WorldWideScience

Sample records for zoom-in pet system

  1. X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability

    International Nuclear Information System (INIS)

    Chun, In Kon; Cho, Myung Hye; Lee, Sang Chul; Cho, Min Hyoung; Lee, Soo Yeol

    2004-01-01

    Since a micro-tomography system capable of μm-resolution imaging cannot be used for whole-body imaging of a small laboratory animal without sacrificing its spatial resolution, it is desirable for a micro-tomography system to have local imaging capability. In this paper, we introduce an x-ray micro-tomography system capable of high-resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest (ROI), we have obtained zoomed-in images of the ROI without any contrast anomalies commonly appearing in conventional local tomography. For experimental verification of the zoom-in imaging capability, we have integrated a micro-tomography system using a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector, and a precision scan mechanism. The mismatches between the two projection data caused by misalignments of the scan mechanism have been estimated with a calibration phantom, and the mismatch effects have been compensated in the image reconstruction procedure. Zoom-in imaging results of bony tissues with a spatial resolution of 10 lp mm -1 suggest that zoom-in micro-tomography can be greatly used for high-resolution imaging of a local region in small-animal studies

  2. Zoom in, zoom out.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2011-03-01

    Zoom buttons on digital devices let us examine images from many viewpoints. They also provide an apt metaphor for modes of strategic thinking. Some people prefer to see things up close, others from afar. Both perspectives have virtues. But they should not be fixed positions, says Harvard Business School's Kanter. To get a complete picture, leaders need to zoom in and zoom out. A close-in perspective is often found in relationship-intensive settings. It brings details into sharp focus and makes opportunities look large and compelling. But it can have significant downsides. Leaders who prefer to zoom in tend to create policies and systems that depend too much on politics and favors. They can focus too closely on personal status and on turf protection. And they often miss the big picture. When leaders zoom out, they can see events in context and as examples of general trends. They are able to make decisions based on principles. Yet a far-out perspective also has traps. Leaders can be so high above the fray that they don't recognize emerging threats. Having zoomed out to examine all possible routes, they may fail to notice when the moment is right for action on one path. They may also seem too remote and aloof to their staffs. The best leaders can zoom in to examine problems and then zoom out to look for patterns and causes. They don't divide the world into extremes-idiosyncratic or structural, situational or strategic, emotional or contextual. The point is not to choose one over the other but to learn to move across a continuum of perspectives.

  3. Imaging with PET system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    PET deals with biochemistry and metabolic changes that occur at molecular level. Hence, PET differs fundamentally from other imaging modalities. CT imaging is based on tissue density, whereas MRI conveys anatomic information based on proton density and proton relaxation dynamics. CT and MRI are useful in clinical diagnosis only when disease process has caused significant anatomic alterations. However, in most disease conditions chemical changes precede anatomic changes, that can be detected by PET technology. Thus, PET can provide earliest and unique information about ongoing disease process long before anatomic or structural changes take place. There is no other modality available at present that can replace PET technology. Although PET produces cross-sectional images like that obtained in MRI or CT, they represent circulation, function and metabolism, and not anatomic structure. PET is extremely sensitive measuring quantitatively concentration of tracers in nano to pico-molar range. Thus, PET enables merger of biochemistry and biology in medicine giving birth to molecular medicine that focuses on identifying the molecular errors of disease leading to developing molecular corrections including gene therapy. Molecular imaging with PET has been playing a role in examining the biological nature of a disease condition and its characterization to guide selection and evaluation of treatment. (author)

  4. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.

    Science.gov (United States)

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-02-01

    The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.

  5. The system of the designing for PET detectors

    International Nuclear Information System (INIS)

    Fang Zongliang

    2006-01-01

    PET stands for Positron Emission Tomography, a new nuclear medicine imaging device. PET detector is the key of PET. This paper introduces a system of the designing for PET detector. The system can be used to design various PET detector. A PET detector BLOCK with 8 x 8 crystals has been designed and built by this system. (authors)

  6. 'PET -Compton' system. Comparative evaluation with PET system using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2011-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called 'PET-Compton' systems and includes comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation is done on a PET-Compton system consisting of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named 'Clear-PET' and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e + ) and γ quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. (Author)

  7. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera HernAndez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A.; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2012-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10 -5 -10 -6 %) instead of values around 5*10 -1 % that have been achieved in PET system. (author)

  8. The MiniPET: a didactic PET system

    International Nuclear Information System (INIS)

    Pedro, R; Silva, J; Maio, A; Gurriana, L; Silva, J M; Augusto, J Soares

    2013-01-01

    The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius φ=51 mm), up to a geometry with 70 detectors per ring (φ=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137 Cs radioactive source and by photons resulting of the annihilation of positrons from a 22 Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.

  9. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    Science.gov (United States)

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  10. A versatile scalable PET processing system

    International Nuclear Information System (INIS)

    Dong, H.; Weisenberger, A.; McKisson, J.; Wenze, Xi; Cuevas, C.; Wilson, J.; Zukerman, L.

    2011-01-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  11. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Mustafa Demir; Türkay Toklu; Mohammad Abuqbeitah; Hüseyin Çetin; H. Sezer Sezgin; Nami Yeyin; Kerim Sönmezoğlu

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated...

  12. Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests

    OpenAIRE

    Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H. Sezer; Yeyin, Nami; Sönmezoğlu, Kerim

    2018-01-01

    Objective: The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. Methods: According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated asp...

  13. Zooming in on cirrus with the Canadian Regional Climate Model

    Science.gov (United States)

    Stefanof, C.; Stefanof, A.; Beaulne, A.; Munoz Alpizar, R.; Szyrmer, W.; Blanchet, J.

    2004-05-01

    The Canadian Regional Climate Model plus a microphysical scheme: two-moments microphysics with three hydrometeor categories (cloud liquid water, pristine ice crystals and larger precipitation crystals) is used to test the simulation in forecast mode using ECMWF data at 0.4 X 0.4 degree. We are zooming in on cirrus at higher resolutions (9, 1.8, 0.36 km). We are currently using the data set measured in APEX-E3, measurements of radar, lidar, passive instruments and interpreted microphysics for some flights (G-II, C404, B200). The radar and lidar data are available for high level cirrus. The south west of Japon is the flight region. The dates are March 20, March 27 and April 2, 2003. We first focus on the March 27 frontal system. We did a rigorous synoptical analysis for the cases. The cirrus at 360 m resolution are simulated. The cloud structure and some similarities between model simulation and observations will be presented.

  14. Surveillance System for Infectious Diseases of Pets, Santiago, Chile

    Science.gov (United States)

    López, Javier; Abarca, Katia; Valenzuela, Berta; Lorca, Lilia; Olea, Andrea; Aguilera, Ximena

    2009-01-01

    Pet diseases may pose risks to human health but are rarely included in surveillance systems. A pilot surveillance system of pet infectious diseases in Santiago, Chile, found that 4 canine and 3 feline diseases accounted for 90.1% and 98.4% of notifications, respectively. Data also suggested association between poverty and pet diseases. PMID:19861073

  15. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  16. Development of ''Eminence STARGATE'' PET/CT system

    International Nuclear Information System (INIS)

    Okazaki, Masato; Inoue, Yoshihiro; Amano, Masaharu

    2009-01-01

    A PET/CT system, the combination of a PET (Positron Emission Tomography) system with an X-ray CT system, has been widely used in recent years. Our newly developed ''Eminence STARGATE'' PET/CT system allows the PET gantry and the X-ray CT gantry to move independently. This advantage provides high flexibility for PET examination and X-ray CT examination and also eases a patient's psychological anxiety about closed spaces. The system has a 16-slice X-ray CT scanner. (author)

  17. Dedicated brain PET system of PET/MR for brain research

    International Nuclear Information System (INIS)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng

    2015-01-01

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  18. Dedicated brain PET system of PET/MR for brain research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Liu, Yaqiang; Ma, Tianyu; Wang, Shi; Wei, Qingyang; Xu, Tianpeng [Institute of Medical Physics, Department of Engineering Physics, Tsinghua University, Beijing (China)

    2015-05-18

    This work is to replace PET ring in human brain PET/MR system with a dedicated wearable PET insert, aimed at improving both patient feasibility and system performance for brain imaging. The designed PET/MR system includes two parts: the inside parts, including a radio frequency (RF) coil and PET ring, are mounted on patient’s head, and the outside part, a MR imager, is dependent of patient. The RF coil is the innermost layer, surrounded by an outer PET-ring layer. They are supported by a MRcompatible structure. And both RF coil and PET detectors are placed inside a standard clinical 3-T MR imager. From the design of the system we can infer that some advantages can be achieved. First, high sensitivity will be achieved with the same amount crystals as the PET ring is more close to region-of-interest area, at a reduced cost. Second, by using a 2-layer depth of interaction (DOI) detector, the parallax effect can be minimized. The resolution will benefit from short positron range caused by magnetic field and smaller ring diameter will also reduce the effect of non-collinearity. Thirdly, as the PET ring is mounted on head, impact of patient motion will be reduced.

  19. PET imaging of the autonomic nervous system

    International Nuclear Information System (INIS)

    THACKERAY, James T.; BENGEL, Frank M.

    2016-01-01

    The autonomic nervous system is the primary extrinsic control of heart rate and contractility, and is subject to adaptive and maladaptive changes in cardiovascular disease. Consequently, noninvasive assessment of neuronal activity and function is an attractive target for molecular imaging. A myriad of targeted radiotracers have been developed over the last 25 years for imaging various components of the sympathetic and parasympathetic signal cascades. While routine clinical use remains somewhat limited, a number of larger scale studies in recent years have supplied momentum to molecular imaging of autonomic signaling. Specifically, the findings of the ADMIRE HF trial directly led to United States Food and Drug Administration approval of 123I-metaiodobenzylguanidine (MIBG) for Single Photon Emission Computed Tomography (SPECT) assessment of sympathetic neuronal innervation, and comparable results have been reported using the analogous PET agent 11C-meta-hydroxyephedrine (HED). Due to the inherent capacity for dynamic quantification and higher spatial resolution, regional analysis may be better served by PET. In addition, preliminary clinical and extensive preclinical experience has provided a broad foundation of cardiovascular applications for PET imaging of the autonomic nervous system. Recent years have witnessed the growth of novel quantification techniques, expansion of multiple tracer studies, and improved understanding of the uptake of different radiotracers, such that the transitional biology of dysfunctional subcellular catecholamine handling can be distinguished from complete denervation. As a result, sympathetic neuronal molecular imaging is poised to play a role in individualized patient care, by stratifying cardiovascular risk, visualizing underlying biology, and guiding and monitoring therapy.

  20. Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Hatazawa, Jun; Aoki, Masaaki; Sugiyama, Eiji; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector, especially for integrated PET/MRI systems, due to its small size, high gain, and low sensitivity to static magnetic fields. The major problem using a Si-PM-based PET system within the MRI system is the interference between the PET and MRI units. We measured the interference by combining a Si-PM-based PET system with a permanent-magnet MRI system. When the RF signal-induced pulse height exceeded the lower energy threshold level of the PET system, interference between the Si-PM-based PET system and MRI system was detected. The prompt as well as the delayed coincidence count rates of the Si-PM-based PET system increased significantly. These noise counts produced severe artifacts on the reconstructed images of the Si-PM-based PET system. In terms of the effect of the Si-PM-based PET system on the MRI system, although no susceptibility artifact was observed on the MR images, electronic noise from the PET detector ring was detected by the RF coil and reduced the signal-to-noise ratio (S/N) of the MR images. The S/N degradation of the MR images was reduced when the distance between the RF coil and the Si-PM-based PET system was increased. We conclude that reducing the interference between the PET and MRI systems is essential for achieving the optimum performance of integrated Si-PM PET/MRI systems.

  1. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  2. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  4. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  5. Research of digital constant fraction discriminator in PET system

    International Nuclear Information System (INIS)

    Du Yaoyao; Hu Xuanhou; Wu Jianping; Wang Peilin; Li Xiaohui; Li Daowu; Li Ke; Wei Long

    2012-01-01

    The research on digital constant fraction discriminator of spike pulse signal in PET detector is introduced. Based on FPGA technique, rapid signal's time information is extracted via DCFD algorithm after a high-speed ADC digitization. Experiment results show that time resolution of DCFD is 772 ps, which meets the requirement of time measurement in PET system well. (authors)

  6. [Microeconomics of introduction of a PET system based on the revised Japanese National Insurance reimbursement system].

    Science.gov (United States)

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-11-01

    It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system.

  7. Microeconomics of introduction of a PET system based on the revised Japanese national insurance reimbursement system

    International Nuclear Information System (INIS)

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-01-01

    It is crucial to evaluate an annual balance beforehand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system. (author)

  8. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  9. Optimization of PET system design for lesion detection

    International Nuclear Information System (INIS)

    Qi, Jinyi

    2000-01-01

    Traditionally, the figures of merit used in designing a PET scanner are spatial resolution, noise equivalent count rate, noise equivalent sensitivity, etc. These measures, however, do not directly reflect the lesion detectability using the PET scanner. Here we propose to optimize PET scanner design directly for lesion detection. The signal-to-noise ratio (SNR) of lesion detection can be easily computed using the theoretical expressions that we have previously derived. Because no time consuming Monte Carlo simulation is needed, the theoretical expressions allow evaluation of a large range of parameters. The PET system parameters can then be chosen to achieve the maximum SNR for lesion detection. The simulation study shown in this paper was focused a single ring PET scanner without depth of interaction measurement. Randoms and scatters were also ignored

  10. A quality system for PET: An industry perspective

    International Nuclear Information System (INIS)

    Zigler, Steven S.; Breslow, Kenneth; Nazerias, Michael

    2005-01-01

    Quality systems have been employed in a variety of industries to develop and supply products that meet customer expectations and regulatory requirements. Most quality systems address organizational structure, design controls, production, complaints, audits, corrective actions and preventive actions. This paper describes PETNET's efforts to develop a quality system for use in the production of PET tracers. Our goal is to ensure quality products and to facilitate compliance with impending PET good manufacturing practice (GMP) regulations

  11. Validation of a simultaneous PET/MR system model for PET simulation using GATE

    International Nuclear Information System (INIS)

    Monnier, Florian; Fayad, Hadi; Bert, Julien; Schmidt, Holger; Visvikis, Dimitris

    2015-01-01

    Simultaneous PET/MR acquisition shows promise in a range of applications. Simulation using GATE is an essential tool that allows obtaining the ground truth for such acquisitions and therefore helping in the development and the validation of innovative processing methods such as PET image reconstruction, attenuation correction and motion correction. The purpose of this work is to validate the GATE simulation of the Siemens Biograph mMR PET/MR system. A model of the Siemens Biograph mMR was developed. This model includes the geometry and spatial positioning of the crystals inside the scanner and the characteristics of the detection process. The accuracy of the model was tested by comparing, on a real physical phantom study, GATE simulated results to reconstructed PET images using measured results obtained from a Siemens Biograph mMR system. The same parameters such as the acquisition time and phantom position inside the scanner were fixed for our simulations. List-mode outputs were recovered in both cases and reconstructed using the OPL-EM algorithm. Several parameters were used to compare the two reconstructed images such as profile comparison, signal-to-noise ratio and activity contrast analysis. Finally patient acquired MR images were segmented and used for the simulation of corresponding PET images. The simulated and acquired sets of reconstructed phantom images showed close emission values in regions of interest with relative differences lower than 5%. The scatter fraction was within a <3% agreement. Close matching of profiles and contrast indices were obtained between simulated and corresponding acquired PET images. Our results indicate that the GATE developed Biograph mMR model is accurate in comparison to the real scanner performance and can be used for evaluating innovative processing methods for applications in clinical PET/MR protocols.

  12. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    Directory of Open Access Journals (Sweden)

    Martin L. Lassen

    2017-07-01

    Full Text Available The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R-[11C]verapamil imaging on the same day using a GE-Advance (PET-only and a Siemens Biograph mMR system (PET/MR. PET-emission data were reconstructed using a transmission-based attenuation correction (AC map (PET-only, whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2 and distribution volume (VT. Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA. Comparison of DIXON-based AC (PET/MR with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05 for the K1 parameter and −19 ± 9% (p < 0.05 for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05 for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods.Clinical Trial Registration:www.clinicaltrialsregister.eu, identifier 2013-001724-19

  13. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  14. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    DEFF Research Database (Denmark)

    Lassen, Martin L; Muzik, Otto; Beyer, Thomas

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic paramet...

  15. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?

    Science.gov (United States)

    Cecchin, Diego; Palombit, Alessandro; Castellaro, Marco; Silvestri, Erica; Bui, Franco; Barthel, Henryk; Sabri, Osama; Corbetta, Maurizio; Bertoldo, Alessandra

    2017-12-01

    In the last 20 years growing attention has been devoted to multimodal imaging. The recent literature is rich of clinical and research studies that have been performed using different imaging modalities on both separate and integrated positron emission tomography (PET) and magnetic resonance (MR) scanners. However, today, hybrid PET/MR systems measure signals related to brain structure, metabolism, neurochemistry, perfusion, and neuronal activity simultaneously, i.e. in the same physiological conditions. A frequently raised question at meeting and symposia is: "Do we really need a hybrid PET/MR system? Are there any advantages over acquiring sequential and separate PET and MR scans?" The present paper is an attempt to answer these questions specifically in relation to PET combined with functional magnetic resonance imaging (fMRI) and arterial spin labeling. We searched (last update: June 2017) the databases PubMed, PMC, Google Scholar and Medline. We also included additional studies if they were cited in the selected articles. No language restriction was applied to the search, but the reviewed articles were all in English. Among all the retrieved articles, we selected only those performed using a hybrid PET/MR system. We found a total of 17 papers that were selected and discussed in three main groups according to the main radiopharmaceutical used: 18F-fluorodeoxyglucose (18F-FDG) (N.=8), 15O-water (15O-H2O) (N.=3) and neuroreceptors (N.=6). Concerning studies using 18F-FDG, simultaneous PET/fMRI revealed that global aspects of functional organization (e.g. graph properties of functional connections) are partially associated with energy consumption. There are remarkable spatial and functional similarities across modalities, but also discrepant findings. More work is needed on this point. There are only a handful of papers comparing blood flow measurements with PET 15O-H2O and MR arterial spin label (ASL) measures, and they show significant regional CBF differences

  16. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    Science.gov (United States)

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  17. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    International Nuclear Information System (INIS)

    Mhlanga, Joyce C.; Lodge, Martin; Carrino, John A.; Wang, Hao; Wahl, Richard L.

    2014-01-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18 F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18 F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  18. PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.

    Science.gov (United States)

    Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H

    2018-01-01

    The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count

  19. System immune response to vaccination on FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Mingos, Mark; Howard, Stephanie; Giaclone, Micholas; Kozono, David; Jacene, Heather [Brigham and Women' s Hospital, Boston (United States)

    2016-12-15

    A patient with newly diagnosed right lung cancer had transient 18F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan.

  20. System immune response to vaccination on FDG-PET/CT

    International Nuclear Information System (INIS)

    Mingos, Mark; Howard, Stephanie; Giaclone, Micholas; Kozono, David; Jacene, Heather

    2016-01-01

    A patient with newly diagnosed right lung cancer had transient 18F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan

  1. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience

    International Nuclear Information System (INIS)

    Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H.P.; Fenchel, M.; Roethke, M.; Eder, M.; Eisenhut, M.; Hadaschik, B.A.; Kopp-Schneider, A.

    2014-01-01

    68 Ga-labelled HBED-CC-PSMA is a highly promising tracer for imaging recurrent prostate cancer (PCa). The intention of this study was to evaluate the feasibility of PET/MRI with this tracer. Twenty patients underwent PET/CT 1 h after injection of the 68 Ga-PSMA ligand followed by PET/MRI 3 h after injection. Data from the two investigations were first analysed separately and then compared with respect to tumour detection rate and radiotracer uptake in various tissues. To evaluate the quantification accuracy of the PET/MRI system, differences in SUVs between PET/CT and corresponding PET/MRI were compared with differences in SUVs between PET/CT 1 h and 3 h after injection in another patient cohort. This cohort was investigated using the same PET/CT system. With PET/MRI, different diagnostic sequences, higher contrast of lesions and higher resolution of MRI enabled a subjectively easier evaluation of the images. In addition, four unclear findings on PET/CT could be clarified as characteristic of PCa metastases by PET/MRI. However, in PET images of the PET/MRI, a reduced signal was observed at the level of the kidneys (in 11 patients) and around the urinary bladder (in 15 patients). This led to reduced SUVs in six lesions. SUV mean values provided by the PET/MRI system were different in muscles, blood pool, liver and spleen. PCa was detected more easily and more accurately with Ga-PSMA PET/MRI than with PET/CT and with lower radiation exposure. Consequently, this new technique could clarify unclear findings on PET/CT. However, scatter correction was challenging when the specific 68 Ga-PSMA ligand was used. Moreover, direct comparison of SUVs from PET/CT and PET/MR needs to be conducted carefully. (orig.)

  2. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  3. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  4. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  5. Quality control in PET systems employing 2-D modular detectors

    International Nuclear Information System (INIS)

    Daghighian, F.; Hoffman, E.J.; Huang, S.C.

    1989-01-01

    Many new PET scanner designs employ 2-D detector modules to cost effectively achieve higher image and axial resolution. These systems are potentially less stable than older designs and the loss of a single photomultiplier can disable a large section of a multislice PET system. Because of these factors, it is now necessary to develop more sophisticated quality control procedures that are designed to detect problems as early as possible. The authors have developed and put into operation three automated quality control procedure that are designed to detect problems quickly with a minimum effort on the part of the user. These tests check: (1) stability of the detector modules in terms of efficiency, (2) resolution and its uniformity, (3) the reproducibility of the data

  6. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    Science.gov (United States)

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.

  7. A PET imaging system dedicated to mammography

    CERN Document Server

    Varela, J

    2007-01-01

    The imaging system Clear-PEM for positron emission mammography, under development within the framework of the Crystal Clear Collaboration at CERN, is presented. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes (APD) and readout by a fast low-noise electronic system. A dedicated digital trigger and data acquisition system is used for on-line selection of coincidence events with high efficiency, large bandwidth and negligible dead-time. The detector module performance was characterized in detail.

  8. Quality control in PET/CT systems. Experiences and requirements

    International Nuclear Information System (INIS)

    Geworski, Lilli; Fitz, Eduard; Knoop, Bernd; Karwarth, Cornelia; Plotkin, Michail

    2010-01-01

    Today, in most cases PET examinations are performed using PET/CT hybrid systems. While acceptance testing and routine control of the basic modalities PET and CT, respectively, are described by appropriate regulations, corresponding instructions with regard to the interface connecting both are still missing. This interface includes the adjustment of gantries and patient bed to each other as well as the energy scaling of attenuation coefficients from CT energy to 511 keV. Measurements checking the mechanical adjustment (determination of off-set parameters) are performed following manufacturer's recommendation, with a typical frequency twice a year. On a Biograph 16 (Siemens, Inc.), these measurements were systematically extended to a weekly frequency over an observation period of 10 months, supplemented by measurements with additional load to the patient bed (up to 135 kg), and different vertical bed positions. The results show, that for the construction tested additional off-set measurements for routine control extending well beyond manufacturer's recommendation are not necessary. The energy scaling of attenuation coefficients is depending on methodological aspects and software implementation, and therefore is not part of routine control. On the contrary, the development of appropriate methods for acceptance testing to assess and to determine the mechanical adjustment in all its degrees of freedom as well as the accuracy of attenuation corrected emission data is urgently needed. (orig.)

  9. Preliminary results of a prototype C-shaped PET designed for an in-beam PET system

    International Nuclear Information System (INIS)

    Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun

    2016-01-01

    Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.

  10. Digitized video subject positioning and surveillance system for PET

    International Nuclear Information System (INIS)

    Picard, Y.; Thompson, C.J.

    1995-01-01

    Head motion is a significant contribution to the degradation of image quality of Positron Emission Tomography (PET) studies. Images from different studies must also be realigned digitally to be correlated when the subject position has changed. These constraints could be eliminated if the subject's head position could be monitored accurately. The authors have developed a video camera-based surveillance system to monitor the head position and motion of subjects undergoing PET studies. The system consists of two CCD (charge-coupled device) cameras placed orthogonally such that both face and profile views of the subject's head are displayed side by side on an RGB video monitor. Digitized images overlay the live images in contrasting colors on the monitor. Such a system can be used to (1) position the subject in the field of view (FOV) by displaying the position of the scanner's slices on the monitor along with the current subject position, (2) monitor head motion and alert the operator of any motion during the study and (3) reposition the subject accurately for subsequent studies by displaying the previous position along with the current position in a contrasting color

  11. Analysis of polyethylene terephthalate PET plastic bottle jointing system using finite element method (FEM)

    Science.gov (United States)

    Zaidi, N. A.; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    For almost all injection molding applications of Polyethylene Terephthalate (PET) plastic was analyzed the strength, durability and stiffness of properties by using Finite Element Method (FEM) for jointing system of wood furniture. The FEM was utilized for analyzing the PET jointing system for Oak and Pine as wood based material of furniture. The difference pattern design of PET as wood jointing furniture gives the difference value of strength furniture itself. The results show the wood specimen with grooves and eclipse pattern design PET jointing give lower global estimated error is 28.90%, compare to the rectangular and non-grooves wood specimen of global estimated error is 63.21%.

  12. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients—Current state of image quality

    International Nuclear Information System (INIS)

    Schwenzer, N.F.; Stegger, L.; Bisdas, S.; Schraml, C.; Kolb, A.; Boss, A.; Müller, M.

    2012-01-01

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [ 18 F]-FDG, [ 11 C]-methionine or [ 68 Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [ 11 C]-methionine and [ 68 Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 ± 0.54; FLAIR: 1.38 ± 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 ± 0.69; ASL: 1.10 ± 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [ 11 C]-methionine; additional lesions were found in 2/8 [ 68 Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 ± 2.2% vs. 0.9 ± 3.6%; mean ratio (frontal/parieto-occipital) 0.93 ± 0.08 vs. 0.96 ± 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance of PET results between PET/MR and PET

  13. Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, N.F., E-mail: nina.schwenzer@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Stegger, L., E-mail: stegger@gmx.net [Department of Nuclear Medicine and European Institute for Molecular Imaging, University of Muenster, Muenster (Germany); Bisdas, S., E-mail: sbisdas@gmail.com [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Schraml, C., E-mail: christina.schraml@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de [Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Boss, A., E-mail: Andreas.Boss@usz.ch [Department of Diagnostic and Interventional Radiology, Eberhard-Karls University Tuebingen, Tuebingen (Germany); Institute of Diagnostic and Interventional Radiology, University Hospital Zuerich, Zuerich (Switzerland); Mueller, M., E-mail: mark.mueller@med.uni-tuebingen.de [Department of Nuclear Medicine, Eberhard-Karls University Tuebingen, Tuebingen (Germany); and others

    2012-11-15

    Objectives: The present work illustrates the current state of image quality and diagnostic accuracy in a new hybrid BrainPET/MR. Materials and methods: 50 patients with intracranial masses, head and upper neck tumors or neurodegenerative diseases were examined with a hybrid BrainPET/MR consisting of a conventional 3T MR system and an MR-compatible PET insert. Directly before PET/MR, all patients underwent a PET/CT examination with either [{sup 18}F]-FDG, [{sup 11}C]-methionine or [{sup 68}Ga]-DOTATOC. In addition to anatomical MR scans, functional sequences were performed including diffusion tensor imaging (DTI), arterial spin labeling (ASL) and proton-spectroscopy. Image quality score of MR imaging was evaluated using a 4-point-scale. PET data quality was assessed by evaluating FDG-uptake and tumor delineation with [{sup 11}C]-methionine and [{sup 68}Ga]-DOTATOC. FDG uptake quantification accuracy was evaluated by means of ROI analysis (right and left frontal and temporo-occipital lobes). The asymmetry indices and ratios between frontal and occipital ROIs were compared. Results: In 45/50 patients, PET/MR examination was successful. Visual analysis revealed a diagnostic image quality of anatomical MR imaging (mean quality score T2 FSE: 1.27 {+-} 0.54; FLAIR: 1.38 {+-} 0.61). ASL and proton-spectroscopy was possible in all cases. In DTI, dental artifacts lead to one non-diagnostic dataset (mean quality score DTI: 1.32 {+-} 0.69; ASL: 1.10 {+-} 0.31). PET datasets of PET/MR and PET/CT offered comparable tumor delineation with [{sup 11}C]-methionine; additional lesions were found in 2/8 [{sup 68}Ga]-DOTATOC-PET in the PET/MR. Mean asymmetry index revealed a high accordance between PET/MR and PET/CT (1.5 {+-} 2.2% vs. 0.9 {+-} 3.6%; mean ratio (frontal/parieto-occipital) 0.93 {+-} 0.08 vs. 0.96 {+-} 0.05), respectively. Conclusions: The hybrid BrainPET/MR allows for molecular, anatomical and functional imaging with uncompromised MR image quality and a high accordance

  14. Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT.

    Science.gov (United States)

    Teixeira, Suzana C; Rebolleda, José Ferrér; Koolen, Bas B; Wesseling, Jelle; Jurado, Raúl Sánchez; Stokkel, Marcel P M; Del Puig Cózar Santiago, María; van der Noort, Vincent; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2016-06-01

    The purposes of this study were to evaluate the performance of a mammography with molecular imaging PET (MAMMI-PET) system for breast imaging in the hanging-breast position for the visualization of primary breast cancer lesions and to compare this method with whole-body PET/CT. Between March 2011 and March 2014, a prospective evaluation included women with one or more histologically confirmed primary breast cancer lesions (index lesions). After injection of 180-240 MBq of (18)F-FDG, whole-body PET/CT and MAMMI-PET acquisitions were performed, index lesions were scored 0, 1, or 2 for FDG uptake relative to background. Detection and FDG uptake were compared by breast length, maximal tumor diameter, affected breast quadrants, tumor grade, and histologic and immunologic sub-types. Finally, the two PET modalities were compared for detection of index lesions. For 234 index lesions (diameter, 5-170 mm), the overall sensitivity was 88.9% for MAMMI-PET and 91% for PET/CT (p = 0.61). Twenty-three (9.8%) index lesions located too close to the pectoral muscle were missed with MAMMI-PET, and 20 index lesions were missed with PET/CT. Lesion visibility on MAMMI-PET images was influenced by tumor grade (p = 0.034) but not by cancer subtype (p = 0.65). Although in an overall evaluation MAMMI-PET was not superior to PET/CT, MAMMI-PET does have higher sensitivity for primary breast cancer lesions within the scanning range of the device. Optimization of the positioning device may increase visualization of the most dorsal lesions.

  15. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a ...

  16. Investigation of a whole-body DOI-PET system

    International Nuclear Information System (INIS)

    Ohi, Junichi; Tonami, Hiromichi

    2007-01-01

    In this study, we were conducting basic research on a whole-body depth of gamma-ray interaction (DOI) positron emission tomography system which provides spatial resolution that is both high and uniform, and also minimizes costs. The detectors consist of double-layer 9x10 GSO/GSO phoswich crystal blocks, a light guide and two rectangular PMTs. Individual crystal sizes are 2.45x5.1x15 mm 3 , and each layer of crystal blocks has a different decay time. Many of the circuit boards used in our current conventional PET system (SET-3000G SHIMADZU Japan) have been optimized for DOI acquisition. The detectors are arranged to form a 332.5 mm radius detection ring, and spatial resolution is obtained from the center to the edge of the 250 mm radius field of view. The effect of DOI was confirmed using a comparison with the non-DOI systems

  17. Adaptive zooming in X-ray computed tomography.

    Science.gov (United States)

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  18. Performance simulation of a MRPC-based PET imaging system

    Science.gov (United States)

    Roy, A.; Banerjee, A.; Biswas, S.; Chattopadhyay, S.; Das, G.; Saha, S.

    2014-10-01

    The less expensive and high resolution Multi-gap Resistive Plate Chamber (MRPC) opens up a new possibility to find an efficient alternative detector for the Time of Flight (TOF) based Positron Emission Tomography, where the sensitivity of the system depends largely on the time resolution of the detector. In a layered structure, suitable converters can be used to increase the photon detection efficiency. In this work, we perform a detailed GEANT4 simulation to optimize the converter thickness towards improving the efficiency of photon conversion. A Monte Carlo based procedure has been developed to simulate the time resolution of the MRPC-based system, making it possible to simulate its response for PET imaging application. The results of the test of a six-gap MRPC, operating in avalanche mode, with 22Na source have been discussed.

  19. The consumption and recycling collection system of PET bottles: a case study of Beijing, China.

    Science.gov (United States)

    Zhang, Hua; Wen, Zong-Guo

    2014-06-01

    After studying the recycling collection system of polyethylene terephthalate (PET) bottles worldwide, the authors conducted an intercept survey in Beijing. Two separate questionnaires were issued, one questionnaire to PET bottle consumers and one to PET bottle recyclers. In this study, consumers are defined as people that consume PET-bottled beverages in their daily life. Recyclers were defined as those involved in the collection and recycling of PET bottles. These include scavengers, itinerant waste buyers, small community waste-buying depots, medium/large redemption depots, and recycling companies. In total, 580 surveys were completed, including 461 by consumers and 119 by recyclers. The authors found that consumption of PET bottles in Beijing was nearly 100,000 tonnes in 2012. Age, occupation, gender, and education were identified as significant factors linked to PET-bottled beverage consumption, while income was not a significant factor. 90% Of post-consumed PET bottles were collected by informal collectors (i.e., scavengers and itinerant waste buyers). The survey also found that nearly all PET bottles were reprocessed by small factories that were not designed with pollution control equipment, which allows them to offer higher prices for waste recyclable bottles. As Beijing is trying to build a formal recycling collection system for recyclables, subsidies should be given to the formal recycling sector rather than being charged land use fees, and attention should also be given to informal recyclers that make their living from the collection of recyclables. Informal and formal sectors may work together by employing the scavengers and itinerant waste buyers for the formal sectors. In addition to the recycling of PET bottles, concern should also be allocated to reduce consumption, especially among young people, as they, compared to other groups, have a stronger demand for PET-bottled beverages and will be the main body of society. Copyright © 2013 Elsevier Ltd

  20. easyPET: a novel concept for an affordable tomographic system

    International Nuclear Information System (INIS)

    Arosio, V.; Caccia, M.; Castro, I.F.; Correia, P.M.M.; Mattone, C.; Moutinho, L.M.; Santoro, R.; Silva, A.L.M.; Veloso, J.F.C.A.

    2017-01-01

    The easyPET concept described here aims to reduce complexity and cost of preclinical Positron Emission Tomography (PET) scanners. The system, original in its principle and realisation, is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. The characterisation of a 2D imaging prototype, realised to assess the easyPET concept, is presented in this paper. In particular, a spatial resolution of 1±0.1 mm and a sensitivity of 0.1% with an energy threshold of 80 keV have been measured. These encouraging results, compared to the performances of commercial preclinical PET, motivate the feasibility study of a 3D system.

  1. easyPET: a novel concept for an affordable tomographic system

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, V., E-mail: varosio@studenti.uninsubria.it [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Caccia, M. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Castro, I.F.; Correia, P.M.M. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Mattone, C. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Moutinho, L.M. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Santoro, R. [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell' Insubria, Via Valleggio 11, 22100 Como (Italy); Silva, A.L.M.; Veloso, J.F.C.A. [i3n, Departamento de Fisica, Univerdisade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2017-02-11

    The easyPET concept described here aims to reduce complexity and cost of preclinical Positron Emission Tomography (PET) scanners. The system, original in its principle and realisation, is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. The characterisation of a 2D imaging prototype, realised to assess the easyPET concept, is presented in this paper. In particular, a spatial resolution of 1±0.1 mm and a sensitivity of 0.1% with an energy threshold of 80 keV have been measured. These encouraging results, compared to the performances of commercial preclinical PET, motivate the feasibility study of a 3D system.

  2. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  3. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  4. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  5. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  6. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Alexander M. [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 and Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Deller, Timothy W.; Maramraju, Sri Harsha [GE Healthcare, Waukesha, Wisconsin 53188-1678 (United States); Khalighi, Mohammad Mehdi [GE Healthcare, Applied Science Lab, Menlo Park, California 94025-3493 (United States); Delso, Gaspar [GE Healthcare and University Hospital of Zurich, Zurich 8006 (Switzerland); Levin, Craig S., E-mail: cslevin@stanford.edu [Department of Bioengineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Radiology, Stanford University, Stanford, California 94305-5128 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305-5128 (United States); Department of Physics, Stanford University, Stanford, California 94305-5128 (United States)

    2016-05-15

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  7. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system

    International Nuclear Information System (INIS)

    Grant, Alexander M.; Deller, Timothy W.; Maramraju, Sri Harsha; Khalighi, Mohammad Mehdi; Delso, Gaspar; Levin, Craig S.

    2016-01-01

    Purpose: The GE SIGNA PET/MR is a new whole body integrated time-of-flight (ToF)-PET/MR scanner from GE Healthcare. The system is capable of simultaneous PET and MR image acquisition with sub-400 ps coincidence time resolution. Simultaneous PET/MR holds great potential as a method of interrogating molecular, functional, and anatomical parameters in clinical disease in one study. Despite the complementary imaging capabilities of PET and MRI, their respective hardware tends to be incompatible due to mutual interference. In this work, the GE SIGNA PET/MR is evaluated in terms of PET performance and the potential effects of interference from MRI operation. Methods: The NEMA NU 2-2012 protocol was followed to measure PET performance parameters including spatial resolution, noise equivalent count rate, sensitivity, accuracy, and image quality. Each of these tests was performed both with the MR subsystem idle and with continuous MR pulsing for the duration of the PET data acquisition. Most measurements were repeated at three separate test sites where the system is installed. Results: The scanner has achieved an average of 4.4, 4.1, and 5.3 mm full width at half maximum radial, tangential, and axial spatial resolutions, respectively, at 1 cm from the transaxial FOV center. The peak noise equivalent count rate (NECR) of 218 kcps and a scatter fraction of 43.6% are reached at an activity concentration of 17.8 kBq/ml. Sensitivity at the center position is 23.3 cps/kBq. The maximum relative slice count rate error below peak NECR was 3.3%, and the residual error from attenuation and scatter corrections was 3.6%. Continuous MR pulsing had either no effect or a minor effect on each measurement. Conclusions: Performance measurements of the ToF-PET whole body GE SIGNA PET/MR system indicate that it is a promising new simultaneous imaging platform.

  8. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255 mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200 mm and axial-length of 100 mm), an increase of about a maximum of 3 μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system

  9. PET study of cholinergic system in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ``k 3`` as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer`s disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson`s disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  10. PET study of cholinergic system in the brain

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ''k 3'' as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer's disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson's disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  11. Evaluation of a video-based head motion tracking system for dedicated brain PET

    Science.gov (United States)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  12. A TOF-PET system for educational purposes

    CERN Document Server

    Baeck, T; Cederwall, Bo; Johnson, A; Kérek, A; Klamra, W; Marel, J V D; Molnár, J; Novák, D; Sohler, D; Steen, M; Uhlen, P

    2002-01-01

    A TOF-PET system has been designed and constructed for educational purposes. The aim of this system is to demonstrate the possibilities of positron emission tomography in general and the time-of-flight method in particular to the students of various courses at the Royal Institute of Technology, Stockholm, Sweden. The set-up consists of 48 small BaF sub 2 crystals coupled to fast photomultipliers placed in a ring geometry. The signals of the photomultipliers are fed into fast constant fraction discriminators (CFD). The outputs of these are directed to a specially designed logic VME unit, which combines the CFD signals of 6 neighbouring channels to one signal by adding a different delay to each channel. The logic circuitry produces a prompt pulse for each event that serves as the start pulse for the 8-channel fast TDC. The delayed pulses act as the stop pulses for the TDC. In a computer, the measured times are converted into information about which the photomultipliers fired with the difference in the time of f...

  13. Transmission imaging for integrated PET-MR systems.

    Science.gov (United States)

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  14. External versus internal triggers of bar formation in cosmological zoom-in simulations

    Science.gov (United States)

    Zana, Tommaso; Dotti, Massimo; Capelo, Pedro R.; Bonoli, Silvia; Haardt, Francesco; Mayer, Lucio; Spinoso, Daniele

    2018-01-01

    The emergence of a large-scale stellar bar is one of the most striking features in disc galaxies. By means of state-of-the-art cosmological zoom-in simulations, we study the formation and evolution of bars in Milky Way-like galaxies in a fully cosmological context, including the physics of gas dissipation, star formation and supernova feedback. Our goal is to characterize the actual trigger of the non-axisymmetric perturbation that leads to the strong bar observable in the simulations at z = 0, discriminating between an internal/secular and an external/tidal origin. To this aim, we run a suite of cosmological zoom-in simulations altering the original history of galaxy-satellite interactions at a time when the main galaxy, though already bar-unstable, does not feature any non-axisymmetric structure yet. We find that the main effect of a late minor merger and of a close fly-by is to delay the time of bar formation and those two dynamical events are not directly responsible for the development of the bar and do not alter significantly its global properties (e.g. its final extension). We conclude that, once the disc has grown to a mass large enough to sustain global non-axisymmetric modes, then bar formation is inevitable.

  15. Characterization of 3D PET systems for accurate quantification of myocardial blood flow

    OpenAIRE

    Renaud, Jennifer M.; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Éric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C.; Turkington, Timothy G

    2016-01-01

    Three-dimensional (3D) mode imaging is the current standard for positron emission tomography-computed tomography (PET-CT) systems. Dynamic imaging for quantification of myocardial blood flow (MBF) with short-lived tracers, such as Rb-82- chloride (Rb-82), requires accuracy to be maintained over a wide range of isotope activities and scanner count-rates. We propose new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative...

  16. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  17. Comparison of PET/CT and PET/MRI hybrid systems using a {sup 68}Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Oromieh, A. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany); Haberkorn, U. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit of Nuclear Medicine, Heidelberg (Germany); Schlemmer, H.P.; Fenchel, M.; Roethke, M. [German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany); Eder, M.; Eisenhut, M. [German Cancer Research Center (DKFZ), Department of Radiopharmaceutical Chemistry, Heidelberg (Germany); Hadaschik, B.A. [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Kopp-Schneider, A. [German Cancer Research Center (DKFZ), Department of Biostatistics, Heidelberg (Germany)

    2014-05-15

    {sup 68}Ga-labelled HBED-CC-PSMA is a highly promising tracer for imaging recurrent prostate cancer (PCa). The intention of this study was to evaluate the feasibility of PET/MRI with this tracer. Twenty patients underwent PET/CT 1 h after injection of the {sup 68}Ga-PSMA ligand followed by PET/MRI 3 h after injection. Data from the two investigations were first analysed separately and then compared with respect to tumour detection rate and radiotracer uptake in various tissues. To evaluate the quantification accuracy of the PET/MRI system, differences in SUVs between PET/CT and corresponding PET/MRI were compared with differences in SUVs between PET/CT 1 h and 3 h after injection in another patient cohort. This cohort was investigated using the same PET/CT system. With PET/MRI, different diagnostic sequences, higher contrast of lesions and higher resolution of MRI enabled a subjectively easier evaluation of the images. In addition, four unclear findings on PET/CT could be clarified as characteristic of PCa metastases by PET/MRI. However, in PET images of the PET/MRI, a reduced signal was observed at the level of the kidneys (in 11 patients) and around the urinary bladder (in 15 patients). This led to reduced SUVs in six lesions. SUV{sub mean} values provided by the PET/MRI system were different in muscles, blood pool, liver and spleen. PCa was detected more easily and more accurately with Ga-PSMA PET/MRI than with PET/CT and with lower radiation exposure. Consequently, this new technique could clarify unclear findings on PET/CT. However, scatter correction was challenging when the specific {sup 68}Ga-PSMA ligand was used. Moreover, direct comparison of SUVs from PET/CT and PET/MR needs to be conducted carefully. (orig.)

  18. PET/MRI of central nervous system: current status and future perspective

    International Nuclear Information System (INIS)

    Yang, Zhen Lu; Zhang, Long Jiang

    2016-01-01

    Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform ''one-stop-shop'' evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field. (orig.)

  19. {sup 18}F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mhlanga, Joyce C.; Lodge, Martin [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Carrino, John A. [Johns Hopkins University School of Medicine, Division of Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Wang, Hao [Johns Hopkins University School of Medicine, Department of Oncology Biostatistics Division, Baltimore, MD (United States); Wahl, Richard L. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Johns Hopkins University Hospitals, Division of Nuclear Medicine, Baltimore, MD (United States)

    2014-12-15

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with {sup 18}F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological {sup 18}F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p= 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. (orig.)

  20. A comparative study on PET and SPECT image formation systems for a proper scanner choice in a considered PET center

    International Nuclear Information System (INIS)

    Santos, G.R. dos; Oliveira, A. de; Oliveira, C.L. de

    2001-01-01

    Full text: In the last twenty years, the conjunction of technology and research had provided exceptional conditions for improvements on the quality of life, specially on nuclear medicine. In this area, the developed technology is being applied, making available better diagnoses and therapy to a variety of diseases. Since then the short-lived radionuclides were available only in the large physics research centers. The increasing clinical applications have led to the rapid rise in the number of compact cyclotrons throughout the world. All medical cyclotrons currently are suitable for sustaining programs for PET research and clinical application. To date, up to 122 medical cyclotrons have been established worldwide, and Brazil is about to install a new dedicated cyclotron (RDS111 from CTI), to its first PET Center, in Rio de Janeiro. Also the number of scanners worldwide has increased, mainly those based on the positrons emission and annihilation. The better result gotten in the final contrast of the object imposes a comparative study and analysis of the image formation process, either in a system based on a Single Photon Emission Computerized Tomography (SPECT), as well as on Positron Emission Tomography (PET.) This comparative study should at least follow same increasing rates of the new devices with technological advances. That kind of study can be helpful on the decision of what type of scan should be the proper one, to a PET Center, on a specific region. Obviously, many other parameters are involved in that decision, and this discussion and analyses are the main subject of the present work. The objective is to make available a realistic comparative scenario. Many of the new devices have been introduced making progresses. As an example, in the new PET scanners, the reduction of examination time, and the remarkable improvement on the diagnoses based on images. As a consequence, we have a broadening on application, better performance, and making possible the

  1. Proof-of-principle study of a small animal PET/field-cycled MRI combined system using conventional PMT technology

    International Nuclear Information System (INIS)

    Peng Hao; Handler, William B.; Scholl, Timothy J.; Simpson, P.J.; Chronik, Blaine A.

    2010-01-01

    There are currently several approaches to the development of combined PET/MRI systems, all of which need to address adverse interactions between the two systems. Of particular relevance to the majority of proposed PET/MRI systems is the effect that static and dynamic magnetic fields have on the performance of PET detection systems based on photomultiplier tubes (PMTs). In the work reported in this paper, performance of two conventional PMTs has been systematically investigated and characterized as a function of magnetic field exposure conditions. Detector gain, energy resolution, time resolution, and efficiency were measured for static field exposures between 0 and 6.3 mT. Additionally, the short-term recovery and long-term stability of gain and energy resolution were measured in the presence of repeatedly applied dynamic magnetic fields changing at 4 T/s. It was found that the detectors recovered normal operation within several milliseconds following the end of large pulsed magnetic fields. In addition, the repeated applications of large pulsed magnetic fields did not significantly affect detector stability. Based on these results, we implemented a proof-of-principle PET/field-cycled MRI (FCMRI) system for small animal imaging using commercial PMT-based PET detectors. The first PET images acquired within the PET/FCMRI system are presented. The image quality, in terms of spatial resolution, was compared between standalone PET and the PET/FCMRI system. Finally, the relevance of these results to various aspects of PET/MRI system design is discussed.

  2. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    Science.gov (United States)

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  3. A human friendly reporting and database system for brain PET analysis

    International Nuclear Information System (INIS)

    Jamzad, M.; Ishii, Kenji; Toyama, Hinako; Senda, Michio

    1996-01-01

    We have developed a human friendly reporting and database system for clinical brain PET (Positron Emission Tomography) scans, which enables statistical data analysis on qualitative information obtained from image interpretation. Our system consists of a Brain PET Data (Input) Tool and Report Writing Tool. In the Brain PET Data Tool, findings and interpretations are input by selecting menu icons in a window panel instead of writing a free text. This method of input enables on-line data entry into and update of the database by means of pre-defined consistent words, which facilitates statistical data analysis. The Report Writing Tool generates a one page report of natural English sentences semi-automatically by using the above input information and the patient information obtained from our PET center's main database. It also has a keyword selection function from the report text so that we can save a set of keywords on the database for further analysis. By means of this system, we can store the data related to patient information and visual interpretation of the PET examination while writing clinical reports in daily work. The database files in our system can be accessed by means of commercially available databases. We have used the 4th Dimension database that runs on a Macintosh computer and analyzed 95 cases of 18 F-FDG brain PET studies. The results showed high specificity of parietal hypometabolism for Alzheimer's patients. (author)

  4. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  5. Multimodal imaging: Simultaneous EEG in a 3T Hybrid MR–PET system

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, I., E-mail: i.neuner@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University (Germany); JARA BRAIN—Translational Medicine (Germany); Warbrick, T.; Tellmann, L.; Rota Kops, E.; Arrubla, J.; Boers, F.; Herzog, H. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Department of Neurology, RWTH Aachen University (Germany); JARA BRAIN—Translational Medicine (Germany)

    2013-02-21

    The new generation of integrated MR–PET systems allows the simultaneous acquisition of MR and PET data. While MR delivers structural data with an excellent spatial resolution, the advantage of PET is its information on a molecular level. However, both modalities have a low temporal resolution. Thus, for pharmacological studies or patients who suffer from treatment resistant epilepsy the combination of yet another modality such as EEG could be desirable. We tested the feasibility of evoked visual potentials in a 3T Hybrid MR–PET system (Siemens Germany) in comparison to a standalone 3T Trio System (Siemens Germany). A T2⁎-weighted EPI sequence was used: TR: 2.2 s, TE: 30 ms, FOV: 200 mm, slice thickness 3, 36 slices in a healthy volunteer (male, 27 years old) using an MR-compatible 32-channel EEG system (Brainproducts, Munich, Germany). We applied 200 trials of visual stimulation from a white and black checkerboard. Visual evoked potentials were analyzed using Brain Vision Analyzer (Brainproducts, Munich, Germany). Gradient correction and cardioballistic artefact correction were performed as implemented in Vision Analyzer. Visual event related potentials were successfully recorded at the 3T Hybrid MR–PET system. Both curves differ slightly in shape and latency due to the following factors: the distance from the screen varies slightly and the size of the field of view of the subjects is smaller in the 3T MR–PET system in comparison to the 3T stand alone system. Extending the 3T MR–PET Hybrid system to 3T Hybrid MR–PET–EEG is feasible and adds another tool to clinical neuroimaging and research.

  6. A pretargeting system for tumor PET imaging and radioimmunotherapy

    Directory of Open Access Journals (Sweden)

    Françoise eKraeber-Bodéré

    2015-03-01

    Full Text Available Labeled antibodies, as well as their fragments and antibody-derived recombinant constructs, have long been proposed as general vectors to target radionuclides to tumor lesions for imaging and therapy. They have indeed shown promise in both imaging and therapeutic applications, but they have not fulfilled the original expectations of achieving sufficient image contrast for tumor detection or sufficient radiation dose delivered to tumors for therapy. Pretargeting was originally developed for tumor immunoscintigraphy. It was assumed that directly-radiolabled antibodies could be replaced by an unlabeled immunoconjugate capable of binding both a tumor-specific antigen and a small molecular weight molecule. The small molecular weight molecule would carry the radioactive payload and would be injected after the bispecific immunoconjugate. It has been demonstrated that this approach does allow for both antibody-specific recognition and fast clearance of the radioactive molecule, thus resulting in improved tumor-to-normal tissue contrast ratios. It was subsequently shown that pretargeting also held promise for tumor therapy, translating improved tumor-to-normal tissue contrast ratios into more specific delivery of absorbed radiation doses. Many technical approaches have been proposed to implement pretargeting, and two have been extensively documented. One is based on the avidin-biotin system, and the other on bispecific antibodies binding a tumor-specific antigen and a hapten. Both have been studied in preclinical models, as well as in several clinical studies, and have shown improved targeting efficiency. This article reviews the historical and recent preclinical and clinical advances in the use of bispecific-antibody-based pretargeting for radioimmunodetection and radioimmunotherapy of cancer. The results of recent evaluation of pretargeting in PET imaging also are discussed.

  7. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  8. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  9. Performance of a high sensitivity time-of-flight PET ring operating simultaneously within a 3T MR system

    International Nuclear Information System (INIS)

    Levin, Craig S; Jansen, Floris; Deller, Tim; Maramraju, Sri Harsha; Grant, Alex; Iagaru, Andrei

    2014-01-01

    A time-of-flight (TOF)-PET/MR research system installed at Stanford will be used to test the hypotheses that (a) it is possible to acquire simultaneous TOF-PET and 3T MR data while achieving uncompromised performance in both modalities and (b) simultaneous TOF-PET/MR is a tool for multi-parameter characterization of disease. In this paper we will describe the design as well as performance measurements both for the standalone PET ring, and with the two systems integrated. We will also show a selection of clinical images to compare the performance of the integrated TOF-PET/MR system with that of a state-of-the-art PET/CT system.

  10. Development of a Si-PM-based high-resolution PET system for small animals

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2010-01-01

    A Geiger-mode avalanche photodiode (Si-PM) is a promising photodetector for PET, especially for use in a magnetic resonance imaging (MRI) system, because it has high gain and is less sensitive to a static magnetic field. We developed a Si-PM-based depth-of-interaction (DOI) PET system for small animals. Hamamatsu 4 x 4 Si-PM arrays (S11065-025P) were used for its detector blocks. Two types of LGSO scintillator of 0.75 mol% Ce (decay time: ∼45 ns; 1.1 mm x 1.2 mm x 5 mm) and 0.025 mol% Ce (decay time: ∼31 ns; 1.1 mm x 1.2 mm x 6 mm) were optically coupled in the DOI direction to form a DOI detector, arranged in a 11 x 9 matrix, and optically coupled to the Si-PM array. Pulse shape analysis was used for the DOI detection of these two types of LGSOs. Sixteen detector blocks were arranged in a 68 mm diameter ring to form the PET system. Spatial resolution was 1.6 mm FWHM and sensitivity was 0.6% at the center of the field of view. High-resolution mouse and rat images were successfully obtained using the PET system. We confirmed that the developed Si-PM-based PET system is promising for molecular imaging research.

  11. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    International Nuclear Information System (INIS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Qi, Jinyi; Rodríguez-Villafuerte, Mercedes

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement. (paper)

  12. Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom.

    Science.gov (United States)

    Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood

    2017-12-01

    In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (PET/CT, especially in the case of smaller spheres (PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  14. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems.

    Science.gov (United States)

    Jentzen, Walter; Weise, Reiner; Kupferschläger, Jürgen; Freudenberg, Lutz; Brandau, Wolfgang; Bares, Ronald; Burchert, Wolfgang; Bockisch, Andreas

    2008-03-01

    This study evaluated the absolute quantification of iodine-124 ((124)I) activity concentration with respect to the use of this isotope for dosimetry before therapies with (131)I or (131)I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using (124)I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with (124)I and with fluorine-18 ((18)F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with (18)F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR(+)) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our (124)I PET(/CT) protocol for DTC patients. Compared with that of (18)F, transversal spatial resolution of (124)I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P or =12.6 mm in diameter. Recovery correction is mandatory for (124)I PET quantification, even for large structures. To ensure accurate dosimetry, thorough absolute recovery measurements must be individually established for the particular PET scanner and radionuclide to be used.

  15. Application of a semi-automatic ROI setting system for brain PET images to animal PET studies

    International Nuclear Information System (INIS)

    Kuge, Yuji; Akai, Nobuo; Tamura, Koji

    1998-01-01

    ProASSIST, a semi-automatic ROI (region of interest) setting system for human brain PET images, has been modified for use with the canine brain, and the performance of the obtained system was evaluated by comparing the operational simplicity for ROI setting and the consistency of ROI values obtained with those by a conventional manual procedure. Namely, we created segment maps for the canine brain by making reference to the coronal section atlas of the canine brain by Lim et al., and incorporated them into the ProASSIST system. For the performance test, CBF (cerebral blood flow) and CMRglc (cerebral metabolic rate in glucose) images in dogs with or without focal cerebral ischemia were used. In ProASSIST, brain contours were defined semiautomatically. In the ROI analysis of the test image, manual modification of the contour was necessary in half cases examined (8/16). However, the operation was rather simple so that the operation time per one brain section was significantly shorter than that in the manual operation. The ROI values determined by the system were comparable with those by the manual procedure, confirming the applicability of the system to these animal studies. The use of the system like the present one would also merit the more objective data acquisition for the quantitative ROI analysis, because no manual procedure except for some specifications of the anatomical features is required for ROI setting. (author)

  16. Clinical Investigation of the Dopaminergic System with PET and FLUORINE-18-FLUORO-L-DOPA.

    Science.gov (United States)

    Oakes, Terrence Rayford

    1995-01-01

    Positron Emission Tomography (PET) is a tool that provides quantitative physiological information. It is valuable both in a clinical environment, where information is sought for an individual, and in a research environment, to answer more fundamental questions about physiology and disease states. PET is particularly attractive compared to other nuclear medicine imaging techniques in cases where the anatomical regions of interest are small or when true metabolic rate constants are required. One example with both of these requirements is the investigation of Parkinson's Disease, which is characterized as a presynaptic motor function deficit affecting the striatum. As dopaminergic neurons die, the ability of the striatum to affect motor function decreases. The extent of functional neuronal damage in the small sub-structures may be ascertained by measuring the ability of the caudate and putamen to trap and store dopamine, a neurotransmitter. PET is able to utilize a tracer of dopamine activity, ^ {18}F- scL-DOPA, to quantitate the viability of the striatum. This thesis work deals with implementing and optimizing the many different elements that compose a PET study of the dopaminergic system, including: radioisotope production; conversion of aqueous ^{18}F ^-into [^ {18}F]-F2; synthesis of ^{18}F- scL -DOPA; details of the PET scan itself; measurements to estimate the radiation dosimetry; accurate measurement of a plasma input function; and the quantitation of dopaminergic activity in normal human subjects as well as in Parkinson's Disease patients.

  17. Zooming in on AdS3/CFT2 near a BPS bound

    Science.gov (United States)

    Hartong, Jelle; Lei, Yang; Obers, Niels; Oling, Gerben

    2018-05-01

    Any ( d + 1)-dimensional CFT with a U(1) flavor symmetry, a BPS bound and an exactly marginal coupling admits a decoupling limit in which one zooms in on the spectrum close to the bound. This limit is an Inönü-Wigner contraction of so(2 , d+1)⊕ u(1) that leads to a relativistic algebra with a scaling generator but no conformal generators. In 2D CFTs, Lorentz boosts are abelian and by adding a second u(1) we find a contraction of two copies of sl(2, ℝ) ⊕ u(1) to two copies of P 2 c , the 2-dimensional centrally extended Poincaré algebra. We show that the bulk is described by a novel non-Lorentzian geometry that we refer to as pseudo-Newton-Cartan geometry. Both the Chern-Simons action on sl(2, ℝ) ⊕ u(1) and the entire phase space of asymptotically AdS3 spacetimes are well-behaved in the corresponding limit if we fix the radial component for the u(1) connection. With this choice, the resulting Newton-Cartan foliation structure is now associated not with time, but with the emerging holographic direction. Since the leaves of this foliation do not mix, the emergence of the holographic direction is much simpler than in AdS3 holography. Furthermore, we show that the asymptotic symmetry algebra of the limit theory consists of a left- and a right-moving warped Virasoro algebra.

  18. PET/MRI of central nervous system: current status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen Lu; Zhang, Long Jiang [Jinling Hospital, Medical School of Nanjing University, Department of Medical Imaging, Nanjing, Jiangsu (China)

    2016-10-15

    Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform ''one-stop-shop'' evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field. (orig.)

  19. Systemic and inflammatory disorders involving the heart: the role of PET imaging

    International Nuclear Information System (INIS)

    JUNEAU, Daniel; ERTHAL, Fernanda; ALZAHRANI, Atif; ALENAZY, Ali; NERY, Pablo B.; BEANLANDS, Rob S.; CHOW, Benjamin J.

    2016-01-01

    Cardiac inflammatory disorders, either primarily cardiac or secondary to a systemic process, are associated with significant morbidity and/or mortality. Their diagnosis can be challenging, especially due to significant overlap in their clinical presentation with other cardiac diseases. Recent publications have investigated the potential diagnostic role of positron emission tomography (PET) imaging in these patients. Most of the available literature is focused on Fluorine-18 fluorodeoxyglucose (FDG), a tracer which has already demonstrated its use in other inflammatory and infectious processes. PET imaging can help in the diagnosis, prognosis and follow-up in a variety of cardiac inflammatory processes, including infective endocarditis, cardiac implantable electronic device infection, pericarditis, myocarditis, sarcoidosis and amyloidosis. PET’s ability to depict metabolic changes and abnormalities, sometime even before the onset of any anatomical changes, can be a significant advantage over standard anatomical imaging. PET appears to be particularly useful in cases where standard investigation is non-diagnostic or equivocal.

  20. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    Science.gov (United States)

    Kraan, A. C.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Ferrari, A.; Ferretti, S.; Mairani, A.; Molinelli, S.; Pullia, M.; Sala, P.; Sportelli, G.; Del Guerra, A.; Rosso, V.

    2015-06-01

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β+-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  1. Chorea in systemic lupus erythematosus: evidence for bilateral putaminal hypermetabolism on F-18 FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wook Jang; Chung, Son Mi; Koh, Su Jin; Lee, Chang Keun; Yoo, Bin; Moon, Hee Bom [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of); Kim, Jae Seung; Im, Joo Hyuk [Asan Medical Center, Seoul (Korea, Republic of)

    2003-10-01

    We describe a 54-year-old woman with systemic lupus erythematosus (SLE) who suddenly presented with chorea and had positive antiphospholipid antibodies. F-18 FDG PET showed abnormally increased glucose metabolism in bilateral putamen and primary motor cotex. Tc-99m ECD SPECT also showed abnormally increased regional cerebral blood flow in bilateral putamen. She was treated with corticosteroid and aspirin after which the symptoms improved. Four months later, follow up F-18 FDG PET showed improvement with resolution of hypermetabolism in bilateral putamen. This case suggests that striatal hypermetabolism is associated with chorea in SLE.

  2. Online monitoring for proton therapy: A real-time procedure using a planar PET system

    CERN Document Server

    Kraan, A C; Belcari, N; Camarlinghi, N; Ciocca, M; Ferrari, A; Ferretti, S; Mairani, A; Molinelli, S; Pullia, M; Sala, P; Sportelli, G; Del Guerra, A; Rosso, V

    2015-01-01

    In this study a procedure for range verification in proton therapy by means of a planar in-beam PET system is presented. The procedure consists of two steps: the measurement of the β+-activity induced in the irradiated body by the proton beam and the comparison of these distributions with simulations. The experimental data taking was performed at the CNAO center in Pavia, Italy, irradiating plastic phantoms. For two different cases we demonstrate how a real-time feedback of the delivered treatment plan can be obtained with in-beam PET imaging.

  3. The simulation of a data acquisition system for a proposed high resolution PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, C.; Larwill, M.; Chappa, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Ordonez, C. [Chicago Univ., IL (United States)

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs.

  4. The simulation of a data acquisition system for a proposed high resolution PET scanner

    International Nuclear Information System (INIS)

    Rotolo, C.; Larwill, M.; Chappa, S.; Ordonez, C.

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs

  5. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  6. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    Science.gov (United States)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  7. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Chou

    Full Text Available Positron emission tomography (PET is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU, NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  8. Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.

    Science.gov (United States)

    Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A

    2017-01-01

    Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  10. OMI/Aura Zoom-in Ground Pixel Corners 1-Orbit L2 Swath 13x12km V003 (OMPIXCORZ) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Version-3 Aura Ozone Monitoring Instrument (OMI) Pixel Corner Product in zoom-in mode, OMPIXCORZ, is now available from the NASA Goddard Earth Sciences Data and...

  11. ENC Measurement for ASIC Preamp Board as a Detector Module for PET System

    Directory of Open Access Journals (Sweden)

    N. Nagara

    2016-08-01

    Full Text Available We developed a gamma ray detector with an LuAG:Pr scintillator and an avalanche photodiode as a detector for a positron emission tomography (PET system. Studies have been performed on the influences of gamma irradiation on application-specific integrated circuit (ASIC preamp boards used as a detector module. As a device used in nuclear environments for substantial durations, the ASIC has to have a lifetime long enough to ensure that there will be a negligible failure rate during this period. These front-end systems must meet the requirements for standard positron emission tomography (PET systems. Therefore, an equivalent noise charge (ENC experiment is needed to measure the front-end system's characteristics. This study showed that minimum ENC conditions can be achieved if a shorter shaping time could be applied.

  12. Evaluation of a Modular PET System Architecture with Synchronization over Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Herrero Bosch, Vicente; Monzó Ferrer, José María; Ros García, Ana; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2014-01-01

    A DAQ architecture for a PET system is presented that focuses on modularity, scalability and reusability. The system defines two basic building blocks: data acquisitors and concentra- tors, which can be replicated in order to build a complete DAQ of variable size. Acquisition modules contain a scintillating crystal and either a position-sensitive photomultiplier (PSPMT) or an array of silicon photomultipliers (SiPM). The detector signals are processed by AMIC, an integrated analog front-end t...

  13. Timing performances of a data acquisition system for Time of Flight PET

    International Nuclear Information System (INIS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G.; Collazuol, Gianmaria; Ambrosi, Giovanni; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2012-01-01

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm 2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  14. Timing performances of a data acquisition system for Time of Flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Morrocchi, Matteo, E-mail: matteo.morrocchi@pi.infn.it [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G. [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Collazuol, Gianmaria [University of Padova and INFN Sezione di Padova (Italy); Ambrosi, Giovanni [INFN Sezione di Perugia, I 06100 Perugia (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari and INFN Sezione di Bari, I 70100 Bari (Italy); Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Del Guerra, Alberto [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy)

    2012-12-11

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm{sup 2} of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  15. A novel optically transparent RF shielding for fully integrated PET/MRI systems

    Science.gov (United States)

    Parl, C.; Kolb, A.; Schmid, A. M.; Wehrl, H. F.; Disselhorst, J. A.; Soubiran, P. D.; Stricker-Shaver, D.; Pichler, B. J.

    2017-09-01

    Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system. This allows positioning the scintillators near the object but requires an optimized design of the MRI coil and PET detector. It further requires a new approach in realizing the radiofrequency (RF) shielding. Thus, we propose the use of an optically transparent RF shielding material between the PET scintillator and the light sensor, suppressing the interference between both systems. We evaluated two conductive foils (ITO, 9900) and a wire mesh. The PET performance was tested on a dual-layer scintillator consisting of 12  ×  12 LSO matrices, shifted by half a pitch. The pixel size was 0.9  ×  0.9 mm2 the lengths were 10.0 mm and 5.0 mm, respectively. For a light sensor, we used a 4  ×  4 SiPM array. The RF attenuation was measured from 320 kHz to 420 MHz using two pick-up coils. MRI-compatibility and shielding effect of the materials were evaluated with an MRI system. The average FWHM energy resolution at 511 keV of all 144 crystals of the layer next to the SiPM was deteriorated from 15.73  ±  0.24% to 16.32  ±  0.13%, 16.60  ±  0.25%, and 19.16  ±  0.21% by the ITO foil, 9900 foil, mesh material, respectively. The average peak-to-valley ratio of the PET detector changed from 5.77  ±  0.29 to 4.50  ±  0.39, 4.78  ±  0.48, 3.62  ±  0.16, respectively. The ITO, 9900, mesh attenuated the scintillation light by 11.3  ±  1.6%, 11.0  ±  1.8%, 54.3  ±  0.4%, respectively. To attenuate the RF from 20 MHz to 200 MHz, mesh performed better than copper. The results show that an RF shielding material that is sufficiently transparent for

  16. FDG-PET/CT findings in systemic mastocytosis: a French multicentre study

    Energy Technology Data Exchange (ETDEWEB)

    Djelbani-Ahmed, S. [Assistance Publique - Hopitaux de Paris (APHP), Department of Nuclear Medicine, Avicenne Hospital, Bobigny (France); Paris 13 University, Sorbonne Paris Cite, Bobigny (France); Chandesris, M.O. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (France); Necker Children' s Hospital, APHP, Department of Haematology, Paris (France); Paris Descartes University, Sorbonne Paris Cite, Imagine Institute, Paris (France); Mekinian, A.; Fain, O. [Saint Antoine Hospital, Department of Internal Medicine and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), AP-HP, Paris (France); Canioni, D. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (France); Paris Descartes University, Sorbonne Paris Cite, Imagine Institute, Paris (France); Necker Children' s Hospital, APHP, Department of Pathology, Paris (France); Brouzes, C. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (France); Paris Descartes University, Sorbonne Paris Cite, Imagine Institute, Paris (France); Necker Children' s Hospital, APHP, Laboratory of Haematology, Paris (France); Hanssens, K. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (France); Aix-Marseille University, INSERM U1068, Centre de Recherche en Cancerologie de Marseille (Signaling, Hematopoiesis and Mechanism of Oncogenesis), Paoli Calmettes Institute, Marseille (France); Pop, G.; Eder, V. [Assistance Publique - Hopitaux de Paris (APHP), Department of Nuclear Medicine, Avicenne Hospital, Bobigny (France); Durieu, I.; Durupt, S. [Universite de Lyon, Department of Internal and Vascular Medicine, Hospices Civils de Lyon, Groupe Hopitalier Sud, Pierre-Benite (France); Grosbois, B.; Besnard, S. [Rennes University Hospital, Department of Internal Medicine, Rennes (France); Tournilhac, O. [Clermont-Ferrand University Hospital, Department of Internal Medicine, Clermont-Ferrand (France); Beyne-Rauzy, O. [Purpan University Hospital, Department of Internal Medicine, Toulouse (France); Agape, P. [Saint-Denis University Hospital, Department of Oncology and Haematology, Saint-Denis de la Reunion (France); Delmer, A. [Reims University Hospital, Department of Haematology, Reims (France); Ranta, D. [Brabois University Hospital, Department of Haematology, Vandoeuvre les Nancy (France); Jeandel, P.Y. [Nice University Hospital, Department of Internal Medicine, Nice (France); Georgin-Lavialle, S. [Tenon Hospital, Department of Internal Medicine, Paris (France); Frenzel, L.; Hermine, O. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (FR); Necker Children' s Hospital, APHP, Department of Haematology, Paris (FR); Paris Descartes University, Sorbonne Paris Cite, Imagine Institute, Paris (FR); Damaj, G. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (FR); Caen University Hospital, Department of Haematology, Caen (FR); Lortholary, O. [Necker Children' s Hospital, APHP, French Reference center for Mastocytosis (Centre de Reference des Mastocytoses, CEREMAST), Paris (FR); Paris Descartes University, Sorbonne Paris Cite, Imagine Institute, Paris (FR); Pasteur Institute, Department of Infectious Diseases and Tropical Medicine, Necker Children' s Hospital, APHP, Paris (FR); Soussan, M. [Assistance Publique - Hopitaux de Paris (APHP), Department of Nuclear Medicine, Avicenne Hospital, Bobigny (FR); Paris 13 University, Sorbonne Paris Cite, Bobigny (FR)

    2015-12-15

    Mastocytosis is a clonal haematological disease characterized by uncontrolled proliferation and the activation of mast cells. The value of FDG-PET/CT (FDG-PET) in mastocytosis has yet to be determined. We retrospectively identified patients with an established diagnosis of systemic mastocytosis (SM), according to the WHO criteria, who underwent PET using the French Reference Centre for Mastocytosis database. Semi-quantitative and visual analysis of FDG-PET was performed and compared to the clinico-biological data. Our cohort included 19 adult patients, median age 65 years [range 58-74], including three with smouldering SM (SSM), three with aggressive SM (ASM), 10 with an associated clonal haematological non-mast-cell lineage disease (SM-AHNMD), and three with mast cell sarcoma (MCS). FDG-PET was performed at the time of the SM diagnosis (15/19), to evaluate lymph node (LN) activity (3/19) or the efficacy of therapy (1/19). FDG uptake was observed in the bone marrow (BM) (9/19, 47 %), LN (6/19, 32 %), spleen (12/19, 63 %), or liver (1/19, 5 %). No significant FDG uptake was observed in the SSM and ASM patients. A pathological FDG uptake was observed in the BM of 6/10 patients with SM-AHNMD, appearing as diffuse and homogeneous, and in the LN of 5/10 patients. All 3 MCS patients showed intense and multifocal BM pathological uptake, mimicking metastasis. No correlation was found between the FDG-PET findings and serum tryptase levels, BM mast cell infiltration percentage, and CD30 and CD2 expression by mast cells. FDG uptake does not appear to be a sensitive marker of mast cell activation or proliferation because no significant FDG uptake was observed in most common forms of mastocytosis (notably purely aggressive SM). However, pathological FDG uptake was observed in the SM-AHNMD and in MCS cases, suggesting a role of FDG-PET in their early identification and as a tool of therapeutic assessment in this subgroup of patients. (orig.)

  17. FDG-PET/CT findings in systemic mastocytosis: a French multicentre study

    International Nuclear Information System (INIS)

    Djelbani-Ahmed, S.; Chandesris, M.O.; Mekinian, A.; Fain, O.; Canioni, D.; Brouzes, C.; Hanssens, K.; Pop, G.; Eder, V.; Durieu, I.; Durupt, S.; Grosbois, B.; Besnard, S.; Tournilhac, O.; Beyne-Rauzy, O.; Agape, P.; Delmer, A.; Ranta, D.; Jeandel, P.Y.; Georgin-Lavialle, S.; Frenzel, L.; Hermine, O.; Damaj, G.; Lortholary, O.; Soussan, M.

    2015-01-01

    Mastocytosis is a clonal haematological disease characterized by uncontrolled proliferation and the activation of mast cells. The value of FDG-PET/CT (FDG-PET) in mastocytosis has yet to be determined. We retrospectively identified patients with an established diagnosis of systemic mastocytosis (SM), according to the WHO criteria, who underwent PET using the French Reference Centre for Mastocytosis database. Semi-quantitative and visual analysis of FDG-PET was performed and compared to the clinico-biological data. Our cohort included 19 adult patients, median age 65 years [range 58-74], including three with smouldering SM (SSM), three with aggressive SM (ASM), 10 with an associated clonal haematological non-mast-cell lineage disease (SM-AHNMD), and three with mast cell sarcoma (MCS). FDG-PET was performed at the time of the SM diagnosis (15/19), to evaluate lymph node (LN) activity (3/19) or the efficacy of therapy (1/19). FDG uptake was observed in the bone marrow (BM) (9/19, 47 %), LN (6/19, 32 %), spleen (12/19, 63 %), or liver (1/19, 5 %). No significant FDG uptake was observed in the SSM and ASM patients. A pathological FDG uptake was observed in the BM of 6/10 patients with SM-AHNMD, appearing as diffuse and homogeneous, and in the LN of 5/10 patients. All 3 MCS patients showed intense and multifocal BM pathological uptake, mimicking metastasis. No correlation was found between the FDG-PET findings and serum tryptase levels, BM mast cell infiltration percentage, and CD30 and CD2 expression by mast cells. FDG uptake does not appear to be a sensitive marker of mast cell activation or proliferation because no significant FDG uptake was observed in most common forms of mastocytosis (notably purely aggressive SM). However, pathological FDG uptake was observed in the SM-AHNMD and in MCS cases, suggesting a role of FDG-PET in their early identification and as a tool of therapeutic assessment in this subgroup of patients. (orig.)

  18. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems

    Energy Technology Data Exchange (ETDEWEB)

    Jentzen, Walter; Freudenberg, Lutz; Brandau, Wolfgang; Bockisch, Andreas [Universitaet Duisburg-Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Weise, Reiner; Burchert, Wolfgang [Institut fuer Radiologie, Nuklearmedizin und Molekulare Bildgebung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen (Germany); Kupferschlaeger, Juergen; Bares, Ronald [Universitaet Tuebingen, Klinik fuer Nuklearmedizin, Tuebingen (Germany)

    2008-03-15

    This study evaluated the absolute quantification of iodine-124 ({sup 124}I) activity concentration with respect to the use of this isotope for dosimetry before therapies with {sup 131}I or {sup 131}I-labeled radiotherapeuticals. The recovery coefficients of positron emission tomography(/computed tomography) PET(/CT) systems using {sup 124}I were determined using phantoms and then validated under typical conditions observed in differentiated thyroid cancer (DTC) patients. Transversal spatial resolution and recovery measurements with {sup 124}I and with fluorine-18 ({sup 18}F) as the reference were performed using isotope-containing line sources embedded in water and six isotope-containing spheres 9.7 to 37.0 mm in diameter placed in water-containing body and cylinder phantoms. The cylinder phantom spheres were filled with {sup 18}F only. Measurements in two-dimensional (2D) and three-dimensional (3D) modes were performed using both stand-alone PET (EXACT HR{sup +}) and combined PET/CT (BIOGRAPH EMOTION DUO) systems. Recovery comparison measurements were additionally performed on a GE ADVANCE PET system using the cylinder phantom. The recovery coefficients were directly determined using the activity concentration of circular regions of interest divided by the prepared activity concentration determined by the dose calibrator. The recovery correction method was validated using three consecutive scans of the body phantom under our {sup 124}I PET(/CT) protocol for DTC patients. Compared with that of {sup 18}F, transversal spatial resolution of {sup 124}I was slightly, but statistically significantly degraded (7.4 mm vs. 8.3 mm, P<0.002). Using the body phantom, recovery was lower for {sup 124}I than for {sup 18}F in both 2D and 3D modes. The {sup 124}I recovery coefficient of the largest sphere was significantly higher in 2D than in 3D mode (81% vs. 75%, P=0.03). Remarkably, the {sup 18}F recovery coefficient for the largest sphere significantly deviated from unity

  19. Speech processing system demonstrated by positron emission tomography (PET). A review of the literature

    International Nuclear Information System (INIS)

    Hirano, Shigeru; Naito, Yasushi; Kojima, Hisayoshi

    1996-01-01

    We review the literature on speech processing in the central nervous system as demonstrated by positron emission tomography (PET). Activation study using PET has been proved to be a useful and non-invasive method of investigating the speech processing system in normal subjects. In speech recognition, the auditory association areas and lexico-semantic areas called Wernicke's area play important roles. Broca's area, motor areas, supplementary motor cortices and the prefrontal area have been proved to be related to speech output. Visual speech stimulation activates not only the visual association areas but also the temporal region and prefrontal area, especially in lexico-semantic processing. Higher level speech processing, such as conversation which includes auditory processing, vocalization and thinking, activates broad areas in both hemispheres. This paper also discusses problems to be resolved in the future. (author) 42 refs

  20. PET System Synchronization and Timing Resolution Using High-Speed Data Links

    OpenAIRE

    Aliaga Varea, Ramón José; Monzó Ferrer, José María; SPAGGIARI, MICHELE; Ferrando Jódar, Néstor; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2011-01-01

    Current PET systems with fully digital trigger rely on early digitization of detector signals and the use of digital processors, usually FPGAs, for recognition of valid gamma events on single detectors. Timestamps are assigned and later used for coincidence analysis. In order to maintain a decent timing resolution for events detected on different acquisition boards, it is necessary that local timestamps on different FPGAs be synchronized. Sub-nanosecond accuracy is mandatory if we want this e...

  1. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code

    International Nuclear Information System (INIS)

    Merheb, C; Petegnief, Y; Talbot, J N

    2007-01-01

    Positron emission tomography (PET) systems dedicated to animal imaging are now widely used for biological studies. The scanner performance strongly depends on the design and the characteristics of the system. Many parameters must be optimized like the dimensions and type of crystals, geometry and field-of-view (FOV), sampling, electronics, lightguide, shielding, etc. Monte Carlo modelling is a powerful tool to study the effect of each of these parameters on the basis of realistic simulated data. Performance assessment in terms of spatial resolution, count rates, scatter fraction and sensitivity is an important prerequisite before the model can be used instead of real data for a reliable description of the system response function or for optimization of reconstruction algorithms. The aim of this study is to model the performance of the Philips Mosaic(TM) animal PET system using a comprehensive PET simulation code in order to understand and describe the origin of important factors that influence image quality. We use GATE, a Monte Carlo simulation toolkit for a realistic description of the ring PET model, the detectors, shielding, cap, electronic processing and dead times. We incorporate new features to adjust signal processing to the Anger logic underlying the Mosaic(TM) system. Special attention was paid to dead time and energy spectra descriptions. Sorting of simulated events in a list mode format similar to the system outputs was developed to compare experimental and simulated sensitivity and scatter fractions for different energy thresholds using various models of phantoms describing rat and mouse geometries. Count rates were compared for both cylindrical homogeneous phantoms. Simulated spatial resolution was fitted to experimental data for 18 F point sources at different locations within the FOV with an analytical blurring function for electronic processing effects. Simulated and measured sensitivities differed by less than 3%, while scatter fractions agreed

  2. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  3. Comparison of performance among three systems of Clinical PET by computerized simulation; Comparacao de desempenho entre tres sistemas de PET clinico por simulacao computacional

    Energy Technology Data Exchange (ETDEWEB)

    Franze, Daniel L.; Bertolo, Antonio C.N.; Gama, Andressa F.; Moraes, Eder R. [Universidade de Sao Paulo (GIMN/USP), Ribeirao Preto, SP (Brazil). Grupo de Imagens em Medicina Nuclear

    2016-07-01

    Whereas sensitivity and spatial resolution of PET images formed in coincidence systems may exhibit improvements with reduction of the distance between the detectors. Furthermore, since the human cross section not be a circle three different detection geometries of a PET system have been simulated; a circular and two ellipticals. The performance comparison was performed by the sensitivity, resolution and the Noise Equivalent Count Rate curve. The results show that elliptical systems may experience 25% lower cost detectors, increased sensitivity to 63%. The resolution improvements introduced in X direction, large loss in the Y direction, although the use of iterative reconstruction can reduce the loss in resolution. The reduction of peak NEC curve indicates the image with better quality is achieved with lower activity of the source. (author)

  4. Description and performance of a prototype PET system for small volume imaging

    International Nuclear Information System (INIS)

    McKee, B.T.A.; Hogan, M.J.; Queen's Univ., Kingston, Ontario; Dinsdale, H.B.; Howse, D.C.N.; Kulick, J.; Mak, H.B.; Stewart, H.B.

    1988-01-01

    A prototype positron emission tomography (PET) system has been designed for high-resolution imaging of small volumes. The detectors use Pb converter stacks and multiwire proportional counters (MWPC); the data acquisition components and image reconstruction methods are also described briefly. The performance of the system is discussed in terms of sensitivity, count rate capability, spatial resolution, and scattered background. Three examples of metabolic or transport imaging demonstrate the capabilities and limitations of the system. These are blood flow to bone, cerebral glucose uptake, and nutrient translocation in plants. The performance of the prototype has been sufficiently promising that an improved system is under development. (orig.)

  5. Phantom study for the systemic performance of Gemini PET/CT

    International Nuclear Information System (INIS)

    Feng Yanlin; He Xiaohong; Huang Kemin; Yu Fengwen; Liu Dejun; Yuan Jianwei; Yuan Baihong; Su Shaodi

    2005-01-01

    Objective: To develop the methods and parameters for evaluating the systemic performance of Gemini PET/CT. Methods: The spatial resolution, standardized uptake value (SUV), uniformity and accuracy of image registration were selected as the evaluating indexes. The Jaszczak phantom with smaller inserts was filled with 18 F-fluorodeoxyglucose (FDG) solution and imaged with whole body and brain imaging modes, respectively, to evaluate the spatial resolution of the PET/CT; a Philips hollow phantom was filled with 18 F-FDG solution and imaged for calculating the SUV and the uniformity parameters; four 22 Na solid sources were put under the pad of the patient table and imaged synchronously with the patient's data acquisition to evaluate the accuracy of the PET and CT image fusion. Results: The rods of the diameter of 6.4 mm of both the hot and cold inserts were observed with whole body imaging mode, and rods of the diameters of 4.8 mm of both the hot and cold inserts were observed with brain imaging mode. The SUV with X-ray CT attenuation correction (CTAC) was 0.92 ± 0.24, and was 0.99±0.26 with 137 Cs attenuation correction (CsAC), and t=-1.327, P>0.05 between the two groups. The uniformity of the images with both CTAC and CsAC was very nice, no artifacts were seen either. The maximum pixel counts was 3790, the minimum was 1434, the average was 2581.23 and the standard deviation was 728.39 with CTAC; and were 4218, 1073, 2758.19 and 838.79 with CsAC correspondingly, and t=-1.069, P>0.05 between the two groups. The images of PET and CT were registrated better, and also no diversity was detected on the fusion images. Conclusions: These methods and parameters might be used to evaluate the systemic performance of the PET/CT, and could also be used as the supplementary items for the acceptance test and daily quality assurance of the PET/CT. (authors)

  6. High-performance electronics for time-of-flight PET systems

    International Nuclear Information System (INIS)

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  7. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  8. Performance evaluation of continuous blood sampling system for PET study. Comparison of three detector-systems

    CERN Document Server

    Matsumoto, K; Sakamoto, S; Senda, M; Yamamoto, S; Tarutani, K; Minato, K

    2002-01-01

    To measure cerebral blood flow with sup 1 sup 5 O PET, it is necessary to measure the time course of arterial blood radioactivity. We examined the performance of three different types of continuous blood sampling system. Three kinds of continuous blood sampling system were used: a plastic scintillator-based beta detector (conventional beta detector (BETA)), a bismuth germinate (BGO)-based coincidence gamma detector (Pico-count flow-through detector (COINC)) and a Phoswich detector (PD) composed by a combination of plastic scintillator and BGO scintillator. Performance of these systems was evaluated for absolute sensitivity, count rate characteristic, sensitivity to background gamnra photons, and reproducibility for nylon tube geometry. The absolute sensitivity of the PD was 0.21 cps/Bq for sup 6 sup 8 Ga positrons at the center of the detector. This was approximately three times higher than BETA, two times higher than COINC. The value measured with BETA was stable, even when background radioactivity was incre...

  9. Imaging findings and literature review of 18F-FDG PET/CT in primary systemic AL amyloidosis

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young

    2015-01-01

    Although several case reports and case series have described 18 F-FDG PET/CT in amyloidosis, the value of 18 F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of 18 F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment 18 F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on 18 F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV max  = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal 18 F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). 18 F-FDG uptake was negative for pancreas and gastric lesions. Although 18 F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of 18 F-FDG PET/CT in amyloidosis will be warranted

  10. Feasibility of state of the art PET/CT systems performance harmonisation.

    Science.gov (United States)

    Kaalep, Andres; Sera, Terez; Rijnsdorp, Sjoerd; Yaqub, Maqsood; Talsma, Anne; Lodge, Martin A; Boellaard, Ronald

    2018-03-02

    The objective of this study was to explore the feasibility of harmonising performance for PET/CT systems equipped with time-of-flight (ToF) and resolution modelling/point spread function (PSF) technologies. A second aim was producing a working prototype of new harmonising criteria with higher contrast recoveries than current EARL standards using various SUV metrics. Four PET/CT systems with both ToF and PSF capabilities from three major vendors were used to acquire and reconstruct images of the NEMA NU2-2007 body phantom filled conforming EANM EARL guidelines. A total of 15 reconstruction parameter sets of varying pixel size, post filtering and reconstruction type, with three different acquisition durations were used to compare the quantitative performance of the systems. A target range for recovery curves was established such that it would accommodate the highest matching recoveries from all investigated systems. These updated criteria were validated on 18 additional scanners from 16 sites in order to demonstrate the scanners' ability to meet the new target range. Each of the four systems was found to be capable of producing harmonising reconstructions with similar recovery curves. The five reconstruction parameter sets producing harmonising results significantly increased SUVmean (25%) and SUVmax (26%) contrast recoveries compared with current EARL specifications. Additional prospective validation performed on 18 scanners from 16 EARL accredited sites demonstrated the feasibility of updated harmonising specifications. SUVpeak was found to significantly reduce the variability in quantitative results while producing lower recoveries in smaller (≤17 mm diameter) sphere sizes. Harmonising PET/CT systems with ToF and PSF technologies from different vendors was found to be feasible. The harmonisation of such systems would require an update to the current multicentre accreditation program EARL in order to accommodate higher recoveries. SUVpeak should be further

  11. Performance of a DOI-encoding small animal PET system with monolithic scintillators

    International Nuclear Information System (INIS)

    Carles, M.; Lerche, Ch.W.; Sánchez, F.; Orero, A.; Moliner, L.; Soriano, A.; Benlloch, J.M.

    2012-01-01

    PET systems designed for specific applications require high resolution and sensitivity instrumentation. In dedicated system design smaller ring diameters and deeper crystals are widely used in order to increase the system sensitivity. However, this design increases the parallax error, which degrades the spatial image resolution gradually from the center to the edge of the field-of-view (FOV). Our group has designed a depth of interaction(DOI)-encoding small animal PET system based on monolithic crystals. In this work we investigate the restoration of radial resolution for transaxially off-center sources using the DOI information provided by our system. For this purpose we have designed a support for point like sources adapted to our system geometry that allows a spatial compression and resolution response study. For different point source radial positions along vertical and horizontal axes of a FOV transaxial plane we compare the results obtained by three methods: without DOI information, with the DOI provided by our system and with the assumption that all the γ-rays interact at half depth of the crystal thickness. Results show an improvement of the mean resolution of 10% with the half thickness assumption and a 16% achieved using the DOI provided by the system. Furthermore, a 10% restoration of the resolution uniformity is obtained using the half depth assumption and an 18% restoration using measured DOI.

  12. Imaging system models for small-bore DOI-PET scanners

    International Nuclear Information System (INIS)

    Takahashi, Hisashi; Kobayashi, Tetsuya; Yamaya, Taiga; Murayama, Hideo; Kitamura, Keishi; Hasegawa, Tomoyuki; Suga, Mikio

    2006-01-01

    Depth-of-interaction (DOI) information, which improves resolution uniformity in the field of view (FOV), is expected to lead to high-sensitivity PET scanners with small-bore detector rings. We are developing small-bore PET scanners with DOI detectors arranged in hexagonal or overlapped tetragonal patterns for small animal imaging or mammography. It is necessary to optimize the imaging system model because these scanners exhibit irregular detector sampling. In this work, we compared two imaging system models: (a) a parallel sub-LOR model in which the detector response functions (DRFs) are assumed to be uniform along the line of responses (LORs) and (b) a sub-crystal model in which each crystal is divided into a set of smaller volumes. These two models were applied to the overlapped tetragonal scanner (FOV 38.1 mm in diameter) and the hexagonal scanner (FOV 85.2 mm in diameter) simulated by GATE. We showed that the resolution non-uniformity of system model (b) was improved by 40% compared with that of system model (a) in the overlapped tetragonal scanner and that the resolution non-uniformity of system model (a) was improved by 18% compared with that of system model (b) in the hexagonal scanner. These results indicate that system model (b) should be applied to the overlapped tetragonal scanner and system model (a) should be applied to the hexagonal scanner. (author)

  13. Utility of FDG PET/CT in IgG4-related systemic disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, K., E-mail: koyakn@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Nakamoto, Y.; Togashi, K. [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto (Japan)

    2012-04-15

    IgG4-related systemic disease (IgG4-RSD) is an emerging clinical entity about which much remains to be elucidated, in terms of its aetiology, pathogenesis, diagnosis, treatment and outcome. Autoimmune pancreatitis (AIP) and Mikulicz disease (MD) are the two major, well-studied constituents of IgG4-RSD. AIP and MD have common characteristics of forming tumour-mimicking lesions that consist of lymphoplasmacytic infiltrates and fibrosclerosis with numerous immunoglobulin G4 (IgG4)-positive plasma cells, as well as various multi-organ manifestations of IgG4-RSD. 2-[{sup 18}F]-fluoro-2-deoxy-D-glucose positron-emission tomography/ computed tomography (FDG PET/CT) enables the acquisition of whole-body images and provides functional information about disease activity; as such it has a valuable role in staging extent of disease, guiding biopsy, and monitoring response to treatment. However, FDG PET/CT is likely to be only one component of the management strategy, and clinical, laboratory, imaging and histological findings are crucial in the overall diagnosis of the condition. At present FDG PET/CT does not have a well-established role in the assessment of patients with IgG4-RSD and future prospective studies are required to define the cost-effectiveness and clinical impact in this patient group more accurately.

  14. Utility of FDG PET/CT in IgG4-related systemic disease

    International Nuclear Information System (INIS)

    Nakatani, K.; Nakamoto, Y.; Togashi, K.

    2012-01-01

    IgG4-related systemic disease (IgG4-RSD) is an emerging clinical entity about which much remains to be elucidated, in terms of its aetiology, pathogenesis, diagnosis, treatment and outcome. Autoimmune pancreatitis (AIP) and Mikulicz disease (MD) are the two major, well-studied constituents of IgG4-RSD. AIP and MD have common characteristics of forming tumour-mimicking lesions that consist of lymphoplasmacytic infiltrates and fibrosclerosis with numerous immunoglobulin G4 (IgG4)-positive plasma cells, as well as various multi-organ manifestations of IgG4-RSD. 2-[ 18 F]-fluoro-2-deoxy-D-glucose positron-emission tomography/ computed tomography (FDG PET/CT) enables the acquisition of whole-body images and provides functional information about disease activity; as such it has a valuable role in staging extent of disease, guiding biopsy, and monitoring response to treatment. However, FDG PET/CT is likely to be only one component of the management strategy, and clinical, laboratory, imaging and histological findings are crucial in the overall diagnosis of the condition. At present FDG PET/CT does not have a well-established role in the assessment of patients with IgG4-RSD and future prospective studies are required to define the cost-effectiveness and clinical impact in this patient group more accurately.

  15. Simulation Study of PET System Using GATE%基于GATE的PET系统仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘豪佳; 张斌

    2014-01-01

    PET and SPECT is the most advanced nuclear medical imaging technology .GATE is a dedicated Monte Carlo simulation platform for PET and SPECT .This study validates two GATE models of Simens ECAT EXACT HR+PET scanner and Simens PET/CT Biograph 2.After the simulation of PET systems completed , testing and performance evaluation of simulation systems were proceeded according to NEMA 2001 performance protocols , including spatial resolution , scatter fraction and sensitivity .Test results show that , performances of GATE simulation systems agree well with the experimental values .%PET和SPECT是现代核医学最高水平的影像技术,GATE是专用于PET和SPECT的蒙特卡罗仿真工具。研究以西门子公司的PET扫描仪 ECAT EXACT HR+和PET/CT Biograph2为原型,分别使用GATE实现其系统的完整仿真。依据NEMA 2001标准,对仿真系统的空间分辨率、散射分数和灵敏度分别进行测试与评估。测试结果表明,仿真系统性能参数和实验结果之间具有良好的一致性。

  16. Effective sensitivity in 3D PET: The impact of detector dead time on 3D system performance

    International Nuclear Information System (INIS)

    Bailey, D.L.; Jones, T.; Meikle, S.R.

    1996-01-01

    3D PET has higher sensitivity than 2D PET. Sensitivity is determined by two components: the geometric solid angle for detection, and the fractional dead time, i.e., the time for which the detector is unavailable for accepting events. The loss in overall sensitivity as a function of radioactivity concentration due to these factors for 3D PET has been characterized by a parameter, the effective sensitivity, which combines absolute sensitivity and noise equivalent count rates. This parameter includes scatter, system sensitivity, dead time, and random coincidence rates, and permits comparisons between different tomographs as well as the same tomograph under different conditions. Effective sensitivity decreases most rapidly for larger, open 3D tomographs. The loss in effective sensitivity with increasing count rate suggests that new faster scintillation detectors will be needed to realize the sensitivity gain of 3D PET over a wide dynamic range of radioactivity concentrations

  17. CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current

    International Nuclear Information System (INIS)

    Kamel, Ehab; Hany, Thomas F.; Burger, Cyrill; Treyer, Valerie; Schulthess von, Gustav K.; Buck, Alfred; Lonn, Albert H.R.

    2002-01-01

    With the introduction of combined positron emission tomography/computed tomography (PET/CT) systems, several questions have to be answered. In this work we addressed two of these questions: (a) to what value can the CT tube current be reduced while still yielding adequate maps for the attenuation correction of PET emission scans and (b) how do quantified uptake values in tumours derived from CT and germanium-68 attenuation correction compare. In 26 tumour patients, multidetector CT scans were acquired with 10, 40, 80 and 120 mA (CT 10 , CT 40 , CT 80 and CT 120 ) and used for the attenuation correction of a single FDG PET emission scan, yielding four PET scans designated PET CT10 -PET CT120 . In 60 tumorous lesions, FDG uptake and lesion size were quantified on PET CT10 -PET CT120 . In another group of 18 patients, one CT scan acquired with 80 mA and a standard transmission scan acquired using 68 Ge sources were employed for the attenuation correction of the FDG emission scan (PET CT80 , PET 68Ge ). Uptake values and lesion size in 26 lesions were compared on PET CT80 and PET 68Ge . In the first group of patients, analysis of variance revealed no significant effect of CT current on tumour FDG uptake or lesion size. In the second group, tumour FDG uptake was slightly higher using CT compared with 68 Ge attenuation correction, especially in lesions with high FDG uptake. Lesion size was similar on PET CT80 and PET 68Ge . In conclusion, low CT currents yield adequate maps for the attenuation correction of PET emission scans. Although the discrepancy between CT- and 68 Ge-derived uptake values is probably not relevant in most cases, it should be kept in mind if standardised uptake values derived from CT and 68 Ge attenuation correction are compared. (orig.)

  18. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic hybridizat......Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...... from several 100 kb, including large flanking regions, to rearrangements, allowing convenient design...

  19. New component-based normalization method to correct PET system models

    International Nuclear Information System (INIS)

    Kinouchi, Shoko; Miyoshi, Yuji; Suga, Mikio; Yamaya, Taiga; Yoshida, Eiji; Nishikido, Fumihiko; Tashima, Hideaki

    2011-01-01

    Normalization correction is necessary to obtain high-quality reconstructed images in positron emission tomography (PET). There are two basic types of normalization methods: the direct method and component-based methods. The former method suffers from the problem that a huge count number in the blank scan data is required. Therefore, the latter methods have been proposed to obtain high statistical accuracy normalization coefficients with a small count number in the blank scan data. In iterative image reconstruction methods, on the other hand, the quality of the obtained reconstructed images depends on the system modeling accuracy. Therefore, the normalization weighing approach, in which normalization coefficients are directly applied to the system matrix instead of a sinogram, has been proposed. In this paper, we propose a new component-based normalization method to correct system model accuracy. In the proposed method, two components are defined and are calculated iteratively in such a way as to minimize errors of system modeling. To compare the proposed method and the direct method, we applied both methods to our small OpenPET prototype system. We achieved acceptable statistical accuracy of normalization coefficients while reducing the count number of the blank scan data to one-fortieth that required in the direct method. (author)

  20. Performance of a YSO/LSO detector block for use in a PET/SPECT system

    International Nuclear Information System (INIS)

    Dahlbom, M.; MacDonald, L.R.; Eriksson, L.

    1996-01-01

    In recent years, there has been an increased interest in using conventional SPECT scintillation cameras for PET imaging, however, the count rate performance is a limiting factor. The modular block detectors used in modem PET systems do not have this limitation. In this work, the performance of a detector block design which would have high resolution and high count rate capabilities in both detection modes is studied. The high light output of LSO (∼5-6 times BGO) would allow the construction of a detector block that would have similar intrinsic resolution characteristics at 140 keV as a conventional high resolution BGO block detector at 511 keV (∼4 mm FWHM). However, the intrinsic radioactivity of LSO prevents the use of this scintillator in single photon counting mode. YSO is a scintillator with higher light output than LSO but worse absorption characteristics than LSO. YSO and LSO could be combined in a phoswich detector block, where YSO is placed in a front layer and is used for low energy (SPECT) imaging and LSO in a second layer is used for PET imaging. Events in the two detector materials can be separated by pulse shape discrimination, since the decay times of the light in YSO and LSO are different (70 and 40 ns, respectively). Although the intrinsic resolution of the block detector with discrete elements is worse than for a NaI camera, this would not be a limiting factor. Simulations of a 20 cm diameter hot spot phantom imaged at different collimator distances using a high resolution collimator and scintillation camera system was compared to a block detector camera. No appreciable difference in resolution was seen in the reconstructed images between the two camera systems, including the ideal situation of zero distance between collimator and phantom

  1. Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET) System.

    Science.gov (United States)

    Melroy, Samantha; Bauer, Christopher; McHugh, Matthew; Carden, Garret; Stolin, Alexander; Majewski, Stan; Brefczynski-Lewis, Julie; Wuest, Thorsten

    2017-05-19

    Several applications exist for a whole brain positron-emission tomography (PET) brain imager designed as a portable unit that can be worn on a patient's head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environments and during behavioral tasks. Such a wearable system that allows the subjects to move their heads and walk-the Ambulatory Microdose PET (AM-PET)-is currently under development. This imager will be helpful for testing subjects performing selected activities such as gestures, virtual reality activities and walking. The need for this type of lightweight mobile device has led to the construction of a proof of concept portable head-worn unit that uses twelve silicon photomultiplier (SiPM) PET module sensors built into a small ring which fits around the head. This paper is focused on the engineering design of mechanical support aspects of the AM-PET project, both of the current device as well as of the coming next-generation devices. The goal of this work is to optimize design of the scanner and its mechanics to improve comfort for the subject by reducing the effect of weight, and to enable diversification of its applications amongst different research activities.

  2. Development of a low-level RF control system for PET cyclotron CYCIAE-14

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengzhan, E-mail: lipengzhan@ciae.ac.cn; Yin, Zhiguo; Ji, Bin; Zhang, Tianjue; Zhao, Zhenlu

    2014-01-21

    The project of a 14 MeV PET cyclotron aiming at medical diagnosis and treatment was proposed and started at CIAE in 2010. The low-level RF system is designed to stabilize acceleration voltage and control the resonance of the cavity. Based on the experience of the existing CRM Cyclotron in CIAE, a new start-up sequence is developed and tested. The frequency sweeping is used to activate the RF system. Before the tuner is put into use, a new state called “DDS tuning” is applied to trace the resonance frequency to the designed value. This new option state helps to cover the tuning range, if a large frequency variation occurs because of a thermal cavity deformation. The logic control unit detects the spark, reflection, Pulse/CW state and the frequency of the RF source to perform all kinds of protection and state operations. The test bench and on-line test are carried out to verify the initial design. -- Highlights: • The low-level RF system is designed and verified for PET cyclotron CYCIAE-14. • The frequency sweeping is used to activate the RF system. • A new state called “DDS tuning” is applied to trace the resonance frequency. • This new option state helps to cover the tuning range. • Protection module allows a quick restart after an alarm and improves cyclotron's efficiency.

  3. {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel; Riedl, Christopher C.; Jochelson, Maxine S. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Goldman, Debra A.; Goenen, Mithat [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Pinker-Domenig, Katja [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2016-10-15

    National Comprehensive Cancer Network guidelines recommend {sup 18}F-FDG-PET/CT, in addition to standard staging procedures, for systemic staging of newly diagnosed stage III breast cancer patients. However, factors in addition to stage may influence PET/CT utility. As breast cancers that are negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (triple-negative breast cancer, or TNBC) are more aggressive and metastasize earlier than other breast cancers, we hypothesized that receptor expression may be one such factor. This study assesses {sup 18}F-FDG-PET/CT for systemic staging of newly diagnosed TNBC. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with TNBC who underwent {sup 18}F-FDG-PET/CT in 2007-2013 prior to systemic or radiation therapy. Initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery, if performed prior to {sup 18}F-FDG-PET/CT. {sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases, as well as unsuspected synchronous malignancies. Kaplan Meier survival estimates were calculated for initial stage IIB patients stratified by whether or not stage 4 disease was detected by {sup 18}F-FDG-PET/CT. A total of 232 patients with TNBC met inclusion criteria. {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 30 (13 %): 0/23 initial stage I, 4/82 (5 %) stage IIA, 13/87 (15 %) stage IIB, 4/23 (17 %) stage IIIA, 8/14 (57 %) stage IIIB, and 1/3 (33 %) stage IIIC. Twenty-six of 30 patients upstaged to IV by {sup 18}F-FDG-PET/CT were confirmed by pathology, with the remaining four patients confirmed by follow-up imaging. In addition, seven unsuspected synchronous malignancies were identified in six patients. Initial stage 2B patients who were upstaged to 4 by {sup 18}F-FDG-PET/CT had significantly shorter survival compared to

  4. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems

    International Nuclear Information System (INIS)

    Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira

    2017-01-01

    Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd_3Ga_3Al_2O_1_2 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd_3Al_2Ga_3O_1_2 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator –GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.

  5. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    Science.gov (United States)

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  6. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  7. Initial performance evaluation of a preclinical PET scanner available as a clip-on assembly in a sequential PET/MRI system.

    Science.gov (United States)

    Vrigneaud, Jean-Marc; McGrath, John; Courteau, Alan; Pegg, Rosie; Sanchez-Pastor Gomis, Alberto; Camacho, Angela; Martin, Gary; Schramm, Nils; Brunotte, François

    2018-05-15

    We evaluated the performance characteristics of a prototype preclinical PET scanner available as an easy clippable assembly that can dock to an MRI system. The single ring version of the PET system consists of 8 detectors, each of which comprises a 12 × 12 silicon photomultipliers (SiPMs) array coupled with a dual layer of offset scintillation crystals to measure depth of interaction. The crystal arrays have 29 × 29 (30 × 30 for the outer layer) 4 mm long LYSO crystals (6 mm for the outer layer). The ring diameter is 119.2 mm and the axial field of view is 50.4 mm. The NEMA NU-4-2008 protocol was followed for studying the PET performance. Temperature stability of SiPMs was also investigated. The peak system absolute sensitivity was 4.70% with an energy window of 250-750 keV. The spatial resolution was 1.28/1.88/1.85 mm FWHM (radial/tangential/axial) at a distance of 5 mm from the center. Peak noise equivalent counting rate (NECR) and scatter fraction for mouse phantom were 61.9 kcps at 14.9 MBq and 21.0%, respectively. The uniformity was 6.3% and the spill-over ratios in the images of the water- and air-filled chambers were 0.07 and 0.17, respectively. Recovery coefficients ranged from 0.13 to 0.96. Change in sensitivity as a function of ambient temperature was 0.3%/°C. These first results indicate excellent spatial resolution performance for use with animal studies. Moreover, the clippable assembly can be upgraded to accept a second ring of SiPMs modules, leading to improved sensitivity and axial coverage. © 2018 Institute of Physics and Engineering in Medicine.

  8. Design and evaluation of a mobile bedside PET/SPECT imaging system

    Science.gov (United States)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  9. Preliminary assessment of a new data acquisition system for the microPET at IFUNAM

    Science.gov (United States)

    Murrieta-Rodríguez, Tirso; Alva-Sánchez, Héctor; Nava, Dante; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes

    2010-12-01

    In this work the new data acquisition system (DAQ) for the microPET of the SIBI project is presented. To increase the microPET sensitivity, the inclusion of more detection modules is required, which in turn needs a more sophisticated and compact signal processing system. The new DAQ is based on programmable integrated circuits (FPGAs) and is composed of (i) an 8-input triggering board with individual channel adjusting capabilities, which can process signals from 8 detector modules working in coincidence mode and (ii) two 10-channel digitising boards with 12-bit resolution. The digitised signals are transmitted to a PC through two Ethernet ports in each board. With the new boards the maximum singles counting rate is of the order of 350 kHz, with a dead time of 2.8 μs. Individual crystal maps of two detectors for image corrections have been obtained, with peak-to-valley ratios of 5:1. The new FPGA boards will allow the introduction of more detection modules with relatively simple electronics arrangement.

  10. A Time-Based Front End Readout System for PET & CT

    CERN Document Server

    Meyer, T C; Anghinolfi, F; Auffray, E; Dosanjh, M; Hillemanns, H; Hoffmann, H -F; Jarron, P; Kaplon, J; Kronberger, M; Lecoq, P; Moraes, D; Trummer, J

    2007-01-01

    In the framework of the European FP6's BioCare project, we develop a novel, time-based, photo-detector readout technique to increase sensitivity and timing precision for molecular imaging in PET and CT. The project aims to employ Avalanche Photo Diode (APD) arrays with state of the art, high speed, front end amplifiers and discrimination circuits developed for the Large Hadron Collider (LHC) physics program at CERN, suitable to detect and process photons in a combined one-unit PET/CT detection head. In the so-called time-based approach our efforts focus on the system's timing performance with sub-nanosecond time-jitter and -walk, and yet also provide information on photon energy without resorting to analog to digital conversion. The bandwidth of the electronic circuitry is compatible with the scintillator's intrinsic light response (e.g. les40ns in LSO) and hence allows high rate CT operation in single-photon counting mode. Based on commercial LSO crystals and Hamamatsu S8550 APD arrays, we show the system pe...

  11. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    Science.gov (United States)

    Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.

    2016-12-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  12. DoPET: an in-treatment monitoring system for proton therapy at 62 MeV

    International Nuclear Information System (INIS)

    Rosso, V.; Belcari, N.; Bisogni, M.G.; Camarlinghi, N.; Guerra, A. Del; Morrocchi, M.; Sportelli, G.; Zaccaro, E.; Cirrone, G.A.P.; Cuttone, G.; Milluzzo, G.; Raffaele, L.; Romano, F.; Collini, F.

    2016-01-01

    Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.

  13. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    deletions or duplications occurring in BRCA1 (n=11), BRCA2 (n=2), MSH2 (n=7), or MLH1 (n=9). Additionally, we demonstrate its applicability for uncovering complex somatic rearrangements, exemplified by zoom-in analysis of the PTEN and CDKN2A loci in breast cancer cells. The sizes of rearrangements ranged...

  14. A PET system based on 2-18FDG production with a low energy electrostatic proton accelerator and a dual headed PET scanner.

    Science.gov (United States)

    Sandell, A; Ohlsson, T; Erlandsson, K; Hellborg, R; Strand, S E

    1992-01-01

    We have developed a comparatively inexpensive PET system, based on a rotating scanner with two scintillation camera heads, and a nearby low energy electrostatic proton accelerator for production of short-lived radionuclides. Using a 6 MeV proton beam of 5 microA, and by optimization of the target geometry for the 18O(p,n)18F reaction, 750 MBq of 2-18FDG can be obtained. The PET scanner shows a spatial resolution of 6 mm (FWHM) and a sensitivity of 80 s-1kBq-1ml-1 (3 kcps/microCi/ml). Various corrections are included in the imaging process, to compensate for spatial and temporal response variations in the detector system. Both filtered backprojection and iterative reconstruction methods are employed. Clinical studies have been performed with acquisition times of 30-40 min. The system will be used for clinical experimental research with short- as well as long-lived positron emitters. Also the possibility of true 3D reconstruction is under evaluation.

  15. A practical head tracking system for motion correction in neurological SPECT and PET

    International Nuclear Information System (INIS)

    Fulton, R.R.; Eberl, S.; Meikle, S.; Hutton, B.F.; Braun, M.

    1998-01-01

    Full text: Patient motion during data acquisition can degrade the quality of SPECT and PET images. Techniques for motion correction in neurological studies in both modalities based on continuous monitoring of head position have been proposed. However difficulties in developing suitable head tracking systems have so far impeded clinical implementations. We have developed a head tracking system based on the mechanical ADL-1 tracker (Shooting Star Technology, Rosedale, Canada) on a Trionix triple-head SPECT camera A software driver running on a SUN Sparc host computer communicates with the tracker over a serial line providing up to 300 updates per second with angular and positional resolutions of 0.05 degrees and 0.2 mm respectively. The SUN Sparc workstation which acquires the SPECT study also communicates with the tracker, eliminating synchronisation problems. For motion correction, the motion parameters provided by the tracker within its own coordinate system must be converted to the camera's coordinate system. The conversion requires knowledge of the rotational relationships between the two coordinate systems and the displacement of their origins, both of which are determined from a calibration procedure. The tracker has been tested under clinical SPECT imaging conditions with a 3D Hoffman brain phantom. Multiple SPECT acquisitions were performed. After each acquisition the phantom was moved to a new position and orientation. Motion parameters reported by the tracker for each applied movement were compared with those obtained by applying an automated image registration program to the sequential reconstructed studies. Maximum differences were < 0.5 degrees and < 2mm, within the expected errors of the registration procedure. We conclude that this tracking system will be suitable for clinical evaluation of motion correction in SPECT and PET

  16. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  17. Accuracy of a clinical PET/CT vs. a preclinical μPET system for monitoring treatment effects in tumour xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, Karin [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Pneumology and Critical Care Medicine, Thoraxklinik Heidelberg, University of Heidelberg, Heidelberg (Germany); Winz, Oliver [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Rix, Anne; Bzyl, Jessica [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F.; Verburg, Frederic A.; Mottaghy, Felix M. [Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, RWTH-Aachen University, Aachen (Germany); Academic Radiology Baden Baden, Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg (Germany)

    2013-08-15

    Purpose: Small animal imaging is of growing importance for preclinical research and drug development. Tumour xenografts implanted in mice can be visualized with a clinical PET/CT (cPET); however, it is unclear whether early treatment effects can be monitored. Thus, we investigated the accuracy of a cPET versus a preclinical μPET using {sup 18}F-FDG for assessing early treatment effects. Materials and methods: The spatial resolution and the quantitative accuracy of a clinical and preclinical PET were evaluated in phantom experiments. To investigate the sensitivity for assessing treatment response, A431 tumour xenografts were implanted in nude mice. Glucose metabolism was measured in untreated controls and in two therapy groups (either one or four days of antiangiogenic treatment). Data was validated by γ-counting of explanted tissues. Results: In phantom experiments, cPET enabled reliable separation of boreholes ≥ 5 mm whereas μPET visualized boreholes ≥ 2 mm. In animal studies, μPET provided significantly higher tumour-to-muscle ratios for untreated control tumours than cPET (3.41 ± 0.87 vs. 1.60 ± .0.28, respectively; p < 0.01). During treatment, cPET detected significant therapy effects at day 4 (p < 0.05) whereas μPET revealed highly significant therapy effects even at day one (p < 0.01). Correspondingly, γ-counting of explanted tumours indicated significant therapy effects at day one and highly significant treatment response at day 4. Correlation with γ-counting was good for cPET (r = 0.74; p < 0.01) and excellent for μPET (r = 0.85; p < 0.01). Conclusion: Clinical PET is suited to investigate tumour xenografts ≥ 5 mm at an advanced time-point of treatment. For imaging smaller tumours or for the sensitive assessment of very early therapy effects, μPET should be preferred.

  18. Simultaneous PET and MR imaging

    International Nuclear Information System (INIS)

    Yiping Shao; Cherry, Simon R.; Meadors, Ken; Siegel, Stefan; Silverman, Robert W.; Farahani, Keyvan; Marsden, Paul K.

    1997-01-01

    We have developed a prototype PET detector which is compatible with a clinical MRI system to provide simultaneous PET and MR imaging. This single-slice PET system consists of 48 2x2x10mm 3 LSO crystals in a 38 mm diameter ring configuration that can be placed inside the receiver coil of the MRI system, coupled to three multi-channel photomultipliers housed outside the main magnetic field via 4 m long and 2 mm diameter optical fibres. The PET system exhibits 2 mm spatial resolution, 41% energy resolution at 511 keV and 20 ns timing resolution. Simultaneous PET and MR phantom images were successfully acquired. (author)

  19. Time resolution deterioration with increasing crystal length in a TOF-PET system

    CERN Document Server

    Gundacker, S; Auffray, E; Jarron, P; Meyer, T; Lecoq, P

    2014-01-01

    Highest time resolution in scintillator based detectors is becoming more and more important. In medical detector physics L(Y)SO scintillators are commonly used for time of flight positron emission tomography (TOF-PET). Coincidence time resolutions (CTRs) smaller than 100 ps FWHM are desirable in order to improve the image signal to noise ratio and thus give benefit to the patient by shorter scanning times. Also in high energy physics there is the demand to improve the timing capabilities of calorimeters down to 10 ps. To achieve these goals it is important to study the whole chain, i.e. the high energy particle interaction in the crystal, the scintillation process itself, the scintillation light transfer in the crystal, the photodetector and the electronics. Time resolution measurements for a PET like system are performed with the time-over-threshold method in a coincidence setup utilizing the ultra-fast amplifier-discriminator NINO. With 2×2×3 mm3 LSO:Ce codoped 0.4%Ca crystals coupled to commercially avai...

  20. Fully 3D tomographic reconstruction by Monte Carlo simulation of the system matrix in preclinical PET with iodine 124

    International Nuclear Information System (INIS)

    Moreau, Matthieu

    2014-01-01

    Immuno-PET imaging can be used to assess the pharmacokinetic in radioimmunotherapy. When using iodine-124, PET quantitative imaging is limited by physics-based degrading factors within the detection system and the object, such as the long positron range in water and the complex spectrum of gamma photons. The objective of this thesis was to develop a fully 3D tomographic reconstruction method (S(MC)2PET) using Monte Carlo simulations for estimating the system matrix, in the context of preclinical imaging with iodine-124. The Monte Carlo simulation platform GATE was used for that respect. Several complexities of system matrices were calculated, with at least a model of the PET system response function. Physics processes in the object was either neglected or taken into account using a precise or a simplified object description. The impact of modelling refinement and statistical variance related to the system matrix elements was evaluated on final reconstructed images. These studies showed that a high level of complexity did not always improve qualitative and quantitative results, owing to the high-variance of the associated system matrices. (author)

  1. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    Science.gov (United States)

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  2. Development and Design of Next-Generation Head-Mounted Ambulatory Microdose Positron-Emission Tomography (AM-PET System

    Directory of Open Access Journals (Sweden)

    Samantha Melroy

    2017-05-01

    Full Text Available Several applications exist for a whole brain positron-emission tomography (PET brain imager designed as a portable unit that can be worn on a patient’s head. Enabled by improvements in detector technology, a lightweight, high performance device would allow PET brain imaging in different environments and during behavioral tasks. Such a wearable system that allows the subjects to move their heads and walk—the Ambulatory Microdose PET (AM-PET—is currently under development. This imager will be helpful for testing subjects performing selected activities such as gestures, virtual reality activities and walking. The need for this type of lightweight mobile device has led to the construction of a proof of concept portable head-worn unit that uses twelve silicon photomultiplier (SiPM PET module sensors built into a small ring which fits around the head. This paper is focused on the engineering design of mechanical support aspects of the AM-PET project, both of the current device as well as of the coming next-generation devices. The goal of this work is to optimize design of the scanner and its mechanics to improve comfort for the subject by reducing the effect of weight, and to enable diversification of its applications amongst different research activities.

  3. Development of Input Function Measurement System for Small Animal PET Study

    International Nuclear Information System (INIS)

    Kim, Jong Guk; Kim, Byung Su; Kim, Jin Su

    2010-01-01

    For quantitative measurement of radioactivity concentration in tissue and a validated tracer kinetic model, the high sensitive detection system has been required for blood sampling. With the accurate measurement of time activity curves (TACs) of labeled compounds in blood (plasma) enable to provide quantitative information on biological parameters of interest in local tissue. Especially, the development of new tracers for PET imaging requires knowledge of the kinetics of the tracer in the body and in arterial blood and plasma. Conventional approaches of obtaining an input function are to sample arterial blood sequentially by manual as a function of time. Several continuous blood sampling systems have been developed and used in nuclear medicine research field to overcome the limited temporal resolution in sampling by the conventional method. In this work, we developed the high sensitive and unique geometric design of GSO detector for small animal blood activity measurement

  4. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    International Nuclear Information System (INIS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria; Collazuol, Gianmaria; Ambrosi, Giovanni; Santoni, Cristiano; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2013-01-01

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence

  5. Proof of concept of an imaging system demonstrator for PET applications with SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Morrocchi, Matteo, E-mail: matteo.morrocchi@pi.infn.it [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Marcatili, Sara; Belcari, Nicola; Giuseppina Bisogni, Maria [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Collazuol, Gianmaria [INFN Sezione di Pisa, Pisa 56127 (Italy); Ambrosi, Giovanni; Santoni, Cristiano [INFN Sezione di Perugia, Perugia 06100 (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari and INFN Sezione di Bari, Bari 70100 (Italy); Sportelli, Giancarlo [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy); Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Del Guerra, Alberto [University of Pisa and INFN Sezione di Pisa, Pisa 56127 (Italy)

    2013-08-21

    A PET imaging system demonstrator based on LYSO crystal arrays coupled to SiPM matrices is under construction at the University and INFN of Pisa. Two SiPM matrices, composed of 8×8 SiPM pixels, and 1,5 mm pitch, have been coupled one to one to a LYSO crystals array and read out by a custom electronics system. front-end ASICs were used to read 8 channels of each matrix. Data from each front-end were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port for the storage and off-line data processing. In this paper we show the first preliminary tomographic image of a point-like radioactive source acquired with part of the two detection heads in time coincidence.

  6. Preclinical assessment of dopaminergic system in rats by MicroPET using three positron-emitting radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Camacho, V. M., E-mail: victormlc13@hotmail.com; Ávila-García, M. C., E-mail: victormlc13@hotmail.com; Ávila-Rodríguez, M. A., E-mail: victormlc13@hotmail.com [Unidad PET, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, D.F. (Mexico)

    2014-11-07

    Different diseases associated with dysfunction of dopaminergic system such as Parkinson, Alzheimer, and Schizophrenia are being widely studied with positron emission tomography (PET) which is a noninvasive method useful to assess the stage of these illnesses. In our facility we have recently implemented the production of [{sup 11}C]-DTBZ, [{sup 11}C]-RAC, and [{sup 18}F]-FDOPA, which are among the most common PET radiopharmaceuticals used in neurology applications to get information about the dopamine pathways. In this study two healthy rats were imaged with each of those radiotracers in order to confirm selective striatum uptake as a proof of principle before to release them for human use.

  7. Imaging findings and literature review of {sup 18}F-FDG PET/CT in primary systemic AL amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Hee; Lee, Ga Yeon; Kim, Seok Jin; Kim, Ki Hyun; Jeon, Eun Seok; Lee, Kyung Han; Kim, Byung Tae; Choi, Joon Young [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-09-15

    Although several case reports and case series have described {sup 18}F-FDG PET/CT in amyloidosis, the value of {sup 18}F-FDG PET/CT for diagnosing amyloidosis has not been clarified. We investigated the imaging findings of {sup 18}F-FDG PET/CT in patients with primary systemic AL amyloidosis. Subjects were 15 patients (M:F = 12:3; age, 61.5 ± 7.4 years) with histologically confirmed primary systemic AL amyloidosis who underwent pretreatment {sup 18}F-FDG PET/CT to rule out the possibility of malignancy or for initial workup of alleged cancer. For involved organs, visual and semiquantitative analyses were performed on {sup 18}F-FDG PET/CT images. In total, 22 organs (10 hearts, 5 kidneys, 2 stomachs, 2 colons, 1 ileum, 1 pancreas, and 1 liver) were histologically confirmed to have primary systemic AL amyloidosis. F-FDG uptake was significantly increased in 15 of the 22 organs (68.2 %; 10 hearts, 2 kidneys, 1 colon, 1 ileum, and 1 liver; SUV{sub max} = 7.0 ± 3.2, range 2.1–14.1). However, in 11 of 15 PET-positive organs (78.6 %; 10 hearts and the ileum), it was difficult to differentiate pathological uptake from physiological uptake. Definitely abnormal {sup 18}F-FDG uptake was found in only 4 of the 22 organs (18.2 %; 2 kidneys, 1 colon, and the liver). {sup 18}F-FDG uptake was negative for pancreas and gastric lesions. Although {sup 18}F-FDG PET/CT showed high uptake in two-thirds of the organs involving primary systemic AL amyloidosis, its sensitivity appeared to be low to make differentiation of pathological uptake from physiological uptake. However, due to the small number of cases, further study for the role of {sup 18}F-FDG PET/CT in amyloidosis will be warranted.

  8. A robotic system for 18F-FMISO PET-guided intratumoral pO2 measurements.

    Science.gov (United States)

    Chang, Jenghwa; Wen, Bixiu; Kazanzides, Peter; Zanzonico, Pat; Finn, Ronald D; Fichtinger, Gabor; Ling, C Clifton

    2009-11-01

    An image-guided robotic system was used to measure the oxygen tension (pO2) in rodent tumor xenografts using interstitial probes guided by tumor hypoxia PET images. Rats with approximately 1 cm diameter tumors were anesthetized and immobilized in a custom-fabricated whole-body mold. Imaging was performed using a dedicated small-animal PET scanner (R4 or Focus 120 microPET) approximately 2 h after the injection of the hypoxia tracer 18F-fluoromisonidazole (18F-FMISO). The coordinate systems of the robot and PET were registered based on fiducial markers in the rodent bed visible on the PET images. Guided by the 3D microPET image set, measurements were performed at various locations in the tumor and compared to the corresponding 18F-FMISO image intensity at the respective measurement points. Experiments were performed on four tumor-bearing rats with 4 (86), 3 (80), 7 (162), and 8 (235) measurement tracks (points) for each experiment. The 18F-FMISO image intensities were inversely correlated with the measured pO2, with a Pearson coefficient ranging from -0.14 to -0.97 for the 22 measurement tracks. The cumulative scatterplots of pO2 versus image intensity yielded a hyperbolic relationship, with correlation coefficients of 0.52, 0.48, 0.64, and 0.73, respectively, for the four tumors. In conclusion, PET image-guided pO2 measurement is feasible with this robot system and, more generally, this system will permit point-by-point comparison of physiological probe measurements and image voxel values as a means of validating molecularly targeted radiotracers. Although the overall data fitting suggested that 18F-FMISO may be an effective hypoxia marker, the use of static 18F-FMISO PET postinjection scans to guide radiotherapy might be problematic due to the observed high variation in some individual data pairs from the fitted curve, indicating potential temporal fluctuation of oxygen tension in individual voxels or possible suboptimal imaging time postadministration of hypoxia

  9. Simultaneous fMRI-PET of the opioidergic pain system in human brain

    DEFF Research Database (Denmark)

    Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M

    2014-01-01

    distinct components of the blood oxygenation level dependent (BOLD) fMRI signal has not yet been shown. We obtained sixteen fMRI-PET data sets from eight healthy volunteers. Each subject participated in randomized order in a pain scan and a control (nonpainful pressure) scan on the same day. Dynamic PET......MRI and PET provide complementary information for studying brain function. While the potential use of simultaneous MRI/PET for clinical diagnostic and disease staging has been demonstrated recently; the biological relevance of concurrent functional MRI-PET brain imaging to dissect neurochemically...... data were acquired with an opioid radioligand, [(11)C]diprenorphine, to detect endogenous opioid releases in response to pain. BOLD fMRI data were collected at the same time to capture hemodynamic responses. In this simultaneous human fMRI-PET imaging study, we show co-localized responses in thalamus...

  10. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease

    NARCIS (Netherlands)

    Antonini, A; Leenders, KL; Vontobel, P; Maguire, RP; Missimer, J; Psylla, M; Gunther, [No Value

    1997-01-01

    We used PET with the tracers [F-18]fluorodeoxyglucose (FDG), [F-18]fluorodopa (FDOPA) and [C-11]raclopride (RACLO) to study striatal glucose and dopa metabolism, and dopamine D-2 receptor binding, respectively, in nine patients with multiple system atrophy. Ten patients with classical Parkinson's

  11. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Lasnon, Charline; Quak, Elske [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen (France); Desmonts, Cedric [Caen University Hospital, Nuclear Medicine Department, Caen (France); Gervais, Radj; Do, Pascal; Dubos-Arvis, Catherine [Francois Baclesse Cancer Centre, Thoracic Oncology, Caen (France); Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen (France); Centre Francois Baclesse, Service de Medecine Nucleaire, Caen cedex 5 (France)

    2013-07-15

    We prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values. The NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSF{sub EANM}). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSF{sub allpass}), PSF{sub EANM} and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSF{sub EANM} and PSF{sub allpass} reconstruction. Overall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSF{sub EANM} and OSEM data was 1.03 [95 % confidence interval (CI) 0.94-1.12] and 1.02 (95 % CI 0.90-1.14) for SUV{sub max} and SUV{sub mean}, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEM{sub PET1}/OSEM{sub PET2} (current standard) and OSEM{sub PET1}/PSF{sub EANM-PET2} or PSF{sub EANM-PET1}/OSEM{sub PET2} with kappa values of 0.95 (95 % CI 0.91-1.00) and 0.99 (95 % CI 0.96-1.00), respectively. The use of PSF{sub allpass} either for pre- or post-treatment (i.e. OSEM{sub PET1}/PSF{sub allpass-PET2} or PSF{sub allpass-PET1}/OSEM{sub PET2}) showed

  12. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    Science.gov (United States)

    Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.

    2014-03-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.

  13. Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound

    International Nuclear Information System (INIS)

    Cucciati, G; Vara, N Di; Ghezzi, A; Paganoni, M; Pizzichemi, M; Auffray, E; Frisch, B; Lecoq, P; Bugalho, R; Neves, J; Cao, L; Peter, J; Farina, F; Felix, N; Juhan, V; Mundler, O; Siles, P; Jun, D; Lasaygues, P; Mensah, S

    2014-01-01

    ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information

  14. Visualization of multiple organ amyloid involvement in systemic amyloidosis using {sup 11}C-PiB PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Naoki; Katoh, Nagaaki; Yoshinaga, Tsuneaki [Shinshu University School of Medicine, Department of Medicine (Neurology and Rheumatology), Nagano (Japan); Oguchi, Kazuhiro [Jisenkai Brain Imaging Research Center, Matsumoto (Japan); Yazaki, Masahide [Shinshu University School of Health Sciences, Department of Biomedical Laboratory Sciences, Matsumoto (Japan); Shinshu University, Institute for Biomedical Sciences, Matsumoto (Japan); Sekijima, Yoshiki [Shinshu University School of Medicine, Department of Medicine (Neurology and Rheumatology), Nagano (Japan); Jisenkai Brain Imaging Research Center, Matsumoto (Japan); Shinshu University, Institute for Biomedical Sciences, Matsumoto (Japan)

    2018-03-15

    To investigate the utility of Pittsburgh compound B (PiB) positron emission tomography (PET) imaging for evaluating whole-body amyloid involvement in patients with systemic amyloidosis. Whole-body {sup 11}C-PiB PET was performed in seven patients with systemic immunoglobulin light-chain (AL) amyloidosis, seven patients with hereditary transthyretin (ATTRm) amyloidosis, one asymptomatic TTR mutation carrier and three healthy controls. The correlations between clinical organ involvement, radiological {sup 11}C-PiB uptake and histopathological findings were analysed for each organ. Organ involvement on {sup 11}C-PiB PET imaging showed good correlations with the clinical findings for the heart and stomach. Abnormal tracer uptake was also observed in the spleen, lachrymal gland, submandibular gland, sublingual gland, lymph node, brain, scalp, extraocular muscles, nasal mucosa, pharynx, tongue and nuchal muscles, most of which were asymptomatic. Physiological tracer uptake was universally observed in the urinary tract (kidney, renal pelvis, ureter and bladder) and enterohepatic circulatory system (liver, gallbladder, bile duct and small intestine) in all participants. Most of the patients and one healthy control subject showed asymptomatic tracer uptake in the lung and parotid gland. The peripheral nervous system did not show any tracer uptake even in patients with apparent peripheral neuropathy. Histological amyloid deposition was confirmed in biopsied myocardium and gastric mucosa where abnormal {sup 11}C-PiB retention was observed. {sup 11}C-PiB PET imaging can be used clinically in the systemic evaluation of amyloid distribution in patients with AL and ATTRm amyloidosis. Quantitative analysis of {sup 11}C-PiB PET images may be useful in therapy evaluation and will reveal whether amyloid clearance is correlated with clinical response. (orig.)

  15. Development of a circular shape Si-PM-based detector ring for breast-dedicated PET system

    Science.gov (United States)

    Nakanishi, Kouhei; Yamamoto, Seiichi; Watabe, Hiroshi; Abe, Shinji; Fujita, Naotoshi; Kato, Katsuhiko

    2018-02-01

    In clinical situations, various breast-dedicated positron emission tomography (PET) systems have been used. However, clinical breast-dedicated PET systems have polygonal detector ring. Polygonal detector ring sometimes causes image artifact, so complicated reconstruction algorithm is needed to reduce artifact. Consequently, we developed a circular detector ring for breast-dedicated PET to obtain images without artifact using a simple reconstruction algorithm. We used Lu1.9Gd0.1SiO5 (LGSO) scintillator block which was made of 1.5 x 1.9 x 15 mm pixels that were arranged in an 8 x 24 matrix. As photodetectors, we used silicon photomultiplier (Si-PM) arrays whose channel size was 3 x 3 mm. A detector unit was composed of four scintillator blocks, 16 Si-PM arrays and a light guide. The developed detector unit had angled configuration since the light guide was bending. A detector unit had three gaps with an angle of 5.625° between scintillator blocks. With these configurations, we could arrange 64 scintillator blocks in nearly circular shape (regular 64-sided polygon) using 16 detector units. The use of the smaller number of detector units could reduce the size of the front-end electronics circuits. The inner diameter of the developed detector ring was 260 mm. This size was similar to those of brain PET systems, so our breast-dedicated PET detector ring can measure not only breast but also brain. Measured radial, tangential and axial spatial resolution of the detector ring reconstructed by the filtered back-projection (FBP) algorithm were 2.1 mm FWHM, 2.0 mm FWHM and 1.7 mm FWHM at center of field of view (FOV), respectively. The sensitivity was 2.0% at center of the axial FOV. With the developed detector ring, we could obtain high resolution image of the breast phantom and the brain phantom. We conclude that our developed Si-PM-based detector ring is promising for a high resolution breast-dedicated PET system that can also be used for brain PET system.

  16. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  17. Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system.

    Science.gov (United States)

    Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F

    2007-07-01

    The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a

  18. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  19. Normative instruction in30: an analysis of the institutional change influence of environment on the pet food agribusiness system

    Directory of Open Access Journals (Sweden)

    João Paulo Fernandes Santos

    2013-01-01

    Full Text Available This paper aims to analyze the influence of Instruction 30 (IN30 which includes registration and labeling of food for pets, from the point of view of interpretation, assimilation and its possible impacts on agents that comprise the pet food Agribusiness System (SAG. Were interviewed institutions, represented by two major agencies: The Ministry of Agriculture, and Livestock (MAPA and the Brazilian Association of the Industry of Products for Pets (ABINPET; manufacturing firms; research centers based at Universities, retailers and owners of dogs and cats, totalizing five samples. It was observed that the institutions, the researchers and manufacturers consider the IN30 as an initiative of great importance by bringing self-control and self-regulation of the SAG, besides contemplating the desire of firms regarding agility in launching new technologies. However, the main concern of the researchers was related to quality assurance of food. Firms show up unssatisfied with the lack of consensus on the interpretation of some articles of IN30 by MAPA´s enforcement agents, with discrepancies between regional and the technical managers of companies, especially regarding labeling. Already retailers and owners of pets still seem unaware of the legal aspects of such normative.

  20. Performance Enhancement of the RatCAP Awake Rat Brain PET System

    International Nuclear Information System (INIS)

    Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O'Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, S.; Purschke, M.; Southekal, S.; Stoll, S.; Schiffer, W.; Lee, D.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S.; Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-01-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  1. Performance Enhancement of the RatCAP Awake Rate Brain PET System

    Energy Technology Data Exchange (ETDEWEB)

    Vaska, P.; Vaska, P.; Woody, C.; Schlyer, D.; Radeka, V.; O' Connor, P.; Park, S.-J.; Pratte, J.-F.; Junnarkar, M.; Purschke, S.; Southekal, S.; Stoll, S.; Schiffer, W.; Neill, J.; Wharton, D.; Myers, N.; Wiley, S.; Kandasamy, A.; Fried, J.; Krishnamoorthy, S. Kriplani, A.; Maramraju, S.; Lecomte, R.; Fontaine, R.

    2011-03-01

    The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required for neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.

  2. Limbic system, the main focus of dementia syndrome; A study with MRI and PET

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju [Morinosato Hospital, Atsugi, Kanagawa (Japan)

    1990-12-01

    Alzheimer disease and multi-infarct dementia are two entirely different diseases producing almost the same abnormalities as dementia syndrome. The statistical studies with MRI to locate the focus of dementia syndrome in the neocortex was an absolute failure. With MRI there is drastic atrophy and destruction of the amygdala and hippocampus suggesting the limbic system as the focus of dementia syndrome. Destruction of the limbic system in particular amygdala and hippocampus produced the functional obstruction brought about by the marked reduction in the glucose utilization with PET in the bilateral temporal, parietal and occipital association cortices. Although this type constitutes only about 1/5 of all dementia patients. It is considered the fundamental type of dementia syndrome. Aside from this, there is a type wherein simultaneous and symmetrical reductions in glucose utilization of the frontal association cortex and the motor association cortex in the anterior part of the neocortex. This is referred to as type II. It constitutes about 4/5 of all dementia patients which is far more than type I. Based on these results, it is thought that limbic system is the main focus of dementia syndrome. (author).

  3. A parallelizable compression scheme for Monte Carlo scatter system matrices in PET image reconstruction

    International Nuclear Information System (INIS)

    Rehfeld, Niklas; Alber, Markus

    2007-01-01

    Scatter correction techniques in iterative positron emission tomography (PET) reconstruction increasingly utilize Monte Carlo (MC) simulations which are very well suited to model scatter in the inhomogeneous patient. Due to memory constraints the results of these simulations are not stored in the system matrix, but added or subtracted as a constant term or recalculated in the projector at each iteration. This implies that scatter is not considered in the back-projector. The presented scheme provides a method to store the simulated Monte Carlo scatter in a compressed scatter system matrix. The compression is based on parametrization and B-spline approximation and allows the formation of the scatter matrix based on low statistics simulations. The compression as well as the retrieval of the matrix elements are parallelizable. It is shown that the proposed compression scheme provides sufficient compression so that the storage in memory of a scatter system matrix for a 3D scanner is feasible. Scatter matrices of two different 2D scanner geometries were compressed and used for reconstruction as a proof of concept. Compression ratios of 0.1% could be achieved and scatter induced artifacts in the images were successfully reduced by using the compressed matrices in the reconstruction algorithm

  4. Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging

    International Nuclear Information System (INIS)

    Thornton, A.F. Jr.; Ten Haken, R.K.; Gerhardsson, A.; Correll, M.

    1991-01-01

    A mask/marker immobilization system for the routine radiation therapy treatment of head and neck disease is described, utilizing a commercially available thermoplastic mesh, indexed and mounted for a rigid frame attached to the therapy couch. Designed to permit CT, MRI, and PET diagnostics scans of the patient to be performed in the simulation and treatment position employing the same mask, the system has been tested in order to demonstrate the reproducibility of immobilization throughout a radical course of irradiation. Three-dimensional analysis of patient position over an 8-week course of daily radiation treatment has been performed for 9 patients from digitization of anatomic points identified on orthogonal radiographs. Studies employing weekly constructed system permits rapid mask formation to be performed on the treatment simulator, resulting in an immobilization device comparable to masks produced with vacuum-forming techniques. Details of motion analysis and central axis CT, MRI, and PET markers are offered. (author). 16 refs.; 3 figs

  5. Reconstruction of 2D PET data with Monte Carlo generated system matrix for generalized natural pixels

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L; Soares, Edward J; Lemahieu, Ignace; Glick, Stephen J

    2006-01-01

    In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast

  6. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    Science.gov (United States)

    Sportelli, G.; Belcari, N.; Camarlinghi, N.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Ortuño, J. E.; Romano, F.; Santos, A.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1 mm

  7. First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system

    International Nuclear Information System (INIS)

    Sportelli, G; Belcari, N; Camarlinghi, N; Ferretti, S; Kraan, A; Straub, K; Guerra, A Del; Rosso, V; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A; Ortuño, J E; Santos, A

    2014-01-01

    During particle therapy irradiation, positron emitters with half-lives ranging from 2 to 20 min are generated from nuclear processes. The half-lives are such that it is possible either to detect the positron signal in the treatment room using an in-beam positron emission tomography (PET) system, right after the irradiation, or to quickly transfer the patient to a close PET/CT scanner. Since the activity distribution is spatially correlated with the dose, it is possible to use PET imaging as an indirect method to assure the quality of the dose delivery. In this work, we present a new dedicated PET system able to operate in-beam. The PET apparatus consists in two 10 cm × 10 cm detector heads. Each detector is composed of four scintillating matrices of 23 × 23 LYSO crystals. The crystal size is 1.9 mm × 1.9 mm × 16 mm. Each scintillation matrix is read out independently with a modularized acquisition system. The distance between the two opposing detector heads was set to 20 cm. The system has very low dead time per detector area and a 3 ns coincidence window, which is capable to sustain high single count rates and to keep the random counts relatively low. This allows a new full-beam monitoring modality that includes data acquisition also while the beam is on. The PET system was tested during the irradiation at the CATANA (INFN, Catania, Italy) cyclotron-based proton therapy facility. Four acquisitions with different doses and dose rates were analysed. In all cases the random to total coincidences ratio was equal or less than 25%. For each measurement we estimated the accuracy and precision of the activity range on a set of voxel lines within an irradiated PMMA phantom. Results show that the inclusion of data acquired during the irradiation, referred to as beam-on data, improves both the precision and accuracy of the range measurement with respect to data acquired only after irradiation. Beam-on data alone are enough to give precisions better than 1

  8. When GIS zooms in: spatio-genetic maps of multipaternity in Armadillidium vulgare.

    Science.gov (United States)

    Bech, Nicolas; Depeux, Charlotte; Durand, Sylvine; Debenest, Catherine; Lafitte, Alexandra; Beltran-Bech, Sophie

    2017-12-01

    Geographic information system (GIS) tools are designed to illustrate, analyse and integrate geographic or spatial data, usually on a macroscopic scale. By contrast, genetic tools focus on a microscopic scale. Because in reality, landscapes have no predefined scale, our original study aims to develop a new approach, combining both cartographic and genetic approaches to explore microscopic landscapes. For this, we focused on Armadillidium vulgare, a terrestrial isopod model in which evolutionary pressures imposed by terrestrial life have led to the development of internal fertilisation and, consequently, to associated physiological changes. Among these, the emergence of internal receptacles, found in many taxa ranging from mammals to arthropods, allowed females to store sperm from several partners, enabling multipaternity. Among arthropods, terrestrial isopods like the polygynandrous A. vulgare present a female structure, the marsupium, in which fertilised eggs migrate and develop into mancae (larval stage). To test our innovative combined approach, we proposed different males to four independent females, and at the end of incubation in the marsupium, we mapped (using GIS methods) and genotyped (using 12 microsatellite markers) all the incubated mancae. This methodology permitted to obtain spatio-genetic maps describing heterozygosity and spatial distribution of mancae and of multipaternity within the marsupial landscape. We discussed the interest of this kind of multidisciplinary approach which could improve in this case our understanding of sexual selection mechanisms in this terrestrial crustacean. Beyond the interesting model-focused insights, the main challenge of this study was the transfer of GIS techniques to a microscopic scale and our results appear so as pioneers rendering GIS tools available for studies involving imagery whatever their study scale.

  9. Zoom-in Simulations of Protoplanetary Disks Starting from GMC Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kuffmeier, Michael; Haugbølle, Troels; Nordlund, Åke, E-mail: kueffmeier@nbi.ku.dk [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K (Denmark)

    2017-09-01

    We investigate the formation of protoplanetary disks around nine solar-mass stars formed in the context of a (40 pc){sup 3} Giant Molecular Cloud model, using ramses adaptive mesh refinement simulations extending over a scale range of about 4 million, from an outer scale of 40 pc down to cell sizes of 2 au. Our most important result is that the accretion process is heterogeneous in multiple ways: in time, in space, and among protostars of otherwise similar mass. Accretion is heterogeneous in time, in the sense that accretion rates vary during the evolution, with generally decreasing profiles, whose slopes vary over a wide range, and where accretion can increase again if a protostar enters a region with increased density and low speed. Accretion is heterogeneous in space, because of the mass distribution, with mass approaching the accreting star–disk system in filaments and sheets. Finally, accretion is heterogeneous among stars, since the detailed conditions and dynamics in the neighborhood of each star can vary widely. We also investigate the sensitivity of disk formation to physical conditions and test their robustness by varying numerical parameters. We find that disk formation is robust even when choosing the least favorable sink particle parameters, and that turbulence cascading from larger scales is a decisive factor in disk formation. We also investigate the transport of angular momentum, finding that the net inward mechanical transport is compensated for mainly by an outward-directed magnetic transport, with a contribution from gravitational torques usually subordinate to the magnetic transport.

  10. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  11. Prognostic value of defining the systemic tumor volume with FDG-PET in diffuse large b cell lymphoma

    International Nuclear Information System (INIS)

    Byun, Byung Hyun; Lim, Sang Moo; Cheon, Gi Jeong; Choi, Chang Woon; Kang, Hye Jin; Na, Im Il; Ryoo, Baek Yeol; Yang, Sung Hyun

    2007-01-01

    We measured the systemic tumor volume using FDG-PET in patients with diffuse large B cell lymphoma (DLBL). We also investigated its prognostic role, and compared it with that of other prognostic factors. FDG PET was performed in 38 newly diagnosed DLBL patients (20 men, 18 women, age 55.715.1 years) at pre-treatment of chemotherapy. Clinical staging of lymphoma was evaluated by Ann Arbor system. On each FDG PET scan, we acquired volume of interest (VOl) at the cut-off value of SUV=2.5 in every measurable tumor by the automatic edge detection software. According to the VOI, we measured the metabolic volume and mean SUV, and estimated volume-activity indexes (SUV Vol) as mean SUV times metabolic volume. And then, we calculated the summed metabolic volume (VOLsum) and summed SUV Vol (SUV Volsum) in every FDG PET scan. Maximum SUV of involved lesion (SUVmax) was also acquired on each FDG PET scan. Time to treatment failure (TTF) was compared among VOLsum (median), SUV Volsum (median), SUVmax (median), clinical stage, gender, age, LDH, and performance status-assigned response designations by Kaplan-Meier survival analysis. Initial stages of DLBL patients were stage I in 4, II in 14, III in 15, and IV in 4 by Ann Arbor system. Median follow up period was 15.5months, and estimated mean TTF was 22.3 months. Univariate analysis demonstrated that TTF is statistically significantly reduced in those with high VOLsum (>215.1cm2, p=0.004), high SUV Volsum (>1577.5, p=0.003), and increased LDH (p=0.036). TTF did not correlate with SUVmax (p=0.571), clinical stage (p=0.194), gender (p=0.549), and age (p=0.128), and performance status =2 (p=0.074). Multivariate analysis using VOLsum, SUV Volsum, LDH, and performance status demonstrated no statistically significant predictor of TTF (p>0.05). Systemic tumor volume measurement using FDG-PET is suggestive to be the significant prognostic factor in patients with DLBL

  12. Gamma camera based FDG PET in oncology

    International Nuclear Information System (INIS)

    Park, C. H.

    2002-01-01

    Positron Emission Tomography(PET) was introduced as a research tool in the 1970s and it took about 20 years before PET became an useful clinical imaging modality. In the USA, insurance coverage for PET procedures in the 1990s was the turning point, I believe, for this progress. Initially PET was used in neurology but recently more than 80% of PET procedures are in oncological applications. I firmly believe, in the 21st century, one can not manage cancer patients properly without PET and PET is very important medical imaging modality in basic and clinical sciences. PET is grouped into 2 categories; conventional (c) and gamma camera based ( CB ) PET. CB PET is more readily available utilizing dual-head gamma cameras and commercially available FDG to many medical centers at low cost to patients. In fact there are more CB PET in operation than cPET in the USA. CB PET is inferior to cPET in its performance but clinical studies in oncology is feasible without expensive infrastructures such as staffing, rooms and equipments. At Ajou university Hospital, CBPET was installed in late 1997 for the first time in Korea as well as in Asia and the system has been used successfully and effectively in oncological applications. Our was the fourth PET operation in Korea and I believe this may have been instrumental for other institutions got interested in clinical PET. The following is a brief description of our clinical experience of FDG CBPET in oncology

  13. Development of continuous detectors for a high resolution animal PET system

    International Nuclear Information System (INIS)

    Siegel, S.; Cherry, S.R.; Ricci, A.R.; Shao, Y.; Phelps, M.E.

    1995-01-01

    The authors propose a design for a high resolution, gamma-camera style detector that is suitable for use in a positron emission tomograph dedicated to small animal research. Through Monte Carlo simulation the authors modeled the performance of a detector composed of one 76.2 x 76.2 x 8 mm thick LSO crystal coupled to a 3 in. square position sensitive photomultiplier tube (PS-PMT). The authors investigated the effect of optical coupling compounds, surface treatment and dept of interaction on the quantity (efficiency) and distribution (spread) of scintillation photons reaching the photocathode. They also investigated linearization of the position response. The authors propose a PET system consisting of fourteen of these detectors in 2 rings, yielding a 16 cm diameter by 15 cm long tomograph. It would operate in 3-D mode subtending a 68% solid angle to the center. The expected spatial resolution is (≤2 mm), with a system efficiency of ∼ 10% at the center (200 keV lower threshold) and a singles count rate capability of approximately 10 6 cps per detector

  14. A new tool fixation for external 3D head tracking using the Polaris Vicra system with the HRRT PET scanner

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Andersen, Flemming; Holm, Søren

    -water studies for up to 75 min (3-8 injections) were registered by the Polaris system in 4 volunteers. The tracking tool was fixed. Scans were divided into subframes based on the registered movements and reconstructed using the 3D-OSEM PSF method. The reconstructed subframes were repositioned to a reference......Objectives: The Polaris Vicra system (Northern Digital Inc.) is used for external 3D head registration with the Siemens HRRT brain PET. Our new tool fixation using a standard bandaid with a velcro-strap implies an improved frame repositioning. Methods: Head movements during serial PET 15O...... position and pairwise similarity of subframes was evaluated before and after the repositioning. Results: Registered movements during scans were less than 4.3mm with. Images were compared before/after motion correction. Conclusions: Our new velcro band-aid fixation is suitable for clinical use: easy to use...

  15. ECAT III: A new PET system for heart and whole body dynamic imaging

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Huang, S.C.; Collard, P.E.; Bidaut, L.M.; Schwab, R.L.; Schwaiger, M.; Schelbert, H.R.

    1985-01-01

    A new whole body PET system has been developed and is being evaluated. The ECAT III consists of 1 to 4 rings of 512-5.6 x 29 x 30 mm BGO detectors per 100 cm diameter ring. The system has a unique data collection scheme in which all events are buffered in a 512 by 32 data matrix. The 512 dimension corresponds to detector number and the 32 dimension corresponds to 8 nsec time bins. A dedicated microprocessor searches the array (1) to determine which detectors had events simultaneously +- 8 nsec to establish coincidences, (2) to determine accidentals by determining the probability of off-time events, which can be determined with a statistical accuracy improvement of a factor of 10 by using a larger ''software'' time window, and (3) to determine and distinguish between adjacent detector crosstalk and random triple events. System can process 500 K coincident events/sec/per image plane. Data are collected in list mode and scan parameter information, such as time, wobble position and occurrence of gating signals are inserted in data. Wobble position is divided in 1000 parts per rotation, minimizing positioning error in binning events, timing information allows retrospective choice of time frame for dynamic studies and cardiac gate data allows retrospective choice of framing. ECAT III has an image resolution of 4.5 mm when system is wobbled and 7.2 mm when system is stationary. Loss of efficiency due to nearest neighbor cross talk is 8 to 12%. Axial resolution is selectable with remotely driven side shielding, and interchangeable interplane sept allow different configurations to accomodate a variety of imaging conditions

  16. Coincidence resolution time of two small scintillators coupled to high quantum-efficiency photomultipliers in a PET-like system

    Science.gov (United States)

    Galetta, G.; De Leo, R.; Garibaldi, F.; Grodzicka, M.; Lagamba, L.; Loddo, F.; Masiello, G.; Nappi, E.; Perrino, R.; Ranieri, A.; Szczęśniak, T.

    2014-03-01

    The lower limit of the time resolution for a positron emission tomography (PET) system has been measured for two scintillator types, LYSO:Ce and LuAG:Pr. Small dimension crystals and ultra bi-alkali phototubes have been used in order to increase the detected scintillation photons. Good timing resolutions of 118 ps and 223 ps FWHM have been obtained for two LYSO and two LuAG, respectively, exposed to a 22Na source.

  17. Zooming in - zooming out

    DEFF Research Database (Denmark)

    Noer, Vibeke Røn

    This paper presents the use of video diaries in ethnographic educational research among nursing students in Denmark. It is based on the researcher’s experiences from an ongoing ethnographic study focusing on the student perspective of being enrolled in a class following an experimental educational...... model. The paper presents video diaries as a way of generating qualitative data, reflects on the ethical strategies and dilemmas of using video diaries and illuminates the possibilities of allowing students to state their voices when and where they choose....

  18. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system

    Science.gov (United States)

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1H frequency, and chemical shift imaging at 13C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45–59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1H/13C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23–30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  19. [Non-invasive evaluation of the cardiac autonomic nervous system by PET

    International Nuclear Information System (INIS)

    1992-01-01

    C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as well as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data

  20. Labelled agents for PET studies of the dopaminergic system -some quality assurance methods, experience and issues

    International Nuclear Information System (INIS)

    Pike, V.W.; Kensett, M.J.; Turton, D.R.; Waters, S.L.; Silvester, D.J.

    1990-01-01

    Practical methods are described for the quality assurance of three labelled agents (L-6-[ 18 F]fluoro-DOPA, S-[N-methyl- 11 C]nomifensine and [O-methyl- 11 C]raclopride) now produced regularly for PET studies of the dopaminergic system in man. These include indirect methods for the initial determination of label position (e.g. 13 C-NMR spectroscopy) and also direct methods for the assessment of chiral purity (TLC and HPLC) and the routine determination of radiochemical purity, chemical purity and specific activity (HPLC). Mass spectrometry has been used to identify some impurities. L-6-hydroxy-DOPA (a precursor in vivo of the neurotoxin, L-6-hydroxydopamine) has been detected by HPLC in some preparations of L-6-[ 18 F]fluoro-DOPA. Formulated S-[N-methyl- 11 C]nomifensine has been found to be stable. Some quality assurance issues are discussed in relation to experience in the application of the described methods and the obtained results. (author)

  1. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    Science.gov (United States)

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high

  2. Gallium‐68 DOTATATE Production with Automated PET Radiopharmaceutical Synthesis System: A Three Year Experience

    Directory of Open Access Journals (Sweden)

    Alireza Aslani

    2014-10-01

    Full Text Available Objective(s: Gallium‐68 (Ga‐68 is an ideal research and hospital‐based PET radioisotope. Currently, the main form of Ga‐68 radiopharmaceutical that is being synthesised in‐house is Ga‐68 conjugated with DOTA based derivatives. The development of automated synthesis systems has increased the reliability, reproducibility and safety of radiopharmaceutical productions. Here we report on our three year, 500 syntheses experience with an automated system for Ga‐68 DOTATATE. Methods: The automated synthesis system we use is divided into three parts of a servomotor modules, b single use sterile synthesis cassettes and, c a computerized system that runs the modules. An audit trail is produced by the system as a requirement for GMP production. The required reagents and chemicals are made in‐. The Germanium breakthrough is determined on a weekly basis. Production yields for each synthesis are calculated to monitor the performance and efficiency of the synthesis. The quality of the final product is assessed after each synthesis by ITLC‐SG and HPLC methods. Results: A total of 500 Ga‐68 DOTATATE syntheses (>800 patient doses were performed between March 2011 and February 2014. The average generator yield was 81.3±0.2% for 2011, 76.7±0.4% for 2012 and 75.0±0.3% for 2013. Ga‐68 DOTATATE yields for 2011, 2012, and 2013 were 81.8±0.4%, 82.2±0.4% and 87.9±0.4%, respectively. These exceed the manufacturer’s expected value of approximately 70%. Germanium breakthrough averaged 8.6×10‐6% of total activity which is well below the recommended level of 0.001%. The average ITLC‐measured radiochemical purity was above 98.5% and the average HPLC‐measured radiochemical purity was above 99.5%. Although there were some system failures during synthesis, there were only eight occasions where the patient scans needed to be rescheduled. Conclusion: In our experience the automated synthesis system performs reliably with a relatively low incident

  3. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  4. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  5. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    International Nuclear Information System (INIS)

    Olaya D, H.; Martinez O, S. A.; Morel, C.; Castro, H. F.

    2016-10-01

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source "2"2Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source "2"2Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  6. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    Science.gov (United States)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  7. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    International Nuclear Information System (INIS)

    Lougovski, A; Hofheinz, F; Maus, J; Schramm, G; Will, E; Hoff, J van den

    2014-01-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR + and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34–41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques. (paper)

  8. Recovery coefficients as a test of system linearity of response in PET

    International Nuclear Information System (INIS)

    Geworski, L.; Munz, D.L.; Knoop, B.; Hofmann, M.; Knapp, W.H.

    2002-01-01

    Aim: New imaging protocols have created an increasing demand for quantitation in dedicated PET. Besides attenuation and scatter correction the recovery correction, accounting for the instrument's limited spatial resolution, has gained importance. For clinical practicability these corrections should work independent from the object, i.e. from the actual distribution of emitter and absorber. Aim of the study was to test this object independency, i.e. system linearity of response, by comparing recovery coefficients (RC) determined for different object geometries. In fact, this comparison may serve as a final test on system linearity of response, as measured on the quantitative accuracy by which the activity concentration in small lesions can be recovered. Method: For hot and cold spot imaging situations spatial distribution of activity is different. Therefore, scatter correction algorithm has to deal with different scatter distributions. If all factors disturbing system linearity, specifically scatter and attenuation, are corrected to a sufficient degree of accuracy, the system behaves linearly resulting in the theoretical relationship. CSRC = (1-HSRC). Thus, this equation, applied hot and cold spot measurements, will serve as a test on the effectiveness of the corrections and, hence, as a test of system linearity of response. Following IEC standard procedures (IEC 61675-1) measurements were done with and without interplane septa (2D/3D) on an ECAT EXACT 922 using a cylindrical phantom containing six spheres of different diameters (10 mm - 40 mm). All data were corrected for attenuation (transmission scan) and scatter (2D: deconvolution, 3D: scatter model), as implemented in the scanner's standard software. Recovery coefficients were determined for cold (CSRC) and hot (HSRC) lesions using both 2D and 3D acquisition mode. Results: CSRC directly measured versus CSRC calculated according to eq. (1) from HSRC resulted in an excellent agreement for both 2D and 3D data

  9. Biodistribution of [11C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo

    International Nuclear Information System (INIS)

    Sutinen, E.; Jyrkkioe, S.; Groenroos, T.; Haaparanta, M.; Lehikoinen, P.; Naagren, K.

    2001-01-01

    [N-methyl- 11 C]α-Methylaminoisobutyric acid ( 11 C-MeAIB) is a potentially useful tracer for positron emission tomography (PET) studies on hormonally regulated system A amino acid transport. 11 C-MeAIB is a metabolically stable amino acid analogue specific for system A amino acid transport. We evaluated the biodistribution of 11 C-MeAIB in rats and humans to estimate the usefulness of the tracer for in vivo human PET studies, for example, on regulation of system A amino acid transport and on tumour imaging. Healthy Sprague-Dawley rats (n=14) were killed 5, 20, 40 or 60 min after the injection of 11 C-MeAIB, and the tissue samples were weighed and counted for 11 C radioactivity. Ten lymphoma patients with relatively limited tumour burden underwent whole-body (WB) PET imaging with 11 C-MeAIB. In addition, three other patients had dynamic PET scanning of the head and neck area, and the tracer uptake was quantitated by calculating the kinetic influx constants (K i values) for the tracer. In animal studies, the highest activity was detected in the kidney, pancreas, adrenal gland and intestines. In humans, the highest activity was found in the salivary glands, and after that in the kidney and pancreas, similar to the results in animal studies. Rapid uptake was also detected in the skeletal muscle. In the graphical analysis, linear plots were obtained, and the mean fractional tracer uptake values (K i ) of the parotid glands (n=3) and cervical muscles (n=3) were 0.039±0.008 min -1 and 0.013±0.006 min -1 , respectively. The K i value of the tumour (n=1) was 0.064 min -1 . Higher uptake of 11 C-MeAIB into the tumour tissue was encountered. These results encourage further 11 C-MeAIB PET studies in humans on the physiology and pathology of system A amino acid transport and on tumour detection. (orig.)

  10. Foot skin depots of 18F-fluorodeoxyglucose do not enable PET/CT lymphography of the lower extremity lymphatic system in man

    DEFF Research Database (Denmark)

    Jensen, Mads Radmer; Simonsen, Lene; Lonsdale, Markus

    2013-01-01

    consecutive PET scans of the same region.Blood activity increased faster and to a greater extent in the great saphenous veins compared to the medial cubital vein. PET/CT images showed activity in the superficial and deep veins of the lower extremities. No lymphatic collectors or nodes were visualized....... CONCLUSION: Neither subcutaneous nor intradermal injection of 18F-FDG allows imaging of the lower extremity lymphatic system in man....

  11. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    Science.gov (United States)

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. J-PET detector system for studies of the electron-positron annihilations

    Directory of Open Access Journals (Sweden)

    Pawlik-Niedźwiecka M.

    2016-01-01

    Full Text Available Jagiellonian Positron Emission Tomograph (J-PET has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.

  13. A modular data acquisition system for high resolution clinical PET scanners

    OpenAIRE

    Sportelli, Giancarlo

    2011-01-01

    En las últimas dos décadas, la Tomografía por Emisión de Positrones (PET) ha demostrado ser una modalidad clave para el estudio de la biología del cúncer y trastornos cardíacos, y para la realizaciún imágenes moleculares, una tecnica que permite la terapia individualizada de la enfermedad [Weissleder01]. La mejor característica de la PET es su sensibilidad: es la tecnica que proporciona imúagenes moleculares con la mayor sensibilidad, y las imúagenes de cuerpo entero que produce no pueden ser...

  14. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    Energy Technology Data Exchange (ETDEWEB)

    Dávila, H. Olaya, E-mail: hernan.olaya@uptc.edu.co; Martínez, S. A. [Physics Department, Universidad Pedagógica y Tecnológica de Colombia, Tunja-Colombia (Colombia); Sevilla, A. C., E-mail: acsevillam@unal.edu.co; Castro, H. F. [Physics Department, Universidad Nacional de Colombia, Bogotá D.C - Colombia (Colombia)

    2016-07-07

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu{sub 2}SiO{sub 5}:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu{sub 0.7}Y{sub 0.3}AlO{sub 3}:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source {sup 22}Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  15. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    Science.gov (United States)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  16. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  17. Clinical applications of PET/CT

    International Nuclear Information System (INIS)

    Le Ngoc Ha

    2011-01-01

    The purpose of this article is to review the evolution of PET, PET/CT focusing on the technical aspects, PET radiopharmaceutical developments and current clinical applications as well. The newest technologic advances have been reviewed, including improved crystal design, acquisition modes, reconstruction algorithms, etc. These advancements will continue to improve contrast, decrease noise, and increase resolution. Combined PET/CT system provides faster attenuation correction and useful anatomic correlation to PET functional information. A number of new radiopharmaceuticals used for PET imaging have been developed, however, FDG have been considered as the principal PET radiotracer. The current clinical applications of PET and PET/CT are widespread and include oncology, cardiology and neurology. (author)

  18. Influence of spinal cord injury on cerebral sensorimotor systems : A PET study

    NARCIS (Netherlands)

    Roelcke, U; Curt, A; Otte, A; Missimer, J; Maguire, RP; Dietz, [No Value; Leenders, KL

    Objectives-To assess the effect of a transverse spinal cord lesion on cerebral energy metabolism in view of sensorimotor reorganisation. Methods-PET and F-18-fluorodeoxyglucose were used to study resting cerebral glucose metabolism in 11 patients with complete paraplegia or tetraplegia after spinal

  19. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  20. Clinical evaluation of whole-body oncologic PET with time-of-flight and point-spread function for the hybrid PET/MR system.

    Science.gov (United States)

    Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang

    2017-08-01

    Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    Energy Technology Data Exchange (ETDEWEB)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S., E-mail: cslevin@stanford.edu [Departments of Electrical Engineering, Radiology, Physics, and BioEngineering, Stanford University, Stanford, California 94305-5128 (United States)

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent

  2. Is FDG PET/CT cost-effective for pre-operation staging of potentially operative non-small cell lung cancer? – From Chinese healthcare system perspective

    International Nuclear Information System (INIS)

    Wang, Yu-ting; Huang, Gang

    2012-01-01

    Objectives: The remarkable morbidity and mortality of lung cancer in the large population address major economic challenges to Chinese healthcare system. This study aims to assess the cost-effectiveness of fluorodeoxyglucose positron emission tomography (FDG PET)/CT for staging patients with non-small cell lung cancer (NSCLC) in China. Methods: Management of potentially operative NSCLC was modeled on decision analysis employing data in China. The strategies compared were conventional CT staging (strategy A), additional PET/CT in all patients (strategy B) or only in patients with normal-sized lymph nodes on CT (strategy C). Published medical data for Chinese patients was extracted. The costs corresponded to reimbursement by Chinese public health provider in 2010. Uncertainly of employed parameters was calculated in sensitivity analysis. Results: Taking strategy A as baseline, the incremental cost-effectiveness ratio (ICER) of strategy B was 23,800 RMB ($3500) per life year saved, which was acceptable in views of a developing country as China; while strategy C exhibited some loss of life years. Sensitivity analysis suggested the ICER (B–A) was raised more remarkably by a deterioration of PET specificity than by that of its sensitivity. The ICER was turned negative by PET specificity lower than 0.79. Economically, PET cost was proportional to the ICER (B–A), and decrease of palliative therapy cost could reduce both the ICER and overall cost. Conclusions: The PET/CT strategy is potentially cost-effective for management of NSCLC in China. Patients with nodal-positive CT results are not suggested to be excluded from further PET/CT. Furthermore, maintaining high specificity of PET in clinical scenarios is crucial. Prospective trials are warranted to transfer these results into policy making.

  3. Is FDG PET/CT cost-effective for pre-operation staging of potentially operative non-small cell lung cancer? - From Chinese healthcare system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-ting, E-mail: wangyuting_330@163.com [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (China); Huang, Gang, E-mail: huang2802@163.com [Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (China); Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences - CAS (China)

    2012-08-15

    Objectives: The remarkable morbidity and mortality of lung cancer in the large population address major economic challenges to Chinese healthcare system. This study aims to assess the cost-effectiveness of fluorodeoxyglucose positron emission tomography (FDG PET)/CT for staging patients with non-small cell lung cancer (NSCLC) in China. Methods: Management of potentially operative NSCLC was modeled on decision analysis employing data in China. The strategies compared were conventional CT staging (strategy A), additional PET/CT in all patients (strategy B) or only in patients with normal-sized lymph nodes on CT (strategy C). Published medical data for Chinese patients was extracted. The costs corresponded to reimbursement by Chinese public health provider in 2010. Uncertainly of employed parameters was calculated in sensitivity analysis. Results: Taking strategy A as baseline, the incremental cost-effectiveness ratio (ICER) of strategy B was 23,800 RMB ($3500) per life year saved, which was acceptable in views of a developing country as China; while strategy C exhibited some loss of life years. Sensitivity analysis suggested the ICER (B-A) was raised more remarkably by a deterioration of PET specificity than by that of its sensitivity. The ICER was turned negative by PET specificity lower than 0.79. Economically, PET cost was proportional to the ICER (B-A), and decrease of palliative therapy cost could reduce both the ICER and overall cost. Conclusions: The PET/CT strategy is potentially cost-effective for management of NSCLC in China. Patients with nodal-positive CT results are not suggested to be excluded from further PET/CT. Furthermore, maintaining high specificity of PET in clinical scenarios is crucial. Prospective trials are warranted to transfer these results into policy making.

  4. Is FDG PET/CT cost-effective for pre-operation staging of potentially operative non-small cell lung cancer? - From Chinese healthcare system perspective.

    Science.gov (United States)

    Wang, Yu-ting; Huang, Gang

    2012-08-01

    The remarkable morbidity and mortality of lung cancer in the large population address major economic challenges to Chinese healthcare system. This study aims to assess the cost-effectiveness of fluorodeoxyglucose positron emission tomography (FDG PET)/CT for staging patients with non-small cell lung cancer (NSCLC) in China. Management of potentially operative NSCLC was modeled on decision analysis employing data in China. The strategies compared were conventional CT staging (strategy A), additional PET/CT in all patients (strategy B) or only in patients with normal-sized lymph nodes on CT (strategy C). Published medical data for Chinese patients was extracted. The costs corresponded to reimbursement by Chinese public health provider in 2010. Uncertainly of employed parameters was calculated in sensitivity analysis. Taking strategy A as baseline, the incremental cost-effectiveness ratio (ICER) of strategy B was 23,800RMB ($3500) per life year saved, which was acceptable in views of a developing country as China; while strategy C exhibited some loss of life years. Sensitivity analysis suggested the ICER (B-A) was raised more remarkably by a deterioration of PET specificity than by that of its sensitivity. The ICER was turned negative by PET specificity lower than 0.79. Economically, PET cost was proportional to the ICER (B-A), and decrease of palliative therapy cost could reduce both the ICER and overall cost. The PET/CT strategy is potentially cost-effective for management of NSCLC in China. Patients with nodal-positive CT results are not suggested to be excluded from further PET/CT. Furthermore, maintaining high specificity of PET in clinical scenarios is crucial. Prospective trials are warranted to transfer these results into policy making. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Physical characterisation and preliminary results of a pet-system using time-of-flight for quantitative studies

    International Nuclear Information System (INIS)

    Soussaline, F.; Verrey, B.; Comar, D.

    1984-01-01

    A first generation of Positron Emission Tomography (PET) systems using the Time of Flight (TOF) information, named TDV1, was designed and built by the LETI group (Grenoble, France) for the Orsay group, where it was recently installed. The system comprises essentially three rings of 96 CsF probes and a fourth ring of 96 BaF 2 probes. Its design is aimed at whole-body quantitative, dynamic, 3 D studies. The physical characterization of TDV1 was performed as it would be for a 'conventional' non-TOF PET system, in terms of spatial transverse and longitudinal resolution along the vertical axis, sensitivity, time resolution, and inter and intra-plane uniformity. Moreover, the specific advantages of time of flight information when used in PET were studied in preliminary measurements. They consist in very fast count rate studies, elimination of random events, and improvement of the S/N ratio resulting in a so-called 'effective sensitivity gain'. Special attention was directed to the comparison of the CsF and BsF 2 probes in terms of sensitivity gain, due to their resolving time of 480 psec and 380 psec on an average, for the 96 probes of each individual detection ring. Indeed, the BaF 2 crystal could be an answer to most of the shortcomings of CsF; namely, its lower intrinsic efficiency than that of BGO, the limited-resolution due to the crystal size necessary and the relatively low packing fraction of the detector ring due to the hygroscopic properties of the crystal. If the most important parameters were combined into a Factor of Merit, the corresponding factor of a BaF 2 scintillator 40 mm long and 20 mm in width would be more than 2 fold that of CsF. Moreover, the intrinsic spatial resolution could be substantially improved using very small parallelepipedic crystals and adapted photo multipliers tubes with fast timing capabilities. (Author)

  6. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  7. Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT

    International Nuclear Information System (INIS)

    Wiesmueller, Marco; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; Gall, Carl C. von; Quick, Harald H.; Navalpakkam, Bharath; Lell, Michael M.; Uder, Michael; Ritt, Philipp

    2013-01-01

    PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were 18 F-deoxyglucose (FDG), 18 F-ethylcholine (FEC) and 68 Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET CT ) and from PET/MR (PET MR ) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV max and SUV avg , respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET CT were identified by PET MR (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET CT and by PET MR . In four patients, more lesions were identified by PET MR than by PET CT , in one patient PET CT revealed an additional focus compared to PET MR . The mean SUV max and SUV avg of all lesions determined by PET MR were by 21 % and 11 % lower, respectively, than the values determined by PET CT (p CT and PET MR were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET MR and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations. (orig.)

  8. Welfare assessment in pet rabbits

    NARCIS (Netherlands)

    Schepers, F.; Koene, P.; Beerda, B.

    2009-01-01

    One million pet rabbits are kept in The Netherlands, but there are no data available on their behaviour and welfare. This study seeks to assess the welfare of pet rabbits in Dutch households and is a first step in the development of a welfare assessment system. In an internet survey, housing

  9. Pet Health

    Science.gov (United States)

    ... companionship and a feeling of safety to your life. Before getting a pet, think carefully about which ... Gaining or losing a lot of weight quickly Strange behavior Being sluggish and tired Trouble getting up ...

  10. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    International Nuclear Information System (INIS)

    Musarudin, M.; Saripan, M.I.; Mashohor, S.; Saad, W.H.M.; Nordin, A.J.; Hashim, S.

    2015-01-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10–50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom. - Highlights: • Optimizing the energy window improved the sensitivity of the PET system. • Improving the visibility of the tumors using the optimized energy window. • Recommendations on the optimized energy windows for different body sizes. • Using simulated phantom using MCNP to determine various body sizes

  11. Procedure for making mannequins tailor for image quality control of PET by 3D printing systems

    International Nuclear Information System (INIS)

    Collado Chamorro, P. M.; Saez Beltran, F.; Diaz Pascual, V.; Benito Bejarado, M. A.; Sanz Freire, C. J.; Lopo Casqueiro, N.; Gonzalez Fernandez, M. P.; Lopez de Gamarra, M. S.

    2015-01-01

    There is a software free both for be the processes of modeling of the objects 3D to split of medical images, as for convert said modeling to file ready for be read and executed by the 3D printers (sequence or slicer). This lets make mannequins of Control of quality with a investment minimum. In this work is built a mannequin of brain refillable to measurement for be used in studies PET. (Author)

  12. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies

    Directory of Open Access Journals (Sweden)

    Yu Ouyang PhD

    2016-05-01

    Full Text Available A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE using a static 18F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon’s ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [18F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq, yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P << .05 in a representative example. We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system.

  13. Brain imaging and memory systems in humans: the contribution of PET methods

    International Nuclear Information System (INIS)

    Perani, D.

    1998-01-01

    The development of neuroimaging methods such as PET, has provided a new impulse to the study of the neural basis of cognitive functions, and has extended the field of inquiry from the analysis of the consequences of brain lesions to the functional investigations of brain activity, either in patients with selective neuropsychological deficits or in normal subjects engaged in cognitive tasks. Specific patterns of hypo-metabolism in neurological patients are associated with different profiles of memory deficits.[ 18 F]FDG PET studies have confirmed the association of episodic memory with the structures of Papez's circuit and have shown correlations between short-term and semantic memory and the language areas. The identification of anatomical-functional networks involved in specific components of memory function in normal subjects is the aim of several PET activation studies. The results are in agreement with 'neural network' models of the neural basis of memory, as complex functions subserved by multiple interconnected cortical and subcortical structures. (author)

  14. PET in patients with advanced hypopharynx carcinoma and undergoing systemic chemotherapy

    International Nuclear Information System (INIS)

    Haberkorn, U.A.; Strauss, L.G.; Dimitrakopoulou, A.; Knopp, M.V.; Schadel, A.; Helus, F.; Doll, J.K.; van Kaick, G.

    1989-01-01

    The authors discuss how they have preformed 10 double examinations with positron emission tomography (PET) using F-18 deoxyglucose (FDG) before and after one chemotherapeutic cycle with cisplatin and fluorouracil (5-FU). Sixty minutes after intravenous injection of 12 mCi of FDG, three PET images of the tumor region were acquired. The volume of the tumor and/or involved lymph nodes was calculated from CT cross sections. The standardized FDG uptake was increased in all tumors prior to chemotherapeutic treatment (range, 1.28-2.97 DAR). After chemotherapy, the authors notes a decrease in tumor metabolism and tumor volume in eight patients (range, 1.4-2.32 DAR), while in two patients the FDG uptake was unchanged. A correlation coefficient of r =.78 was found for the change in FDG uptake and tumor growth rate. As results demonstrated, PET offers the possibility to study changes of tumor metabolism during chemotherapy and therefore may be used to optimize therapy regimens

  15. Pet Allergy Quiz

    Science.gov (United States)

    ... Treatments ▸ Allergies ▸ Pet Allergy ▸ Pet Allergy Quiz Share | Pet Allergy Quiz More than half of U.S. households ... cat family. Yet, millions of people suffer from pet allergies. Take this quiz to test your knowledge ...

  16. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  17. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  18. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  19. Design of an Automated System for Synthesis of [18 F] FDG for PET Investigation at IFIN-HH Bucharest

    International Nuclear Information System (INIS)

    Craciun, Liviu Stefan; Cimpeanu, Catalina; Constantinescu, Olimpiu; Dudu, Dorin; Ionescu, Cristina; Negoita, Nicolae; Racolta, Petru Mihai; Rusen, Ion

    2009-01-01

    A novel apparatus constructed at IFIN-HH is described for automated synthesis of radiopharmaceuticals labeled with 18 F for use in positron emission tomography (PET) investigations. [18 F] fluoride was produced at the IFIN-HH cyclotron by irradiation of H 2 O enriched 97% in 18 O with 13 MeV deuterons, or 8 MeV protons. The irradiated H 2 O was transferred (injected) into the radiochemical fully-automated processing systems which ensured the separation of 18 F from H 2 O, the labeling with 18 F, and finally purified by filtration with selective absorbants. The system is easy to operate and contains a programmable logical controller that manages the entire operation program stored in its internal memory. The computer is used to assist the operator during the different steps of synthesis and to allow visualization of the process and printing the report. The device was used for used for the production of 2-[18 F] FLUORO-2-DEOXY-D-GLUCOSE at the IFIN-HH cyclotron, one of the most used radiopharmaceutical in PET investigations. The synthesis module is configured so that is flexible enough to accomplish other nucleophile reactions of labeling with short lived radioisotopes.

  20. Design of an Automated System for Synthesis of [18 F] FDG for PET Investigation at IFIN-HH Bucharest

    Science.gov (United States)

    Craciun, Liviu Stefan; Cimpeanu, Catalina; Constantinescu, Olimpiu; Dudu, Dorin; Ionescu, Cristina; Negoita, Nicolae; Racolta, Petru Mihai; Rusen, Ion

    2009-03-01

    A novel apparatus constructed at IFIN-HH is described for automated synthesis of radiopharmaceuticals labeled with 18F for use in positron emission tomography (PET) investigations. [18 F] fluoride was produced at the IFIN-HH cyclotron by irradiation of H2O enriched 97% in 18O with 13 MeV deuterons, or 8 MeV protons. The irradiated H2O was transferred (injected) into the radiochemical fully-automated processing systems which ensured the separation of 18F from H2O, the labeling with 18F, and finally purified by filtration with selective absorbants. The system is easy to operate and contains a programmable logical controller that manages the entire operation program stored in its internal memory. The computer is used to assist the operator during the different steps of synthesis and to allow visualization of the process and printing the report. The device was used for used for the production of 2-[18 F] FLUORO-2-DEOXY-D-GLUCOSE at the IFIN-HH cyclotron, one of the most used radiopharmaceutical in PET investigations. The synthesis module is configured so that is flexible enough to accomplish other nucleophile reactions of labeling with short lived radioisotopes.

  1. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    International Nuclear Information System (INIS)

    Peng Hao; Levin, Craig S

    2010-01-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm 2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ∼32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ∼94.2 kcts s -1 (breast volume: 720 cm 3 and activity concentration: 3.7 kBq cm -3 ) for a ∼10% energy window around 511 keV and ∼8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σ rms /mean) ≤ 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within

  2. Effect of Attenuation Correction on Regional Quantification Between PET/MR and PET/CT

    DEFF Research Database (Denmark)

    Teuho, Jarmo; Johansson, Jarkko; Linden, Jani

    2016-01-01

    UNLABELLED: A spatial bias in brain PET/MR exists compared with PET/CT, because of MR-based attenuation correction. We performed an evaluation among 4 institutions, 3 PET/MR systems, and 4 PET/CT systems using an anthropomorphic brain phantom, hypothesizing that the spatial bias would be minimized....../MR systems, CTAC was applied as the reference method for attenuation correction. RESULTS: With CTAC, visual and quantitative differences between PET/MR and PET/CT systems were minimized. Intersystem variation between institutions was +3.42% to -3.29% in all VOIs for PET/CT and +2.15% to -4.50% in all VOIs...... for PET/MR. PET/MR systems differed by +2.34% to -2.21%, +2.04% to -2.08%, and -1.77% to -5.37% when compared with a PET/CT system at each institution, and these differences were not significant (P ≥ 0.05). CONCLUSION: Visual and quantitative differences between PET/MR and PET/CT systems can be minimized...

  3. PET applications in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Shulkin, B. L. [Ann Arbor, Univ. of Michigan Medical Center (United States). Pediatric Nuclear Medicine Section

    1997-12-01

    This article summarizes the major PET studies which have been performed in pediatric patients to elucidate and characterize diseases and normal development. Issues special for the application of the technique in children, such as dosimetry, patient preparation, and image acquisition are discussed. Studies of central nervous system (CNS) development and pathology, including epilepsy, intraventricular hemorrhage, neonatal asphyxia, tumors, and effects on the CNS from treatment of other tumors are reviewed. These have contributed information fundamental to their understanding of CNS development and pathology. PET investigations into the pathophysiology of congenital heart disease have begun and hold great promise to aid their understanding of these conditions. The second major area in which PET has been applied is the study of non CNS neoplasms. Neuroblastoma has been investigated with tracers which explore basic biochemical features which characterize this tumor, as well as with tracers which explore biochemical events relatively specific for this malignancy. Other common and uncommon tumors of childhood are discussed. The PET technique has been shown useful for answering questions of clinical relevance for the management of these uncommon neoplasms. PET is likely to continue to aid their understanding of many pediatric diseases and may gain more widespread clinical acceptance as the technology continues to disseminate rapidly.

  4. The computation of lipophilicities of ⁶⁴Cu PET systems based on a novel approach for fluctuating charges.

    Science.gov (United States)

    Comba, Peter; Martin, Bodo; Sanyal, Avik; Stephan, Holger

    2013-08-21

    A QSPR scheme for the computation of lipophilicities of ⁶⁴Cu complexes was developed with a training set of 24 tetraazamacrocylic and bispidine-based Cu(II) compounds and their experimentally available 1-octanol-water distribution coefficients. A minimum number of physically meaningful parameters were used in the scheme, and these are primarily based on data available from molecular mechanics calculations, using an established force field for Cu(II) complexes and a recently developed scheme for the calculation of fluctuating atomic charges. The developed model was also applied to an independent validation set and was found to accurately predict distribution coefficients of potential ⁶⁴Cu PET (positron emission tomography) systems. A possible next step would be the development of a QSAR-based biodistribution model to track the uptake of imaging agents in different organs and tissues of the body. It is expected that such simple, empirical models of lipophilicity and biodistribution will be very useful in the design and virtual screening of positron emission tomography (PET) imaging agents.

  5. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    Science.gov (United States)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  6. Performance Evaluation of a Dedicated Preclinical PET/CT System for the Assessment of Mineralization Process in a Mouse Model of Atherosclerosis.

    Science.gov (United States)

    Rucher, Guillaume; Cameliere, Lucie; Fendri, Jihene; Abbas, Ahmed; Dupont, Kevin; Kamel, Said; Delcroix, Nicolas; Dupont, Axel; Berger, Ludovic; Manrique, Alain

    2018-04-30

    The purpose of this study was to assess the impact of positron emission tomography/X-ray computed tomography (PET/CT) acquisition and reconstruction parameters on the assessment of mineralization process in a mouse model of atherosclerosis. All experiments were performed on a dedicated preclinical PET/CT system. CT was evaluated using five acquisition configurations using both a tungsten wire phantom for in-plane resolution assessment and a bar pattern phantom for cross-plane resolution. Furthermore, the radiation dose of these acquisition configurations was calculated. The PET system was assessed using longitudinal line sources to determine the optimal reconstruction parameters by measuring central resolution and its coefficient of variation. An in vivo PET study was performed using uremic ApoE -/- , non-uremic ApoE -/- , and control mice to evaluate optimal PET reconstruction parameters for the detection of sodium [ 18 F]fluoride (Na[ 18 F]F) aortic uptake and for quantitative measurement of Na[ 18 F]F bone influx (Ki) with a Patlak analysis. For CT, the use of 1 × 1 and 2 × 2 binning detector mode increased both in-plane and cross-plane resolution. However, resolution improvement (163 to 62 μm for in-plane resolution) was associated with an important radiation dose increase (1.67 to 32.78 Gy). With PET, 3D-ordered subset expectation maximization (3D-OSEM) algorithm increased the central resolution compared to filtered back projection (1.42 ± 0.35 mm vs. 1.91 ± 0.08, p PET resolution for preclinical study (FWHM = 0.98 mm). These PET reconstruction parameters allowed the detection of Na[ 18 F]F aortic uptake in 3/14 ApoE -/- mice and demonstrated a decreased Ki in uremic ApoE -/- compared to non-uremic ApoE -/- and control mice (p PET. In addition, improving the CT resolution was associated with a dramatic radiation dose increase.

  7. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Lou, K [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Rice University, Houston, TX (United States); Deng, Z [Tsinghua University, Beijing (China); Shao, Y

    2014-06-15

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface and reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate

  8. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    International Nuclear Information System (INIS)

    Sun, X; Lou, K; Deng, Z; Shao, Y

    2014-01-01

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm 3 LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm 2 Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface and reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability

  9. Supercritical CO2 fluid radiochromatography system used to purify [11C]toluene for PET

    International Nuclear Information System (INIS)

    Muller, Ryan D.; Ferrieri, Richard A.; Gerasimov, Madina; Garza, Victor

    2002-01-01

    Abuse of inhalants in today's society has become such a widespread problem among today's adolescents that in many parts of the world their use exceeds that of many other illicit drugs or alcohol. Even so, little is known how such inhalants affect brain function to an extent that can lead to an abuse liability. While methodologies exist for radiolabeling certain inhalants of interest with short-lived positron emitting radioisotopes that would allow their investigation in human subjects using positron emission tomography (PET), the purification methodologies necessary to separate these volatile substances from the organic starting materials have not been developed. We've adapted supercritical fluid technology to this specific PET application by building a preparative-scale supercritical CO 2 fluid radiochromatograph, and applied it to the purification of [ 11 C]toluene. We've demonstrated that [ 11 C]toluene can be separated from the starting materials using a conventional C 18 HPLC column and pure supercritical CO 2 fluid as the mobile phase operating at 2000 psi and 40 deg. C. We've also shown that the purified radiotracer can be quantitatively captured on Tenax GR, a solid support material, as it exits the supercritical fluid stream, thus allowing for later desorption into a 1.5% cyclodextrin solution that is suitable for human injection, or into a breathing tube for direct inhalation

  10. Highly-Integrated CMOS Interface Circuits for SiPM-Based PET Imaging Systems.

    Science.gov (United States)

    Dey, Samrat; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2012-01-01

    Recent developments in the area of Positron Emission Tomography (PET) detectors using Silicon Photomultipliers (SiPMs) have demonstrated the feasibility of higher resolution PET scanners due to a significant reduction in the detector form factor. The increased detector density requires a proportionally larger number of channels to interface the SiPM array with the backend digital signal processing necessary for eventual image reconstruction. This work presents a CMOS ASIC design for signal reducing readout electronics in support of an 8×8 silicon photomultiplier array. The row/column/diagonal summation circuit significantly reduces the number of required channels, reducing the cost of subsequent digitizing electronics. Current amplifiers are used with a single input from each SiPM cathode. This approach helps to reduce the detector loading, while generating all the necessary row, column and diagonal addressing information. In addition, the single current amplifier used in our Pulse-Positioning architecture facilitates the extraction of pulse timing information. Other components under design at present include a current-mode comparator which enables threshold detection for dark noise current reduction, a transimpedance amplifier and a variable output impedance I/O driver which adapts to a wide range of loading conditions between the ASIC and lines with the off-chip Analog-to-Digital Converters (ADCs).

  11. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D. L.; Pichler, B. J.; Gückel, B.

    2015-01-01

    This paper summarises key themes and discussions from the 4th international workshop dedicated to the advancement of the technical, scientific and clinical applications of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) systems that was held in Tübingen, Germany, from...

  12. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  13. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  14. Predictive and prognostic value of FDG-PET/CT imaging and different response evaluation criteria after primary systemic therapy of breast cancer.

    Science.gov (United States)

    Tőkés, Tímea; Kajáry, Kornélia; Szentmártoni, Gyöngyvér; Lengyel, Zsolt; Györke, Tamás; Torgyík, László; Somlai, Krisztián; Tőkés, Anna-Mária; Kulka, Janina; Dank, Magdolna

    2017-01-01

    (1) To predict pathological complete remission (pCR) and survival after primary systemic therapy (PST) in patients diagnosed with breast cancer by using two different PET/CT based scores: a simplified PERCIST-based PET/CT score (Method 1) and a combined PET/CT score supplemented with the morphological results of the RECIST system (Method 2) and (2) to assess the effect of different breast carcinoma subtypes on tumor response and its evaluation. Eighty-eight patients were enrolled in the study who underwent PET/CT imaging before and after PST. PET/CTs were evaluated by changes in maximum Standardized Uptake Value (SUVmax) and tumor size. Method 1 and 2 were applied to predict pathological complete remission (pCR). Kaplan-Meier analyses for survival were performed. Classification into biological subtypes was performed based on the pre-therapeutic tumor characteristics. A total of 30/88 patients showed pCR (34.1 %). Comparing pCR/non-pCR patient groups, significant differences were detected by changes in SUVmax (p evaluation with Method 2 and not with Method 1. In our study, neither clinical nor pathological CR were predictors of longer progression-free survival. Our results suggest that combined PET/CT criteria are more predictive of pCR. The effect of biological subtypes is significant on pCR rate as well as on the changes in FDG-uptake and morphological tumor response. Response evaluation with combined criteria was also able to reflect the differences between the biological behavior of breast tumor subtypes.

  15. The impact of owner age on companionship with virtual pets

    OpenAIRE

    Lawson, Shaun W.; Chesney, Thomas

    2007-01-01

    This paper focuses on issues of interaction with a particular type of mobile information system – virtual pets. It examines the impact of owner age on companionship with virtual pets, and tests the hypothesis that younger virtual pet owners will experience closer companionship with their virtual pet than older owners. This is in response to the marketing stance adopted by virtual pet manufacturers who clearly target younger people as the main consumers of their products. The hypothesis was te...

  16. Crystal identification for a dual-layer-offset LYSO based PET system via Lu-176 background radiation and mean shift algorithm

    Science.gov (United States)

    Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang

    2018-01-01

    Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.

  17. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcelo A.; Schulthess, Gustav von; Veit-Haibach, Patrick [University Hospital Zurich, Department Medical Radiology, Nuclear Medicine, Zurich (Switzerland); University Hospital Zurich, Department Medical Radiology, Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Zurich (Switzerland); Kubik-Huch, Rahel A.; Freiwald-Chilla, Bianka [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Hauser, Nik [Kantonsspital Baden AG, Department of Gynaecology, Baden (Switzerland); Froehlich, Johannes M. [Guerbet AG, Zurich (Switzerland)

    2015-08-15

    To compare the diagnostic accuracy of PET/MRI and PET/CT for staging and re-staging advanced gynaecological cancer patients as well as identify the potential benefits of each method in such a population. Twenty-six patients with suspicious or proven advanced gynaecological cancer (12 ovarian, seven cervical, one vulvar and four endometrial tumours, one uterine metastasis, and one primary peritoneal cancer) underwent whole-body imaging with a sequential trimodality PET/CT/MR system. Images were analysed regarding primary tumour detection and delineation, loco-regional lymph node staging, and abdominal/extra-abdominal distant metastasis detection (last only by PET/CT). Eighteen (69.2 %) patients underwent PET/MRI for primary staging and eight patients (30.8 %) for re-staging their gynaecological malignancies. For primary tumour delineation, PET/MRI accuracy was statistically superior to PET/CT (p < 0.001). Among the different types of cancer, PET/MRI presented better tumour delineation mainly for cervical (6/7) and endometrial (2/3) cancers. PET/MRI for local evaluation as well as PET/CT for extra-abdominal metastases had therapeutic consequences in three and one patients, respectively. PET/CT detected 12 extra-abdominal distant metastases in 26 patients. PET/MRI is superior to PET/CT for primary tumour delineation. No differences were found in detection of regional lymph node involvement and abdominal metastases detection. (orig.)

  18. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake.

    Science.gov (United States)

    Wurm, David Johannes; Veiter, Lukas; Ulonska, Sophia; Eggenreich, Britta; Herwig, Christoph; Spadiut, Oliver

    2016-10-01

    Therapeutic monoclonal antibodies are mainly produced in mammalian cells to date. However, unglycosylated antibody fragments can also be produced in the bacterium Escherichia coli which brings several advantages, like growth on cheap media and high productivity. One of the most popular E. coli strains for recombinant protein production is E. coli BL21(DE3) which is usually used in combination with the pET expression system. However, it is well known that induction by isopropyl β-D-1-thiogalactopyranoside (IPTG) stresses the cells and can lead to the formation of insoluble inclusion bodies. In this study, we revisited the pET expression system for the production of a novel antibody single-chain variable fragment (scFv) with the goal of maximizing the amount of soluble product. Thus, we (1) investigated whether lactose favors the recombinant production of soluble scFv compared to IPTG, (2) investigated whether the formation of soluble product can be influenced by the specific glucose uptake rate (q s,glu) during lactose induction, and (3) determined the mechanistic correlation between the specific lactose uptake rate (q s,lac) and q s,glu. We found that lactose induction gave a much greater amount of soluble scFv compared to IPTG, even when the growth rate was increased. Furthermore, we showed that the production of soluble protein could be tuned by varying q s,glu during lactose induction. Finally, we established a simple model describing the mechanistic correlation between q s,lac and q s,glu allowing tailored feeding and prevention of sugar accumulation. We believe that this mechanistic model might serve as platform knowledge for E. coli.

  19. Quantitative simultaneous PET-MR imaging

    Science.gov (United States)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  20. Nutritional sustainability of pet foods.

    Science.gov (United States)

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  1. Role of pharmacokinetic parameters derived with high temporal resolution DCE MRI using simultaneous PET/MRI system in breast cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Amarnath, E-mail: drjena2002@gmail.com [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan [Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India); Sarin, Ramesh [Department of Surgical Oncology, Indraprastha Apollo Hospitals, Sarita Vihar, Delhi–Mathura Road, New Delhi 110076 (India)

    2017-01-15

    Highlights: • Simultaneous PET/MRI (with 3T MRI in the core) for quantitative pharmacokinetics. • Diagnostic accuracy of pharmacokinetic parameters like K{sup trans}, K{sub ep} and v{sub e} acquired through this system. • Incorporating high temporal resolution sequence with short acquisition time of 60 s within the routine DCE MRI in a simultaneous PET/MRI system. - Abstract: Purpose: To evaluate the reliability of pharmacokinetic parameters like K{sup trans}, Kep and v{sub e} derived through DCE MRI breast protocol using 3 T Simultaneous PET/MRI (3 Tesla Positron Emission Tomography/Magnetic Resonance Imaging) system in distinguishing benign and malignant lesions. Materials and methods: High temporal resolution DCE (Dynamic Contrast Enhancement) MRI performed as routine breast MRI for diagnosis or as a part of PET/MRI for cancer staging using a 3 T simultaneous PET/MRI system in 98 women having 109 breast lesions were analyzed for calculation of pharmacokinetic parameters (K{sup trans}, v{sub e}, and Kep) at 60 s time point using an in-house developed computation scheme. Results: Receiver operating characteristic (ROC) curve analysis revealed a cut off value for K{sup trans}, Kep, v{sub e} as 0.50, 2.59, 0.15 respectively which reliably distinguished benign and malignant breast lesions. Data analysis revealed an overall accuracy of 94.50%, 79.82% and 87.16% for K{sup trans}, Kep, v{sub e} respectively. Introduction of native T1 normalization with an externally placed phantom showed a higher accuracy (94.50%) than without native T1 normalization (93.50%) with an increase in specificity of 87% vs 84%. Conclusion: Overall the results indicate that reliable measurement of pharmacokinetic parameters with reduced acquisition time is feasible in a 3TMRI embedded PET/MRI system with reasonable accuracy and application may be extended to exploit the potential of simultaneous PET/MRI in further work on breast cancer.

  2. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-01-01

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  3. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun [Department of Electronic Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742 (Korea, Republic of); Oh, Chang Hyun; Park, Hyun-wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Kyung Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Science, 75 Nowon-ro, Nowon-gu, Seoul 139-709 (Korea, Republic of)

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  4. Central nervous system PET-CT imaging reveals regional impairments in pediatric patients with Wolfram syndrome.

    Directory of Open Access Journals (Sweden)

    Agnieszka Zmyslowska

    Full Text Available Wolfram syndrome (WFS is inherited as an autosomal recessive disease with main clinical features of diabetes mellitus, optic atrophy, diabetes insipidus and deafness. However, various neurological defects may also be detected. The aim of this study was to evaluate aspects of brain structure and function using PET-CT (positron emission tomography and computed tomography and MRI (magnetic resonance imaging in pediatric patients with WFS. Regional changes in brain glucose metabolism were measured using standardized uptake values (SUVs based on images of (18F fluorodeoxyglucose (FDG uptake in 7 WFS patients aged 10.1-16.0 years (mean 12.9±2.4 and in 20 healthy children aged 3-17.9 years (mean 12.8±4.1. In all patients the diagnosis of WFS was confirmed by DNA sequencing of the WFS1 gene. Hierarchical clustering showed remarkable similarities of glucose uptake patterns among WFS patients and their differences from the control group. SUV data were subsequently standardized for age groups 13 years old to account for developmental differences. Reduced SUVs in WFS patients as compared to the control group for the bilateral brain regions such as occipital lobe (-1.24±1.20 vs. -0.13±1.05; p = 0.028 and cerebellum (-1.11±0.69 vs. -0.204±1.00; p = 0.036 were observed and the same tendency for cingulate (-1.13±1.05 vs. -0.15±1.12; p = 0.056, temporal lobe (-1.10±0.98 vs. -0.15±1.10; p = 0.057, parietal lobe (-1.06±1.20 vs. -0.08±1.08; p = 0.058, central region (-1.01±1.04 vs. -0.09±1.06; p = 0.060, basal ganglia (-1.05±0.74 vs. -0.20±1.07; p = 0.066 and mesial temporal lobe (-1.06±0.82 vs. -0.26±1.08; p = 0.087 was also noticed. After adjusting for multiple hypothesis testing, the differences in glucose uptake were non-significant. For the first time, regional differences in brain glucose metabolism among patients with WFS were shown using PET-CT imaging.

  5. Healthy Pets and People

    Science.gov (United States)

    ... prevent the spread of germs between pets and people. Keep pets and their supplies out of the kitchen, and ... a local wildlife rehabilitation facility. More Information Healthy Pets Healthy People Clean Hands Save Lives! Stay Healthy at Animal ...

  6. {sup 18}F-FDG-PET/CT for systemic staging of patients with newly diagnosed ER-positive and HER2-positive breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ulaner, Gary A.; Castillo, Raychel [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Weill Cornell Medical College, Department of Radiology, New York, NY (United States); Wills, Jonathan [Memorial Sloan Kettering Cancer Center, Department of Information Systems, New York, NY (United States); Goenen, Mithat; Goldman, Debra A. [Memorial Sloan Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States)

    2017-08-15

    This study assesses {sup 18}F-FDG-PET/CT for patients with newly diagnosed estrogen receptor-positive/human epidermal growth factor receptor-negative (ER+/HER2-) and human epidermal growth factor receptor-positive (HER2+) breast cancer. In this Institutional Review Board-approved retrospective study, our Healthcare Information System was screened for patients with ER+/HER2- and HER2+ breast cancer who underwent {sup 18}F-FDG-PET/CT prior to systemic or radiation therapy. The initial stage was determined from mammography, ultrasound, magnetic resonance imaging, and/or surgery.{sup 18}F-FDG-PET/CT was evaluated to identify unsuspected extra-axillary regional nodal and distant metastases. The proportion of patients upstaged overall and stratified by stage and receptor phenotypes was calculated along with confidence intervals (CI). A total of 238 patients with ER+/HER2- and 245 patients with HER2+ who met inclusion criteria were evaluated. For patients with ER+/HER2-breast cancer, {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 3/71 (4%) initial stage IIA, 13/95 (14%) stage IIB, and 15/57 (26%) stage III. For patients with HER2+ breast cancer, {sup 18}F-FDG-PET/CT revealed unsuspected distant metastases in 3/72 (4%) initial stage IIA, 13/93 (14%) stage IIB, and 13/59 (22%) stage III. The overall upstaging rate for IIB was 14% (95% confidence interval (CI): 9-20%). {sup 18}F-FDG-PET/CT revealed distant metastases in 14% (95% CI: 9-20%) of patients with stage IIB ER+/HER2- and HER2+ breast cancer, which is similar to upstaging rates previously seen in patients with stage IIB triple-negative breast cancer (15%, 95% CI: 9-24%). The detection of unsuspected distant metastases in these patients alters treatment and prognosis. NCCN guidelines should consider adding patients with stage IIB breast cancer for consideration of systemic staging with {sup 18}F-FDG-PET/CT at the time of initial diagnosis. (orig.)

  7. Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.

    Science.gov (United States)

    Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton

    2017-10-04

    Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. First steps towards ultrasound-based motion compensation for imaging and therapy: calibration with an optical system and 4D PET imaging

    Directory of Open Access Journals (Sweden)

    Julia eSchwaab

    2015-11-01

    Full Text Available Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking.The goal of this project is to develop an ultrasound based motion tracking for real time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET. In this work, a workflow is established to enable the transformation of ultrasound tracking data to the coordinates of the treatment delivery or imaging system – even if the ultrasound probe is moving due to respiration. It is shown that the ultrasound tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the ultrasound probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for ultrasound tracking based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an ultrasound based motion tracking in absolute room coordinates with a moving US-transducer is feasible.

  9. Current status and future perspective of PET

    International Nuclear Information System (INIS)

    Lee, Myung Chul

    2002-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) detecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had, 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3

  10. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    Science.gov (United States)

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-09-01

    A rotatory dual-head positron emission tomography (PET) system with 90o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350-650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  11. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    International Nuclear Information System (INIS)

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-01-01

    A rotatory dual-head positron emission tomography (PET) system with 90 o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350–650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  12. Investigation of the signal-to-noise ratio on a state-of-the-art PET system: measurements with the EEC whole-body phantom

    International Nuclear Information System (INIS)

    Jaegel, M.; Adam, L.E.; Bellemann, M.E.; Zaers, J.; Trojan, H.; Brix, G.; Rauschnabel, K.

    1998-01-01

    Aim: The spatial resolution of PET scanners can be improved by using smaller detector elements. This approach, however, results in poorer counting statistics of the reconstructed images. Therefore, the aim of this study was to investigate the influence of different acquisition parameters on the signal-to-noise ratio (SNR) and thus to optimize PET image quality. Methods: The experiments were performed with the latest-generation whole-body PET system (ECAT Exact HR + , Siemens/CTI) using the standard 2D and 3D data acquisition parameters recommended by the manufacturer. The EEC whole-body phantom with different inserts was used to simulate patient examinations of the thorax. Emission and transmission scans were acquired with varying numbers of events and at different settings of the lower level energy discriminator. The influence of the number of counts on the SNR was parameterized using a simple model function. Results: For count rates frequently encountered in clinical PET studies, the emission scan has a stronger influence on the SNR in the reconstructed image than the transmission scan. The SNR can be improved by using a higher setting of the lower energy level provided that the total number of counts is kept constant. Based on the established model function, the relative duration of the emission scan with respect to the total acquistion time was optimized, yielding a value of about 75% for both the 2D and 3D mode. Conclusion: The presented phenomenological approach can readily be employed to optimize the SNR and thus the quality of PET images acquired at different scanners or with different examination protocols. (orig.) [de

  13. Present and future aspects of PET examinations

    International Nuclear Information System (INIS)

    Inoue, Tomio

    2003-01-01

    The PET examination gives the body distribution image of a compound labeled with the positron emitter manufactured by cyclotron. Recently, PET with F18-deoxyglucose (FDG) attracts considerable attention because the imaging is particularly useful for cancer detection. Since the technique was authorized by the United States (US) official health insurance in 1998, the number of the examination is increasing, which is also under similar situation in Japan due to the latest partial authorization for some malignant tumors. In Japan, about 30,000 examinations per year are carried out, half of which, in private hospitals. Their purpose is increasingly for cancer detection. For future PET examination, awaited are improvement of PET camera and development of a novel imaging agent. PET/CT imaging is for the former and F18-α-methyltyrosine, for the latter. Miniaturization of cyclotron, FDG delivery system, improved FDG synthetic method, popularization of PET/CT, development of PET camera for health examination, clinical trial of a novel imaging agent, and spread of PET health examination and operation of PET Center, are expected for future progress of PET technique. (N.I.)

  14. Pet Problems at Home: Pet Problems in the Community.

    Science.gov (United States)

    Soltow, Willow

    1984-01-01

    Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…

  15. Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

    OpenAIRE

    Monzó Ferrer, José María; Ros García, Ana; Herrero Bosch, Vicente; Perino Vicentini, Ivan Virgilio; Aliaga Varea, Ramón José; Gadea Gironés, Rafael; Colom Palero, Ricardo José

    2013-01-01

    Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET sys...

  16. Interests of the PET with 18-F.D.G. in infectious pathology: about a case of systemic candidiasis; Interets de la TEP au 18-FDG en pathologie infectieuse: a propos d'un cas de candidose systemique

    Energy Technology Data Exchange (ETDEWEB)

    Avet, J.; Granjon, D.; Prevot, N.; Isnardi, V.; Dubois, F. [Service de medecine nucleaire, CHU de Saint-etienne, (France); Stephan, J.L.; Berger, C. [service de pediatrie, CHU de Saint-etienne, (France)

    2009-05-15

    We report the interest of the PET with {sup 18}F-F.D.G. in the extension evaluation of injuries and in the therapy decision for a patient suffering of a systemic candida. Conclusions: In spite of a lack of recommendations, because of its great sensitivity for the deep infectious centres detection, the PET with {sup 18}F-F.D.G. can bring useful information to the management and follow up of the systemic infections. (N.C.)

  17. Brain PET scan

    Science.gov (United States)

    ... results on a PET scan. Blood sugar or insulin levels may affect the test results in people with diabetes . PET scans may be done along with a CT scan. This combination scan is called a PET/CT. Alternative Names Brain positron emission tomography; PET scan - brain References Chernecky ...

  18. PET/MRI in cancer patients

    DEFF Research Database (Denmark)

    Kjær, Andreas; Loft, Annika; Law, Ian

    2013-01-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear...... described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision...... that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations....

  19. PET/MRI in head and neck cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan; Laniado, Michael [Dresden University Hospital, Department of Radiology, Dresden (Germany); Beuthien-Baumann, Bettina [Dresden University Hospital, Department of Nuclear Medicine, Dresden (Germany); Schneider, Matthias [Dresden University Hospital, Oral and Maxillofacial Surgery, Dresden (Germany); Gudziol, Volker [Dresden University Hospital, Department of Otolaryngology, Dresden (Germany); Langner, Jens; Schramm, Georg; Hoff, Joerg van den [Institute of Bioinorganic and Radiopharmaceutical Chemistry, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg [Dresden University Hospital, Nuclear Medicine, Dresden (Germany)

    2013-01-15

    To evaluate the feasibility of PET/MRI (positron emission tomography/magnetic resonance imaging) with FDG ({sup 18}F-fluorodeoxyglucose) for initial staging of head and neck cancer. The study group comprised 20 patients (16 men, 4 women) aged between 52 and 81 years (median 64 years) with histologically proven squamous cell carcinoma of the head and neck region. The patients underwent a PET scan on a conventional scanner and a subsequent PET/MRI examination on a whole-body hybrid system. FDG was administered intravenously prior to the conventional PET scan (267-395 MBq FDG, 348 MBq on average). The maximum standardized uptake values (SUV{sub max}) of the tumour and of both cerebellar hemispheres were determined for both PET datasets. The numbers of lymph nodes with increased FDG uptake were compared between the two PET datasets. No MRI-induced artefacts where observed in the PET images. The tumour was detected by PET/MRI in 17 of the 20 patients, by PET in 16 and by MRI in 14. The PET/MRI examination yielded significantly higher SUV{sub max} than the conventional PET scanner for both the tumour (p < 0.0001) and the cerebellum (p = 0.0009). The number of lymph nodes with increased FDG uptake detected using the PET dataset from the PET/MRI system was significantly higher the number detected by the stand-alone PET system (64 vs. 39, p = 0.001). The current study demonstrated that PET/MRI of the whole head and neck region is feasible with a whole-body PET/MRI system without impairment of PET or MR image quality. (orig.)

  20. Role of FDG-PET and PET/CT in the diagnosis of prolonged febrile states

    International Nuclear Information System (INIS)

    Jaruskova, M.; Belohlavek, O.

    2006-01-01

    The role of FDG-PET and PET/CT in patients whose main symptom is prolonged fever has not yet been defined. We addressed this topic in a retrospective study. A total of 124 patients (referred between May 2001 and December 2004) with fever of unknown origin or prolonged fever due to a suspected infection of a joint or vascular prosthesis were included in the study. The patients underwent either FDG-PET or FDG-PET/CT scanning. Sixty-seven patients had a negative focal FDG-PET finding; in this group the method was regarded as unhelpful in determining a diagnosis, and no further investigation was pursued. We tried to obtain clinical confirmation for all patients with positive PET findings. Fifty-seven (46%) patients had positive FDG-PET findings. In six of them no further clinical information was available. Fifty-one patients with positive PET findings and 118 patients in total were subsequently evaluated. Systemic connective tissue disease was confirmed in 17 patients, lymphoma in three patients, inflammatory bowel disease in two patients, vascular prosthesis infection in seven patients, infection of a hip or knee replacement in seven patients, mycotic aneurysm in two patients, abscess in four patients and AIDS in one patient. In eight (16%) patients the finding was falsely positive. FDG-PET or PET/CT contributed to establishing a final diagnosis in 84% of the 51 patients with positive PET findings and in 36% of all 118 evaluated patients with prolonged fever. (orig.)

  1. Evaluation of a timing integrated circuit architecture for continuous crystal and SiPM based PET systems

    International Nuclear Information System (INIS)

    Monzo, J M; Ros, A; Herrero-Bosch, V; Perino, I V; Aliaga, R J; Gadea-Girones, R; Colom-Palero, R J

    2013-01-01

    Improving timing resolution in positron emission tomography (PET), thus having fine time information of the detected pulses, is important to increase the reconstructed images signal to noise ratio (SNR) [1]. In the present work, an integrated circuit topology for time extraction of the incoming pulses is evaluated. An accurate simulation including the detector physics and the electronics with different configurations has been developed. The selected architecture is intended for a PET system based on a continuous scintillation crystal attached to a SiPM array. The integrated circuit extracts the time stamp from the first few photons generated when the gamma-ray interacts with the scintillator, thus obtaining the best time resolution. To get the time stamp from the detected pulses, a time to digital converter (TDC) array based architecture has been proposed as in [2] or [3]. The TDC input stage uses a current comparator to transform the analog signal into a digital signal. Individually configurable trigger levels allow us to avoid false triggers due to signal noise. Using a TDC per SiPM configuration results in a very area consuming integrated circuit. One solution to this problem is to join several SiPM outputs to one TDC. This reduces the number of TDCs but, on the other hand, the first photons will be more difficult to be detected. For this reason, it is important to simulate how the time resolution is degraded when the number of TDCs is reduced. Following this criteria, the best configuration will be selected considering the trade-off between achievable time resolution and the cost per chip. A simulation is presented that uses Geant4 for simulation of the physics process and, for the electronic blocks, spice and Matlab. The Geant4 stage simulates the gamma-ray interaction with the scintillator, the photon shower generation and the first stages of the SiPM. The electronics simulation includes an electrical model of the SiPM array and all the integrated circuitry

  2. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  3. PET scanning in plastic and reconstructive surgery.

    Science.gov (United States)

    Liodaki, Eirini; Eirini, Liodaki; Liodakis, Emmanouil; Emmanouil, Liodakis; Papadopoulos, Othonas; Othonas, Papadopoulos; Machens, Hans-Günther; Hans-Günther, Machens; Papadopulos, Nikolaos A; Nikolaos, Papadopulos A

    2012-02-01

    In this report we highlight the use of PET scan in plastic and reconstructive surgery. PET scanning is a very important tool in plastic surgery oncology (melanoma, soft-tissue sarcomas and bone sarcomas, head and neck cancer, peripheral nerve sheath tumors of the extremities and breast cancer after breast esthetic surgery), as diagnosis, staging, treatment planning and follow-up of cancer patients is based on imaging. PET scanning seems also to be useful as a flap monitoring system as well as an infection's imaging tool, for example in the management of diabetic foot ulcer. PET also contributes to the understanding of pathophysiology of keloids which remain a therapeutic challenge.

  4. A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm

    International Nuclear Information System (INIS)

    Johnson, C.A.; Yan, Y.; Carson, R.E.; Martino, R.L.; Daube-Witherspoon, M.E.

    1995-01-01

    The authors have implemented the EM reconstruction algorithm for volume acquisition from current generation retracted-septa PET scanners. Although the software was designed for a GE Advance scanner, it is easily adaptable to other 3D scanners. The reconstruction software was written for an Intel iPSC/860 parallel computer with 128 compute nodes. Running on 32 processors, the algorithm requires approximately 55 minutes per iteration to reconstruct a 128 x 128 x 35 image. No projection data compression schemes or other approximations were used in the implementation. Extensive use of EM system matrix (C ij ) symmetries (including the 8-fold in-plane symmetries, 2-fold axial symmetries, and axial parallel line redundancies) reduces the storage cost by a factor of 188. The parallel algorithm operates on distributed projection data which are decomposed by base-symmetry angles. Symmetry operators copy and index the C ij chord to the form required for the particular symmetry. The use of asynchronous reads, lookup tables, and optimized image indexing improves computational performance

  5. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10 C, 11 C, and 15 O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12 C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  6. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; Herrera, Carlos M; de Vega, Clara

    2012-06-01

    Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. submitter Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    CERN Document Server

    Muraro, S; Belcari, N; Bisogni, M G; Camarlinghi, N; Cristoforetti, L; Guerra, A Del; Ferrari, A; Fracchiolla, F; Morrocchi, M; Righetto, R; Sala, P; Schwarz, M; Sportelli, G; Topi, A; Rosso, V

    2017-01-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two plana...

  8. Investigation of partial volume effect in different PET/CT systems: a comparison of results using the madeira phantom and the NEMA NU-2 2001 phantom

    International Nuclear Information System (INIS)

    Chipiga, L.; Sydoff, M.; Zvonova, I.; Bernhardsson, C.

    2016-01-01

    Positron emission tomography combined with computed tomography (PET/CT) is a quantitative technique used for diagnosing various diseases and for monitoring treatment response for different types of tumours. However, the accuracy of the data is limited by the spatial resolution of the system. In addition, the so-called partial volume effect (PVE) causes a blurring of image structures, which in turn may cause an underestimation of activity of a structure with high-activity content. In this study, a new phantom, MADEIRA (Minimising Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) for activity quantification in PET and single photon emission computed tomography (SPECT) was used to investigate the influence on the PVE by lesion size and tumour-to-background activity concentration ratio (TBR) in four different PET/CT systems. These measurements were compared with data from measurements with the NEMA NU-2 2001 phantom. The results with the MADEIRA phantom showed that the activity concentration (AC) values were closest to the true values at low ratios of TBR (<10) and reduced to 50 % of the actual AC values at high TBR (30-35). For all scanners, recovery of true values became closer to 1 with an increasing diameter of the lesion. The MADEIRA phantom showed good agreement with the results obtained from measurements with the NEMA NU-2 2001 phantom but allows for a wider range of possibilities in measuring image quality parameters. (authors)

  9. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  10. Development of PET insert for simultaneous PET/MR imaging of human brain

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun; Lim, Hyun Keong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Oh, Changheun; Park, HyunWook; Cho, Gyuseong [Departments of Electrical Engineering and Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2014-07-29

    Recently, there has been great interest on the development of combined PET/MR, which is a useful tool for both functional and anatomic imaging. The purpose of this study was to develop a MR compatible PET insert for simultaneous PET and MR imaging of human brain and to evaluate the performance of the hybrid PET-MRI. The PET insert consisted of 18 detector blocks arranged in a ring of 390 mm diameter with 60 mm axial FOV. Each detector block was composed of 4 × 4 matrix of detector modules, each of which consisted of a 4 × 4 array LYSO coupled to a 4 × 4 GAPD array. The PET gantry was shielded with gold-plated conductive fabric tapes. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuits (PDCs) and then transferred to FPGA-embedded DAQ modules. The PDCs and DAQ modules were enclosed in an aluminum box and located at the rear of the MR bore inside MRI room. 3-T human MRIs of two different vendors were used to evaluate the MR compatibility of developed PET insert. No significant changes of the PET performance and the homogeneity of MR images caused by the non-compatibility of PET-MRI were observed with the 2 different MRIs. The signal intensities of MR images were slightly degraded (<3.6%) with the both MRI systems. The difference between independently and simultaneously acquired PET images of brain phantom was negligibly small (<4.3%). High quality simultaneous brain PET and MRI of 3 normal volunteers were successfully acquired. Experimental results indicate that the high performance compact and lightweight PET insert for hybrid PET/MRI, which could be utilized with the MRI from various manufactures, can be developed using GAPD arrays and charge signal transmission method proposed in this study.

  11. Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system

    International Nuclear Information System (INIS)

    Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2016-01-01

    The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems. In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm). Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution. (paper)

  12. PET reconstruction

    International Nuclear Information System (INIS)

    O'Sullivan, F.; Pawitan, Y.; Harrison, R.L.; Lewellen, T.K.

    1990-01-01

    In statistical terms, filtered backprojection can be viewed as smoothed Least Squares (LS). In this paper, the authors report on improvement in LS resolution by: incorporating locally adaptive smoothers, imposing positivity and using statistical methods for optimal selection of the resolution parameter. The resulting algorithm has high computational efficiency relative to more elaborate Maximum Likelihood (ML) type techniques (i.e. EM with sieves). Practical aspects of the procedure are discussed in the context of PET and illustrations with computer simulated and real tomograph data are presented. The relative recovery coefficients for a 9mm sphere in a computer simulated hot-spot phantom range from .3 to .6 when the number of counts ranges from 10,000 to 640,000 respectively. The authors will also present results illustrating the relative efficacy of ML and LS reconstruction techniques

  13. A navigation system for percutaneous needle interventions based on PET/CT images: design, workflow and error analysis of soft tissue and bone punctures.

    Science.gov (United States)

    Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan

    2011-01-01

    Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well

  14. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  15. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  16. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  17. Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    CERN Document Server

    Abreu, M C; Albuquerque, E; Almeida, F G; Almeida, P; Amaral, P; Auffray, Etiennette; Bento, P; Bruyndonckx, P; Bugalho, R; Carriço, B; Cordeiro, H; Ferreira, M; Ferreira, N C; Gonçalves, F; Lecoq, Paul; Leong, C; Lopes, F; Lousã, P; Luyten, J; Martins, M V; Matela, N; Rato-Mendes, P; Moura, R; Nobre, J; Oliveira, N; Ortigão, C; Peralta, L; Rego, J; Ribeiro, R; Rodrigues, P; Santos, A I; Silva, J C; Silva, M M; Tavernier, Stefaan; Teixeira, I C; Texeira, J P; Trindade, A; Trummer, Julia; Varela, J

    2007-01-01

    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.

  18. Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions

    Science.gov (United States)

    Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.

    2017-12-01

    Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.

  19. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    International Nuclear Information System (INIS)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick

    2015-01-01

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  20. Clinical evaluation of PET image quality as a function of acquisition time in a new TOF-PET/MR compared to TOF-PET/CT - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Zeimpekis, Konstantinos; Huellner, Martin; De Galiza Barbosa, Felipe; Ter Voert, Edwin; Davison, Helen; Delso, Gaspar; Veit-Haibach, Patrick [Nuclear Medicine, University Hospital Zurich (Switzerland)

    2015-05-18

    The recently available integrated PET/MR imaging can offer significant additional advances in clinical imaging. The purpose of this study was to compare the PET performance between a PET/CT scanner and an integrated TOF-PET/MR scanner concerning image quality parameters and quantification in terms of SUV as a function of acquisition time (a surrogate of dose). Five brain and five whole body patients were included in the study. The PET/CT scan was used as a reference and the PET/MR acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts and noise were evaluated. SUV measurements were taken in the liver and in white matter to compare quantification. Quantitative evaluation showed good correlation between PET/CT and PET/MR brain SUVs. Liver correlation was lower, with uptake underestimation in PET/MR, partially justified by bio-redistribution. The clinical evaluation showed that PET/MR offers higher image quality and sharpness with lower levels of noise and artefacts compared to PET/CT with reduced acquisition times for whole body scans, while for brain scans there is no significant difference. The PET-component of the TOF-PET/MR showed higher image quality compared to PET/CT as tested with reduced imaging times. However, these results account mainly for body imaging, while no significant difference were found in brain imaging. This overall higher image quality suggests that the acquisition time or injected activity can be reduced by at least 37% on the PET/MR scanner.

  1. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Science.gov (United States)

    Raylman, Raymond R.; Majewski, Stan; Smith, Mark F.; Proffitt, James; Hammond, William; Srinivasan, Amarnath; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Judy, Clifford O.; Kross, Brian; Ramasubramanian, Srikanth; Banta, Larry E.; Kinahan, Paul E.; Champley, Kyle

    2008-02-01

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 × 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 × 72 array of 2 × 2 × 15 mm3 LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 × 15 × 15 cm3. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 ± 0.09 mm (radial), 2.04 ± 0.08 mm (tangential) and 1.84 ± 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 ± 0.08 mm (radial), 2.16 ± 0.07 mm (tangential) and 1.87 ± 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps µCi-1 ml-1 (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  2. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Proffitt, James [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hammond, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Srinivasan, Amarnath [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); McKisson, John [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Judy, Clifford O [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ramasubramanian, Srikanth [Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, WV (United States); Banta, Larry E [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Kinahan, Paul E [Department of Radiology, University of Washington, Seattle, WA (United States); Champley, Kyle [Department of Radiology, University of Washington, Seattle, WA (United States)

    2008-02-07

    Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm{sup 3} LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multi-processor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm{sup 3}. Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 {+-} 0.09 mm (radial), 2.04 {+-} 0.08 mm (tangential) and 1.84 {+-} 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 {+-} 0.08 mm (radial), 2.16 {+-} 0.07 mm (tangential) and 1.87 {+-} 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps {mu}Ci{sup -1} ml{sup -1} (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer.

  3. Trends in PET imaging

    International Nuclear Information System (INIS)

    Moses, William W.

    2000-01-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT)

  4. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  5. Investigation of the imaging characteristics of the ALBIRA II small animal PET system for {sup 18}F, {sup 68}Ga and {sup 64}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Attarwala, Ali Asgar; Hardiansyah, Deni [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Karanja, Yvonne Wanjiku; Romano, Chiara [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Roscher, Mareike; Waengler, Bjoern [Heidelberg Univ., Mannheim (Germany). Molecular Imaging and Radiochemistry; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Ulm Univ. (Germany). Dept. of Nuclear Medicine

    2017-08-01

    In this study the performance characteristics of the Albira II PET sub-system and the response of the system for the following radionuclides {sup 18}F, {sup 68}Ga and {sup 64}Cu was analyzed. The Albira II tri-modal system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) is a pre-clinical device for PET, SPECT and CT. The PET sub-system uses single continuous crystal detectors of lutetium yttrium orthosilicate (LYSO). The detector assembly consists of three rings of 8 detector modules. The transaxial field of view (FOV) has a diameter of 80 mm and the axial FOV is 148 mm. A NEMA NU-4 image quality phantom (Data Spectrum Corporation, Durham, USA) having five rods with diameters of 1, 2, 3, 4 and 5 mm and a uniform central region was used. Measurements with {sup 18}F, {sup 68}Ga and {sup 64}Cu were performed in list mode acquisition over 10 h. Data were reconstructed using a maximum-likelihood expectation-maximization (MLEM) algorithm with iteration numbers between 5 and 50. System sensitivity, count rate linearity, convergence and recovery coefficients were analyzed. The sensitivities for the entire FOV (non-NEMA method) for {sup 18}F, {sup 68}Ga and {sup 64}Cu were (3.78 ± 0.05)%, (3.97 ± 0.18)% and (3.79 ± 0.37)%, respectively. The sensitivity based on the NEMA protocol using the {sup 22}Na point source yielded (5.53 ± 0.06)%. Dead-time corrected true counts were linear for activities ≤7 MBq ({sup 18}F and {sup 68}Ga) and ≤17 MBq ({sup 64}Cu) in the phantom. The radial, tangential and axial full widths at half maximum (FWHMs) were 1.52, 1.47 and 1.48 mm. Recovery coefficients for the uniform region with a total activity of 8 MBq in the phantom were (0.97 ± 0.05), (0.98 ± 0.06), (0.98 ± 0.06) for {sup 18}F, {sup 68}Ga and {sup 64}Cu, respectively. The Albira II pre-clinical PET system has an adequate sensitivity range and the system linearity is suitable for the range of activities used for pre-clinical imaging. Overall, the system showed a favorable image

  6. PET / MRI vs. PET / CT. Indications Oncology

    International Nuclear Information System (INIS)

    Oliva González, Juan P.

    2016-01-01

    Hybrid techniques in Nuclear Medicine is currently a field in full development for diagnosis and treatment of various medical conditions. With the recent advent of PET / MRI much it speculated about whether or not it is superior to PET / CT especially in oncology. The Conference seeks to clarify this situation by dealing issues such as: State of the art technology PET / MRI; Indications Oncology; Some clinical cases. It concludes by explaining the oncological indications of both the real and current situation of the PET / MRI. (author)

  7. Medical economics of whole-body FDG PET in patients suspected of having non-small cell lung carcinoma. Reassessment based on the revised Japanese national insurance reimbursement system

    International Nuclear Information System (INIS)

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi

    2003-01-01

    Focusing on the savings expected from the revised Japanese national insurance reimbursement system in the management of patients suspected of having non-small cell lung carcinoma (NSCLC), cost-effectiveness was assessed using decision tree sensitivity analysis on the basis of the 2 competing strategies of whole-body FDG PET (WB-PET) and conventional imaging (CI). A WB-PET strategy that models dependence upon chest FDG PET scan, WB-PET scan, and brain MR imaging with contrast was designed. The cost of a FDG PET examination was updated and determined to be US$625.00. The CI strategy involves a combination of conventional examinations, such as abdominal CT with contrast, brain MR imaging with contrast, and a whole-body bone scan. A simulation of 1,000 patients suspected of having NSCLC (Stages I to IV) was created for each strategy using a decision tree and baselines of other relevant variables cited from published data. By using the WB-PET strategy in place of the CI strategy for the management of patients suspected of having NSCLC in hospitals with an NSCLC prevalence of 75%, the cost saving (CS) for each patient would be US$697.69 for an M1 prevalence of 20% and US$683.52 for an M1 prevalence of 40%, but the CS gradually decreases as the NSCLC prevalence increases. The break-even point requires less than an 80% prevalence in order for the WB-PET strategy to gain life expectancy (LE) per patient. By using the WB-PET strategy in place of the CI strategy for the management of patients suspected of having NSCLC in hospitals with an NSCLC prevalence of 75%, the gain in LE for each patient would be 0.04 years (11.06 vs. 11.02 years) for an M1 prevalence of 20% and 0.10 years (10.13 vs. 10.03 years) for an M1 prevalence of 40%. The maximum cost of a PET study without losing LE would be US$1322.68 per patient for prevalences of 75% NSCLC and 20% M1 disease. The present study quantitatively showed WB-PET, employed in place of CI for managing NSCLC patients, to be cost

  8. Automated PET Radiotracer Manufacture on the BG75 System and Imaging Validation Studies of [18F]fluoromisonidazole ([18F]FMISO).

    Science.gov (United States)

    Yuan, Hong; Frank, Jonathan E; Merrill, Joseph R; Hillesheim, Daniel A; Khachaturian, Mark H; Anzellotti, Atilio I

    2016-01-01

    The hypoxia PET tracer, 1-[18F]fluoro-3-(2-nitro-1Himidazol- 1-yl)-propan-2-ol ([18F]FMISO) is the first radiotracer developed for hypoxia PET imaging and has shown promising for cancer diagnosis and prognosis. However, access to [18F]FMISO radiotracer is limited due to the needed cyclotron and radiochemistry expertise. The study aimed to develop the automated production method on the [18F]FMISO radiotracer with the novel fully automated platform of the BG75 system and validate its usage on animal tumor models. [18F]FMISO was produced with the dose synthesis cartridge automatically on the BG75 system. Validation of [18F]FMISO hypoxia imaging functionality was conducted on two tumor mouse models (FaDu/U87 tumor). The distribution of [18F]FMISO within tumor was further validated by the standard hypoxia marker EF5. The average radiochemical purity was (99±1) % and the average pH was 5.5±0.2 with other quality attributes passing standard criteria (n=12). Overall biodistribution for [18F]FMISO in both tumor models was consistent with reported studies where bladder and large intestines presented highest activity at 90 min post injection. High spatial correlation was found between [18F]FMISO autoradiography and EF5 hypoxia staining, indicating high hypoxia specificity of [18MF]FMISO. This study shows that qualified [18F]FMISO can be efficiently produced on the BG75 system in an automated "dose-on-demand" mode using single dose disposable cards. The possibilities of having a low-cost, automated system manufacturing ([18F]Fluoride production + synthesis + QC) different radiotracers will greatly enhance the potential for PET technology to reach new geographical areas and underserved patient populations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  10. Heart PET scan

    Science.gov (United States)

    ... nuclear medicine scan; Heart positron emission tomography; Myocardial PET scan ... A PET scan requires a small amount of radioactive material (tracer). This tracer is given through a vein (IV), ...

  11. [Principles of PET].

    Science.gov (United States)

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  12. PET/MRI: Technical challenges and recent advances

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Im, Ki Chun

    2016-01-01

    Integrated positron emission tomography (PET)/magnetic resonance imaging (MRI), which can provide complementary functional and anatomical information about a specific organ or body system at the molecular level, has become a powerful imaging modality to understand the molecular biology details, disease mechanisms, and pharmacokinetics in animals and humans. Although the first experiment on the PET/MRI was performed in the early 1990s, its clinical application was accomplished in recent years because there were various technical challenges in integrating PET and MRI in a single system with minimum mutual interference between PET and MRI. This paper presents the technical challenges and recent advances in combining PET and MRI along with several approaches for improving PET image quality of the PET/MRI hybrid imaging system

  13. The role of FDG-PET, HMPAO-SPET and MRI in the detection of brain involvement in patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Kao Chiahung [Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung (Taiwan, Province of China); Lan Jungliang [Division of Rheumatology, Taichung Veterans General Hospital, Taichung (Taiwan, Province of China); ChangLai Shengping [Department of Nuclear Medicine, Chung-Shan Medical and Dental College, Taichung (Taiwan, Province of China); Liao Kokaung [Electron Microscopic Laboratory, Chung-Shan Medical and Dental College, Taichung (Taiwan, Province of China); Yen Rouhfang; Chieng Poonung [Department of Nuclear Medicine, National Taiwan University Hospital, Taipei (Taiwan, Province of China)

    1999-02-01

    Involvement of the brain is one of the most important complications of systemic lupus erythematosus (SLE); however, its diagnosis is difficult due to the lack of effective imaging methods. We combined three brain imaging modalities - positron emission tomography with fluorine-18 2-fluoro-2-deoxy-d-glucose (FDG-PET), single-photon emission computed tomography with technetium-99m hexamethylpropylene amine oxime (HMPAO-SPET) and magnetic resonance imaging (MRI) - in order to detect brain involvement in SLE. Thirty-seven SLE patients, aged 22-45 years, were divided into three groups. Group 1 (G1) consisted of ten patients with major neuropsychiatric manifestations; group 2 (G2) consisted of 15 patients with minor manifestations; and group 3 (G3) consisted of 12 patients without manifestations. FDG-PET findings were abnormal in 51% of patients: 90% of G1, 67% of G2 and 0% of G3 patients respectively. HMPAO-SPET findings were abnormal in 62% of patients: 100% of G1, 73% of G2 and 17% of G3 patients respectively. MRI findings were abnormal in 35% of patients: 70% of G1, 40% of G2 and 0% of G3 patients respectively. Grey matter was more commonly involved than white matter; 62% of patients presented with lesions in the cerebral cortex, 27% with lesions in the basal ganglion, 5% with lesions in the cerebellum, and 19% with lesions in white matter. No white matter lesions were found on FDG-PET or HMPAO-SPET. However, in 19% of patients, MRI demonstrated abnormally high signal lesions in white matter. Forty-three percent of cases had positive serum anticardiolipin antibodies (ACA). However, ACA was not related to FDG-PET, HMPAO-SPET or MRI findings. It may be concluding that HMPAO-SPET is a more sensitive tool for detecting brain involvement in SLE patients when compared with FDG-PET or MRI. However, MRI is necessary for detecting lesions in white matter. (orig.) With 3 figs., 2 tabs., 46 refs.

  14. A proposal of an open PET geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inaniwa, Taku [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Minohara, Shinichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Shibuya, Kengo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Lam, Chih Fung [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555 (Japan)

    2008-02-07

    The long patient port of a PET scanner tends to put stress on patients, especially patients with claustrophobia. It also prevents doctors and technicians from taking care of patients during scanning. In this paper, we proposed an 'open PET' geometry, which consists of two axially separated detector rings. A long and continuous field-of-view (FOV) including a 360 deg. opened gap between two detector rings can be imaged enabling a fully 3D image reconstruction of all the possible lines-of-response. The open PET will become practical if iterative image reconstruction methods are applied even though image reconstruction of the open PET is analytically an incomplete problem. First we implemented a 'masked' 3D ordered subset expectation maximization (OS-EM) in which the system matrix was obtained from a long 'gapless' scanner by applying a mask to detectors corresponding to the open space. Next, in order to evaluate imaging performance of the proposed open PET geometry, we simulated a dual HR+ scanner (ring diameter of D = 827 mm, axial length of W = 154 mm x 2) separated by a variable gap. The gap W was the maximum limit to have axially continuous FOV of 3W though the maximum diameter of FOV at the central slice was limited to D/2. Artifacts, observed on both sides of the open space when the gap exceeded W, were effectively reduced by inserting detectors partially into unnecessary open spaces. We also tested the open PET geometry using experimental data obtained by the jPET-D4. The jPET-D4 is a prototype brain scanner, which has 5 rings of 24 detector blocks. We simulated the open jPET-D4 with a gap of 66 mm by eliminating 1 block-ring from experimental data. Although some artifacts were seen at both ends of the opened gap, very similar images were obtained with and without the gap. The proposed open PET geometry is expected to lead to realization of in-beam PET, which is a method for an in situ monitoring of charged particle therapy, by

  15. Clinical Evaluation of PET Image Quality as a Function of Acquisition Time in a New TOF-PET/MRI Compared to TOF-PET/CT--Initial Results.

    Science.gov (United States)

    Zeimpekis, Konstantinos G; Barbosa, Felipe; Hüllner, Martin; ter Voert, Edwin; Davison, Helen; Veit-Haibach, Patrick; Delso, Gaspar

    2015-10-01

    The purpose of this study was to compare only the performance of the PET component between a TOF-PET/CT (henceforth noted as PET/CT) scanner and an integrated TOF-PET/MRI (henceforth noted as PET/MRI) scanner concerning image quality parameters and quantification in terms of standardized uptake value (SUV) as a function of acquisition time (a surrogate of dose). The CT and MR image quality were not assessed, and that is beyond the scope of this study. Five brain and five whole-body patients were included in the study. The PET/CT scan was used as a reference and the PET/MRI acquisition time was consecutively adjusted, taking into account the decay between the scans in order to expose both systems to the same amount of the emitted signal. The acquisition times were then retrospectively reduced to assess the performance of the PET/MRI for lower count rates. Image quality, image sharpness, artifacts, and noise were evaluated. SUV measurements were taken in the liver and in the white matter to compare quantification. Quantitative evaluation showed strong correlation between PET/CT and PET/MRI brain SUVs. Liver correlation was good, however, with lower uptake estimation in PET/MRI, partially justified by bio-redistribution. The clinical evaluation showed that PET/MRI offers higher image quality and sharpness with lower levels of noise and artifacts compared to PET/CT with reduced acquisition times for whole-body scans while for brain scans there is no significant difference. The TOF-PET/MRI showed higher image quality compared to TOF-PET/CT as tested with reduced imaging times. However, this result accounts mainly for body imaging, while no significant differences were found in brain imaging.

  16. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  17. PET and SPECT in neurology

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Ghent Univ.; Vries, Erik F.J. de; Waarde, Aren van; Otte, Andreas

    2014-01-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  18. 5-(2-18F-fluoroethoxy)-L-tryptophan as a substrate of system L transport for tumor imaging by PET.

    Science.gov (United States)

    Krämer, Stefanie D; Mu, Linjing; Müller, Adrienne; Keller, Claudia; Kuznetsova, Olga F; Schweinsberg, Christian; Franck, Dominic; Müller, Cristina; Ross, Tobias L; Schibli, Roger; Ametamey, Simon M

    2012-03-01

    Large neutral l-amino acids are substrates of system L amino acid transporters. The level of one of these, LAT1, is increased in many tumors. Aromatic l-amino acids may also be substrates of aromatic l-amino acid decarboxylase (AADC), the level of which is enhanced in endocrine tumors. Increased amino acid uptake and subsequent decarboxylation result in the intracellular accumulation of the amino acid and its decarboxylation product. (18)F- and (11)C-labeled neutral aromatic amino acids, such as l-3,4-dihydroxy-6-(18)F-fluorophenylalanine ((18)F-FDOPA) and 5-hydroxy-l-[β-(11)C]tryptophan, are thus successfully used in PET to image endocrine tumors. However, 5-hydroxy-l-[β-(11)C]tryptophan has a relatively short physical half-life (20 min). In this work, we evaluated the in vitro and in vivo characteristics of the (18)F-labeled tryptophan analog 5-(2-(18)F-fluoroethoxy)-l-tryptophan ((18)F-l-FEHTP) as a PET probe for tumor imaging. (18)F-l-FEHTP was synthesized by no-carrier-added (18)F fluorination of 5-hydroxy-l-tryptophan. In vitro cell uptake and efflux of (18)F-l-FEHTP and (18)F-FDOPA were studied with NCI-H69 endocrine small cell lung cancer cells, PC-3 pseudoendocrine prostate cancer cells, and MDA-MB-231 exocrine breast cancer cells. Small-animal PET was performed with the respective xenograft-bearing mice. Tissues were analyzed for potential metabolites. (18)F-l-FEHTP specific activity and radiochemical purity were 50-150 GBq/μmol and greater than 95%, respectively. In vitro cell uptake of (18)F-l-FEHTP was between 48% and 113% of added radioactivity per milligram of protein within 60 min at 37°C and was blocked by greater than 95% in all tested cell lines by the LAT1/2 inhibitor 2-amino-2-norboranecarboxylic acid. (18)F-FDOPA uptake ranged from 26% to 53%/mg. PET studies revealed similar xenograft-to-reference tissue ratios for (18)F-l-FEHTP and (18)F-FDOPA at 30-45 min after injection. In contrast to the (18)F-FDOPA PET results, pretreatment with the

  19. Primary central nervous system lymphoma with lymphomatosis cerebri in an immunocompetent child: MRI and 18F-FDG PET-CT findings.

    Science.gov (United States)

    Jain, Tarun K; Sharma, Punit; Suman, Sudhir K C; Faizi, Nauroze A; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is extremely rare in immunocompetent children. We present the magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) findings of such a case in a 14-year old immunocompetent boy. In this patient, PCNSL was associated with lymphomatosis cerebri. Familiarity with the findings of this rare condition will improve the diagnostic confidence of the nuclear radiologist and avoid misdiagnosis. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  20. A study of artefacts in simultaneous PET and MR imaging using a prototype MR compatible PET scanner

    International Nuclear Information System (INIS)

    Slates, R.B.; Farahani, K.; Marsden, P.K.; Taylor, J.; Summers, P.E.; Williams, S.; Beech, J.

    1999-01-01

    We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T 2 -weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner. (author)

  1. Innovations in PET/CT

    DEFF Research Database (Denmark)

    Levin Klausen, T; Høgild Keller, S; Vinter Olesen, O

    2012-01-01

    especially as spatial resolution improves. Software based image fusion remains a complex issue outside the brain. State of the art image quality in a modern PET/CT system includes incorporation of point spread function (PSF) and time-of-flight (TOF) information into the reconstruction leading to the high...

  2. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    Energy Technology Data Exchange (ETDEWEB)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M [Grupo de Fisica Nuclear, Departmento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid (Spain); Vaquero, J J; Desco, M [Unidad de Medicina y CirugIa Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain)], E-mail: jose@nuc2.fis.ucm.es

    2009-03-21

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  3. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    International Nuclear Information System (INIS)

    Espana, S; Herraiz, J L; Vicente, E; Udias, J M; Vaquero, J J; Desco, M

    2009-01-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  4. {sup 18}FDG PET and acetazolamide-enhanced {sup 99m}Tc-HMPAO SPET in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, F. [Bonn Univ. (Germany). Inst. fuer Klinische und Experimentelle Nuklearmedizin; Schomburg, A. [Bonn Univ. (Germany). Inst. fuer Klinische und Experimentelle Nuklearmedizin; Badali, A. [Dept. of Dermatology, Univ. of Bonn (Germany); Ruhlmann, J. [Bonn Univ. (Germany). Inst. fuer Klinische und Experimentelle Nuklearmedizin; Pavics, L. [Bonn Univ. (Germany). Inst. fuer Klinische und Experimentelle Nuklearmedizin; Biersack, H.J. [Bonn Univ. (Germany). Inst. fuer Klinische und Experimentelle Nuklearmedizin

    1995-09-01

    In this report, we present the case of a 70-year-old female patient, suffering from SLE without symptoms of CNS involvement. In addition to a SPET study using technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) and a PET scan with fluorine-18 deoxyglucose ({sup 18}FDG), a SPET study after acetazolamide injection was performed in order to assess the cerebral perfusion reserve. While the PET scan showed no major abnormalities, and the baseline SPET study revealed only minor changes, the acetazolamide-enhanced SPET study revealed a marked reduction of the cortical perfusion reserve, particularly in both frontal lobes. It is concluded that ``preclinical`` CNS involvement, mainly caused by pathological mechanisms involving the cerebral blood vessels, can be considered to exist in this patient with SLE. (orig.). With 2 figs.

  5. Initial Experience in Colombia in Patients with PET/CT-FDG Studies of the Central Nervous System

    International Nuclear Information System (INIS)

    Ucros, Gonzalo; Bernal, Patricia; Bermudez Sonia

    2009-01-01

    To describe the experience of patients who underwent a brain PET-CT during sixteen consecutive months. Method: 41 studies were made using flourodeoxiglucose (FDG) and registered with computed tomography. Results: These studies correspond to 5% of all PET studies performed at our institution. The age of patients ranged from 11 to 74 years. The main indications were: search for an epileptic focus (34%), cognitive disorder (32%), tumor evaluation (22%) and others (12%). Conclusion: The main applications of the brain PETCT FDG in our patients were: evaluation of untreatable epileptic patients thinking of undergoing surgery, evaluation of patients with cognitive disorders like Alzheimer's and other related dementias and finally, evaluation of patients with residual or primary brain tumors. It is among these patients in which this diagnostic modality has better diagnostic utility with abnormal findings, useful for their management.

  6. Semi-automatic ROI placement system for analysis of brain PET images based on elastic model. Application to diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Mishina, Masahiro; Kitamura, Shin; Katayama, Yasuo; Senda, Michio; Tanizaki, Naoki; Ishii, Kenji

    2000-01-01

    PET with 18F-fluorodeoxyglucose (FDG) is a useful technique to image cerebral glucose metabolism and to detect patients with Alzheimer's disease in the early stage, in which characteristic temporoparietal hypometabolism is visualized. We have developed a new system, in which the standard brain ROI atlas made of networks of segments is elastically transformed to match the subject brain images, so that standard ROIs defined on the segments are placed on the individual brain images and are used to measure radioactivity over each brain region. We applied this methods to Alzheimer's disease. This method was applied to the images of 10 normal subjects (ages 55 +/- 12) and 21 patients clinically diagnosed as Alzheimer's disease (age 61 +/- 10). The FDG uptake reflecting glucose metabolism was evaluated with SUV, i.e. decay corrected radioactivity divided by injected dose per body weight in (Bq/ml)/(Bq/g). The system worked all right in every subject including those with extensive hypometabolism. Alzheimer patients showed markedly lower in the parietal cortex (4.0-4.1). When the threshold value of FDG uptake in the parietal lobe was set as 5 (Bq/ml)/(Bq/g), we could discriminate the patients with Alzheimer's disease from the normal subjects. The sensitivity was 86% and the specificity was 90%. This system can assist diagnosis of FDG images and may be useful for treating data of a large number of subjects; e.g. when PET is applied to health screening. (author)

  7. Analysis of time resolution in a dual head LSO+PSPMT PET system using low pass filter interpolation and digital constant fraction discriminator techniques

    International Nuclear Information System (INIS)

    Monzo, Jose M.; Lerche, Christoph W.; Martinez, Jorge D.; Esteve, Raul; Toledo, Jose; Gadea, Rafael; Colom, Ricardo J.; Herrero, Vicente; Ferrando, Nestor; Aliaga, Ramon J.; Mateo, Fernando; Sanchez, Filomeno; Mora, Francisco J.; Benlloch, Jose M.; Sebastia, Angel

    2009-01-01

    PET systems need good time resolution to improve the true event rate, random event rejection, and pile-up rejection. In this study we propose a digital procedure for this task using a low pass filter interpolation plus a Digital Constant Fraction Discriminator (DCFD). We analyzed the best way to implement this algorithm on our dual head PET system and how varying the quality of the acquired signal and electronic noise analytically affects timing resolution. Our detector uses two continuous LSO crystals with a position sensitive PMT. Six signals per detector are acquired using an analog electronics front-end and these signals are processed using an in-house digital acquisition board. The test bench developed simulates the electronics and digital algorithms using Matlab. Results show that electronic noise and other undesired effects have a significant effect on the timing resolution of the system. Interpolated DCFD gives better results than non-interpolated DCFD. In high noise environments, differences are reduced. An optimum delay selection, based on the environment noise, improves time resolution.

  8. Analysis of time resolution in a dual head LSO+PSPMT PET system using low pass filter interpolation and digital constant fraction discriminator techniques

    Energy Technology Data Exchange (ETDEWEB)

    Monzo, Jose M. [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: jmonfer@aaa.upv.es; Lerche, Christoph W.; Martinez, Jorge D.; Esteve, Raul; Toledo, Jose; Gadea, Rafael; Colom, Ricardo J.; Herrero, Vicente; Ferrando, Nestor; Aliaga, Ramon J.; Mateo, Fernando [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Sanchez, Filomeno [Nuclear Medical Physics Group, IFIC Institute, Consejo Superior de Investigaciones Cientificas (CSIC), 46980 Paterna (Spain); Mora, Francisco J. [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Benlloch, Jose M. [Nuclear Medical Physics Group, IFIC Institute, Consejo Superior de Investigaciones Cientificas (CSIC), 46980 Paterna (Spain); Sebastia, Angel [Digital Systems Design (DSD) Group, ITACA Institute, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    PET systems need good time resolution to improve the true event rate, random event rejection, and pile-up rejection. In this study we propose a digital procedure for this task using a low pass filter interpolation plus a Digital Constant Fraction Discriminator (DCFD). We analyzed the best way to implement this algorithm on our dual head PET system and how varying the quality of the acquired signal and electronic noise analytically affects timing resolution. Our detector uses two continuous LSO crystals with a position sensitive PMT. Six signals per detector are acquired using an analog electronics front-end and these signals are processed using an in-house digital acquisition board. The test bench developed simulates the electronics and digital algorithms using Matlab. Results show that electronic noise and other undesired effects have a significant effect on the timing resolution of the system. Interpolated DCFD gives better results than non-interpolated DCFD. In high noise environments, differences are reduced. An optimum delay selection, based on the environment noise, improves time resolution.

  9. PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET sequence data

    Directory of Open Access Journals (Sweden)

    Wei Chia-Lin

    2006-08-01

    Full Text Available Abstract Background We recently developed the Paired End diTag (PET strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. Results We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the ProjectManager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. Conclusion The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.

  10. Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design

    International Nuclear Information System (INIS)

    Zhang, Xuezhu; Thiessen, Jonathan D; Goertzen, Andrew L; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr

    2013-01-01

    In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal

  11. Clinical PET activities in European and Asia-Oceanian Countries

    International Nuclear Information System (INIS)

    Tashiro, Manabu; Ito, Masatoshi; Yamaguchi, Keiichiro; Kubota, Kazuo; Fujimoto, Toshihiko; Sasaki, Hidetada; Moser, E.

    2001-01-01

    Clinical diagnosis using positron emission tomography (PET) requires high costs. Therefore, sociomedical evaluation is very important for spread of clinical PET. In this report, sociomedical situation in European and Asia-Oceanian countries, especially concerning transportation of 18 F-FDG and reimbursement of medical costs for clinical PET indications, is reported. It seems that UK, Germany and Belgium are the most advanced in clinical PET in Europe. In these countries, many PET investigations are reimbursed though systems are different among the countries. In UK, both public and private insurance gives authorization for clinical PET to some extent. In Germany, private health insurance companies give authorization but public insurance has not. In Belgium, private health insurance does not exist and public insurance gives authorization for clinical PET. Other European countries seem to be in transitional stages. Transportation of 18 F-FDG has been already started in almost every country in Europe and Asia-Oceania. In Japan, neither transportation of FDG nor full reimbursement of clinical PET has not started yet and this situation seems to be exceptional. To promote clinical PET in Japan, there is the need of at least establishing a list of clinical indications for PET investigations and establishing commercial-based 18 F-FDG supplying system. They could be regarded as a kind of infrastructure for spread of clinical PET. (author)

  12. FDG-PET/CT in oncology. German guideline

    International Nuclear Information System (INIS)

    Krause, B.J.; Beyer, T.; Bockisch, A.; Delbeke, D.; Kotzerke, J.; Minkov, V.; Reiser, M.; Willich, N.

    2007-01-01

    FDG-PET/CT examinations combine metabolic and morphologic imaging within an integrated procedure. Over the past decade PET/CT imaging has gained wide clinical acceptance in the field of oncology. This FDG-PET/CT guideline focuses on indications, data acquisition and processing as well as documentation of FDG-PET/CT examinations in oncologic patients within a clinical and social context specific to Germany. Background information and definitions are followed by examples of clinical and research applications of FDG-PET/CT. Furthermore, protocols for CT scanning (low dose and contrast-enhanced CT) and PET emission imaging are discussed. Documentation and reporting of examinations are specified. Image interpretation criteria and sources of errors are discussed. Quality control for FDG and PET/CT-systems, qualification requirements of personnel as well as legal aspects are presented. (orig.)

  13. DOE SBIR Phase I Grant No. DE-FG02-00ER83067, ''A Flexible and Economical Automated Nucleophilic [18F]Fluorination synthesis System for PET Radiopharmaceuticals.'' Final Technical Report

    International Nuclear Information System (INIS)

    Padgett, Henry C.

    2001-01-01

    Phase I Final Report. A prototype manual remote synthesis system based on the unit operations approach was designed, constructed, and functionally tested. This general-purpose system was validated by its configuration and initial use for the preparation of the PET radiopharmaceutical [F-18]FLT using [F-18]fluoride ion

  14. Selecting Safe Pets (For Parents)

    Science.gov (United States)

    ... supplies (pet bowls, pet bed, leash, etc.) as gifts, then selecting the pet as a family. That way, everyone has time to really think about whether your family is ready for a pet. Key Questions Before adopting or purchasing any pet, talk to all family members, discuss ...

  15. Nutritional Sustainability of Pet Foods12

    Science.gov (United States)

    Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.

    2013-01-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  16. Pet-Related Infections.

    Science.gov (United States)

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  17. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    Science.gov (United States)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  18. Initial clinical test of a breast-PET scanner

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Koren, Courtney; Schreiman, Judith S.; Majewski, Stan; Marano, Gary D.; Abraham, Jame; Kurian, Sobha; Hazard, Hannah; Filburn, Shannon

    2011-01-01

    The goal of this initial clinical study was to test a new positron emission/tomography imager and biopsy system (PEM/PET) in a small group of selected subjects to assess its clinical imaging capabilities. Specifically, the main task of this study is to determine whether the new system can successfully be used to produce images of known breast cancer and compare them to those acquired by standard techniques. The PEM/PET system consists of two pairs of rotating radiation detectors located beneath a patient table. The scanner has a spatial resolution of ∼2 mm in all three dimensions. The subjects consisted of five patients diagnosed with locally advanced breast cancer ranging in age from 40 to 55 years old scheduled for pre-treatment, conventional whole body PET imaging with F-18 Fluorodeoxyglucose (FDG). The primary lesions were at least 2 cm in diameter. The images from the PEM/PET system demonstrated that this system is capable of identifying some lesions not visible in standard mammograms. Furthermore, while the relatively large lesions imaged in this study where all visualised by a standard whole body PET/CT scanner, some of the morphology of the tumours (ductal infiltration, for example) was better defined with the PEM/PET system. Significantly, these images were obtained immediately following a standard whole body PET scan. The initial testing of the new PEM/PET system demonstrated that the new system is capable of producing good quality breast-PET images compared standard methods.

  19. Fully automatic diagnostic system for early- and late-onset mild Alzheimer's disease using FDG PET and 3D-SSP

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Kono, Atsushi K.; Sasaki, Hiroki; Miyamoto, Naokazu; Fukuda, Tetsuya; Sakamoto, Setsu; Mori, Etsuro

    2006-01-01

    The purpose of this study was to design a fully automatic computer-assisted diagnostic system for early- and late-onset mild Alzheimer's disease (AD). Glucose metabolic images were obtained from mild AD patients and normal controls using positron emission tomography (PET) and 18 F-fluorodeoxyglucose (FDG). Two groups of 20 mild AD patients with different ages of onset were examined. A fully automatic diagnostic system using the statistical brain mapping method was established from the early-onset (EO) and late-onset (LO) groups, with mean ages of 59.1 and 70.9 years and mean MMSE scores of 23.3 and 22.8, respectively. Aged-matched normal subjects were used as controls. We compared the diagnostic performance of visual inspection of conventional axial FDG PET images by experts and beginners with that of our fully automatic diagnostic system in another 15 EO and 15 LO AD patients (mean age 58.4 and 71.7, mean MMSE 23.6 and 23.1, respectively) and 30 age-matched normal controls. A receiver operating characteristic (ROC) analysis was performed to compare data. The diagnostic performance of the automatic diagnostic system was comparable with that of visual inspection by experts. The area under the ROC curve for the automatic diagnostic system was 0.967 for EO AD patients and 0.878 for LO AD patients. The mean area under the ROC curve for visual inspection by experts was 0.863 and 0.881 for the EO and LO AD patients, respectively. The mean area under the ROC curve for visual inspection by beginners was 0.828 and 0.717, respectively. The fully automatic diagnostic system for EO and LO AD was able to perform at a similar diagnostic level to visual inspection of conventional axial images by experts. (orig.)

  20. NIRS report of investigations for the development of the next generation PET apparatus. FY 2002

    International Nuclear Information System (INIS)

    2003-03-01

    The present status of studies conducted by representative technology fields for the development of the next generation PET apparatus, and the summary of opinions given by investigators of nuclear medicine are reported. The former involves chapters of: Summary of representative technologies for the development of the next generation PET apparatus; Count rate analysis of PET apparatuses for the whole body and small animals by PET simulator; Scintillator; DOI (depth of interaction) detector-evaluation of the detector with 256-ch fluorescence polarization-photomultiplier tubes (FP-PMT) trial apparatus etc; Examination of multi-slice DOI-MR compatible detector for PET; Development of application specific integrated circuit (ASIC) for processing the front-end signals; Detector simulation; Circuit for processing PET detector signals; Signal processing-coincidence circuit; Data collection system; Signal processing technology for the next generation PET; Reconstruction of statistical PET image using DOI signals; Monte Carlo simulation and Unique directions-PET for infants and for the whole body autonomic nervous systems and mental activity; and Actual design and evaluation of image reconstruction by statistical means. Opinions are: Progress of clinical PET apparatus; Desirable PET drugs and apparatuses; From clinical practice for the development of the next generation PET apparatus; From clinical psychiatric studies for the development; From application of drug development and basic researches; From brain PET practice; From clinical PET practice; and The role of National Institute of Radiological Sciences (NIRS) in PET development. Also involved is the publication list. (N.I.)

  1. FDG-PET and FDG-PET/CT for therapy monitoring and restaging in malignant lymphoma

    International Nuclear Information System (INIS)

    Mottaghy, F.M.; Krause, B.J.

    2003-01-01

    F-18-fluorodeoxyglucose (FDG) PET allows to assess residual masses in patients with malignant lymphoma differentiating vital tumor from scar tissue. This approach is not applicable with conventional imaging methods (CDM) such as CT or MRI. On the other hand circumscribed results often cannot be definitely allocated in PET, therefore the combined morphological-biochemical approach using the now available PET/CT systems promises to be a pathbreaking technical progress. There is no doubt that stand alone PET is superior to CDM differentiating residual scar tissue from vital tumor as has been shown in 15 recently published studies. The median sensitivity for detecting active disease with FDG PET across the studies was 91%; the corresponding specificity was 89%. As a result FDG PET had a high negative predictive value of 94%. In contrast, specificity and positive predictive value (PPV) of CDM in the 9 studies were a direct comparison was available were low (31% and 46%, one study 82%). PET positive residual masses were associated with a progression-free survival of 0 - 55%. Only a few studies have included FDG-PET in therapy response monitoring studies, however also these results are promising. At the moment FDG-PET seems to be the best possibility to characterize and qualitatively visualize vitality of tumor masses and also hold promises for efficient therapy response monitoring in patients with malignant lymphoma. Therefore it should be included in standard diagnostic protocols in lymphoma patients. The combined PET/CT has to be ranked superior to conventional PET studies as in many cases the combined structural and functional imaging brings a clearer diagnostic statement. (orig.) [de

  2. Dynamic comparison of PET imaging performance between state-of-the-art ToF-PET/CT and ToF-PET/MR scanners

    International Nuclear Information System (INIS)

    Delso, Gaspar; Deller, Tim; Khalighi, Mehdi; Veit-Haibach, Patrick; Schulthess, Gustav von

    2014-01-01

    The goal of the present work was to determine the potential for dose reduction in a new clinical ToF-PET/MR scanner. This was achieved by means of long dynamic phantom acquisitions designed to provide a fair comparison of image quality and lesion detectability, as a function of activity, between the new PET/MR system and a state-of-the art PET/CT.

  3. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Otte, Andreas; Vries, Erik F.J. de; Waarde, Aren van

    2014-01-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  4. PET and SPECT in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium); Otte, Andreas [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [University Medical Center Groningen (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-09-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.

  5. Pet insurance--essential option?

    Science.gov (United States)

    Stowe, J D

    2000-08-01

    As Hawn (2) says, "insurance is about risk and peace of mind." She reports that the American Humane Society supports pet insurance because companion animals are able to be treated for disease or accidents that are life-threatening where, otherwise, they would have been euthanized. For veterinarians, she suggests that pet insurance allows them to practice veterinary medicine "as if it were free." It is inevitable that pet insurance will grow as a recourse for veterinary fees. This may be a savior to some families whose budget is stretched to the limit at a critical moment in the health care of their cherished pet. We in the veterinary profession have an advantage over other professions. We have seen the good, the bad, and the ugly of insurance, as it applies to human health and dental care. If we work hand-in-hand with our own industries, collectively we may be able to develop a system that wins for everyone, with fees that allow practice to thrive and growth strategies that accommodate new treatment and diagnostic modalities, as well as consistent and exemplary customer service. The path ahead is always fraught with bumps and potholes. We can be a passive passenger and become a victim of the times or an active driver to steer the profession to a clearer route. Pet insurance is but one of the solutions for the profession; the others are a careful assessment of our fees--charging what we are worth, not what we think the client will pay; business management; customer service; leadership of our health care team; lifelong learning; and more efficient delivery systems. Let us stop being a victim, stop shooting ourselves in the professional foot, and seize the day!

  6. Pets and the immunocompromised person

    Science.gov (United States)

    ... marrow transplant patients and pets; Chemotherapy patients and pets ... Centers for Disease Control and Prevention website. Healthy pets healthy people. www.cdc.gov/healthypets . Updated July 19, 2016. ...

  7. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  8. Biodistribution and human dosimetry estimation of fluoro-L-DOPA as PET imaging agent of dopaminergic nerve transmitter systems

    International Nuclear Information System (INIS)

    Tang Ganghua; Wang Mingfang; Luo Lei; Gan Manquan; Tang Xiaolan; Zhang Lan; Wang Yongxian

    2002-01-01

    Objective: To investigate the biodistribution and human dosimetry estimation of 6-[ 18 F] Fluoro-L-DOPA (FDOPA). Methods: Biodistribution of FDOPA in normal rats and brain of hemi-Parkinsonism rats were determined. Human dosimetry estimation was performed by MIRD method based on the rats biodistribution data. Results: Biodistributions in normal rats showed high uptake in kidney, blood, striatum and hippocampi, fast clearance of radioactivity from kidney and blood, longer retain time in striatum and hippocampi, and higher striatum to cerebellum and striatum to cortex ratio. FDOPA uptake, striatum to cerebellum and striatum to cortex ratio in the lesioned side of hemi-Parkinsonism rats (P 2 to 2.3 x 10 -2 mGy/MBq and the effective dose in humans was estimated to be 2.05 x 10 -2 mSv/MBq after injection of FDOPA based on rats biodistribution data, which were consistent with those reported by literature on the whole. Conclusion: Human radiation dosimetry of FDOPA and other PET tracers can be estimated based on animals biodistribution data. The synthetic FDOPA is safe and efficient and can be used in animals, human and PD patients PET studies

  9. Supercritical CO{sub 2} fluid radiochromatography system used to purify [{sup 11}C]toluene for PET

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Ryan D.; Ferrieri, Richard A. E-mail: rferrieri@bnl.gov; Gerasimov, Madina; Garza, Victor

    2002-04-01

    Abuse of inhalants in today's society has become such a widespread problem among today's adolescents that in many parts of the world their use exceeds that of many other illicit drugs or alcohol. Even so, little is known how such inhalants affect brain function to an extent that can lead to an abuse liability. While methodologies exist for radiolabeling certain inhalants of interest with short-lived positron emitting radioisotopes that would allow their investigation in human subjects using positron emission tomography (PET), the purification methodologies necessary to separate these volatile substances from the organic starting materials have not been developed. We've adapted supercritical fluid technology to this specific PET application by building a preparative-scale supercritical CO{sub 2} fluid radiochromatograph, and applied it to the purification of [{sup 11}C]toluene. We've demonstrated that [{sup 11}C]toluene can be separated from the starting materials using a conventional C{sub 18} HPLC column and pure supercritical CO{sub 2} fluid as the mobile phase operating at 2000 psi and 40 deg. C. We've also shown that the purified radiotracer can be quantitatively captured on Tenax GR, a solid support material, as it exits the supercritical fluid stream, thus allowing for later desorption into a 1.5% cyclodextrin solution that is suitable for human injection, or into a breathing tube for direct inhalation.

  10. Clinical PET application

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Hong, Song W.; Choi, Chang W.; Yang, Seong Dae [Korea Cancer Center Hospital, Seoul (Korea)

    1997-12-01

    PET gives various methabolic images, and is very important, new diagnostic modality in clinical oncology. In Korea Cancer Center Hospital, PET is installed as a research tool of long-mid-term atomic research project. For the efficient use of PET for clinical and research projects, income from the patients should be managed to get the raw material, equipment, manpower, and also for the clinical PET research. 1. Support the clinical application of PET in oncology. 2. Budgetary management of income, costs for raw material, equipment, manpower, and the clinical PET research project. In this year, 250 cases of PET images were obtained, which resulted total income of 180,000,000 won. 50,000,000 won was deposited for the 1998 PET clinical research. Second year PET clinical research should be managed under unified project. Increased demand for {sup 18}FDG in and outside KCCH need more than 2 times production of {sup 18}FDG in a day purchase of HPLC pump and {sup 68}Ga pin source which was delayed due to economic crisis, should be done early in 1998. (author). 2 figs., 3 tabs.

  11. The establishment of the Rossendorf PET Center

    International Nuclear Information System (INIS)

    Johannsen, B.; Steinbach, J.

    1993-01-01

    The objectives of the newly established Positron Emission Tomography (PET) Center at the Institut of Bioinorganic and Radiopharmaceutical Chemistry in Rossendorf are described, referring to medical research, development of tracers and radiochemicals developments, biochemistry and future prospects of PET in Rossendorf. The layout of the center is also described considering the cyclotron and targetry, the transport system, the radiopharmaceutical laboratories and the tomograph. A schedule for project development is going. (BBR)

  12. The usefulness of the combined PET-CT scanner

    International Nuclear Information System (INIS)

    Yoshikawa, Kyosan

    2003-01-01

    Recently, combined PET-CT scanners that simultaneously reveal both anatomical and metabolic images within the body have been developed. The Siemens Biograph was the first PET-CT used in Japan and was installed at National Institute of Radiological Sciences (NIRS) at the end of March 2002. The Biograph system integrates Siemens PET (HR+) and spiral CT (SOMATOM Emotion Duo) technologies with a multimodality computer platform. The CT data obtained with PET-CT is also used for attenuation corrections of the PET images. The advantages of PET-CT for clinical use are much shorter study time for each patient, easy and precise alignment of the patient's lesion within the PET field of view, an increase in PET image quality due to the CT attenuation correction system which gives a higher spatial resolution and produces much less noise in the attenuation correction data, and an improvement in diagnostic accuracy provided by both functional and anatomic imaging. The Japanese government has not yet approved the marketing of PET-CT. We are continuing to investigate its usefulness. We expect that PET-CT will be a major diagnostic tool for oncology imaging in the near future. (authors)

  13. Dynamic neurotransmitter interactions measured with PET

    International Nuclear Information System (INIS)

    Schiffer, W.K.; Dewey, S.L.

    2001-01-01

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  14. Dynamic neurotransmitter interactions measured with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  15. 68Ga-PSMA and 11C-Choline comparison using a tri-modality PET/CT-MRI (3.0 T) system with a dedicated shuttle.

    Science.gov (United States)

    Alonso, Omar; Dos Santos, Gerardo; García Fontes, Margarita; Balter, Henia; Engler, Henry

    2018-01-01

    The aim of this study was to prospectively compare the detection rate of 68 Ga-PSMA versus 11 C-Choline in men with prostate cancer with biochemical recurrence and to demonstrate the added value of a tri-modality PET/CT-MRI system. We analysed 36 patients who underwent both 11 C-Choline PET/CT and 68 Ga-PSMA PET/CT scanning within a time window of 1-2 weeks. Additionally, for the 68 Ga-PSMA scan, we used a PET/CT-MRI (3.0 T) system with a dedicated shuttle, acquiring MRI images of the pelvis. Both scans were positive in 18 patients (50%) and negative in 8 patients (22%). Nine patients were positive with 68 Ga-PSMA alone (25%) and one with 11 C-Choline only (3%). The median detected lesion per patient was 2 for 68 Ga-PSMA (range 0-93) and 1 for 11 C-Choline (range 0-57). Tumour to background ratios in all concordant lesions ( n  = 96) were higher for 68 Ga-PSMA than for 11 C-Choline (110.3 ± 107.8 and 27.5 ± 17.1, mean ± S.D., for each tracer, respectively P  = 0.0001). The number of detected lesions per patient was higher for 11 C-Choline in those with PSA ≥ 3.3 ng/mL, while the number of detected lesions was independent of PSA levels for 68 Ga-PSMA using the same PSA cut-off value. Metastatic pelvic lesions were found in 25 patients (69%) with 68 Ga-PSMA PET/CT, in 18 (50%) with 11 C-Choline PET/CT and in 21 (58%) with MRI (3.0 T). MRI was very useful in detecting recurrence in cases classified as indeterminate by means of PET/CT alone at prostate bed. In patients with prostate cancer with biochemical recurrence 68 Ga-PSMA detected more lesions per patient than 11 C-Choline, regardless of PSA levels. PET/CT-MRI (3.0 T) system is a feasible imaging modality that potentially adds useful relevant information with increased accuracy of diagnosis.

  16. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  17. 18F-fluorodihydroxyphenylalanine PET/CT in pheochromocytoma and paraganglioma: relation to genotype and amino acid transport system L

    International Nuclear Information System (INIS)

    Feral, Chloe C.; Tissot, Floriane S.; Tosello, Lionel; Fakhry, Nicolas; Sebag, Frederic; Pacak, Karel; Taieb, David

    2017-01-01

    F-FDOPA is a highly sensitive and specific radiopharmaceutical for pheochromocytoma and paraganglioma (PPGL) imaging. However, 18 F-FDOPA might be falsely negative in these tumors, especially those related to mutations in succinate dehydrogenase genes (SDHx). The aim of the present study was to evaluate the relationship between expression of L-DOPA transporters and 18 F-FDOPA PET imaging results in PPGL. From 2007 to 2015, 175 patients with non-metastatic PPGL were evaluated by 18 F-FDOPA PET/CT for initial diagnosis/staging and follow-up. 18 F-FDOPA PET/CT was considered as falsely negative for at least one lesion in 10/126 (8%) patients (two sporadic, six SDHD, two SDHB PPGLs). The mRNA and protein expression levels of CD98hc and LATs were evaluated in samples with different genetic backgrounds and imaging phenotypes. The qRT-PCR and immunohistochemical analyses were performed in 14 and 16 tumor samples, respectively. The SDHx mutated samples exhibited a significant decrease in mRNA expression of LAT3 when compared to sporadic PPGLs (P = 0.042). There was also a statistical trend toward decreased CD98hc (P = 0.147) and LAT4 (P = 0.012) levels in SDHx vs sporadic PPGLs. No difference was observed for LAT1/LAT2 mRNA levels. LAT1 protein was expressed in 15 out of 16 (93.75%) SDHx tumors, regardless of the 18 F-FDOPA positivity. LAT1 and CD98hc were co-expressed in 6/8 18 F-FDOPA-negative PPGLs. In contrast, in one case with absence of LAT1/CD98hc, 18 F-FDOPA uptake was positive and attributed to LAT4 expression. We conclude that down-regulation of LAT1/CD98hc cannot explain the imaging phenotype of SDHx-related PPGLs. A reduced activity of LAT1 remains the primary hypothesis possibly due to a modification of intracellular amino acid content which may reduce 18 F-FDOPA uptake. (orig.)

  18. PET Performance Evaluation of an MR-Compatible PET Insert

    Science.gov (United States)

    Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.

    2010-01-01

    A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320

  19. PET scanning in plastic and reconstructive surgery

    International Nuclear Information System (INIS)

    Eirini, L.; Emmanouil, L.; Othonas, P.; Hans-Guenther, M.; Nikolaos, P.A.

    2012-01-01

    In this report we highlight the use of position emission tomography (PET) scan in plastic and reconstructive surgery. PET scanning is a very important tool in plastic surgery oncology (melanoma, soft-tissue sarcomas and bone sarcomas, head and neck cancer, peripheral nerve sheath tumors of the extremities and breast cancer after breast esthetic surgery), as diagnosis, staging, treatment planning and follow-up of cancer patients is based on imaging. PET scanning seems also to be useful as a flap monitoring system as well as an infection's imaging tool, for example in the management of diabetic foot ulcer. PET also contributes to the understanding of pathophysiology of keloids which remain a therapeutic challenge. (author)

  20. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study.

    Science.gov (United States)

    Kimura, Yuichi; Seki, Chie; Hashizume, Nobuya; Yamada, Takashi; Wakizaka, Hidekatsu; Nishimoto, Takahiro; Hatano, Kentaro; Kitamura, Keishi; Toyama, Hiroshi; Kanno, Iwao

    2013-11-21

    This study aimed to develop a new system, named CD-Well, for mouse PET dynamic study. CD-Well allows the determination of time-activity curves (TACs) for arterial whole blood and plasma using 2-3 µL of blood per sample; the minute sample size is ideal for studies in small animals. The system has the following merits: (1) measures volume and radioactivity of whole blood and plasma separately; (2) allows measurements at 10 s intervals to capture initial rapid changes in the TAC; and (3) is compact and easy to handle, minimizes blood loss from sampling, and delay and dispersion of the TAC. CD-Well has 36 U-shaped channels. A drop of blood is sampled into the opening of the channel and stored there. After serial sampling is completed, CD-Well is centrifuged and scanned using a flatbed scanner to define the regions of plasma and blood cells. The length measured is converted to volume because the channels have a precise and uniform cross section. Then, CD-Well is exposed to an imaging plate to measure radioactivity. Finally, radioactivity concentrations are computed. We evaluated the performance of CD-Well in in vitro measurement and in vivo (18)F-fluorodeoxyglucose and [(11)C]2-carbomethoxy-3β-(4-fluorophenyl) tropane studies. In in vitro evaluation, per cent differences (mean±SE) from manual measurement were 4.4±3.6% for whole blood and 4.0±3.5% for plasma across the typical range of radioactivity measured in mouse dynamic study. In in vivo studies, reasonable TACs were obtained. The peaks were captured well, and the time courses coincided well with the TAC derived from PET imaging of the heart chamber. The total blood loss was less than 200 µL, which had no physiological effect on the mice. CD-Well demonstrates satisfactory performance, and is useful for mouse PET dynamic study.

  1. Construction and tests of demonstrator modules for a 3-D axial PET system for brain or small animal imaging

    CERN Document Server

    Chesi, E; Clinthorne, N; Pauss, P; Meddi, F; Beltrame, P; Kagan, H; Braem, A; Casella, C; Djambazov, G; Smith, S; Johnson, I; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; Honscheid, K; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Cochran, E; Rudge, A; Stapnes, S; Huh, S; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    The design and construction of a PET camera module with high sensitivity, full 3-D spatial reconstruction and very good energy resolution is presented. The basic principle consists of an axial arrangement of long scintillation crystals around the Field Of View (FOV), providing a measurement of the transverse coordinates of the interacting 511 keV gamma ray. On top of each layer of crystals, an array of Wave-Length Shifter (WLS) strips, which collect the light leaving the crystals sideways, is positioned orthogonal to the crystal direction. The signals in the WLS strips allow a precise measurement of the z (axial) co-ordinate of the 511 keV gamma-ray gamma impact. The construction of two modules used for demonstration of the concept is described. First preliminary results on spatial and energy resolution from one full module will be shown. (C) 2010 Elsevier B.V. All rights reserved.

  2. Wavelet-based regularization and edge preservation for submillimetre 3D list-mode reconstruction data from a high resolution small animal PET system

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Ochoa Dominguez, Humberto de, E-mail: hochoa@uacj.mx [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Ortega Maynez, Leticia; Osiris Vergara Villegas, Osslan; Gordillo Castillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    The data obtained from a PET system tend to be noisy because of the limitations of the current instrumentation and the detector efficiency. This problem is particularly severe in images of small animals as the noise contaminates areas of interest within small organs. Therefore, denoising becomes a challenging task. In this paper, a novel wavelet-based regularization and edge preservation method is proposed to reduce such noise. To demonstrate this method, image reconstruction using a small mouse {sup 18}F NEMA phantom and a {sup 18}F mouse was performed. Investigation on the effects of the image quality was addressed for each reconstruction case. Results show that the proposed method drastically reduces the noise and preserves the image details.

  3. Small animal PET: aspects of performance assessment

    International Nuclear Information System (INIS)

    Weber, Simone; Bauer, Andreas

    2004-01-01

    Dedicated small animal positron emission tomography (PET) systems are increasingly prevalent in industry (e.g. for preclinical drug development) and biological research. Such systems permit researchers to perform animal studies of a longitudinal design characterised by repeated measurements in single animals. With the advent of commercial systems, scanners have become readily available and increasingly popular. As a consequence, technical specifications are becoming more diverse, making scanner systems less broadly applicable. The investigator has, therefore, to make a decision regarding which type of scanner is most suitable for the intended experiments. This decision should be based on gantry characteristics and the physical performance. The first few steps have been taken towards standardisation of the assessment of performance characteristics of dedicated animal PET systems, though such assessment is not yet routinely implemented. In this review, we describe current methods of evaluation of physical performance parameters of small animal PET scanners. Effects of methodologically different approaches on the results are assessed. It is underscored that particular attention has to be paid to spatial resolution, sensitivity, scatter fraction and count rate performance. Differences in performance measurement methods are described with regard to commercially available systems, namely the Concorde MicroPET systems P4 and R4 and the quad-HIDAC. Lastly, consequences of differences in scanner performance parameters are rated with respect to applications of small animal PET. (orig.)

  4. Birds Kept as Pets

    Science.gov (United States)

    ... your pet’s health Visit a veterinarian who has experience with pet birds for routine check-ups to keep your bird healthy and prevent infectious diseases. If your bird becomes sick or dies within a month after purchase or adoption: Contact your veterinarian. Inform the pet ...

  5. Model PET Scan Activity

    Science.gov (United States)

    Strunk, Amber; Gazdovich, Jennifer; Redouté, Oriane; Reverte, Juan Manuel; Shelley, Samantha; Todorova, Vesela

    2018-05-01

    This paper provides a brief introduction to antimatter and how it, along with other modern physics topics, is utilized in positron emission tomography (PET) scans. It further describes a hands-on activity for students to help them gain an understanding of how PET scans assist in detecting cancer. Modern physics topics provide an exciting way to introduce students to current applications of physics.

  6. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  7. MO-FG-207-00: Technological Advances in PET/MR Imaging

    International Nuclear Information System (INIS)

    2015-01-01

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee

  8. MO-FG-207-00: Technological Advances in PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.

  9. The Development and Clinical Use of a Beam ON-LINE PET System Mounted on a Rotating Gantry Port in Proton Therapy

    International Nuclear Information System (INIS)

    Nishio, Teiji; Miyatake, Aya; Ogino, Takashi; Nakagawa, Keiichi; Saijo, Nagahiro; Esumi, Hiroyasu

    2010-01-01

    Purpose: To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 s immediately after the proton irradiation. Results: The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.

  10. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    Science.gov (United States)

    Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.

    2014-04-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.

  11. An in-beam PET system for monitoring ion-beam therapy: test on phantoms using clinical 62 MeV protons

    International Nuclear Information System (INIS)

    Camarlinghi, N; Sportelli, G; Belcari, N; Cecchetti, M; Ferretti, S; Kraan, A; Retico, A; Straub, K; Guerra, A Del; Rosso, V; Battistoni, G; Sala, P; Cirrone, G A P; Cuttone, G; Romano, F; Tramontana, A

    2014-01-01

    Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β + activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β + activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo

  12. Comparison of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Hiroshi; Birnie, David H.; Mc Ardle, Brian; Dick, Alexander; Klein, Ran; Renaud, Jennifer; DeKemp, Robert A.; Davies, Ross; Hessian, Renee; Liu, Peter; Nery, Pablo B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); Pena, Elena; Dennie, Carole [The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); Bernick, Jordan; Wells, George A. [University of Ottawa Heart Institute, Cardiovascular Research Methods Center, Ottawa, ON (Canada); Leung, Eugene [The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Yoshinaga, Keiichiro [Hokkaido University School of Medicine, Department of Molecular Imaging, Hokkaido (Japan); Tsujino, Ichizo; Sato, Takahiro; Nishimura, Masaharu [Hokkaido University School of Medicine, First Department of Medicine, Hokkaido (Japan); Manabe, Osamu; Tamaki, Nagara [Hokkaido University School of Medicine, Department of Nuclear Medicine, Hokkaido (Japan); Oyama-Manabe, Noriko [Hokkaido University Hospital, Diagnostic and Interventional Radiology, Hokkaido (Japan); Ruddy, Terrence D.; Beanlands, Rob S.B. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada); The Ottawa Hospital, Division of Nuclear Medicine, Department of Medicine, Ottawa, Ontario (Canada); Chow, Benjamin J.W. [University of Ottawa Heart Institute, Molecular Function and Imaging Program, National Cardiac PET Centre, Ottawa, ON (Canada); University of Ottawa Heart Institute, Arrhythmia Service, Division of Cardiology, Department of Medicine, Ottawa, ON (Canada); The Ottawa Hospital, Medical Imaging Department, Ottawa, ON (Canada); University of Ottawa, Department of Radiology, Ottawa, ON (Canada)

    2016-02-15

    Cardiac sarcoidosis (CS) is a cause of conduction system disease (CSD). {sup 18}F-Fluorodeoxyglucose-positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) are used for detection of CS. The relative diagnostic value of these has not been well studied. The aim was to compare these imaging modalities in this population. We recruited steroid-naive patients with newly diagnosed CSD due to CS. All CS patients underwent both imaging studies within 12 weeks of each other. Patients were classified into two groups: group A with chronic mild CSD (right bundle branch block and/or axis deviation), and group B with new-onset atrioventricular block (AVB, Mobitz type II or third-degree AVB). Thirty patients were included. Positive findings on both imaging studies were seen in 72 % of patients (13/18) in group A and in 58 % of patients (7/12) in group B. The remainder (28 %) of the patients in group A were positive only on CMR. Of the patients in group B, 8 % were positive only on CMR and 33 % were positive only on FDG PET. Patients in group A were more likely to be positive only on CMR, and patients in group B were more likely to be positive only on FDG PET (p = 0.02). Patients in group B positive only on FDG PET underwent CMR earlier relative to their symptomatology than patients positive only on CMR (median 7.0, IQR 1.5 - 34.3, vs. 72.0, IQR 25.0 - 79.5 days; p = 0.03). The number of positive FDG PET and CMR studies was different in patients with CSD depending on their clinical presentation. This study demonstrated that CMR can adequately detect cardiac involvement associated with chronic mild CSD. In patients presenting with new-onset AVB and a negative CMR study, FDG PET may be useful for detecting cardiac involvement due to CS. (orig.)

  13. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  14. Oncology PET imaging

    International Nuclear Information System (INIS)

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to 'Where is Waldo?' I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the 'hallmarks of cancer'. (author)

  15. Life cycle energy and GHG emissions of PET recycling: Change-oriented effects

    NARCIS (Netherlands)

    Shen, Li; Nieuwlaar, Evert; Worrell, Ernst; Patel, Martin K.

    2011-01-01

    Purpose: The demand of PET bottles has increased rapidly in the past decades. The purpose of this study is to understand the environmental impact of PET recycling system, in which used bottles are recycled into both fibre and bottles, and to compare the recycling system with single-use PET. Methods:

  16. Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report 2006-2007

    International Nuclear Information System (INIS)

    MacManus, Michael; Nestle, Ursula; Rosenzweig, Kenneth E.; Carrio, Ignasi; Messa, Cristina; Belohlavek, Otakar; Danna, Massimo; Inoue, Tomio; Deniaud-Alexandre, Elizabeth; Schipani, Stefano; Watanabe, Naoyuki; Dondi, Maurizio; Jeremic, Branislav

    2009-01-01

    Positron Emission Tomography (PET) is a significant advance in cancer imaging with great potential for optimizing radiation therapy (RT) treatment planning and thereby improving outcomes for patients. The use of PET and PET/CT in RT planning was reviewed by an international panel. The International Atomic Energy Agency (IAEA) organized two synchronized and overlapping consultants' meetings with experts from different regions of the world in Vienna in July 2006. Nine experts and three IAEA staff evaluated the available data on the use of PET in RT planning, and considered practical methods for integrating it into routine practice. For RT planning, 18 F fluorodeoxyglucose (FDG) was the most valuable pharmaceutical. Numerous studies supported the routine use of FDG-PET for RT target volume determination in non-small cell lung cancer (NSCLC). There was also evidence for utility of PET in head and neck cancers, lymphoma and in esophageal cancers, with promising preliminary data in many other cancers. The best available approach employs integrated PET/CT images, acquired on a dual scanner in the radiotherapy treatment position after administration of tracer according to a standardized protocol, with careful optimization of images within the RT planning system and carefully considered rules for contouring tumor volumes. PET scans that are not recent or were acquired without proper patient positioning should be repeated for RT planning. PET will play an increasing valuable role in RT planning for a wide range of cancers. When requesting PET scans, physicians should be aware of their potential role in RT planning.

  17. Simultaneous PET/MRI with 13C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Andersen, Flemming L.; Henriksen, Sarah T.

    2016-01-01

    Background: Integrated PET/MRI with hyperpolarized 13C magnetic resonance spectroscopic imaging (13C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented...... for a clinical whole-body system using simultaneous 1 H-MRI and PET but never for 13C-MRSI and PET. Here, the feasibility of simultaneous PET and 13C-MRSI as well as hyperpolarized 13C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Methods: Combined PET and 13C......-MRSI phantoms including a NEMA [18F]-FDG phantom, 13C-acetate and 13C-urea sources, and hyperpolarized 13C-pyruvate were imaged repeatedly with PET and/or 13C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET...

  18. Cost-effectiveness analysis of strategies introducing FDG-PET into the mediastinal staging of non-small-cell lung cancer from the French healthcare system perspective

    International Nuclear Information System (INIS)

    Alzahouri, K.; Lejeune, C.; Woronoff-Lemsi, M.-C.; Arveux, P.; Guillemin, F.

    2005-01-01

    AIM: To determine the most cost-effective strategy using PET for mediastinal staging of potentially operable non-small-cell lung cancer (NSCLC). METHODS: Four decision strategies based on French NSCLC work-up practices for the selection of potential surgical candidates were compared, comprising CT only, PET for negative CT, PET for all with anatomical CT, and CT and PET for all cases. The medical literature was surveyed to obtain values for all variables of interest. Costs were assessed with reimbursements from the French healthcare insurance for the year 1999. Expected cost and life expectancy were calculated for all possible outcomes of each strategy. Sensitivity analysis was performed to determine the effects of changing variables on the expected cost and life expectancy. RESULTS: Compared with the CT only strategy, CT and PET for all resulted in a relative reduction of 70% of surgery for persons with mediastinal lymph node metastasis. PET for all with anatomical CT was shown to be a cost-effective alternative to the CT only, with life expectancy increased by 0.10 years and expected cost savings of 61 euros. This strategy was more favourable than PET for negative CT. Overall, sensitivity analyses showed the robustness of the results. CONCLUSION: The introduction of thoracic PET for NSCLC staging is potentially cost-effective in France. Further clinical investigation might help to validate this result

  19. PET/MRI for Oncologic Brain Imaging: A Comparison of Standard MR-Based Attenuation Corrections with a Model-Based Approach for the Siemens mMR PET/MR System.

    Science.gov (United States)

    Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N; Furtner, Julia; Fenchel, Matthias; Hahn, Andreas; Lanzenberger, Rupert; Mayerhoefer, Marius E; Traub-Weidinger, Tatjana; Beyer, Thomas

    2017-09-01

    The aim of this study was to compare attenuation-correction (AC) approaches for PET/MRI in clinical neurooncology. Methods: Forty-nine PET/MRI brain scans were included: brain tumor studies using 18 F-fluoro-ethyl-tyrosine ( 18 F-FET) ( n = 31) and 68 Ga-DOTANOC ( n = 7) and studies of healthy subjects using 18 F-FDG ( n = 11). For each subject, MR-based AC maps (MR-AC) were acquired using the standard DIXON- and ultrashort echo time (UTE)-based approaches. A third MR-AC was calculated using a model-based, postprocessing approach to account for bone attenuation values (BD, noncommercial prototype software by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs [%]), with regards to AC-CTref: for 18 F-FET (A)-SUVs as well as volumes of interest (VOIs) defined by a 70% threshold of all segmented lesions and lesion-to-background ratios; for 68 Ga-DOTANOC (B)-SUVs as well as VOIs defined by a 50% threshold for all lesions and the pituitary gland; and for 18 F-FDG (C)-RD of SUVs of the whole brain and 10 anatomic regions segmented on MR images. Results: For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUV mean were -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD, respectively. Lesion-to-background ratios for all MR-AC methods were similar to that of CTref. For B, average RDs of SUV mean were -11%, -11%, and -3% and of the VOIs 1%, -4%, and -3%, respectively. In the case of 18 F-FDG PET/MRI (C), RDs for the whole brain were -11%, -8%, and -5% for DIXON, UTE, and BD, respectively. Conclusion: The diagnostic reading of PET/MR patients with brain tumors did not change with the chosen AC method. Quantitative accuracy of

  20. PET/MRI. Methodology and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carrio, Ignasi [Autonomous Univ. of Barcelona, Hospital Sant Pau (Spain). Dept. Medicina Nuclear; Ros, Pablo (ed.) [Univ. Hospitals Case, Medical Center, Cleveland, OH (United States). Dept. of Radiology

    2014-04-01

    Provides detailed information on the methodology and equipment of MRI-PET. Covers a wide range of clinical applications in oncology, cardiology, and neurology. Written by an international group of experts in MRI and PET. PET/MRI is an exciting novel diagnostic imaging modality that combines the precise anatomic and physiologic information provided by magnetic resonance imaging (MRI) with the molecular data obtained with positron emission tomography (PET). PET/MRI offers the promise of a simplified work flow, reduced radiation, whole-body imaging with superior soft tissue contrast, and time of flight physiologic information. It has been described as the pathway to molecular imaging in medicine. In compiling this textbook, the editors have brought together a truly international group of experts in MRI and PET. The book is divided into two parts. The first part covers methodology and equipment and comprises chapters on basic molecular medicine, development of specific contrast agents, MR attenuation and validation, quantitative MRI and PET motion correction, and technical implications for both MRI and PET. The second part of the book focuses on clinical applications in oncology, cardiology, and neurology. Imaging of major neoplasms, including lymphomas and tumors of the breast, prostate, and head and neck, is covered in individual chapters. Further chapters address functional and metabolic cardiovascular examinations and major central nervous system applications such as brain tumors and dementias. Risks, safety aspects, and healthcare costs and impacts are also discussed. This book will be of interest to all radiologists and nuclear medicine physicians who wish to learn more about the latest developments in this important emerging imaging modality and its applications.

  1. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    International Nuclear Information System (INIS)

    Galiza Barbosa, F. de; Delso, G.; Voert, E.E.G.W. ter; Huellner, M.W.; Herrmann, K.; Veit-Haibach, P.

    2016-01-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies.

  2. Reliability of semiquantitative 18F-FDG PET parameters derived from simultaneous brain PET/MRI: A feasibility study

    International Nuclear Information System (INIS)

    Jena, Amarnath; Taneja, Sangeeta; Goel, Reema; Renjen, Pushpendranath; Negi, Pradeep

    2014-01-01

    Purpose: Simultaneous brain PET/MRI faces an important issue of validation of accurate MRI based attenuation correction (AC) method for precise quantitation of brain PET data unlike in PET/CT systems where the use of standard, validated CT based AC is routinely available. The aim of this study was to investigate the feasibility of evaluation of semiquantitative 18 F-FDG PET parameters derived from simultaneous brain PET/MRI using ultrashort echo time (UTE) sequences for AC and to assess their agreement with those obtained from PET/CT examination. Methods: Sixteen patients (age range 18–73 years; mean age 49.43 (19.3) years; 13 men 3 women) underwent simultaneous brain PET/MRI followed immediately by PET/CT. Quantitative analysis of brain PET images obtained from both studies was undertaken using Scenium v.1 brain analysis software package. Twenty ROIs for various brain regions were system generated and 6 semiquantitative parameters including maximum standardized uptake value (SUV max), SUV mean, minimum SUV (SUV min), minimum standard deviation (SD min), maximum SD (SD max) and SD from mean were calculated for both sets of PET data for each patient. Intra-class correlation coefficients (ICCs) were determined to assess agreement between the various semiquantitative parameters for the two PET data sets. Results: Intra-class co-relation between the two PET data sets for SUV max, SUV mean and SD max was highly significant (p < 0.00) for all the 20 predefined brain regions with ICC > 0.9. SD from mean was also found to be statistically significant for all the predefined brain regions with ICC > 0.8. However, SUV max and SUV mean values obtained from PET/MRI were significantly lower compared to those of PET/CT for all the predefined brain regions. Conclusion: PET quantitation accuracy using the MRI based UTE sequences for AC in simultaneous brain PET/MRI is reliable in a clinical setting, being similar to that obtained using PET/CT

  3. Procedure for making mannequins tailor for image quality control of PET by 3D printing systems; Procedimiento para la fabricacion de maniquies a medida, para control de calidad de imagen PET, mediante sistemas de impresion 3D

    Energy Technology Data Exchange (ETDEWEB)

    Collado Chamorro, P. M.; Saez Beltran, F.; Diaz Pascual, V.; Benito Bejarado, M. A.; Sanz Freire, C. J.; Lopo Casqueiro, N.; Gonzalez Fernandez, M. P.; Lopez de Gamarra, M. S.

    2015-07-01

    There is a software free both for be the processes of modeling of the objects 3D to split of medical images, as for convert said modeling to file ready for be read and executed by the 3D printers (sequence or slicer). This lets make mannequins of Control of quality with a investment minimum. In this work is built a mannequin of brain refillable to measurement for be used in studies PET. (Author)

  4. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    International Nuclear Information System (INIS)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV; Knopp, MU; Zhang, B; Tung, C

    2016-01-01

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  5. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Natwa, M; Hall, NC; Knopp, MV [The Ohio State University, Columbus, OH (United States); Knopp, MU [Pepperdine University, Malibu, CA (United States); Zhang, B; Tung, C [Philips Healthcare, Highland Heights, OH (United States)

    2016-06-15

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%). In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.

  6. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Rollo, F.D.; Hines, H.

    2001-01-01

    ADAC Laboratories has two main imaging strengths: PET and Gamma Cameras. PET's three-dimensional imaging of metabolic function is used in oncology, with emerging opportunties in cardiology, genetic mapping and pharmaceuticals research. In oncology, PET imaging can provide comprehensive and accurate staging information which is not available from CT or MRI. In some cases, this information can lead to modification of treatment, for example from an aggressive approach to one of palliation. The SKYLight is the world's first and only gantry-free camera. It is a dual-detector variable angle camera designed for high throughput, with unsurpassed openness and patient access. (orig.)

  7. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    Science.gov (United States)

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  8. Comparing PETS and GEPT in China and Taiwan

    Science.gov (United States)

    Wu, Mei

    2012-01-01

    This paper compares the Public English Test System (PETS) administered in mainland, China and the General English Proficiency Test (GEPT) administered in Taiwan, from the aspects of test levels, test contents and scoring weight. Compared with the PETS, the GEPT is found to value the English productive skills more, and have a greater ability to…

  9. PET/MR synchronization by detection of switching gradients

    International Nuclear Information System (INIS)

    Weissler, Bjoern; Gebhardt, Pierre; Lerche, Christoph W; Soultanidis, Georgios; Wehner, Jakob; Heberling, Dirk; Schulz, Volkmar

    2014-01-01

    The full potential of simultaneous PET and MRI image acquisition, such as dynamic studies or motion compensation, can only be explored if the data of both modalities are temporally synchronized. These hybrid imaging systems are often realized as custom made PET inserts for commercially available MRI scanner. Unfortunately, the standard MRIs do not always offer easily programmable synchronization outputs, nor can they be modified.

  10. PET-CT for nuclear medicine diagnostics of multiple myeloma

    International Nuclear Information System (INIS)

    Dimitrakopoulou-Strauss, A.

    2014-01-01

    Functional or morphofunctional imaging modalities are used in myeloma patients for the diagnosis and therapy management within research protocols. Despite new staging criteria, which take into account the viability of a myeloma lesion, positron emission tomography (PET) is not used routinely. The impact of PET is therefore open. The role of PET and PET computed tomography (PET-CT) for the diagnosis and therapy management is discussed. The use of PET with 18F-fluorodeoxyglucose (FDG) allows the measurement of viable myeloma lesions and correlates with the stage of disease. A negative FDG examination correlates with a better prognosis. Furthermore, the number of focal lesions as well as the whole functional volume of myeloma lesions in FDG have a prognostic impact. Several studies have demonstrated the impact of FDG for the assessment of therapy monitoring and show that FDG is an earlier indicator for therapy response as compared to magnetic resonance imaging (MRI). The CT component of the new hybrid systems allows the assessment of osteolytic lesions in CT and their viability in FDG. The combination of PET with an MRT scanner allows the simultaneous measurement of bone marrow infiltration, focal lesions and their viability. The use of modern hybrid scanners, such as PET-CT and PET-MRT facilitates the simultaneous measurement of viable myeloma lesions, osteolytic lesions and bone marrow infiltration in the whole body; therefore, it is expected that these imaging modalities will play a greater role both in diagnosis and therapy management. (orig.) [de

  11. Towards truly integrated hardware fusion with PET/CT

    International Nuclear Information System (INIS)

    Beyer, T.

    2005-01-01

    Combined PET/CT imaging is a non-invasive means of acquiring and reviewing both, the anatomy and the molecular pathways of a patient during a quasi-simultaneous examination. Since the introduction of the prototype PET/CT in 1998 this imaging technology has evolved rapidly. State-of-the-art PET/CT tomographs combine the latest technology in spiral, multi-slice CT and PET using novel scintillator materials and image reconstruction techniques. Together with novel patient positioning systems PET/CT tomographs allow to acquire complementary PET and CT data in a single exam with the best intrinsic co-registration. In addition to the hardware integration efforts have been made to integrate the acquisition and viewing software in PET/CT, thus making the diagnostic review and reporting more efficient. Based on the first clinical experiences and the technical evolution of combined imaging technology PET/CT has become a standard in diagnostic oncology. With high-performance imaging technology at hand today, standardized, high-quality PET/CT imaging protocols are needed to provide best oncology patient care. These protocols mandate the joint efforts of a multi-disciplinary team of physicians, physicists and radiochemists. (orig.)

  12. PET studies in epilepsy

    Science.gov (United States)

    Sarikaya, Ismet

    2015-01-01

    Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex

  13. PET and Recycling

    OpenAIRE

    Funda Sevencan; Songul A. Vaizoglu

    2007-01-01

    This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET) is the most commonly used plastics. PET is used to protect food, drinking water,...

  14. Combined PET/MR imaging in neurology

    DEFF Research Database (Denmark)

    Andersen, Flemming Littrup; Ladefoged, Claes Nøhr; Beyer, Thomas

    2014-01-01

    AIM: Combined PET/MR systems have now become available for clinical use. Given the lack of integrated standard transmission (TX) sources in these systems, attenuation and scatter correction (AC) must be performed using the available MR-images. Since bone tissue cannot easily be accounted for duri...

  15. Digital PET compliance to EARL accreditation specifications

    NARCIS (Netherlands)

    Koopman, Daniëlle; Groot Koerkamp, Maureen; Jager, Pieter L.; Arkies, Hester; Knollema, Siert; Slump, Cornelis H.; Sanches, Pedro G.; van Dalen, Jorn A.

    2017-01-01

    Background: Our aim was to evaluate if a recently introduced TOF PET system with digital photon counting technology (Philips Healthcare), potentially providing an improved image quality over analogue systems, can fulfil EANM research Ltd (EARL) accreditation specifications for tumour imaging with

  16. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  17. Dual-Modality PET/Ultrasound imaging of the Prostate

    International Nuclear Information System (INIS)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-01-01

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems

  18. Development of HM12 cyclotron for PET

    International Nuclear Information System (INIS)

    Morita, Takuzo; Kawama, Tetsuo; Fujii, Kazuo

    2000-01-01

    In Japan, there are at present more than 30 PET (Positron Emission Tomography) facilities. The movements of medical insurance application to the PET diagnosis using [ 18 F] FDG (2-[ 18 F]-fluoro-2-deoxy-glucose) by the Ministry of Health and Welfare are being enhanced by PET related people. Therefore, more clinical centers using PET system are expected to be built in the near future. HM12 cyclotron was developed to meet such market demands for PET, and the prototype machine has been rent to Cyclotron Radio Isotope Center (CYRIC) of Tohoku University since Oct. 1998 for their use of clinical research with positron emitters like 11 C, 13 N, 15 O and 18 F. We got many technical data of HM12 Cyclotron on the clinical base. The data was enough to establish the reliability of HM12 system operation under the clinical condition. The first commercial product of HM12 Cyclotron was delivered to National Cancer Center in March 2000. The final performance test will be finished by the end of June 2000. (author)

  19. Cardiac sympathetic neuronal imaging using PET

    International Nuclear Information System (INIS)

    Lautamaeki, Riikka; Tipre, Dnyanesh; Bengel, Frank M.

    2007-01-01

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  20. Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI.

    Science.gov (United States)

    Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho

    2018-06-01

    Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times

  1. Hybrid imaging for detection of carcinoma of unknown primary: A preliminary comparison trial of whole-body PET/MRI versus PET/CT

    International Nuclear Information System (INIS)

    Ruhlmann, Verena; Ruhlmann, Marcus; Bellendorf, Alexander; Grueneisen, Johannes; Sawicki, Lino M.; Grafe, Hong; Forsting, Michael; Bockisch, Andreas; Umutlu, Lale

    2016-01-01

    PET/MRI showed comparably high lesion conspicuity (2.6 ± 0.6 each), with superior assessment of cervical lesions in PET/MRI and an indicated superior assessment of pulmonary lesions in PET/CT. Diagnostic confidence was rated comparably high in PET/CT and PET/MRI (2.7 ± 0.5 each). The mean values of SUVmax of all PET-positive lesions (PET/MRT 7.9 ± 4.2 vs. PET/CT 7.2 ± 3.5) showed a strong positive correlation between the SUVs derived from both hybrid imaging systems (Pearson‘s correlation r = 0.927). Conclusions: Both hybrid imaging techniques provide a comparable diagnostic ability for detection of primary cancer and metastases in patients with CUP, with comparably high lesion conspicuity and diagnostic confidence, offering superior assessment of cervical lesions in PET/MRI and potentially of pulmonary lesions in PET/CT. Furthermore, due to the significantly lower dose of ionizing radiation, PET/MRI may serve as a powerful alternative to PET/CT, particularly for therapy monitoring and/or surveillance considering the long-term cumulative dose.

  2. Hybrid imaging for detection of carcinoma of unknown primary: A preliminary comparison trial of whole-body PET/MRI versus PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ruhlmann, Verena; Ruhlmann, Marcus; Bellendorf, Alexander [Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany); Grueneisen, Johannes [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany); Sawicki, Lino M. [Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Moorenstraße 5, 40225 Dusseldorf (Germany); Grafe, Hong [Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany); Forsting, Michael [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany); Bockisch, Andreas [Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany); Umutlu, Lale, E-mail: verena.ruhlmann@uk-essen.de [Department of Nuclear Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122 Essen (Germany)

    2016-11-15

    PET/MRI showed comparably high lesion conspicuity (2.6 ± 0.6 each), with superior assessment of cervical lesions in PET/MRI and an indicated superior assessment of pulmonary lesions in PET/CT. Diagnostic confidence was rated comparably high in PET/CT and PET/MRI (2.7 ± 0.5 each). The mean values of SUVmax of all PET-positive lesions (PET/MRT 7.9 ± 4.2 vs. PET/CT 7.2 ± 3.5) showed a strong positive correlation between the SUVs derived from both hybrid imaging systems (Pearson‘s correlation r = 0.927). Conclusions: Both hybrid imaging techniques provide a comparable diagnostic ability for detection of primary cancer and metastases in patients with CUP, with comparably high lesion conspicuity and diagnostic confidence, offering superior assessment of cervical lesions in PET/MRI and potentially of pulmonary lesions in PET/CT. Furthermore, due to the significantly lower dose of ionizing radiation, PET/MRI may serve as a powerful alternative to PET/CT, particularly for therapy monitoring and/or surveillance considering the long-term cumulative dose.

  3. Positron emission tomography (PET) in psychiatry. PET in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K [Max-Planck-Institut fuer Neurologische Forschung und Neurologische Klinik der Universitaet Koeln (Germany)

    1993-08-13

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.)

  4. Positron emission tomography (PET) in psychiatry. PET in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, K. (Max-Planck-Institut fuer Neurologische Forschung und Neurologische Klinik der Universitaet Koeln (Germany))

    1993-08-13

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.)

  5. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  6. Cloning and sequence analysis of a partial CDS of leptospiral ligA gene in pET-32a - Escherichia coli DH5α system

    Directory of Open Access Journals (Sweden)

    Manju Soman

    2018-04-01

    Full Text Available Aim: This study aims at cloning, sequencing, and phylogenetic analysis of a partial CDS of ligA gene in pET-32a - Escherichia coli DH5α system, with the objective of identifying the conserved nature of the ligA gene in the genus Leptospira. Materials and Methods: A partial CDS (nucleotide 1873 to nucleotide 3363 of the ligA gene was amplified from genomic DNA of Leptospira interrogans serovar Canicola by polymerase chain reaction (PCR. The PCR-amplified DNA was cloned into pET-32a vector and transformed into competent E. coli DH5α bacterial cells. The partial ligA gene insert was sequenced and the nucleotide sequences obtained were aligned with the published ligA gene sequences of other Leptospira serovars, using nucleotide BLAST, NCBI. Phylogenetic analysis of the gene sequence was done by maximum likelihood method using Mega 6.06 software. Results: The PCR could amplify the 1491 nucleotide sequence spanning from nucleotide 1873 to nucleotide 3363 of the ligA gene and the partial ligA gene could be successfully cloned in E. coli DH5α cells. The nucleotide sequence when analyzed for homology with the reported gene sequences of other Leptospira serovars was found to have 100% homology to the 1910 bp to 3320 bp sequence of ligA gene of L. interrogans strain Kito serogroup Canicola. The predicted protein consisted of 470 aminoacids. Phylogenetic analysis revealed that the ligA gene was conserved in L. interrogans species. Conclusion: The partial ligA gene could be successfully cloned and sequenced from E. coli DH5α cells. The sequence showed 100% homology to the published ligA gene sequences. The phylogenetic analysis revealed the conserved nature of the ligA gene. Further studies on the expression and immunogenicity of the partial LigA protein need to be carried out to determine its competence as a subunit vaccine candidate.

  7. Current status and prospects of cardiac PET

    International Nuclear Information System (INIS)

    Yoshida, Katuya

    1999-01-01

    With positron emission tomography (PET), noninvasive measurements of myocardial blood flow and metabolism have now become possible. 1) Myocardial blood flow: We developed a high-resolution PET system for rabbits and showed that myocardial N-13 ammonnia uptake correlated well with flow measure with microspheres. We also demonstrated that a simplified PET protocol using N-13 ammonia or Rb-82 provide noninvasive measurement of coronary flow reserve in dog experiments. This protocol enables to produce estimates of myocardial blood flow in man and that are well correlated with the complex compartment model. 2) Myocardial glucose metabolism: We validated experimentally a simple method to quantify tissue glucose utilization with the brain reference index (BRI) using C-14 deoxyglucose and assessed its clinical feasibility for myocardial PET. 3) Membrane integrity: Loss of cell membrane integrity for trapping the potassium or it's analog is a market of myocardial necrosis/viability. We recently synthetized potassium-38 as a PET tracer and started an experimental study. (author)

  8. Medical application of PET technology

    International Nuclear Information System (INIS)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [ 18 F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals

  9. PET in neuro-oncology

    NARCIS (Netherlands)

    Roelcke, U; Leenders, K.L.

    This article reviews possible clinical applications of positron emission tomography (PET) in brain tumor patients. PET allows quantitative assessment of brain tumor pathophysiology and biochemistry. It therefore provides different information about tumors when compared to histological or

  10. Take Care with Pet Reptiles

    Science.gov (United States)

    ... young children. [775 KB] Animals and Health Healthy Pets Healthy People : CDC website with helpful resources and information on health benefits of pets and disease risks Safe Handling Tips for Reptiles ...

  11. Medical application of PET technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Choi, C. W.; An, S. H.; Woo, K. S.; Chung, W. S.; Yang, S. D.; Jun, G. S. and others

    1999-04-01

    We performed following studies using PET technology: 1. Clinical usefulness of [{sup 18}F]FDG whole body PET in malignant disease 2. Clinical usefulness of quantitative evaluation of F-18-FDG 3. Pilot study of C-11 methionine PET in brain tumor 4. PET study in patients with Parkinson's disease 5. A study on the clinical myocardial PET image. PET gives various metabolic information for the living human body, and is very important, new diagnostic modality. The PET study will give us the information of cancer patients such as early detection of cancer, staging, recurrence detection and characterization of cancer. The quantitative analysis using PET could be applied to evaluate the pathophysiology of various diseases and develop new drugs and develop new radiopharmaceuticals.

  12. Evaluation of PeneloPET Simulations of Biograph PET/CT Scanners

    Science.gov (United States)

    Abushab, K. M.; Herraiz, J. L.; Vicente, E.; Cal-González, J.; España, S.; Vaquero, J. J.; Jakoby, B. W.; Udías, J. M.

    2016-06-01

    Monte Carlo (MC) simulations are widely used in positron emission tomography (PET) for optimizing detector design, acquisition protocols, and evaluating corrections and reconstruction methods. PeneloPET is a MC code based on PENELOPE, for PET simulations which considers detector geometry, acquisition electronics and materials, and source definitions. While PeneloPET has been successfully employed and validated with small animal PET scanners, it required a proper validation with clinical PET scanners including time-of-flight (TOF) information. For this purpose, we chose the family of Biograph PET/CT scanners: the Biograph True-Point (B-TP), Biograph True-Point with TrueV (B-TPTV) and the Biograph mCT. They have similar block detectors and electronics, but a different number of rings and configuration. Some effective parameters of the simulations, such as the dead-time and the size of the reflectors in the detectors, were adjusted to reproduce the sensitivity and noise equivalent count (NEC) rate of the B-TPTV scanner. These parameters were then used to make predictions of experimental results such as sensitivity, NEC rate, spatial resolution, and scatter fraction (SF), from all the Biograph scanners and some variations of them (energy windows and additional rings of detectors). Predictions agree with the measured values for the three scanners, within 7% (sensitivity and NEC rate) and 5% (SF). The resolution obtained for the B-TPTV is slightly better (10%) than the experimental values. In conclusion, we have shown that PeneloPET is suitable for simulating and investigating clinical systems with good accuracy and short computational time, though some effort tuning of a few parameters of the scanners modeled may be needed in case that the full details of the scanners studied are not available.

  13. Synthesis of stereo (R and S) and geometric (E and Z) [F-18]fluoro-β-fluoromethylene-M-tyrosine derivatives: specific PET probes for central dopamine systems

    International Nuclear Information System (INIS)

    Lacan, G.; Barrio, J.R.; Satyamurthy, N.; Yu, D.C.; Huang, S.C.; Phelps, M.E.

    1994-01-01

    Racemic β-fluoromethylene-m-tyrosine (FMMl) was developed as an aromatic amino acid decarboxylase (AAAD)- activated monoamine oxidase (MAO) suicide inhibitor. Direct [F-18] fluorination of pure enantiomers, R and S-(E)-β- fluoromethylene-m-tyrosine (E-FMMT) and the racemic geometric isomer R,S(Z)-β-fluoromethylene-m-tyrosine (Z-FMMT) with [F- 18] acetylhypofluorite, afforded 6- and 2[F-18] fluoro positional isomers as the major products. Regioselective radiofluorodestannylation of the respective 4-trimethylstannyl R,S- (E) - FMMT with [F-18]F 2 yielded the 4[F-18] fluoro derivative, thus allowing for the systematic evaluation of the regio- and stereo radiofluorinated AAAD probes. Macacca nemestrina monkeys were injected iv with purified radiofluorinated FMMT analogs and the distribution of activity in the central dopaminergic system was studied with positron emission tomography (PET). Radiofluorinated stereo and geometric FMMT derivatives showed significant differences in their in vivo striatal localization, with radioprobe localization decreasing in the order: 6F-S-(E)-FMMT >> 2F-S-(E)- FMMT >> 4F-R,S-(E)-FMMT. Neither radiofluorinated analogs of R-(E)- FMMT and R,S-(Z)-FMMT showed any significant striatal localization in vivo. (author)

  14. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    International Nuclear Information System (INIS)

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon’s ray-tracer, we propose another more simplified geometrical projector based on the Bresenham’s ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model. (paper)

  15. Combined PET/MRI

    DEFF Research Database (Denmark)

    Bailey, D L; Pichler, B J; Gückel, B

    2018-01-01

    The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants c...... of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.......The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants...... critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how...

  16. CyberPET: a PET service distributed over a wide area

    International Nuclear Information System (INIS)

    Pilloy, W.J.; Hellwig, D.; Schaeffer, A.; Hoffmann, P.; Lens, V.

    2002-01-01

    Aim: Demonstration of bi-directional PET data transmission, interactive display and co-registration, for the purpose of correlative imaging, treatment planning and teaching. Material and Method: In the year 2000, the initial problem to attend was to provide an effective PET service to a hospital (in Luxemburg) which lies 150 km away from a PET center (in another country). Once this solved, the procedure was expanded (in 2001) to co-registration with CT/MRI scans performed locally, and with radiotherapy simulation CT performed in another center 25 km away (in 2002). Equipment from various vendors was used (Siemens, Adac, GE, Hermes). With preliminary agreement of the national medical aid, patients are sent from the Nuclear Medicine Dept of the Centre Hospitalier in Luxemburg (CHL) to the Dept NM of the Saarland University Medical Center for PET examination. The digital data are then sent from the Siemens PET camera to a PC connected to the LAN, and then to a FTP server (Healthnet). The data are similarly collected by a PC of the hospital network in Luxemburg, and transferred to a Hermes NM station. The Dicom PET data are converted on the fly to Interfile, displayed interactively as any other tomographic data, printed and available on the NM image server. Since 2001, the PET data are co-registered with whole-body CT data recorded at CHL according to a specific protocol (see other paper of this group). Now in 2002, we are busy implementing the co-registration of PET data and simulation CT data obtained from the Centre Baclesse (CFB, 25 km from CHL) for the treatment planning of brain tumours (input into an ADAC system). Furthermore, we plan to send the data (after deletion of their digital ID) to a (South African) university which does not yet dispose of a PET camera, to allow the training of their registrars. Results: For the end-user clinician at CHL and CFB , the PET data have the quality of 'live data', which can be examined interactively, along with other imaging

  17. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  18. Performance evaluation of a high resolution dedicated breast PET scanner

    International Nuclear Information System (INIS)

    García Hernández, Trinitat; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo; Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del; Roselló Ferrando, Joan

    2016-01-01

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ("1"8F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance

  19. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  20. PET-Studies in parkinson's disease

    International Nuclear Information System (INIS)

    Schwarz, J.

    2002-01-01

    Positron-emission-tomography (PET) has enabled to study the metabolism and blood flow in specific brain areas. Besides, there is a variety of radiotracers that allow quantification of the function of distinct molecules. In respect to Parkinson's disease, PET allowed for the first time to assess the number of dopaminergic neurons in vivo. Thus, helping confirming a dopaminergic deficit, measuring disease progression and also help to determine the function of dopaminergic grafts. Current research has shifted to determine the role of related neurotransmitter systems in the pathophysiology of Parkinson's disease. (orig.) [de

  1. Modular strategies for PET imaging agents

    International Nuclear Information System (INIS)

    Hooker, J.M.

    2010-01-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  2. PET imaging in multiple sclerosis

    NARCIS (Netherlands)

    Faria, Daniele de Paula; Copray, Sjef; Buchpiguel, Carlos; Dierckx, Rudi; de Vries, Erik

    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus

  3. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  4. Multimodality Molecular Imaging (FDG-PET/CT, US Elastography, and DWI-MRI) as Complimentary Adjunct for Enhancing Diagnostic Confidence in Reported Intermediate Risk Category Thyroid Nodules on Bethesda Thyroid Cytopathology Reporting System

    International Nuclear Information System (INIS)

    Basu, Sandip; Mahajan, Abhishek; Arya, Supreeta

    2016-01-01

    The potential complimentary role of various molecular imaging modalities [fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT), ultrasound (US)-elastography, and diffusion weighted imaging-magnetic resonance imaging (DWI-MRI)] in characterizing thyroid nodules, which have been designated as “intermediate risk category” on the Bethesda thyroid cytopathology reporting system (BTCRS), is illustrated in this communication. The clinical cases described (category III thyroid nodules on BTCRS) show the imaging features and the final diagnostic impressions rendered by the interpreting physicians with the modalities that have been independently compared in a tabular format at the end; of particular note is the high negative predictive value of these (specifically FDG-PET/CT), which could aid in enhancing the diagnostic confidence in the reported “intermediate risk category” thyroid nodules, a “gray zone” from the patient management viewpoint

  5. MO-FG-207-03: Maximizing the Utility of Integrated PET/MRI in Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Behr, S. [University of California (United States)

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.

  6. MO-FG-207-03: Maximizing the Utility of Integrated PET/MRI in Clinical Applications

    International Nuclear Information System (INIS)

    Behr, S.

    2015-01-01

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applications that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee

  7. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  8. PET imaging of inflammation

    International Nuclear Information System (INIS)

    Buscombe, J. R.

    2014-01-01

    Inflammatory diseases are common place and often chronic. Most inflammatory cells have increased uptake of glucose which is enhanced in the presence of local cytokines. Therefore, imaging glucose metabolism by the means of 18F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET) holds significant promise in imaging focal inflammation. Most of the work published involved small series of patients with either vasculitis, sarcoid or rheumatoid arthritis. It would appear that FDG PET is a simple and effective technique to identify inflammatory tissue in these conditions. There is even some work to suggest that by comparing baseline and early post therapy scans clinical outcome can be predicted. This would appear to be true with vasculitis as well as retroperitoneal fibrosis. The number of patients in each study is small but the evidence is compelling enough to recommend FDG PET imaging in the routine care of these patients.

  9. Pet in Clinical oncology

    International Nuclear Information System (INIS)

    Hunsche, A.; Grossman, G.; Santana, M.; Santana, C.; Halkar, R.; Garcia, E.

    2003-01-01

    The utility of the PET (positron emission tomography in clinical oncology has been recognized for more than two decades, locating it as a sensible technique for the diagnosis and the prognosis stratification of the oncology patients. The sensitivity and specificity of the PET in comparation to other image studies have demonstrated to be greater. For some years, there was a restriction of PET because of the high cost of the equipment and the cyclotrons. Nevertheless, the relation of cost/benefits is considered as a priority as this technique offers important clinical information. In this article the results observed when using it in diverse types of cancer, as well as the effectiveness shown in the pre-operating evaluation, the evaluation of residual disease, diagnosis of recurrences, pursuit and prognosis stratification of the patients with cancer. (The author)

  10. Metabolic imaging using PET

    International Nuclear Information System (INIS)

    Kudo, Takashi

    2007-01-01

    There is growing evidence that myocardial metabolism plays a key role not only in ischaemic heart disease but also in a variety of diseases which involve myocardium globally, such as heart failure and diabetes mellitus. Understanding myocardial metabolism in such diseases helps to elucidate the pathophysiology and assists in making therapeutic decisions. As well as providing information on regional changes, PET can deliver quantitative information about both regional and global changes in metabolism. This capability of quantitative measurement is one of the major advantages of PET along with physiological positron tracers, especially relevant in evaluating diseases which involve the whole myocardium. This review discusses major PET tracers for metabolic imaging and their clinical applications and contributions to research regarding ischaemic heart disease and other diseases such as heart failure and diabetic heart disease. Future applications of positron metabolic tracers for the detection of vulnerable plaque are also highlighted briefly. (orig.)

  11. PET application in psychiatry and psychopharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Suhara, Tetsuya [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-07-01

    accumulation was observed in the thalamus and striatum. The thalamus to cerebellum ratio was about 2 at 90 min after the injection of the tracer. Pretreatment with 50 mg of clomipramine resulted in 40-50% occupancy of the serotonin transporter in the thalamus. Another important potential regarding the use of PET in the psychiatric field is the investigation of the pathophysiology of brain disease and normal brain functions from in vivo neurochemistry. Brain dopamine system plays an important role in several neuropsychiatric disorders especially schizophrenia. Dopamine receptors are classified in five different classes; currently D{sub 1} and D{sub 2} receptors can be visualized with PET. Postmortem investigations have demonstrated that in the cortical region, the density of dopamine D{sub 1} receptors is approximately 10-fold that of D{sub 2} receptors. The hypothesis has been proposed that schizophrenic patients have reduced cortical dopamine activity together with increased subcortical dopamine activity. To examine both the cortical and subcortical dopamine D{sub 1} receptors in schizophrenic patients, [{sup 11}C] SCH23390 was employed in a PET study. Eighteen healthy male subjects (27.7{+-}5.6 years) and 17 male schizophrenic patients (27.4{+-}5.9 years) were included. Ten patients were neuroleptic naive and seven patients were drug free. The binding potential was obtained in the several brain regions using the cerebellum as the reference. In the striatum, there were no significant differences between the patients and normal controls. But the binding potentials in the prefrontal cortex were significantly lower in the schizophrenic patients. The binding potentials in the prefrontal cortex were negatively correlated with the BPRS negative symptom subscore. PET has many advantages over other non-invasive techniques, and PET can show us different phenomena which we can not observe with in vitro techniques. Progress in PET study will provide a whole new viewpoint for psychiatric

  12. PET application in psychiatry and psychopharmacology

    International Nuclear Information System (INIS)

    Suhara, Tetsuya

    1999-01-01

    in the thalamus and striatum. The thalamus to cerebellum ratio was about 2 at 90 min after the injection of the tracer. Pretreatment with 50 mg of clomipramine resulted in 40-50% occupancy of the serotonin transporter in the thalamus. Another important potential regarding the use of PET in the psychiatric field is the investigation of the pathophysiology of brain disease and normal brain functions from in vivo neurochemistry. Brain dopamine system plays an important role in several neuropsychiatric disorders especially schizophrenia. Dopamine receptors are classified in five different classes; currently D 1 and D 2 receptors can be visualized with PET. Postmortem investigations have demonstrated that in the cortical region, the density of dopamine D 1 receptors is approximately 10-fold that of D 2 receptors. The hypothesis has been proposed that schizophrenic patients have reduced cortical dopamine activity together with increased subcortical dopamine activity. To examine both the cortical and subcortical dopamine D 1 receptors in schizophrenic patients, [ 11 C] SCH23390 was employed in a PET study. Eighteen healthy male subjects (27.7±5.6 years) and 17 male schizophrenic patients (27.4±5.9 years) were included. Ten patients were neuroleptic naive and seven patients were drug free. The binding potential was obtained in the several brain regions using the cerebellum as the reference. In the striatum, there were no significant differences between the patients and normal controls. But the binding potentials in the prefrontal cortex were significantly lower in the schizophrenic patients. The binding potentials in the prefrontal cortex were negatively correlated with the BPRS negative symptom subscore. PET has many advantages over other non-invasive techniques, and PET can show us different phenomena which we can not observe with in vitro techniques. Progress in PET study will provide a whole new viewpoint for psychiatric research. (author)

  13. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lim, S. M [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner.

  14. Evaluation of cat brain infarction model using microPET

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lim, Sang Moo [Korea Institite of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-12-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 {mu}l was injected using 30 G needle for 5 minutes to establish the infarction model. {sup 18}F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, {sup 18}F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using {sup 18}F-FDG microPET scanner.

  15. Retrospective data-driven respiratory gating for PET/CT

    International Nuclear Information System (INIS)

    Schleyer, Paul J; O'Doherty, Michael J; Barrington, Sally F; Marsden, Paul K

    2009-01-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  16. Monitoring proton radiation therapy with in-room PET imaging

    International Nuclear Information System (INIS)

    Zhu Xuping; Ouyang Jinsong; El Fakhri, Georges; Espana, Samuel; Daartz, Juliane; Liebsch, Norbert; Paganetti, Harald; Bortfeld, Thomas R

    2011-01-01

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to 15 O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  17. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, Jong Jin; Lee, Dong Soo; Kim, Yun Hui; Hwang, Do Won; Kim, Jin Su; Chung, June Key; Lee, Myung Chul; Lim, Sang Moo

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCI. A burr hole was made at 1 cm right lateral to the bregma. Collagenase type IV 10 μl was injected using 30 G needle for 5 minutes to establish the infarction model. 18 F-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, 18 F-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using 18 F-FDG microPET scanner

  18. Evaluation of cat brain infarction model using microPET

    International Nuclear Information System (INIS)

    Lee, J. J.; Lee, D. S.; Kim, J. H.; Hwang, D. W.; Jung, J. G.; Lee, M. C; Lim, S. M

    2004-01-01

    PET has some disadvantage in the imaging of small animal due to poor resolution. With the advance of microPET scanner, it is possible to image small animals. However, the image quality was not so much satisfactory as human image. As cats have relatively large sized brain, cat brain imaging was superior to mice or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal change using microPET scanner. Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ul was injected using 30G needle for 5 minutes to establish the infarction model. F-18 FDG microPET (Concorde Microsystems Inc., Knoxville. TN) scans were performed 1. 11 and 32 days after the infarction. In addition. 18F-FDG PET scans were performed using Gemini PET scanner (Philips medical systems. CA, USA) 13 and 47 days after the infarction. Two cat brain infarction models were established. The glucose metabolism of an infraction lesion improved with time. An infarction lesion was also distinguishable in the Gemini PET scan. We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using F-18 FDG microPET scanner

  19. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard s