Fractal Patterns and Chaos Games
Devaney, Robert L.
2004-01-01
Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.
Chaos game representation walk model for the protein sequences
Gao Jie; Jiang Li-Li; Xu Zhen-Yuan
2009-01-01
A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic(HP)model has been proposed by Yu et al(Physica A 337(2004)171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CGR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q)model is introduced into the protein sequence analysis. This model is applied to simulating real CGR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably coneistent with those available from the ARFIMA(p, d, q)model.
Chaos game representation (CGR)-walk model for DNA sequences
Gao Jie; Xu Zhen-Yuan
2009-01-01
Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model.
Chaos and Control of Game Model Based on Heterogeneous Expectations in Electric Power Triopoly
Weizhuo Ji
2009-01-01
Full Text Available A dynamic repeated game model has been established based on heterogeneous expectations in electric power triopoly. Theoretical analysis and numerical simulation show the complexity of this model; suppose that the producers make decisions with naive expectation and bounded rationality. The straight-line stabilization chaos control method was successfully applied to the dynamic repeated game model. The results have important practical value for the producers in the electric power oligopoly.
Ma, Junhai; Zhang, Junling
2012-12-01
Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.
Ma, Junhai; Zhang, Junling
2012-12-01
Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.
2012-01-01
In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this co...
Using MPEG DASH SRD for zoomable and navigable video
D'Acunto, L.; Berg, J. van den; Thomas, E.; Niamut, O.A.
2016-01-01
This paper presents a video streaming client implementation that makes use of the Spatial Relationship Description (SRD) feature of the MPEG-DASH standard, to provide a zoomable and navigable video to an end user. SRD allows a video streaming client to request spatial subparts of a particular video
Using MPEG DASH SRD for zoomable and navigable video
D'Acunto, L.; Berg, J. van den; Thomas, E.; Niamut, O.A.
2016-01-01
This paper presents a video streaming client implementation that makes use of the Spatial Relationship Description (SRD) feature of the MPEG-DASH standard, to provide a zoomable and navigable video to an end user. SRD allows a video streaming client to request spatial subparts of a particular video
Topological chaos of the spatial prisoner's dilemma game on regular networks.
Jin, Weifeng; Chen, Fangyue
2016-02-21
The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein.
Chaos Control on a Duopoly Game with Homogeneous Strategy
Manying Bai
2016-01-01
Full Text Available We study the dynamics of a nonlinear discrete-time duopoly game, where the players have homogenous knowledge on the market demand and decide their outputs based on adaptive expectation. The Nash equilibrium and its local stability are investigated. The numerical simulation results show that the model may exhibit chaotic phenomena. Quasiperiodicity is also found by setting the parameters at specific values. The system can be stabilized to a stable state by using delayed feedback control method. The discussion of control strategy shows that the effect of both firms taking control method is better than that of single firm taking control method.
Numerical investigation of lensless zoomable holographic multiple projections to tilted planes
Shimobaba, Tomoyoshi; Kakue, Takashi; Okada, Naohisa; Endo, Yutaka; Hirayam, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Ito, Tomoyoshi
2014-01-01
This paper numerically investigates the feasibility of lensless zoomable holographic multiple projections to tilted planes. We have already developed lensless zoomable holographic single projection using scaled diffraction, which calculates diffraction between parallel planes with different sampling pitches. The structure of this zoomable holographic projection is very simple because it does not need a lens; however, it only projects a single image to a plane parallel to the hologram. The lensless zoomable holographic projection in this paper is capable of projecting multiple images onto tilted planes simultaneously.
Messaoudi, Imen; Elloumi-Oueslati, Afef; Lachiri, Zied
2014-01-01
Investigating the roles and functions of DNA within genomes is becoming a primary focus of genomic research. Thus, the research works are moving towards cooperation between different scientific disciplines which aims at facilitating the interpretation of genetic information. In order to characterize the DNA of living organisms, signal processing tools appear to be very suitable for such study. However, a DNA sequence must be converted into a numerical sequence before processing; which defines the concept of DNA coding. In line with this, we propose a new one dimensional model based on the chaos game representation theory called Frequency Chaos Game Signal: FCGS. Then, we perform a Smoothed Fourier Transform to enhance hidden periodicities in the C.elegans DNA sequences. Through this study, we demonstrate the performance of our coding approach in highlighting characteristic periodicities. Indeed, several periodicities are shown to be involved in the 1D spectra and the 2D spectrograms of FCGSs. To investigate further about the contribution of our method in the enhancement of characteristic spectral attributes, a comparison with a range of binary indicators is established.
Bullwhip Entropy Analysis and Chaos Control in the Supply Chain with Sales Game and Consumer Returns
Wandong Lou
2017-02-01
Full Text Available In this paper, we study a supply chain system which consists of one manufacturer and two retailers including a traditional retailer and an online retailer. In order to gain a larger market share, the retailers often take the sales as a decision-making variable in the competition game. We devote ourselves to analyze the bullwhip effect in the supply chain with sales game and consumer returns via the theory of entropy and complexity and take the delayed feedback control method to control the system’s chaotic state. The impact of a statutory 7-day no reason for return policy for online retailers is also investigated. The bounded rational expectation is adopt to forecast the future demand in the sales game system with weak noise. Our results show that high return rates will hurt the profits of both the retailers and the adjustment speed of the bounded rational sales expectation has an important impact on the bullwhip effect. There is a stable area for retailers where the bullwhip effect doesn’t appear. The supply chain system suffers a great bullwhip effect in the quasi-periodic state and the quasi-chaotic state. The purpose of chaos control on the sales game can be achieved and the bullwhip effect would be effectively mitigated by using the delayed feedback control method.
Pal, Mayukha; Kiran, V. Satya; Rao, P. Madhusudana; Manimaran, P.
2016-08-01
We characterized the multifractal nature and power law cross-correlation between any pair of genome sequence through an integrative approach combining 2D multifractal detrended cross-correlation analysis and chaos game representation. In this paper, we have analyzed genomes of some prokaryotes and calculated fractal spectra h(q) and f(α) . From our analysis, we observed existence of multifractal nature and power law cross-correlation behavior between any pair of genome sequences. Cluster analysis was performed on the calculated scaling exponents to identify the class affiliation and the same is represented as a dendrogram. We suggest this approach may find applications in next generation sequence analysis, big data analytics etc.
Stability, Bifurcation, and Chaos in N-Firm Nonlinear Cournot Games
Akio Matsumoto
2011-01-01
Full Text Available An N-firm production game known as oligopoly will be examined with isoelastic price function and linear cost under al Cournot competition. After the best responses of the firms are determined, a dynamic system with adaptive expectations is introduced. It is first shown that the local asymptotic behavior of the system is identical with that of the adaptive adjustment process in which the firms cautiously determine their outputs. Dynamic analysis is confined to two special cases, one in which N is divided into two groups and the other in which N is divided into three groups. Then stability conditions will be derived and the global behavior of the equilibria will be illustrated including chaos control. Lastly the two- and three-group models are compared with two-firm (duopoly and three-firm (triopoly models to shed light on roles of the number of the firms.
Junhai Ma
2016-11-01
Full Text Available In this research, a model is established to represent a supply chain, which consists of one manufacturer and two retailers. The price-sensitive demand model is considered and the price game system is built according to the rule of bounded rationality as well as the entropy theory. With the increase of the price adjustment speed, the game system may go into chaos from the stable and periodic state. The bullwhip effect and inventory variance ratio of different stages that the system falls in are compared in real time. We also employ the delayed feedback control method to control the system and succeed in mitigating the bullwhip effect of the system. On the whole, the bullwhip effect and inventory variance ratio in the stable state are smaller than those in period-doubling and chaos. In the stable state, there is an optimal price adjustment speed to obtain both the lowest bullwhip effect and inventory variance ratio.
Junhai Ma; Xiaogang Ma; Wandong Lou
2016-01-01
In this research, a model is established to represent a supply chain, which consists of one manufacturer and two retailers. The price-sensitive demand model is considered and the price game system is built according to the rule of bounded rationality as well as the entropy theory. With the increase of the price adjustment speed, the game system may go into chaos from the stable and periodic state. The bullwhip effect and inventory variance ratio of different stages that the system falls in ar...
Hoang, Tung; Yin, Changchuan; Yau, Stephen S-T
2016-10-01
Numerical encoding plays an important role in DNA sequence analysis via computational methods, in which numerical values are associated with corresponding symbolic characters. After numerical representation, digital signal processing methods can be exploited to analyze DNA sequences. To reflect the biological properties of the original sequence, it is vital that the representation is one-to-one. Chaos Game Representation (CGR) is an iterative mapping technique that assigns each nucleotide in a DNA sequence to a respective position on the plane that allows the depiction of the DNA sequence in the form of image. Using CGR, a biological sequence can be transformed one-to-one to a numerical sequence that preserves the main features of the original sequence. In this research, we propose to encode DNA sequences by considering 2D CGR coordinates as complex numbers, and apply digital signal processing methods to analyze their evolutionary relationship. Computational experiments indicate that this approach gives comparable results to the state-of-the-art multiple sequence alignment method, Clustal Omega, and is significantly faster. The MATLAB code for our method can be accessed from: www.mathworks.com/matlabcentral/fileexchange/57152.
Vinga Susana
2012-05-01
Full Text Available Abstract Background Chaos Game Representation (CGR is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance and analytical (lack of unifying mathematical framework. CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems.
Jia, J H; Liu, Z; Chen, X; Xiao, X; Liu, B X
2015-10-02
Studying the network of protein-protein interactions (PPIs) will provide valuable insights into the inner workings of cells. It is vitally important to develop an automated, high-throughput tool that efficiently predicts protein-protein interactions. This study proposes a new model for PPI prediction based on the concept of chaos game representation and the wavelet transform, which means that a considerable amount of sequence-order effects can be incorporated into a set of discrete numbers. The advantage of using chaos game representation and the wavelet transform to formulate the protein sequence is that it can more effectively reflect its overall sequence-order characteristics than the conventional correlation factors. Using such a formulation frame to represent the protein sequences means that the random forest algorithm can be used to conduct the prediction. The results for a large-scale independent test dataset show that the proposed model can achieve an excellent performance with an accuracy value of about 0.86 and a geometry mean value of about 0.85. The model is therefore a useful supplementary tool for PPI predictions. The predictor used in this article is freely available at http://www.jci-bioinfo.cn/PPI.
The Chaos Dynamic of Multiproduct Cournot Duopoly Game with Managerial Delegation
Fang Wu
2014-01-01
Full Text Available Although oligopoly theory is generally concerned with the single-product firm, what is true in the real word is that most of the firms offer multiproducts rather than single products in order to obtain cost-saving advantages, cater for the diversity of consumer tastes, and provide a barrier to entry. We develop a dynamical multiproduct Cournot duopoly model in discrete time, where each firm has an owner who delegates the output decision to a manager. The principle of decision-making is bounded rational. And each firm has a nonlinear total cost function due to the multiproduct framework. The Cournot Nash equilibrium and the local stability are investigated. The tangential bifurcation and intermittent chaos are reported by numerical simulations. The results show that high output adjustment speed can lead to output fluctuations which are characterized by phases of low volatility with small output changes and phases of high volatility with large output changes. The intermittent route to chaos of Flip bifurcation and another intermittent route of Flip bifurcation which contains Hopf bifurcation can exist in the system. The study can improve our understanding of intermittent chaos frequently observed in oligopoly economy.
Interactive UHDTV at the Commonwealth Games - An Explorative Evaluation
Redi, J.A.; D'Acunto, L.; Niamut, O.A.
2015-01-01
In conjunction with BBC R&D experiments and demonstrations at the 2014 Commonwealth Games, an explorative field trial was conducted with a live zoomable UHD video system. The unique field trial featured the world’s first live tiled streaming of 4K UHD video to end users. During the trial, we studied
Sargent, R.; Egge, M.; Dille, P. S.; O'Donnell, G. D.; Herwig, C.
2016-12-01
Visual evidence ignites curiosity and inspires advocacy. Zoomable imagery and video on a planetary scale provides compelling evidence of human impact on the environment. Earth Timelapse places the observable impact of 30+ years of human activity into the hands of policy makers, scientists, and advocates, with fluidity and speed that supports inquiry and exploration. Zoomability enables compelling narratives and ready apprehension of environmental changes, connecting human-scale evidence to regional and ecosystem-wide trends and changes. Leveraging the power of Google Earth Engine, join us to explore 30+ years of Landset 30m RGB imagery showing glacial retreat, agricultural deforestation, irrigation expansion, and the disappearance of lakes. These narratives are enriched with datasets showing planetary forest gain/loss, annual cycles of agricultural fires, global changes in the health of coral reefs, trends in resource extraction, and of renewable energy development. We demonstrate the intuitive and inquiry-enabling power of these planetary visualizations, and provide instruction on how scientists and advocates can create and share or contribute visualizations of their own research or topics of interest.
A topological proof of chaos for two nonlinear heterogeneous triopoly game models
Pireddu, Marina
2016-08-01
We rigorously prove the existence of chaotic dynamics for two nonlinear Cournot triopoly game models with heterogeneous players, for which in the existing literature the presence of complex phenomena and strange attractors has been shown via numerical simulations. In the first model that we analyze, costs are linear but the demand function is isoelastic, while, in the second model, the demand function is linear and production costs are quadratic. As concerns the decisional mechanisms adopted by the firms, in both models one firm adopts a myopic adjustment mechanism, considering the marginal profit of the last period; the second firm maximizes its own expected profit under the assumption that the competitors' production levels will not vary with respect to the previous period; the third firm acts adaptively, changing its output proportionally to the difference between its own output in the previous period and the naive expectation value. The topological method we employ in our analysis is the so-called "Stretching Along the Paths" technique, based on the Poincaré-Miranda Theorem and the properties of the cutting surfaces, which allows to prove the existence of a semi-conjugacy between the system under consideration and the Bernoulli shift, so that the former inherits from the latter several crucial chaotic features, among which a positive topological entropy.
A topological proof of chaos for two nonlinear heterogeneous triopoly game models
Pireddu, Marina, E-mail: marina.pireddu@unimib.it [Department of Mathematics and Applications, University of Milano-Bicocca, U5 Building, Via Cozzi 55, 20125 Milano (Italy)
2016-08-15
We rigorously prove the existence of chaotic dynamics for two nonlinear Cournot triopoly game models with heterogeneous players, for which in the existing literature the presence of complex phenomena and strange attractors has been shown via numerical simulations. In the first model that we analyze, costs are linear but the demand function is isoelastic, while, in the second model, the demand function is linear and production costs are quadratic. As concerns the decisional mechanisms adopted by the firms, in both models one firm adopts a myopic adjustment mechanism, considering the marginal profit of the last period; the second firm maximizes its own expected profit under the assumption that the competitors' production levels will not vary with respect to the previous period; the third firm acts adaptively, changing its output proportionally to the difference between its own output in the previous period and the naive expectation value. The topological method we employ in our analysis is the so-called “Stretching Along the Paths” technique, based on the Poincaré-Miranda Theorem and the properties of the cutting surfaces, which allows to prove the existence of a semi-conjugacy between the system under consideration and the Bernoulli shift, so that the former inherits from the latter several crucial chaotic features, among which a positive topological entropy.
Analysis of RHD Gene by Chaos Game Representation%基于混沌游走方法的Rh血型系统中RHD基因的分析
高雷; 齐斌; 朱平
2009-01-01
利用基于经典HP模型的蛋白质序列混沌游走方法(chaos game representation,CGR),给出了RHD基因的蛋白质序列CGR图,可视作蛋白质序列二级结构的一个特征图谱描述,对临床上的血型鉴别有一定的参考价值.另外,还根据由Jeffrey在1990年提出的描绘DNA序列的CGR方法,给出了RHD基因的DNA序列的CGR图,并且根据RHD基因DNA序列的CGR图算出了RHD基因相应的马尔可夫两步转移概率矩阵.从概率矩阵表可以看出RHD基因对编码氨基酸的三联子的第3个碱基的使用偏好性.%By using the chaos game representation (CGR) method of protein sequences based on the detained HP model, the CGR graph of the protein sequences of RHD gene were given, and some characters of the protein's secondary structure of RHD gene were obtained. At the same time, according to the CGR of the DNA sequences proposed by Jeffrey in 1990, the CGR graph of the DNA sequences of RHD gene were given and the corresponding probability matrix for the second-order Markov Chain model were obtained. Furthermore, from the probability matrix, the usage preference that the third base of the codons in the DNA sequence of the RHD gene were educed.
Kuss, Daria J; Griffiths, Mark D; Pontes, Halley M
2017-06-01
Background The umbrella term "Internet addiction" has been criticized for its lack of specificity given the heterogeneity of potentially problematic behaviors that can be engaged in online as well as different underlying etiological mechanisms. This has led to the naming of specific online addictions, the most notable being Internet Gaming Disorder (IGD). Methods Using the contemporary literature concerning IGD and cognate topics, issues and concerns relating to the concept of IGD are examined. Results Internet addiction and IGD are not the same, and distinguishing between the two is conceptually meaningful. Similarly, the diagnosis of IGD as proposed in the appendix of the latest (fifth) edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) remains vague regarding whether or not games need to be engaged in online, stating that IGD typically involves specific Internet games, but can also include offline games, adding to the lack of clarity. A number of authors have voiced concerns regarding the viability of including the word "Internet" in IGD, and instead proposed to use the term "video gaming disorder" or simply "gaming disorder," suggesting addiction to video gaming can also occur offline. Conclusion The DSM-5 has caused more confusion than clarity regarding the disorder, reflected by researchers in the field contesting a supposedly reached consensus for IGD diagnosis.
Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API.
Nobuaki Kono
Full Text Available BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1 availability of large integrated maps showing genes, enzymes, and metabolites; (2 comprehensive search features and data access; (3 data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4 easy exchange of pathway data; and (5 intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/.
Kaneko, K; Kaneko, Kunihiko; Suzuki, Junji
1993-01-01
Mutual imitation games among artificial birds are studied. By employing a variety of mappings and game rules, the evolution to the edge between chaos and windows is universally confirmed. Some other general features are observed, including punctuated equilibria, and successive alternations of dominant species with temporal complexity. Diversity of species aided by the symbolization of artificial birds' song are also shown.
Gao, Jie; Xu, Zhen-Yuan
2009-01-01
Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model.
2016-01-01
Background:\\ud The umbrella term "Internet addiction" has been criticized for its lack of specificity given the heterogeneity of potentially problematic behaviors that can be engaged in online as well as different underlying etiological mechanisms. This has led to the naming of specific online addictions, the most notable being Internet Gaming Disorder (IGD).\\ud \\ud Methods:\\ud Using the contemporary literature concerning IGD and cognate topics, issues and concerns relating to the concept of ...
Mueller, B.
1997-09-22
The report contains viewgraphs on the following: ergodicity and chaos; Hamiltonian dynamics; metric properties; Lyapunov exponents; KS entropy; dynamical realization; lattice formulation; and numerical results.
Zhang, Rui; Cavalcante, Hugo L. D. de S.; Gao, Zheng; Gauthier, Daniel J.; Socolar, Joshua E. S.; Adams, Matthew M.; Lathrop, Daniel P.
2009-01-01
We observe deterministic chaos in a simple network of electronic logic gates that are not regulated by a clocking signal. The resulting power spectrum is ultra-wide-band, extending from dc to beyond 2 GHz. The observed behavior is reproduced qualitatively using an autonomously updating Boolean model with signal propagation times that depend on the recent history of the gates and filtering of pulses of short duration, whose presence is confirmed experimentally. Electronic Boolean chaos may fin...
Mitchener, W Garrett; Nowak, Martin A
2004-04-01
Human language is a complex communication system with unlimited expressibility. Children spontaneously develop a native language by exposure to linguistic data from their speech community. Over historical time, languages change dramatically and unpredictably by accumulation of small changes and by interaction with other languages. We have previously developed a mathematical model for the acquisition and evolution of language in heterogeneous populations of speakers. This model is based on game dynamical equations with learning. Here, we show that simple examples of such equations can display complex limit cycles and chaos. Hence, language dynamical equations mimic complicated and unpredictable changes of languages over time. In terms of evolutionary game theory, we note that imperfect learning can induce chaotic switching among strict Nash equilibria.
Banerjee, S; Grebogi, C; Banerjee, Soumitro; Yorke, James A.; Grebogi, Celso
1998-01-01
It has been proposed to make practical use of chaos in communication, in enhancing mixing in chemical processes and in spreading the spectrum of switch-mode power suppies to avoid electromagnetic interference. It is however known that for most smooth chaotic systems, there is a dense set of periodic windows for any range of parameter values. Therefore in practical systems working in chaotic mode, slight inadvertent fluctuation of a parameter may take the system out of chaos. We say a chaotic attractor is robust if, for its parameter values there exists a neighborhood in the parameter space with no periodic attractor and the chaotic attractor is unique in that neighborhood. In this paper we show that robust chaos can occur in piecewise smooth systems and obtain the conditions of its occurrence. We illustrate this phenomenon with a practical example from electrical engineering.
Waelbroeck, H
1999-01-01
We propose a theory of deterministic chaos for discrete systems, based on their representations in symbolic history spaces Ømega. These are spaces of semi-infinite sequences, as the one-sided shift spaces, but endowed with a more general topology which we call a semicausal topology. We show that define metrical properties, including the correlation dimension of the attractor. Examples are considered: Asymmetric neural networks and random cellular automata are not chaotic. A neural network model with memory, on the other hand, does appear to be an example of discrete chaos.
Duke, Richard D
2014-01-01
Als Richard Duke sein Buch ""Gaming: The Future's Language"" 1974 veröffentlichte, war er ein Pionier für die Entwicklung und Anwendung von Planspielen in Politik, Strategieentwicklung und Management. Das Buch wurde zu einem viel zitierten Standardwerk. 2014 feiert die von Richard D. Duke gegründete International Simulation and Gaming Association (ISAGA) ihr 45-jähriges Bestehen. Gleichzeitig legt Richard D. Duke eine überarbeitete Auflage seines Klassikers vor. Inhaltsverzeichnis TABLE OF CONTENTSAcknowledgments Preface SECTION I1. The ProblemSECTION II2. Modes of Human Communication3. Mode
Processes occurring within small areas (patch-scale) that influence species richness and spatial heterogeneity of larger areas (landscape-scale) have long been an interest of ecologists. This research focused on the role of patch-scale deterministic chaos arising in phytoplankton...
Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael
2017-07-01
Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.
Quantum signatures of chaos or quantum chaos?
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Erçetin, Şefika; Tekin, Ali
2014-01-01
The present work investigates global politics and political implications of social science and management with the aid of the latest complexity and chaos theories. Until now, deterministic chaos and nonlinear analysis have not been a focal point in this area of research. This book remedies this deficiency by utilizing these methods in the analysis of the subject matter. The authors provide the reader a detailed analysis on politics and its associated applications with the help of chaos theory, in a single edited volume.
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Physical white chaos generation
Wang, Anbang; Wang, Bingjie; Li, Lei; Zhang, Mingjiang; Zhang, Wendong
2014-01-01
Physical chaos is a fascinating prospect for high-speed data security by serving as a masking carrier or a key source, but suffers from a colored spectrum that divulges system's intrinsic oscillations and degrades randomness. Here, we demonstrate that physical chaos with a white spectrum can be achieved by the optical heterodyning of two delayed-feedback lasers. A white chaotic spectrum with 1-dB fluctuation in a band of 11 GHz is experimentally obtained. The white chaos also has a perfect delta-like autocorrelation function and a high dimensionality of greater than 10, which makes chaos reconstruction extremely difficult and thus improves security.
Spano, Mark
1997-04-01
The publication by Ott, Grebogi and Yorke(E. Ott, C. Grebogi and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).) of their theory of chaos control in 1990 led to an explosion of experimental work applying their theory to mechanical systems and electronic circuits, lasers and chemical reactors, and heart and brain tissue, to name only a few. In this talk the basics of chaos control as implemented in a simple mechanical system will be described, as well as extensions of the method to biological applications. Finally, current advances in the field, including the maintenance of chaos and the control of high dimensional chaos, will be discussed.
Cosmology, Epistemology and Chaos
Unno, Wasaburo
1992-03-01
We may consider the following three fundamental epistemological questions concerning cosmology. Can cosmology at last understand the origin of the universe? Can computers at last create? Can life be formed at last synthetically? These questions are in some sense related to the liar paradox containing the self-reference and, therefore, may not be answered by recursive processes in finite time. There are, however, various implications such that the chaos may break the trap of the self- reference paradox. In other words, Goedel's incompleteness theorem would not apply to chaos, even if the chaos can be generated by recursive processes. Internal relations among cosmology, epistemology and chaos must be investigated in greater detail
Chaos as a Source of Complexity and Diversity in Evolution
Kaneko, K
1993-01-01
The relevance of chaos to evolution is discussed in the context of the origin and maintenance of diversity and complexity. Evolution to the edge of chaos is demonstrated in an imitation game. As an origin of diversity, dynamic clustering of identical chaotic elements, globally coupled each to other, is briefly reviewed. The clustering is extended to nonlinear dynamics on hypercubic lattices, which enables us to construct a self-organizing genetic algorithm. A mechanism of maintenance of diversity, ``homeochaos", is given in an ecological system with interaction among many species. Homeochaos provides a dynamic stability sustained by high-dimensional weak chaos. A novel mechanism of cell differentiation is presented, based on dynamic clustering. Here, a new concept -- ``open chaos" -- is proposed for the instability in a dynamical system with growing degrees of freedom. It is suggested that studies based on interacting chaotic elements can replace both top-down and bottom-up approaches.
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Uncertainty Relation for Chaos
Yahalom, A; Levitan, J; Elgressy, G; Horwitz, L P; Ben-Zion, Y
2011-01-01
A necessary condition for the emergence of chaos is given. It is well known that the emergence of chaos requires a positive exponent which entails diverging trajectories. Here we show that this is not enough. An additional necessary condition for the emergence of chaos in the region where the trajectory of the system goes through, is that the product of the maximal positive exponent times the duration in which the system configuration point stays in the unstable region should exceed unity. We give a theoretical analysis justifying this result and a few examples.
Chaos applications in telecommunications
Stavroulakis, Peter
2005-01-01
IntroductionPeter StavroulakisChaotic Signal Generation and Transmission Antonio Cândido Faleiros,Waldecir João Perrella,TâniaNunes Rabello,Adalberto Sampaio Santos, andNeiYoshihiro SomaChaotic Transceiver Design Arthur Fleming-DahlChaos-Based Modulation and DemodulationTechniques Francis C.M. Lau and Chi K. TseA Chaos Approach to Asynchronous DS-CDMASystems S. Callegari, G. Mazzini, R. Rovatti, and G. SettiChannel Equalization in Chaotic CommunicationSystems Mahmut CiftciOptical Communications using ChaoticTechniques Gregory D. VanWiggerenAPPENDIX AFundamental Concepts of the Theory ofChaos a
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
David Murphy
2011-11-01
Full Text Available About 20 years ago, while lost in the midst of my PhD research, I mused over proposed titles for my thesis. I was pretty pleased with myself when I came up with Chaos Rules (the implied double meaning was deliberate, or more completely, Chaos Rules: An Exploration of the Work of Instructional Designers in Distance Education. I used the then-emerging theories of chaos and complexity to underpin my analysis. So it was with more than a little excitement that I read the call for contributions to this special issue of IRRODL. What follows is a walk-through of my thesis with an emphasis on the contribution of chaos and complexity theory.
Mathematical games, abstract games
Neto, Joao Pedro
2013-01-01
User-friendly, visually appealing collection offers both new and classic strategic board games. Includes abstract games for two and three players and mathematical games such as Nim and games on graphs.
Exploiting chaos for applications
Ditto, William L., E-mail: wditto@hawaii.edu [Department of Physics and Astronomy, University of Hawaii at Mānoa, Honolulu, Hawaii 96822 (United States); Sinha, Sudeshna, E-mail: sudeshna@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER), Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli 140306, Punjab (India)
2015-09-15
We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.
Enlightenment philosophers’ ideas about chaos
A. V. Kulik
2014-07-01
It is grounded that the philosopher and enlightener Johann Gottfried von Herder advanced an idea of objectivity of process of transformation chaos into order. It is shown that idea of «The law of nature» existing as for ordering chaos opened farreaching prospects for researches of interaction with chaos.
Introducing chaos a graphic guide
Sardar, Ziauddin; Abrams, Iwona
2014-01-01
Explains how chaos makes its presence felt in many varieties of event, from the fluctuation of animal populations to the ups and downs of the stock market. This book also examines the roots of chaos in modern mathematics and physics, and explores the relationship between chaos and complexity.
Shigehara, T; Mishima, T; Cheon, T; Shigehara, Takaomi; Mizoguchi, Hiroshi; Mishima, Taketoshi; Cheon, Taksu
1998-01-01
In this paper, we show that two-dimensional billiards with point interactions inside exhibit a chaotic nature in the microscopic world, although their classical counterpart is non-chaotic. After deriving the transition matrix of the system by using the self-adjoint extension theory of functional analysis, we deduce the general condition for the appearance of chaos. The prediction is confirmed by numerically examining the statistical properties of energy spectrum of rectangular billiards with multiple point interactions inside. The dependence of the level statistics on the strength as well as the number of the scatterers is displayed. KEYWORDS: wave chaos, quantum mechanics, pseudointegrable billiard, point interaction, functional analysis
Dissipative structures and chaos
Mori, Hazime
1998-01-01
This monograph consists of two parts and gives an approach to the physics of open nonequilibrium systems. Part I derives the phenomena of dissipative structures on the basis of reduced evolution equations and includes Bénard convection and Belousov-Zhabotinskii chemical reactions. Part II discusses the physics and structures of chaos. While presenting a construction of the statistical physics of chaos, the authors unify the geometrical and statistical descriptions of dynamical systems. The shape of chaotic attractors is characterized, as are the mixing and diffusion of chaotic orbits and the fluctuation of energy dissipation exhibited by chaotic systems.
A Description of Quantum Chaos
Inoue, K; Ohya, M; Inoue, Kei; Kossakowski, Andrzej; Ohya, Masanori
2004-01-01
A measure describing the chaos of a dynamics was introduced by two complexities in information dynamics, and it is called the chaos degree. In particular, the entropic chaos degree has been used to characterized several dynamical maps such that logistis, Baker's, Tinckerbel's in classical or quantum systems. In this paper, we give a new treatment of quantum chaos by defining the entropic chaos degree for quantum transition dynamics, and we prove that every non-chaotic quantum dynamics, e.g., dissipative dynamics, has zero chaos degree. A quantum spin 1/2 system is studied by our chaos degree, and it is shown that this degree well describes the chaotic behavior of the spin system.
Akhmet, Marat
2012-01-01
Morphogenesis, as it is understood in a wide sense by Ren\\'e Thom, is considered for various types of chaos. That is, those, obtained by period-doubling cascade, Devaney's and Li-Yorke chaos. Moreover, in discussion form we consider inheritance of intermittency, the double-scroll Chua's attractor and quasiperiodical motions as a possible skeleton of a chaotic attractor. To make our introduction of the paper more clear, we have to say that one may consider other various accompanying concepts of chaos such that a structure of the chaotic attractor, its fractal dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents, etc. We make comparison of the main concept of our paper with Turing's morphogenesis and John von Neumann automata, considering that this may be not only formal one, but will give ideas for the chaos development in the morphogenesis of Turing and for self-replicating machines. To provide rigorous study of the subject, we introduce new definitions such as chaotic sets of functio...
Kratochvíl C.
2007-10-01
Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.
Inverse anticipating chaos synchronization.
Shahverdiev, E M; Sivaprakasam, S; Shore, K A
2002-07-01
We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.
Lindberg, Erik
1996-01-01
order limit cycle is found. If the the forward Early voltage parameter is added chaos is observed again. An examination of the eigenvalues of the oscillator with the simple memoryless Ebers-Moll BJT injection model is presented. By adding bulk resistors to the model stable limit cycles of orders 1, 2, 3...
Lindberg, Erik
1996-01-01
Can we believe in the results of our circuit simulators ? Is it possible to distinguish between results due to numerical chaos and resultsdue to the eventual chaotic nature of our modelsof physical systems ?. Three experiments with SPICE are presented: (1) A "stable" active RCcircuit with poles i...
Converting transient chaos into sustained chaos by feedback control
Lai, Ying-Cheng; Grebogi, Celso
1994-02-01
A boundary crisis is a catastrophic event in which a chaotic attractor is suddenly destroyed, leaving a nonattracting chaotic saddle in its place in the phase space. Based on the controlling-chaos idea [E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)], we present a method for stabilizing chaotic trajectories on the chaotic saddle by applying only small parameter perturbations. This strategy enables us to convert transient chaos into sustained chaos, thereby restoring attracting chaotic motion.
Tél, Tamás [Institute for Theoretical Physics, Eötvös University, and MTA-ELTE Theoretical Physics Research Group, Pázmány P. s. 1/A, Budapest H-1117 (Hungary)
2015-09-15
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Chaos control of cardiac arrhythmias.
Garfinkel, A; Weiss, J N; Ditto, W L; Spano, M L
1995-01-01
Chaos theory has shown that many disordered and erratic phenomena are in fact deterministic, and can be understood causally and controlled. The prospect that cardiac arrhythmias might be instances of deterministic chaos is therefore intriguing. We used a recently developed method of chaos control to stabilize a ouabain-induced arrhythmia in rabbit ventricular tissue in vitro. Extension of these results to clinically significant arrhythmias such as fibrillation will require overcoming the additional obstacles of spatiotemporal complexity.
Chaos detection and predictability
Gottwald, Georg; Laskar, Jacques
2016-01-01
Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book cover...
Wireless communication with chaos.
Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso
2013-05-03
The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.
Hosur, Pavan; Roberts, Daniel A; Yoshida, Beni
2015-01-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Schuster, H G
2008-01-01
This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community.An interdisciplinary approach of interest to scientists and engineers working in a number of areas
Marklof, J
2005-01-01
The central objective in the study of quantum chaos is to characterize universal properties of quantum systems that reflect the regular or chaotic features of the underlying classical dynamics. Most developments of the past 25 years have been influenced by the pioneering models on statistical properties of eigenstates (Berry 1977) and energy levels (Berry and Tabor 1977; Bohigas, Giannoni and Schmit 1984). Arithmetic quantum chaos (AQC) refers to the investigation of quantum system with additional arithmetic structures that allow a significantly more extensive analysis than is generally possible. On the other hand, the special number-theoretic features also render these systems non-generic, and thus some of the expected universal phenomena fail to emerge. Important examples of such systems include the modular surface and linear automorphisms of tori (`cat maps') which will be described below.
Hosur, Pavan; Qi, Xiao-Liang [Department of Physics, Stanford University,476 Lomita Mall, Stanford, California 94305 (United States); Roberts, Daniel A. [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Yoshida, Beni [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena CA 91125 (United States)
2016-02-01
We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.
Bick, Christian [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen (Germany); Institute for Mathematics, Georg–August–Universität Göttingen, 37073 Göttingen (Germany); Kolodziejski, Christoph [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); III. Physical Institute—Biophysics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Institute for Nonlinear Dynamics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany)
2014-09-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.
Noise tolerant spatiotemporal chaos computing
Kia, Behnam; Kia, Sarvenaz; Ditto, William L. [Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Lindner, John F. [Physics Department, The College of Wooster, Wooster, Ohio 44691 (United States); Sinha, Sudeshna [Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306 (India)
2014-12-01
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Noise tolerant spatiotemporal chaos computing.
Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L
2014-12-01
We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.
Tailoring wavelets for chaos control.
Wei, G W; Zhan, Meng; Lai, C-H
2002-12-31
Chaos is a class of ubiquitous phenomena and controlling chaos is of great interest and importance. In this Letter, we introduce wavelet controlled dynamics as a new paradigm of dynamical control. We find that by modifying a tiny fraction of the wavelet subspaces of a coupling matrix, we could dramatically enhance the transverse stability of the synchronous manifold of a chaotic system. Wavelet controlled Hopf bifurcation from chaos is observed. Our approach provides a robust strategy for controlling chaos and other dynamical systems in nature.
Voglis, Nikos
2003-01-01
Galaxies and Chaos examines the application of tools developed for Nonlinear Dynamical Systems to Galactic Dynamics and Galaxy Formation, as well as to related issues in Celestial Mechanics. The contributions collected in this volume have emerged from selected presentations at a workshop on this topic and key chapters have been suitably expanded in order to be accessible to nonspecialist researchers and postgraduate students wishing to enter this exciting field of research.
Lindberg, Erik
1996-01-01
Can we believe in the results of our circuit simulators ? Is it possible to distinguish between results due to numerical chaos and resultsdue to the eventual chaotic nature of our modelsof physical systems ?. Three experiments with SPICE are presented: (1) A "stable" active RCcircuit with poles i...... in the models of the circuits to be analyzed. If trimmed properly SPICE normally gives the correct result....
Earnshow, R; Jones, H
1991-01-01
This volume is based upon the presentations made at an international conference in London on the subject of 'Fractals and Chaos'. The objective of the conference was to bring together some of the leading practitioners and exponents in the overlapping fields of fractal geometry and chaos theory, with a view to exploring some of the relationships between the two domains. Based on this initial conference and subsequent exchanges between the editors and the authors, revised and updated papers were produced. These papers are contained in the present volume. We thank all those who contributed to this effort by way of planning and organisation, and also all those who helped in the production of this volume. In particular, we wish to express our appreciation to Gerhard Rossbach, Computer Science Editor, Craig Van Dyck, Production Director, and Nancy A. Rogers, who did the typesetting. A. J. Crilly R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word 'fractal' was coined by Benoit Mandelbrot i...
Ruette, Sylvie
2017-01-01
The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the "most interesting" part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gi...
van De Water W; de Weger J
2000-11-01
We study the control of chaos in an experiment on a parametrically excited pendulum whose excitation mechanism is not perfect. This imperfection leads to a weakly excited degree of freedom with an associated small eigenvalue. Although the state of the pendulum could be characterized well and although the perturbation is weak, we fail to control chaos. From a numerical model we learn that the small eigenvalue cannot be ignored when attempting control. However, the estimate of this eigenvalue from an (experimental) time series is elusive. The reason is that points in an experimental time series are distributed according to the natural measure. It is this extremely uneven distribution of points that thwarts attempts to measure eigenvalues that are very different. Another consequence of the phase-space distribution of points for control is the occurrence of logarithmic-oscillations in the waiting time before control can be attempted. We come to the conclusion that chaos needs to be destroyed before the information needed for its control can be obtained.
Complexity Analysis of a Master-Slave Oligopoly Model and Chaos Control
Junhai Ma
2014-01-01
Full Text Available We establish a master-slave oligopoly game model with an upstream monopoly whose output is considered and two downstream oligopolies whose prices are considered. The existence and the local stable region of the Nash equilibrium point are investigated. The complex dynamic properties, such as bifurcation and chaos, are analyzed using bifurcation diagrams, the largest Lyapunov exponent diagrams, and the strange attractor graph. We further analyze the long-run average profit of the three firms and find that they are all optimal in the stable region. In addition, delay feedback control method and limiter control method are used in nondelayed model to control chaos. Furthermore, a delayed master-slave oligopoly game model is considered, and the three firms’ profit in various conditions is analyzed. We find that suitable delayed parameters are important for eliminating chaos and maximizing the profit of the players.
Chaos Theory and Post Modernism
Snell, Joel
2009-01-01
Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…
Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás
2016-12-01
We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values. When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative. The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as long as underlying transient chaos is present in the parameter space. As a condition for a "quasistatically slow" switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where transient chaos is present. These observations need to be taken into account when discussing the implications of "climate change scenarios" in any nonlinear dynamical system.
Chaos Theory and Post Modernism
Snell, Joel
2009-01-01
Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…
方锦清; 罗晓曙; 陈关荣; 翁甲强
2001-01-01
Beam halo-chaos is essentially a complex spatiotemporal chaotic motion in a periodic-focusing channel of a highpower linear proton accelerator. The controllability condition for beam halo-chaos is analysed qualitatively. A special nonlinear control method, i.e. the wavelet-based function feedback, is proposed for controlling beam halochaos. Particle-in-cell simulations are used to explore the nature of halo-chaos formation, which has shown that the beam hMo-chaos is suppressed effectively after using nonlinear control for the proton beam with an initial full Gaussian distribution. The halo intensity factor Hav is reduced from 14%o to zero, and the other statistical physical quantities of beam halo-chaos are more than doubly reduced. The potential applications of such nonlinear control in experiments are briefly pointed out.
Chaos Criminology: A critical analysis
McCarthy, Adrienne L.
There has been a push since the early 1980's for a paradigm shift in criminology from a Newtonian-based ontology to one of quantum physics. Primarily this effort has taken the form of integrating Chaos Theory into Criminology into what this thesis calls 'Chaos Criminology'. However, with the melding of any two fields, terms and concepts need to be translated properly, which has yet to be done. In addition to proving a translation between fields, this thesis also uses a set of criteria to evaluate the effectiveness of the current use of Chaos Theory in Criminology. While the results of the theory evaluation reveal that the current Chaos Criminology work is severely lacking and in need of development, there is some promise in the development of Marx's dialectical materialism with Chaos Theory.
Linear and Nonlinear Dynamical Chaos
Chirikov, B V
1997-01-01
Interrelations between dynamical and statistical laws in physics, on the one hand, and between the classical and quantum mechanics, on the other hand, are discussed with emphasis on the new phenomenon of dynamical chaos. The principal results of the studies into chaos in classical mechanics are presented in some detail, including the strong local instability and robustness of the motion, continuity of both the phase space as well as the motion spectrum, and time reversibility but nonrecurrency of statistical evolution, within the general picture of chaos as a specific case of dynamical behavior. Analysis of the apparently very deep and challenging contradictions of this picture with the quantum principles is given. The quantum view of dynamical chaos, as an attempt to resolve these contradictions guided by the correspondence principle and based upon the characteristic time scales of quantum evolution, is explained. The picture of the quantum chaos as a new generic dynamical phenomenon is outlined together wit...
Supermodular games and potential games.
Brânzei, R.; Mallozzi, L.; Tijs, S.H.
2003-01-01
Potential games and supermodular games are attractive games, especially because under certain conditions they possess pure Nash equilibria. Subclasses of games with a potential are considered which are also strategically equivalent to supermodular games. The focus is on two-person zero-sum games and two-person Cournot games.
Evolutionary Dynamics of Biological Games
Nowak, M. A.; Sigmund, K.
2004-01-01
Darwinian dynamics based on mutation and selection from the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short-and long-term evolution in phenotype space and have found applications r...
Lykke, Marianne; Lund, Haakon; Skov, Mette
2016-01-01
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500.000 broad-casts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings....... To optimally sup-port the researchers a user-centred approach was taken to develop the platform and related metadata scheme. Based on the requirements a three level metadata scheme was developed: (1) core archival metadata, (2) LARM metadata, and (3) project-specific metadata. The paper analyses how.......fm’s strength in providing streaming access to a large, shared corpus of broadcasts....
Lykke, Marianne; Skov, Mette; Lund, Haakon
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500.000 broad-casts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings....... To optimally sup-port the researchers a user-centred approach was taken to develop the platform and related metadata scheme. Based on the requirements a three level metadata scheme was developed: (1) core archival metadata, (2) LARM metadata, and (3) project-specific metadata. The paper analyses how.......fm’s strength in providing streaming access to a large, shared corpus of broadcasts....
Nonhyperbolic homoclinic chaos
Cicogna, G
1999-01-01
Homoclinic chaos is usually examined with the hypothesis of hyperbolicity of the critical point. We consider here, following a (suitably adjusted) classical analytic method, the case of non-hyperbolic points and show that, under a Melnikov-type condition plus an additional assumption, the negatively and positively asymptotic sets persist under periodic perturbations, together with their infinitely many intersections on the Poincaré section. We also examine, by means of essentially the same procedure, the case of (heteroclinic) orbits tending to the infinity; this case includes in particular the classical Sitnikov 3--body problem.
Brun, T A
1993-01-01
Using the decoherence formalism of Gell-Mann and Hartle, a quantum system is found which is the equivalent of the classical chaotic Duffing oscillator. The similarities and the differences from the classical oscillator are examined; in particular, a new concept of quantum maps is introduced, and alterations in the classical strange attractor due to the presence of scale- dependent quantum effects are studied. Classical quantities such as the Lyapunov exponents and fractal dimension are examined, and quantum analogs are suggested. These results are generalized into a framework for quantum dissipative chaos, and there is a brief discussion of other work in this area.
Baran, V; Baran, Virgil; Bonasera, Aldo
1998-01-01
The asymptotic distance between trajectories $d_{\\infty}$, is studied in detail to characterize the occurrence of chaos. We show that this quantity is quite distinct and complementary to the Lyapunov exponents, and it allows for a quantitave estimate for the folding mechanism which keeps the motion bounded in phase space. We study the behaviour of $d_{\\infty}$ in simple unidimensional maps. Near a critical point $d_{\\infty}$ has a power law dependence on the control parameter. Furthermore, at variance with the Lyapunov exponents, it shows jumps when there are sudden changes on the available phase-space.
Dembiński, S. T.; Makowski, A. J.; Pepłowski, P.
1993-02-01
We report for the first time quantum calculations for the so-called bouncer model, the classical analog of which is well known to manifest a chaotic behavior. Three versions of our model are fully tractable quantum mechanically and are potentially a rich source of data for establishing properties of a quantum system of which the classical mechanics can be chaotic. Among the results presented here, consequences of the varying bandwidth of infinite-dimensional transition matrices on the use of the correspondence between classical chaos and non-Poissonian quasienergy statistics are discussed.
2004-01-01
15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.
2004-01-01
15 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small landslide off of a hillslope in the Aureum Chaos region of Mars. Mass movement occurred from right (the slope) to left (the lobate feature pointed left). Small dark dots in the landslide area are large boulders. This feature is located near 2.6oS, 24.5oW. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.
Evolutionary Dynamics of Biological Games
Nowak, Martin A.; Sigmund, Karl
2004-02-01
Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.
Cyclic game dynamics driven by iterated reasoning
Frey, Seth
2012-01-01
Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, game theorists have argued that iterated reasoning-our ability to think through what you think I think you think-will prevent complex dynamics and facilitate convergence to classic equilibria. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point equilibrium concept. These cycles are driven by a "hopping" behavior that can only be explained by iterated reasoning. If iterated reasoning can be complicit in complex dynamics, then game cycles and chaos may realistically be driving fluctuations in real-world social and...
Chaos a very short introduction
Smith, Leonard
2007-01-01
Chaos: A Very Short Introduction shows that we all have an intuitive understanding of chaotic systems. It uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, and Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the real world and implications for the philosophy of science are all discussed in this Very Short Introduction.
Quantum chaos in nuclear physics
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-07-15
A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
Stalling chaos control accelerates convergence
Bick, Christian; Kolodziejski, Christoph; Timme, Marc
2013-06-01
Since chaos control has found its way into many applications, the development of fast, easy-to-implement and universally applicable chaos control methods is of crucial importance. Predictive feedback control has been widely applied but suffers from a speed limit imposed by highly unstable periodic orbits. We show that this limit can be overcome by stalling the control, thereby taking advantage of the stable directions of the uncontrolled chaotic map. This analytical finding is confirmed by numerical simulations, giving a chaos-control method that is capable of successfully stabilizing periodic orbits of high period.
Schmidt, Britney E.
2013-10-01
A critical question for the habitability of Europa remains: how does the ice shell work? The detection of shallow subsurface lenses below Europa’s chaos implies that the ice shell is recycled rapidly and that Europa may be currently active. While this is not the first time liquid water has been implicated for Europa, the location of these features combined with new perspective on their dynamics frames the question in a new way. Melt lenses are intriguing potential habitats. Moreover, their formation requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for hydraulic redistribution of fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, thus preserving habitable conditions within the ice over a longer duration. At a surface age of 40-90 Myr, with 25-50% covered by chaos terrain, Europa's resurfacing rate is very high and water likely plays a significant role. Because of the vigor of overturn implied by this new work, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze are large compared to the timescales for vertical transport, while the timescales for smaller lenses are comparable to or shorter than convective timescales. Moreover, marine ice accretion at the bottom of the ice shell may be contributing to a compositional buoyancy engine that would change the makeup of the ice shell. From this point of view, we evaluate the habitability of Europa’s ice and
Supermodular Games and Potential Games
Brânzei, R.; Mallozzi, L.; Tijs, S.H.
2001-01-01
Potential games and supermodular games are attractive games, especially because under certain conditions they possess pure Nash equilibria. Subclasses of games with a potential are considered which are also strategically equivalent to supermodular games. The focus is on two-person zero-sum games and
Supermodular Games and Potential Games
Brânzei, R.; Mallozzi, L.; Tijs, S.H.
2001-01-01
Potential games and supermodular games are attractive games, especially because under certain conditions they possess pure Nash equilibria. Subclasses of games with a potential are considered which are also strategically equivalent to supermodular games. The focus is on two-person zero-sum games and
Chaos and complexity by design
Roberts, Daniel A.; Yoshida, Beni
2017-04-01
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the "frame poten-tial," which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order 2 k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these 2 k-point correlators for Pauli operators completely determine the k-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Chaos and complexity by design
Roberts, Daniel A
2016-01-01
We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the "frame potential," which is minimized by unitary $k$-designs and measures the $2$-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We show that the norm squared of a generalization of out-of-time-order $2k$-point correlators is proportional to the $k$th frame potential, providing a quantitative connection between chaos and pseudorandomness. Additionally, we prove that these $2k$-point correlators for Pauli operators completely determine the $k$-fold channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.
Lykke, Marianne; Lund, Haakon; Skov, Mette
2016-01-01
CHAOS (Cultural Heritage Archive Open System) provides streaming access to more than 500,000 broadcasts by the Danish Broadcast Corporation from 1931 and onwards. The archive is part of the LARM project with the purpose of enabling researchers to search, annotate, and interact with recordings....... To support the researchers the optimal way, a usercentred approach was taken to develop the platform and related metadata scheme. Based on the requirements, a three level metadata scheme was developed: 1) core archival metadata, 2) LARM metadata, and 3) project-specific metadata. The paper analyses how...... metadata are project-specific, they have been applied to serve as invaluable access points for fellow researchers due to their factual and neutral nature. The researchers particularly stress LARM.fm’s strength in providing streaming access to a large, shared corpus of broadcasts....
Akio Matsumoto
1997-01-01
Full Text Available This study augments the traditional linear cobweb model with lower and upper bounds for variations of output. Its purpose is to detect the relationship between the output constraints and the dynamics of the modified model. Due to the upper and lower bounds, a transitional function takes on a tilted z-profile having three piecewise segments with two turning points. It prevents the price (or quantity dynamics from explosive oscillations. This study demonstrates, by presenting numerical examples, that the modified cobweb model can generate various dynamics ranging from stable periodic cycles to ergodic chaos if a product of the marginal propensity to consume and the marginal product is greater than unity.
Ruelle, David
1991-01-01
Comment expliquer le hasard ? Peut-on rendre raison de l'irraisonnable ? Ce livre, où il est question des jeux de dés, des loteries, des billards, des attracteurs étranges, de l'astrologie et des oracles, du temps qu'il fera, du libre arbitre, de la mécanique quantique, de l'écoulement des fluides, du théorème de Gödel et des limites de l'entendement humain, expose les fondements et les conséquences de la théorie du chaos. David Ruelle est membre de l'Académie des sciences et professeur de physique théorique à l'Institut des hautes études scientifiques de Bures-sur-Yvette.
Ercsey-Ravasz, Maria
2012-01-01
The mathematical structure of the widely popular Sudoku puzzles is akin to typical hard constraint satisfaction problems that lie at the heart of many applications, including protein folding and the general problem of finding the ground state of a glassy spin system. Via an exact mapping of Sudoku into a deterministic, continuous-time dynamical system, here we show that the difficulty of Sudoku translates into transient chaotic behavior exhibited by the dynamical system. In particular, we show that the escape rate $\\kappa$, an invariant characteristic of transient chaos, provides a single scalar measure of the puzzle's hardness, which correlates well with human difficulty level ratings. Accordingly, $\\eta = -\\log_{10}{\\kappa}$ can be used to define a "Richter"-type scale for puzzle hardness, with easy puzzles falling in the range $0 3$. To our best knowledge, there are no known puzzles with $\\eta > 4$.
Wernecke, Hendrik; Gros, Claudius
2016-01-01
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation is split into an initial decrease characterized by the maximal Lyapunov exponent and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. The time scales of both processes can be either of the same or of very different orders of magnitude. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall size of the attractor) for exceedingly long times and therefore remain partially predictable. We introduce a 0-1 indicator for chaos capable of describing this scenario, arguing, in addition, that the chaotic closed braids found close to a period-doubling transition are generically partially predictable.
Stochastic Estimation via Polynomial Chaos
2015-10-01
TΨ is a vector with P+1 elements. With these dimensions, (29) is solvable by standard numerical linear algebra techniques. The specific matrix...initial conditions for partial differential equations. Here, the elementary theory of the polynomial chaos is presented followed by the details of a...the elementary theory of the polynomial chaos is presented followed by the details of a number of example calculations where the statistical mean and
Boundary condition may change chaos
Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., RIAM, Kasuga, Fukuoka (Japan); Kawai, Yoshinobu [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences, Kasuga, Fukuoka (Japan)
2001-07-01
Role of boundary condition for the appearance of chaos is examined. Imposition of the boundary condition is interpreted as the reduction of the system size L. For a demonstration, Rayleigh-Benard instability is considered and the shell model analysis is applied. It is shown that the reduction of L reduces the number of positive Lyapunov exponent of the system, hence opens the route from the turbulence, to the chaos and to the limit cycle/fixed point. (author)
Chaos: A Very Short Introduction
Klages, R [School of Mathematical Sciences, Mile End Road, London, E1 4NS (United Kingdom)
2007-07-20
This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is 'no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and 'phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes 'real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this
2007-03-01
data and analysis in the context of a qualitative study ( Leedy and Ormrod , 2005: 97). It analyzes the data using pattern matching, which is...method design combines quantitative and qualitative components in research ( Leedy and Ormrod , 2005: 97). In this study, quantitative data was...dynamic management game,” Computers & Operational Research, 33: 464-478 (2006). Leedy , Paul D. and Jeanne Ellis Ormrod . Practical Research: Planning
Friedman, Avner
2006-01-01
This volume lays the mathematical foundations for the theory of differential games, developing a rigorous mathematical framework with existence theorems. It begins with a precise definition of a differential game and advances to considerations of games of fixed duration, games of pursuit and evasion, the computation of saddle points, games of survival, and games with restricted phase coordinates. Final chapters cover selected topics (including capturability and games with delayed information) and N-person games.Geared toward graduate students, Differential Games will be of particular interest
Makedon, Alexander
A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…
2012 Symposium on Chaos, Complexity and Leadership
Erçetin, Şefika
2014-01-01
These proceedings from the 2012 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Barrow, John D; Barrow, John D.; Dabrowski, Mariusz P.
1998-01-01
We investigate Bianchi type IX ''Mixmaster'' universes within the framework of the low-energy tree-level effective action for string theory, which (when the ''stringy'' 2-form axion potential vanishes) is formally the same as the Brans-Dicke action with $\\omega =-1$. We show that, unlike the case of general relativity in vacuum, there is no Mixmaster chaos in these string cosmologies. In the Einstein frame an infinite sequence of chaotic oscillations of the scale factors on approach to the initial singularity is impossible, as it was in general relativistic Mixmaster universes in the presence of stiff -fluid matter (or a massless scalar field). A finite sequence of oscillations of the scale factors approximated by Kasner metrics is possible, but it always ceases when all expansion rates become positive. In the string frame the evolution through Kasner epochs changes to a new form which reflects the duality symmetry of the theory. Again, we show that chaotic oscillations must end after a finite time. The need ...
Contopoulos, George
2008-01-01
We distinguish two types of stickiness in systems of two degrees of freedom (a) stickiness around an island of stability and (b) stickiness in chaos, along the unstable asymptotic curves of unstable periodic orbits. We studied these effects in the standard map with a rather large nonlinearity K=5, and we emphasized the role of the asymptotic curves U, S from the central orbit O and the asymptotic curves U+U-S+S- from the simplest unstable orbit around the island O1. We calculated the escape times (initial stickiness times) for many initial points outside but close to the island O1. The lines that separate the regions of the fast from the slow escape time follow the shape of the asymptotic curves S+,S-. We explained this phenomenon by noting that lines close to S+ on its inner side (closer to O1) approach a point of the orbit 4/9, say P1, and then follow the oscillations of the asymptotic curve U+, and escape after a rather long time, while the curves outside S+ after their approach to P1 follow the shape of t...
Hashimoto, Koji; Yoshida, Kentaroh
2016-01-01
Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.
Kot, M.
1990-07-01
A recurrent theme of much recent research is that seemingly random fluctuations often occur as the result of simple deterministic mechanisms. Hence, much of the recent work in nonlinear dynamics has centered on new techniques for identifying order in seemingly chaotic systems. To determine the robustness of these techniques, chaos must, to some extent, be brought into the laboratory. Preliminary investigations of the forced double-Monod equations, a model for a predator and a prey in a chemostat with periodic variation in inflowing substrate concentration, suggest that simple microbial systems may provide the perfect framework for determining the efficacy and relevance of the new nonlinear dynamics in dealing with complex population dynamics. This research has two main goals, that is the mathematical analysis and computer simulation of the periodically forced double-Monod equations and of related models; and experimental (chemostat) population studies that evaluate the accuracy and generality of the models, and that judge the usefulness of various new techniques of nonlinear dynamics to the study of populations.
Convex Games versus Clan Games
Brânzei, R.; Dimitrov, D.A.; Tijs, S.H.
2006-01-01
In this paper we provide characterizations of convex games and total clan games by using properties of their corresponding marginal games.We show that a "dualize and restrict" procedure transforms total clan games with zero worth for the clan into monotonic convex games.Furthermore, each monotonic
Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.
2016-01-01
The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.
Turiaci, Gustavo J.; Verlinde, Herman
2016-12-01
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
Turiaci, Gustavo
2016-01-01
We make three observations that help clarify the relation between CFT and quantum chaos. We show that any 1+1-D system in which conformal symmetry is non-linearly realized exhibits two main characteristics of chaos: maximal Lyapunov behavior and a spectrum of Ruelle resonances. We use this insight to identify a lattice model for quantum chaos, built from parafermionic spin variables with an equation of motion given by a Y-system. Finally we point to a relation between the spectrum of Ruelle resonances of a CFT and the analytic properties of OPE coefficients between light and heavy operators. In our model, this spectrum agrees with the quasi-normal modes of the BTZ black hole.
The information geometry of chaos
Cafaro, Carlo
2008-10-01
In this Thesis, we propose a new theoretical information-geometric framework (IGAC, Information Geometrodynamical Approach to Chaos) suitable to characterize chaotic dynamical behavior of arbitrary complex systems. First, the problem being investigated is defined; its motivation and relevance are discussed. The basic tools of information physics and the relevant mathematical tools employed in this work are introduced. The basic aspects of Entropic Dynamics (ED) are reviewed. ED is an information-constrained dynamics developed by Ariel Caticha to investigate the possibility that laws of physics---either classical or quantum---may emerge as macroscopic manifestations of underlying microscopic statistical structures. ED is of primary importance in our IGAC. The notion of chaos in classical and quantum physics is introduced. Special focus is devoted to the conventional Riemannian geometrodynamical approach to chaos (Jacobi geometrodynamics) and to the Zurek-Paz quantum chaos criterion of linear entropy growth. After presenting this background material, we show that the ED formalism is not purely an abstract mathematical framework, but is indeed a general theoretical scheme from which conventional Newtonian dynamics is obtained as a special limiting case. The major elements of our IGAC and the novel notion of information geometrodynamical entropy (IGE) are introduced by studying two "toy models". To illustrate the potential power of our IGAC, one application is presented. An information-geometric analogue of the Zurek-Paz quantum chaos criterion of linear entropy growth is suggested. Finally, concluding remarks emphasizing strengths and weak points of our approach are presented and possible further research directions are addressed. At this stage of its development, IGAC remains an ambitious unifying information-geometric theoretical construct for the study of chaotic dynamics with several unsolved problems. However, based on our recent findings, we believe it already
Distributed chaos and isotropic turbulence
Bershadskii, A
2015-01-01
Power spectrum of the distributed chaos can be represented by a weighted superposition of the exponential functions which is converged to a stretched exponential $\\exp-(k/k_{\\beta})^{\\beta }$. An asymptotic theory has been developed in order to estimate the value of $\\beta$ for the isotropic turbulence. This value has been found to be $\\beta =3/4$. Excellent agreement has been established between this theory and the data of direct numerical simulations not only for the velocity field but also for the passive scalar and energy dissipation fields. One can conclude that the isotropic turbulence emerges from the distributed chaos.
1989-01-01
Le mouvement brownien ; la mémoire des atomes ; le chaos ; déterminisme et prédictabilité ; déterminisme et chaos ; les phénomènes de physique et les échelles de longueur ; un ordre caché dans la matière désordonnée ; les verres de spin et l'étude des milieux désordonnés ; la convection ; la croissance fractale ; la physique de la matière hétérogène ; la matière ultradivisée.
ergodicity and chaos in geomorphology
Aadel, S.; Gaiumi, M.
2009-04-01
The past three dicades can be considered as a period in which the fundamentals of scientific epistemology have been subjected to drastic revision.The dissemination of the general theory of systems in 1972 , one year after the death of ludwing von Berthalanfi , the proposition of fuzzy logic by Zade, and the foemulation of chaos theory in 1986 by Harison and Biswas allserved to explode the myth that scientific thought was invulnerable. This paper , which has resulted from the theoretical investigation of project based on the paraglicial sediment and glacial evidence on the Zagros-pishkoh to explain the elements of chaos theory and their compatibility with ergodic geomorphology
Sprott, J C
2013-04-01
This paper demonstrates that an artificial neural network training on time-series data from the logistic map at the onset of chaos trains more effectively when it is weakly chaotic. This suggests that a modest amount of chaos in the brain in addition to the ever present random noise might be beneficial for learning. In such a case, human subjects might exhibit an increased Lyapunov exponent in their EEG recordings during the performance of creative tasks, suggesting a possible line of future research.
Enhancing chaoticity of spatiotemporal chaos.
Li, Xiaowen; Zhang, Heqiao; Xue, Yu; Hu, Gang
2005-01-01
In some practical situations strong chaos is needed. This introduces the task of chaos control with enhancing chaoticity rather than suppressing chaoticity. In this paper a simple method of linear amplifications incorporating modulo operations is suggested to make spatiotemporal systems, which may be originally chaotic or nonchaotic, strongly chaotic. Specifically, this control can eliminate periodic windows, increase the values and the number of positive Lyapunov exponents, make the probability distributions of the output chaotic sequences more homogeneous, and reduce the correlations of chaotic outputs for different times and different space units. The applicability of the method to practical tasks, in particular to random number generators and secure communications, is briefly discussed.
Controlling chaos with simple limiters
Corron; Pethel; Hopper
2000-04-24
New experimental results demonstrate that chaos control can be accomplished using controllers that are very simple relative to the system being controlled. Chaotic dynamics in a driven pendulum and a double scroll circuit are controlled using an adjustable, passive limiter-a weight for the pendulum and a diode for the circuit. For both experiments, multiple unstable periodic orbits are selectively controlled using minimal perturbations. These physical examples suggest that chaos control can be practically applied to a much wider array of important problems than initially thought possible.
Application of Theories of Complexity and Chaos to Economic Misgovernance
Partha Gangopadhyay
2011-01-01
Full Text Available Problem statement: In this study we develop a comprehensive model involving local taxes, intergovernmental transfers and bureaucratic corruption to characterize a fiscal equilibrium in order to explain the provision of local (public expenditure in developing nations. The main goal of the research is to explain economic misgovernance as an equilibrium phenomenon, which is therefore expected to persist over time despite serious economic and social costs. Approach: We develop an interactive model of fiscal gaming to understand economic misgovernance in the context of game theory. Resutls: It is constructively argued that the proposed fiscal game is beset with multiple equilibria and the consequent indeterminacy. The possibility of unstable equilibria, or an absence of pure-strategy equilibrium renders the system highly fragile. We also demonstrate the possibility of serious bifurcations of a stable fiscal equilibrium that loses stability with changes in values of relevant parameters. We extend this model further to argue how the chaotic behavior and complexities can characterize the dynamics of decision-making in this present context. Conclusion: The emergence of chaos can undermine the efficiency and predictability of the equilibrium of the proposed fiscal game, which can in turn seriously impinge on the quality of local goods in developing nations. We argue that an understanding of the fragility and complexity of local government system is essential for policy makers for achieving a sustainable local government system in developing nations.
Chaos and transient chaos in an experimental nonlinear pendulum
de Paula, Aline Souza; Savi, Marcelo Amorim; Pereira-Pinto, Francisco Heitor Iunes
2006-06-01
Pendulum is a mechanical device that instigates either technological or scientific studies, being associated with the measure of time, stabilization devices as well as ballistic applications. Nonlinear characteristic of the pendulum attracts a lot of attention being used to describe different phenomena related to oscillations, bifurcation and chaos. The main purpose of this contribution is the analysis of chaos in an experimental nonlinear pendulum. The pendulum consists of a disc with a lumped mass that is connected to a rotary motion sensor. This assembly is driven by a string-spring device that is attached to an electric motor and also provides torsional stiffness to the system. A magnetic device provides an adjustable dissipation of energy. This experimental apparatus is modeled and numerical simulations are carried out. Free and forced vibrations are analyzed showing that numerical results are in close agreement with those obtained from experimental data. This analysis shows that the experimental pendulum has a rich response, presenting periodic response, chaos and transient chaos.
Deterministic polarization chaos from a laser diode
Virte, Martin; Thienpont, Hugo; Sciamanna, Marc
2014-01-01
Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.
Chaos control of Hastings-Powell model by combining chaotic motions
Danca, Marius-F.; Chattopadhyay, Joydev
2016-04-01
In this paper, we propose a Parameter Switching (PS) algorithm as a new chaos control method for the Hastings-Powell (HP) system. The PS algorithm is a convergent scheme that switches the control parameter within a set of values while the controlled system is numerically integrated. The attractor obtained with the PS algorithm matches the attractor obtained by integrating the system with the parameter replaced by the averaged value of the switched parameter values. The switching rule can be applied periodically or randomly over a set of given values. In this way, every stable cycle of the HP system can be approximated if its underlying parameter value equalizes the average value of the switching values. Moreover, the PS algorithm can be viewed as a generalization of Parrondo's game, which is applied for the first time to the HP system, by showing that losing strategy can win: "losing + losing = winning." If "loosing" is replaced with "chaos" and, "winning" with "order" (as the opposite to "chaos"), then by switching the parameter value in the HP system within two values, which generate chaotic motions, the PS algorithm can approximate a stable cycle so that symbolically one can write "chaos + chaos = regular." Also, by considering a different parameter control, new complex dynamics of the HP model are revealed.
Bakkes, S.; Tan, C.T.; Pisan, Y.
2012-01-01
This article focuses on personalised games, which we define as games that utilise player models for the purpose of tailoring the game experience to the individual player. The main contribution of the article is a motivation for personalised gaming, supported by an extensive overview of scientific li
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Seif El-Nasr, Magy; Drachen, Anders; Canossa, Alessandro
2013-01-01
Game Analytics has gained a tremendous amount of attention in game development and game research in recent years. The widespread adoption of data-driven business intelligence practices at operational, tactical and strategic levels in the game industry, combined with the integration of quantitative...
Lecar, M; Holman, M; Murray, N
2002-01-01
The physical basis of chaos in the solar system is now better understood: in all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its Kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new ``short-period'' comet is discovered each year. They are believed to come from the ``Kuiper Belt'' (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury, in 10^{12} years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 10^9 times the age of the solar ...
On the Mechanisms Behind Chaos
Lindberg, Erik
2006-01-01
behind the chaotic behavior, e.g. one group is based on the sudden interrupt of inductive currents, another group is based on the sudden parallel coupling of capacitors with different voltages, and a third group may be based on multiplication of signals. An example of chaos based on disturbance...
Distributed chaos in turbulent wakes
Bershadskii, A
2016-01-01
Soft and hard spontaneous breaking of space translational symmetry (homogeneity) have been studied in turbulent wakes by means of distributed chaos. In the case of the soft translational symmetry breaking the vorticity correlation integral $\\int_{V} \\langle {\\boldsymbol \\omega} ({\\bf x},t) \\cdot {\\boldsymbol \\omega} ({\\bf x} + {\\bf r},t) \\rangle_{V} d{\\bf r}$ dominates the distributed chaos and the chaotic spectra $\\exp-(k/k_{\\beta})^{\\beta }$ have $\\beta =1/2$. In the case of the hard translational symmetry breaking, control on the distributed chaos is switched from one type of fundamental symmetry to another (in this case to Lagrangian relabeling symmetry). Due to the Noether's theorem the relabeling symmetry results in the inviscid helicity conservation and helicity correlation integral $I=\\int \\langle h({\\bf x},t)~h({\\bf x}+{\\bf r}, t)\\rangle d{\\bf r}$ (Levich-Tsinober invariant) dominates the distributed chaos with $\\beta =1/3$. Good agreement with the experimatal data has been established for turbulent ...
Wang, Frank Y
2009-01-01
The general public has been made aware of the research field of "chaos" by the book of that title by James Gleick. This paper will focus on the achievements of Sonya Kovalevskaya, Mary Cartwright, and Mary Tsingou, whose pioneer works were not mentioned in Gleick's book.
Chaos Behaviour of Molecular Orbit
LIU Shu-Tang; SUN Fu-Yan; SHEN Shu-Lan
2007-01-01
Based on H(u)ckel's molecular orbit theory,the chaos and;bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied.The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Kevin Curran
2005-01-01
Full Text Available Computer gaming is a medium by which we can entertain ourselves, a medium that has expanded to the online worldwide market as part as globalization. The growth of online gaming has close ties with the use of broadband, as a good online gaming experience requires a broadband connection. Through online gaming, people can play and communicate with each other freely in almost any country, at any given time. This paper examines the phenomenon of online gaming.
CyFall: A Cyber-Network Game Scenario
2014-08-01
implying attacks (True Positive [TP]) and intrusion attempts (False Positive [FP])—are logged into the game by clicking near a particular graph feature...people, towns, farms , animals … all were moved to a completely new world on a completely new continent, “Middle Earth.” Chaos ensued, as the placements
Does chaos assist localization or delocalization?
Tan, Jintao; Luo, Yunrong; Hai, Wenhua, E-mail: whhai2005@aliyun.com [Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081 (China); Lu, Gengbiao [Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004 (China)
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
Advances in chaos theory and intelligent control
Vaidyanathan, Sundarapandian
2016-01-01
The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate s...
Controlling neuronal noise using chaos control
Christini, D J; Christini, David J; Collins, James J
1995-01-01
Chaos control techniques have been applied to a wide variety of experimental systems, including magneto-elastic ribbons, lasers, chemical reactions, arrhythmic cardiac tissue, and spontaneously bursting neuronal networks. An underlying assumption in all of these studies is that the system being controlled is chaotic. However, the identification of chaos in experimental systems, particularly physiological systems, is a difficult and often misleading task. Here we demonstrate that the chaos criteria used in a recent study can falsely classify a noise-driven, non-chaotic neuronal model as being chaotic. We apply chaos control, periodic pacing, and anticontrol to the non-chaotic model and obtain results which are similar to those reported for apparently chaotic, {\\em in vitro} neuronal networks. We also obtain similar results when we apply chaos control to a simple stochastic system. These novel findings challenge the claim that the aforementioned neuronal networks were chaotic and suggest that chaos control tech...
Writerly Gaming: Political Gaming
Andersen, Christian Ulrik
2007-01-01
software for private entertainment (looking/feeling real) or they can be pragmatic software used for training of professionals (affecting soldiers’, pilots’, etc. perception of the real). A third, and less debated game-reality relationship, based on public awareness and typically a socio-political agenda...
How Can We Observe and Describe Chaos?
Kossakowski, A; Togawa, Y; Kossakowski, Andrzej; Ohya, Masanori; Togawa, Yosio
2003-01-01
We propose a new approach to define chaos in dynamical systems from the point of view of Information Dynamics. Observation of chaos in reality depends upon how to observe it, for instance, how to take the scale in space and time. Therefore it is natural to abandon taking several mathematical limiting procedures. We take account of them, and chaos degree previously introduced is redefined in this paper.
Systems Fragility: The Sociology of Chaos
2015-03-01
THE SOCIOLOGY OF CHAOS by Lori R. Hodges March 2015 Thesis Advisor: Robert Josefek Second Reader: Wayne Porter THIS PAGE INTENTIONALLY...SUBTITLE 5. FUNDING NUMBER S SYSTEMS FRAGILITY: THE SOCIOLOGY OF CHAOS 6. AUTHOR(S) Lori R. Hodges 7. PERFORMING OR GANIZATION NA:iVIE(S) AND...INTENTIONALLY LEFT BLANK ii Approved for public release; distribution is unlimited SYSTEMS FRAGILITY: THE SOCIOLOGY OF CHAOS Lori R. Hodges
Robust chaos in smooth unimodal maps
Andrecut, M.; Ali, M. K.
2001-08-01
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhood of the parameter space. It has been conjectured that robust chaos cannot occur in smooth systems [E. Barreto, B. Hunt, and C. Grebogi, Phys. Rev. Lett. 78, 4561 (1997); 80, 3049 (1998)]. Contrary to this conjecture, we describe a general procedure for generating robust chaos in smooth unimodal maps.
Fitzpatrick, A Liam
2016-01-01
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT$_2$ at large central charge c. The Lyapunov exponent $\\lambda_L$, which is a diagnostic for the early onset of chaos, receives $1/c$ corrections that may be interpreted as $\\lambda_L = \\frac{2 \\pi}{\\beta} \\left( 1 + \\frac{12}{c} \\right)$. However, out of time order correlators receive other equally important $1/c$ suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on $\\lambda_L$ that emerges at large $c$, focusing on CFT$_2$ and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Fitzpatrick, A. Liam [Department of Physics, Boston University,590 Commonwealth Avenue, Boston, MA 02215 (United States); Kaplan, Jared [Department of Physics and Astronomy, Johns Hopkins University,3400 N. Charles St, Baltimore, MD 21218 (United States)
2016-05-12
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT{sub 2} at large central charge c. The Lyapunov exponent λ{sub L}, which is a diagnostic for the early onset of chaos, receives 1/c corrections that may be interpreted as λ{sub L}=((2π)/β)(1+(12/c)). However, out of time order correlators receive other equally important 1/c suppressed contributions that do not have such a simple interpretation. We revisit the proof of a bound on λ{sub L} that emerges at large c, focusing on CFT{sub 2} and explaining why our results do not conflict with the analysis leading to the bound. We also comment on relationships between chaos, scattering, causality, and bulk locality.
Olsen, L F; Degn, H
1977-05-12
Dynamic systems are usually thought to have either monotonic or periodic behaviour. Although the possibility of other types of behaviour has been recognised for many years, the existence of non-monotonic, non-periodic behaviour in dynamic systems has been firmly established only recently. It is termed chaotic behaviour. A review on the rapidly expanding literature on chaos in discrete model systems described by difference equations has been published by May. Rössler, on the other hand, has discussed a few published works on systems of differential equations with chaotic solutions, and he has proposed a three-component chemical model system which he argues has chaotic solutions [figure see text]. The argument is based on a theorem by Li and Yorke. Here we report the finding of chaotic behaviour as an experimental result in an enzyme system (peroxidase). Like Rössler we base our identification of chaos on the theorem by Li and Yorke.
The chaos cookbook a practical programming guide
Pritchard, Joe
2014-01-01
The Chaos Cookbook: A Practical Programming Guide discusses the use of chaos in computer programming. The book is comprised of 11 chapters that tackle various topics relevant to chaos and programming. Chapter 1 reviews the concept of chaos, and Chapter 2 discusses the iterative functions. Chapters 3 and 4 cover differential and Lorenz equations. Chapter 5 talks about strange attractors, while Chapter 6 deals with the fractal link. The book also discusses the Mandelbrot set, and then covers the Julia sets. The other fractal systems and the cellular automata are also explained. The last chapter
Analysis of FBC deterministic chaos
Daw, C.S.
1996-06-01
It has recently been discovered that the performance of a number of fossil energy conversion devices such as fluidized beds, pulsed combustors, steady combustors, and internal combustion engines are affected by deterministic chaos. It is now recognized that understanding and controlling the chaotic elements of these devices can lead to significantly improved energy efficiency and reduced emissions. Application of these techniques to key fossil energy processes are expected to provide important competitive advantages for U.S. industry.
Random Behaviour in Quantum Chaos
Garbaczewski, P
2001-01-01
We demonstrate that a family of radial Ornstein-Uhlenbeck stochastic processes displays an ergodic behaviour appropriate for known quantum chaos universality classes of nearest neighbour spacing distributions. A common feature of those parametric processes is an asymptotic balance between the radial (Bessel-type) repulsion and the harmonic attraction, as manifested in the general form of forward drifts $b(x) = {{N-1}\\over {2x}} - x$, ($N = 2,3,5$ correspond respectively to the familiar GOE, GUE and GSE cases).
Polynomial-Chaos-based Kriging
Schöbi, R; Sudret, B.; Wiart, J.
2015-01-01
International audience; Computer simulation has become the standard tool in many engineering fields for designing and optimizing systems, as well as for assessing their reliability. Optimization and uncertainty quantification problems typically require a large number of runs of the computational model at hand, which may not be feasible with high-fidelity models directly. Thus surrogate models (a.k.a metamodels) have been increasingly investigated in the last decade. Polynomial Chaos Expansion...
Temperature chaos and quenched heterogeneities
Barucca, Paolo; Parisi, Giorgio; Rizzo, Tommaso
2014-03-01
We present a treatable generalization of the Sherrington-Kirkpatrick (SK) model which introduces correlations in the elements of the coupling matrix through multiplicative disorder on the single variables and investigate the consequences on the phase diagram. We define a generalized qEA parameter and test the structural stability of the SK results in this correlated case evaluating the de Almeida-Thouless line of the model. As a main result we demonstrate the increase of temperature chaos effects due to heterogeneities.
Chaos Control in Mechanical Systems
Marcelo A. Savi
2006-01-01
Full Text Available Chaos has an intrinsically richness related to its structure and, because of that, there are benefits for a natural system of adopting chaotic regimes with their wide range of potential behaviors. Under this condition, the system may quickly react to some new situation, changing conditions and their response. Therefore, chaos and many regulatory mechanisms control the dynamics of living systems, conferring a great flexibility to the system. Inspired by nature, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be desirable in different applications. Mechanical systems constitute a class of system where it is possible to exploit these ideas. Chaos control usually involves two steps. In the first, unstable periodic orbits (UPOs that are embedded in the chaotic set are identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this aim. Results show situations where these techniques may be used to control chaos in mechanical systems.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
Mori, Akio; Iwadate, Masako; Minakawa, Nahoko T; Kawashima, Satoshi
2015-09-01
The purpose of this article is to analyze the South Korea and China of computer game research, and the current state of research in Japan. Excessive game actions were analyzed by PET-MRI, MRI, fMRI, NIRS, EEG. These results showed that the prefrontal cortical activity decreased during game play. Also, game addiction causes damage to the prefrontal cortex. The NIRS-EEG and simultaneous recording, during game play correspond well with the decrease of β band and oxygen-hemoglobin. The α band did not change with game play. However, oxygen-hemoglobin decreased during game play. South Korea, game addiction measures have been analyzed since 2002, but in Japan the research is recent.
Dr Obe
game. This development is analogous to that of games of strategy, in which each player is assigned a set of possible ... based system, communication protocols, performance ..... driven and a shorter coding-debugging life cycle. The methods ...
Hansen, Ole Ertløv
2015-01-01
Casual games have become a widespread activity that fills our leisure time. This article introduces to the phenomenon casual games – their definition and the history. Furthermore the article presents and discusses the experience of and engagement or immersion in playing these games as it is put...... forward by recent research. The theoretical approach is based on media psychology, phenomenology and reversal theory. Finally it is argued that playing casual games is fundamental pleasurable to both paratelic as well as telic metamotivational states....
Hansen, Ole Ertløv
2015-01-01
Casual games have become a widespread activity that fills our leisure time. This article introduces to the phenomenon casual games – their definition and the history. Furthermore the article presents and discusses the experience of and engagement or immersion in playing these games as it is put...... forward by recent research. The theoretical approach is based on media psychology, phenomenology and reversal theory. Finally it is argued that playing casual games is fundamental pleasurable to both paratelic as well as telic metamotivational states....
Stochastic Chaos with Its Control and Synchronization
Zhang Ying; Xu Wei; Zhang Tianshu; Yang Xiaoli; Wu Cunli; Fang Tong
2008-01-01
The discovery of chaos in the sixties of last century was a breakthrough in concept,revealing the truth that some disorder behavior, called chaos, could happen even in a deterministic nonlinear system under barely deterministic disturbance. After a series of serious studies, people begin to acknowledge that chaos is a specific type of steady state motion other than the conventional periodic and quasi-periodic ones, featuring a sensitive dependence on initial conditions, resulting from the intrinsic randomness of a nonlinear system itself. In fact, chaos is a collective phenomenon consisting of massive individual chaotic responses, corresponding to different initial conditions in phase space. Any two adjacent individual chaotic responses repel each other, thus causing not only the sensitive dependence on initial conditions but also the existence of at least one positive top Lyapunov exponent (TLE) for chaos. Meanwhile, all the sample responses share one common invariant set on the Poincaré map, called chaotic attractor,which every sample response visits from time to time ergodically. So far, the existence of at least one positive TLE is a commonly acknowledged remarkable feature of chaos. We know that there are various forms of uncertainties in the real world. In theoretical studies, people often use stochastic models to describe these uncertainties, such as random variables or random processes.Systems with random variables as their parameters or with random processes as their excitations are often called stochastic systems. No doubt, chaotic phenomena also exist in stochastic systems, which we call stochastic chaos to distinguish it from deterministic chaos in the deterministic system. Stochastic chaos reflects not only the intrinsic randomness of the nonlinear system but also the external random effects of the random parameter or the random excitation.Hence, stochastic chaos is also a collective massive phenomenon, corresponding not only to different initial
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website.
Discretization chaos - Feedback control and transition to chaos
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Path and semimartingale properties of chaos processes
Basse-O'Connor, Andreas; Graversen, Svend-Erik
2010-01-01
The present paper characterizes various properties of chaos processes which in particular include processes where all time variables admit a Wiener chaos expansion of a fixed finite order. The main focus is on the semimartingale property, p-variation and continuity. The general results obtained a...
Chaos in nonlinear oscillations controlling and synchronization
Lakshamanan, M
1996-01-01
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
Radio lighting based on dynamic chaos generators
Dmitriev, Alexander; Gerasimov, Mark; Itskov, Vadim
2016-01-01
A problem of lighting objects and surfaces with artificial sources of noncoherent microwave radiation with the aim to observe them using radiometric equipment is considered. Transmitters based on dynamic chaos generators are used as sources of noncoherent wideband microwave radiation. An experimental sample of such a device, i.e., a radio lighting lamp based on a chaos microgenerator and its performance are presented.
The CHAOS-4 geomagnetic field model
Olsen, Nils; Lühr, H.; Finlay, Chris;
2014-01-01
We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly deter...
"Chaos" Theory: Implications for Educational Research.
Lindsay, Jean S.
"Chaos" theory is a revolutionary new paradigm developed by scientists to study the behavior of natural systems. "Chaos" refers to the tendency of dynamic non-linear systems toward irregular, sometimes unpredictable, yet deterministic behavior. Major tenets of the theory are presented. The precedent for use of models developed in the natural…
The CHAOS-4 Geomagnetic Field Model
Olsen, Nils; Finlay, Chris; Lühr, H.
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal resolut...
Weak chaos in the asymmetric heavy top
Barrientos, M; Ranada, A F
1995-01-01
We consider the dynamics of the slightly asymmetric heavy top, a non-integrable system obtained from the Lagrange top by breaking the symmetry of its inertia tensor. It shows signs of weak chaos, which we study numerically. We argue that it is a good example for introducing students to non-integrability and chaos. (author)
PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL
Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.;
2010-01-01
The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear inter...
Hansen, Ole Ertløv
2015-01-01
Casual games have become a widespread activity that fills our leisure time. This article introduces to the phenomenon casual games – their definition and the history. Furthermore the article presents and discusses the experience of and engagement or immersion in playing these games as it is put f...... forward by recent research. The theoretical approach is based on media psychology, phenomenology and reversal theory. Finally it is argued that playing casual games is fundamental pleasurable to both paratelic as well as telic metamotivational states.......Casual games have become a widespread activity that fills our leisure time. This article introduces to the phenomenon casual games – their definition and the history. Furthermore the article presents and discusses the experience of and engagement or immersion in playing these games as it is put...
4th international interdisciplinary chaos symposium
Banerjee, Santo; Caglar, Suleyman; Ozer, Mehmet; Chaos and complex systems
2013-01-01
Complexity Science and Chaos Theory are fascinating areas of scientific research with wide-ranging applications. The interdisciplinary nature and ubiquity of complexity and chaos are features that provides scientists with a motivation to pursue general theoretical tools and frameworks. Complex systems give rise to emergent behaviors, which in turn produce novel and interesting phenomena in science, engineering, as well as in the socio-economic sciences. The aim of all Symposia on Chaos and Complex Systems (CCS) is to bring together scientists, engineers, economists and social scientists, and to discuss the latest insights and results obtained in the area of corresponding nonlinear-system complex (chaotic) behavior. Especially for the “4th International Interdisciplinary Chaos Symposium on Chaos and Complex Systems,” which took place April 29th to May 2nd, 2012 in Antalya, Turkey, the scope of the symposium had been further enlarged so as to encompass the presentation of work from circuits to econophysic...
Chaos the science of predictable random motion
Kautz, Richard
2011-01-01
Based on only elementary mathematics, this engaging account of chaos theory bridges the gap between introductions for the layman and college-level texts. It develops the science of dynamics in terms of small time steps, describes the phenomenon of chaos through simple examples, and concludes with a close look at a homoclinic tangle, the mathematical monster at the heart of chaos. The presentation is enhanced by many figures, animations of chaotic motion (available on a companion CD), and biographical sketches of the pioneers of dynamics and chaos theory. To ensure accessibility to motivated high school students, care has been taken to explain advanced mathematical concepts simply, including exponentials and logarithms, probability, correlation, frequency analysis, fractals, and transfinite numbers. These tools help to resolve the intriguing paradox of motion that is predictable and yet random, while the final chapter explores the various ways chaos theory has been put to practical use.
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2013-01-01
This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended. In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...
Convex games, clan games, and their marginal games
Branzei , Rodica; Dimitrov, Dinko; Tijs, Stef
2005-01-01
We provide characterizations of convex games and total clan games by using properties of their corresponding marginal games. As it turns out, a cooperative game is convex if and only if all its marginal games are superadditive, and a monotonic game satisfying the veto player property with respect to the members of a coalition C is a total clan game (with clan C) if and only if all its C-based marginal games are subadditive.
Prediction based chaos control via a new neural network
Shen Liqun [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: liqunshen@gmail.com; Wang Mao [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China); Liu Wanyu [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001 (China); Sun Guanghui [Space Control and Inertia Technology Research Center, Harbin Institute of Technology, Harbin 150001 (China)
2008-11-17
In this Letter, a new chaos control scheme based on chaos prediction is proposed. To perform chaos prediction, a new neural network architecture for complex nonlinear approximation is proposed. And the difficulty in building and training the neural network is also reduced. Simulation results of Logistic map and Lorenz system show the effectiveness of the proposed chaos control scheme and the proposed neural network.
Critical states of transient chaos
Kaufmann, Z; Szépfalusy, P
1999-01-01
One-dimensional maps exhibiting transient chaos and defined on two preimages of the unit interval [0,1] are investigated. It is shown that such maps have continuously many conditionally invariant measures $\\mu_{\\sigma}$ scaling at the fixed point at $x=0$ as $x^{\\sigma}$, but smooth elsewhere. Here $\\sigma$ should be smaller than a critical value $\\sigma_{c}$ that is related to the spectral properties of the Frobenius-Perron operator. The corresponding natural measures are proven to be entirely concentrated on the fixed point.
A. Fitzpatrick; Kaplan, Jared
2016-01-01
We use results on Virasoro conformal blocks to study chaotic dynamics in CFT 2 at large central charge c . The Lyapunov exponent λ L , which is a diagnostic for the early onset of chaos, receives 1 /c corrections that may be interpreted as λ L = 2 π β 1 + 12 c $$ {\\lambda}_L=\\frac{2\\pi }{\\beta}\\left(1+\\frac{12}{c}\\right) $$ . However, out of time order correlators receive other equally important 1 /c suppressed contributions that do not have such a simple interpretation. We revisit the proof ...
Bunimovich, Leonid A., E-mail: bunimovh@math.gatech.edu [ABC Program, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Vela-Arevalo, Luz V., E-mail: luzvela@math.gatech.edu [School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-09-15
A brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.
Chaos control in duffing system
Wang Ruiqi [Department of Electrical Engineering and Electronics, Osaka Sangyo University, Nakagaito 3-1-1, Daito, Osaka 574-8530 (Japan); Deng Jin [Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Jing Zhujun [Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080 (China); Department of Mathematics, Hunan Normal University, Hunan, Changsha 410081 (China); E-mail: jingzj@math.ac.cn
2006-01-01
Analytical and numerical results concerning the inhibition of chaos in Duffing's equation with two weak forcing excitations are presented. We theoretically give parameter-space regions by using Melnikov's function, where chaotic states can be suppressed. The intervals of initial phase difference between the two excitations for which chaotic dynamics can be eliminated are given. Meanwhile, the influence of the phase difference on Lyapunov exponents for different frequencies is investigated. Numerical simulation results show the consistence with the theoretical analysis and the chaotic motions can be controlled to period-motions by adjusting parameter of suppressing excitation.
2001-01-01
In this work, we proposed the wavelet-based feedback controller is as follows: G = -g{fab(rrms)-fab(am)} (1)where the master wavelet function is in a simplified form(2)where a and b are scaling and translation constants, respectively. C is a selected constant. The main reason of using wavelet function for controller design is that it has strong nonlinearity and excellent localization property. It turns out that for halo-chaos control purpose, the translation b can be very small, so for simplicity one may let b = 0 . Our goal of control is rms→am, in this
2015-01-01
When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... hide-and-seek, but even these games are still spatially configured. The border (visible or not) both seem to separate and uphold the game that it is meant for. This chapter sets out to analyse the possible border that separates a game from the surrounding world. Johan Huizinga noted this “separateness......” in his classic work “Homo Ludens” (Huizinga 1938, translated into English 1971). This has since been developed into the concept of the “magic circle” by Salen and Zimmerman (2003), as an understanding of playing games as a kind of alternate reality. When a person cross the magic circle of a game, he...
An Experimental Investigation of Secure Communication With Chaos Masking
Dhar, Sourav
2007-01-01
The most exciting recent development in nonlinear dynamics is realization that chaos can be useful. One application involves "Secure Communication". Two piecewise linear systems with switching nonlinearities have been taken as chaos generators. In the present work the phenomenon of secure communication with chaos masking has been investigated experimentally. In this investigation chaos which is generated from two chaos generators is masked with the massage signal to be transmitted, thus makes communication is more secure.
Hefetz, Dan; Stojaković, Miloš; Szabó, Tibor
2014-01-01
This text serves as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two-player perfect information games. These range from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the reader to better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.
Markov transitions and the propagation of chaos
Gottlieb, Alexander David [Univ. of California, Berkeley, CA (United States)
1998-12-01
The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also s how that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution.
Dov Monderer; Moshe Tennenholtz
1997-01-01
The Internet exhibits forms of interactions which are not captured by existing models in economics, artificial intelligence and game theory. New models are needed to deal with these multi-agent interactions. In this paper we present a new model--distributed games. In such a model each players controls a number of agents which participate in asynchronous parallel multi-agent interactions (games). The agents jointly and strategically control the level of information monitoring by broadcasting m...
Giddings, S.
2013-01-01
This chapter outlines the conventions and pleasures of simulation games as a category, and explores the complicated and contested term simulation. This concept goes to the heart of what computer games and video games are, and the ways in which they articulate ideas, processes, and phenomena between their virtual worlds and the actual world. It has been argued that simulations generate and communicate knowledge and events quite differently from the long-dominant cultural mode of narrative. Th...
Andersen, Christian Ulrik
2006-01-01
T hese days one of the buzzwords in computer game industry and research is ‘Serious Games’ – games where the actions of the player are not limited to the virtual world but are somehow related to the real world. Computer games can be strong environments for learning and training skills in the real...... world. Computer games can also be persuasive – they can be used for advertising (‘adver-gaming’) and induce the players to buy a particular product in the real world or they can propagate a particular political viewpoint or a critique of the real world. The area of ‘serious gaming’ is vast and varied....
Johansson, Martin Wetterstrand
2007-01-01
. Experiments can be set up to explore possible futures and design games has the qualities of elegantly focus the work at the same time as it lessens the burden for the process facilitator. The present paper goes into detail about how design games can be set up to facilitate collaboration and how the design......In this paper design games are discussed as an approach to managing design sessions. The focus is on the collaborative design session and more particular on how to set up the collaboration and reinsure progress. Design games have the advantage of framing the collaborative assignment at hand...
Eberly, David H
2010-01-01
""Game Physics, 2nd Edition"" provides clear descriptions of the mathematics and algorithms needed to create a powerful physics engine - while providing a solid reference for all of the math you will encounter anywhere in game development: quaternions, linear algebra, and calculus. Implementing physical simulations for real-time games is a complex task that requires a solid understanding of a wide range of concepts from the fields of mathematics and physics. Previously, the relevant information could only be gleaned through obscure research papers. Thanks to ""Game Physics"", all this informa
Johansson, Martin Wetterstrand
2007-01-01
In this paper design games are discussed as an approach to managing design sessions. The focus is on the collaborative design session and more particular on how to set up the collaboration and reinsure progress. Design games have the advantage of framing the collaborative assignment at hand....... Experiments can be set up to explore possible futures and design games has the qualities of elegantly focus the work at the same time as it lessens the burden for the process facilitator. The present paper goes into detail about how design games can be set up to facilitate collaboration and how the design...
Andersen, Christian Ulrik
2006-01-01
T hese days one of the buzzwords in computer game industry and research is ‘Serious Games’ – games where the actions of the player are not limited to the virtual world but are somehow related to the real world. Computer games can be strong environments for learning and training skills in the real...... world. Computer games can also be persuasive – they can be used for advertising (‘adver-gaming’) and induce the players to buy a particular product in the real world or they can propagate a particular political viewpoint or a critique of the real world. The area of ‘serious gaming’ is vast and varied....
2015-01-01
, called “pervasive games.” These are games that are based on computer technology, but use a physical space as the game space as opposed to video games. Coupling spatial configuration with performance theory of rituals as liminal phenomena, I put forward a model and a new understanding of the magic circle......When we play games of any kind, from tennis to board games, it is easy to notice that games seem to be configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a border in games like...... or she suddenly finds himself in another world, where artefacts are given new meaning and where other rules apply. This makes sense, but also demands that play and non-play can be easily separated. Even so, the concept of the magic circle has never been analysed with respect to the spatial configuration...
Towards CHAOS-5 - How can Swarm contribute?
Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars
2014-01-01
The launch of ESA's satellite trio Swarm in November 2013 opens an exciting new chapter in the observation and monitoring of Earth's magnetic field from space. We report preliminary results from an extension of the CHAOS series of geomagnetic field models to include both scalar and vector field...... observations from the three Swarm satellites, along with the most recent quasi-definitive ground observatory data. The fit of this new update CHAOS field model to the Swarm observations will be presented in detail providing useful insight the initial Swarm data. Enhancements of the CHAOS modelling scheme...
Chaos from simple models to complex systems
Cencini, Massimo; Vulpiani, Angelo
2010-01-01
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor
Physics and Applications of Laser Diode Chaos
Sciamanna, Marc
2015-01-01
An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.
Chaos dynamic characteristics during mine fires
无
2000-01-01
Mine fires break out and continue in confmed scopes, studying mine fire dynamics characteristics is very usefulto prevent and control fire. The judgement index of fire chaos characteristics was introduced, chaos analysis of mine Fireprocess was described, and the reconstruction of phase space was also presented. An example of mine fire was calculated.The computations show that it is feasible to analyze mine fire dynamic characteristics with chaos theory, and indicate thatfire preoeas is a catastrophe, that is to say, the fire system changes from one state to another during mine fire
Chua's circuit a paradigm for chaos
1993-01-01
For uninitiated researchers, engineers, and scientists interested in a quick entry into the subject of chaos, this book offers a timely collection of 55 carefully selected papers covering almost every aspect of this subject. Because Chua's circuit is endowed with virtually every bifurcation phenomena reported in the extensive literature on chaos, and because it is the only chaotic system which can be easily built by a novice, simulated in a personal computer, and tractable mathematically, it has become a paradigm for chaos, and a vehicle for illustrating this ubiquitous phenomenon. Its supreme
Semiconductor Lasers Stability, Instability and Chaos
Ohtsubo, Junji
2008-01-01
This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.
Chaotic Characteristics and Application of Cooperative Game and Evolutionary Game
Yujing Yang
2014-01-01
Full Text Available According to a dynamical multiteam Cournot game in exploitation of a renewable resource, a new dynamic Cournot duopoly game model with team players in exploitation of a renewable resource is built up in this paper. Based on the theory of bifurcations of dynamical systems, the stability of the system is studied and the local stable region of Nash equilibrium point is obtained. The effect of the output adjustment speed parameters and the weight parameter of the system on the dynamic characteristics of the system are researched. The complexity of the system is described via the bifurcation diagrams, the Lyapunov exponents, the phase portrait, the time history diagram, and the fractal dimension. Furthermore, the chaos control of the system is realized by the parameter adjustment method. At last, an evolutionary game as a special dynamic system is constructed and analyzed which is more useful and helpful in application. The derived results have very important theoretical and practical values for the renewable resource market and companies.
Chaos concepts, control and constructive use
Bolotin, Yurii; Yanovsky, Vladimir
2017-01-01
This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interf...
Semiconductor lasers stability, instability and chaos
Ohtsubo, Junji
2017-01-01
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...
Superfluid (quantum) turbulence and distributed chaos
Bershadskii, A
2016-01-01
Properties of distributed chaos in superfluid (quantum) turbulence have been studied using the data of recent direct numerical simulations (HVBK two-fluid model for He II, and a moving grid in the frames of Gross-Pitaevskii model of the Bose-Einstein condensates at low temperatures). It is found that for the viscous (normal) component of the velocity field in He II the viscosity dominates the distributed chaos with the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ and $\\beta = 2/3$. For the superfluid component the distributed chaos is dominated by the vorticity correlation integral with $\\beta =1/2$ (the soft spontaneous breaking of the space translational symmetry - homogeneity). For very low temperature the distributed chaos is tuned to the large-scale coherent motions: the viscous (normal) component is tuned to the fundamental mode, whereas the superfluid component is subharmonically tuned. For the Gross-Pitaevskii superfluid turbulence incompressible part of the energy spectrum (containing ...
The danger of wishing for chaos.
McSharry, Patrick
2005-10-01
With the discovery of chaos came the hope of finding simple models that would be capable of explaining complex phenomena. Numerous papers claimed to find low-dimensional chaos in a number of areas ranging from the weather to the stock market. Years later, many of these claims have been disproved and the fantastic hopes pinned on chaos have been toned down as research with more realistic objectives follows. The difficulty in calculating reliable estimates of the correlation dimension and the maximal Lyapunov exponent, two of the hallmarks of chaos, are explored. Given that nonlinear dynamics is a relatively new and growing field of science, the need for statistical testing is greater than ever. Surrogate data provides one possible approach but great care is needed in generating relevant surrogates and in interpreting the results. Examples of misleading applications and challenges for the future of research in nonlinear dynamics are discussed.
Optimized chaos control with simple limiters.
Wagner, C; Stoop, R
2001-01-01
We present an elementary derivation of chaos control with simple limiters using the logistic map and the Henon map as examples. This derivation provides conditions for optimal stabilization of unstable periodic orbits of a chaotic attractor.
A simple method of chaos control
Shahverdiev, E M
1998-01-01
A simple method to perform chaos control without the need of complex numerical and analytical calculations is proposed. The method works for dynamical systems with bounded solutions and in the trivial case of constant Jacobians.
Relation of Origins of Primitive Chaos
Ogasawara, Yoshihito
2014-01-01
A new concept, primitive chaos, was proposed, as a concept closely related to the fundamental problems of sciences themselves such as determinism, causality, free will, predictability, and time asymmetry [{\\em J. Phys. Soc. Jpn.} {\\bf 2014}, {\\em 83}, 1401]. This concept is literally a primitive chaos in such a sense that it leads to the characteristic properties of the conventional chaos under natural conditions. Then, two contrast concepts, nondegenerate Peano continuum and Cantor set, are known as the origins of the primitive chaos. In this study, the relation of these origins is investigated with the aid of a mathematical method, topology. Then, we can see the emergence of interesting concepts such as the relation of whole and part, and coarse graining, which imply the essence of our intrinsic recognition for phenomena.
Sándor, Bulcsú; Tél, Tamás; Néda, Zoltán
2013-01-01
The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by spring to an external static point, and due to the dragging effect of the belt the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can only be achieved by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic dynamics and phase transition-like behavior. Noise induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks, around five.
Chaos, Fractals and Their Applications
Thompson, J. Michael T.
2016-12-01
This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.
Detecting chaos from time series
Xiaofeng, Gong; Lai, C. H.
2000-02-01
In this paper, an entirely data-based method to detect chaos from the time series is developed by introducing icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points (the p -steps icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> -neighbour points). We demonstrate that for deterministic chaotic systems, there exists a linear relationship between the logarithm of the average number of icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> p -neighbour points, lnn p ,icons/Journals/Common/epsilon" ALT="epsilon" ALIGN="TOP"/> , and the time step, p . The coefficient can be related to the KS entropy of the system. The effects of the embedding dimension and noise are also discussed.
Compressive Sensing with Optical Chaos
Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.
2016-12-01
Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.
Ergodic theory, randomness, and "chaos".
Ornstein, D S
1989-01-13
Ergodic theory is the theory of the long-term statistical behavior of dynamical systems. The baker's transformation is an object of ergodic theory that provides a paradigm for the possibility of deterministic chaos. It can now be shown that this connection is more than an analogy and that at some level of abstraction a large number of systems governed by Newton's laws are the same as the baker's transformation. Going to this level of abstraction helps to organize the possible kinds of random behavior. The theory also gives new concrete results. For example, one can show that the same process could be produced by a mechanism governed by Newton's laws or by a mechanism governed by coin tossing. It also gives a statistical analog of structural stability.
Control of collective network chaos
Wagemakers, Alexandre, E-mail: alexandre.wagemakers@urjc.es; Sanjuán, Miguel A. F., E-mail: miguel.sanjuan@urjc.es [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain); Barreto, Ernest, E-mail: ebarreto@gmu.edu; So, Paul, E-mail: paso@gmu.edu [School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030 (United States)
2014-06-01
Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of “reduced” ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.
Control of collective network chaos
Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A. F.; So, Paul
2014-06-01
Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.
A watermarking algorithm satisfying topological chaos properties
Bahi, Jacques M
2008-01-01
A new watermarking algorithm is given, it is based on the so-called chaotic iterations and on the choice of some coefficients which are deduced from the description of the carrier medium. After defining these coefficients, chaotic discrete iterations are used to encrypt the watermark and to embed it in the carrier medium. This procedure generates a topological chaos and ensures that the required properties of a watermarking algorithm are satisfied. Key-words: Watermarking, Encryption, Chaotic iterations, Topological chaos, Information hiding
Detecting nonlinearity and chaos in epidemic data
Ellner, S.; Gallant, A.R. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Statistics; Theiler, J. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)
1993-08-01
Historical data on recurrent epidemics have been central to the debate about the prevalence of chaos in biological population dynamics. Schaffer and Kot who first recognized that the abundance and accuracy of disease incidence data opened the door to applying a range of methods for detecting chaos that had been devised in the early 1980`s. Using attractor reconstruction, estimates of dynamical invariants, and comparisons between data and simulation of SEIR models, the ``case for chaos in childhood epidemics`` was made through a series of influential papers beginning in the mid 1980`s. The proposition that the precise timing and magnitude of epidemic outbreaks are deterministic but chaotic is appealing, since it raises the hope of finding determinism and simplicity beneath the apparently stochastic and complicated surface of the data. The initial enthusiasm for methods of detecting chaos in data has been followed by critical re-evaluations of their limitations. Early hopes of a ``one size fits all`` algorithm to diagnose chaos vs. noise in any data set have given way to a recognition that a variety of methods must be used, and interpretation of results must take into account the limitations of each method and the imperfections of the data. Our goals here are to outline some newer methods for detecting nonlinearity and chaos that have a solid statistical basis and are suited to epidemic data, and to begin a re-evaluation of the claims for nonlinear dynamics and chaos in epidemics using these newer methods. We also identify features of epidemic data that create problems for the older, better known methods of detecting chaos. When we ask ``are epidemics nonlinear?``, we are not questioning the existence of global nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Our question is whether the data`s deviations from an annual cyclic trend (which would reflect global nonlinearities) are described by a linear, noise-driven stochastic process.
Thiel, Marco; Kurths, Jürgen; Romano, M. Carmen; Moura, Alessandro; Károlyi, György
In the celebratory dinner honouring Celso Grebogi's 60th birthday, a number of scientists in the area of chaos were asked by James Yorke to tell the tale about how they got involved in the field. Since all the participants have played crucial roles in the development of the subject, their stories give unique insights into the historical development of dynamical systems and chaos. We have transcribed their tales here.
Topologically Induced Chaos in the Open Universe
Tomaschitz, R
1994-01-01
An elementary account on chaos, its origins, and its physical impact in an infinite and multiply connected space-time is given. The anisotropy of the microwave background and the violation of the space-reflection symmetry (parity) by topological self-interference are reviewed in this context. Keywords: Robertson-Walker cosmology, relativistic chaos, chaotic nucleus, center of the Universe, CP violation, self-interference, background radiation, anisotropy, particle creation, hyperbolic manifold, deformation space, topology change, Kleinian group, limit set, mixing, shadowing.
Terminal chaos for information processing in neurodynamics.
Zak, M
1991-01-01
New nonlinear phenomenon-terminal chaos caused by failure of the Lipschitz condition at equilibrium points of dynamical systems is introduced. It is shown that terminal chaos has a well organized probabilistic structure which can be predicted and controlled. This gives an opportunity to exploit this phenomenon for information processing. It appears that chaotic states of neurons activity are associated with higher level of cognitive processes such as generalization and abstraction.
Chaos control using sliding-mode theory
Nazzal, Jamal M. [Faculty of Engineering, Al-Ahliyya Amman University, Post Code 19328 Amman (Jordan)]. E-mail: jnazzal@ammanu.edu.jo; Natsheh, Ammar N. [Faculty of Engineering, Al-Ahliyya Amman University, Post Code 19328 Amman (Jordan)
2007-07-15
Chaos control means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, a nonlinear Sliding-Mode Controller (SMC) is presented. Two nonlinear chaotic systems are chosen to be our case study in this paper, the well known Chua's circuit and Lorenz system. The study shows the effectiveness of the designed nonlinear Sliding-Mode Controller.
Chaos control in traffic flow models
Shahverdiev, E M; Shahverdiev, Elman Mohammed; Tadaki, Shin-ichi
1998-01-01
Chaos control in some of the one- and two-dimensional traffic flow dynamical models in the mean field theory is studied.One dimensional model is investigated taking into account the effect of random delay. Two dimensional model takes into account the effects of overpasses, symmetric distribution of cars and blockages of cars moving in the same direction. Chaos synchronization is performed within both replica and nonreplica approaches, and using parameter perturbation method.
BOOK REVIEW: Chaos: A Very Short Introduction
Klages, R.
2007-07-01
This book is a new volume of a series designed to introduce the curious reader to anything from ancient Egypt and Indian philosophy to conceptual art and cosmology. Very handy in pocket size, Chaos promises an introduction to fundamental concepts of nonlinear science by using mathematics that is `no more complicated than X=2. Anyone who ever tried to give a popular science account of research knows that this is a more challenging task than writing an ordinary research article. Lenny Smith brilliantly succeeds to explain in words, in pictures and by using intuitive models the essence of mathematical dynamical systems theory and time series analysis as it applies to the modern world. In a more technical part he introduces the basic terms of nonlinear theory by means of simple mappings. He masterly embeds this analysis into the social, historical and cultural context by using numerous examples, from poems and paintings over chess and rabbits to Olbers' paradox, card games and `phynance'. Fundamental problems of the modelling of nonlinear systems like the weather, sun spots or golf balls falling through an array of nails are discussed from the point of view of mathematics, physics and statistics by touching upon philosophical issues. At variance with Laplace's demon, Smith's 21st century demon makes `real world' observations only with limited precision. This poses a severe problem to predictions derived from complex chaotic models, where small variations of initial conditions typically yield totally different outcomes. As Smith argues, this difficulty has direct implications on decision-making in everyday modern life. However, it also asks for an inherently probabilistic theory, which somewhat reminds us of what we are used to in the microworld. There is little to criticise in this nice little book except that some figures are of poor quality thus not really reflecting the beauty of fractals and other wonderful objects in this field. I feel that occasionally the book
Chaos in World Politics: A Reflection
Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.
Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.
Pattern formation in mutation of "Game of Life"
HUANG Wen-gao; PAN Zhi-geng
2005-01-01
This paper presents pattern formation in generalized cellular automata (GCA) by varying parameters of classic “game Experiments show the emergence of the self-organizing patterns that is analogous with life forms at the edge of chaos, which consist of certain nontrivial structure and go through periods of growth, maturity and death. We describe these experiments and discuss their potential as alternative way for creating artificial life and generative art, and as a new method for pattern genesis.
The Assignment Game : The Reduced Game
Owen, Guillermo
1992-01-01
Let v be an assignment game. For a given reference payoff vector (x; y), and a coalition S, bargaining within the coalition can be represented by either the reduced game or the derived game. It is known that the reduced game need not be an assignment game (in fact, it need not be super additive) while the derived game is another assignment game, with modified reservation prices. We prove that, when the reference vector is in the core of the game, the derived game is the super additive cover o...
The Assignment Game : The Reduced Game
Owen, Guillermo
1992-01-01
Let v be an assignment game. For a given reference payoff vector (x; y), and a coalition S, bargaining within the coalition can be represented by either the reduced game or the derived game. It is known that the reduced game need not be an assignment game (in fact, it need not be super additive) while the derived game is another assignment game, with modified reservation prices. We prove that, when the reference vector is in the core of the game, the derived game is the super additive cover o...
Genome chaos: survival strategy during crisis.
Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H
2014-01-01
Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.
Chaos in Black holes Surrounded by Electromagnetic Fields
Santoprete, Manuele; Cicogna, Giampaolo
2001-01-01
In this paper we prove the occurence of chaos for charged particles moving around a Schwarzshild black hole, perturbed by uniform electric and magnetic fields. The appearance of chaos is studied resorting to the Poincare'-Melnikov method.
Game development tool essentials
Berinstein, Paula; Ardolino, Alessandro; Franco, Simon; Herubel, Adrien; McCutchan, John; Nedelcu, Nicusor; Nitschke, Benjamin; Olmstead, Don; Robinet, Fabrice; Ronchi, Christian; Turkowski, Rita; Walter, Robert; Samour, Gustavo
2014-01-01
Offers game developers new techniques for streamlining the critical game tools pipeline. Inspires game developers to share their secrets and improve the productivity of the entire industry. Helps game industry practitioners compete in a hyper-competitive environment.
... Donor Community > Games > Donor Tag Game Donor Tag Game This feature requires version 6 or later of ... of Needles LGBTQ+ Donors Blood Donor Community SleevesUp Games Facebook Avatars and Badges Banners eCards Make a ...
Christensen, Jens
Serious Games er et nyt it-forretningsområde, der siden årtusindskiftet er vokset frem, først i USA og dernæst i Vesteuropa og and i-lande. Til forskel fra computerspil er serious games ikke underholdning, men tænkt som et værktøj til støtte for statens og erhvervslivets forskellige funktioner. D...
LI XIAO
2010-01-01
@@ China is not expected to sweep the Vancouver 2010 Olympic Winter Games the way it dominated the 2008 Beijing Summer Olympics.However,it has made Chinese Olympic history after winning three gold medals when the Games passed the halfway point of scheduled competition on February 20.On that day,18-year-old Zhou Yang overcame three South Korean rivals to win the women's short-track speed skating 1,500-meter final.
Playing Games with Timed Games
David, Alexandre; Larsen, Kim Guldstrand; Chatain, Thomas
2009-01-01
In this paper we focus on property-preserving preorders between timed game automata and their application to control of partially observable systems. Following the example of timed simulation between timed automata, we define timed alternating simulation as a preorder between timed game automata......, which preserves controllability. We define a method to reduce the timed alternating simulation problem to a safety game. We show how timed alternating simulation can be used to control efficiently a partially observable system. This method is illustrated by a generic case study....
Playing Games with Timed Games
David, Alexandre; Larsen, Kim Guldstrand; Chatain, Thomas
2009-01-01
In this paper we focus on property-preserving preorders between timed game automata and their application to control of partially observable systems. Following the example of timed simulation between timed automata, we define timed alternating simulation as a preorder between timed game automata......, which preserves controllability. We define a method to reduce the timed alternating simulation problem to a safety game. We show how timed alternating simulation can be used to control efficiently a partially observable system. This method is illustrated by a generic case study....
2nd International Symposium on Chaos, Complexity and Leadership
Banerjee, Santo
2015-01-01
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Some Remarks on Distributional Chaos for Linear Operators
TIAN GENG; Hou BING-ZHE; Ji You-qing
2011-01-01
In this paper,we consider some properties for bounded linear operators concerning distributional chaos.Norm-unimodality of bounded linear operators implies distributional chaos.Some properties such as similarity and spectra description for norm-unimodal operators are considered.The existence of distributional chaos in nest algebra is also proved.In addition,we obtain a sufficient and necessary condition of distributional chaos for a class of operators,which contains unilateral backward weighted shift operators.
Controlling Beam Halo-chaos Using a Special Nonlinear Method
2002-01-01
Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine, and national defense. Some general engineering methods for chaos control have been developedin recent years, but they generally are unsuccessful for beam halo-chaos suppression due to manytechnical constraints. Beam halo-chaos is essentially a spatotemporal chaotic motion within a high power
Regularly timed events amid chaos
Blakely, Jonathan N.; Cooper, Roy M.; Corron, Ned J.
2015-11-01
We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events.
Dattani, Justine [Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY (United Kingdom); Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Blake, Jack C.H. [Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY (United Kingdom); Hilker, Frank M., E-mail: f.hilker@bath.ac.uk [Centre for Mathematical Biology, Department of Mathematical Sciences, University of Bath, Bath BA2 7AY (United Kingdom)
2011-10-31
Designing intervention methods to control chaotic behavior in dynamical systems remains a challenging problem, in particular for systems that are difficult to access or to measure. We propose a simple, intuitive technique that modifies the values of the state variables directly toward a certain target. The intervention takes into account the difference to the target value, and is a combination of traditional proportional feedback and constant feedback methods. It proves particularly useful when the target corresponds to the equilibrium of the uncontrolled system, and is available or can be estimated from expert knowledge (e.g. in biology and economy). -- Highlights: → We propose a chaos control method that forces the system to a certain target. → The intervention takes into account the difference to the target value. → It can be seen as a combination of proportional and constant feedback methods. → The method is very robust and highly efficient in the long-term. → It is particularly applicable when suitable target values are known or available.
The Capabilities of Chaos and Complexity
David L. Abel
2009-01-01
Full Text Available To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. Ã¢Â€ÂœSystemÃ¢Â€Â will be rigorously defined. Can a low-informational rapid succession of PrigogineÃ¢Â€Â™s dissipative structures self-order into bona fide organization?
Generic superweak chaos induced by Hall effect.
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Chaos Theory as a Model for Managing Issues and Crises.
Murphy, Priscilla
1996-01-01
Uses chaos theory to model public relations situations in which the salient feature is volatility of public perceptions. Discusses the premises of chaos theory and applies them to issues management, the evolution of interest groups, crises, and rumors. Concludes that chaos theory is useful as an analogy to structure image problems and to raise…
Chaos control and synchronization in a fractional neuron network system
Zhou Shangbo [Computer Department of Chongqing University, Chongqing 400044 (China); Li Hua [Department of Mathematics and Computer Science, University of Lethbridge, T1K 3M4 (Canada)], E-mail: hua.li@uleth.ca; Zhu Zhengzhou [Computer Department of Chongqing University, Chongqing 400044 (China)
2008-05-15
In this paper, an algorithm of numerical solution for fractional differential equations is presented. Chaos in a neuron network system is also illustrated. Moreover, chaos feedback control and synchronization systems are constructed. The study and experiment indicate that the chaos in fractional order neuron networks could be controlled and synchronized.
Collective behavior and evolutionary games - An introduction
Perc, Matjaz
2013-01-01
This is an introduction to the special issue titled "Collective behavior and evolutionary games" that is in the making at Chaos, Solitons & Fractals. The term collective behavior covers many different phenomena in nature and society. From bird flocks and fish swarms to social movements and herding effects, it is the lack of a central planner that makes the spontaneous emergence of sometimes beautifully ordered and seemingly meticulously designed behavior all the more sensational and intriguing. The goal of the special issue is to attract submissions that identify unifying principles that describe the essential aspects of collective behavior, and which thus allow for a better interpretation and foster the understanding of the complexity arising in such systems. As the title of the special issue suggests, the later may come from the realm of evolutionary games, but this is certainly not a necessity, neither for this special issue, and certainly not in general. Interdisciplinary work on all aspects of collec...
Nonlinear Physics Integrability, Chaos and Beyond
Lakshmanan, M
1997-01-01
Integrability and chaos are two of the main concepts associated with nonlinear physical systems which have revolutionized our understanding of them. Highly stable exponentially localized solitons are often associated with many of the important integrable nonlinear systems while motions which are sensitively dependent on initial conditions are associated with chaotic systems. Besides dramatically raising our perception of many natural phenomena, these concepts are opening up new vistas of applications and unfolding technologies: Optical soliton based information technology, magnetoelectronics, controlling and synchronization of chaos and secure communications, to name a few. These developments have raised further new interesting questions and potentialities. We present a particular view of some of the challenging problems and payoffs ahead in the next few decades by tracing the early historical events, summarizing the revolutionary era of 1950-70 when many important new ideas including solitons and chaos were ...
Nonlinear Dynamics and Chaos: Advances and Perspectives
Thiel, Marco; Romano, M. Carmen; Károlyi, György; Moura, Alessandro
2010-01-01
This book is a collection of contributions on various aspects of active frontier research in the field of dynamical systems and chaos. Each chapter examines a specific research topic and, in addition to reviewing recent results, also discusses future perspectives. The result is an invaluable snapshot of the state of the field by some of its most important researchers. The first contribution in this book, "How did you get into Chaos?", is actually a collection of personal accounts by a number of distinguished scientists on how they entered the field of chaos and dynamical systems, featuring comments and recollections by James Yorke, Harry Swinney, Floris Takens, Peter Grassberger, Edward Ott, Lou Pecora, Itamar Procaccia, Michael Berry, Giulio Casati, Valentin Afraimovich, Robert MacKay, and last but not least, Celso Grebogi, to whom this volume is dedicated.
Nonlinear dynamics and quantum chaos an introduction
Wimberger, Sandro
2014-01-01
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Avoiding Quantum Chaos in Quantum Computation
Berman, G P; Izrailev, F M; Tsifrinovich, V I
2001-01-01
We study a one-dimensional chain of nuclear $1/2-$spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supporting
About the Concept of Quantum Chaos
Ignacio S. Gomez
2017-05-01
Full Text Available The research on quantum chaos finds its roots in the study of the spectrum of complex nuclei in the 1950s and the pioneering experiments in microwave billiards in the 1970s. Since then, a large number of new results was produced. Nevertheless, the work on the subject is, even at present, a superposition of several approaches expressed in different mathematical formalisms and weakly linked to each other. The purpose of this paper is to supply a unified framework for describing quantum chaos using the quantum ergodic hierarchy. Using the factorization property of this framework, we characterize the dynamical aspects of quantum chaos by obtaining the Ehrenfest time. We also outline a generalization of the quantum mixing level of the kicked rotator in the context of the impulsive differential equations.
Hyperbolic Chaos A Physicist’s View
Kuznetsov, Sergey P
2012-01-01
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Chaos Concepts, Control and Constructive Use
Bolotin, Yurii; Yanovsky, Vladimir
2009-01-01
The study of chaotic behaviour in nonlinear, dynamical systems is now a well established research domain with ramifications into all fields of sciences, spanning a vast range of applications, from celestial mechanics, via climate change, to the functioning of brownian motors in cells. A more recent discovery is that chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter itself for the system under investigation, stochastic resonance being a prime example. The present work is putting emphasis on the latter aspects, and after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing relevant algorithms for both Hamiltonian and dissipative systems amongst others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance and a survey of ratchet models. This short and concise pr...
Gamers on Games and Gaming: Implications for Educational Game Design
Van Staalduinen, J.P.
2012-01-01
In the past two decades, there has been a steadily increasing interest in the use of games for educational purposes. This has led to an increased design, use and study of educational games; games where the players learn through playing. However, experiments with the educational use of games have not
Gamers on Games and Gaming: Implications for Educational Game Design
Van Staalduinen, J.P.
2012-01-01
In the past two decades, there has been a steadily increasing interest in the use of games for educational purposes. This has led to an increased design, use and study of educational games; games where the players learn through playing. However, experiments with the educational use of games have not
Harnessing quantum transport by transient chaos.
Yang, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso; Pecora, Louis M
2013-03-01
Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.
Ventilatory chaos is impaired in carotid atherosclerosis.
Laurence Mangin
Full Text Available Ventilatory chaos is strongly linked to the activity of central pattern generators, alone or influenced by respiratory or cardiovascular afferents. We hypothesized that carotid atherosclerosis should alter ventilatory chaos through baroreflex and autonomic nervous system dysfunctions. Chaotic dynamics of inspiratory flow was prospectively evaluated in 75 subjects undergoing carotid ultrasonography: 27 with severe carotid stenosis (>70%, 23 with moderate stenosis (<70%, and 25 controls. Chaos was characterized by the noise titration method, the correlation dimension and the largest Lyapunov exponent. Baroreflex sensitivity was estimated in the frequency domain. In the control group, 92% of the time series exhibit nonlinear deterministic chaos with positive noise limit, whereas only 68% had a positive noise limit value in the stenoses groups. Ventilatory chaos was impaired in the groups with carotid stenoses, with significant parallel decrease in the noise limit value, correlation dimension and largest Lyapunov exponent, as compared to controls. In multiple regression models, the percentage of carotid stenosis was the best in predicting the correlation dimension (p<0.001, adjusted R(2: 0.35 and largest Lyapunov exponent (p<0.001, adjusted R(2: 0.6. Baroreflex sensitivity also predicted the correlation dimension values (p = 0.05, and the LLE (p = 0.08. Plaque removal after carotid surgery reversed the loss of ventilatory complexity. To conclude, ventilatory chaos is impaired in carotid atherosclerosis. These findings depend on the severity of the stenosis, its localization, plaque surface and morphology features, and is independently associated with baroreflex sensitivity reduction. These findings should help to understand the determinants of ventilatory complexity and breathing control in pathological conditions.
Quantum chaos on a critical Fermi surface
Patel, Aavishkar A
2016-01-01
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of $N$ species of fermions at non-zero density coupled to a $U(1)$ gauge field in two spatial dimensions, and determine the Lyapunov rate and the butterfly velocity in an extended RPA approximation. The thermal diffusivity is found to be universally related to these chaos parameters, i.e. the relationship is independent of $N$, the gauge coupling constant, the Fermi velocity, the Fermi surface curvature, and high energy details.
Atoms in static fields Chaos or Diffraction?
Dando, P A
1998-01-01
A brief review of the manifestations of classical chaos observed in atomic systems is presented. Particular attention is paid to the analysis of atomic spectra by periodic orbit-type theories. For diamagnetic non-hydrogenic Rydberg atoms, the dynamical explanation for observed spectral features has been disputed. By building on our previous work on the photoabsorption spectrum, we show how, by the addition of diffractive terms, the spectral fluctuations in the energy level spectrum of general Rydberg atoms can be obtained with remarkable precision from the Gutzwiller trace formula. This provides further evidence that non-hydrogenic systems are most naturally described in terms of diffraction rather than classical chaos.
SENSITIVE ERROR ANALYSIS OF CHAOS SYNCHRONIZATION
HUANG XIAN-GAO; XU JIAN-XUE; HUANG WEI; L(U) ZE-JUN
2001-01-01
We study the synchronizing sensitive errors of chaotic systems for adding other signals to the synchronizing signal.Based on the model of the Henon map masking, we examine the cause of the sensitive errors of chaos synchronization.The modulation ratio and the mean square error are defined to measure the synchronizing sensitive errors by quality.Numerical simulation results of the synchronizing sensitive errors are given for masking direct current, sinusoidal and speech signals, separately. Finally, we give the mean square error curves of chaos synchronizing sensitivity and threedimensional phase plots of the drive system and the response system for masking the three kinds of signals.
Chaos in an imperfectly premixed model combustor
Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)
2015-02-15
This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.
Distributed chaos and inertial ranges in turbulence
Bershadskii, A
2016-01-01
It is shown that appearance of inertial range of scales, adjacent to distributed chaos range, results in adiabatic invariance of an energy correlation integral for isotropic homogeneous turbulence and for buoyancy driven turbulence (with stable or unstable stratification, including Rayleigh-Taylor mixing zone). Power spectrum of velocity field for distributed chaos dominated by this adiabatic invariant has a stretched exponential form $\\propto \\exp(-k/k_{\\beta})^{3/5}$. Results of recent direct numerical simulations have been used in order to support these conclusions.
USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING
PENG ZHAO-WANG; ZHONG TING-XIU
2000-01-01
Since the conventional open-loop optimal targeting of chaos is very sensitive to noise, a close-loop optimal targeting method is proposed to improve the targeting performance under noise. The present optimal targeting model takes into consideration both precision and speed of the targeting procedure. The parameters, rather than the output, of the targeting controller, are directly optimized to obtain optimal chaos targeting. Analysis regarding the mechanism is given from physics aspect and numerical experiment on the Hénon map is carried out to compare the targeting performance under noise between the close-loop and the open-loop methods.
Experimental realization of chaos control by thresholding.
Murali, K; Sinha, Sudeshna
2003-07-01
We report the experimental verification of thresholding as a versatile tool for efficient and flexible chaos control. The strategy here simply involves monitoring a single state variable and resetting it when it exceeds a threshold. We demonstrate the success of the technique in rapidly controlling different chaotic electrical circuits, including a hyperchaotic circuit, onto stable fixed points and limit cycles of different periods, by thresholding just one variable. The simplicity of this controller entailing no run-time computation, and the ease and rapidity of switching between different targets it offers, suggests a potent tool for chaos based applications.
Investigation on evolutionary optimization of chaos control
Zelinka, Ivan [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: zelinka@fai.utb.cz; Senkerik, Roman [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: senkerik@fai.utb.cz; Navratil, Eduard [Faculty of Applied Informatics, Tomas Bata University in Zli' n, Nad Stranemi 4511, 762 72 Zli' n (Czech Republic)], E-mail: enavratil@fai.utb.cz
2009-04-15
This work deals with an investigation on optimization of the feedback control of chaos based on the use of evolutionary algorithms. The main objective is to show that evolutionary algorithms are capable of optimization of chaos control. As models of deterministic chaotic systems, one-dimensional Logistic equation and two-dimensional Henon map were used. The optimizations were realized in several ways, each one for another set of parameters of evolution algorithms or separate cost functions. The evolutionary algorithm SOMA (self-organizing migrating algorithm) was used in four versions. For each version simulations were repeated several times to show and check for robustness of the applied method.
Genesereth, Michael
2014-01-01
General game players are computer systems able to play strategy games based solely on formal game descriptions supplied at ""runtime"" (n other words, they don't know the rules until the game starts). Unlike specialized game players, such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific games; they must discover such algorithms themselves. General game playing expertise depends on intelligence on the part of the game player and not just intelligence of the programmer of the game player.GGP is an interesting application in its own right. It is intell
Salovaara-Moring, Inka
There has recently been considerable attention paid to the gamification of digital journalism. Where the current technological and social affordances of web 2.0 storytelling have proved less attractive to younger users, the persuasive features of game logics have added new dimensions to interactive......, participatory journalism. This notion refers to realitybased news games that can act both as an independent medium for news content and as a supplement to traditional forms of coverage. Simultaneously, persuasive logics of gamification offer new ways to engage actuality through media space’s augmented reality....... This paper1 explores the new spatio-epistemological realities of two journalistic games, asking how the spatial, operational, and procedural realities of storytelling change through ‘gamification’. It reflects on the spatial dimension of digital journalism in order to challenge the traditional, generic...
Christensen, Jens
Serious Games er et nyt it-forretningsområde, der siden årtusindskiftet er vokset frem, først i USA og dernæst i Vesteuropa og and i-lande. Til forskel fra computerspil er serious games ikke underholdning, men tænkt som et værktøj til støtte for statens og erhvervslivets forskellige funktioner. Det...... amerikanske militær har været fødselshjælper for den nye teknologi. Herfra har serious games bredt sig til andre sektorer og og i-lande, inkl. Danmark. Bogen skildrer, hvordan det nye forretningsområde er i færd med at blive udkrystalliseret af en række beslægtede industrigrene, og hvordan udviklingen er...
Anttila, Jani
2011-01-01
Behavior in the context of game theory is described as a natural process that follows the 2nd law of thermodynamics. The rate of entropy increase as the payoff function is derived from statistical physics of open systems. The thermodynamic formalism relates everything in terms of energy and describes various ways to consume free energy. This allows us to associate game theoretical models of behavior to physical reality. Ultimately behavior is viewed as a physical process where flows of energy naturally select ways to consume free energy as soon as possible. This natural process is, according to the profound thermodynamic principle, equivalent to entropy increase in the least time. However, the physical portrayal of behavior does not imply determinism. On the contrary, evolutionary equation for open systems reveals that when there are three or more degrees of freedom for behavior, the course of a game is inherently unpredictable in detail because each move affects motives of moves in the future. Eventually, wh...
"Game" in history, historical in "game"
Fostikov, Aleksandra
2006-01-01
This paper is considered with relation between game and the History, in three various aspects: first part is dedicated to the meaning of noun "game" from its early stages till today, the second part relates to influences of game on human development and the third part deals with objectivity of historical facts in computer games.
Serious Games: Video Games for Good?
Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah
2015-01-01
As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this…
Serious Games: Video Games for Good?
Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah
2015-01-01
As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this…
Rennison, Betina Wolfgang
of management differently. In this chaos of codes the managerial challenge is to take a second order position in order to strategically manage the communication that manages management itself. Key words: Management; personnel management; human-relations; pay-system; communication; system-theory; discursive...
Chaos and fractals an elementary introduction
Feldman, David P
2012-01-01
For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.
Controlling chaos to solutions with complex eigenvalues.
Kwon, Oh-Jong; Lee, Hoyun
2003-02-01
We derive formulas for parameter and variable perturbations to control chaos using linearized dynamics. They are available irrespective of the dimension of the system, the number of perturbed parameters or variables, and the kinds of eigenvalues of the linearized dynamics. We illustrate this using the two coupled Duffing oscillators and the two coupled standard maps.
Chaos in the Belousov-Zhabotinsky reaction
Field, Richard J.
The dynamics of reacting chemical systems is governed by typically polynomial differential equations that may contain nonlinear terms and/or embedded feedback loops. Thus the dynamics of such systems may exhibit features associated with nonlinear dynamical systems, including (among others): temporal oscillations, excitability, multistability, reaction-diffusion-driven formation of spatial patterns, and deterministic chaos. These behaviors are exhibited in the concentrations of intermediate chemical species. Bifurcations occur between particular dynamic behaviors as system parameters are varied. The governing differential equations of reacting chemical systems have as variables the concentrations of all chemical species involved, as well as controllable parameters, including temperature, the initial concentrations of all chemical species, and fixed reaction-rate constants. A discussion is presented of the kinetics of chemical reactions as well as some thermodynamic considerations important to the appearance of temporal oscillations and other nonlinear dynamic behaviors, e.g., deterministic chaos. The behavior, chemical details, and mechanism of the oscillatory Belousov-Zhabotinsky Reaction (BZR) are described. Furthermore, experimental and mathematical evidence is presented that the BZR does indeed exhibit deterministic chaos when run in a flow reactor. The origin of this chaos seems to be in toroidal dynamics in which flow-driven oscillations in the control species bromomalonic acid couple with the BZR limit cycle...
A Framework for Chaos Theory Career Counselling
Pryor, Robert G. L.
2010-01-01
Theory in career development counselling provides a map that counsellors can use to understand and structure the career counselling process. It also provides a means to communicate this understanding and structuring to their clients as part of the counselling intervention. The chaos theory of careers draws attention to the complexity,…
Chaos in a Bose-Einstein condensate
Wang Zhi-Xia; Ni Zheng-Guo; Cong Fu-Zhong; Liu Xue-Shen; Chen Lei
2010-01-01
It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose-Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential.A formally exact solution of the timedependent Gross-Pitaevskii equation is constructed,which describes the matter shock waves with chaotic or periodic amplitudes and phases.
Dynamic system uncertainty propagation using polynomial chaos
Xiong Fenfen
2014-10-01
Full Text Available The classic polynomial chaos method (PCM, characterized as an intrusive methodology, has been applied to uncertainty propagation (UP in many dynamic systems. However, the intrusive polynomial chaos method (IPCM requires tedious modification of the governing equations, which might introduce errors and can be impractical. Alternative to IPCM, the non-intrusive polynomial chaos method (NIPCM that avoids such modifications has been developed. In spite of the frequent application to dynamic problems, almost all the existing works about NIPCM for dynamic UP fail to elaborate the implementation process in a straightforward way, which is important to readers who are unfamiliar with the mathematics of the polynomial chaos theory. Meanwhile, very few works have compared NIPCM to IPCM in terms of their merits and applicability. Therefore, the mathematic procedure of dynamic UP via both methods considering parametric and initial condition uncertainties are comparatively discussed and studied in the present paper. Comparison of accuracy and efficiency in statistic moment estimation is made by applying the two methods to several dynamic UP problems. The relative merits of both approaches are discussed and summarized. The detailed description and insights gained with the two methods through this work are expected to be helpful to engineering designers in solving dynamic UP problems.
Spatio-temporal chaos : A solvable model
Diks, C; Takens, F; DeGoede, J
1997-01-01
A solvable coupled map lattice model exhibiting spatio-temporal chaos is studied. Exact expressions are obtained for the spectra of Lyapunov exponents as a function of the model parameters. Although the model has spatio-temporal structure, the time series measured at a single lattice site are shown
Quantum dynamical entropies in discrete classical chaos
Benatti, Fabio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Cappellini, Valerio [Dipartimento di Fisica Teorica, Universita di Trieste, Strada Costiera 11, 34014 Trieste (Italy); Zertuche, Federico [Instituto de Matematicas, UNAM, Unidad Cuernavaca, AP 273-3, Admon. 3, 62251 Cuernavaca, Morelos (Mexico)
2004-01-09
We discuss certain analogies between quantization and discretization of classical systems on manifolds. In particular, we will apply the quantum dynamical entropy of Alicki and Fannes to numerically study the footprints of chaos in discretized versions of hyperbolic maps on the torus.
Teaching Chaos to Art College Students
Blum, Ben
2001-03-01
This is a report of the author's teaching the basic concepts of chaos to students at Massachusetts College of Art. In order to bypass the students' aversion to mathematics stemming from earlier difficult experiences with mathematics, the course started with some symbolism which was totally unfamiliar to them: a Boolean system based on Brown's Laws of Form. This was then used to develop the mathematical ideas of duality and self-reference. After that was a general survey of the various areas of mathematics using Guillen's Bridges to Infinity. Chaos was then introduced using Gleick's Chaos, which provides a very engaging narrative, along with an introduction to the basic ideas. Two different strategies were used to introduce the mathematical ideas. First, making use of the students' visual orientation, sensitive dependence on initial conditions, fractional dimension, fractals, the Koch snowflake, self-similiarity, and statistical self-similiarity were covered pictorially. Second, so that the students could get a real feeling for the mathematics of chaos, they individually worked out a recurrence equation with varying seeds, using a hand-held calculator.
Chaos in Practice: Techniques for Career Counsellors
Pryor, Robert G. L.; Bright, Jim
2005-01-01
The chaos theory of careers emphasises continual change, the centrality and importance of chance events, the potential of minor events to have disproportionately large impacts on subsequent events, and the capacity for dramatic phase shifts in career behaviour. This approach challenges traditional approaches to career counselling, assumptions…
Dynamic system uncertainty propagation using polynomial chaos
Xiong Fenfen; Chen Shishi; Xiong Ying
2014-01-01
The classic polynomial chaos method (PCM), characterized as an intrusive methodology, has been applied to uncertainty propagation (UP) in many dynamic systems. However, the intrusive polynomial chaos method (IPCM) requires tedious modification of the governing equations, which might introduce errors and can be impractical. Alternative to IPCM, the non-intrusive polynomial chaos method (NIPCM) that avoids such modifications has been developed. In spite of the frequent application to dynamic problems, almost all the existing works about NIPCM for dynamic UP fail to elaborate the implementation process in a straightforward way, which is important to readers who are unfamiliar with the mathematics of the polynomial chaos theory. Meanwhile, very few works have compared NIPCM to IPCM in terms of their merits and applicability. Therefore, the mathematic procedure of dynamic UP via both methods considering parametric and initial condition uncertainties are comparatively discussed and studied in the present paper. Comparison of accuracy and efficiency in statistic moment estimation is made by applying the two methods to several dynamic UP problems. The relative merits of both approaches are discussed and summarized. The detailed description and insights gained with the two methods through this work are expected to be helpful to engineering designers in solving dynamic UP problems.
Many-body chaos at weak coupling
Stanford, Douglas
2016-10-01
The strength of chaos in large N quantum systems can be quantified using λ L , the rate of growth of certain out-of-time-order four point functions. We calculate λ L to leading order in a weakly coupled matrix Φ4 theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.
Chaos control applied to heart rhythm dynamics
Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)
2011-08-15
Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.
Control and synchronization of spatiotemporal chaos.
Ahlborn, Alexander; Parlitz, Ulrich
2008-01-01
Chaos control methods for the Ginzburg-Landau equation are presented using homogeneously, inhomogeneously, and locally applied multiple delayed feedback signals. In particular, it is shown that a small number of control cells is sufficient for stabilizing plane waves or for trapping spiral waves, and that successful control is closely connected to synchronization of the dynamics in regions close to the control cells.
CHAOS-BASED ADVANCED ENCRYPTION STANDARD
Abdulwahed, Naif B.
2013-05-01
This thesis introduces a new chaos-based Advanced Encryption Standard (AES). The AES is a well-known encryption algorithm that was standardized by U.S National Institute of Standard and Technology (NIST) in 2001. The thesis investigates and explores the behavior of the AES algorithm by replacing two of its original modules, namely the S-Box and the Key Schedule, with two other chaos- based modules. Three chaos systems are considered in designing the new modules which are Lorenz system with multiplication nonlinearity, Chen system with sign modules nonlinearity, and 1D multiscroll system with stair case nonlinearity. The three systems are evaluated on their sensitivity to initial conditions and as Pseudo Random Number Generators (PRNG) after applying a post-processing technique to their output then performing NIST SP. 800-22 statistical tests. The thesis presents a hardware implementation of dynamic S-Boxes for AES that are populated using the three chaos systems. Moreover, a full MATLAB package to analyze the chaos generated S-Boxes based on graphical analysis, Walsh-Hadamard spectrum analysis, and image encryption analysis is developed. Although these S-Boxes are dynamic, meaning they are regenerated whenever the encryption key is changed, the analysis results show that such S-Boxes exhibit good properties like the Strict Avalanche Criterion (SAC) and the nonlinearity and in the application of image encryption. Furthermore, the thesis presents a new Lorenz-chaos-based key expansion for the AES. Many researchers have pointed out that there are some defects in the original key expansion of AES and thus have motivated such chaos-based key expansion proposal. The new proposed key schedule is analyzed and assessed in terms of confusion and diffusion by performing the frequency and SAC test respectively. The obtained results show that the new proposed design is more secure than the original AES key schedule and other proposed designs in the literature. The proposed
Nielsen, Rune; Løssing, Tobias
2004-01-01
Games, er ikke produktudvikling i traditionel forstand, men derimod en reflekteret designproces, der forsøger at optage spilteoretiske og HCI-relaterede problemstillinger. I denne artikel vil vi koncentrere os om udvalgte principielle overvejelser i udviklingen af især forhandlings- og debatspil, som...
Oliva, Constantino; Duca, Edward
2012-01-01
WHAT IS THE STORY behind our smart phones? Phone Story retraces the production stages of our favorite products, showing us the dramatic working conditions behind their assembly. It seems like Apple didn’t like it: the game is now banned from the App Store.
Lum, Lydia
2007-01-01
Around the country, disabled sports are often treated like second-class siblings to their able-bodied counterparts, largely because the latter bring in prestigious tournaments and bowl games, lucrative TV contracts and national exposure for top athletes and coaches. Because disabled people are so sparsely distributed in the general population, it…
van Bottenburg, Maarten
2001-01-01
Why is soccer the sport of choice in South America, while baseball has soared to popularity in the Carribean? How did cricket become India's national sport, while China is a stronghold of table tennis? In Global Games, Maarten van Bottenburg asserts that it is the 'hidden competition' of social and
Helms, Niels Henrik
2012-01-01
at forsøge at beskrive nogle af de mekanismer, som gør, at nogle af disse kreative industrier bliver netop kreative og innovative, at de ikke alene kan klare sig, men også ændre og udvikle både indhold, form og organisering – at de bliver det der på managementsprog hedder game changers....
van Bottenburg, Maarten
2001-01-01
Why is soccer the sport of choice in South America, while baseball has soared to popularity in the Carribean? How did cricket become India's national sport, while China is a stronghold of table tennis? In Global Games, Maarten van Bottenburg asserts that it is the 'hidden competition' of social and
邢连香
2000-01-01
Do you know there are two kinds of football games? One is American football, the other is soccer. In China, many young people like playing soccer. It is very popular in China. But Chinese don't call it soccer, They call it football. There are eleven players in a team. And the ball is round.
Fletcher, Robert
2017-01-01
This article explores the role of digital (video and computer) games in the rise of what Büscher (2014) calls "nature 2.0": new web-related media that allow users to move beyond passive voyeurism to actively "co-create" or "prosume" the images and processes promoted by organizations committed to
Heide Smith, Jonas; Tosca, Susana Pajares; Egenfeldt-Nielsen, Simon
From Pong to PlayStation 3 and beyond, Understanding Video Games is the first general introduction to the exciting new field of video game studies. This textbook traces the history of video games, introduces the major theories used to analyze games such as ludology and narratology, reviews...... the economics of the game industry, examines the aesthetics of game design, surveys the broad range of game genres, explores player culture, and addresses the major debates surrounding the medium, from educational benefits to the effects of violence. Throughout the book, the authors ask readers to consider...... larger questions about the medium: * What defines a video game? * Who plays games? * Why do we play games? * How do games affect the player? Extensively illustrated, Understanding Video Games is an indispensable and comprehensive resource for those interested in the ways video games are reshaping...
Miller, Lee Dee; Shell, Duane; Khandaker, Nobel; Soh, Leen-Kiat
2011-01-01
Computer games have long been used for teaching. Current reviews lack categorization and analysis using learning models which would help instructors assess the usefulness of computer games. We divide the use of games into two classes: game playing and game development. We discuss the Input-Process-Outcome (IPO) model for the learning process when…
Prayaga, Lakshmi; Rasmussen, Karen L.
2008-01-01
Computer games are no longer just for entertainment; they have also become a useful instructional strategy for acquiring knowledge. When games are used for purposes other than strict entertainment they become serious games. The goal of serious games is to enable the player to learn a task, master a strategy or develop a skill. Serious games can be…
Sicart (Vila), Miguel Angel
2008-01-01
This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...
Sicart (Vila), Miguel Angel
2008-01-01
This article defins game mechanics in relation to rules and challenges. Game mechanics are methods invoked by agents for interacting with the game world. I apply this definition to a comparative analysis of the games Rez, Every Extend Extra and Shadow of the Colossus that will show the relevance...... of a formal definition of game mechanics. Udgivelsesdato: Dec 2008...
Controlling halo-chaos via wavelet-based feedback
Jin-Qing Fang
2002-01-01
Full Text Available Halo-chaos in high-current accelerator has become one of the key issues because it can cause excessive radioactivity from the accelerators and significantly limits the applications of the new accelerators in industrial and other fields. Some general engineering methods for chaos control have been developed, but they generally are unsuccessful for halo-chaos suppression due to many technical constraints. In this article, controllability condition for beam halo-chaos is analyzed qualitatively. Then Particles-in-Cell (PIC simulations explore the nature of beam halo-chaos formation. A nonlinear control method and wavelet function feedback controller are proposed for controlling beam halo-chaos. After control of beam halo-chaos for initial proton beam with water bag distributions, the beam halo strength factor H is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The results show that the developed methods in this paper are very effective for proton beam halo-chaos suppression. Potential application of the halo-chaos control method is finally pointed out.
Authoring of digital games via card games
Valente, Andrea; Marchetti, Emanuela
2014-01-01
Literature and previous studies show that creative play is easy to emerge when children interact with tangible, low-tech toys and games than with digital games. This paradoxical situation is linked to the long-standing problem of end-users (or players) authoring of digital contents and systems. We...... propose a new scenario in which trading card games help making sense and re-design computer games, to support players express themselves aesthetically and in a highly creative way. Our aim is to look for a middle ground between players becoming programmers and simply editing levels. The main contributions...... are to show how card games can represent digital games, how playful play can emerge in card games and digital games, and to begin defining a new way to express game behavior without the use of universal programming languages....
... Blood > Blood Donor Community > Games > Blood Type Game Blood Type Game This feature requires version 6 or later ... many points as possible by matching the appropriate blood type of a donor to the blood type of ...
... Teachers' Questionnaire MRI Play MRI the Magnetic Miracle Game About the game In the MRI imaging technique, strong magnets and ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Play the Electrocardiogram Game
... and Work Teachers' Questionnaire Electrocardiogram Play the ECG Game About the game ECG is used for diagnosing heart conditions by ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Optomechanically induced stochastic resonance and chaos transfer between optical fields
Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan
2016-06-01
Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.
Chaos and dynamics of spinning particles in Kerr spacetime
Han, Wen-Biao
2010-01-01
We study chaos dynamics of spinning particles in Kerr spacetime of rotating black holes use the Papapetrou equations by numerical integration. Because of spin, this system exists many chaos solutions, and exhibits some exceptional dynamic character. We investigate the relations between the orbits chaos and the spin magnitude S, pericenter, polar angle and Kerr rotation parameter a by means of a kind of brand new Fast Lyapulov Indicator (FLI) which is defined in general relativity. The classical definition of Lyapulov exponent (LE) perhaps fails in curve spacetime. And we emphasize that the Poincar\\'e sections cannot be used to detect chaos for this case. Via calculations, some new interesting conclusions are found: though chaos is easier to emerge with bigger S, but not always depends on S monotonically; the Kerr parameter a has a contrary action on the chaos occurrence. Furthermore, the spin of particles can destroy the symmetry of the orbits about the equatorial plane. And for some special initial condition...
Chaos in electric drive systems analysis control and application
Chau, K T
2011-01-01
In Chaos in Electric Drive Systems: Analysis, Control and Application authors Chau and Wang systematically introduce an emerging technology of electrical engineering that bridges abstract chaos theory and practical electric drives. The authors consolidate all important information in this interdisciplinary technology, including the fundamental concepts, mathematical modeling, theoretical analysis, computer simulation, and hardware implementation. The book provides comprehensive coverage of chaos in electric drive systems with three main parts: analysis, control and application. Corresponding drive systems range from the simplest to the latest types: DC, induction, synchronous reluctance, switched reluctance, and permanent magnet brushless drives.The first book to comprehensively treat chaos in electric drive systemsReviews chaos in various electrical engineering technologies and drive systemsPresents innovative approaches to stabilize and stimulate chaos in typical drivesDiscusses practical application of cha...
Kiniry, Joseph Roland; Zimmerman, Daniel
2011-01-01
---falls every year and any mention of mathematics in the classroom seems to frighten students away. So the question is: How do we attract new students in computing to the area of dependable software systems? Over the past several years at three universities we have experimented with the use of computer games...... as a target domain for software engineering project courses that focus on reliable systems engineering. This position paper summarizes our experiences in incorporating rigorous software engineering into courses whose projects include computer games.......In recent years, several Grand Challenges (GCs) of computing have been identified and expounded upon by various professional organizations in the U.S. and England. These GCs are typically very difficult problems that will take many hundreds, or perhaps thousands, of man-years to solve. Researchers...
Quantum repeated games revisited
Frackiewicz, Piotr
2011-01-01
We present a scheme for playing quantum repeated 2x2 games based on the Marinatto and Weber's approach to quantum games. As a potential application, we study twice repeated Prisoner's Dilemma game. We show that results not available in classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games.
Ejsing-Duun, Stine
2011-01-01
This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....
Ejsing-Duun, Stine
2011-01-01
This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....
Gammeltoft-Hansen, Thomas
This book offers an in-depth examination of the strategic use of State sovereignty in contemporary European and international affairs and the consequences of this for authority relations in Europe and beyond. It suggests a new approach to the study of State sovereignty, proposing to understand th...... the use of sovereignty as games where States are becoming more instrumental in their claims to sovereignty and skilled in adapting it to the challenges that they face....
Control of Beam Halo-Chaos by Soliton
BAI Long; WENG Jia-Qiang; FANG Jin-Qing
2005-01-01
@@ The Kapchinsky-Vladimirsky beam through an alternating-gradient quadrupole magnetic field is studied using the particle-core model. The beam halo-chaos is found, and the soliton controller is proposed based on the mechanism of halo formation and strategy of controlling halo-chaos. We perform a multiparticle simulation to control the halo by soliton controller, and find that the halo-chaos and its regeneration can be eliminated. It is shown that our control method is effective.
Chaotic and Chaos-Like Behavior in Continued Fractions
Shuji, OBATA; Shigeru, OHKURO; Toshiaki, MAEDA; Physics Laboratory, Faculty of Science and Engineering, Tokyo Denki University; Laboratory of Information aud System Engineering, Hachinohe Institute of Technology; DEPARTMENT OF MATHEMATICAL SCIENCES, TOKYO DENKI UNIVERSITY
1999-01-01
Chaotic and chaos-like behavior in continued fractions is studied with respect to several types of maps, including a logistic map. Various numerical phenomena in the continued fractions are investigated, where the fractions correspond to fractal structures. Cyclic terms in the Cauchy distribution areas are introduced, including the chaos-like behavior. It is indicated that such mixed states of distributions and cycles are common in the chaotic and chaos-like behavior.
Testing for deterministic monetary chaos: Metric and topological diagnostics
Barkoulas, John T. [Department of Finance and Quantitative Analysis, Georgia Southern University, Statesboro, GA 30460 (United States)], E-mail: jbarkoul@georgiasouthern.edu
2008-11-15
The evidence of deterministic chaos in monetary aggregates tends to be contradictory in the literature. We revisit the issue of monetary chaos by applying tools based on both the metric (correlation dimension and Lyapunov exponents) and topological (recurrence plots) approaches to chaos. For simple-sum and divisia monetary aggregates over an expanded sample period, the empirical evidence from both approaches is negative for monetary chaotic dynamics.
Quantum Chaos in Physical Systems: from Super Conductors to Quarks
Bittner, Elmar; Markum, Harald; Pullirsch, Rainer
2001-01-01
This article is the written version of a talk delivered at the Bexbach Colloquium of Science 2000 and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. Several examples of physical systems exhibiting quantum chaos ranging from nuclear to solid state physics are presented. The presentation concludes with recent research work on quantum chromodynamics and the qua...
Games, theory and applications
Thomas, L C
2011-01-01
Anyone with a knowledge of basic mathematics will find this an accessible and informative introduction to game theory. It opens with the theory of two-person zero-sum games, two-person non-zero sum games, and n-person games, at a level between nonmathematical introductory books and technical mathematical game theory books. Succeeding sections focus on a variety of applications - including introductory explanations of gaming and meta games - that offer nonspecialists information about new areas of game theory at a comprehensible level. Numerous exercises appear with full solutions, in addition
A. Andrade
2015-11-01
Full Text Available Due to hardware limitations at the origin of the video game industry, each new game was generally coded from the ground up. Years later, from the evolution of hardware and the need for quick game development cycles, spawned the concept of game engine. A game engine is a reusable software layer allowing the separation of common game concepts from the game assets (levels, graphics, etc.. This paper surveys fourteen different game engines relevant today, ranging from the industry-level to the newcomer-friendlier ones.
Beasley, John D
2006-01-01
""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat
Petersson, Eva; Brown, David
This anthology on games for rehabilitation contains a serious chapters on game methods and apps or research that compares game systems or modified games or interface devices (Wii, Eyetoy, Kinect, DDR) applied across all areas of clinical care and clinically focused research.......This anthology on games for rehabilitation contains a serious chapters on game methods and apps or research that compares game systems or modified games or interface devices (Wii, Eyetoy, Kinect, DDR) applied across all areas of clinical care and clinically focused research....
Parents Educators MENU Home Videos Games & Apps Activities Sparky Firetrucks Parents Educators Firetrucks Videos Games Sparky Apps Activities The name and image of Sparky are registered trademarks ...
Chaos theory perspective for industry clusters development
Yu, Haiying; Jiang, Minghui; Li, Chengzhang
2016-03-01
Industry clusters have outperformed in economic development in most developing countries. The contributions of industrial clusters have been recognized as promotion of regional business and the alleviation of economic and social costs. It is no doubt globalization is rendering clusters in accelerating the competitiveness of economic activities. In accordance, many ideas and concepts involve in illustrating evolution tendency, stimulating the clusters development, meanwhile, avoiding industrial clusters recession. The term chaos theory is introduced to explain inherent relationship of features within industry clusters. A preferred life cycle approach is proposed for industrial cluster recessive theory analysis. Lyapunov exponents and Wolf model are presented for chaotic identification and examination. A case study of Tianjin, China has verified the model effectiveness. The investigations indicate that the approaches outperform in explaining chaos properties in industrial clusters, which demonstrates industrial clusters evolution, solves empirical issues and generates corresponding strategies.
Experimental chaos detection in the Duffing oscillator
Eyebe Fouda, J. S. Armand; Bodo, Bertrand; Djeufa, Guy M. D.; Sabat, Samrat L.
2016-04-01
This paper presents a comparative study of four algorithms namely the maximal Lyapunov exponent (MLE), 0-1 test, conditional entropy of ordinal patterns (CPE) and recently developed permutation largest slope entropy (PLSE) algorithm for experimental chaos detection in the Duffing oscillator. We consider an electrical model of the Duffing oscillator and its equivalent electronic circuit for generating the data to validate the effectiveness of the algorithms. The performance of the PLSE is compared with the 0-1 test and the CPE algorithms on the data set obtained from the simulated circuit; and with the MLE for the data collected from the experimental circuit. The experimental data are acquired using a digital oscilloscope with 1 MHz sampling frequency. From the comparison of the experimental spectra of the four methods with the analog phase portraits of the real system, it appears that the PLSE is the more reliable algorithm for chaos detection from experimental data.
Measurement induced chaos with entangled states
Kiss, T; Tóth, L D; Gábris, A; Jex, I; Alber, G
2011-01-01
Quantum control, in a broad sense, may include measurement of quantum systems and, as a feed back operation, selection from an ensemble conditioned on the measurements. The resulting dynamics can be nonlinear and, if applied iteratively, can lead to true chaos in a quantum system. We consider the dynamics of an ensemble of two qubit systems subjected to measurement and conditional selection. We prove that the iterative dynamics leads to true chaos in the entanglement of the qubits. A class of special initial states exhibits high sensitivity to the initial conditions. In the parameter space of the special initial states we identify two types of islands: one converging to a separable state, while the other being asymptotically completely entangled. The islands form a fractal like structure. Adding noise to the initial state introduces a further stable asymptotic cycle.
Migraine--new perspectives from chaos theory.
Kernick, D
2005-08-01
Converging from a number of disciplines, non-linear systems theory and in particular chaos theory offer new descriptive and prescriptive insights into physiological systems. This paper briefly reviews an approach to physiological systems from these perspectives and outlines how these concepts can be applied to the study of migraine. It suggests a wide range of potential applications including new approaches to classification, treatment and pathophysiological mechanisms. A hypothesis is developed that suggests that dysfunctional consequences can result from a mismatch between the complexity of the environment and the system that is seeking to regulate it and that the migraine phenomenon is caused by an incongruity between the complexity of mid brain sensory integration and cortical control networks. Chaos theory offers a new approach to the study of migraine that complements existing frameworks but may more accurately reflect underlying physiological mechanisms.
Tuning quantum measurements to control chaos
Eastman, Jessica K.; Hope, Joseph J.; Carvalho, André R. R.
2017-01-01
Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes. PMID:28317933
Poincaré chaos and unpredictable functions
Akhmet, Marat; Fen, Mehmet Onur
2017-07-01
The results of this study are continuation of the research of Poincaré chaos initiated in the papers (M. Akhmet and M.O. Fen, Commun Nonlinear Sci Numer Simulat 40 (2016) 1-5; M. Akhmet and M.O. Fen, Turk J Math, doi:10.3906/mat-1603-51, in press). We focus on the construction of an unpredictable function, continuous on the real axis. As auxiliary results, unpredictable orbits for the symbolic dynamics and the logistic map are obtained. By shaping the unpredictable function as well as Poisson function we have performed the first step in the development of the theory of unpredictable solutions for differential and discrete equations. The results are preliminary ones for deep analysis of chaos existence in differential and hybrid systems. Illustrative examples concerning unpredictable solutions of differential equations are provided.
Polynomial chaos representation of databases on manifolds
Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-La-Vallée, Cedex 2 (France); Ghanem, R., E-mail: ghanem@usc.edu [University of Southern California, 210 KAP Hall, Los Angeles, CA 90089 (United States)
2017-04-15
Characterizing the polynomial chaos expansion (PCE) of a vector-valued random variable with probability distribution concentrated on a manifold is a relevant problem in data-driven settings. The probability distribution of such random vectors is multimodal in general, leading to potentially very slow convergence of the PCE. In this paper, we build on a recent development for estimating and sampling from probabilities concentrated on a diffusion manifold. The proposed methodology constructs a PCE of the random vector together with an associated generator that samples from the target probability distribution which is estimated from data concentrated in the neighborhood of the manifold. The method is robust and remains efficient for high dimension and large datasets. The resulting polynomial chaos construction on manifolds permits the adaptation of many uncertainty quantification and statistical tools to emerging questions motivated by data-driven queries.
Quantum chaos in QCD and hadrons
Markum, H; Pullirsch, R; Sengl, B; Wagenbrunn, R F; Markum, Harald; Plessas, Willibald; Pullirsch, Rainer; Sengl, Bianka; Wagenbrunn, Robert F.
2005-01-01
This article is the written version of a talk delivered at the Workshop on Nonlinear Dynamics and Fundamental Interactions in Tashkent and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. In accordance to the title, the presentation is twofold and begins with research results on quantum chromodynamics and the quark-gluon plasma. We conclude with recent research work on the spectroscopy of baryons. Within the framework of a relativistic constituent quark model we investigate the excitation spectra of the nucleon and the delta with regard to a possible chaotic behavior for the cases when a hyperfine interaction of either Goldstone-boson-exchange or one-gluon-exchange type is added to the confinement interaction. Agreement with predictions from the experimental hadron spectrum is established.
An exploration of dynamical systems and chaos
Argyris, John H; Haase, Maria; Friedrich, Rudolf
2015-01-01
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...
Chaos in effective classical and quantum dynamics
Casetti, L; Modugno, M; Casetti, Lapo; Gatto, Raoul; Modugno, Michele
1998-01-01
We investigate the dynamics of classical and quantum N-component phi^4 oscillators in presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.
Kac-Moody Algebras and Controlled Chaos
Wesley, D H
2007-01-01
Compactification can control chaotic Mixmaster behavior in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac-Moody algebras. We show that different compactifications define "mutations" of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by hyperbolic (but not strictly hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi-Yau, or M theory on a manifold of G_2 holonomy.
Buoyancy driven turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, laboratory experiments and atmospheric measurements, that buoyancy driven turbulence exhibits a broad diversity of the types of distributed chaos with its stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$. The distributed chaos with $\\beta = 1/3$ (determined by the helicity correlation integral) is the most common feature of the stably stratified turbulence (due to the strong helical waves presence). These waves mostly dominate spectral properties of the vertical component of velocity field, while the horizontal component is dominated by the diffusive processes both for the weak and strong stable stratification ($\\beta =2/3$). For the last case influence of the low boundary can overcome the wave effects and result in $\\beta =1/2$ for the vertical component of the velocity field (the spontaneous breaking of the space translational symmetry - homogeneity). For the unstably stratified turbulence in the Rayleigh-Taylor mixing zone the di...
Chaos A Program Collection for the PC
Korsch, Hans Jürgen; Hartmann, Timo
2008-01-01
This new edition strives yet again to provide readers with a working knowledge of chaos theory and dynamical systems through parallel introductory explanations in the book and interaction with carefully-selected programs supplied on the accompanying diskette. The programs enable readers, especially advanced-undergraduate students in physics, engineering, and math, to tackle relevant physical systems quickly on their PCs, without distraction from algorithmic details. For the third edition of Chaos: A Program Collection for the PC, each of the previous twelve programs is polished and rewritten in C++ (both Windows and Linux versions are included). A new program treats kicked systems, an important class of two-dimensional problems, which is introduced in Chapter 13. Each chapter follows the structure: theoretical background; numerical techniques; interaction with the program; computer experiments; real experiments and empirical evidence; reference. Interacting with the many numerical experiments have proven to h...
Chaos in hydrodynamic BL Herculis models
Smolec, R
2014-01-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Pa...
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Frozen spatial chaos induced by boundaries
Eguiluz, V M; Piro, O; Balle, S; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Piro, Oreste; Balle, Salvador
1999-01-01
We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.
Chaos control of parametric driven Duffing oscillators
Jin, Leisheng; Mei, Jie; Li, Lijie, E-mail: L.Li@swansea.ac.uk [College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)
2014-03-31
Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
Chaos in a topologically transitive system
XIONG; Jincheng
2005-01-01
The chaotic phenomena have been studied in a topologically transitive system and it has been shown that the erratic time dependence of orbits in such a topologically transitive system is more complicated than what described by the well-known technology "Li-Yorke chaos". The concept "sensitive dependency on initial conditions" has been generalized, and the chaotic phenomena has been discussed for transitive systems with the generalized sensitive dependency property.
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Computer Auxiliary Analysis for Stochasticity of Chaos
ZHAOGeng; FANGJin-qing
2003-01-01
In this work, we propose a mathematics-physical statistic analytical method for stochastic process of chaos, based on stochastic test via combination measurement of Monobit and Runs. Computer auxiliary analysis shows that it is of stochasticity for stochastic number produced from the chaotic circuit. Our software is written by VB and C++, the later can be tested by the former, and at the same time it is verified by stochastic number produced by the computer. So the data treatment results are reliable.
Reducing or enhancing chaos using periodic orbits.
Bachelard, R; Chandre, C; Leoncini, X
2006-06-01
A method to reduce or enhance chaos in Hamiltonian flows with two degrees of freedom is discussed. This method is based on finding a suitable perturbation of the system such that the stability of a set of periodic orbits changes (local bifurcations). Depending on the values of the residues, reflecting their linear stability properties, a set of invariant tori is destroyed or created in the neighborhood of the chosen periodic orbits. An application on a paradigmatic system, a forced pendulum, illustrates the method.
Chaos in free electron laser oscillators
Bruni, C. [Univ Paris 11, LAL, UMR 8607, F-91898 Orsay, (France); Bachelard, R.; Couprie, M.E. [Synchrotron SOLEIL, F-91192 Gif Sur Yvette, (France); Garzella, D. [CEA DSM DRECAM SPAM, F-91191 Gif Sur Yvette, (France); Orlandi, G.L. [CR Frascati FIM FISACC, ENEA, I-00044 Frascati, (Italy)
2009-07-01
The chaotic nature of a storage-ring free electron laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstrated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence. (authors)
Chaos: Understanding and Controlling Laser Instability
Blass, William E.
1997-01-01
In order to characterize the behavior of tunable diode lasers (TDL), the first step in the project involved the redesign of the TDL system here at the University of Tennessee Molecular Systems Laboratory (UTMSL). Having made these changes it was next necessary to optimize the new optical system. This involved the fine adjustments to the optical components, particularly in the monochromator, to minimize the aberrations of coma and astigmatism and to assure that the energy from the beam is focused properly on the detector element. The next step involved the taking of preliminary data. We were then ready for the analysis of the preliminary data. This required the development of computer programs that use mathematical techniques to look for signatures of chaos. Commercial programs were also employed. We discovered some indication of high dimensional chaos, but were hampered by the low sample rate of 200 KSPS (kilosamples/sec) and even more by our sample size of 1024 (1K) data points. These limitations were expected and we added a high speed data acquisition board. We incorporated into the system a computer with a 40 MSPS (million samples/sec) data acquisition board. This board can also capture 64K of data points so that were then able to perform the more accurate tests for chaos. The results were dramatic and compelling, we had demonstrated that the lead salt diode laser had a chaotic frequency output. Having identified the chaotic character in our TDL data, we proceeded to stage two as outlined in our original proposal. This required the use of an Occasional Proportional Feedback (OPF) controller to facilitate the control and stabilization of the TDL system output. The controller was designed and fabricated at GSFC and debugged in our laboratories. After some trial and error efforts, we achieved chaos control of the frequency emissions of the laser. The two publications appended to this introduction detail the entire project and its results.
Optimal chaos control through reinforcement learning.
Gadaleta, Sabino; Dangelmayr, Gerhard
1999-09-01
A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (c) 1999 American Institute of Physics.
Chaos control of parametric driven Duffing oscillators
Jin, Leisheng; Mei, Jie; Li, Lijie
2014-03-01
Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
Lost in the chaos: Flawed literature should not generate new disorders.
Van Rooij, Antonius J; Kardefelt-Winther, Daniel
2017-06-01
The paper by Kuss, Griffiths, and Pontes (2016) titled "Chaos and confusion in DSM-5 diagnosis of Internet Gaming Disorder: Issues, concerns, and recommendations for clarity in the field" examines issues relating to the concept of Internet Gaming Disorder. We agree that there are serious issues and extend their arguments by suggesting that the field lacks basic theory, definitions, patient research, and properly validated and standardized assessment tools. As most studies derive data from survey research in functional populations, they exclude people with severe functional impairment and provide only limited information on the hypothesized disorder. Yet findings from such studies are widely used and often exaggerated, leading many to believe that we know more about the problem behavior than we do. We further argue that video game play is associated with several benefits and that formalizing this popular hobby as a psychiatric disorder is not without risks. It might undermine children's right to play or encourage repressive treatment programs, which ultimately threaten children's right to protection against violence. While Kuss et al. (2016) express support for the formal implementation of a disorder, we argue that before we have a proper evidence base, a sound theory, and validated assessment tools, it is irresponsible to support a formal category of disorder and doing so would solidify a confirmatory approach to research in this area.
Murakami, A; Ohtsubo, J
2001-06-01
Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.
Bifurcations and Chaos in Duffing Equation
2007-01-01
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcing is investigated. The conditions of existence of primary resonance, second-order, third-order subharmonics, m-order subharmonics and chaos are given by using the second-averaging method, the Melnikov method and bifurcation theory. Numerical simulations including bifurcation diagram, bifurcation surfaces and phase portraits show the consistence with the theoretical analysis. The numerical results also exhibit new dynamical behaviors including onset of chaos, chaos suddenly disappearing to periodic orbit, cascades of inverse period-doubling bifurcations, period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, symmetry-breaking of periodic orbits, interleaving occurrence of chaotic behaviors and period-one orbit, a great abundance of periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaotic attractors. Our results show that many dynamical behaviors are strictly departure from the behaviors of the Duffing equation with odd-nonlinear restoring force.
Chaos in Chiral Condensates in Gauge Theories
Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh
2016-12-01
Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.
The standard set game of a cooperative game
Bumb, A.F.; Hoede, C.
2003-01-01
We show that for every cooperative game a corresponding set game can be defined, called the standard set game. Values for set games can be applied to this standard game and determine allocations for the cooperative game. On the other hand, notions for cooperative games, like the Shapley value, the
The chaos and order in nuclear molecular dynamics; Chaos i porzadek w jadrowej dynamice molekularnej
Srokowski, T. [Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
The subject of the presented report is role of chaos in scattering processes in the frame of molecular dynamics. In this model, it is assumed that scattering particles (nuclei) consist of not-interacted components as alpha particles or {sup 12}C, {sup 16}O and {sup 20}Ne clusters. The results show such effects as dynamical in stabilities and fractal structure as well as compound nuclei decay and heavy-ion fusion. The goal of the report is to make the reader more familiar with the chaos model and its application to nuclear phenomena. 157 refs, 40 figs.
Application of Chaos Theory to Psychological Models
Blackerby, Rae Fortunato
This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in
Uncertainty quantification for mean field games in social interactions
Dia, Ben Mansour
2016-01-09
We present an overview of mean field games formulation. A comparative analysis of the optimality for a stochastic McKean-Vlasov process with time-dependent probability is presented. Then we examine mean-field games for social interactions and we show that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize couple (marriage). However , if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. Finally we introduce the Wiener chaos expansion for the construction of solution of stochastic differential equations of Mckean-Vlasov type. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and allow to quantify the uncertainty in the optimality system.
Mobile Game for Learning Bacteriology
Sugimura, Ryo; Kawazu, Sotaro; Tamari, Hiroki; Watanabe, Kodai; Nishimura, Yohei; Oguma, Toshiki; Watanabe, Katsushiro; Kaneko, Kosuke; Okada, Yoshihiro; Yoshida, Motofumi; Takano, Shigeru; Inoue, Hitoshi
2014-01-01
This paper treats serious games. Recently, one of the game genres called serious game has become popular, which has other purposes besides enjoyments like education, training and so on. Especially, learning games of the serious games seem very attractive for the age of video games so that the authors developed a mobile game for learning…
Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.;
2013-01-01
For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...
Gee, James Paul
2013-01-01
Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often…
Learning with Calculator Games
Frahm, Bruce
2013-01-01
Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
... and Work Teachers' Questionnaire Malaria Play the Mosquito Game Play the Parasite Game About the games Malaria is one of the world's most common ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.
2013-01-01
For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...
Gee, James Paul
2013-01-01
Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often…
Petersson, Eva; Brown, David
This anthology on games for rehabilitation contains a serious chapters on game methods and apps or research that compares game systems or modified games or interface devices (Wii, Eyetoy, Kinect, DDR) applied across all areas of clinical care and clinically focused research....
Learning with Calculator Games
Frahm, Bruce
2013-01-01
Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…
Environmental Games and Simulations.
Eckman, Tom, Comp.
This publication consists of a lengthy list of environmental games (35) on the market today, their source and purchase price. Included is a description of the major changes the types of games have undergone. The first group of games resembled closely ordinary board games with success dependent on skill and/or chance rather than understanding of…
Au, Wagner James
2012-01-01
Wagner James Au is an author, consultant, and game designer, and was lead writer/mission designer for City of Eternals, a Facebook-based MMO acquired by Electronic Arts. He's written on the subject of gaming for Inside Social Games, Kotaku, and Wired. His blog New World Notes (nwn.blogs.com) covers gaming, 3D technology, and virtual culture.
Kristiansen, Erik
2011-01-01
Playing games of any kind, from tennis to board games, it is easy to notice that games are configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a visual border in a game like hi...... to introduce a spatial model of the game performance comprising a primary and secondary game space. I will show how new game genres can profit from using this model when designing new games.......Playing games of any kind, from tennis to board games, it is easy to notice that games are configured in space, often using stripes or a kind of map on a board. Some games are clearly performed within this marked border, while it may be difficult to pinpoint such a visual border in a game like hide...... into the concept of the “magic circle” by Salen and Zimmerman (2003), as an understanding of playing games as a kind of alternate reality. When a person enters the magic circle of a game, the player suddenly finds himself in another world, where artefacts are given new meaning and where other rules apply...
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Colorado State Div. of Wildlife, Denver.
This booklet is intended to familiarize the reader with game birds typical of Colorado. Discussions in English and Spanish are presented. Discussions cover the management of game birds, individual game bird species, and endangered species of birds related to game birds. (RE)
Schneiderman, Ellen
1990-01-01
This article presents a rationale and ways to use communication games in written form to entice deaf children to try new forms of language. It emphasizes the importance of using communicative teaching methods and considering students' communicative adequacy rather than form. Games include picture/object matching games and bingo/lotto games. (JDD)
Hanghøj, Thorkild
2013-01-01
This chapter outlines theoretical and empirical perspectives on how Game-Based Teaching can be integrated within the context of formal schooling. Initially, this is done by describing game scenarios as models for possible actions that need to be translated into curricular knowledge practices...... approaches to game-based teaching, which may or may not correspond with the pedagogical models of particular games....
Complexity of a Duopoly Game in the Electricity Market with Delayed Bounded Rationality
Junhai Ma
2012-01-01
Full Text Available According to a triopoly game model in the electricity market with bounded rational players, a new Cournot duopoly game model with delayed bounded rationality is established. The model is closer to the reality of the electricity market and worth spreading in oligopoly. By using the theory of bifurcations of dynamical systems, local stable region of Nash equilibrium point is obtained. Its complex dynamics is demonstrated by means of the largest Lyapunov exponent, bifurcation diagrams, phase portraits, and fractal dimensions. Since the output adjustment speed parameters are varied, the stability of Nash equilibrium gives rise to complex dynamics such as cycles of higher order and chaos. Furthermore, by using the straight-line stabilization method, the chaos can be eliminated. This paper has an important theoretical and practical significance to the electricity market under the background of developing new energy.
Anton Sukhov
2015-10-01
Full Text Available This article devoted to the search of relevant sources (primary and secondary and characteristics of computer games that allow to include them in the field of art (such as the creation of artistic games, computer graphics, active interaction with other forms of art, signs of spiritual aesthetic act, own temporality of computer games, “aesthetic illusion”, interactivity. In general, modern computer games can be attributed to commercial art and popular culture (blockbuster games and to elite forms of contemporary media art (author’s games, visionary games.
Game Development in Unity : Game Production, Game Mechanics and the Effects of Gaming
Dansie, Jason
2013-01-01
The goal of this thesis is to examine how video games are designed and to see how differ-ent game mechanics work and how to use them in the development of a game, as well as examine what are both the positive and negative effects games have on adults and children. This thesis looks at how games in general are developed in Unity, a 3D game engine which has become not only popular but a standard in the gaming industry. The thesis describes how the interface in Unity is used to quickly gene...
The Uses of Teaching Games in Game Theory Classes and Some Experimental Games.
Shubik, Martin
2002-01-01
Discusses the use of lightly controlled games, primarily in classes in game theory. Considers the value of such games from the viewpoint of both teaching and experimentation and discusses context; control; pros and cons of games in teaching; experimental games; and games in class, including cooperative game theory. (Author/LRW)
Chaos: A Topic for Interdisciplinary Education in Physics
Bae, Saebyok
2009-01-01
Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…
Master Teachers: Making a Difference on the Edge of Chaos
Chapin, Dexter
2008-01-01
The No Child Left Behind legislation, by legitimizing a stark, one-size-fits-all, industrial model of education, has denied the inherent complexity and richness of what teachers do. Discussing teaching in terms of Chaos Theory, Chapin explains that while excellent teaching may occur at the edge of chaos, it is not chaotic. There are patterns…
Major open problems in chaos theory and nonlinear dynamics
Li, Y Charles
2013-01-01
Nowadays, chaos theory and nonlinear dynamics lack research focuses. Here we mention a few major open problems: 1. an effective description of chaos and turbulence, 2. rough dependence on initial data, 3. arrow of time, 4. the paradox of enrichment, 5. the paradox of pesticides, 6. the paradox of plankton.
Controlling Beam Halo-Chaos via Time-Delayed Feedback
FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu
2004-01-01
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.
Using a quantum computer to investigate quantum chaos
Schack, Ruediger
1997-01-01
We show that the quantum baker's map, a prototypical map invented for theoretical studies of quantum chaos, has a very simple realization in terms of quantum gates. Chaos in the quantum baker's map could be investigated experimentally on a quantum computer based on only 3 qubits.
Universal properties of dynamically complex systems - The organization of chaos
Procaccia, Itamar
1988-06-01
The complex dynamic behavior of natural systems far from equilibrium is discussed. Progress that has been made in understanding universal aspects of the paths to such behavior, of the trajectories at the borderline of chaos, and of the nature of the complexity in the chaotic regime, is reviewed. The emerging grammar of chaos is examined.
The "Chaos" Pattern in Piaget's Theory of Cognitive Development.
Lindsay, Jean S.
Piaget's theory of the cognitive development of the child is related to the recently developed non-linear "chaos" model. The term "chaos" refers to the tendency of dynamical, non-linear systems toward irregular, sometimes unpredictable, deterministic behavior. Piaget identified this same pattern in his model of cognitive development in children.…
Chaos: A Topic for Interdisciplinary Education in Physics
Bae, Saebyok
2009-01-01
Since society and science need interdisciplinary works, the interesting topic of chaos is chosen for interdisciplinary education in physics. The educational programme contains various university-level activities such as computer simulations, chaos experiment and team projects besides ordinary teaching. According to the participants, the programme…
Experimental Control of Instabilities and Chaos in Fast Dynamical Systems
1997-06-01
is short (- 10 cm) [153]-[155]; these studies have more recently been considered from the chaos control viewpoint [42]. The apparatus required to...13] Christini, David J., and James A. Collins. Controlling Nonchaotic Neuronal Noise Using Chaos Control Techniques. Phys. Rev. Lett. 75:2782-2785
Deterministic Graphical Games Revisited
Andersson, Daniel; Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro
2008-01-01
We revisit the deterministic graphical games of Washburn. A deterministic graphical game can be described as a simple stochastic game (a notion due to Anne Condon), except that we allow arbitrary real payoffs but disallow moves of chance. We study the complexity of solving deterministic graphical...... games and obtain an almost-linear time comparison-based algorithm for computing an equilibrium of such a game. The existence of a linear time comparison-based algorithm remains an open problem....
Bayesian Games with Intentions
Adam Bjorndahl
2016-06-01
Full Text Available We show that standard Bayesian games cannot represent the full spectrum of belief-dependent preferences. However, by introducing a fundamental distinction between intended and actual strategies, we remove this limitation. We define Bayesian games with intentions, generalizing both Bayesian games and psychological games, and prove that Nash equilibria in psychological games correspond to a special class of equilibria as defined in our setting.
Erbium - doped fiber laser systems: Routes to chaos
Rubežić Vesna
2014-01-01
Full Text Available Erbium-doped fiber laser systems exhibit a large variety of complex dynamical behaviors, bifurcations and attractors. In this paper, the chaotic behavior which can be achieved under certain conditions in a laser system with erbium-doped fiber, is discussed. The chaos in this system occurs through several standard scenarios. In this paper, the simulation sequence of quasiperiodic, intermittent and period-doubling scenario transitions to chaos is shown. Quasiperiodic and intermittent transitions to chaos are shown on the example system with a single ring. The electro-optical modulator was applied to the system for modulating the loss in the cavity. We used the sinusoidal and rectangular signals for modulation. Generation of chaos is achieved by changing the parameters of signal for modulation. Period-doubling transition to chaos is illustrated in a system with two rings. Simulation results are shown in the time domain and phase space.
Replication of chaos in neural networks, economics and physics
Akhmet, Marat
2016-01-01
This book presents detailed descriptions of chaos for continuous-time systems. It is the first-ever book to consider chaos as an input for differential and hybrid equations. Chaotic sets and chaotic functions are used as inputs for systems with attractors: equilibrium points, cycles and tori. The findings strongly suggest that chaos theory can proceed from the theory of differential equations to a higher level than previously thought. The approach selected is conducive to the in-depth analysis of different types of chaos. The appearance of deterministic chaos in neural networks, economics and mechanical systems is discussed theoretically and supported by simulations. As such, the book offers a valuable resource for mathematicians, physicists, engineers and economists studying nonlinear chaotic dynamics.
$\\mathcal{PT}$-Symmetry-Breaking Chaos in Optomechanics
Lü, Xin-You; Ma, Jin-Yong; Wu, Ying
2015-01-01
We demonstrate a $\\mathcal{PT}$-symmetry-breaking chaos in optomechanical system (OMS), which features an ultralow driving threshold. In principle, this chaos will emerge once a driving laser is applied to the cavity mode and lasts for a period of time. The driving strength is inversely proportional to the starting time of chaos. This originally comes from the dynamical enhancement of nonlinearity by field localization in $\\mathcal{PT}$-symmetry-breaking phase ($\\mathcal{PT}$BP). Moreover, this chaos is switchable by tuning the system parameters so that a $\\mathcal{PT}$-symmetry phase transition occurs. This work may fundamentally broaden the regimes of cavity optomechanics and nonlinear optics. It offers the prospect of exploring ultralow-power-laser triggered chaos and its potential applications in secret communication.
Dynamical chaos in chip-scale optomechanical oscillators
Wu, Jiagui; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Xia, Guangqiong; Wong, Chee Wei
2016-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here we report the first generation of dynamical chaos in silicon optomechanical oscillators, enabled by the strong and coupled nonlinearities of Drude electron-hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the complexity of chaos. The correlation dimension D2 is determined at ~ 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate about 2.94*the fundamental optomechanical oscillation. The corresponding nonlinear dynamical maps demonstrate the plethora of subharmonics, bifurcations, and stable regimes, along with distinct transitional routes into chaotic states. The chaos generation in our mesoscopic...
Population Floors and the Persistence of Chaos in Ecological Models.
Ruxton; Rohani
1998-06-01
Chaotic dynamics have been observed in a wide range of population models. Here we describe the effects of perturbing several of these models so as to introduce a non-zero minimum population size. This perturbation generally reduces the likelihood of observing chaos, in both discrete and continuous time models. The extent of this effect depends on whether chaos is generated through period-doubling, quasiperiodicity, or intermittence. Chaos reached via the quasiperiodic route is more robust against the perturbation than period-doubling chaos, whilst the inclusion of a population floor in a model exhibiting intermittent chaos may increase the frequency of population bursts although these become non-chaotic. Copyright 1998 Academic Press.
Complex Dynamics of an Adnascent-Type Game Model
Baogui Xin
2008-01-01
Full Text Available The paper presents a nonlinear discrete game model for two oligopolistic firms whose products are adnascent. (In biology, the term adnascent has only one sense, “growing to or on something else,” e.g., “moss is an adnascent plant.” See Webster's Revised Unabridged Dictionary published in 1913 by C. & G. Merriam Co., edited by Noah Porter. The bifurcation of its Nash equilibrium is analyzed with Schwarzian derivative and normal form theory. Its complex dynamics is demonstrated by means of the largest Lyapunov exponents, fractal dimensions, bifurcation diagrams, and phase portraits. At last, bifurcation and chaos anticontrol of this system are studied.
ORDER IN THE CHAOS IN SPORTS ORGANIZATIONS
Mehran Azarian
2014-07-01
Full Text Available Purpose: Nowadays, scientists consider the world as a combination of some systems that work in a self -organizing way and the result of such a way is unpredictable and accidential states. Compulsory Natural rules are affective in such circumstances. Also it is known that systems work in a circular form in which order ends in disorder and vice versa. The idea of world as something simple has already replaced by a complicated and contradictory world. The study aim is to survey chaordic organizations characters of sport organizations. Materials and methods : For this purpose we used a standard questionnaire with appropriate reliability and validity. The statistical population of the study are whole staff of sport and youth head-quarter of west Azarbaijan province that are 89 (sample number is equal to the population's. We used Kolmogrov- Smirnov test to study data normal distribution, and in respect of normal distribution of data to test hypothesis we used sample t test and also descriptive statistical methods like mean and standard deviation, through SPSS 18. Questionnaires were filled out by whole staff of sport and youth head-quarters of west Azarbaijan province. Results: Results of this study, which have got through a single-sample t-test, show that sport organizations have six characteristics of welcoming to innovation, coherence, uncertainty, non-linearity, unpredictability, and ugly structure. It’s just the grade of the characteristic of recruiting competent staffs that is low in sport organizations; in fact they don’t enjoy it. But, within assessing the main hypothesis of the research that was around the feature of chaos-order, it was resulted that sport organizations have characteristics of a chaos-order organization and they can be considered as a chaos-order organization. Conclusions: According to the results of this study and t-table we can deduce that sport organizations are chaordic organization.
Conduction at the onset of chaos
Baldovin, Fulvio
2017-02-01
After a general discussion of the thermodynamics of conductive processes, we introduce specific observables enabling the connection of the diffusive transport properties with the microscopic dynamics. We solve the case of Brownian particles, both analytically and numerically, and address then whether aspects of the classic Onsager's picture generalize to the non-local non-reversible dynamics described by logistic map iterates. While in the chaotic case numerical evidence of a monotonic relaxation is found, at the onset of chaos complex relaxation patterns emerge.
Intramolecular quantum chaos in doped helium nanodroplets
Polyakova, E.; Stolyarov, D.; Zhang, X.; Kresin, V. V.; Wittig, C.
2003-07-01
A mass spectrometric depletion spectrum (17 700-18 300 cm -1) is reported for NO 2 in superfluid (0.37 K) helium nanodroplets. Gas phase NO 2 is believed to be vibronically chaotic at these energies. Transitions are broadened and blue-shifted relative to their gas phase counterparts. The spectrum is fitted reasonably well by setting all of the widths and shifts equal to 7 cm -1. Modest dispersions (i.e., 90% lie within 2 cm -1 of the central values) are consistent with quantum chaos in NO 2. Relaxation is dominated by interactions of NO 2 with its non-superfluid helium nearest neighbors.
Wave Dynamical Chaos in Superconducting Microwave Cavities
Rehfeld, H; Dembowski, C; Gräf, H D; Hofferbert, R; Richter, A; Lengeler, Herbert
1997-01-01
During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems.
A new optimization algorithm based on chaos
无
2006-01-01
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave's search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate.In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables optimization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.
Delayed self-synchronization in homoclinic chaos
Arecchi, F. T.; Meucci, R.; Allaria, E.; di Garbo, A.; Tsimring, L. S.
2002-04-01
The chaotic spike train of a homoclinic dynamical system is self-synchronized by applying a time-delayed correction proportional to the laser output intensity. Due to the sensitive nature of the homoclinic chaos to external perturbations, stabilization of very long-periodic orbits is possible. On these orbits, the dynamics appears chaotic over a finite time, but then it repeats with a recurrence time that is slightly longer than the delay time. The effect, called delayed self-synchronization, displays analogies with neurodynamic events that occur in the buildup of long-term memories.
Quantum chaos and the black hole horizon
CERN. Geneva
2016-01-01
Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)
Geometry in the large and hyperbolic chaos
Hasslacher, B.; Mainieri, R.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.
Chaos Synchronization in Two Coupled Duffing Oscillators
方见树; 荣曼生; 方焯; 刘小娟
2001-01-01
We have obtained two general unstable periodic solutions near the homoclinic orbits of two coupled Duffing oscillators with weak periodic perturbations by using the direct perturbation technique. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the phase portraits in the (x, u) and (y, v) planes are identical and are synchronized when the parameters of the two coupled oscillators are identical, but they are different and asynchronized when there is any difference between these parameters. It has been shown that the system parameters play a very important role in chaos control and synchronization.
Time reversibility, computer simulation, and chaos
Hoover, William Graham
1999-01-01
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful
Cryptography with chaos at the physical level
Machado, Romuel F. E-mail: romuelm@iceb.ufop.br; Baptista, Murilo S.; Grebogi, C
2004-09-01
In this work, we devise a chaos-based secret key cryptography scheme for digital communication where the encryption is realized at the physical level, that is, the encrypting transformations are applied to the wave signal instead to the symbolic sequence. The encryption process consists of transformations applied to a two-dimensional signal composed of the message carrying signal and an encrypting signal that has to be a chaotic one. The secret key, in this case, is related to the number of times the transformations are applied. Furthermore, we show that due to its chaotic nature, the encrypting signal is able to hide the statistics of the original signal.
Quasiperiodic graphs at the onset of chaos
Luque, B.; Cordero-Gracia, M.; Gómez, M.; Robledo, A.
2013-12-01
We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers.
Chaos in classical D0-brane mechanics
Gur-Ari, Guy [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Yoshida Ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan); Shenker, Stephen H. [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)
2016-02-15
We study chaos in the classical limit of the matrix quantum mechanical system describing D0-brane dynamics. We determine a precise value of the largest Lyapunov exponent, and, with less precision, calculate the entire spectrum of Lyapunov exponents. We verify that these approach a smooth limit as N→∞. We show that a classical analog of scrambling occurs with fast scrambling scaling, t{sub ∗}∼log S. These results confirm the k-locality property of matrix mechanics discussed by Sekino and Susskind.
Bose-Hubbard Hamiltonian: Quantum chaos approach
Kolovsky, Andrey R.
2016-03-01
We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.
Feigenbaum graphs at the onset of chaos
Luque, Bartolo; Lacasa, Lucas [Dept. Matemática Aplicada y Estadística, ETSI Aeronáuticos, Universidad Politécnica de Madrid (Spain); Robledo, Alberto, E-mail: robledo@fisica.unam.mx [Instituto de Física y Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (Mexico)
2012-11-01
We analyze the properties of networks obtained from the trajectories of unimodal maps at the transition to chaos via the horizontal visibility (HV) algorithm. We find that the network degrees fluctuate at all scales with amplitude that increases as the size of the network grows, and can be described by a spectrum of graph-theoretical generalized Lyapunov exponents. We further define an entropy growth rate that describes the amount of information created along paths in network space, and find that such entropy growth rate coincides with the spectrum of generalized graph-theoretical exponents, constituting a set of Pesin-like identities for the network.
Effect of Chaos on Relativistic Quantum Tunneling
2012-06-01
andAkis R., Phys. Rev. Lett., 103 (2009) 054101;Huang L., Lai Y.-C. and Grebogi C., Chaos, 21 (2011) 013102. [3] Novoselov K. S., Geim A. K., Morozov S. V...Feng R., Dai Z., Marchenkov A. N., Conrad E. H., First P. N. and de Heer W. A., J. Phys. Chem. B, 108 (2004) 19912; Novoselov K. S., Geim A. K., Morozov...P., Nature, 438 (2005) 201; Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. and Geim A. K., Rev. Mod. Phys., 81 (2009) 109; Das Sarma S
Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan)
2015-06-29
We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.
Polarization chaos in an optically pumped laser.
Serrat, C; Kul'minskii, A; Vilaseca, R; Corbalán, R
1995-06-15
We study the steady-state and dynamic behavior of an optically pumped J = 0 ? J = 1 ? J = 0 laser operating with an isotropic ring cavity and an axial magnetic field. The gain anisotropy induced by a linearly polarized pump-laser f ield leads, in the steady state, to locking of the two circularly polarized components of the laser field, which acquires a linear polarization parallel to that of the pump field. In the presence of laser intensity instabilities, however, locking does not occur, and polarization instabilities appear. For the f irst time to our knowledge, polarization chaos has been found in a laser system.
River of kings [Mae Nam Chao Phraya
Mogg, R.
1997-10-01
Low rainfall and a growing demand for water have had profound effects on water supplies in Thailand`s Mae Nam Chao Phraya river basin. In particular, low water levels are causing problems at the Bhumibol and Sirikit dams, as rice farms are threatened. The work of a Government sponsored think-tank set up to coordinate water management in the region is describe. Strategies may include use of groundwater at peak demand, recycling waste water and improve technical efficiency to reduce distribution losses. Any such policy changes will inevitably have widespread political, economic and social consequences. (UK)
Self-organized chaos through polyhomeostatic optimization.
Markovic, D; Gros, Claudius
2010-08-06
The goal of polyhomeostatic control is to achieve a certain target distribution of behaviors, in contrast to homeostatic regulation, which aims at stabilizing a steady-state dynamical state. We consider polyhomeostasis for individual and networks of firing-rate neurons, adapting to achieve target distributions of firing rates maximizing information entropy. We show that any finite polyhomeostatic adaption rate destroys all attractors in Hopfield-like network setups, leading to intermittently bursting behavior and self-organized chaos. The importance of polyhomeostasis to adapting behavior in general is discussed.
Importance of packing in spiral defect chaos
Kapilanjan Krishna
2008-04-01
We develop two measures to characterize the geometry of patterns exhibited by the state of spiral defect chaos, a weakly turbulent regime of Rayleigh-Bénard convection. These describe the packing of contiguous stripes within the pattern by quantifying their length and nearest-neighbor distributions. The distributions evolve towards unique distribution with increasing Rayleigh number that suggests power-law scaling for the dynamics in the limit of infinite system size. The techniques are generally applicable to patterns that are reducible to a binary representation.
Using chaos to improve measurement precision
何斌; 杨灿军; 周银生; 陈鹰
2002-01-01
If the measuring signals wore input to the chaotic dynamic system as initial parameters, the system outputs might be in steady state, periodic state or chaos state. If the chaotic dynamic system outputs controlled in the periodic states, the periodic numbers would be changed most with the signals. Our novel method is to add chaotic dynamic vibration to the measurement or sensor system. The sensor sensitivity and precision of a measurement system would be improved with this method. Chaotic dynamics measurement algorithms are given and their sensitivity to parameters are analyzed in this paper. The effects of noises on the system are discussed,
Using chaos to improve measurement precision
无
2002-01-01
If the measuring signals were input to the chaotic dynamic system as initial parameters, the system outputs might be in steady state, periodic state or chaos state. If the chaotic dynamic system outputs controlled in the periodic states, the periodic numbers would be changed most with the signals. Our novel method is to add chaotic dynamic vibration to the measurement or sensor system.The sensor sensitivity and precision of a measurement system would be improved with this method. Chaotic dynamics measurement algorithms are given and their sensitivity to parameters are analyzed in this paper. The effects of noises on the system are discussed.
Asano, Yuhma; Kawai, Daisuke; Yoshida, Kentaroh
2015-06-01
We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ansätze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincaré sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.
Asano, Yuhma; Yoshida, Kentaroh
2015-01-01
We study classical chaotic motions in the Berenstein-Maldacena-Nastase (BMN) matrix model. For this purpose, it is convenient to focus upon a reduced system composed of two-coupled anharmonic oscillators by supposing an ansatz. We examine three ans\\"atze: 1) two pulsating fuzzy spheres, 2) a single Coulomb-type potential, and 3) integrable fuzzy spheres. For the first two cases, we show the existence of chaos by computing Poincar\\'e sections and a Lyapunov spectrum. The third case leads to an integrable system. As a result, the BMN matrix model is not integrable in the sense of Liouville, though there may be some integrable subsectors.
Game Factors and Game-Based Learning Design Model
Yen-Ru Shi; Ju-Ling Shih
2015-01-01
How to design useful digital game-based learning is a topic worthy of discussion. Past research focused on specific game genres design, but it is difficult to use when the target game genre differs from the default genres used in the research. This study presents macrodesign concepts that elucidates 11 crucial game-design factors, including game goals, game mechanism, game fantasy, game value, interaction, freedom, narrative, sensation, challenges, sociality, and mystery. We clearly define ea...
Kiniry, Joseph Roland; Zimmerman, Daniel
2011-01-01
In recent years, several Grand Challenges (GCs) of computing have been identified and expounded upon by various professional organizations in the U.S. and England. These GCs are typically very difficult problems that will take many hundreds, or perhaps thousands, of man-years to solve. Researchers...... involved in identifying these problems are not going to solve them. That task will fall to our students, and our students' students. Unfortunately for GC6, the Grand Challenge focusing on Dependable Systems Evolution, interest in formal methods---both by students and within computer science faculties......---falls every year and any mention of mathematics in the classroom seems to frighten students away. So the question is: How do we attract new students in computing to the area of dependable software systems? Over the past several years at three universities we have experimented with the use of computer games...
Kristiansen, Erik
2014-01-01
What. Urban Games are games that take place in the real-world of the players, and which make use of the properties of the city. Alternate Reality Games (ARGs) are urban games that pretend to be conspiracy theories that really are happening in the life of the players. The games are experienced...... through events, challenges and collaborative puzzle solving and may evolve through the engagement of the players. This new design method, Aulaia, addresses the design of urban games in the form of ARGs. Along with the design method several examples from real world ARGs are given. Why. ARGs and other urban...... games are usually large and complicated undertakings, which require many coordinated activities in order to make successful games. This design method secures a structured approach, not only for the design of the game, but also for the launch and running. ARGs develop along with the players and require...
无
2003-01-01
The basic ideas of game theory were originated from the problems of maximum and minimum given by J.Yon Neumann in 1928. Later, wars accelerated the study of game theory, there are many developments that contributed to the advancement of game theory, many problems of optimum appeared in economic development process. Scientists applied mathematic methods to studying game theory to make the theory more profound and perfect. The axiomatic structure of game theory was nearly complete in 1944. The path of the development of game theory started from finite to infinite, from two players to many players, from expressing gains with quantity to showing the ending of game theory with abstract result, and from certainty problems to random problems. Thus development of game theory is closely related to the economic development. In recent years, the research on the non-differentiability of Shapley value posed by Belgian Mertens is one of the advanced studies in game theory.
Experimental Chaos - Proceedings of the 3rd Conference
Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep
1996-10-01
The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio
Bjørner, Thomas; Hansen, Charina Benedikte Søgaard
2010-01-01
When designing games with learning purposes used in a classroom, there often occur problems about the lack of learning content or the lack of game contents. Other disadvantages of existing educational games are the difficulty to provide a continual balance between the challenge and the pupils...... games, and to integrate teachers, pupils and game designers needs and requirements. To set up these design principles for educational games we have used a holistic perspective. This means that the design principles must be seen in coherence within the social and physical environment. The design...
Iversen, Sara Mosberg
2016-01-01
Digital games are still to a great degree considered a medium mainly for young boys. However, available statistics on Western media use show that this is far from the case. Increasingly, people of all ages and genders play digital games, also older adults in their early 60s and beyond. The aim...... of the book is to examine, analyse and discuss: 1) What older adults do with digital games and what meanings the use of digital games take on in the everyday life of older adults; 2) How older adults are perceived by society in relation to digital games; 3) How play and games can be used both...
Implementing Game Cinematography
Burelli, Paolo
2015-01-01
Cinematographic games are a rising genre in the computer games industry and an increasing number of titles published include some aspects of cinematography in the gameplay or the storytelling. At present state, camera handling in computer games is managed primarily through custom scripts and anim......Cinematographic games are a rising genre in the computer games industry and an increasing number of titles published include some aspects of cinematography in the gameplay or the storytelling. At present state, camera handling in computer games is managed primarily through custom scripts...
Archetypal Game Recommender Systems
Sifa, Rafet; Bauckhage, C.; Drachen, Anders
2014-01-01
Contemporary users (players, consumers) of digital games have thousands of products to choose from, which makes nding games that t their interests challenging. Towards addressing this challenge, in this paper two dierent formulations of Archetypal Analysis for Top-L recommender tasks using implicit...... feedback are presented: factor- and neighborhood-oriented models. These form the rst application of rec- ommender systems to digital games. Both models are tested on a dataset of 500,000 users of the game distribution platform Steam, covering game ownership and playtime data across more than 3000 games...
Silva, Vladimir
2010-01-01
Do you remember landmark games like Wolfenstein 3D, Doom, and Asteroids? Well, here's an exciting opportunity to build and/or port these games to one of the hottest mobile and netbooks platforms today: Google's Android. Pro Android Games teaches you how to build cool games like Space Blaster and the classic Asteroids from scratch on the latest Android platform. This book also shows you how to port other classic freeware/shareware games like Doom and Wolfenstein 3D from C using the Java Native Interface (JNI) for Android. This book is all about a unique perspective in Android game development:
Marchetti, Emanuela; Valente, Andrea
2014-01-01
top games). Therefore, we propose here a middle ground between digital and traditional table top games, so to grant children more freedom to express themselves, articulate their understanding and difficulties individually or socially; this approach is an alternative to the current trend of associating...... programming with digital creativity. In our preliminary study we transposed a digital game into a card game and observed students while shifting between playing and design thinking. Results from this study suggest that the notion of altering a digital game through a card-based transposition of the same game...
Equilibrium behavior of coarse-grained chaos
Egolf, David A.; Ballard, Christopher C.; Esty, C. Clark
2015-03-01
A wide variety of systems exhibiting spatiotemporal chaos have been shown to be extensive, in that their fractal dimensions grow linearly with volume. Ruelle argued that this extensivity is evidence that these systems can be viewed as a gas of weakly-interacting regions. We have tested this idea by performing large-scale computational studies of spatiotemporal chaos in the 1D complex Ginzburg-Landau equation, and we have found that aspects of the coarse-grained system are well-described not only as a gas, but as an equilibrium gas -- in particular, a Tonks gas (and variants) in the grand canonical ensemble. Furthermore, for small system sizes, the average number of particles in the corresponding Tonks gas exhibits oscillatory, decaying deviations from extensivity in agreement with deviations in the fractal dimension found by Fishman and Egolf. This result not only supports Ruelle's picture but also suggests that the coarse-grained behavior of this far-from-equilibrium system might be understood using equilibrium statistical mechanics.
Order and chaos in soft condensed matter
A K Sood; Rajesh Ganapathy
2006-07-01
Soft matter, like colloidal suspensions and surfactant gels, exhibit strong response to modest external perturbations. This paper reviews our recent experiments on the nonlinear flow behaviour of surfactant worm-like micellar gels. A rich dynamic behaviour exhibiting regular, quasi-periodic, intermittency and chaos is observed. In particular, we have shown experimentally that the route to chaos is via Type-II intermittency in shear thinning worm-like micellar solution of cetyltrimethylammonium tosylate where the strength of flow-concentration coupling is tuned by the addition of sodium chloride. A Poincaré first return map of the time series and the probability distribution of laminar length between burst events show that our data are consistent with Type-II intermittency. The existence of a `Butterfly' intensity pattern in small angle light scattering (SALS) measurements performed simultaneously with the rheological measurements confirms the coupling of flow to concentration fluctuations in the system under study. The scattered depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same time-dependence (like intermittency) as that of shear stress.
Chaos induced by coupling between Josephson junctions
Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Botha, A. E.
2015-02-01
It is found that, in a stack of intrinsic Josephson junctions in layered high temperature superconductors under external electromagnetic radiation, the chaotic features are triggered by interjunction coupling, i.e., the coupling between different junctions in the stack. While the radiation is well known to produce chaotic effects in the single junction, the effect of interjunction coupling is fundamentally different and it can lead to the onset of chaos via a different route to that of the single junction. A precise numerical study of the phase dynamics of intrinsic Josephson junctions, as described by the CCJJ+DC model, is performed. We demonstrate the charging of superconducting layers, in a bias current interval corresponding to a Shapiro step subharmonic, due to the creation of a longitudinal plasma wave along the stack of junctions. With increase in radiation amplitude chaotic behavior sets in. The chaotic features of the coupled Josephson junctions are analyzed by calculations of the Lyapunov exponents. We compare results for a stack of junctions to the case of a single junction and prove that the observed chaos is induced by the coupling between the junctions. The use of Shapiro step subharmonics may allow longitudinal plasma waves to be excited at low radiation power.
Rapid dynamical chaos in an exoplanetary system
Deck, Katherine M; Agol, Eric; Carter, Joshua A; Lissauer, Jack J; Ragozzine, Darin; Winn, Joshua N
2012-01-01
We report on the long-term dynamical evolution of the two-planet Kepler-36 system, which we studied through numerical integrations of initial conditions that are consistent with observations of the system. The orbits are chaotic with a Lyapunov time of only ~10 years. The chaos is a consequence of a particular set of orbital resonances, with the inner planet orbiting 34 times for every 29 orbits of the outer planet. The rapidity of the chaos is due to the interaction of the 29:34 resonance with the nearby first order 6:7 resonance, in contrast to the usual case in which secular terms in the Hamiltonian play a dominant role. Only one contiguous region of phase space, accounting for ~4.5% of the sample of initial conditions studied, corresponds to planetary orbits that do not show large scale orbital instabilities on the timescale of our integrations (~200 million years). The long-lived subset of the allowed initial conditions are those that satisfy the Hill stability criterion by the largest margin. Any succes...
Quantum chaos and holographic tensor models
Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P. N. Bala
2017-03-01
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large- N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Chaos and structure of level densities
Moller, Peter [Los Alamos National Laboratory; Aberg, Sven [LUND SWEDEN; Uhrenholt, Henrik [LUND SWEDEN; Ickhikawa, Takatoshi [RIKEN
2008-01-01
The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if instead a global property, like the local level-density function is studied, strong structure effects emerge. In this contribution we discuss these two different facets of warm nuclei. In section 2 the onset of chaos with increasing excitation energy is discussed, with both experimental observations and proposed theoretical mechanisms as starting points. The structure of level densities in the same excitation energy region based on the two different starting points, is treated in section 3, where we give a short presentation of a newly developed combinatorial level-density modell. Some results from the model are presented and discussed. Two coexisting facets of warm nuclei, quantum chaos and structure of the level density, are considered. A newly developed combinatorial level-density model is presented, and the role of collective enhancements discussed. An example of extreme parity enhancement is shown.
Games on Games. Game Design as Critical Reflexive Practice
Giovanni Caruso
2016-11-01
Full Text Available Can video game design be compared to more formalized practices of scientific research or speculation within game studies? And, by virtue of an intellectual leap that in itself calls for discussion, can video games be considered as an efficient vehicle for the presentation of certain kinds of knowledge, in the same way in which papers, conference presentations, and books are? What Ratto defines as critical making (2011, the practice of producing artifacts of different sorts in order to supplement and extend critical reflection, may apply to video games as well. Forms of research through design (Zimmerman, Forlizzi and Evenson, 2007, of carpentry (Bogost, 2012, and speculative design (Dunne and Raby, 2013 have been analyzed, discussed, and maybe most importantly, put into practice in different fields of cultural and scientific production. To address this gap and to map the current (and future state of self-reflexive games, we asked both researchers and designers to imagine an application of these concepts to video games. Paraphrasing Zimmerman, Forlizzi and Evenson, what does research through game design might mean? What epistemological insights can we derive from the act of designing, making and playing video games?
Decrease of cardiac chaos in congestive heart failure
Poon, Chi-Sang; Merrill, Christopher K.
1997-10-01
The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.
Spirals, chaos, and new mechanisms of wave propagation.
Chen, P S; Garfinkel, A; Weiss, J N; Karagueuzian, H S
1997-02-01
The chaos theory is based on the idea that phenomena that appear disordered and random may actually be produced by relatively simple deterministic mechanisms. The disordered (aperiodic) activation that characterizes a chaotic motion is reached through one of a few well-defined paths that are characteristic of nonlinear dynamical systems. Our group has been studying VF using computerized mapping techniques. We found that in electrically induced VF, reentrant wavefronts (spiral waves) are present both in the initial tachysystolic stage (resembling VT) and the later tremulous incoordination stage (true VF). The electrophysiological characteristics associated with the transition from VT to VF is compatible with the quasiperiodic route to chaos as described in the Ruelle-Takens theorem. We propose that specific restitution of action potential duration (APD) and conduction velocity properties can cause a spiral wave (the primary oscillator) to develop additional oscillatory modes that lead to spiral meander and breakup. When spiral waves begin to meander and are modulated by other oscillatory processes, the periodic activity is replaced by unstable quasiperiodic oscillation, which then undergoes transition to chaos, signaling the onset of VF. We conclude that VF is a form of deterministic chaos. The development of VF is compatible with quasiperiodic transition to chaos. These results indicate that both the prediction and the control of fibrillation are possible based on the chaos theory and with the advent of chaos control algorithms.
From chaos to order methodologies, perspectives and applications
Chen Guan Rong
1998-01-01
Chaos control has become a fast-developing interdisciplinary research field in recent years. This book is for engineers and applied scientists who want to have a broad understanding of the emerging field of chaos control. It describes fundamental concepts, outlines representative techniques, provides case studies, and highlights recent developments, putting the reader at the forefront of current research.Important topics presented in the book include: Fundamentals of nonlinear dynamical systems, essential for understanding and developing chaos control methods.; Parametric variation and paramet
Manifestation of resonance-related chaos in coupled Josephson junctions
Shukrinov, Yu.M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Hamdipour, M. [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Kolahchi, M.R. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Botha, A.E., E-mail: bothaae@unisa.ac.za [Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003 (South Africa); Suzuki, M. [Photonics and Electronics Science and Engineering Center and Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan)
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase–charge and charge–charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current–voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Manifestation of resonance-related chaos in coupled Josephson junctions
Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.; Botha, A. E.; Suzuki, M.
2012-11-01
Manifestation of chaos in the temporal dependence of the electric charge is demonstrated through the calculation of the maximal Lyapunov exponent, phase-charge and charge-charge Lissajous diagrams and correlation functions. It is found that the number of junctions in the stack strongly influences the fine structure in the current-voltage characteristics and a strong proximity effect results from the nonperiodic boundary conditions. The observed resonance-related chaos exhibits intermittency. The criteria for a breakpoint region with no chaos are obtained. Such criteria could clarify recent experimental observations of variations in the power output from intrinsic Josephson junctions in high temperature superconductors.
Controlling beam halo-chaos via backstepping design
Gao Yuan; Kong Feng
2008-01-01
A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment.
Chaos Theory: A Contribution to the Formation of Strategies
Marcio Luiz Marietto
2011-12-01
Full Text Available It is our intention, through this work, to contribute to the understanding of the influence of chaos theory on the formation of organizational strategies in the dynamic and complex environment in which organizations are embedded. In this sense, we present a theoretical review, leveraged by a dialectical epistemology, in which we propose to show some attributes of chaos theory and theoretical assumptions to be considered in the context of different areas of organizational strategy, with the goal of trying to elucidate and approximate the analytical characteristics of both theories and make evident how chaos theory can contribute to and/or influence the formation of business strategies.
Evidence of low-dimensional chaos in magnetized plasma turbulence
Zivkovic, Tatjana
2008-01-01
We analyze probe data obtained from a toroidal magnetized plasma configuration suitable for studies of low-frequency gradient-driven instabilities. These instabilities give rise to field-aligned convection rolls analogous to Rayleigh-Benard cells in neutral fluids, and may theoretically develop similar routes to chaos. When using mean-field dimension analysis, we observe low dimensionality, but this could originate from either low-dimensional chaos, periodicity or quasi-periodicity. Therefore, we apply recurrence plot analysis as well as estimation of the largest Lyapunov exponent. These analyses provide evidence of low-dimensional chaos, in agreement with theoretical predictions.
Contributions of plasma physics to chaos and nonlinear dynamics
Escande, D. F.
2016-11-01
This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016
Chaos-based hash function (CBHF) for cryptographic applications
Amin, Mohamed [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: mamin04@yahoo.com; Faragallah, Osama S. [Dept. of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952 (Egypt)], E-mail: osam_sal@yahoo.com; Abd El-Latif, Ahmed A. [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: ahmed_rahiem@yahoo.com
2009-10-30
As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.
Quantum Chaos in Physical Systems from Super Conductors to Quarks
Bittner, E; Pullirsch, R; Bittner, Elmar; Markum, Harald; Pullirsch, Rainer
2001-01-01
This article is the written version of a talk delivered at the Bexbach Colloquium of Science 2000 and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. Several examples of physical systems exhibiting quantum chaos ranging from nuclear to solid state physics are presented. The presentation concludes with recent research work on quantum chromodynamics and the quark-gluon plasma. In the case of a chemical potential the eigenvalue spectrum becomes complex and one has to deal with non-Hermitian random-matrix theory.
Diffusive Lorenz dynamics： Coherent structures and spatiotemporal chaos
YuehongQIAN; HudongCHEN; Da-HsuanFENG
2000-01-01
In this paper, we are interested in collective behaviors of many interacting Lorenz strange attractors. With an intermediate diffusion coupling between the attractors,a new remarkable synchronization of well organized structures merges as a result of two competing mechanisms: temporal chaos and spatial diffusive stabilization. A window of the coupling parameter for coherent structures is found numerically. Different from all existing scenarios of routes to chaos (period doubling, intermittency and strange attractors), an algorithmetic increase of wavenumbers before an abrupt change to chaos (compared to the periodic doubling geometrical) is unexpectedly discovered. Meta-stable states are also observed in simulations.
New chaos-based encryption scheme for digital sequence
Zhang Zhengwei; Fan Yangyu; Zeng Li
2007-01-01
To enhance the anti-breaking performance of privacy information, this article proposes a new encryption method utilizing the leaping peculiarity of the periodic orbits of chaos systems. This method maps the secret sequence to several chaos periodic orbits, and a short sequence obtained by evolving the system parameters of the periodic orbits in another nonlinear system will be the key to reconstruct these periodic orbits. In the decryption end, the shadowing method of chaos trajectory based on the modified Newton-Raphson algorithm is adopted to restore these system parameters. Through deciding which orbit each pair coordinate falls on, the original digital sequence can be decrypted.
Theory of the nucleus as applied to quantum chaos
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University, Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute (Russian Federation)
2014-12-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a quantum signature of chaos in classical mechanics is given. It is proposed to specify a regular versus a chaotic behavior on the basis of symmetries of the system being considered and global integrals of motion that are associated with these symmetries in accordance with the Liouville-Arnold theorem rather than on the basis of the concept of Lyapunov’s instability of trajectories. Numerical criteria of quantum chaos that follow from the proposed concept are analyzed.
Exact Algorithms for Solving Stochastic Games
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels;
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games.......Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
Marchetti, Emanuela; Valente, Andrea
2014-01-01
In this paper we argue that there is a need for digital games that could be easy to alter by young learners. Unfortunately it was found that digital games do not enable children to express their creativity at full, in contrast with low-fidelity prototypes and non-digital toys (such as card or table...... top games). Therefore, we propose here a middle ground between digital and traditional table top games, so to grant children more freedom to express themselves, articulate their understanding and difficulties individually or socially; this approach is an alternative to the current trend of associating...... programming with digital creativity. In our preliminary study we transposed a digital game into a card game and observed students while shifting between playing and design thinking. Results from this study suggest that the notion of altering a digital game through a card-based transposition of the same game...
Haney, Stephen
2015-01-01
If you wish to create and publish fun iOS games using Swift, then this book is for you. You should be familiar with basic programming concepts. However, no prior game development or Apple ecosystem experience is required.
Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...
... Questionnaire Tuberculosis Play Tuberculosis Experiments & Discoveries About the game Discover and experience some of the classic methods ... last will in Paris. Play the Blood Typing Game Try to save some patients and learn about ...
Sharp, John
Games and art have intersected at least since the early twentieth century, as can be seen in the Surrealists’ use of Exquisite Corpse and other games, Duchamp’s obsession with Chess, and Fluxus event scores and boxes—to name just a few examples. Over the past fifteen years, the synthesis of art...... and games has clouded for both artists and gamemakers. Contemporary art has drawn on the tool set of videogames, but has not considered them a cultural form with its own conceptual, formal, and experiential affordances. For their part, game developers and players focus on the innate properties of games...... and the experiences they provide, giving little attention to what it means to create and evaluate fine art. In Works of Game, John Sharp bridges this gap, offering a formal aesthetics of games that encompasses the commonalities and the differences between games and art. Sharp describes three communities of practice...
Marchetti, Emanuela; Valente, Andrea
2014-01-01
In this paper we argue that there is a need for digital games that could be easy to alter by young learners. Unfortunately it was found that digital games do not enable children to express their creativity at full, in contrast with low-fidelity prototypes and non-digital toys (such as card or table...... top games). Therefore, we propose here a middle ground between digital and traditional table top games, so to grant children more freedom to express themselves, articulate their understanding and difficulties individually or socially; this approach is an alternative to the current trend of associating...... programming with digital creativity. In our preliminary study we transposed a digital game into a card game and observed students while shifting between playing and design thinking. Results from this study suggest that the notion of altering a digital game through a card-based transposition of the same game...
Warnars, Spits; Kingdom, United; 10.5121/ijcsit.2010.2310
2010-01-01
In this Information system age many organizations consider information system as their weapon to compete or gain competitive advantage or give the best services for non profit organizations. Game Information System as combining Information System and game is breakthrough to achieve organizationsâ performance. The Game Information System will run the Information System with game and how game can be implemented to run the Information System. Game is not only for fun and entertainment, but will be a challenge to combine fun and entertainment with Information System. The Challenge to run the information system with entertainment, deliver the entertainment with information system all at once. Game information system can be implemented in many sectors as like the information system itself but in differenceâs view. A view of game which people can joy and happy and do their transaction as a fun things.
Niklas Schrape
2014-09-01
Full Text Available James Lovelock’s vision of Earth as a living cybernetic system is popular again. The surprising new preacher of Gaia is Bruno Latour. He uses the concept to refer to a holistic understanding of Earth, in which mankind is situated as integral part. Gaia becomes the catalyst and fundament for his philosophical attempt to design a new believe-system in the time of ecological crisis. But the concept of Gaia is characterised by a tension between the idea of a powerful but indifferent nature and a grandiose vision of total control over it. This tension reveals itself to be deeply rooted in cybernetic thought. It is not only apparent in Lovelock’s own writing, but also in simulation programs based on the Gaia hypothesis such as the Daisyworld model and the computer game “SimEarth: The Living Planet” (1991. The article will distinguish Lovelock’s from Latour’s concept of Gaia and relate them to first- and second order cybernetics as well as to two different approaches to computer simulation: system dynamics and cellular automata.
2017-01-20
AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...SUBTITLE The Strength of Chaos: accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos...Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence of quantum chaos” Date 13
Oman, Marko
2012-01-01
This thesis describes educational games and two different technologies used to develop games. It describes the development process and use of educational games in general, also it describes what kind of educational games we know. It Presents HTML5 and Flash technologies, and some programming languages and programs that this two technologies are using. It desribes differences in the way of the development process and display of the final product in both technologies and it describes the adv...
Ortiz, Luis E.
2015-01-01
Potential games, originally introduced in the early 1990's by Lloyd Shapley, the 2012 Nobel Laureate in Economics, and his colleague Dov Monderer, are a very important class of models in game theory. They have special properties such as the existence of Nash equilibria in pure strategies. This note introduces graphical versions of potential games. Special cases of graphical potential games have already found applicability in many areas of science and engineering beyond economics, including ar...
Browne, Cameron
2011-01-01
The book describes the world's first successful experiment in fully automated board game design. Evolutionary methods were used to derive new rule sets within a custom game description language, and self-play trials used to estimate each derived game's potential to interest human players. The end result is a number of new and interesting games, one of which has proved popular and gone on to be commercially published.
Oman, Marko
2012-01-01
This thesis describes educational games and two different technologies used to develop games. It describes the development process and use of educational games in general, also it describes what kind of educational games we know. It Presents HTML5 and Flash technologies, and some programming languages and programs that this two technologies are using. It desribes differences in the way of the development process and display of the final product in both technologies and it describes the adv...
1968-12-01
n-Person Games, Ph.D. Thesis, Princeton University, June 1953. 5. Gillies, D. B., "Solutions to general non-zero-sum games," Annals of Mathematics Study...Economic Review). 22. Shubik, M., "Edgeworth market games, Annals of Mathematics Study 40 (1959), 267-278. 23. von Neumann, J., and 0. Morgenstern, Theory... of . Mathematics Study 40 (1959), 145-162; also The RAND Corporation, P-1392, June 1958. 16. , Values of Large Games - VII: A General Exchange Economv
Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan
2007-01-01
is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...
Smith, Rachel Charlotte; Christensen, Kasper Skov; Iversen, Ole Sejer;
2016-01-01
We introduce Video Design Games to train educators in teaching design. The Video Design Game is a workshop format consisting of three rounds in which participants observe, reflect and generalize based on video snippets from their own practice. The paper reports on a Video Design Game workshop...
Alparslan-Gok, S.Z.; Brânzei, R.; Tijs, S.H.
2008-01-01
In this paper big boss interval games are introduced and various characterizations are given. The structure of the core of a big boss interval game is explicitly described and plays an important role relative to interval-type bi-monotonic allocation schemes for such games. Specifically, each element
Fiestras-Janeiro, G.; Borm, P.E.M.; van Megen, F.J.C.
1996-01-01
This paper introduces the notion of protective equilibrium in the context of fin ite games in strategic form.It shows that for matrix games the set of protective equilibria equals the set of proper equilibria.Moreover, in the context of bima trix games, the notion of protective behaviour is used as
Jessen, Jari Due; Jessen, Carsten
2014-01-01
When interacting with computer games, users are forced to follow the rules of the game in return of the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games achieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative st...
Educational Games for Learning
Noemí, Peña-Miguel; Máximo, Sedano Hoyuelos
2014-01-01
The introduction of new technologies in society has created a need for interactive contents that can make the most of the potential that technological advances offer. Serious games as educational games are such content: they can be defined as video games or interactive applications whose main purpose is to provide not only entertainment but also…
2011-06-01
for Families of Returning Veterans Using Emotionally Responsive Avatars Ron Goldman, Kognito, Inc. Games for Shoppers : Brainstorming Play at...Nutrition Education with Online Game Experiences Sally Schmidt & Jori Clarke, Circle1Network Camp Eatapita: A Nutrition Game for Young Kids Steve
Richardson, Will
2012-01-01
The idea of learning through games isn't necessarily new. In fact, over the past decade, researchers have been espousing the use of games to help both children and adults learn. But it's only been recently that games have begun to make serious inroads into classrooms. As the world becomes more and more driven by mobile apps and tablet…
Marchetti, Emanuela; Valente, Andrea
2015-01-01
game into a trading card game, to investigate the potential of the approach: as expected, students participating to the study shifted between playing and design thinking. The card-based model introduced in this paper works full circle: it enables learners to go from digital games to cards and back...
Chatterjee, Krishnendu; Doyen, Laurent
2012-11-02
Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objectives. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP [Formula: see text] coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is logspace-equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP [Formula: see text] coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.
Wagner, Paul A.; Penner, Janet
1982-01-01
Gaming (the use of formal games for specific academic purposes) is a method for teaching formal thinking processes that is particularly suited to the gifted student. Various games can be used to develop deductive reasoning, the concept of subsets, inductive reasoning, and attention to detail. (Author/SW)
DeQuadros, Miguel
2015-01-01
If you want to create your own game, but don't know where to start, this is the book for you. Whether you've used GameSalad before, or have prior game development experience or not you are sure to learn! Imaging software experience, such as Photoshop, is good to have, but art and assets are provided in the book's resources.
Marchetti, Emanuela; Valente, Andrea
2015-01-01
In this paper we consider the problem of making design of digital games accessible to primary school children and their teachers, and we argue for the need of digital games that are easy to alter by young learners. We know from previous research projects that digital games do not enable children ...
Rakow, Steven J.; Glenn, Allen
1982-01-01
Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…
Remmele, Bernd
2017-01-01
The paper first outlines a differentiation of play/game-motivations that include "negative" attitudes against the play/game itself like cheating or spoilsporting. This problem is of particular importance in concern of learning games because they are not "played" for themselves--at least in the first place--but due to an…
Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan
2007-01-01
is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...
... by You are here Home » Games and Quizzes Games and Quizzes Facebook Twitter Tumblr Shares · 56 quiz ... Year’s Relationship Resolution Be? Shares · 6 Comments · 0 game Block Party Shares · 36 Comments · 0 quiz Should ...
Smith, Rachel Charlotte; Christensen, Kasper Skov; Iversen, Ole Sejer
We introduce Video Design Games to train educators in teaching design. The Video Design Game is a workshop format consisting of three rounds in which participants observe, reflect and generalize based on video snippets from their own practice. The paper reports on a Video Design Game workshop...
Gaydos, Matthew; Harris, Shannon; Squire, Kurt
2016-01-01
Player responses to a brief survey gauging their understanding of content after playing an educational game, "Virulent," are presented. Response accuracy was higher for picture-based questions than text-based questions, despite the presentation of both within the game. Given that games may present educational content in multiple ways…
de Bruin, B.P.
2005-01-01
Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals
Educational Game Development Models
Mehmet Emin Korkusuz
2013-12-01
Full Text Available Recent research on the subject shows that students spend more time on computer games than other activities such as reading book or watching TV. It is possible that this time-consuming activity can become much more effective by educator-game sector cooperation. Which type of game students prefer mostly; how the educational content can be articulated the games without diminishing the playability and enjoyableness of it; and the impact of the competition in the games on process and students are just several titles examined in the studies. This scope presents the types of computer game, qualities of educational games, and educational games designs which are recommended for developing educational games. It also presents a set of knowledge about the importance of educational games in mathematics and physic education, and some studies on this field. In the scope, some strategies, about educational game development process, are recommended educators and software developers in the sector who intend to develop educational games based on the literature.