalmente, los análisis teóricos se confirman a través de simulaciones circuitales y resultados experimentales.
A 1 MW, 100 kV, less than 100 kg space based dc-dc power converter
Cooper, J. R.; White, C. W.
1991-01-01
A 1 MW dc-dc power converter has been designed which has an input voltage of 5 kV +/-3 percent, an output voltage of 100 kV +/- 0.25 percent, and a run time of 1000 s at full power. The estimated system mass is 83.8 kg, giving a power density of 11.9 kW/kg. The system exceeded the weight goal of 10 kW/kg through the use of innovative components and system concepts. The system volume is approximately 0.1 cu m, and the overall system efficiency is estimated to be 87 percent. Some of the unique system features include a 50-kHz H-bridge inverter using MOS-controlled thyristors as the switching devices, a resonance transformer to step up the voltage, open-cycle cryogenic hydrogen gas cooling, and a nonrigid, inflatable housing which provides on-demand pressurization of the power converter local environment. This system scales very well to higher output powers. The weight of the 10-MW system with the same input and output voltage requirements and overall system configuration is estimated to be 575.3 kg. This gives a power density of 17.4 kW/kg, significantly higher than the 11.9 kW/kg estimated at 1 MW.
Optimal Operation of Photovoltaic System with a DC-DC Boost Converter FED SAF Using ICosφ Algorithm
G.Vijayakumar
2014-07-01
Full Text Available This paper presents an optimal utilization of Photovoltaic (PV solar system based Shunt Active Filter (PV-SAF for harmonic mitigation, real and reactive power compensation at the point of common coupling (PCC throughout the day. This PV system operated SAF reduces the energy consumption by disconnecting the utility grid from the load through semiconductor switches, when the PV system generates excessive or equal real power to the required load demand. However, the reduction of energy consumption is always desirable for the reduction of panel tariff and global warming gasses. The PV module is connected to the DC side of SAF through the DC-DC converter with fuzzy based Perturb & Observe (P&O Maximum Power Point Tracking (MPPT algorithm to eliminate the drawback of the conventional PV system by tracking maximum power point of the PV array is presented. The reference currents extract by the Fuzzy logic controller based ICosΦ control strategy. This proposed PV-SAF, if connected at the terminals of a small industry or a home or a small enlightening institution can avoid interruptible power supply, use of individual stabilizer and potential panel tariff over a 12 hour period. A MATLAB simulink is presented to validate the advantage of the proposed system.
Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter
El Aroudi A.
2014-01-01
Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.
Abdul kareem
2011-04-01
Full Text Available Both Soft computing based controllers and sliding mode controllers have been utilized to regulate the output voltage of dc-dc converters in response to changes in the load and the input voltage. Although both control techniques possess desirable characteristics, they have disadvantages which prevent them from being applied extensively. Many researchers have proposed the combination of sliding mode control and Soft computing based control to combine the advantages of both control techniques. In literature survey, it is found that the combination of the methods are proposed so that sliding mode algorithm is used in the design of Soft computing based controllers and the inputs to the controller are error and change in error and the inherent stability property of sliding mode controller is not utilized. This paper presents a novel soft computing based sliding mode controller in which inputs are switching function and change in switching function which combines the advantages of soft computing based controllers, sliding mode controllers and integral controllers. Since soft computing is used in the design of sliding mode controller, the stability of the proposed controller is assured. In addition, it is well suited for digital control design and implementation. The proposed controller has been designed for a buck converter and the controller is able to obtain the desired transient response without causing chattering and error under steady-state conditions. The proposed controller is able to give robust performance in terms of rejection to input voltage variations and load variations.
Roermund, Arthur; Baschirotto, Andrea
2012-01-01
The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
Chen, Qiang; Ren, Xuemei; Oliver, Jesus Angel
2012-04-01
In this paper, an identifier-based adaptive neural dynamic surface control (IANDSC) is proposed for the uncertain DC-DC buck converter system with input constraint. Based on the analysis of the effect of input constraint in the buck converter, the neural network compensator is employed to ensure the controller output within the permissible range. Subsequently, the constrained adaptive control scheme combined with the neural network compensator is developed for the buck converter with uncertain load current. In this scheme, a newly presented finite-time identifier is utilized to accelerate the parameter tuning process and to heighten the accuracy of parameter estimation. By utilizing the adaptive dynamic surface control (ADSC) technique, the problem of "explosion of complexity" inherently in the traditional adaptive backstepping design can be overcome. The proposed control law can guarantee the uniformly ultimate boundedness of all signals in the closed-loop system via Lyapunov synthesis. Numerical simulations are provided to illustrate the effectiveness of the proposed control method.
Xiaolong Shi
2012-12-01
Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.
Ali Asghar Memon
2013-04-01
Full Text Available This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine.
Integrated on-chip 0.35 μm BiCMOS current-mode DC-DC buck converter
Lee, Chan-Soo; Kim, Nam-Soo; Gendensuren, Munkhsuld; Choi, Jae-Ho; Choi, Joong-Ho
2012-12-01
A current-mode DC-DC buck converter with a fully integrated power module is presented in this article. The converter is implemented using BiCMOS technology in amplifier and power MOSFET in a current sensor. The current sensor is realised by the power lateral double-diffused MOSFET with the aspect ratio much larger than that of a matched p-MOSFET. In addition, BiCMOS technology is applied in the error amplifier for an accurate current sensing and a fast transient response. The DC-DC converter is fabricated with 0.35 µm BiCMOS process. Experimental results show that the fully integrated converter operates at 1.3 MHz switching frequency with a supply voltage of 5 V. The output DC voltage is obtained as expected and the output ripple is controlled to be within 2% with a 30 µH off-chip inductor and 100 µF off-chip capacitor.
Design and Analysis of Typical DC-DC Transform Circuit%典型DC-DC变换电路设计与分析
曹翊
2011-01-01
In this paper,the principle and classification of DC-DC transform circuit was introduced.Besides,the principle,the composition and the change of the voltage of the three kinds of typical DC-DC transform circuit which are called buck circuit,boost circuit%本文介绍了DC-DC变换电路原理及分类;讨论了三种典型DC-DC变换电路即Buck电路、Boost电路和Buck-Boost电路的原理、结构、电压变换关系,并在Matlab软件建立仿真模型验证了理论分析的正确性;比较了这三种典型DC-DC变换电路的优缺点。
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
an attractive technology for energy storage grid-tie applications. In this application dc-dc converter optimization is very challenging due to the large voltage range that the converter is expected to operate. Moreover, the fuel-electrolyzer cell side of the converter is characterized by low voltage and high......Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming......-dc converter (IFBBC) designed for this new application focusing on losses analysis. The system topology is briefly discussed and the major concerns related to the system, cells stacks and converter operating points are analyzed. The dc-dc converter losses are modeled and presented in detail; the analysis...
Török, Lajos; Munk-Nielsen, Stig
2011-01-01
A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling is d...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD.......A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...
Schaltz, Erik; Li, Zhihao; Onar, Omer;
2009-01-01
Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi......-input converter is capable of bi-directional operation and is responsible for power diversification and optimization. A fixed switching frequency strategy is considered to control its operating modes. A portion of New York City Cycle that includes these operation modes is used to perform the analyses....
Liu, Dong; Deng, Fujin; Gong, Zheng
2017-01-01
In this paper, the input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters associated with the interleaving control strategy are proposed for minimizing and balancing the capacitor ripple currents. The proposed converters consist of two four-switch half-bridge three-level (HBTL) DC....../DC converters featuring with simple and compact circuit structures, which can reduce the current stresses of the components and increase the power rating of the converter. The combination of the proposed IPOP TL circuit structure and the interleaving control strategy can greatly reduce the ripple currents...... on the two input capacitor not only by doubling the frequencies of these ripple currents as the universal benefit of utilizing the interleaving control strategy but also by counteracting part of these ripple currents due to the operation principle of the proposed IPOP TL circuit structure. More importantly...
AC Motor Drive Fed by Renewable Energy Sources with PWM
J. Pavalam
2014-01-01
Full Text Available In this fast aproaching nature of technology the ned of Electricity becomes a mandatory in developing technology. The ned of Electricity increases the power demand where the power demand met by the conventional sources of energy has some disadvantage of polution, this disadvantage can be decreased by the use of the Renewable energy sources like Fuel Cel and available solar energy. When a FUEL cel produces AC power, basicaly two stages are required for conversion first a bosting stage and second is inversion stage. In this paper the Bost inverter topology is achieved where in the conventional methods the normal DC - AC power conversion method is used where as in this paper the PWM based DC - AC inverter has ben used which is useful in reducing the harmonics in the output of the Inverter. The voltage controled output is produced in the bost inverter the curent controled output is taken from dc-dc bidirectional converter. The Fuel cel canot be relied as a whole so a Solar PV module is conected acros the Load so while the Sunlight days the PV arays generate power and in the night time the Fuel cel is used to generate power for the load. Since, the Fuel cel and PV arays can generate power in Partial load they are prefered than any other sources. When the output from the Solar PV aray is low or when the sunlight available is not eficient in generating the power a automatic switch over is provided in the junction betwen the Solar PV aray and Fuel cel so that whenever it hapens the switch automaticaly switch over to another source. The simulation results are presented to confirm the operational feature of the proposed system.
Conception et implémentation d'un convertisseur 3D DC-DC à haute fréquence
Neveu, Florian
2015-01-01
Ultimate integration of power switch-mode converter relies on two research paths. One path experiments the development of switched-capacitor converters. This approach fits silicon integration but is still limited in term of power density. Inductive DC-DC architectures of converters suffer by the values and size of passive components. This limitation is addressed with an increase in frequency. Increase in switching losses in switches leads to consider advanced technological nodes. Consequently...
Park, Kiwoo; Chen, Zhe
2013-01-01
This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output current...... requirements, this modular converter concept is expected to be highly beneficial especially for the offshore wind farm application....
Török, Lajos; Munk-Nielsen, Stig
2011-01-01
A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD....
1 kW, 9 kV dc-dc converter module with time-sharing control of output voltage and input current
Borgatti, R.; Stefani, R.; Bressan, O.; Bicciato, F. [F.I.A.R. Electronic Systems Group, Milan (Italy). Avionics Div.; Tenti, P.; Rossetto, L. [Univ. of Padova (Italy). Dept. of Electrical Engineering
1993-10-01
The paper describes a dc-dc power module based on a single-stage current-fed converter structure. Control is made according to a time-sharing strategy allowing simultaneous regulation of output voltage and input current. This solution is suitable for high-performance space and avionic applications, giving high efficiency, compactness, and accuracy, speed and robustness of control. Theoretical analysis, design criteria, and experimental results are reported. Application to radar supplies is discussed.
Widyan, M.S.
2010-07-01
Photovoltaic (PV) cells for powering direct current (DC) motors are designed to provide maximum output power at the rated conditions of the motors. This paper presented the dynamic and steady-state characteristics of DC shunt, series and permanent-magnet motors fed by PV cells via a DC-DC buck-boost (step up-step down) switch mode converter. It considered the nonlinearities of the output characteristics of the PV cells and that of the magnetization curve of the machines. In order to address the problem of voltage regulation of the PV cells and the variation in solar illumination, the duty cycle controls the output voltage of the DC-DC converter to maintain a fixed voltage across the terminals of the motors at any realistic loading conditions. In this study, the DC-DC buck-boost switch mode converter achieved a fixed voltage across the terminals of the motors and therefore good speed regulation under a wide range of loading conditions and solar intensities. The entire study was carried out using the Matrix Laboratory Program MATLAB{sup TM} software.
Design of Flyback DC/DC Converter by Using TOPSwitch%基于TOPSwitch的反激式DC/DC变换器设计
侯晓云
2015-01-01
开关电源以其体积小、效率高等优点被广泛应用于计算机等各类电子设备中，小型化是其发展趋势之一．DC/DC 变换器是开关电源的核心部分．设计了一种基于TOPSwitch的反激式DC/DC变换器，主要包括主电路、控制电路、反馈电路等部分．对电路进行了制作与测试．实验结果表明，电路输出电压稳定、结构简单、体积较小、简化了设计过程．%SMPS is widely applied in computers and other electric equipment, the advantage of which is its small size and high efficiency. The development trend of it is miniaturization. DC/DC converter is the core part of SMPS. A Flyback DC/DC converter using TOPSwitch is designed. Main circuit, control circuit and feedback circuit designs are included. The circuit is manufactured and tested. The experimental results show the output voltage is stable, the circuit is simple, the size is small and the design process is simplified.
A high reliable DC-DC converter for charging battery%一种蓄电池充电用高可靠性DC-DC变换器
陶艳
2012-01-01
介绍了一种能将直流高压电源变换为直流低压电源,并对蓄电池进行充电和管理的高可靠性的DC-DC变换器.详细说明了DC-DC变换器的技术参数、功能要求及插槽式模块化结构设计方法,着重阐述了开关电源模块的均流控制、充电管理功能及电路原理；归纳总结了变换器高可靠性的冗余设计及其相应保护功能.%A high reliable DC-DC converter which could transform DC high voltage power supply into DC low voltage power supply,charge and manage the battery was introduced in this paper.Its technical parameters,functional requirements and modular structure design method of slots were illustrated for the DC-DC converter,focusing on the load sharing,charging management and circuit theory of the switching power supply modules; the DC-DC converter reliability redundancy design and its corresponding protection were summarized.
Considerations of Physical Design and Implementation for 5 MHz-100 W LLC Resonant DC-DC Converters
Akinori Hariya
2016-01-01
Full Text Available Recently, high power-density, high power-efficiency, and wide regulation range isolated DC-DC converters have been required. This paper presents considerations of physical design and implementation for wide regulation range MHz-level LLC resonant DC-DC converters. The circuit parameters are designed with 3–5 MHz-level switching frequency. Also, the physical parameters and the size of the planar transformer are optimized by using derived equations and finite element method (FEM with Maxwell 3D. Some experiments are done with prototype LLC resonant DC-DC converter using gallium nitride high electron mobility transistors (GaN-HEMTs; the input voltage is 42–53 V, the reference output voltage is 12 V, the load current is 8 A, the maximum switching frequency is about 5 MHz, the total volume of the circuit is 4.1 cm3, and the power density of the prototype converter is 24.4 W/cc.
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low
Kim, Jooncheol; Kim, Minsoo; Kim, Jung-Kwun; Herrault, Florian; Allen, Mark G.
2015-11-01
This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.
Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang
A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.
A Bidirectional, Triple-Voltage DC-DC Converter for Hybrid and Fuel Cell Vehicle Power Systems
Su, Gui-Jia [ORNL; Tang, Lixin [ORNL
2007-01-01
Electrical power systems in future hybrid and fuel cell vehicles may employ three voltage (14V, 42V and high voltage (HV)) nets. These will be necessary to accommodate existing 14V loads as well as efficiently handle new heavy loads at the 42V net and an electrical traction drive on the HV bus. A low-cost bi-directional dc-dc converter was proposed in (10) for connecting the three voltage nets. The converter consists of two half-bridges and a high-frequency transformer; thus minimizing the number of switching devices and their associated gate driver components. One salient feature is that the half-bridge on the 42V bus is also utilized to provide the 14V bus by operating its duty ratio around an atypical value of 1/3. This eliminates the need for an additional 14V/42V converter. Moreover, it makes use of the parasitic capacitance of the switches and the transformer leakage inductance for soft-switching; no extra active switches or passive resonant components are required. The use of half-bridges makes the topology suitable for interleaved multi-phase configurations as a means to increase the power level because the capacitor legs can be shared. This paper presents simulation and experimental results on an interleaved two-phase arrangement rated at 4.5 kW. Also discussed are the benefits of operating with the atypical duty ratio on the transformer and a preferred multi-phase configuration to minimize capacitor ripple currents.
Tian, Rui
Magnetic components are essential parts of power converters. Inductors with magnetic cores are investigated. An eddy current loss model for pot-core inductors is developed with finite elemental analysis (FEA). The reliability of inductors using magnetic cores in a high-temperature environment is investigated. Working in up to 150°C circumstance for a short periods is not destructive for the inductors. Optimization of toroidal inductors in a DC-DC converter is investigated. Parasitic capacitance and the capacitive loss in toroidal inductors are modeled. Standard circuit optimization is performed to explore the energy conversion efficiency of the toroidal inductors. Thermal analysis, light-load efficiency and relative permeability of the toroidal inductor design are also investigated. The toroidal inductor can achieve about 85% efficiency for 3 A DC current and 1 W/mm2 power density. Inductor-only efficiency of toroidal inductors is investigated with revised model. At 100 MHz operating frequency, toroidal inductors can achieve more than 97% inductor efficiency with power density range of 0.7 W/mm2 to 6 W/mm2. The performance of our nanograngular magnetic core is dependent on the angle of the poling magnetic field compared to the field during operation. Experiments on a serious of samples show that the poling angle can deviate by up to 15 degrees from ideal with only a small penalty in performance. The field-angle experiment is intended to prove integrated toroidal inductor process possible. A magnetic fixture model is proposed for large-scale toroidal inductor processing.
孙孝峰; 刘飞龙; 熊亮亮; 王宝诚
2016-01-01
In this paper, Dual Buck/Boost integrated dual active bridge (DAB) three-port DC-DC converter combines the conventional DAB and two bidirectional Buck/Boost circuits. Hence power switches are shared, and the power density is improved. The PV-battery hybrid power system is taken as an example to analyze the proposed converter topology. The phase shift plus PWM control is adopted here. The phase shift angle is used to control the power flow between the input port and the output port, while the duty cycle is employed to match the input voltages. Thus the maximum power point tracking (MPPT) can be achieved and the power flow between PV and battery can be balanced. The basic operation principles, steady state characteristics and zero voltage switching (ZVS) conditions are analyzed. The ZVS conditions for the conventional DAB operating in small phase shift angle can be greatly improved, and thus the converter can operate under ZVS in a wide operation range. A 300 W converter prototype is built to verify all considerations.%在传统的双有源桥变换器的基础上集成两个双向 Buck/Boost 电路，提出了一种双Buck/Boost 集成双有源桥三端口 DC-DC 变换器，该变换器实现了桥臂开关管的复用，提高了功率密度。以光伏-蓄电池混合发电系统为例对该变换器拓扑进行分析，采用移相+PWM进行控制，通过控制移相角实现输入与输出端口间功率传输，通过调节占空比来匹配输入端口电压等级，以实现光伏端口的最大功率点跟踪和平衡蓄电池端口的能量传递。分析了该变换器的工作原理、稳态与软开关特性，该变换器较大程度地改善了传统移相控制下 DAB 在移相角较小时的软开关条件，使得在宽工作范围内能够实现所有功率开关管的软开关。最后建立300W实验样机进行方案验证。
电动汽车用数字型直流-直流转换器设计%Design of digital DC-DC converter for electric vehicles
滕聪; 黄金强; 禄盛; 黄智宇
2012-01-01
The electric vehicle may win an opportunity due to the pollution of traditional vehicles. The DC-DC converter is an important device for the popularity of electric vehicles, in order to absorb the advantages of digital converter and meet the requirement of wide-range input voltage, the concept of digital DC-DC converters for electric vehicle has been a research subject in EVs area. However, this method requires high dynamic response and wide-range input voltage. A two-stage DC-DC converter controlled by automotive MCU and software was presented, based on the simulation result of small-signal model. The component parameters and test results were described. The results show that the DC-DC converter controlled by digital chip is a real-time programmability, and can meet the requirements of electric vehicles.%随着传统汽车污染的不断增加,以电动汽车为代表的新能源汽车迎来了机遇.而直流-直流( DC-DC)转换器是电动汽车中不可缺少的一种装置.为了吸纳数字型转换器的优点,以及符合宽范围输入电压的要求,电动汽车中用数字型DC-DC转换器已经成为新能源汽车领域中一个热门研究.然而,这种方法需要快速的动态响应.因此,根据其小信号模型仿真结果设计了一个两级转换拓扑的DC-DC转换器,并且设计了基于汽车级数字芯片控制的硬件电路平台和软件算法程序,并给出了DC-DC转换器的元件参数及测试结果.结果表明由数字芯片控制的DC-DC转化器是实时可编程的,也满足汽车电子的要求.
管璐璐; 许伟伟; 李叶; 洪志良
2013-01-01
设计了一款单电感双输出(SIDO)的降压型直流-直流转换器,一个输出电压可以进行动态电压转换,在0.725—1.2V直接变化,另一输出电压可实现1.2V和1.8V,两路输出最大可实现500 mA负载电流.转换器根据负载的不同在脉冲宽度调制(PWM)和脉冲频率调制(PFM)之间自动切换.采用死区时间自适应调整的技术来提高系统的转换效率,分段开关则用来降低输出端毛刺.基于TSMC0.25μm CMOS工艺,测试结果证明该系统输出电压纹波低、毛刺小,系统峰值效率可达90％.%A single-inductor dual-output (SIDO) DC-DC converter having one output of 0. 725-1. 2 V with dynamic voltage scaling (DVS) and another output of 1. 2 V/1. 8 V is presented. Both channels can have the maximal load current of 500 mA. The converter can switch between the pulse-frequency modulation (PFM) mode and the pulse-width modulation (PWM) mode automatically according to load condition. Adaptive dead time adjustment is introduced in the system to improve efficiency and the segment driving for the power switches is implemented to reduce spikes. This converter has been fabricated in 0. 25 μn CMOS mixed signal process. The peak conversion efficiency can reach 90%.
Design of switching frequency of DC-DC switching converter%DC-DC开关变换器开关工作频率设计
皇金锋
2011-01-01
根据DC-DC型开关变换器的工作原理,以Buck型开关变换器为例,讨论了储能电感、滤波电容、输出纹波电压、变换器转换效率与全控型开关器件的工作频率之间的关系,为开关频率的选择提供了理论依据,并进行仿真验证,仿真结果与理论分析一致,表明了参数计算和选择的合理性.分析的方法和结论为其它类型的DC-DC开关变换器的开关管工作频率的分析和设计提供了有效的分析手段和方法,也为实际DC-DC开关变换器的设计和调试提供了新的思路.%According to the working principle of DC-DC switch converter, taking the Buck switch converter as an example, the relationship among the energy storage inductors, filter capacitors, output ripple voltage, the converter efficiency and the operating frequency of total control switch was discussed, which provided a theoretical basis for the choice of the switch frequency. The process was verified through the emulation. The simulation results and theoretical analysis shows that the parameter calculation and the choice is reasonable. The analysis method and the conclusion provide an effective method for the design and analysis of the other type DC-DC switch converter switching valve operating frequency, and also provide a new idea for the design and debugging of the actual DC-DC switch converter.
Control of Parallel DC/DC Converters in DC Microgrid%直流微网中平行DC/DC变换器的控制
叶友泉; 杨冠鲁
2016-01-01
提出以多墙体光伏为研究对象的光伏直流微网系统。将在逆变器并联控制中广泛使用的下垂控制策略应用到平行DC/DC变换器的控制中，与电压、电流环构成三闭环控制，从而抑制平行DC/DC变换器之间的环流。通过Simulink 仿真分析，该方法能够实现直流母线电压的稳定及有效抑制各平行DC/DC变换器之间的环流。最后，在实验室搭建实验平台，验证该控制策略的可行性。%This article proposes a photovoltaic ( PV) DC microgrid system which employs multi-wall PV. In the DC microgrid, the droop control strategy widely used in parallel control of inverter is adopted for the control of parallel DC/DC converters, forming a triple-loop control together with voltage and current loops, which restrains the loop current between parallel DC/DC converters. Simulink simulation shows that, stable DC bus voltage and effective control over the loop current among parallel DC / DC converters can be achieved by this way. In the end, an experimental platform is built in the lab to verify the feasibility of this control strategy.
Digital DC-DC Converter Based on Buck-Boost Topology%基于Buck Boost拓扑的数字DC DC变换器设计
杜英; 郝茂森
2014-01-01
针对常规DC DC变换器输出电压调整困难、反馈实现复杂、智能化程度低的问题，提出了一种新型的能够根据用户要求快速改变输出电压的DC DC变换器，并且能够根据电源输入的电压变化情况实时调整控制参数，实现稳定的电压输出，且输出电压不受输入电压变化的影响。通过对不同负载和电源输入变化的实验验证，该DC DC变换器具有输出电压稳定精确、纹波率小、反馈快速准确的特点，对于某些对输入电压稳定性要求高的场合有实际应用意义。%Against the fact that the voltage values of DC-DC converter is difficult to adjust due to complex feedback and low degree of in-telligence,this paper proposes a new type of DC-DC converter that can be adjusted easily.This converter can adjust the control parame-ters along with the input voltage,keeping the output voltage stable.Experiments of different loads and input voltage show that this DC-DC converter has the advantage of stable output voltage,low voltage fluctuation,quick and accurate feedback.It has practical meaning in terms of requiring stable output voltage.
Hao Wenhan; Jia Chen; Chen Hong; Zhang Chun; Wang Zhihua, E-mail: haowh04@mails.tsinghua.edu.c [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)
2009-12-15
Energy harvesting systems stimulate the development of power management for low power consumption applications. Improving the converter efficiency of power management circuits has become a significant issue in energy harvesting system design. This paper presents a variable step-down conversion ratio switched capacitor (SC) DC-DC converter to advance the converter efficiency of charge on the stored capacitor in a wireless monitoring system of orthopedic implants. The converter is designed to work at 1 MHz switching frequency and achieves 15 to 2 V conversion. Measurement results show that the converter efficiency can reach 42% including all circuit power consumption, which is much higher than previous work. (semiconductor integrated circuits)
Natsheh, Ammar N. [Faculty of Engineering, Al-Ahliyya Amman University, Post Code 19328 Amman (Jordan); Nazzal, Jamal M. [Faculty of Engineering, Al-Ahliyya Amman University, Post Code 19328 Amman (Jordan)]. E-mail: jnazzal@ammanu.edu.jo
2007-08-15
This work describes the bifurcational behavior of a modular peak current-mode controlled DC-DC boost converter with multi bifurcation parameters. The parallel-input/parallel-output converter consists of two identical boost circuits and operates in the continuous-current conduction mode (CCM). A nonlinear mapping in closed form is derived and bifurcation diagrams are generated using MATLAB. A comparison is made between the modular converter diagrams with those of the single boost converter. The effect of introducing mutual coupling between the inductors of the constituent modules is also addressed. Results are verified using the circuit analysis package PSPICE.
Calebe A. Matias
2017-07-01
Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.