WorldWideScience

Sample records for zircaloy-4 nuclear fuel

  1. Development of remote welding technology for nuclear fuel end capping (A study on the weldability of Zircaloy-4)

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Jin Hyun; Sung, Ho Hyun; Hyun, Yong Kyu; Suh, Hee Kang [Korea University of Technology and Education, Cheonan (Korea)

    1998-03-01

    The integrity of nuclear fuel end cap welds is essential to the nuclear fuel performance and safety as well as the usability of power plant. The first aim of this project is to obtain experimental data on the nuclear fuel cladding materials of Zircaloy-4 with welding processes such as plasma arc, gas tungsten arc and laser beam welding. the data obtained in this study will be applicable to the nuclear fuel design, fabrication and nuclear fuel quality control. In addition, the welding processes applicable to the Zircaloy-4 welding were compared and contrasted. The weldability of Zircaloy-4 was evaluated from the metallurgical and mechanical standpoints. 88 refs., 57 figs., 16 tabs. (Author)

  2. Zircaloy-4 corrosion in PWR's

    International Nuclear Information System (INIS)

    Fyfitch, S.; Smalley, W.R.; Roberts, E.

    1985-01-01

    Zircaloy-4 waterside corrosion has been studied extensively in the nuclear industry for a number of years. Following the early crud-related corrosion failures in the Saxton test reactor, Westinghouse undertook numerous programs to minimize crud deposition on fuel rods in power reactors through primary coolant chemistry control. Modern plants today are operating with improved coolant chemistry guidelines, and crud deposition levels are very low in proportion to earlier experience. Zircaloy-4 corrosion under a variety of coolant chemistry, heat flux and exposure conditions has been studied extensively. Experience to date, even in relatively high coolant temperature plants, has indicated that -for both fuel cladding and structural components- Zircaloy-4 waterside corrosion performance has been excellent. Recognizing future industry trends, however, which will result in Zircaloy-4 being subjected to ever increasing corrosion duties, Westinghouse will continue accumulating Zircaloy-4 corrosion experience in large power plants. 13 refs.

  3. Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping of Spacer Grids of Nuclear Fuel Rods

    International Nuclear Information System (INIS)

    Seo, Yun Mi; Hyun, Hong Chul; Lee, Hyung Yil; Kim, Nak Soo

    2011-01-01

    In this work, we investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile and anisotropy tests were performed to obtain stress-strain curves and anisotropic coefficients. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following NUMISHEET 96. Theoretical FLD depends on FL models and yield criteria. To obtain the right hand side (RHS) of FLD, we applied the FL models (Swift's diffuse necking, M-K theory, S-R vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left hand side (LHS) of FLD. To consider the anisotropy of sheets, the yield criteria of Hill and Hosford were applied. Comparing the predicted curves with the experimental data, we found that the RHS of FLD for Zircaloy-4 can be described by the Swift model (with the Hill's criterion), while the LHS of the FLD can be explained by Hill model. The FLD for Zirlo can be explained by the S-R model and the Hosford's criterion (a = 8)

  4. Process for reliewing stresses in a zircaloy 2 or zircaloy 4 strip

    International Nuclear Information System (INIS)

    Charquet, D.; Dombre, M.

    1986-01-01

    Fabrication process of a zircaloy 2 or zircaloy 4 strip with an oxygen content between 900 and 1600 ppm with the following mechanical properties: E0.2≥250MPa at 315 deg C, parallel and perpendicular A% ≥4 at 20 deg C. The strip is rolled and stabilized by heat treatment between 490 and 580 deg C for 1 to 10 minutes and partially recrystallized for 0.5 to 5 vol.%. It is used for spacers of nuclear fuels [fr

  5. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  6. Zircaloy sheathed thermocouples for PWR fuel rod temperature measurements

    International Nuclear Information System (INIS)

    Anderson, J.V.; Wesley, R.D.; Wilkins, S.C.

    1979-01-01

    Small diameter zircaloy sheathed thermocouples have been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Surface mounted thermocouples were developed to measure the temperature of zircaloy clad fuel rods used in the Thermal Fuels Behavior Program (TFBP), and embedded thermocouples were developed for use by the Loss-of-Fluid Test (LOFT) Program for support tests using zircaloy clad electrically heated nuclear fuel rod simulators. The first objective of this developmental effort was to produce zircaloy sheathed thermocouples to replace titanium sheathed thermocouples and thereby eliminate the long-term corrosion of the titanium-to-zircaloy attachment weld. The second objective was to reduce the sheath diameter to obtain faster thermal response and minimize cladding temperature disturbance due to thermocouple attachment

  7. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  8. Out-of-pile UO2/Zircaloy-4 experiments under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Hofmann, P.

    1983-01-01

    Chemical interactions between UO 2 fuel and Zircaloy-4 cladding up to the melting point of zircaloy (Zry) are described. Out-of-pile UO 2 /zircaloy reaction experiments have been performed to investigate the chemical interaction behavior under possible severe fuel damage conditions (very high temperatures and external overpressure). The tests have been conducted in inert gas (1 to 80 bar) with 10-cm-long zircaloy cladding specimens filled with UO 2 pellets. The annealing temperature varied between 1000 and 1700 deg. C and the annealing period between 1 and 150 min. The extent of the chemical reaction depends decisively on whether or not good contact between UO 2 and zircaloy has been established. If solid contact exists, zircaloy reduces the UO 2 to form oxygen-stabilized α-Zr(O) and uranium metal. The uranium reacts with zircaloy to form a (U,Zr) alloy rich in uranium. The (U,Zr) alloy, which is liquid above approx. 1150 deg. C, lies between two α-Zr(O) layers. The UO 2 /zircaloy reaction obeys a parabolic rate law. The degree of chemical interaction is determined by the extent of oxygen diffusion into the cladding, and hence by the time and temperature. The affinity of zirconium for oxygen, which results in an oxygen gradient across the cladding, is the driving force for the reaction. The growth of the reaction layers can be represented in an Arrhenius diagram. The UO 2 /Zry-4 reaction occurs as rapidly as the steam/Zry-4 reaction above about 1100 deg. C. The extent of the interaction is independent of external pressure above about 10 bar at 1400 deg. C and 5 bar at 1700 deg. C. The maximum measured oxygen content of the cladding is approx. 6wt.%. Up to approx. 9 volume % of the UO 2 can be chemically dissolved by the zircaloy. In an actual fuel rod, complete release of the fission products in this region of the fuel must therefore be assumed. (author)

  9. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  10. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  11. The anisotropic creep behaviour of zircaloy-4 fuel cladding at 1073 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Bowden, J.; Shewfelt, R.S.W.

    1982-04-01

    The anisotropy coefficients (F, G and H) of Hill's equation, suitably modified for creep deformation, have been determined for Zircaloy-4 fuel cladding from steady-state creep tests at an elevated temperature. Creep specimens were subjected to both uniaxial and biaxial loads (via internal pressure) at 1073 K and the strain measured concurrently in the axial and tangential directions. It has been found that Zircaloy-4 fuel cladding is almost, but not completely, isotropic at 1073 K; the values of F, G and H are 0.57, 0.48 and 0.45 respectively

  12. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  13. In-situ neutron diffraction study of Zircaloy 4 subjected to biaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Gharghouri, M.A. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, ON (Canada); McDonald, D.; Xiao, L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Zircaloy-4 is widely used as fuel element cladding in nuclear reactors. Pellet-clad interaction (PCI) failure is a concern for many water reactor fuel designs. Extensive work on the mechanism of PCI failure has led to the conclusion that stress corrosion cracking (SCC) induced by iodine vapour in the temperature range relevant to fuel operation is the most probable cause of PCI failure in zirconium alloy fuel element cladding. In-situ neutron diffraction measurements performed on tubular Zircaloy-4 specimens simultaneously pulled in tension and pressurized internally will provide information on the effects of stress biaxiality on the distribution of stresses at the crystal level during loading. (author)

  14. Investigation on Nd:YAG laser weldability of zircaloy-4 end cap closure for nuclear fuel elements

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yung; Yang, Myung Seung

    2001-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulty in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed. The effects of irradiation on the properties of the laser apparatus were also being studied

  15. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  16. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  17. Process development for fabrication of zircaloy- 4 of dissolver assembly for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.; Jairaj, R.N.; Ravi Shankar, A.; Kamachi Mudali, U.; Raj, Baldev

    2010-01-01

    Spent fuel reprocessing for fast breeder reactor (FBR) requires a dissolver made of a material which has resistance to corrosion as the process involves Nitric Acid as the process medium. Various materials to achieve minimum corrosion rates have been tried for this operation. Particularly the focus was on the use of advanced materials with high performance (corrosion rate and product life) for high concentrations greater than 8 N and temperatures (boiling and vapour) of Nitric Acid employed in the dissolver unit. The different commercially available materials like SS316L , Pure Titanium, Ti - 5% Ta and Ti - 5% Ta - 1.8% Nb were tried and the corrosion behavior of these materials was studied in detail. As this is continuous process of evolution of new materials, it was decided to try out zircaloy - 4 as the material of construction for construction due to its excellent corrosion resistance properties in Nitric Acid environment. The specifications were stringent and the geometrical configurations of the assembly were very intricate in shape. On accepting the challenge of fabrication of dissolver, NFC has made different fixtures for Electron Beam Welding and TIG Welding. Various trials were carried out for optimization of various operating parameter like beam current, Acceleration voltage, welding speed to get adequate weld penetration. Both EB welding and TIG welding process were standardized and qualified by carrying out a number of trials and testing these welds by various weld qualification procedures like radiography, Liquid dye penetrant testing etc. for different intricate weld geometries. All the welds were simulated with samples to optimize the weld parameters. Tests such as include metallographic (for microstructure and HAZ), mechanical (for weld strength) and chemical (material analysis for gases) were conducted and all the weld samples met the acceptable criteria. Finally the dissolver was made meeting stringent specifications. All the welds were checked

  18. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Clayton, J.C.

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  19. Electrochemical Studies on Important Elements for Zirconium Recovery Form Irradiated Zircaloy-4 Cladding

    International Nuclear Information System (INIS)

    Park, J.; Sohn, S.; Hwang, I.S.

    2015-01-01

    Since Zircaloy cladding accounts for about 16 wt. % of used nuclear fuel assembly, decontamination process is required to reduce the final waste volume from spent nuclear fuel. To develop Zircaloy-4 electrorefining process as an irradiated Zircaloy cladding decontamination process, electrochemical studies on Sn, Cr, Fe and Co which are major or important elements in the irradiated cladding were conducted based on cyclic voltammetry in LiCl-KCl at 500 deg. C. Cyclic voltammetry for Sn, Fe, Cr and Co elements that should be eliminated was conducted and revealed that redox reactions of these ions are much simpler than Zr and more reductive than Zr. The reliability of cyclic voltammetry was verified by comparing diffusion coefficients and formal reduction potentials of these ions obtained in this study to previous studies. (authors)

  20. Influence of hydrogen on the oxygen solubility in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Guilbert-Banti, Séverine, E-mail: severine.guilbert@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Lacote, Pauline; Taraud, Gaëlle [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France); Berger, Pascal [NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette (France); Desquines, Jean; Duriez, Christian [Institut de Radioprotection et de Sûreté Nucléaire, SEREX/LE2M, Bâtiment 327, BP3, 13115 Saint Paul lez Durance (France)

    2016-02-15

    Despite the influence of hydrogen on the behavior of zirconium fuel cladding in many nuclear safety issues, the pseudo-binary Zircaloy-4 – oxygen phase diagram still lacks of data, especially above 1000 °C. The aim of this study was to provide experimental data to better assess the influence of hydrogen on the oxygen solubility in Zircaloy-4. Homogenized two-phase Zircaloy-4 samples were elaborated from 300 to 1000 wppm pre-hydrided samples. Local distributions were characterized thoroughly using Electron Probe Micro-Analysis (EPMA) for oxygen and Elastic Recoil Detection Analysis (ERDA) for hydrogen. The data obtained in this work were included in the pseudo-binary Zircaloy-4 – oxygen phase diagram and have shown that hydrogen has limited influence on the α + β → β transus. Regarding the α → α + β transus, no influence of hydrogen concentration in the α phase below 400 wppm was evidenced.

  1. Thermal-Hydraulic Aspects of Changing the Nuclear Fuel-Cladding Materials from Zircaloy to Silicon Carbides

    International Nuclear Information System (INIS)

    Niceno, Bojan; Pouchon, Manuel

    2014-01-01

    The accident in Fukushima has drastically shown the drawbacks of Zircaloy claddings despite their beneficial properties in normal use. The effect of the lack of cooling and the production of hydrogen would not have been so strong if the fuel cladding had not consisted of a zirconium (or metal) alloy. International activities have been started to search for an alternative to Zircaloy, however, still on a limited basis. A project sponsored by Swissnuclear has been conducted at Paul Scherrer Institute (PSI) with the aim to close the gap in knowledge on application of silicon carbides (SiC) as potential replacement for Zircaloys as material for nuclear fuel cladding. The work was interdisciplinary, result of collaboration between different laboratories at PSI, and has focused on SiC cladding material properties, implication of its usage on neutronics and on thermal-hydraulics. This paper summarizes thermal-hydraulic aspects of changing Zircaloy for SiC as the cladding material. The change of cladding material inevitably changes the surface properties thus making a significant impact on boiling curve, and critical heat flux (CHF). Low chemical reactivity of SiC means fewer particles in the flow (less crud), which leads to fewer failures, but also decreases the CHF. Due to differences in physical properties between SiC and Zircaloys, higher brittleness of SiC in particular, might have impact on fuel-rod assembly design, which has direct influence on flow patterns and heat transfer in the fuel assembly. Higher melting (i.e. decomposition) point for SiC means that severe accident management guidelines (SAMG) should have to be re-assessed. Not only would the core degrade later than in the case of conventional fuels, but the production of hydrogen would be quite different as well. All these issues are explored in this work in two steps; first the SiC properties which may have influence on thermal-hydraulics are outlined, then each thermal-hydraulic issues is explained from

  2. Surface analytical investigations of the thermal behaviour of passivated Zircaloy-4 surfaces and of the reaction behaviour of iodine with Zircaloy-4 surfaces

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1988-07-01

    In the first part of the present work the thermal behaviour of atmospherically oxidized Zircaloy-4 samples was investigated at various temperatures. In a next step the amount of iodine adsorbed at the metallic surface was determined as well at room temperature with varying iodine exposures as for constant exposure but varying temperatures. Furthermore, the zirconium iodide species resulting from the interaction of iodine with the Zircaloy-4 and desorbed at higher temperatures were identified by means of residual gas analysis. During these studies it was found that the oxidic overlayer of the passivated Zircaloy-4 samples is decomposed at temperatures above 200 0 C. The iodine uptake at metallic surfaces (cleaned by Ar-ion sputtering) at room temperature slows markedly down after formation of a closed zirconium-iodide overlayer and consequently the further reaction proceeds diffusion-controlled. At 200 0 C ZrI 4 is formed being the thermodynamically most stable Zr-iodide. During desorption experiments using iodine exposed Zircaloy-4 samples the release of ZrI 4 was proved. The results obtained from the various experiments are finally discussed with respect to the iodine-induced stress corrosion cracking process and the underlying basic mechanisms and a transport mechanism for the SCC in nuclear fuel rods is proposed. (orig./RB) [de

  3. Out-of-pile experiments on the high-temperature behavior of Zircaloy-4 clad fuel rods

    International Nuclear Information System (INIS)

    Hagen, S.

    1984-01-01

    Out-of-pile experiments have been performed to investigate the escalation in temperature of Zircaloy-clad fuel rods during heatup in steam due to the exothermal Zircaloy steam reaction. In these tests single Zircaloy/uranium dioxide (UO 2 ) fuel rod simulators surrounded with a Zircaloy shroud--simulating the Zircaloy of neighboring rods--were heated inside a fiber ceramic insulation. The initial heating rates were varied from 0.3 to 2.5 K/s. In every test an escalation of the temperature rise rate was observed. The maximum measured surface temperature was about 2200 0 C. The temperature decreased after the maximum had been reached without decreasing the input electric power. The temperature decreases were due to inherent processes including the runoff of molten Zircaloy. The escalation process was influenced by the temperature behavior of the shroud, which was itself affected by the insulation and steam cooling. Damage to the fuel rods increased with increasing heatup rate. Fro slow heatup rates nearly no interaction between the oxidized cladding and UO 2 was observed, while for fast heatup rates the entire annular pellet was dissolved by molten Zircaloy

  4. Nuclear Fuel Complex - a landmark of indigenous nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, H C [Nuclear Fuel Complex, Hyderabad (India)

    1977-01-01

    The Nuclear Fuel Complex (NFC) set up in India for manufacturing fuel and related hardware has proved to be a significant step towards self-sufficiency and saving of foreign exchange. The complex is involved in the entire operations starting from processing of raw material concentrates to finishing of fuel assemblies and other zircaloy reactor components. The complex consists of the following units : (1) Zirconium Oxide Plant, (2) Zirconium Sponge Plant, (3) Zircaloy Fabrication Plant, (4) Uranium Oxide Plant, (5) Ceramic Fabrication Plant, (6) Enriched Uranium Oxide Plant, (7) Enriched Fuel Fabrication Plant, (8) Special Materials Plant and (9) Titanium Plant. A brief description of the activities of the various units of the complex are given. The effluent management scheme is outlined. The requirements and cost of fuel and zircaloy components for the power stations at Tarapur, Kota and Kalpakkam are mentioned.

  5. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  6. Characterization of electron beam welded Zircaloy-4

    International Nuclear Information System (INIS)

    Anishetty, Sharath; Manna, I.; Majumdar, J. Dutta

    2015-01-01

    Zirconium (Zr) alloys are the backbone materials for thermal reactors because of their low neutron absorption cross section and in addition have suitable properties like high temperature mechanical and corrosion properties. For various structural applications, different Zirconium based alloys are used. Zircaloy-4 (Zr-4) is most commonly used as channel boxes in boiling water reactors (BWRs), intermediate grid applications in pressurized water reactors (PWRs) and in fuel cladding. Zircaloy cladding acts as a barrier between the radioactive fuel and exterior coolants. Therefore, the structural integrity of the cladding tube is extremely important in the safe operation of reactors. Efforts are being made to produce Zircaloy-4 products with better mechanical properties. Different routes of processing are involved like forging, pilgering and extrusion are developed over years in fabricating components to improve in-reactor performance. In this study, microstructure and hardness properties of electron beam welded Zr-4 was evaluated

  7. Air Oxidation Behaviors of Zircaloy-4 Cladding During a LOCA In Spent Fuel Pool

    International Nuclear Information System (INIS)

    Bang, Je Geon; Chun, Tae Hyun; Kim, Sun Ki; Koo, Yang Hyun

    2014-01-01

    It is well known that air oxidation induces a serious degradation of the Zircaloy cladding material, compared with steam oxidation. From the oxidant point of view, in comparison with steam, chemical heat release during oxidation in air is higher by 80%, which may lead to a more rapid degradation of the Zircaloy cladding, and further evolution of the accident.. Additionally, the oxidation kinetics in air is much faster than in steam due to the formation of non-protective oxide layer. From the safety point of view, the barrier effect of the cladding against release of fission products is lost much earlier in air compared to steam. The objective of this study is to investigate the oxidation behaviors of fuel cladding in two different conditions such as isothermal and transient condition and to generate its kinetic data under an accident condition in the spent fuel pool. In this study, the oxidation behaviors and its kinetics of the Zircaloy-4 were investigated in air environment for various air ingress scenarios in the temperature range 600 .deg. C-1,400 .deg. C by thermo-gravimetric analysis. In this study, the oxidation behaviors of the Zircaloy-4 for both isothermal condition and transient condition were investigated in air environment. In comparison with isothermal condition, the retardation of oxidation rate in transient condition was observed at both 1,200 .deg. C and 1,400 .deg. C. This seems to be ascribed to the effect of thin oxide formed during a heating

  8. The steady-state creep of zircaloy-4 fuel cladding from 940 to 1873 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Bera, P.C.; Clendening, W.R.

    1978-11-01

    The steady-state creep rates of as-received Zircaloy-4 fuel cladding have been determined in the α-Zr phase (940 -6 and 10 -3 s -1 were determined under constant uniaxial load conditions. Assuming that creep rates can be described by a power law - Arrhenius equation, the creep rate for α-phase Zircaloy-4 is given by: epsilon sub(ss) = 2000σ sup(5.32) exp (-284 600/kT) s -1 and for the β-phase Zircaloy-4 is given by: epsilon sub(ss) = 8.1σ sup(3.79) exp (-142 300/kT) s -1 . For both the α-Zr and β-Zr phases, the activation energies for creep are in agreement with those for self-diffusion of zirconium and the rate-controlling mechanism is attributed to dislocation climb. Because of the scarcity of data, it is not possible to determine the rate equation unambiguously, nor to identify the mechanism for creep in the mixed α + β phase region. (author)

  9. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are “deterministic” because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faraday’s law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a

  10. Chemical and microstructural characterization of recycled zircaloy

    International Nuclear Information System (INIS)

    Martinez, Luis G.; Pereira, Luiz A.T.; Rossi, Jesualdo L.; Takiishi, Hidetoshi; Sato, Ivone M.; Scapin, Marcos A.; Orlando, Marcos T.D.

    2011-01-01

    PWR reactors employ as nuclear fuel UO 2 pellets with Zircaloy clad. Brazil is autonomous in the nuclear fuel cycle, from uranium mining to enrichment and nuclear fuel manufacture. However, the industrial production of nuclear zirconium alloys does not meet the demand, leading to importation of Zircaloy for fuel manufacturing. In the fabrication of fuel elements parts, machining chips of alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is strategic in economical and environmental aspects. In this work are described two methods that are being developed to recycle Zircaloy chips. The first method the Zircaloy machining chips are melted using an electric arc furnace to obtain small laboratory ingots. The second method uses powder metallurgy technique. By this later method, the Zircaloy chips are submitted to a hydriding process and the resulting material is milled in a high-energy ball mill. The powder is cold isostatically pressed and vacuum sintered. The elemental composition of the materials obtained using both methods is being determined using X-ray fluorescence techniques and compared to the specifications of nuclear grade Zircaloy and to the composition of the starting chips. The phase composition of the laboratory ingots was determined using X-ray diffraction. The ingots were vacuum annealed and the microstructures resulting from both processing methods before and after heat treatments were characterized using optical and scanning electron microscopy. The hardness of the materials was evaluated. A methodology of chemical analysis using X-ray fluorescence spectrometry, for composition certification, was established and tested. The results showed that recycled Zircaloy presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding cap-ends, using near net shape sintering. (author)

  11. Bimetallic spacer means for a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1981-01-01

    A bimetallic spacer means designed to be cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The subject bimetallic spacer means in accord with one embodiment of the invention includes a member formed, at least principally, of Zircaloy to which are attached a plurality of stainless steel strips. The latter stainless steel strips are located on the external surface of the Zircaloy member and with the major axis of each of the plurality of stainless steel strips extending substantially perpendicular to the major axis of the Zircaloy member. In accord with another embodiment of the invention, the subject bimetallic spacer means includes a member formed at least principally of Zircaloy to which a plurality of stainless steel strips are attached so as to be positioned thereon externally thereof and with the major axis of each of the plurality of stainless steel strips extending substantially parallel to the major axis of the Zircaloy member. In accord with a further embodiment of the invention, the stainless steel strips are attached to preselected members, each embodying at least a cladding of Zircaloy, which are located in the rows of fuel rods that define the perimeter of the fuel matrix of the nuclear fuel assembly. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. Namely, the stainless steel strips expand laterally relative to the fuel assembly and thereby occupy the space adjacent to the external surface of the fuel assembly

  12. Performance monitoring of zircaloy-4 square fuel channels at TAPS-1 and 2

    International Nuclear Information System (INIS)

    Akhtar, J.; Ramu, A.; Anilkumar, K.R.; Sharma, B.L.; Bhattacharjee, S.; Ramamurty, U.; Srivastava, S.P.; Prasad, P.N.; Anantharaman, K.

    2006-01-01

    Tarapur Atomic Power Station is a twin unit Boiling Water Reactors. The initial rated capacity of each unit was 210 MWe. Subsequently due to Secondary Steam Generator tube leak problem, the units were de-rated to 160 MWe in the year 1984-85. The station has completed 36 years of successful commercial operation. TAPS reactor fuel channels are made of Zircaloy-4, material. These are used along with 6x6 array nuclear fuel assemblies. The fuel channels need to be discharged once it reaches an optimum exposure limit and based on the surveillance programme, which monitors the channels performance. NFC has indigenously developed fuel channels for TAPS and these are at various stages of exposure in both the reactor cores. The performance review of these channels was carried out by the experts from TAPS-Site, NPCIL-ED and RED, BARC. The two major factors, which affect fuel channels performance, are (a) Bulge and (b) Bow. The phenomenon of longitudinal bow occurs due to the neutron flux gradient across the channels faces. Studies made on this subject by General Electric (GE) indicated that this channel deflection occurs at a slow rate. Therefore, fuel channels surveillance programme is essential to check the irradiated fuel channels performance in order to replace the fuel channels once it reaches the optimum exposure limit. To estimate the useful life of irradiated fuel channels, channel deflection/bulge measurement inspection system and methodology was developed jointly by TAPS and Centre for Design and manufacture (CDM), BARC. This system was successfully deployed at TAPS. This paper briefly describes the developmental efforts made by Nuclear Fuel Complex (NFC), Hyderabad, NPCIL-Fuel Group, Engg.Directorate, RED/BARC, CDM/BARC. (author)

  13. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  14. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  15. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  16. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Oliveto, Maria E.; Lopez Pumarega, Maria I.; Ruzzante, Jose E.

    2000-01-01

    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)

  17. Comparison study between GTWA and PAW welding techniques in zircaloy-4

    International Nuclear Information System (INIS)

    Martinez, R.L.; Boccanera, L.; Ortiz, L.; Fernandez, L.; Corso, H.

    2003-01-01

    The wide use of zirconium alloys in different structural parts of nuclear reactors mainly under severe environmental conditions has encouraged the study of Zircaloy-4 and specifically welded joints of this material.Many different factors affect mechanical properties, specifically hydrides, formed by absorbed hydrogen.Hydrogen solubility in Zircaloy-4 is low and because Zircaloy-4 picks up hydrogen during service the potential exist that zirconium hydrides phase precipitate causing loss of ductility, the most undesirable consequence. Therefore, the study and characterization of welded joint of nuclear materials assumes fundamental importance in the safety of nuclear reactors.This paper presents experimental results regarding of hardness and hydrogen concentration in Zircaloy-4 plates obtained by two different welding techniques GTWA (Gas Tungsten Arc Welding) and PAW (Plasma Arc Welding).In this work following these remarks the difference observed between these two techniques are presented and point out some aspects of PAW for further discussion

  18. Microstructure in welding zone of a zircaloy 4 tube welded by TIG process

    International Nuclear Information System (INIS)

    Bolfarini, C.; Domingues Filho, H.

    1982-01-01

    The details concerned with the welding of seamless zircaloy 4 tubes for nuclear application and the earlier welding tests made in the tubes that will be used for the construction of the Argonautas' Reactor fuel element, are described. Based on the references the microestructure changes in the heat affected zone were analyzed in respect to the material's performance in operation. (Author) [pt

  19. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  20. Nucleation and growth of intermetallic precipitates in Zircaloy-2 and zircaloy-4 and correlation to nodular corrosion behavior

    International Nuclear Information System (INIS)

    Maussner, G.; Steinberg, E.; Tenckhoff, E.

    1987-01-01

    One of the fundamental aspects in the history of the development of zirconium alloys for nuclear applications is the corrosion behavior under in-pile conditions. In boiling-water reactors (BWRs) and pressurized-water reactors (PWRs) the zirconium alloys Zircaloy-2 and Zircaloy-4 are the most commonly used materials, permitting attainment of a very high level of integrity and reliability. Nevertheless, efforts are required to optimize these well-established alloys with regard to their resistance to nodular corrosion, where improvements will give long-term advantages in fuel integrity and fuel economy. Phenomenological studies allow correlation of the nodular corrosion behavior with the morphological appearance of precipitated intermetallic phases in the microstructures of Zry-2 and Zry-4. To understand the fundamental processes of precipitation, particle nucleation-and-growth studies were made with Zry-2 and Zry-4 in different fabrication dimensions and with variations in β-quenching rates followed by isothermal and isochronical heat treatments. The microstructural characteristics of the precipitates were investigated by optical and transmission-electron microscopy. The macroscopic behavior was studied by electrical-resistivity measurements and hardness measurements. The nodular-corrosion susceptibility was determined by weight-gain and nodule distribution measurements after a 500 0 C laboratory-autoclave test

  1. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  2. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  3. Effect of cyclic loading on the viscoplastic behaviour of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Bouffioux, P.; Gabriel, B.; Soniak, A.; Mardon, J.P.

    1995-06-01

    Most of the electricity being generated by nuclear energy load follow and remote control have become normal operating modes in the French PWR. In addition, EDF is developing a strategy of fuel sub-assembly burnup extension. Those operating conditions will lead to cyclic straining of the Zircaloy cladding tube which could induce damages. Therefore, EDF, CEA, and FRAMATOME has started a joint R and D cooperative program in order to investigate the mechanical behaviour of Zircaloy cladding tubes under cyclic loading. This paper is dealing with the effect of a pre-cyclic loading on the plasticity properties of Zircaloy 4 cladding tubes. Load controlled cyclic tests were carried out at 350 deg. C and 0.5 Hz in both axial and hoop directions. The Woehler curves were determined. Sequential tests combining pre-cyclic loading to 50 and 75 % fraction life with tension were then performed. It has ben noticed that the pre-cycling loading does not change the plastic flow curve of the Zircaloy 4 cladding tubes and therefore does not induce observable macroscopic damage. It has been concluded that a linear cumulative damage rule like ΣΔN(σ)/N r(σ) is very conservative. (author)

  4. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  5. Oligo cyclic plastic fatigue of Zircaloy-4 under vacuum and in iodinated methanol; Fatigue plastique oligocyclique du Zircaloy-4 sous vide et dans le methanol iode

    Energy Technology Data Exchange (ETDEWEB)

    Beloucif, A.

    1995-01-01

    Our study was bound to the Zircaloy-4 fuel can damage in PWR type reactors. The topic was the damage mechanisms of Zircaloy-4 by oligo-cyclic plastic fatigue in inert atmosphere and in iodinated methanol. The oligo-cyclic plastic fatigue tests, under vacuum, were performed with steady plastic deformation and deformation speed. The corrosion fatigue tests in iodinated methanol put to the fore one obvious harmful part of iodine on Zircaloy-4 resistance to cyclic solicitations. The observations proved the existence of a very strong synergic effect between cyclic mechanical damage and corrosion. (MML). 84 refs., 117 figs., 3 tabs.

  6. Influence of temperature on the Zircaloy-4 plastic anisotropy; Influence de la temperature sur l`anisotropie plastique du Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Limon, R.; Bechade, J.L.; Lehmann, S.; Maury, R.; Soniak, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Mardon, J.P. [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1995-12-31

    In order to improve the comportment modelling of PWR fuel pin, and more precisely their canning tubes, Framatome and the CEA have undertake an important study program of Zircaloy-4 mechanical properties. It includes in particular the study of the plasticity between 20 and 400 degree Celsius. This material being not isotropic because of the zirconium hexagonal crystal network and the texture presented by the canning tubes, its plastic anisotropy has been measured. The obtained results for the canning in *slack* and recrystallized before irradiation Zircaloy-4 are presented and the deformation systems able to explain the observed anisotropy is researched. (O.L.). 6 refs., 4 figs., 1 tab.

  7. Strengthening of Zircaloy-4 using Oxide Particles by Laser Beam Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Oxide particles such as Y{sub 2}O{sub 3} and CeO{sub 2} were dispersed homogeneously in a Zircaloy-4 plate surface using an LBS method. From the tensile test at 380 .deg. C, the strength of laser ODS alloying on the Zircaloy-4 sheet was increased more than 50% when compared to the initial state of the sheet, although the ODS alloyed layer was less than 20% of the specimen thickness. This technology showed a good opportunity to increase the strength without major changes in the substrates of zirconium-based alloys. Accident tolerant fuel (ATF) cladding is being developed globally after the Fukushima accident with the demands for the nuclear fuel having higher safety at normal operation conditions as well as even in a severe accident conditions. Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures.

  8. Cumulative damage fatigue tests on nuclear reactor Zircaloy-2 fuel tubes at room temperature and 3000C

    International Nuclear Information System (INIS)

    Pandarinathan, P.R.; Vasudevan, P.

    1980-01-01

    Cumulative damage fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature and 300 0 C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The cumulative cycle ratio at fracture for the Zircaloy-2 fuel tubes was found to depend on the sequence of loading, stress history, number of cycles of application of the pre-stress and the test temperature. A Hi-Lo type fatigue loading was found to be very much damaging at room temperature and this feature was not observed in the tests at 300 0 C. Results indicate significant differences in damage interaction and damage propagation under cumulative damage tests at room temperature and at 300 0 C. Block-loading fatigue tests are suggested as the best method to determine the life-time of Zircaloy-2 fuel tubes under random fatigue loading during their service in the reactor. (orig.)

  9. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Brent [Univ. of Illinois, Urbana-Champaign, IL (United States); Stubbins, James [Univ. of Illinois, Urbana-Champaign, IL (United States); Kozlowski, Tomasz [Univ. of Illinois, Urbana-Champaign, IL (United States); Uddin, Rizwan [Univ. of Illinois, Urbana-Champaign, IL (United States); Trinkle, Dallas [Univ. of Illinois, Urbana-Champaign, IL (United States); Downar, Thoms [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); ang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States); Sabharwall, piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-25

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys. The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be

  10. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    International Nuclear Information System (INIS)

    Heuser, Brent; Stubbins, James; Kozlowski, Tomasz; Uddin, Rizwan; Trinkle, Dallas; Downar, Thoms; Was, Gary; Ang, Yong; Phillpot, Simon; Sabharwall, Piyush

    2017-01-01

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys. The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be

  11. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  12. Spectrophotometric determination of uranium traces in zircaloy-4 and zirconium sponge

    International Nuclear Information System (INIS)

    Correia, R.J.; Weber de D'Alessio, Ana; Zucal, R.H.

    1980-01-01

    The uranium contents of the zircaloy-4 which is used for the fabrication of the fuel cans for the PHWR Atucha and Embalse nuclear power stations must not exceed 3.ppM. A method was developed for performing that control, involving the separation of the uranium from its matrix by partition chromatography and its determination by spectrophotometry with Arsenazo (III). This method is applied within the range of 0.2 to 10 ppM, obtaining a relative standard deviation of 6% for U contents of 3 ppm. (M.E.L.) [es

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  14. Temperature measurement on Zircaloy-clad fuel pins during high temperature excursions

    International Nuclear Information System (INIS)

    Meservey, R.H.

    1976-04-01

    The development of a sheathed thermocouple suitable for attachment to zircaloy-clad fuel rods and for use during high temperature (2,800 0 F) excursions under loss-of-coolant accident conditions is described. Development, fabrication, and testing of the thermocouples is covered in detail. In addition, the development of a process for laser welding the thermocouples to fuel rods is discussed. The thermocouples and attachment welds have been tested for resistance to corrosion and nuclear radiation and have been subjected to fast thermal cycle, risetime, and blowdown accident tests

  15. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  16. Influence of temperature on the Zircaloy-4 plastic anisotropy

    International Nuclear Information System (INIS)

    Limon, R.; Bechade, J.L.; Lehmann, S.; Maury, R.; Soniak, A.

    1995-01-01

    In order to improve the comportment modelling of PWR fuel pin, and more precisely their canning tubes, Framatome and the CEA have undertake an important study program of Zircaloy-4 mechanical properties. It includes in particular the study of the plasticity between 20 and 400 degree Celsius. This material being not isotropic because of the zirconium hexagonal crystal network and the texture presented by the canning tubes, its plastic anisotropy has been measured. The obtained results for the canning in *slack* and recrystallized before irradiation Zircaloy-4 are presented and the deformation systems able to explain the observed anisotropy is researched. (O.L.). 6 refs., 4 figs., 1 tab

  17. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2008-01-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (∼300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F n ) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process

  18. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  19. Studies of irradiated zircaloy fuel sheathing using XPS

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P K; Irving, K G [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Hocking, W H; Duclos, A M; Gerwing, A F [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO{sub 2}) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs.

  20. Studies of irradiated zircaloy fuel sheathing using XPS

    International Nuclear Information System (INIS)

    Chan, P.K.; Irving, K.G.; Hocking, W.H.; Duclos, A.M.; Gerwing, A.F.

    1995-01-01

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO 2 ) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs

  1. Irradiation capsule design capable of continuously monitoring the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Thoms, K.R.; Dodd, C.V.; van der Kaa, T.; Hobson, D.O.

    1978-01-01

    An irradiation capsule which permits continuous monitoring of the creepdown of Zircaloy tubing has been designed and given preliminary tests. This design effort is the major element of a cooperative research program between the United States Nuclear Regulatory Commission and the Netherlands Energy Research Foundation (ECN) and is a part of the NRC-sponsored Zircaloy creepdown program. The purpose of the Zircaloy creepdown program is to provide data on the deformation characteristics of Zircaloy tubes, typical of LWR fuel element cladding, under combined axial and tangential compressive stresses. These data will be used to verify and improve the material behavior codes that are used for the description of fuel pin behavior. The first capsule of this series contains a mockup test specimen which was machined with three different diameters, nominally 10.92-mm, 10.54-mm and 11.30-mm (.430-in., .415-in., and .445-in.). This test specimen can be moved axially thereby varying the lift-off and serving as a calibration device for the eddy-current deformation monitoring probes. Fabrication of this capsule has been completed and during out-or-reactor checkout we were able to obtain a resolution of better than 0.01-mm (0.0004-in.). The capsule is scheduled for installation in the HFR on February 8, 1978, for a 26 day irradiation test. The first pressurized capsule, and therefore the first one to monitor in-reactor cladding deformation, will be installed in the HFR on May 3, 1978

  2. Refusion of zircaloy scraps by VAR (vacuum arc remelting): preliminary results; Fusao de cavacos de zircaloy por VAR: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.A.T.; Mucsi, C.S.; Sato, I.M.; Rossi, J.L.; Martinez, L.G., E-mail: lgallego@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Correa, H.P.S. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Orlando, M.T.D. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)

    2010-07-01

    Fuel elements and structural components of the core of PWR nuclear reactors are made in zirconium alloys known as Zircaloy. Machining chips and shavings resulting from the manufacturing of these components can not be discarded as scrap, once these alloys are strategic materials for the nuclear area, have high costs and are not produced in Brazil on an industrial bases and, consequently, are imported for the manufacture of nuclear fuel. The reuse of Zircaloy chips has economic, strategic and environmental aspects. In this work is proposed a process for recycling Zircaloy scraps using a VAR (vacuum arc remelting) furnace in order to obtain ingots suitable for the manufacture of components of the reactors. The ingots obtained are being studied in order to verify the influence of processing on composition and microstructure of the remelted material. In this work are presented preliminary results of the composition of obtained ingots compared to start material and the resulting microstructure. (author)

  3. Stress corrosion cracking of Zircaloys. Final report

    International Nuclear Information System (INIS)

    Cubicciotti, D.; Jones, R.L.; Syrett, B.C.

    1980-03-01

    The overall aim has been to develop an improved understanding of the stress corrosion cracking (SCC) mechanism considered to be responsible for pellet-cladding interaction (PCI) failures of nuclear fuel rods. The objective of the present phase of the project was to investigate the potential for improving the resistance of Zircaloy to iodine-induced SCC by modifying the manufacturing techniques used in the commercial production of fuel cladding. Several aspects of iodine SCC behavior of potential relevance to cladding performance were experimentally investigated. It was found that the SCC susceptibility of Zircaloy tubing is sensitive to crystallographic texture, surface condition, and residual stress distribution and that current specifications for Zircaloy tubing provide no assurance of an optimum resistance to SCC. Additional evidence was found that iodine-induced cracks initiate at local chemical inhomogeneities in the Zircaloy surface, but laser melting to produce a homogenized surface layer did not improve the SCC resistance. Several results were obtained that should be considered in models of PCI failure. The ratio of axial to hoop stress and the temperature were both shown to affect the SCC resistance whereas the difference in composition between Zircaloy-2 and Zircaloy-4 had no detectable effect. Damage accumulation during iodine SCC was found to be nonlinear: generally, a given life fraction at low stress was more damaging than the same life fraction at higher stress. Studies of the thermochemistry of the zirconium-iodine system (performed under US Department of Energy sponsorship) revealed many errors in the literature and provided important new insights into the mechanism of iodine SCC of Zircaloys

  4. Mechanical properties of zircaloy-4 tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    The aim of the present work was giving support to the development of Zircaloy-4 fuel claddings for the CAREM 25 reactor through microstructural and mechanical properties studies along the manufacturing process. The manufacturing route was defined in 4 cold rolling stages and two thermal treatments, one at the middle and one after the last rolling stage. The first two rolling stages were performed in FAESA and the last two in PPFAE-CNEA using the rolling machine HPTR 8-15. The reference values for the evaluation were those indicated in the technical specification CAREM25 F ET-3-B0610. In this context, four tubes were received from FAESA. To these tubes mechanical properties determinations were performed to characterize the material in each step performed in PPFAE. The mechanical properties of the cladding tubes also achieve the standard values (σ 0.2 = 450 MPa, e = 15%), being σ 0.2 = 530 MPa and 18% the elongation (author)

  5. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de

  6. Characterization of Zircaloy-4 tubing procured for fuel cladding research programs

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1976-01-01

    A quantity of Zircaloy-4 tubing [10.92 mm outside diameter by 0.635 mm wall thickness] was purchased specifically for use in a number of related fuel cladding research programs sponsored by the Division of Reactor Safety Research, Nuclear Regulatory Commission (NRC/RSR). Identical tubing (produced simultaneously and from the same ingot) was purchased concurrently by the Electric Power Research Institute (EPRI) for use in similar research programs sponsored by that organization. In this way, source variability and prior fabrication history were eliminated as parameters, thus permitting direct comparison (as far as as-received material properties are concerned) of experimental results from the different programs. The tubing is representative of current reactor technology. Consecutive serial numbers assigned to each tube identify the sequence of the individual tubes through the final tube wall reduction operation. The report presented documents the procurement activities, provides a convenient reference source of manufacturer's data and tubing distribution to the various users, and presents some preliminary characterization data. The latter have been obtained routinely in various research programs and are not complete. Although the number of analyses, tests, and/or examinations performed to date are insufficient to draw statistically valid conclusions with regard to material characterization, the data are expected to be representative of the as-received tubing. It is anticipated that additional characterizations will be performed and reported routinely by the various research programs that use the tubing

  7. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeyeong, E-mail: d486916@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Choi, Sungyeol [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Sungjune [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hwang, Il Soon [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-08-15

    Highlights: • Computational simulation on electrorefining of irradiated Zircaloy-4 cladding. • Composition of irradiated Zircaloy-4 cladding of pressurized water reactor. • Redox behavior of elements in irradiated Zircaloy cladding during electrorefining. • Effect of electrorefining operating conditions on decontamination factor. - Abstract: To reduce the final waste volume from used nuclear fuel assembly, it is significant to decontaminate irradiated cladding. Electrorefining in high temperature molten salt could be one of volume decontamination processes for the cladding. This study examines the effect of operating conditions on decontamination factor in electrorefining of irradiated Zircaloy-4 cladding of pressurized water reactor. One-dimensional time-dependent electrochemical reaction code, REFIN, was utilized for simulating irradiated cladding electrorefining. Composition of irradiated Zircaloy was estimated based on ORIGEN-2 and other literatures. Co and U were considered in electrorefining simulation with major elements of Zircaloy-4 to represent activation products and actinides penetrating into the cladding respectively. Total 240 cases of electrorefining are simulated including 8 diffusion boundary layer thicknesses, 10 concentrations of contaminated molten salt and 3 termination conditions. Decontamination factors for each case were evaluated and it is revealed that the radioactivity of Co-60 in recovered zirconium on cathode could decrease below the clearance level when initial concentration of chlorides except ZrCl{sub 4} is lower than 1 × 10{sup −11} weight fraction if electrorefining is finished before anode potential reaches −1.8 V (vs. Cl{sub 2}/Cl{sup −})

  8. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  9. Domestic nuclear fuels supply: possibility of an independent technology

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1982-01-01

    After considering the different energy sources, their consumption and their respective periods of exploitation, technological considerations in the nuclear fuel field are made. The main subject is the Domestic Supply Project of Embalse Fuel (CANDU type). The different aspects which had to be developed during the realization of this project still under progress, and which are fundamental for the command of the technology, are described: 1) Qualification of the produced fuel elements: fuel elements' characteristics; the reactors' operating parameters, and the prototype fuel elements' characteristics; 2) Development of materials and/or suppliers: the obtainment of UO 2 and its physical properties are considered, as well as those of Zircaloy-4, the development of suppliers and the respective developments for the obtainment of materials such as beryllium, helium and colloidal graphite; 3) Processes development; the following processes are studied and defined: UO 2 pellets fabrication with UO 2 granulated powder; beryllium coating under vaccum; and induction brazing of bearing pads and spacers, end cap and end plate resistance welding and stamping of Zircaloy components, graphite-coating of cladding's internal face; 4) Development of special production equipments; automatic equipment for end cap-to-cladding resistance welding among others. The need for a specific program of quality assurance for nuclear fuels supply is emphasized and the basic criteria are established. The IAEA's quality asssurance requirements are also analyzed. (M.E.L.) [es

  10. Verification of a mechanistic model for the strain rate of zircaloy-4 fuel sheaths during transient heating

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-10-01

    A mechanistic strain rate model for Zircaloy-4, named NIRVANA, was tested against experiments where pressurized fuel sheaths were strained during complex temperature-stress-time histories. The same histories were then examined to determine the spread in calculated strain which may be expected because of variations in dimensions, chemical content and mechanical properties which are allowed in the fuel sheath specifications. It was found that the variations allowed by the specifications could result in a probable spread in the predicted strain of plus or minus a factor of two from the mean value. The experimental results were well within this range. (auth)

  11. Characterization of Zircaloy-2 and Zircaloy-4 by X-Ray fluorescence

    International Nuclear Information System (INIS)

    Sato, I.M.; Imakuma, K.; Salvador, V.L.R.

    1981-03-01

    The analytical characterization of zircaloy-2 and zircaloy-4 is intimataly connected with the determination of Sn, Fe, Cr, Ni, O, N, H, and Hf. An analytical method developed in this laboratory is discribed for the determination of metallic elements like Sn, Fe, Cr and Ni using the technique of X-ray fluorescence. The samples are prepared in the form of double-layer pellets using boric acid as a binding agent. The zircaloy-4 is dissolved in hydrofluoric acid and the metallic elements are converted to fluorides. The standard samples used for calibration are prepared from synthetic materials. The elements are determined by measuring the characteristic first order K α lines. A Zircaloy-4 sample analysed yielded the following values: Sn=1.30+-0.03%, Fe=0.18+-0.01%, Cr=0.088+-0.004% and Ni=14+-3 ppm. The reproducibility, precision, as well as the theoretical limit of detection of the method are discussed. The determination of the elements O, N and H present as occluded gas in the zircaloy is nearing completion. These analyses are being carried out by a Mass Spectrometric technique where an aliquot of the released gas is analysed. (Author) [pt

  12. Behavior and properties of Zircaloys in power reactors: A short review of pertinent aspects in LWR fuel

    International Nuclear Information System (INIS)

    Garzarolli, F.; Stehle, H.; Steinberg, E.

    1996-01-01

    Zircaloy-2 and -4, developed mainly in the US, have been used in Germany for fuel rod claddings and in-core structural components from the beginning of reactor technology. Extensive studies of the material properties of the Zircaloys have been performed in Siemens laboratories since 1957. Zircaloy-2 and -4 turned out to be very reliable materials that fulfilled all requirements for normal operation and likewise the requirements for postulated accidental conditions and for intermediate storage for many years. Optimization of Zircaloy-2 and -4 during recent years includes both optimization of microstructure and of chemical composition. BWRs and PWRs need differently optimized materials. Today's more demanding operation conditions and discharge burnups required a further optimization of the Zircaloys and for hot PWRs even the development of more corrosion-resistant Zr alloys. A significant improvement of PWR corrosion behavior can be achieved with Zr alloys using the alloying elements of Zircaloy with somewhat modified concentrations. Sn should be below or at least in the lower range of the ASTM specification range for Zircaloy-4, Fe and Cr should be somewhat higher, and Si should be specified as an alloying element rather than as an impurity

  13. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  14. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  15. Hydrogen isotope storage in zircaloy scrap

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C.

  16. Hydrogen isotope storage in zircaloy scrap

    International Nuclear Information System (INIS)

    Lee, H. S.; Kuk, I. H.; Chung, H.; Paek, S. W.; Kang, H. S.

    1999-08-01

    8 MCi of tritium a year will be produced after wolsong TRF is in operation. The metal hydride form is one of useful tritium storage. The metals in use for metal hydride are uranium, titanium, etc., however uranium is limited to use by regulation, and titanium is relatively costly. Both metals are not produced in country but whole amount is imported. On the other hand 2,000kg of zircaloy scrap is produced by CANDU nuclear fuel fabrication process, which is also useful for hydrogen storage. The purpose of this study is to evaluation of hydrogen absorption capacity for zircaloy scrap that is produced as waste by CANDU nuclear fuel fabrication process. The sample evacuated for an hour at 1000 deg C. The strip showed higher capacity : 0.7 at 25 deg C, 2.0 at 200 deg C, 2.0 at 200 deg C, 2.0 at 400 deg C, respectively. The H/M values for commercial zircaloy sponge were 2.0 at 25 deg C and 2.0 at 400 deg C

  17. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and Inconel-718 at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.; Markiewicz, M.

    1994-06-01

    Isothermal reaction experiments were performed in the temperature range of 1000 - 1300 C in order to determine the chemical interactions between Zircaloy-4 fuel rod cladding and Inconel-718 spacer grids of Pressurized Water Reactors (PWR) under severe accident conditions. It was not possible to apply even higher temperatures since fast and complete liquefaction of the components occurred as a result of eutectic interactions during heatup. The liquid reaction products formed enhance and accelerate the degradation of the material couples and the fuel elements, respectively. Only small amounts of Inconel are necessary to liquefy large amounts of Zircaloy. Thin oxide layers on the Zircaloy surface delay the beginning of the chemical interactions with Inconel but cannot prevent them. In this work the reaction kinetics have been determined for the system: as-received and pre-oxidized Zircaloy-4/Inconel 718. The interactions can be described by parabolic rate laws; the Arrhenius equations for the various interactions are given. (orig.) [de

  18. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  19. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  20. Study of radiation effects on zircaloy 4 microstructure (Impact on susceptibility to fuel pellet-cladding interaction in PWR)

    International Nuclear Information System (INIS)

    Lefebvre, F.

    1989-01-01

    In PWR the fast neutron flux is an important parameter for fuel can aging by modification of zircaloy-4 microstructure: amorphisation and dissolution of intermetallic precipitates. These phenomena are both analysed and their influence on fuel-cladding interaction is discussed. Irradiations by 1 MeV electrons, Ar ions, Kr ions and fast neutrons are realized for comparison of damages with different defect creation kinetics. Amorphisation is explained as the crystal amorphous state transformation allowing precipitate dissolution by creation of a chemical potential gradient between matrix and amorphous phase. Progressive dissolution of precipitates produced by irradiation decrease the number of potential sites for stress corrosion cracking, improving rupture resistance of the alloy by fuel-cladding interaction [fr

  1. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  2. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  3. Fuel assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Tower, S.N.; Huckestein, E.A.

    1982-01-01

    A fuel assembly for a nuclear reactor comprises a 5x5 array of guide tubes in a generally 20x20 array of fuel elements, the guide tubes being arranged to accommodate either control rods or water displacer rods. The fuel assembly has top and bottom Inconel (Registered Trade Mark) grids and intermediate Zircaloy grids in engagement with the guide tubes and supporting the fuel elements and guide tubes while allowing flow of reactor coolant through the assembly. (author)

  4. Effects of deposited pyrolytic carbon on some mechanical properties of zircaloy-4 tubes. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shrkawy, S W; Abdel-razek, I D; El-Sayed, H A [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Zircaloy cladding tubes are not compatible with the uranium fuel pellets as they suffer from failure due to pelletclad interaction (PCI). A carbon coating, as used in the canadian CANLUB fuel elements, is thought to improve the cladding performance with respect to the PCI problem. In this paper pyrolytic carbon coating was deposited on zircaloy-4 cladding tubes by the thermal cracking of commercial butant gas at the temperature range 250-450 degree C. In order to evaluate the effect of gaseous species on the mechanical properties of the tubes tensile and microhardness testing measurements were performed on samples prepared from the coated tubes. The fractured surface of the tensile zircaloy tubes and the deposited carbon coating, both, were examined by the SEM. The results of the tensile tests of zircaloy-4 tubes indicated that the coating process has insignificant effect on the ultimate strength of the tubes tested. The values of Vickers hardness numbers were not significantly changed across the tubes thickness. The microstructure of deposited carbon, due to the cracking process, was granular in all the temperature range (250-450 degree C) studied. 9 figs., 1 tab.

  5. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  6. High temperature interaction between Zircaloy-4 and stainless steel type 304

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi

    2001-03-01

    The chemical interactions between Zircaloy-4 and stainless steel type 304 were investigated in the temperature range from 1273 to 1573 K to obtain the basic information on the melt progress in the fuel bundle during an LWR severe accident. Reaction layers were formed at the contact interface and grew as the temperature and the time increase. The Zircaloy was preferentially dissolved by the reaction. The SEM/EDX analyses showed that the main process of the reaction was diffusion of Fe, Cr and Ni into the Zircaloy which resulted in the formation of a Zr-rich eutectic through the tested temperature range. Reaction rates for decrease in the materials thickness were evaluated and the reaction generally obeyed a parabolic rate law. The reaction rate constant was determined at every examined temperature and Arrhenius type rate equations were estimated for the temperature range. (author)

  7. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy

    International Nuclear Information System (INIS)

    Pereira, Luiz Alberto Tavares

    2014-01-01

    PWR reactors employ, as nuclear fuel, UO 2 pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  8. Nuclear power generation and nuclear fuel

    International Nuclear Information System (INIS)

    Okajima, Yasujiro

    1985-01-01

    As of June 30, 1984, in 25 countries, 311 nuclear power plants of about 209 million kW were in operation. In Japan, 27 plants of about 19 million kW were in operation, and Japan ranks fourth in the world. The present state of nuclear power generation and nuclear fuel cycle is explained. The total uranium resources in the free world which can be mined at the cost below $130/kgU are about 3.67 million t, and it was estimated that the demand up to about 2015 would be able to be met. But it is considered also that the demand and supply of uranium in the world may become tight at the end of 1980s. The supply of uranium to Japan is ensured up to about 1995, and the yearly supply of 3000 st U 3 O 8 is expected in the latter half of 1990s. The refining, conversion and enrichment of uranium are described. In Japan, a pilot enrichment plant consisting of 7000 centrifuges has the capacity of about 50 t SWU/year. UO 2 fuel assemblies for LWRs, the working of Zircaloy, the fabrication of fuel assemblies, the quality assurance of nuclear fuel, the behavior of UO 2 fuel, the grading-up of LWRs and nuclear fuel, and the nuclear fuel business in Japan are reported. The reprocessing of spent fuel and plutonium fuel are described. (Kako, I.)

  9. Development of processes for zircaloy chips recycling by electric arc furnace remelting and powder metallurgy; Desenvolvimento de processos de reciclagem de cavacos de zircaloy via refusao em forno eletrico a arco e metalurgia do po

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luiz Alberto Tavares

    2014-09-01

    PWR reactors employ, as nuclear fuel, UO{sub 2} pellets with Zircaloy clad. In the fabrication of fuel element parts, machining chips from the alloys are generated. As the Zircaloy chips cannot be discarded as ordinary metallic waste, the recycling of this material is important for the Brazilian Nuclear Policy, which targets the reprocess of Zircaloy residues for economic and environmental aspects. This work presents two methods developed in order to recycle Zircaloy chips. In one of the methods, Zircaloy machining chips were refused using an electric-arc furnace to obtain small laboratory ingots. The second one uses powder metallurgy techniques, where the chips were submitted to hydriding process and the resulting material was milled, isostatically pressed and vacuum sintered. The ingots were heat-treated by vacuum annealing. The microstructures resulting from both processing methods were characterized using optical and scanning electron microscopy. Chemical composition, crystal phases and hardness were also determined. The results showed that the composition of recycled Zircaloy comply with the chemical specifications and presented adequate microstructure for nuclear use. The good results of the powder metallurgy method suggest the possibility of producing small parts, like cladding end-caps, using near net shape sintering. (author)

  10. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  11. Reaction behavior between B{sub 4}C, 304 grade of stainless steel and Zircaloy at 1473 K

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Ryosuke [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan); Ueda, Shigeru, E-mail: tie@tagen.tohokku.ac.jp [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan); Kim, Sun-Joong [Dept. of Materials Science and Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju (Korea, Republic of); Gao, Xu; Kitamura, Shin-ya [Institute of Multidisciplinary Research Advanced Material, Tohoku University, 1-1 Katahira 2, Aoba-ku, Sendai (Japan)

    2016-08-15

    For a better understanding of the decommissioning of the Fukushima-daiichi nuclear power plant, the melting behavior of the control blade and the channel box should be clarified. In Fukushima nuclear reactor, the channel box was made of Zircaloy-4, and the control rode is made of B{sub 4}C together with stainless steel cladding and sheath. In the study, the interaction among B{sub 4}C, stainless steel (SUS), and Zircaloy-4 was investigated at 1473 K in either argon or air atmosphere. In argon, Zircaloy is melted by the diffusion of elements from SUS, and SUS was melted at 1473 K by the diffusion of C and B. In air, SUS reacted with B{sub 2}O{sub 3} and formed an oxides melt firstly. Then, the oxidized Zircaloy contacted with this melt and fused. Moreover, the progress of core melting process during severe accident under different atmospheres was firstly discussed. - Highlights: • The interaction among the system of B{sub 4}C, grade 304 stainless steel and Zircaloy-4 were studied at 1473 K in Ar and air. • In argon, Zircaloy is melted by the diffusion of elements from SUS, and SUS was melted by the diffusion of C and B. • In air, SUS reacted with B{sub 2}O{sub 3} and formed an oxides melt. Then, the oxidized Zircaloy contacted with this melt and fused.

  12. Fatigue testing on samples from Zircaloy-4 tubes type SEU-43

    International Nuclear Information System (INIS)

    Olaru, V.; Ionescu, V.; Nitu, A.; Ionescu, D.; Voicu, F.

    2016-01-01

    The paper presents the testing of samples worked from Zicaloy-4 tubes (as-received.. metallurgical state), utilized in the composition of the CANDU SEU-43 fuel bundle. These tests are intended to simulate their behaviour in a power cycling process inside the reactor. The testing process is of low cycle fatigue type, done outside of the reactor, on ''C-ring'' samples, cut along the transversal direction. These samples are tested at 1%, 2% and 3% amplitude deformation, at room temperature. The calibration curves for both types of tube (small and big diameter) are determined by using the finite element analyses with the ANSYS computer code. The cycling test results are in the form of a fatigue life curve (N-e) for zircaloy-4 used in the SEU-43 fuel bundle. The curve is determined by the experimental dependency between the number of cycles to fracture and the deformation amplitude. The low cycle fatigue mechanical tests done at room temperature together with electronic microscopy analyses have reflected the characteristic behaviour of the zircaloy-4 metal in the given environment conditions. (authors)

  13. Nondestructive examination techniques on Candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  14. Reaction of tellurium with Zircaloy-4

    International Nuclear Information System (INIS)

    Boer, R. de; Cordfunke, E.H.P.

    1994-09-01

    Interaction of tellurium vapour with Zircaloy during the initial stage of an accident will lead to retention of tellurium in the core. For reliable estimation of the release behaviour of tellurium, it is necessary to know which zirconium tellurides are formed during this interaction. In this work the reaction of tellurium with Zircaloy-4 has been studied, using various reaction temperatures and tellurium vapour pressures. The compound ZrTe 2-x is formed on the surface of the Zircaloy in a broad range of reaction temperatures and vapour pressures. It is found that the formation of the more zirconium-rich compound Zr 5 Te 4 is favoured at high reaction temperatures is combination with low tellurium vapour pressures. (orig.)

  15. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    Science.gov (United States)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  16. Mechanical behavior of zircaloy-4 tubes under complexe state of stress

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1980-01-01

    The use of zircaloy-4 tubing as cladding material for fuel elements is reviewed with respect to its microstructural, textural and loading conditions. Its anisotropic plastic behaviour is studied through the experimental determination of its yield locus by mechanical testing and Knoop hardness and compared to Hill's anisotropic yield criterion. (Author) [pt

  17. The nuclear fuel cycle: (2) fuel element manufacture

    International Nuclear Information System (INIS)

    Doran, J.

    1976-01-01

    Large-scale production of nuclear fuel in the United Kingdom is carried out at Springfields Works of British Nuclear Fuels Ltd., a company formed from the United Kingdom Atomic Energy Authority in 1971. The paper describes in some detail the Springfields Works processes for the conversion of uranium ore concentrate to uranium tetrafluoride, then conversion of the tetrafluoride to either uranium metal for cladding in Magnox to form fuel for the British Mk I gas-cooled reactors, or to uranium hexafluoride for enrichment of the fissile 235 U isotope content at the Capenhurst Works of BNFL. Details are given of the reconversion at Springfields Works of this enriched uranium hexafluoride to uranium dioxide, which is pelleted and then clad in either stainless steel or zircaloy containers to form the fuel assemblies for the British Mk II AGR or advanced gas-cooled reactors or for the water reactor fuels. (author)

  18. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  19. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  20. Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Malang, S.; Neitzel, H.J.

    1983-01-01

    Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)

  1. Influence of neutron irradiation on the stability of recipitates in zircaloy: a critical review

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H. P.

    2013-01-01

    The realization of RMB enterprise (Brazilian Multipurpose Reactor) will give the country a powerful tool to investigate the behavior materials subjected to irradiation. Among them, zirconium alloys, used as cladding of nuclear fuel in reactors type LWR. It is know that neutron irradiation can affect the stability of precipitates in zircaloys, generating as a result changes in theirs mechanical properties, important application of this alloys. This paper present a critical review of neutron irradiation effects on microstructural stability of zircaloys (2 and 4). (author)

  2. Fracture of Zircaloy cladding by interactions with uranium dioxide pellets in LWR fuel rods. Technical report 10

    International Nuclear Information System (INIS)

    Smith, E.; Ranjan, G.V.; Cipolla, R.C.

    1976-11-01

    Power reactor fuel rod failures can be caused by uranium dioxide fuel pellet-Zircaloy cladding interactions. The report summarizes the current position attained in a detailed theoretical study of Zircaloy cladding fracture caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn-up. It is shown that stress corrosion crack growth in irradiated Zircaloy must be able to proceed at very low stress intensifications if uniform friction effects are operative at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (i.e., ''uniform'' conditions). Otherwise, the observed fuel rod failures must be due to departures from ''uniform'' conditions, and a very high interfacial friction coefficient and particularly fuel-cladding bonding, are means of providing sufficient stess intensification at a cladding crack tip to explain the occurrence of cladding fractures. The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy, and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking

  3. Determination of I-SCC crack propagation rate of zircaloy-4

    International Nuclear Information System (INIS)

    Woo-Seog, Ryu

    2002-01-01

    Threshold stress intensity (K ISCC ) and propagation rate of iodine-induced SCC in recrystallized and stress-relieved Zircaloy-4 were determined using a DCPD method. Dynamic system flowing Ar gas through iodine chamber at 60 deg C provided a constant iodine pressure of 1000 Pa during test. The SCC curves of crack velocity vs. stress intensity showed the typical SCC curves that are composed of stages I, II and III. The threshold K ISCC at 350 deg C was about 9 and 9.5 MPa √m for the stress- relieved Zircaloy-4 and the recrystallized Zircaloy-4, respectively. The plateau velocity in the stage II at 350 deg C was 4-8x 10 -4 mm/sec in the range of 20-40 MPa√m. In comparison with recrystallized Zircaloy-4, stress-relieved Zircaloy-4 had a lower threshold stress intensity factor and a little higher SCC velocity, indicating that SRA Zircaloy-4 was more sensitive to SCC in respect of velocity. The fracture mode in recrystallized Zircaloy was mostly a transgranular fracture with river pattern. An intergranular mode and the flutting were scarcely observed. (author)

  4. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    An integrated research project (IRP) to fabricate and evaluate modified zircaloy LWR cladding under normal BWR/PWR operation and off-normal events has been funded by the US DOE. The IRP involves three US academic institutions, a US national laboratory, an intermediate stock industrial cladding supplier, and an international academic institution. A combination of computational and experimental protocols will be employed to design and test modified zircaloy cladding with respect to corrosion and accelerated oxide growth, the former associated with normal operation, the latter associated with steam exposure during loss of coolant accidents (LOCAs) and low-pressure core re-floods. Efforts will be made to go beyond design-base accident (DBA) scenarios (cladding temperature equal to or less than 1204 deg. C) during the experimental phase of modified zircaloy performance characterisation. The project anticipates the use of the facilities at ORNL to achieve steam exposure beyond DBA scenarios. In addition, irradiation of down-selected modified cladding candidates in the ATR may be performed. Cladding performance evaluation will be incorporated into a reactor system modelling effort of fuel performance, neutronics, and thermal hydraulics, thereby providing a holistic approach to accident-tolerant nuclear fuel. The proposed IRP brings together personnel, facilities, and capabilities across a wide range of technical areas relevant to the study of modified nuclear fuel and LWR performance during normal operation and off-normal scenarios. Two pathways towards accident-tolerant LWR fuel are envisioned, both based on the modification of existing zircaloy cladding. The first is the modification of the cladding surface by the application of a coating layer designed to shift the M + O→MO reaction away from oxide growth during steam exposure at elevated temperatures. This pathway is referred to as the 'surface coating' solution. The second is the modification of the bulk

  5. Temperature escalation in PWR fuel rod simulator bundles due to the Zircaloy/steam reaction: Test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1984-07-01

    This report describes the test conduct and results of the bundle test ESBU-2A, which was run to investigate the temperature escalation of zircaloy clad fuel rods. This investigation of temperature escalation is part of a series of out-of-pile experiments, performed within the framework of the PNS Severe Fuel Damage Program. The test bundle was of a 3 x 3 array of fuel rod simulators with a 0.4 m heated length. The fuel rod simulators were electrically heated and consisted of tungsten heaters, UO 2 annular pellets, and zircaloy cladding. A nominal steam flow of 0.7 g/s was inlet to the bundle. The bundle was surrounded by a zircaloy shroud which was insulated with ZrO 2 fiber ceramic wrap. The initial heatup rate of the bundle was 0.4 0 C/s. The temperature escalation began at the 255 mm elevation after 1200 0 C had been reached. At this elevation, the measured peak temperature was limited to 1500 0 C. It was concluded from different thermocouple results, that induced by this first escalation melt was formed in the lower part of the bundle. Consequently, the escalation in the lower part must be much higher, at least up to the melting temperature of zircaloy. Due to the failure in the steam production system, steam starvation in the upper region may explain the beginning of the escalation at the 255 mm elevation. The maximum temperature reached was 2175 0 C on the center rod at the end of the test. The unregularities in the steam supply may be the reason for less oxidation than expected. (orig./GL) [de

  6. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J.; Peters, H.R.

    1996-01-01

    Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results

  7. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Markiewicz, M.E.; Erbacher, F.J.

    1988-02-01

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.) [de

  8. Creep damage in zircaloy-4 at LWR temperatures

    International Nuclear Information System (INIS)

    Keusseyan, R.L.; Hu, C.P.; Li, C.Y.

    1978-08-01

    The observation of creep damage in the form of grain boundary cavitation in Zircaloy-4 in the temperature range of interest to Light Water Reactor (LWR) applications is reported. The observed damage is shown to reduce the ductility of Zircaloy-4 in a tensile test at LWR temperatures

  9. Development of nuclear fuel for the future -Development of performance improvement of the cladding by ion beam-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Hoh; Jung, Moon Kyoo; Jung, Kee Suk; Kim, Wan; Lee, Jae Hyung; Song, Tae Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Han, Jun Kun [Sung Kyoon Kwan Univ., Seoul (Korea, Republic of); Kwon, Hyuk Sang [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters of ion beams and setup an appropriate process for ion implantation. Performance of the ion beam extraction was measured after adding the needed vacuum and cooling system to the existing gas and metal ion implanters. Target system for the ion implantation of fuel cladding improved and a plasma accelerator was installed on the target chamber of the metal ion implanter. The plasma accelerator is used to produce low energy, high current ion beams. The mechanical and chemical properties of the implanted Zircaloy-4 such as micro hardness, wear resistance, fretting wear, friction coefficient and corrosion resistance was measured under the room temperature and atmosphere. A micro structure and composition analysis of Zircaloy-4 sample was performed before and after the implantation to study the cause of the improvement in the mechanical and chemical characteristics. 94 figs, 11 tabs, 51 refs. (Author).

  10. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  11. Irradiation effect on fatigue behaviour of zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Soniak, A.; Lansiart, S.; Royer, J.; Waeckel, N.

    1993-01-01

    Since nuclear electricity has a predominant share in French generating capacity, PWR's are required to fit grid load following and frequency control operating conditions. Consequently cyclic stresses appear in the fuel element cladding. In order to characterize the possible resulting clad damage, fatigue tests were performed at 350 deg C on unirradiated material or irradiated stress relieved Zircaloy-4 tube portions, using a special device for tube fatigue by repeated pressurization. It appears that, for high stress levels, the material fatigue life is not affected by irradiation. But the endurance fatigue limit undergoes a decrease from the 350 MPa value for unirradiated material to the 210 MPa value for the material irradiated for four cycles in a PWR. However, this effect seems to saturate with irradiation dose: no difference could be detected between the two cycles results and the corresponding four cycles results. The corrosion effect and the load following influence were also investigated: they do not appear to modify the fatigue behaviour in our experimental conditions

  12. Hydrogen terminal solubility in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  13. Determination of lower bound crystallographic yield loci of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1980-01-01

    The use of zircaloy-4 tubing in fuel elements of water cooled reactors is discussed with respect to its mechanisms of deformation and also its resulting anisotropic plastic behaviour. A method for obtaining lower bound crystallographic yield loci of α-Zr is presented and applied to individual crystal orientations and to a real texture described by the main components observed on a direct pole figure. (Author) [pt

  14. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  15. Thermomechanical treatment of {beta}-treated Zircaloy-4 within the upper {alpha}-range; Traitements thermomecaniques dans le haut domaine {alpha} du zircaloy-4 trempe-{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Chauvy, C

    2004-09-15

    Zircaloy-4 is a Zr base alloy mainly used for nuclear applications. This study deals with its behaviour during forming, with a special interest for physical mechanisms acting in the upper {alpha}-range. The {beta}-treated Zircaloy-4 is first described in terms of microstructure and texture. The {alpha} plates are organised in colonies with alternating crystallographic orientations. The Burgers relationships have also been checked. The mechanical behaviour shows two distinct domains (with or without hardening). This could be linked to interactions between the solutes (Sn, O) and mobile dislocations. The evolution of crystallographic texture is characterised by X-ray diffraction. At 550 C, twinning is shown to be the main deformation mechanism under specific experimental conditions. Globularization of the initial lamellar structure is identified as a continuous dynamic recrystallization process, more efficient at higher temperature. High strains are necessary to achieve this phenomenon but meta-dynamic recrystallization can also be used to obtain an equiaxed microstructure after limited strains. (author)

  16. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    International Nuclear Information System (INIS)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-01-01

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO 2 or 96 to 97% ThO 2 --3 to 4% UO 2 . Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO 2 or ThO 2 --UO 2 sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO 2 from BWRs and of Zircaloy-4-clad UO 2 from PWRs. Median particle sizes of UO 2 from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 μm; particle sizes of ThO 2 --UO 2 , under these same conditions, ranged from 137 to 202 μm. Similarly, median particle sizes of UO 2 from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 μm. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution deduced from experimental data, realistic estimates can be made of fractions of dislodged fuel having dimensions less than specified values

  17. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  18. Application of adjoint sensitivity analysis to nuclear reactor fuel rod performance

    International Nuclear Information System (INIS)

    Wilderman, S.J.; Was, G.S.

    1984-01-01

    Adjoint sensitivity analysis in nuclear fuel behavior modeling is extended to operate on the entire power history for both Zircaloy and stainless steel cladding via the computer codes FCODE-ALPHA/SS and SCODE/SS. The sensitivities of key variables to input parameters are found to be highly non-intuitive and strongly dependent on the fuel-clad gap status and the history of the fuel during the cycle. The sensitivities of five key variables, clad circumferential stress and strain, fission gas release, fuel centerline temperature and fuel-clad gap, to eleven input parameters are studied. The most important input parameters (yielding significances between 1 and 100) are fabricated clad inner and outer radii and fuel radius. The least important significances (less than 0.01) are the time since reactor start-up and fuel-burnup densification rate. Intermediate to these are fabricated fuel porosity, linear heat generation rate, the power history scale factor, clad outer temperature, fill gas pressure and coolant pressure. Stainless steel and Zircaloy have similar sensitivities at start-up but these diverges a burnup proceeds due to the effect of the higher creep rate of Zircaloy which causes the system to be more responsive to changes in input parameters. The value of adjoint sensitivity analysis lies in its capability of uncovering dependencies of fuel variables on input parameters that cannot be determined by a sequential thought process. (orig.)

  19. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  20. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  1. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  2. Influence de l'orientation des hydrures sur les modes de déformation, d'endommagement et de rupture du Zircaloy-4 hydruré.

    OpenAIRE

    Racine , Aude

    2005-01-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300°C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embitterment depends on many parameters, among which hydrogen content and orientation of hydrid...

  3. Embrittlement by hydrogen in zircaloy-4

    International Nuclear Information System (INIS)

    Almendariz M, M.C.

    1981-01-01

    The brittleness study of zircaloy-4 (nuclear quality) by hydrogen in the lattice was carried out with the purpose to watch the alterations at mechanic properties and fracture appearance for different thermal treatments. We used a statistical experimental method to watch both alterations. Fracture toughness property was evaluated in a semiquantitative way, and this property was calculated by integral J method but at a modified version, this modification lies in the area calculation under the curve of load versus head displacement plot; we used Instron machine to evaluate it. Three points bending proof was carried out in accordance with the device that specify A.S.T.M. standards. The samples were treated with hydrogen by means of catodic charged method and subsequently mechanic proof was realized. We used statistical analysis to get information of experimental results, and the watched general behaviour was a great disminution of the fracture toughness (in relation to not treated hydrogen sample), always that the hydrogen is present in the lattice, likewise we did watch that hydrogen does not influence at fracture appearance change, further there is a threshold hydrogen concentration at wich it starts to brittle and prior not influence it. We did conclude of results analysis that the fracture toughness is reduced by hydrogen and threshold concentration is subject to thermal treatment. Experimental results can be considered as semiquantitatives, but they gave us an explicit idea of hydrogen effect in zircaloy-4. (author)

  4. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  5. Interim report on the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.; Dodd, C.V.

    1977-01-01

    This report describes the creepdown phenomenon in Zircaloy fuel cladding and the methods by which it will be measured and analyzed. Instrumentation for monitoring radial deformation in the cladding is described in detail--in terms of theory, design, and stability. The programs that control the microcomputer are listed, both to document the level of sophistication of the instrumentation and to indicate the flexibility of the test equipment

  6. Control of microstructure in brazed zone of Zircaloy-4 nuclear fuel sheathing by optimization of Σ(C+P+Si) contents and cooling schedules

    International Nuclear Information System (INIS)

    Quach, V.; Northwood, D.O.

    1985-01-01

    In the production of fuel elements for the CANDU-PHW reactor, induction brazing is used to attach appendages (bearing and split spacer pads) onto the outside wall of the Zircaloy-4 sheathing. The brazing process, 40 to 60 seconds at temperature in excess of 1000 0 C, produces 3 heat-affected zones amounting to about 30% of the thickness. These heat affected zones quite often contain large grains and either a basketweave or a parallel plate type of Widmanstatten structure. Small grains and a basketweave structure are preferred. Using simulated brazing treatments, it is demonstrated that by control of the impurity content, Σ(C+P+Si), and cooling rate from the brazing temperature, the desired microstructure can be obtained in the braze heat-affected zone. The formation of the basketweave structure is promoted by higher impurity contents, with the second phase impurity particles acting as nuclei for the basketweave structure in preference to the β-grain boundaries where the parallel plate structure is nucleated

  7. Release of indigenous gases from LWR fuel and the reaction kinetics with Zircaloy cladding

    International Nuclear Information System (INIS)

    Beyer, C.E.; Hann, C.R.

    1977-04-01

    The objective of this study was to evaluate the open literature data to estimate: the rate of gaseous impurity release from oxide fuel, the amount and composition of the gaseous impurities, and their subsequent rate of reaction with the fuel or Zircaloy

  8. Potential health hazard of nuclear fuel waste and uranium ore

    International Nuclear Information System (INIS)

    Mehta, K.; Sherman, G.R.; King, S.G.

    1991-06-01

    The variation of the radioactivity of nuclear fuel waste (used fuel and fuel reprocessing waste) with time, and the potential health hazard (or inherent radiotoxicity) resulting from its ingestion are estimated for CANDU (Canada Deuterium Uranium) natural-uranium reactors. Four groups of radionuclides in the nuclear fuel waste are considered: actinides, fission products, activation products of zircaloy, and activation products of fuel impurities. Contributions from each of these groups to the radioactivity and to the potential health hazard are compared and discussed. The potential health hazard resulting from used fuel is then compared with that of uranium ore, mine tailings and refined uranium (fresh fuel) on the basis of equivalent amounts of uranium. The computer code HAZARD, specifically developed for these computations, is described

  9. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared into lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel having

  10. Nuclear fuel supply view in Argentina

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1997-01-01

    The Argentine Atomic Energy Commission promoted and participated in a unique achievement in the R and D system in Argentina: the integration of science technology and production based on a central core of knowledge for the control and management of the nuclear fuel cycle technology. CONUAR SA, as a fuel manufacturer, FAE SA, the manufacturer of Zircaloy tubes, CNEA and now DIOXITEC SA producer of Uranium Dioxide, have been supply, in the last ten years, the amount of products required for about 1300 Tn of equivalent U content in fuels. The most promising changes for the fuel cycle economy is the Slight Enriched Uranium project which begun in Atucha I reactor. In 1997 seventy five fuel assemblies, equivalent to 900 Candu fuel bundles, will complete its irradiation. (author)

  11. Nuclear reactor seismic fuel assembly grid

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1977-01-01

    The strength of a nuclear reactor fuel assembly is enhanced by increasing the crush strength of the zircaloy spacer grids which locate and support the fuel elements in the fuel assembly. Increased resistance to deformation as a result of laterally directed forces is achieved by increasing the section modulus of the perimeter strip through bending the upper and lower edges thereof inwardly. The perimeter strip is further rigidized by forming, in the central portion thereof, dimples which extend inwardly with respect to the fuel assembly. The integrity of the spacer grid may also be enhanced by providing back-up arches for some or all of the integral fuel element locating springs and the strength of the fuel assembly may be further enhanced by providing, intermediate its ends, a steel seismic grid. 13 claims, 6 figures

  12. Aerosol material release rates from zircaloy-4 at temperatures from 2000 to 22000C

    International Nuclear Information System (INIS)

    Mulpuru, S.R.; Wren, D.J.; Rondeau, R.K.

    1987-01-01

    During some postulated severe accidents involving loss of coolant and loss of emergency coolant injection, the temperatures in a CANDU reactor fuel channel become high enough to cause failure and melting of the Zircaloy fuel cladding. At such high temperatures, vapors of fission products and structural (fuel and cladding) materials will be released into the coolant steam and hydrogen mixture. These vapors will condense as cooler conditions are encountered downstream. The vapors from structural materials are relatively involatile; therefore, they will condense readily into aerosol particles. These particles, in turn, will provide sites for the condensation of the more volatile fission products. The aerosol transport of fission products in the primary heat transport system (PHTS) will thus be influenced by the structural material release rates. As part of an ongoing program to develop predictive tools for aerosol and associated fission product transport through the PHTS, experiments have been conducted to measure the vapor mass release rates of the alloying elements from Zircaloy-4 at high temperatures. The paper presents the results and analysis of these experiments

  13. Dynamic thermo-chemo-mechanical strain of Zircaloy-4 slotted rings for evaluating strategies that mitigate stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Ferrier, G.A.; Metzler, J.; Farahani, M.; Chan, P.K.; Corcoran, E.C. [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    Stress corrosion cracking (SCC) in Zircaloy-4 fuel sheaths has been investigated by static loading of slotted ring samples under hot and corrosive conditions. However, in nuclear reactors, power ramps can have short (e.g., 10-20 minutes) and recurring time frames due to dynamic processes such as on-power refuelling, adjuster rod manoeuvres, and load following. Therefore, to enable out-reactor dynamic testing, an apparatus was designed to dynamically strain slotted ring samples under SCC conditions. This apparatus can additionally be used to test fatigue properties. Unique capabilities of this apparatus and preliminary results obtained from static and dynamic tests are presented. (author)

  14. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  15. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  16. Adsorption and diffusion of hydrogen in Zircaloy-4

    International Nuclear Information System (INIS)

    Torres, E.; Desquines, J.; Baietto, M.C.; Coret, M.; Wehling, F.; Blat-Yrieix, M.; Ambard, A.

    2015-01-01

    Hydrogen in zirconium alloys is considered in many nuclear safety issues. Below 500 Celsius degrees, rather limited knowledge is available on the combined hydrogen adsorption at the sample surface and diffusion in the metal. A modeling of hydrogen gaseous charging has been established starting with a set of relevant laws and parameters derived from open literature. Simulating the hydrogen charging process requires simultaneous analysis of gaseous surface adsorption, hydrogen solid-solution diffusion and precipitation, when exceeding the material solubility limit. The modeling has been extended to reproduce the solid-gas exchange. Gaseous charging experiments have been performed at 420 C. degrees on Stress Relieved Annealed (SRA) Zircaloy-4 cladding samples to validate the model. The sample hydrogen content has been systematically measured after charging and compared to the calculated value thus providing a validation of the adsorption modeling. Complementary tests have been carried out on Recrystallized Annealed (RXA) Zircaloy-4 rods to characterize the combined diffusion and adsorption process. The hydrogen concentration distribution has been characterized using an inverse technique based on destructive analyses of the samples. This additional set of data was relevant for the validation of the hydrogen combined adsorption/diffusion modeling up to 420 C. degrees. (authors)

  17. Interactions of zircaloy cladding with gallium -- 1997 status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥ 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  18. Technical Support of Performance Improvement for Resistance Welding Using Zr-4 Endcap and Endplate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung

    2008-10-15

    The proper welding process for Zircaloy-4 endplate of PHWR and DUPIC fuel bundle assembly is considered important in respect to the soundness of weldment and the improvement of the performance of nuclear fuel bundle during the operation in reactor. The Zircaloy-4 endplate of PHWR and DUPIC fuel bundles are welded by the projection joint type, connecting the endcaps of fuel elements. Therefore, the purpose of this projection joint is to improve the welding quality of torque strength and welding deformation and to apply the commercial productions for the endplate welding of PHWR and DUPIC nuclear fuel bundle assembly.

  19. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)

    2008-10-15

    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  20. Study on kinetic of strain-aging in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, P.A.

    1977-01-01

    The strain-aging in zircaloy-4 has been investigated in this work and a study of the general problems involving this phenomenon has been realized in Zirconium and its alloys. It has been verified that a yield point appears in the Zircaloy-4, when it is submitted to strain-aging treatment between the temperatures 200 0 C and 400 0 C. (author)

  1. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Wallenfels, K.P.; Peck, S.O.

    1983-08-01

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 2000 0 C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW) [de

  2. Crack resistance curve determination of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Bertsch, J.; Alam, A.; Zubler, R.

    2009-03-01

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 o C and 350 o C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could be

  3. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  4. Stress corrosion crack growth in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Pettersson, K.

    1978-10-01

    Experimental techniques suitable for the determination of stress corrosion crack growth rates in irradiated Zircaloy tube have been developed. The techniques have been tested on unirradiated. Zircaloy and it was found that the results were in good agreement with the results of other investigations. Some of the results were obtained at very low stress intensities and the crack growth rates observed, gave no indication of the existance of a K sub(ISCC) for iodine induced stress corrosion cracking in Zircaloy. This is of importance both for fuel rod behavior after a power ramp and for long term storage of spent Zircaloy-clad fuel. (author)

  5. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho

    2016-01-01

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  6. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  7. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  8. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  9. Formation of Lamellar Structured Oxide Dispersion Strengthening Layers in Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Park, Jung-Hwan; Park, Dong-Jun; Kim, Hyun-Gil; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Yoon-Soo [Hanbat National University, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. The oxide dispersion strengthened (ODS) zirconium was proposed to increase the strength of the Zr-based alloy up to high temperatures. According to our previous investigations, the tensile strength of Zircaloy-4 was increased by up to 20% with the formation of a thin dispersed oxide layer with a thickness less than 10% of that of the Zircaloy-4 substrate. However, the tensile elongation of the samples decreased drastically. The brittle fracture was a major concern in development of the ODS Zircaloy-4. In this study, a lamellar structure of ODS layer was formed to increase ductility of the ODS Zircaloy-4. The mechanical properties were varied depending on the structure of ODS layer. For example, the partial formation of ODS layer with the thickness of 10% to the substrate thickness induced the increase in tensile strength up to about 20% than fresh Zircaloy-4.

  10. Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

    Science.gov (United States)

    Wanjara, P.; Naik, B. S.; Yang, Q.; Cao, X.; Gholipour, J.; Chen, D. L.

    2018-02-01

    In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low ( 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.

  11. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  12. Status of Zircaloy deformation and oxidation research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Chapman, R.H.; Cathcart, J.V.; Hobson, D.O.

    1976-01-01

    The U.S. Nuclear Regulatory Commission sponsors a broad range of research on the response of nuclear fuel assemblies to normal, off-normal, and accident conditions in light-water reactors. The paper reviews the current status of three Zircaloy cladding research programs in progress at the Oak Ridge National Laboratory and presents some preliminary results from each

  13. Aspects of welding of zircaloy thin tube to end plugin the experimental welding facility of fuel element fabrication laboratory

    International Nuclear Information System (INIS)

    Shafy, M.; El-Hakim, E.

    1997-01-01

    The work was achieved within the scope of developing egyptian nuclear fuel fabrication laboratory in inshas. It showed the results of developing a welding facility for performing a qualified zircaloy-2 and 4 thin tubes to end weld joints. The welding chamber design was developed to get qualified weld for both PWR and CANDU fuel rod configurations. Experimental works for optimizing the welding parameters of tungsten inert gas (TIG) welding and electron beam (EB) welding processes were achieved. The ld penetration deeper than the wall tube thickness can be obtained for qualified end plug weld joints. It recommended to use steel compensating block for radiographic inspection of end plug weld joints. The predominate defects that can be expected in end plug weld joints, are lack of penetration and cavity. The microstructure of the fusion zone and heat affected zones are Widmanstaetten structure and its grain size is drastically sensible to the heat generation and removal of arc welding. 16 figs

  14. Thermomechanical treatment of β-treated Zircaloy-4 within the upper α-range

    International Nuclear Information System (INIS)

    Chauvy, C.

    2004-09-01

    Zircaloy-4 is a Zr base alloy mainly used for nuclear applications. This study deals with its behaviour during forming, with a special interest for physical mechanisms acting in the upper α-range. The β-treated Zircaloy-4 is first described in terms of microstructure and texture. The α plates are organised in colonies with alternating crystallographic orientations. The Burgers relationships have also been checked. The mechanical behaviour shows two distinct domains (with or without hardening). This could be linked to interactions between the solutes (Sn, O) and mobile dislocations. The evolution of crystallographic texture is characterised by X-ray diffraction. At 550 C, twinning is shown to be the main deformation mechanism under specific experimental conditions. Globularization of the initial lamellar structure is identified as a continuous dynamic recrystallization process, more efficient at higher temperature. High strains are necessary to achieve this phenomenon but meta-dynamic recrystallization can also be used to obtain an equiaxed microstructure after limited strains. (author)

  15. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  16. Outlook for a new design application for the joint union geometry of zircaloy-4 pipe-plug welds

    International Nuclear Information System (INIS)

    Martinez, R.L; Corso, H.L; Ausas, J; Fernandez, L

    2008-01-01

    The potential advantages are described and the test results shown for a new joint design for the Zircaloy-4 sheath-plug welding, used in the production of fuel elements for nuclear reactor power generators. Samples taken from sheaths and plugs similar to those used in the Atucha I Reactor were welded using the orbital GTAW process (Gas Tungsten Arc Welding), using a new joint design and equipment that is now applied to the production of high quality welding, with very low levels of contamination. The test results from the experiments with hydrogen content, corrosion, metallographic and traction on samples of these welds are compared with those obtained in simples taken from the conventionally processed fuel elements for Atucha I. The results are also presented for the characterization of samples obtained with the same orbital welding method, but with a smaller protective chamber. This work aimed to verify the influence of the welding chamber size on the contamination with hydrogen. The utility of applying the new design together with the orbital GTAW method to the fabrication process for fuel elements is discussed

  17. Effect of annealing temperature on the mechanical properties of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of Zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced Zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. The burst strength of the cladding at 650F decreased with the annealing temperature reaching a saturation value at approximately 1000F. The total circumferential elongation increased with the annealing temperature reaching a maximum at approximately 1000F and decreasing at higher temperatures. Hoop creep characteristics of Zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. The R-parameter was essentially independent of the annealing temperature while the P-parameter increased with annealing temperature. The mechanical anisotropy parameters were also studied as a function of the test temperature from ambient to approximately 800F using continuously monitored high precision extensometry. (Auth.)

  18. Highlights of nuclear chemistry 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Highlights were: 1. Fission product release: benchmark calculations for severe nuclear accidents; 2. Thermochemical data for reactor materials and fission products; 3. thermochemical calculations on fuel of the high-temperature gas-cooled reactor; 4. Formation of organic tellurides during nuclear accidents?; 5. Reaction of tellurium with Zircaloy-4; 6. Transmutation of fission products; 7. The thermal conductivity of high-burnup UO 2 fuel; 8. Tritium retention in graphite. (orig./HP)

  19. For the world's best cladding tubes, ten years of progress by Zircaloy Special Committee of JAPCO

    International Nuclear Information System (INIS)

    Mishima, Yoshitsugu

    1982-01-01

    The zircaloy special committee was organized in 1971 for the purpose of planning the trial use of two nuclear fuel assemblies for which Japan-made cladding tubes were to be used, for a BWR. Now, seven years later, these two fuel assemblies have completed their service life, and have been submitted to post-irradiation examination after cooling for a year. Zircaloy tubes have been produced by Sumitomo Metal Industries, Ltd., and Kobe Steel, Ltd., and more than ten years have elapsed since wholly Japan-made zircaloy cladding tubes were used for reloading fuel elements for the Japan Power Demonstration Reactor. In this report, the history, progress and significance of the works performed by the committee are summarized. The LWR fuel elements made in Japan have attained the highest performance in the world as the leak has been scarce, and the works of the committee is one of the pioneering activities in the development of LWR fuel technology. The situation for starting the committee, the activity of the committee during ten years, the significance and outcome of the committee activity are reported. (Kako, I.)

  20. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90 0 included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly

  1. Post test investigation of the single rod tests ESSI 1-11 on temperature escalation in PWR fuel rod simulators due to the Zircaloy/steam reaction

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Katanishi, S.

    1987-03-01

    This KfK-report describes the posttest investigation of the single rod tests ESSI-1 to ESSI-11. The objective of these tests was to investigate the temperature escalation behaviour of Zircaloy clad PWR-fuel rods in steam. The investigation of the temperature escalation is part of the program of out-of-pile experiments (CORA) performed within the frame work of the PNS Severe Fuel Damage Program. The experimental arrangement consisted of fuel rod simulator (central tungsten heater, UO 2 ring pellets and Zircaloy cladding), Zircaloy shroud and fiber ceramic insulation. The introductory test ESSI-1 to ESSI-3 were scoping tests designed to obtain information on the temperature escalation of zircaloy in steam. ESSI-4 to ESSI-8 were run with increasing heating rates to investigate the influence of the oxide layer thickness at the start of the escalation. ESSI-9 to ESSI-11 were performed to investigate the influence of the insulation thickness on the escalation behaviour. In these tests we also learned that the gap between removed shroud and insulation has a remarkable influence due to heat removal by convection in the gap. After the test the fuel rod simulator was embedded into epoxy and cut by a diamond saw. The cross sections were photographed and investigated by metalograph microscope, SEM and EMP examinations. (orig./GL) [de

  2. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  3. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  4. Recovery and recrystallisation of zircaloy-4

    International Nuclear Information System (INIS)

    Derep, J.L.; Rouby, D.; Fantozzi, G.

    1981-01-01

    Examination of the three mechanisms that control the recovery of zircaloy-4 workhardened by rolling: polygonisation leading to a cellular structure, annihilation of dislocations of opposite sign producing thinning of the cell walls, and growth of subgrains by coalescence [fr

  5. Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature

    International Nuclear Information System (INIS)

    Wen, Mingjian; Li, Hua; Yu, Dunji; Chen, Gang; Chen, Xu

    2013-01-01

    In this study, a series of uniaxial tensile, strain cycling and uniaxial ratcheting tests were conducted at room temperature on Zircaloy-4 (Zr-4) tubes used as nuclear fuel cladding in Pressurized Water Reactors (PWRs) for the purpose to investigate the uniaxial ratcheting behavior of Zr-4 and the factors which may influence it. The experimental results show that at room temperature this material features cyclic softening remarkably within the strain range of 1.6%, and former cycling under larger strain amplitude cannot retard cyclic softening of later cycling under lower strain amplitude. Uniaxial ratcheting strain accumulates in the direction of mean stress, and the ratcheting stain level is larger under tensile mean stress than that under compressive mean stress. Uniaxial ratcheting strain level increases with the increase of mean stress and stress amplitude, and decreases with the increase of loading rate. The sequence of loading rate appears to have no effects on the final ratcheting strain accumulation. Loading history has great influence on the uniaxial ratcheting behavior. Lower stress level after loading history with higher stress level leads to the shakedown of ratcheting. Higher loading rate after loading history with lower loading rate brings down the ratcheting strain rate. Uniaxial ratcheting behavior is sensitive to compressive pre-strain, and the decay rate of the ratcheting strain rate is slowed down by pre-compression

  6. Microstructure and orientation of hydrides in zircaloy-4 tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Juarez, G; Flores, A; Bianchi, D; Vizcaino, P

    2012-01-01

    The aim of the present work was giving support to the development of Zircaloy-4 fuel claddings for the CAREM 25 reactor through microstructural and mechanical properties studies along the manufacturing process. The manufacturing route was defined in 4 cold rolling stages and two thermal treatments, one at the middle and one after the last rolling stage. The first two rolling stages were performed in FAESA and the last two in PPFAECNEA using the rolling machine HPTR 8-15. The reference values for the evaluation were those indicated in the technical specification CAREM25 F ET-3-B0610. In this context, four tubes were received from FAESA. To these tubes microstructural and hydride orientation studies were performed to characterize the material in each step performed in PPFAE. The material received from FAESA has a grain size of 6 um, which fulfills the specification requirements for the final product (<11.2 um), so that, the final rolling stages (3rd and 4th) refine the grain until 3 um finished in the microstructure. Hydride morphology evolved from a random orientation in the recrystallized material or radial in the stress relieved material to the circumferential orientation requested in the specification. The final thermal treatment did not modify this morphology. The PD. (Marshall parameter) produced a value of 48, indicating that only 4% of the hydrides are oriented between 48 o and 90 o , that is, far from the circumferential direction (author)

  7. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000 degree F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion (''bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled

  8. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  9. Establishing QC/QA system in the fabrication of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Suh, K.S.; Choi, S.K.; Park, H.G.; Park, T.G.; Chung, J.S.

    1980-01-01

    Quality control instruction manuals and inspection methods for UO 2 powder and zircaloy materials as the material control, and for UO 2 pellets and nuclear fuel rods as the process control were established. And for the establishment of Q.A programme, the technical specifications of the purchased materials, the control regulation of the measuring and testing equipments, and traceability chart as a part of document control have also been provided and practically applied to the fuel fabrication process

  10. Precipitates in irradiated Zircaloy

    International Nuclear Information System (INIS)

    Chung, H.M.

    1985-10-01

    Precipitates in high-burnup (>20 MWd/kg U) Zircaloy spent-fuel cladding discharged from commercial boiling- and pressurized-water reactors have been characterized by TEM-HVEM. Three classes of primary precipitates were observed in the irradiated Zircaloys: Zr 3 O (2 to 6 nm), cubic-ZrO 2 (greater than or equal to 10 nm), and delta-hydride (35 to 100 nm). The former two precipitations appears to be irradiation induced in nature. Zr(Fe/sub x/Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/Ni/sub 1-x/) intermetallics, which are the primary precipitates in unirradiated Zircaloys, were largely dissolved after the high burnup. It seems, therefore, that the influence of the size and distribution of the intermetallics on the corrosion behavior may be quite different for the irradiated Zircaloys

  11. Fuel assemblies for nuclear reactors

    International Nuclear Information System (INIS)

    Leclercg, J.

    1985-01-01

    Improvements to guide tubes for the fuel assemblies of light water nuclear reactors, said assemblies being immersed in operation in the cooling water of the core of such a reactor, the guide tubes being of the type made from zircaloy and fixed at their two ends respectively to an upper end part and a lower end part made from stainless steel or Irconel and which incorporate devices for braking the fall of the control rods which they house during the rapid shutdown of the reactor, wherein the said braking devices are constituted by means for restricting the diameter of the guide tubes comprising for each guide tube a zircaloy inner sleeve spot welded to the said guide tube and whose internal diameter permits the passage, with a calibrated clearance, of the corresponding control rod, the sleeve being distributed over the lower portion of each guide tube and associated with orifices made in the actual guide tubes to produce the progressive hydraulic absorption of the end of the fall of the control rods

  12. A comparison of Zircaloy oxide thicknesses on Millstone-3 and North Anna-1 PWR fuel cladding

    International Nuclear Information System (INIS)

    Polley, M.V.; Evans, H.E.

    1993-08-01

    High concentrations of lithium in the coolant may enhance the corrosion rate of Zircaloy fuel cladding. In the present work, oxide thicknesses on fuel cladding from the Millstone 3 PWR were compared with those from the North Anna 1 PWR. The intention was to identify whether the higher lithium levels (up to 3.5 ppM) in the Millstone 3 primary coolant during cycles 2 and 3 led to significantly greater oxidation rates than in North Anna 1 which operated generally with lithium levels lower than 2.2 ppM. The comparisons were made by comparing the measurements with code predictions of Zircaloy oxidation in order to factor out the effect of operational variables on the oxide thicknesses achieved. Overall, Millstone 3 oxide thicknesses were found to be approximately 14% greater than North Anna 1 values. However, approximately 29% lower oxide thicknesses were found on reload Millstone 3 rods exposed to one cycle of elevated lithium chemistry than on Millstone 3 initial fuel exposed to one cycle of normal lithium chemistry during cycle 1. Furthermore, oxide thicknesses on Millstone 3 rods exposed to two cycles of elevated lithium chemistry were approximately 36% lower than on Millstone 3 rods exposed to one cycle of normal lithium chemistry plus one cycle of elevated lithium chemistry. Therefore, it cannot be concluded that elevated lithium operation in Millstone 3 led to enhanced Zircaloy fuel clad corrosion

  13. Effect of annealing temperature on the mechanical properties of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. Hoop creep characteristics of zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The critical annealing temperature at which a minimum creep strain occurs decreases as the applied stress increases. An additional test at 700F and 30 ksi hoop stress was conducted to demonstrate that the critical annealing temperature is essentially independent of the test temperature. Plausible explanations based on differing substructures developed in cold-worked stress-relieved material are forwarded. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. R-parameters were determined from in situ transverse strain gage measurements in uniaxial tensile tests. P-parameters were calculated from uniaxial test data (R and yield stress) and hoop yield stress determined in biaxial, closed-end internal pressurization tests

  14. High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam

    International Nuclear Information System (INIS)

    Urbanic, V.F.; Heidrick, T.R.

    1978-01-01

    At temperatures above the (α + β)/β transformation temperature for zirconium alloys, steam reacts with β-Zr to form a superficial layer of zirconium oxide (ZrO 2 ) and an intermediate layer of oxygen-stabilized α-Zr. Reaction kinetics and the rate of growth of the combined (ZrO 2 + α-Zr) layer for Zircaloy-2 and Zircaloy-4 oxidation in steam were measured over the temperature range 1050-1850 o C. The reaction rates for both alloys were similar, obeyed parabolic kinetics and were not limited by gas phase diffusion. The parabolic rate constants were consistently less than those given by the Baker and Just correlation for zirconium oxidation in steam. A discontinuity was found in the temperature dependence of both the reaction rate and the rate of growth of the combined (ZrO 2 + α-Zr) layer. The discontinuity is attributed to a change in the oxide microstructure at the discontinuity temperature, an observation which is consistent with the zirconium-oxygen phase diagram. (author)

  15. Microstructural characterization of second phase irradiated Zircaloy-4 particles

    International Nuclear Information System (INIS)

    Flores, Alejandra V.; Vizcaino, Pablo; Banchik, Abraham D.; Bozzano, Patricia B.; Versaci, Raul A.

    2007-01-01

    X-ray diffraction diagrams of neutron irradiated Zircaloy-4 were obtained at the LNLS with the aim to obtain bulk information about the amorphization process in which the Zircaloy-4 second phase particles (SPPs) undergoes due to neutron irradiation. Owing to the low concentration of the SPPs in the alloy (∼0.4 V %), no data regarding to the bulk were obtained until now. The synchrotron experiences allowed to detect five of the more intense lines of the phase C 14 (SPPs structure) in unirradiated Zircaloy-4: (110) θ, (103) θ, (112) θ, (201) θ and (004) θ in the 34 degrees ≤ θ2≤45 degrees Bragg angle range and others of minor intensity. The diagrams of the samples irradiated at moderate doses (1020n/cm 2 ) show these lines even in the as received samples. In contrast, none of these lines are observed for high fluence samples (∼1022neutrons/cm 2 ). In addition, in similar high fluence samples annealed 24 h or 72 h at 600 C degrees the intensity rises just at the 2q range where the C 14 lines were observed, showing a wide peak. That peak is interpreted as a result of the superposition of unresolved diffraction lines corresponding to the Zircaloy SPPs which are in a reconstitution process of crystallization. Analytical Electron Microscopy techniques were used, in order to study the effects on the Zircaloy-4 SPPs and compared with samples of the same material without irradiation. Spots in SAD patterns of non irradiated SPPS, evidences the presence of a C 14 structure, but in irradiated SSP SAD patterns evidences the beginning of an amorphization process. Another important feature to point out is the different Fe / Cr ratio presented in both irradiated and non irradiated SSPs. In non irradiated precipitates the Fe / Cr ratio is approximately 1.5, while in irradiated precipitates the Fe / Cr ratio becomes near 1.0. (author) [es

  16. Determinations of the temperature of terminal solid solubility in dissolution and precipitation of hydrogen/deuterium in irradiated Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, P [CNEA-CONICET, Centro Atomico Ezeiza (Argentina)

    2012-07-01

    The proposed plan is an approach to the metallurgical consequences of the high neutron fluencies (10''2''2 n/cm''2) on the hydrogen behavior in zirconium based alloys, based on the significance of the microstructural behavior of the high burn up fuel claddings during the dry storage period. The studies are focused on Zircaloy-4, concerning to two processes: Neutron irradiation damage; Hydrogen pick up. The Zircaloy-4 was taken from cooling channels of the PHWR Atucha 1. These components remained more than 10 years in service, reaching neutron fluencies up to 10''2''2 n/cm''2. In the last recent years, measurements of the hydride dissolution temperatures have shown that hydrogen solubility is affected by the neutron irradiation, increasing it respect to the unirradiated Zircaloy solubility. In addition, in this material the amorphization/dissolution of the second phase particles (SPPs) was observed, being proposed an interaction between the hydrogen atoms, the SPPs and the irradiation defects as a possible explanation of the observed behavior. For the present case, attention will be focused on the hydride precipitation process, since it is strongly related with delay hydrogen cracking initiation, a problem of direct concern for the dry storage. The goal of the present proposal is to make an approach to the source of the observed effect, applying several specific techniques as differential scanning calorimetry (DSC), high resolution x-ray diffraction and transmission electron microscopy. The objectives can be divided as follows: Determination of the temperatures of terminal solid solubility in dissolution (TTSSd) and in precipitation (TTSSp) in high fluency irradiated Zircaloy-4, reproducing the temperatures at which the Zircaloy fuel claddings remain during dry storage by an annealing program during the DSC experiments; Observations by optical and transmission electron microscopy of the hydride distribution before (as received material) and after high temperature

  17. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  18. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  19. Cyclic deformation of zircaloy-4 at room temperature

    International Nuclear Information System (INIS)

    Armas, A. F; Herenu, S; Bolmaro, R; Alvarez-Armas, I

    2003-01-01

    Annealed materials hardens under low cyclic fatigue tests.However, FCC metals tested with medium strain amplitudes show an initial cyclic softening.That behaviour is related with the strong interstitial atom-dislocation interactions.For HCP materials the information is scarce.Commercial purity Zirconium and Zircaloy-4 alloys show also a pronounced cyclic softening, similar to Titanium alloys.Recently the rotation texture induced softening model has been proposed according to which the crystals are placed in a more favourable deformation orientation by prismatic slip due to the cyclic strain.The purpose of the current paper is the presentation of decisive results to discuss the causes for cyclic softening of Zircaloy-4. Low cycle fatigue tests were performed on recrystallized Zircaloy-4 samples.The cyclic behaviour shows an exponential softening at room temperature independently of the deformation range.Only at high temperature a cyclic hardening is shown at low number of cycles.Friction stresses, related with dislocation movement itself, and back stresses, related with dislocation pile-ups can be calculated from the stress-strain loops.The cyclic softening is due to diminishing friction stress while the starting hardening behaviour is due to increasing back stresses.The rotation texture induced softening model is ruled out assuming instead a model based on dislocation unlocking from interstitial oxygen solute atoms

  20. Zircaloy 4 ingots' industrial fabrication

    International Nuclear Information System (INIS)

    Leyt, A.

    1987-01-01

    The technology developed for the industrial fabrication of Zircaloy-4 ingots is presented. According to the results obtained: a) the homogeneity of the ingots is analyzed, regarding the distribution of components (tin, iron, chromium, oxygen) and Brinell hardness as a function of different types of charge: zirconium sponge-recycling alloy material, sponge of zirconium-alloy; b) the distribution of the same parameters as a function of production is also analyzed. (Author)

  1. NIRVANA, a high-temperature creep model for Zircaloy fuel sheathing

    International Nuclear Information System (INIS)

    Sills, H.E.; Holt, R.A.

    1979-05-01

    We have developed a multi-component model to describe the transient plastic deformation of Zircaloy fuel sheathing during high-temperature transients. From deformation maps we identify three deformation mechanisms which, in principle, occur in all three phase fields of Zircaloy (α, α+β, β): diffusional creep, dislocation creep, and athermal strian. A strain component occurring during the α → β transformation is also identified. Microstructural changes which alter deformation rates -grain structure, recrystallization, phase transformation -are accounted for. The individual components of the model represent known metallurgical phenomena. The combined model gives excellent agreement with transient test data from 700-1800 K, a range of heating rates from 0-100 K.s -1 , and a range of strain rates from 10 -5 to 10 -1 .s -1 . To enable comparison with available data the transient creep model was combined with an axially uniform, thin-walled tube representation having anisotropic material properties. The resulting computer code, NIRVANA provides facilities for simulating uniaxial and biaxial tube tests over specified stress/temperature histories. (author)

  2. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  3. Development of zircaloy deformation model to describe the zircaloy-4 cladding tube during accidents

    International Nuclear Information System (INIS)

    Raff, S.

    1978-01-01

    The development of a high-temperature deformation model for Zircaloy-4 cans is primarily based on numerous well-parametrized tensile tests to get the material behaviour including statistical variance. It is shown that plastic deformation may be described by a power creep law, the coefficients of which show strong dependence on temperature in the relevant temperature region. These coefficients have been determined. A model based on these coefficients has been established which, apart from best estimate deformation, gives upper and lower bounds of possible deformation. The model derived from isothermal uniaxial tests is being verified against isothermal and transient tube burst tests. The influence of preoxidation and increased oxygen concentration during deformation is modeled on the basis of the pseudobinary Zircaloy-oxygen phase diagram. (author)

  4. Characterization of hydrogen, nitrogen, oxygen, carbon and sulfur in nuclear fuel (UO2) and cladding nuclear rod materials

    International Nuclear Information System (INIS)

    Crewe, Maria Teresa I.; Lopes, Paula Corain; Moura, Sergio C.; Sampaio, Jessica A.G.; Bustillos, Oscar V.

    2011-01-01

    The importance of Hydrogen, Nitrogen, Oxygen, Carbon and Sulfur gases analysis in nuclear fuels such as UO 2 , U 3 O 8 , U 3 Si 2 and in the fuel cladding such as Zircaloy, is a well known as a quality control in nuclear industry. In UO 2 pellets, the Hydrogen molecule fragilizes the metal lattice causing the material cracking. In Zircaloy material the H2 molecules cause the boiling of the cladding. Other gases like Nitrogen, Oxygen, Carbon and Sulfur affect in the lattice structure change. In this way these chemical compounds have to be measure within specify parameters, these measurement are part of the quality control of the nuclear industry. The analytical procedure has to be well established by a convention of the quality assurance. Therefore, the Oxygen, Carbon, Sulfur and Hydrogen are measured by infrared absorption (IR) and the nitrogen will be measured by thermal conductivity (TC). The gas/metal analyzer made by LECO Co. model TCHEN-600 is Hydrogen, Oxygen and Nitrogen analyzer in a variety of metals, refractory and other inorganic materials, using the principle of fusion by inert gas, infrared and thermo-coupled detector. The Carbon and Sulfur compounds are measure by LECO Co. model CS-400. A sample is first weighed and placed in a high purity graphite crucible and is casted on a stream of helium gas, enough to release the oxygen, nitrogen and hydrogen. During the fusion, the oxygen present in the sample combines with the carbon crucible to form carbon monoxide. Then, the nitrogen present in the sample is analyzed and released as molecular nitrogen and the hydrogen is released as gas. The hydrogen gas is measured by infrared absorption, and the sample gases pass through a trap of copper oxide which converts CO to CO 2 and hydrogen into water. The gases enter the cell where infrared water content is then converted making the measurement of total hydrogen present in the sample. The Hydrogen detection limits for the nuclear fuel is 1 μg/g for the Nitrogen

  5. Study of hydrogen migration produced during the corrosion of PWR reactors fuel cans in zircaloy 4 and zirconia; Etude du transport de l`hydrogene produit lors de la corrosion des gaines d`elements combustibles des reacteurs a eau sous pression dans la zircone et le zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Aufore, L

    1997-12-12

    The corrosion of Zircaloy-4-claddings by water from the primary circuit of nuclear power plant goes hand in hand with the release of hydrogen which penetrates the oxide and then the metal. This work focuses on the mechanisms of hydrogen transport in oxide and in metal. Hydrogen transport in oxide is studied on the basis of corrosion tests performed in the autoclave at 360 deg C. These tests are performed on Zircaloy-4 claddings under different chemical conditions (pure water, and pure water with lithium hydroxide). The distribution of hydrogen in oxide film is measured by SIMS. Hydrogen profiles in the oxide are dependent on the oxide microstructure and vary with oxidation time. These observations are confirmed by experiments in which some samples, previously oxidized in the autoclave, are immersed in heavy water. In the oxide layer, two zones are observed: one external porous zone and one internal dense zone. Deuterium diffusion coefficients in dense oxide are determined using SIMS profiles and Fischer diffusion model. Hydrogen transport in metal is also studied by means of gas-phase permeation experiments. These are set up at different temperature (400-500 deg. C) and under different hydrogen pressures and make it possible to determine the hydrogen diffusion coefficients in a Zircaloy-4 cladding under experimental conditions. All these results lead us to discuss of hydrogen transport evolution in cladding during oxidation. A model taking into account hydrogen transport in oxide and in metal, and the hydrides precipitations is proposed. (author) 110 refs.

  6. Irradiation-induced growth of zircaloy and its effects on the mechanical design of fuel assemblies

    International Nuclear Information System (INIS)

    Yao Pu

    1991-01-01

    Zircaloy growth could be induced due to irradiation. The ammount of growth is described as a function of texture, irradiation temperature, fast neutron fluence and the reduction of cold work, and it should be given great attention in the mechanical design of fuel assemblies

  7. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  8. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  9. On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions

    International Nuclear Information System (INIS)

    Lavigne, O.; Shoji, T.; Sakaguchi, K.

    2012-01-01

    Highlights: ► Corrosion behavior of oxidized Zr-4 in alkaline media in presence of chloride and radical forms. ► Generation of radical forms by sonolysis of water. ► Limited increase of the passive current densities under polarization with the increase of pH and the presence of radicals. ► Decrease of the passive range of oxidized Zr-4 with presence of Cl − (E pit ∼ 0.6 V SCE ). ► Decrease of the pitting potential when oxide layer is scratched or damaged (E pit ∼ 0.16 V SCE ). - Abstract: After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm −2 ). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.

  10. Thermal isocreep curves obtained during multi-axial creep tests on recrystallized Zircaloy-4 and M5™ alloy

    International Nuclear Information System (INIS)

    Rautenberg, M.; Poquillon, D.; Pilvin, P.; Grosjean, C.; Cloué, J.M.; Feaugas, X.

    2014-01-01

    Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ zz /σ θθ , σ zz and σ θθ being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence

  11. Oxidation of zircaloy-2 in high temperature steam

    International Nuclear Information System (INIS)

    Ikeda, Seiichi; Ito, Goro; Ohashi, Shigeo

    1975-01-01

    Oxidation tests were conducted for zircaloy-2 in steam at temperature ranging from 900 to 1300 0 C to clarify its oxidation kinetics as a nuclear fuel cladding materials in case of a loss-of-coolant accident. The influence of maximum temperature and heating rate of the specimen on its oxidation rate in steam was investigated. The changes in mechanical properties of the specimens after oxidation tests are also studied. The results obtained were summarized as follows: (1) The weight of the specimen after oxidation in steam increased two times as the time required to reach the maximum temperature increased from 1 to 10 mins. (2) The kinetics of oxidation of zircaloy-2 in steam were not affected by the difference in the surface condition before test such as chemical polishing or pre-oxidation in steam. (3) The dominant growth of oxide film on the surface of zircaloy-2 was observed at the initial stage of oxidation in steam. However, the thickness of oxygen-rich solid solution layer under the film increased gradually with the progress of oxidation and the ratio of oxygen in oxide to that in solid solution has a constant value of 8:2. (4) The breakaway took place only in the specimen subjected to 900 0 C repeated heating. This penomenon was caused by the local growth of the oxide below a crack of the oxide film resulting from the reheating of the specimen. (5) The results of bending tests showed that the deflection until fracture of the specimen was smaller for the one heated at a higher temperature even if the weight increase was of the same order of magnitude for both specimens. (6) It was concluded that the ductility of zircaloy-2 decreased remarkably at a heating temperature in excess of 1100 0 C for more than 5 min. (auth.)

  12. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  13. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  14. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  15. Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM

    International Nuclear Information System (INIS)

    Harlow, Wayne; Ghassemi, Hessam; Taheri, Mitra L.

    2016-01-01

    The corrosion behavior of Zircaloy-4 (Zry-4), specifically by oxidation, is a problem of great importance as this material is critical for current nuclear reactor cladding. The early formation behavior and structure of the oxide layer during oxidation was studied using in-situ TEM techniques that allowed for Zry-4 to be monitored during corrosion. These environmental exposure experiments were coupled with precession electron diffraction to identify and quantify the phases present in the samples before and after the oxidation. Following short-term, high temperature oxidation, the dominant phase was revealed to be monoclinic ZrO 2 in a columnar structure. These samples oxidized in-situ contained structures that correlated well with bulk Zry-4 subjected to autoclave treatment, which were used for comparison and validation of this technique. By using in-situ TEM the effect of microstructure features, such as grain boundaries, on oxidation behavior of an alloy can be studied. The technique presented herein holds the potential to be applied any alloy system to study these effects. - Highlights: • In-situ TEM was used to oxidize samples of Zircaloy-4. • Similar behavior was found in the in-situ oxidized and autoclave-oxidized samples. • Precession diffraction was used to characterize oxide phase and texture.

  16. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  17. Development in the manufacture of fuel assembly components at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Saibaba, N.

    2012-01-01

    The integrity of the fuel bundle and pellet-clad mechanical and chemical interaction (PCMCI) is the major limiting factor in achieving high burn up in thermal as well as fast reactors. Zircaloy based fuel bundle used for Indian pressurized heavy water reactor consists of number of components such as fuel clad tube, end cap bearing pad and spacer pad. These tubular, bar and sheet components are manufactured at Nuclear Fuel Complex using a series of thermomechanical processes involving hot and cold working with intermediate heat treatment. This paper is aimed at bringing out recent advances in NFC in the manufacture of fuel assembly components. Zircaloy based double clad tube adopting co-extrusion route followed by cold pilgering was successfully produced for its potential usage for high burnup in advance thermal reactors such as Advanced Heavy Water Reactors, This paper also includes process modifications carried out in the manufacture of clad tube and end cap components based on in-depth metallurgical studies. A radial forging process was established for primary breakdown of arc melted ingot which allows for better soundness and homogeneous microstructure. Manufacturing route of bar components for end caps was suitably modified by adopting only barrel straightening to minimize the residual stress and thereby increasing the recovery appreciably. NFC also supplies clad tube for fast breeder reactors where limiting factor for burn up are void swelling and fuel-clad interaction. In view of this, advance claddings such as P/M based 9Cr - Oxide Dispersion strengthened (ODS) steel clad and Zirconium lined T91 (9Cr-1 Mo) steel double clad have been successfully produced. Zirconium lined T91 (9Cr-1 Mo) double clad tubes required was successfully produced by adopting the method of co-pilgering, as a candidate material for clad tubes of Fast Breeder Reactors. (author)

  18. Spectrochemical determination of impurities in zircaloy 2 and 4

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.

    1987-06-01

    A method has been developed for the determination of Hf,Co,Mo,Pb,Ti,V,Al,Si,W,Cu,Mg,Mn,B and Cd in zircaloy 2 and 4. For hafnium determination 10% CuF 2 is added as spectrographic buffer on a previously oxidized zircaloy; the samples are loaded in a shallow cup electrode of Scribner Mullins type and excited in a direct current arc. The carrier distillation technique has been used for the other elements. Better results were obtained with 25% AgCl as carrier. The precision of the method varies from 4% for copper to 29% for boron but it does not exceed 17% for most elements. (Author) [pt

  19. Out-of-pile fatigue tests on Zircaloy CANDU sheaths

    International Nuclear Information System (INIS)

    Roth, Maria; Ciocanescu, Marin; Gheorghiu, Constantin; Pitigoi, Vasile; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The paper outlines the achievements in the nuclear research field of cooperation on Nuclear Fuel performed as part of the collaboration under the Memorandum of Understanding, settled between Atomic Energy of Canada Limited (AECL) and Institute for Nuclear Research (ICN), The sheath behavior was simulated using out-of-pile fatigue tests, in conditions identical with those met during the operation in power cycling of CANDU reactor, except for irradiation. A special test rig, designed and carried-out at ICN ensured the experimental requirements according to the Canadian testing procedure. The description of the experimental setup and monitoring of testing parameters were also done. The fatigue life time, expressed as number of cycles to rupture (N), was measured as a function of the total strain amplitude (e) induced in the Zircaloy-4 sheath samples. Strain-Life time fatigue dependence (e-N) under low cycle fatigue conditions was also verified using the Coffin-Manson correlation. (authors)

  20. Zircaloy-sheathed element rods fitted with thermo-couples; Barre combustible a thermocouple gainee de zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Bernardy de Sigoyer, B; Jacques, F; Thome, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In order to carry out thermal conductivity measurements on UO{sub 2} in conditions similar to those under which fuel rods are used, it was necessary to measure the temperature at the interior of a fuel element sheathed in zircaloy. The temperatures are taken with Thermocoax type thermocouples, that is to say fitted with a very thin sheath of stainless steel or Inconel. It is known also that fusion welding of zircaloy onto stainless steel is impossible and that high temperature welded joints are very difficult because of their aggressiveness. The technique used consists in brazing the thermocouples to relatively large stainless steel parts and then joining these plugs by electron bombardment welding to diffused stainless steel-zircaloy couplings. The properties of these diffused couplings and of the brazed joints were studied; the various stages in the fabrication of the containers are also described. (authors) [French] Pour des mesures de conductivite thermique de l'UO{sub 2} dans des conditions voisines du fonctionnement des barres combustibles, il s'agissait de mesurer la temperature a l'interieur d'un element combustible gaine de zircaloy. Les prises de temperature sont faites par thermocouples du type Thermocoax, c'est-a-dire pourvu d'une gaine tres mince en inox ou inconel. Par ailleurs on sait que le soudage par fusion du zircaloy sur l'inox est impossible et que les brasures a haute temperature sont difficiles car tres agressives. La technique utilisee consiste a braser les thermocouples sur des pieces en inox relativement massives et de rapporter par soudage au bombardement electronique ces bouchons sur des raccords diffuses zircaloy-inox. Les proprietes de ces raccords diffuses et celles de joints brases ont ete etudiees; on expose egalement les diverses etapes de fabrication des containers. (auteurs)

  1. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    Science.gov (United States)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  2. Investigations of the interaction between ballooning Zircaloy cladding and emergency core cooling

    International Nuclear Information System (INIS)

    Wiehr, K.; Barth, S.; Erbacher, F.; Hame, W.; Harten, U.; Just, W.; Megerle, A.; Mueller, S.; Neitzel, H.J.; Reimann; Schaeffner, P.; Schmidt, H.

    1975-01-01

    The development of fabrication methods for the production of fuel rod simulators has been largely terminated. For welding of Zircaloy-4 and inconel 600 explosive welding has proved to be promissory in preliminary tests. A prototype fuel rod simulator was tested at full power. Its performance was faultless and the fuel rod and ring pellets could be easily dismantled and reused after the experiment. Planning of the test rig and electricity supply were terminated. Most of the assembly work has been finished. For electric heating of the fuel rod simulators a special device was built and tested which allows to program the power control. The radiographic system recording ballooning of the Zircaloy clad was erected outside the test space and put into operation. First trial pictures yielded good results. (orig.) [de

  3. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  4. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Scheuer, A.; Gutsmiedl, E.

    1999-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256 deg. C and 250 deg. C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was take into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256 deg. C and 150 deg. C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to take into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼ 1x10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture

  5. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    International Nuclear Information System (INIS)

    Gutsmiedl, Erwin

    2001-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256degC and 250degC. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-V samples were carried out in the temperature range between -256degC and 150degC to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1·10 22 n/cm 2 was investigated. The loss of ductility was determined. As an additional criteria the variation of the fracture toughness was studies. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfill the leak before rupture criteria of

  6. Quantification and characterization of zirconium hydrides in Zircaloy-4 by the image analysis method

    International Nuclear Information System (INIS)

    Zhang, J.H.; Groos, M.; Bredel, T.; Trotabas, M.; Combette, P.

    1992-01-01

    The image analysis method is used to determine the hydrogen content in specimens of Zircaloy-4. Two parameters, surface density of hydride, S v , and degree of orientation, Ω, are defined to represent separately the hydrogen content and the orientation of hydrides. By analysing the stress-relieved Zircaloy-4 specimens with known hydrogen content from 100 to 1000 ppm, a relationship is established between the parameter S v and the hydrogen content when the magnifications of the optical microscope are 1000 and 250. The degree of orientation for the hydride in the stress-relieved Zircaloy-4 cladding is about 0.3. (orig.)

  7. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  8. Heat transfer coefficient between UO2 and Zircaloy-2

    International Nuclear Information System (INIS)

    Ross, A.M.; Stoute, R.L.

    1962-06-01

    This paper provides some experimental values of the heat-transfer coefficient between UO 2 and Zircaloy-2 surfaces in contact under conditions of interfacial pressure, temperature, surface roughness and interface atmosphere, that are relevant to UO 2 /Zircaloy-2 fuel elements operating in pressurized-water power reactors. Coefficients were obtained from eight UO 2 / Zircaloy-2 pairs in atmospheres of helium, argon, krypton or xenon, at atmosphere pressure and in vacuum. Interfacial pressures were varied from 50 to 550 kgf/cm 2 while surface roughness heights were in the range 0.2 x 10 -4 to 3.5 x 10 -4 cm. The effect on the coefficients of cycling the interfacial pressure, of interface gas pressure and of temperature were examined. The experimental values of the coefficients were used to test the predictions of expressions for the heat-transfer between two solids in contact. For the particular UO 2 / Zircaloy-2 pairs examined, numerical values were assigned to several parameters that related the surface roughnesses to either the radius of solid/solid contact spots or to the mean thickness of the interface voids and that accounted for the imperfect accommodation of the void gas on the test surfaces. (author)

  9. Behaviour of MZFR-type Zircaloy-4 cans under tensile stress

    International Nuclear Information System (INIS)

    Bordoni, R.A.; Casario, J.A.; Coroli, Graciela; Povolo, Francisco

    1981-01-01

    The paper describes the experimental procedure and results from the tensile tests of Zircaloy-4 fuel cans of the MZFR-type, performed at temperatures ranging from 250 to 450 deg C and for a relative deformation velocity of about 0.5%/min. In the representation of the results by a curve of the type sigma = K epsilon/sup n/, two different stages are observed. By statistically fitting the experimental curves, the values for the K and n parameters were obtained for each stage as a function of temperature. The results are discussed and compared with similar data found in current literature. It is concluded that new tests on tubes of different characteristics are necessary in order to obtain a clearer idea about the mechanical behaviour of these materials. (C.A.K.) [es

  10. Mechanistic considerations used in the development of the probability of failure in transient increases in power (PROFIT) pellet-zircaloy cladding (thermo-mechanical-chemical) interactions (pci) fuel failure model

    International Nuclear Information System (INIS)

    Pankaskie, P.J.

    1980-05-01

    A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) interactions (PCI) failure model for estimating the Probability of Failure in Transient Increases in Power (PROFIT) was developed. PROFIT is based on (1) standard statistical methods applied to available PCI fuel failure data and (2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmental and strain-rate dependent Strain Energy Absorption to Failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-dislocation interaction effects in the Zircaloy cladding

  11. Zircaloy oxidation and cladding deformation in PWR-specific CORA experiments

    International Nuclear Information System (INIS)

    Minato, K.; Hering, W.; Hagen, S.

    1991-07-01

    Out-of-pile bundle experiments (zircaloy 4) are performed in the CORA facility to investigate the behavior of PWR fuel elements during severe fuel damage (SFD) accidents. Within the international cooperation the most significant phenomena such as cladding deformation, oxidation (especially the zirconium/steam reaction), melt formation, melt release, and relocation which were found in all tests have been analyzed. (orig./MM) [de

  12. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  13. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  14. Fabrication characteristics of zircaloy tubes for nuclear reactors

    International Nuclear Information System (INIS)

    Haydt, H.M.

    1980-11-01

    The production sequence for zircaloy cladding tubes to be used in nuclear reactors is described, with emphasis on the texture after reduction and on the variation in the hydrides orientation. The qualities requested for the cladding tubes are presented and reference is made to the quality control applied in the process. The destructive tests as well as the final inspection to which those tubes are subjected are related. A Fabrication Quality Project is requested from the manufacturers by reason of what Quality Control Plans are submitted to be clients. At last an evaluation of the quality to be obtained and of the control performed is mentioned. (Author) [pt

  15. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  16. Determination of Boron in Zircaloy by using ICP-AES and Colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Goo; Pyo, Hyung-Ryul; Choi, Kwang-Soon; Han, Sun-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    Zircaloy has been being widely used in the nuclear industry because of the low cross section of Zirconium against a thermal neutron. Accurate composition data of Zircaloy for Hf, B, and so on having a high cross section against thermal neutron is important to use it as a nuclear material. Accordingly proper determination methods of these elements in Zircaloy are needed. In this study, the application of two methods, ICP-AES and a colorimetry using methylene blue were investigated in order to establish a proper analysis method of Boron in the range from tens to hundreds ug B/g sample of Zircaloy.

  17. Determination of Boron in Zircaloy by using ICP-AES and Colorimetry

    International Nuclear Information System (INIS)

    Kim, Jong-Goo; Pyo, Hyung-Ryul; Choi, Kwang-Soon; Han, Sun-Ho

    2007-01-01

    Zircaloy has been being widely used in the nuclear industry because of the low cross section of Zirconium against a thermal neutron. Accurate composition data of Zircaloy for Hf, B, and so on having a high cross section against thermal neutron is important to use it as a nuclear material. Accordingly proper determination methods of these elements in Zircaloy are needed. In this study, the application of two methods, ICP-AES and a colorimetry using methylene blue were investigated in order to establish a proper analysis method of Boron in the range from tens to hundreds ug B/g sample of Zircaloy

  18. Tube in zirconium base alloy for nuclear fuel assembly and manufacturing process of such a tube

    International Nuclear Information System (INIS)

    Mardon, J.P.; Senevat, J.; Charquet, D.

    1996-01-01

    This patent concerns the description and manufacturing guidelines of a zirconium alloy tube for fuel cladding or fuel assembly guiding. The alloy contains (in weight) 0.4 to 0.6% of tin, 0.5 to 0.8% of iron, 0.35 to 0.50% of vanadium and 0.1 to 0.18% of oxygen. The carbon and silicon tenors range from 100 to 180 ppm and from 80 to 120 ppm, respectively. The alloy contains only zirconium, plus inevitable impurities, and is completely recrystallized. Corrosion resistance tests were performed on tubes made of this alloy and compared to corrosion tests performed on zircaloy 4 tubes. These tests show a better corrosion resistance and a lower corrosion kinetics for the new alloy, even in presence of lithium and iodine, and a lower hydridation rate. The mechanical resistance of this alloy is slightly lower than the one of zircaloy 4 but becomes equivalent or slightly better after two irradiation cycles. The ductility remains always equal or better than for zircaloy 4. (J.S.)

  19. Effect of the anodization variables in the corrosion resistence of the zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Figueiredo, M.E.

    1981-02-01

    The anodization effect in the oxidation of the zircaloy-4 in steam atmosphere at 10,06MPa was investigated. It was also studied how the voltage and the types of electrolytes at several values of pH affect the growing of the anodic oxide film and the performance of the zircaloy-4 in relation to corrosion. Anodizations of zircaloy-4 tubes have been made with voltages ranging from zero to 280V and using electrolytic solutions of Na 2 B 4 O 7 , CH 3 COOH and NaOH in the concentrations of 1,0N, 0,1N and 0,01N. After anodization, the tubes were oxidized in autoclave under steam at 400 0 C and 10,06 MPa during 3 and 14 days. The results show that the anodization inhibit the oxidation process of zircaloy-4, and that this protection increases with the voltage applied for film formation. The relationship between the weight gain after oxidation in autoclave and the anodization voltage is of the exponential type: (σM/A) sub(AC) = Ce sup(-DV). The observed relationship between the applied voltage and the weight gain due to anodization is of the linear type: (σM/A) sub(AN) = aV. Concerning the influence of different electrolytes, it was observed a similar behaviour between them with respect to the thickness of the anodic oxide and the weight gain of zircaloy-4 after the autoclave test. (Author) [pt

  20. Nuclear fuel, with emphasis on its utilization in pressurized water reactor

    International Nuclear Information System (INIS)

    Khazaneh, R.; Roshanzamir, M.

    1997-01-01

    Production processes of nuclear fuel on one hand and using nuclear fuels in reactors, particularly PWR Type reactors on the other hand is investigated. The first chapter reviews the relationship between fuel and reactors; The principals of reactor physics in relation with fuel are described shortly. The second chapter reviews uranium exploration and extraction as well as production of uranium concentrate and uranium dioxides. The third chapter is specified to the different procedures of uranium enrichment. In the fourth chapter, processing of uranium dioxide powder and fuel pellet is described. In the fifth chapter fabrication of fuel rod and fuel assemblies is explained thoroughly. The sixth chapter devoted to the different phenomena which occur ed in fuel structure and can during operational time of reactor; damage to fuel rods and developing theoretical models to describe these phenomena and analysis of fuel structure. The seventh chapter discusses how fuel rods are to be experimented during fabrication, operation and development of technology. The eighth chapter explains different fuels such as uranium compounds and mixed oxide fuel of uranium Gadolinium and uranium plutonium and the process of fabrication of zircaloy. In the tenth chapter, fuel reprocessing is investigated and the difficulties of developing this technology is referred

  1. The effect of second-phase particles on the corrosion and struture of Zircaloy-4

    International Nuclear Information System (INIS)

    Cortie, M.B.

    1982-10-01

    The effect of heat treatment and second-phase particles on the corrosion resistance and microstructure of Zircaloy-4 has been examined. In particular the effect of precipitates on the rate and mechanism of high-temperature, high-pressure water or steam corrosion is discussed. Measurements of corrosion rate are presented for specimens which have received various heat treatments. The heat treatments studied included a fast cool from the beta field, prolonged annealing at temperatures ranging from 500 degrees Celsius to 1 100 degrees Celsius as well as combinations of the above. The fabrication of a small quantity of Zircaloy-4 strip was undertaken and the methods used and observations made are recorded. The wide range of microstructures produced in Zircaloy-4 by the heat treatments and fabrication procedures utilized are described and discussed with optical or electron microscope photographs showing the important features. Qualitative and semi-quantitative chemical analyses of the second-phase particles were carried out by both the scanning electron microscope and Auger spectroscopy. Evidence for the existence of a tin-rich precipitate in Zircaloy-4 is presented and discussed

  2. Fracture properties of hydrided Zircaloy-4 cladding in recrystallization and stress-relief anneal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: hhhsu@iner.gov.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 325, Taiwan (China); Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Tsay, Leu-Wen [Institute of Materials Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2012-03-15

    In this work, the stress-relieved (SRA) and recrystallized (RXA) Zircaloy-4 cladding specimens were hydrogen-charged to the target concentration of 300 wppm and then manufactured into X-specimens for fracture toughness test. The hydrogen embrittlement susceptibility of Zircaloy-4 cladding specimens in both SRA and RXA conditions were investigated. At the hydrogen concentration level of 300 wppm, J-integral values for RXA cladding were higher than those for SRA cladding at both 25 Degree-Sign C and 300 Degree-Sign C. The formation of brittle zirconium hydrides had a significant impact on the fracture toughness of Zircaloy-4 cladding in both SRA and RXA states, especially at 25 Degree-Sign C. Among all the tests, SRA cladding tested at 25 Degree-Sign C exhibited a great loss of the fracture toughness. The micrographic and fractographic observations further demonstrated that the fracture toughness of Zircaloy-4 cladding would be improved by the coarse grains in RXA cladding, but degraded by zirconium hydrides precipitated along the grain boundary.

  3. Irradiation of a CANDU UOsub(2) fuel element with twenty-three machined slits cut through the zircaloy sheath

    International Nuclear Information System (INIS)

    DaSilva, R.L.

    1984-09-01

    A CANDU fuel element was purposely defected, exposing a minimum UOsub(2) fuel stack area of 272 mmsup(2), by machining 23 longitudinal slits through the Zircaloy-4 sheathing. The element was then irradiated in the X-2 loop of the NRX reactor for a period of 14.64 effective full power days at a linear heat rating of 48 kW/m to investigate the relationship between fission product release and UOsub(2) oxidation behaviour in an element with minimal fuel-to-gap fission gas trapping. The fission product releases, as measured by on-line gamma-ray spectroscopy, revealed that the noble gases and radioiodines are both released from the UOsub(2) fuel matrix directly to the coolant via simple diffusion kinetics, and that their diffusivities in hyperstoichiometric UOsub(2) are approximately equal. The oxidation of UOsub(2) to the higher states UOsub(2+x), Usub(4)Osub(9) and Usub(3)Osub(8), was accompanied by substantial fuel swelling and sheath deformation preferentially located in the lower powered end of the element. The spalling and erosion behaviour of the fuel pellets was correlated to the rate of fuel oxidation

  4. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  5. Texture Of Zircaloy-4 Result Of Beta-Quenching, Cold Rolling And Recrystallization

    International Nuclear Information System (INIS)

    Futichah; Sulistioso

    1998-01-01

    Differences of crystallographic texture of zircaloy-4 plate depends on cold working and heat treatment.To determine the change of zircaloy-4 textures, the solid solution treatment process at beta phase which was followed by quenching on water was employed for this sample. The next step was cold rolling until deformation epsilon = 1.62. The specimens were recrystallized at 750 o C, for 2 hours. The result of beta-quench gave a spread and different orientations and the main orientation occurred at (0001)[1010] and (0001)[1120]. Result of cold rolling with epsilon = 1.39 and epsilon 1.62 is the deformation texture at the main orientation of (0001)[1010] with the angle of inclination was around 38 o. However, the result of Recrystallization process on 750 o C for 2 hours gave annealing textures with orientations of (0001)[1120]. It means that the recrystallization process of zircaloy-4 plate can not remove the deformation textures, but can change the crystallographic orientation

  6. Modelling of zircaloy-4 corrosion in nitrogen and oxygen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre, M.; Peres, V.; Pijolat, M.; Coindreau, O.; Duriez, C.; Mardon, J.P.

    2015-01-01

    Previous studies of zircaloy-4 corrosion in air have shown accelerated corrosion in the 600-1000 Celsius degrees temperature range with Zr nitrides precipitating near the metal/oxide surface. The aim of this series of slides is to assess the influence of N 2 and O 2 partial pressures on the kinetic rate of growth of a new phase and to propose a kinetic modelling of zircaloy-4 corrosion

  7. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wirth, B. D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. This allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to

  8. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  9. Interaction between zircaloy tube and inconel spacer grid at high temperature

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi; Furuta, Teruo

    1990-09-01

    In order to investigate the interaction between fuel cladding and spacer grid of the pressurized water reactor during a severe accident, isothermal reaction tests were performed at the temperature range from 1248 to 1673K. A specimen consisted of a short Zircaloy-4 cladding tube and a piece of spacer grid of Inconel-718. In the tests in an argon atmosphere, eutectic reaction between Zircaloy and Inconel was observed at the contact points at 1248K. Rapid reaction was observed at higher test temperatures. For example, in the test at 1373K for 300s, Zircaloy reacted with Inconel over the entire thickness (0.62mm) of the tube in the vicinity of the contact point. In the present tests, Zircaloy which has higher melting point than Inconel was dissolved preferentially due to eutectic formation. In the tests in an oxygen atmosphere, no eutectic reaction was observed at temperatures below 1437K. A trace of interaction was found at the contact point of specimen heated at 1573 and 1623K. However, decrease in Zircaloy thickness was not measured. The possibility of eutectic reaction between Zircaloy cladding and Inconel spacer grid seems to be quite limited when sufficient oxygen is supplied. (author)

  10. The behaviour of Zy-4 tubes in microbial media

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Popa, L.; Stancu, M.

    2013-01-01

    Despite of the high purity of the demineralised water used in spent fuel storage pools, some microbial activity developed ( more accelerated during the summer months) , causing fouling and clogging of filters and ion exchange resins. In this context, the paper presents an assessment (by experimental tests) of the behaviour of Zircaloy- 4 (the material of Candu nuclear fuel) samples in certain microbiological media. Samples of Zircaloy- 4 used in the tests were initially oxidized under the NPP primary circuit (by autoclaving for 110 days in lithium water, ph 10.5, at a temperature of 310 0 C). Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system Zircaloy- 4 / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). At the end of the tests, the surface of samples was analyzed by metallographic and microbiologically techniques. (authors)

  11. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  12. Zircaloy-sheathed element rods fitted with thermo-couples

    International Nuclear Information System (INIS)

    Bernardy de Sigoyer, B.; Jacques, F.; Thome, P.

    1963-01-01

    In order to carry out thermal conductivity measurements on UO 2 in conditions similar to those under which fuel rods are used, it was necessary to measure the temperature at the interior of a fuel element sheathed in zircaloy. The temperatures are taken with Thermocoax type thermocouples, that is to say fitted with a very thin sheath of stainless steel or Inconel. It is known also that fusion welding of zircaloy onto stainless steel is impossible and that high temperature welded joints are very difficult because of their aggressiveness. The technique used consists in brazing the thermocouples to relatively large stainless steel parts and then joining these plugs by electron bombardment welding to diffused stainless steel-zircaloy couplings. The properties of these diffused couplings and of the brazed joints were studied; the various stages in the fabrication of the containers are also described. (authors) [fr

  13. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    Science.gov (United States)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  14. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  15. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  16. The accelerated oxidation of zircaloy-4 at 700∼900 .deg. C in high pressure steam

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, K. H.

    1999-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The specimens used in experiments are commercially available Zircaloy-4 used in Kori nuclear power plants. All the measurements were done at 700∼900 .deg. C in steam. Pressure effects were noticed. The oxide thickness was much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. The enhancement of oxide growth rate at 700∼900 .deg. C in high pressure steam is approximately propotion to the power of 1.0∼1.6 of the ratio of experimental steam pressure to critical steam pressure. There is a critical steam pressure above that the oxidation rate enhances. The critical steam pressure was measured as 30∼40 bar. The enhanced oxidation seems from the oxide cracking due to the tetragonal to monoclinic phase transformation at high pressure steam

  17. Plastic behaviour of Zircaloy-4 in the temperature range 77-1000 K

    International Nuclear Information System (INIS)

    Derep, J.L.; Ibrahim, S.; Rouby, D.; Fantozzi, G.; Gobin, P.

    1979-01-01

    Tensile tests were carried out on Zircaloy-4 over a temperature range 77-1000 K. So, we have determined the flow stress variations as a function of temperature and strain rate. Two thermally activated zones were observed between about 77 and 600 K, a plateau stress between 600 and 700 K and an other thermally activated zone above 700 K. The various mechanisms which can be responsible for the thermally activated and athermal zones are discussed in the light of experimental results. The mechanical behaviour of Zircaloy-4 appears similar to the zirconium-oxygen alloys one. (orig.) [de

  18. Improvements in welding parameters for a new design of zircaloy-4 tube-end plug joints

    International Nuclear Information System (INIS)

    Martinez, R.L.; Fernandez, L.; Corso, H.L.; Ausas, J; Santisteban, J.R.

    2010-01-01

    This work presents the experimental results for the characterization of welds using a new design for zircaloy-4 tube-end plug joints, applicable to the production of fuel elements for the Atucha I Nuclear Plant. Test specimens were prepared following the new joint design and were welded using orbital welding equipment. Hydrogen content was measured in the different welding areas, and corrosion tests, and mechanical and microstructural descriptions were carried out, obtaining values that meet the current production standards. We reported previously that test samples welded in equipment with a smaller camera showed some relatively high hydrogen levels, together with alterations in the welded zone in the corrosion tests. Given these results, new tests were undertaken to optimize the welding parameters, being very careful with the purity of the welding atmosphere and in the handling of the samples. The intensity of the welding current was increased slightly to obtain better penetration of the material, without significantly increasing the heat input. The traction resistance values improved, reducing the hydrogen content to well below the maximum allowed by the standards (25 ppm) in all the welding zones and obtaining satisfactory results in the corrosion tests

  19. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  20. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs

  1. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs.

  2. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  3. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  4. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  5. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-05-01

    The chemical reaction behavior between Zircaloy-4 and 1.4919 (AISI 316) stainless steel, which are used in absorber assemblies of Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR), has been studied in the temperature range 1000 - 1400 C. Zircaloy was used in the as-received, pre-oxidized and oxygen-containing condition. The maximum temperature was limited by the fast and complete liquefaction of the reaction couple as a result of eutectic chemical interactions. Liquefaction of the components occurs below their melting point. The effect of oxygen dissolved in Zircaloy plays an important role in the interaction; oxide layers on the Zircaloy surface delay the chemical interactions with stainless steel but cannot prevent them. Oxygen dissolved in Zircaloy reduces the reaction rates and shift the liquefaction temperature to slightly higher levels. The interaction experiments at the examined temperatures with or without pre-oxidized Zircaloy can be described by parabolic rate laws. The Arrhenius equations for the various conditions of interactions are given. (orig.) [de

  6. Irradiation of Parts of the X-Gen Nuclear Fuel Assembly made by KNF in HANARO

    International Nuclear Information System (INIS)

    Choo, K. N.; Cho, M. S.; Shin, Y. T.; Kim, B. G.; Lee, S. H.; Eom, K. B.

    2008-01-01

    An instrumented capsule has been developed at HANARO (High flux Advanced Neutron Application ReactOr) for the neutron irradiation tests of materials. The capsule system has been actively utilized for the various material irradiation tests requested by users from research institutes, universities, and the industries. As a preliminary test, some specimens made of the parts of a nuclear fuel assembly were inserted in the 05M-07U instrumented capsule and successfully irradiated at HANARO. Based on the results and experience, a new irradiation capsule of 07M-13N was designed, fabricated, and irradiated at HANARO for the evaluation of the neutron irradiation properties of the parts of the X-Gen nuclear fuel assembly made by KNF (Korea Nuclear Fuel). Specimens such as bucking and spring test specimens of spacer grid, microstructure and tensile test specimens of welded parts, tensile, irradiation growth and spring test specimens made of HANA tube, Zirlo, Zircaloy-4 and Inconel-718 were placed in the capsule. The capsule was loaded into the CT test hole of HANARO of a 30MW thermal output and the specimens were irradiated at 295 - 460 .deg. C up to a fast neutron fluence of 1.2x10 21 (n/cm 2 ) (E>1.0MeV)

  7. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  8. High temperature deformation behavior of gradually pressurized zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Suzuki, Motoye

    1982-03-01

    In order to obtain preliminary perspectives on fuel cladding deformation behavior under changing temperature and pressure conditions in a hypothetical loss-of-coolant accident of PWR, a Zircaloy-4 tube burst test was conducted in both air and 99.97% Ar atomospheres. The tubes were directly heated by AC-current and maintained at various temperatures, and pressurized gradually until rupture occurred. Rupture circumferential strains were generally larger in Ar gas than in air and attained a maximum around 1100 K in both atmospheres. Some tube tested in air produced axially-extended long balloons, which proved not to be explained by such properties or ideas as effect of cooling on strain rate, superplasticity, geometrical plastic instability and stresses generated by surface oxide layer. A cause of the long balloon may be obtained in the anisotropy of the material structure. But even a qualitative analysis based on this property can not be made due to insufficient data of the anisotropy. (author)

  9. Apparatus for study of transient oxidation of Zircaloy-4 tubing

    International Nuclear Information System (INIS)

    Sagat, S.; Iglesias, F.C.; Newell, G.W.

    1985-11-01

    Complex transient oxidation tests on Zircaloy-4 tubing were performed to provide data for validation of the computer code FROM2. This code was developed to calculate oxygen distribution through oxidized Zircaloy tubing. The test temperature histories consisted of ramp, hold and cool cycles. The heating and cooling rates were in the range of 1 to 100 K/s and the maximum temperature was 1875 K. The apparatus developed to perform these experiments is described. In principle, Joule heating is used to heat the specimen and the temperature is controlled by a computer in conjunction with temperature and SCR power controllers. Using this combination, fast heating and cooling rates were achieved without sacrificing the accuracy of temperature control

  10. Interaction between aluminium oxide pellets and Zircaloy tubes in steam atmospheres at temperatures above 12000C

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Schanz, G.; Sepold, L.

    1988-09-01

    The burnable poison rods in light water reactors (LWR) consist of Al 2 O 3 /B 4 C pellets surrounded by Zircaloy-4 cladding tubes. In the Al 2 O 3 /B 4 C pellets of a LWR rod alumina is the main constituent (98.6 wt.-%) whereas boron carbide acts as neutron absorber. Failure of the Al 2 O 3 /Zircaloy test rods started at 1350 0 C when first droplets of molten material were observed running down the test bundle forming bundle blockages upon solidification. Post test examinations revealed that the process of liquefaction was initiated by a reduction of alumina by Zircaloy resulting in a (Zr, Al, O) melt which decomposed on cooldown into two metallic phases, a (Zr, Al) alloy and oxygen-stabilized a-Zr(O). The components of an extremely porous ceramic melt were also Zr, Al, and oxygen but with a higher oxygen content compared to the metallic melt. The ceramic melt decomposes on cooldown into an Al 2 O 3 /ZrO 2 eutectic with various amounts of primary constituents. Other types of relocated material were due to melting of essentially unreacted Zircaloy cladding and to debris formation by fracturing of oxidized cladding and Al 2 O 3 pellets stack residues. The interactions between Al 2 O 3 and Zircaloy occurring in a burnable poison rod are furthermore important for the behavior of the entire LWR core because the generated metals are able to attack the UO 2 chemically and dissolve or liquefy the fuel even below the melting point of Zircaloy (1760 0 C). As a result, fuel elements which contain burnable poison rods are expected to fail under severe accident conditions at about 1500 0 C. (orig./HP) [de

  11. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  12. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  13. Zircaloy-4 stress corrosion by iodine: crack kinetics and influence of irradiation on the crack initiation

    International Nuclear Information System (INIS)

    Serres, A.

    2008-01-01

    During the PWR power transients, iodine-induced stress corrosion cracking (I-SCC) is one of the potential failure modes of Zircaloy-4 fuel claddings under Pellet-Cladding Interaction conditions. The primary objective of this study is to distinguish the parameters that contribute to the I-SCC phenomenon in iodized methanol solutions at ambient temperature, on notched tensile specimens, using crack growth rate measurements provided by Direct Current Potential Drop. The results show that for a KI lower than 20 MPa.m 1/2 , the IG and mixed IG/TG velocity of propagation is a linear function of KI, regardless of the propagation mode. Between 20 and 25 MPa.m 1/2 , the TG crack growth rate also depends linearly on KI, but increases at a faster rate with respect to KI than during the IG and mixed IG/TG propagation steps. The crack propagation direction and plane (LT and TL) have an impact on the propagation modes, but no impact on the kinetics. The increase of iodine content induces an increase of the crack growth rate for a given KI, and a decrease of the KI, threshold, allowing the crack propagation. This work enables us to quantify the effect of iodine content and of KI on the crack propagation step, propose a propagation law taking into accounts these parameters, and improve the I-SCC description for models. During operation, a zirconium cladding is neutron-irradiated, modifying its microstructure and deformation modes. The second objective of the study is therefore to investigate the impact of these modifications on I-SCC. For that purpose, smooth specimens in recrystallized Zircaloy-4 are proton-irradiated to 2 dpa at 305 C, the microstructure and deformation modes of unirradiated and irradiated Zircaloy-4 are characterized by TEM and SEM, and the influence of these radiation-induced modifications on the I-SCC susceptibility is studied. The Laves phases precipitates are slightly modified by irradiation. The formation of P -type dislocation loops correlated with

  14. Design study of the geometry of the blanking tool to predict the burr formation of Zircaloy-4 sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jisun, E-mail: nskim@sogang.ac.kr; Lee, Hyungyil, E-mail: nskim@sogang.ac.kr; Kim, Dongchul, E-mail: nskim@sogang.ac.kr; Kim, Naksoo, E-mail: nskim@sogang.ac.kr [Sogang University, Department of Mechanical Engineering, Seoul, 121-742 (Korea, Republic of)

    2013-12-16

    In this work, we investigated factors that influence burr formation for zircaloy-4 sheet used for spacer grids of nuclear fuel roads. Factors we considered are geometric factors of punch. We changed clearance and velocity in order to consider the failure parameters, and we changed shearing angle and corner radius of L-shaped punch in order to consider geometric factors of punch. First, we carried out blanking test with failure parameter of GTN model using L-shaped punch. The tendency of failure parameters and geometric factors that affect burr formation by analyzing sheared edges is investigated. Consequently, geometric factor's influencing on the burr formation is also high as failure parameters. Then, the sheared edges and burr formation with failure parameters and geometric factors is investigated using FE analysis model. As a result of analyzing sheared edges with the variables, we checked geometric factors more affect burr formation than failure parameters. To check the reliability of the FE model, the blanking force and the sheared edges obtained from experiments are compared with the computations considering heat transfer.

  15. Effect of hydrogen and hydrides on the viscoplastic behaviour of the recrystallized zircaloy-4; Effet de l'hydrogene et des hydrures sur le comportement viscoplastique du zircaloy-4 recristallise

    Energy Technology Data Exchange (ETDEWEB)

    Rupa, N

    2000-04-15

    Zircaloy-4 is the main material of PWR fuel assemblies. In service as during the storage, the integrity of these compounds has to be guaranteed in spite of the presence of hydrogen (in solution in the zirconium matrix) and of hydrides (which precipitate when the amount of hydrogen is higher than the solubility limit). The aim of this work is to characterize the hydrogen and hydrides effect on the viscoplastic behaviour of the non irradiated recrystallized zircaloy-4. The presence of hydrogen in solid solution induces a decrease of the mechanical properties: the creep kinetics are then increased and the tensile stresses decreased. This decrease is particularly visible in conditions of oxygen/dislocations dynamic interactions (revealed on the material without hydrogen). The advanced hypothesis, strengthened by the atomic simulation results, is that the hydrogen facilitates the dislocations movement, in diminishing the effects of anchoring by the interstitials, and/or in increasing the intrinsic mobility of dislocations. The hydrides effect induces a hardening of the material (decrease of the creep kinetics, increase of the tensile stresses and of the relaxed stresses) compensating the decrease by hydrogen. The hardening mechanism is due to an increase of the internal constraints, determined by load-unload tests. For the very weak plastic deformations, the hydrides are an obstacle to the dislocations gliding. They are then passed (that corresponds to a saturation of the internal constraint). The TEM observations as well as the results obtained on the titanium indicate that the precipitates are then submitted to a deformation mechanism. (O.M.)

  16. Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2013-08-01

    Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

  17. Influence of γ-irradiation on the transport kinetics of hydrogen in pre-transition oxidized Zircaloy-4 at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frantz A., E-mail: frantz.martin@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d' Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette (France); Dauvois, Vincent, E-mail: vincent.dauvois@cea.fr [CEA, DEN, DPC, SECR, Laboratoire de Radiolyse et de la Matière Organique, F-91191 Gif-sur-Yvette (France); Esnouf, Stéphane, E-mail: stephane.esnouf@cea.fr [CEA, DEN, DPC, SECR, Laboratoire de Radiolyse et de la Matière Organique, F-91191 Gif-sur-Yvette (France); CEA, DSM, IRAMIS, LIDYL, PCR, F-91191 Gif-sur-Yvette (France); Fourdrin, Chloé, E-mail: chloe.fourdrin@culture.gouv.fr [CEA, DEN, DPC, SECR, Laboratoire de Radiolyse et de la Matière Organique, F-91191 Gif-sur-Yvette (France); Jomard, François, E-mail: francois.jomard@uvsq.fr [CNRS/UVSQ, UMR 8635, GEMAC, 45 avenue des Etats Unis – Bâtiment Fermat, F-78035 Versailles (France); Chêne, Jacques, E-mail: chene_jacques@orange.fr [CNRS/CEA, UMR 8587, LECA – CEA, Saclay, F-91191 Gif-sur-Yvette (France)

    2015-10-15

    In a context of nuclear fuel reprocessing, the free-of-fuel hulls and ends of cladding tubes are compacted. The possibility of hydrogen degasing or absorption from/into these tubes has been studied with and without gamma irradiation at 293 K by means of deuterium as isotopic tracer for hydrogen. Under irradiation, as without, the hydrides present in the Zircaloy-4 hulls seem stable. The oxide layer present at the surface of the hulls allows a slow diffusion of deuterium, and the irradiation appeared to have no specific effect on the diffusion process: in both cases, hydrogen diffusion coefficients of the order of 5·10{sup −18} cm{sup 2} s{sup −1} have been found. The subsurface activity of deuterium is increased by one order of magnitude at least under irradiation, probably due to an activation of the dissociation/absorption kinetic steps. - Highlights: • Hydrogen diffusion coefficients at RT in zirconia grain boundaries were determined. • γ irradiation increases the hydrogen subsurface activity when exposed to H{sub 2} gas. • The dense thin zirconia film is not altered much by HNO{sub 3} exposure at 90 °C for 24 h. • Hydrogen desorption from Zr hydrides was studied at room temperature under γ rays.

  18. Comparison between zircaloy oxidation in steam and air surroundings

    International Nuclear Information System (INIS)

    Shawkat, M.E.; Hasaneln, H.; Ali, M.; Parlatan, Y.; Albasha, H.

    2013-01-01

    The available experimental data for Zircaloy oxidation in air were reviewed. The behavior of the oxidation kinetics at different temperature ranges was described. It was shown that maintaining the oxidation kinetics within the oxide pre-breakaway region can prevent elevated sheath temperatures due to the oxidation process during postulated accidents. The available correlations to model the oxidation kinetics for pre-breakaway region were reviewed and assessed. Zircaloy-air oxidation correlation based on Leistikow-Berg data was determined to be the most suitable correlation to model pre-breakaway kinetics and it was compared to Urbanic-Heidrick correlation which is widely used for Zircaloy oxidation in steam environment. The results showed that the energy release due to the Zircaloy-steam oxidation bounds the energy released due to Zircaloy-air oxidation up to a sheath temperature referred as the “crossover temperature”. Below this temperature, the impact of Zircaloy-air oxidation on fuel sheath temperature transient can be predicted conservatively using the Urbanic-Heidrick steam correlation. The crossover temperature was calculated for isothermal sheath heating as well as transient sheath heat-up assuming three linear heating rates of 0.6, 1.0, and 1.3 K/s. (author)

  19. The environmental impact of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Papp, R.

    1976-01-01

    Leaks in fuel-cans and in valve seals are the sources of nearly all the iodine and noble gases discharged from the reactor building's ventilation systems to the environment. Leakages play a greater role in BWR's than in PWR's due to the widespread primary circuit of BWR's. Another isotope of considerable concern during reactor operation is tritium which can be produced by different processes. The Zircaloy-cladding of LWR-fuel pins retains the tritium formed in the fuel much better than the stainless steel cladding of breeder reactors. The principal radionuclides discharged from reprocessing plants designed to process LWR uuel are 85 Kr, tritium, the iodines, and the actinides. Another isotope which should be considered because of its long half-live and its possible contribution to the whole-body dose is 14 C. The radionuclides released into the atmosphere in the form of gases and aerosols are diluted by the wind and decay by emitting β- and γ-radiation. This so-called submersion is the most important pathway of exposure during normal operation of nuclear facilities. (HP) [de

  20. JAEA's research on the effects of seawater and radiation on corrosion of Zircaloy and PCV/RPV steels

    International Nuclear Information System (INIS)

    Tsukada, Takashi; Motooka, Takafumi; Nakano, Junichi

    2014-01-01

    In order to implement successfully a lot of work for the extraction of fuel assemblies from spent fuel pool (SFP) and also for the removal of fuel debris from reactor pressure vessel (RPV) and primary containment vessel (PCV) at the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Co., it is necessary to investigate and to prevent the degradation of structural materials of the fuel assemblies and PCV/RPV which are exposed to the gamma radiation and water containing seawater ingredient, because those factors are influencing and possibly accelerating corrosion of the materials. Therefore, at the Japan Atomic Energy Agency (JAEA), we are carrying out the research related to the corrosion issues which may affect the integrity of fuel assemblies and reactor vessels, i.e. PCV and reactor pressure vessel (RPV), from a viewpoint of the effect of gamma radiation and diluted seawater on corrosion behavior as described in this review. In SFP, hydrazine (N_2H_4) was added to salt-containing water in order to reduce dissolved oxygen (DO). Therefore, deoxygenation behavior by N_2H_4 addition was investigated at the ambient temperature. To evaluate the effects of radiolysis on the initiation of pitting corrosion on Zircaloy-2 in water containing sea salt, the pitting potentials of Zircaloy-2 were evaluated. The experimental results showed that the pitting potential under irradiation was slightly higher than that under conditions in which no radiation was present. Corrosion tests of PCV/RPV steels were conducted in diluted seawater at 50degC under gamma-ray irradiation of dose rates of 4.4 and 0.2 kGy/h. To assess the effect of N_2H_4 as an oxygen scavenger under gamma-ray irradiation in PCV condition, 10 and 100 mg/L N_2H_4 were added to the diluted seawater. When gas phase in test flask was replaced with N_2, corrosion weight loss of the steels decreased remarkably. (author)

  1. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    Science.gov (United States)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  2. Texture, morphology and deformation mechanisms in β-transformed Zircaloy-4

    International Nuclear Information System (INIS)

    Ciurchea, D.; Furtuna, I.; Todica, M.; Roth, M.

    1996-01-01

    The morphology of the β(bcc) transformed Zircaloy-4 may be treated as a lenticular-twinned martensite. The texture is a consequence of the degeneration of the left angle 0001 right angle α , left angle 1010 right angle α and left angle 1011 right angle α directions into left angle 110 right angle β directions. The crystallographic mechanisms implied in the accommodation of the microscopic Bain strain are (1010) left angle 1120 right angle prism slip, (1012) left angle 101 1 right angle twinning and (1011) left angle 1012 right angle twinning. This degeneration explains the 'parallel plate' and 'basketweave' morphologies observed by microscopy and the texture of the β transformed tube. The macroscopic Bain strain was calculated and agrees with the dimensional measurements. The deformation mechanisms of β transformed Zircaloy-4 are identified from the new texture and from deformation experiments as twinning and interplatelet glide. The interplatelet glide induces a fragile character of fracture in the 'parallel plate' morphology. (orig.)

  3. Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashcheulov, P. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Škoda, R.; Škarohlíd, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, Prague 6, CZ-160 07 (Czech Republic); Taylor, A.; Fekete, L.; Fendrych, F. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Vega, R.; Shao, L. [Texas A& M University, Department of Nuclear Engineering TAMU-3133, College Station, TX TX 77843 (United States); Kalvoda, L.; Vratislav, S. [Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic); Cháb, V.; Horáková, K.; Kůsová, K.; Klimša, L.; Kopeček, J. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Sajdl, P.; Macák, J. [University of Chemistry and Technology, Power Engineering Department, Technická 3, Prague 6, CZ-166 28 (Czech Republic); Johnson, S. [Nuclear Fuel Division, Westinghouse Electric Company, 5801 Bluff Road, Hopkins, SC 29209 (United States); Kratochvílová, I., E-mail: krat@fzu.cz [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic)

    2015-12-30

    Graphical abstract: - Highlights: • In this work we showed that films prepared by MW-LA-PECVD technology can be used as anticorrosion protective layer for Zircaloy2 nuclear fuel claddings at elevated temperatures (950 °C) when α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). Quality of PCD films was examined by Raman spectroscopy, XPS, SEM, AFM and SIMS analysis. • The polycrystalline diamond films were of high quality - without defects and contaminations. After hot steam oxidation (950 °C) a high level of structural integrity of PCD layer was observed. Both sp{sup 2} and sp{sup 3} C phases were present in the protective PCD layer. Higher resistance and a lower degree of impedance dispersion was found in the hot steam oxidized PCD coated Zircaloy2 samples, which may suggest better protection of the Zircaloy2 surface. The PCD layer blocks the hydrogen diffusion into the Zircaloy2 surface thus protecting the material from degradation. • Hot steam oxidation tests confirmed that PCD coated Zircaloy2 surfaces were effectively protected against corrosion. Presented results demonstrate that the PCD anticorrosion protection can significantly prolong service life of Zircaloy2 nuclear fuel claddings in nuclear reactors even at elevated temperatures. - Abstract: Zirconium alloys can be effectively protected against corrosion by polycrystalline diamond (PCD) layers grown in microwave plasma enhanced linear antenna chemical vapor deposition apparatus. Standard and hot steam oxidized PCD layers grown on Zircaloy2 surfaces were examined and the specific impact of polycrystalline Zr substrate surface on PCD layer properties was investigated. It was found that the presence of the PCD coating blocks hydrogen diffusion into the Zircaloy2 surface and protects Zircaloy2 material from degradation. PCD anticorrosion protection of Zircaloy2 can significantly prolong life of Zircaloy2 material in nuclear reactors even at temperatures above Zr

  4. Control chart analysis of data regarding 0.2% yield strength (YS) and percent total circumferential elongation (%TCE) for zircaloy clad tubes for PHWR and BWR fuels

    International Nuclear Information System (INIS)

    Yadav, M.B.; Singh, Hari; Vaidyanathan, S.; Sood, D.D.; Raghavan, S.V.; Bandyopadhyay, A.K.; Kulkarni, P.G.

    1992-01-01

    Zircaloy cladding tubes for PHWR and BWR fuels are manufactured and tested at Nuclear Fuel Complex (NFC), Hyderabad. Atomic Fuels Division is carrying out the quality assurance of the fuels on behalf of Nuclear Power Corporation (NPC). In this paper an attempt has been made to assess whether the quality of the clad tubes has met the requirements specified for the two mechanical properties of the tubes namely 0.2% yield strength and percent total circumferential elongation using control chart technique. For this purpose data for about 100 lots in each case were used. Process means and process standard deviations for these properties and the control limits for the corresponding control charts were estimated. The main findings are: (i) In case of PHWR tubes the production quality level with respect to 0.2% YS is higher, while that in case of %TCE is lower causing rejection of lots. On the other hand in the case of BWR tubes the production quality levels with respect to both the properties are higher than the required one. (ii) With respect to 0.2% YS, in case of BWR tubes a change in the pattern of distribution is detected beyond the lot serial no.47. However in case of PHWR tubes, though the data falls into two groups, no such pattern is seen. A modification in the acceptance/rejection criterion of the lot has been suggested. It is also pointed out that to have a correct picture of the total variation it is necessary to study the within tube variation. (author). 4 figs, 2 tabs

  5. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-01-01

    The strong crystallographic texture which is developed during the fabrication of zirconium-based alloys causes pronounced anisotropy in their mechanical properties, particularly deformation. The tendency for circular-section tension specimens with a high concentration of basal poles in one direction to become elliptical when deformed in tension has been used in this study to provide quantitative data on the effects of both strain and temperature on strain anisotropy. Tension tests were carried out over a temperature range of 293 to 1193 K on specimens machined from Zircaloy-2 plate. The strain anisotropy was found to increase markedly at temperatures over 923 K, reaching a maximum in the region of 1070 K. The strain anisotropy increased with increasing strain in this temperature region. The study was extended to Zircaloy-4 pressurized-water reactor fuel cladding by carrying out tube swelling tests and evaluating the axial deformation produced. Although scatter in the test results was higher than that exhibited in the tension tests, the general trend in the data was similar. The effects of the strain anisotropy observed are discussed in relation to the effects of temperature on the ductility of Zircaloy fuel cladding tubes during postulated largebreak loss-of-coolant accidents

  6. Microstructure and crystallographic texture evolution during TIG welding of zircaloy-2 material

    International Nuclear Information System (INIS)

    Jha, S.K.; Singh, R.P.; Singh, V.K.; Ramanathan, R.; Samjdar, I.; Srivastava, D.; Tewari, R.; Dey, G.K.

    2005-01-01

    Zirconium and its alloys are extensively used as structural materials in nuclear reactors, because of better neutron economy, good corrosion resistance in water and good mechanical properties at operating temperature. Zircaloy-2 and zircaloy-4 are widely used in both pressurized water reactors (PWR) and boiling water reactors (BWR) as fuel cladding materials and as calandria tube and pressure tube materials in pressurized heavy water reactors (PHWR). The satisfactory performance and the life of the reactor components depend mainly upon their mechanical properties, corrosion properties and dimensional stability in the reactor condition, which are strong function of metallurgical parameters such as microstructure and texture. Therefore, for best performance of the reactor components these parameters are optimized during their fabrication. The microstructure and texture of the zircaloy-2 components are expected to get modified during the welding of the components. In this study the evolution of the microstructure and texture has been investigated as a function of the welding parameters. Heat input was varied the current and welding time. A variety of analytical techniques have been applied for the study on microstructure and texture of the welds. Optical microscopy and electron microscopy were used to evaluate the detailed microstructure. X-ray diffraction (XRD) was used investigate the crystallographic textures among the base metal, heat affected zone and fusion zone. Particular attention was focused on the determination of microtexture in weld by using electron backscatter diffraction (EBSD) technique. After that, an effort was put to compare the results of X-ray macro-texture and EBS-microtexture. (author)

  7. Hydrides formation In Zircaloy-4 irradiated with neutrons

    International Nuclear Information System (INIS)

    Vizcaino, P; Flores, A V; Vicente Alvarez, M A; Banchik, A.D; Tolley, A; Condo, A; Santisteban, J R

    2012-01-01

    Under reactor operating conditions zirconium components go through transformations which affect their original properties. Two phenomena of significant consequences for the integrity of the components are hydrogen uptake and radiation damage, since both contribute to the material fragilization. In the case of the Atucha I nuclear power reactor, the cooling channels, Zircaloy-4 tubular structural components about 6 meters long, were designed to withstand the entire lifetime of the reactor. Inside them, fuel elements 5.3 meters long are located. The fuel elements are cooled by a heavy water flow which circulates from the bottom (250 o ) to the top of the reactor (305 o C). The channels are affected by a fast neutron flux (En>1 Mev), increasing from a nominal value of 1.35 x 10 13 neutrons/cm 2 sec at the bottom to 1.69 x 10 13 neutrons/cm 2 sec at the top, reaching a maximum value of 3.76 x 10 13 neutrons/cm 2 sec at the center of the channels. However, due to the reactor operating conditions, they are replaced after about 10 effective full power years, time at which they reach 10 22 neutrons/cm 2 at the most neutronically active regions of the reactor. Studies on cooling channels are meaningful from many points of view. The channels are structural components which do not work under internal pressure or any other type of structural stress. The typical temperature of the cladding tubes in the reactor is about 350 o C, at which many types of irradiation defects are annealed [1]. The temperature range of the cooling channels lies between 200 o C-235 o C (outer foil of the channels) and 260 o C-300 o C (internal tube), a difference which makes the defect recovery kinetics slower. In the present context, following the program developed in the research contract 15810, we continue with the work started on the effects of the radiation on the hydride formation focusing on the dislocation loops in the zirconium matrix and its possible role as preferential sites for hydride

  8. Mechanical properties and structure of Zircaloy attached by UO2+x and fission products

    International Nuclear Information System (INIS)

    Holub, F.

    1987-08-01

    The aim of this project was to determine the combined long-term effect of simulated fission products and hyperstoichiometric uranium dioxide on the mechanical properties and structure of Zircaloy. Three groups of fission product elements or compounds were defined: The rare earth oxides CeO 2 , La 2 O 3 , Nd 2 O 3 , Y 2 O 3 ; The metals No, Ru, Ag; The low melting elements Te, Sb and Cd. Each of these groups of fission products was mixed with UO 2+x in proportion related for burnups of 5, 10 and 30%. The simulated fuel mixtures were filled into tubular Zircaloy casings, plugged and welded. These specimens were annealed at 350, 500 and 700 deg. C up to 17,500 hours. The test results indicate different kinds of action of the simulated fuel constituents. Mixtures of rare earth oxides and UO 2+x embrittle Zircaloy drastically at higher temperatures. There exists a mutual intensifying effect of rare earth oxides and UO 2+x . UO 2+x and (Mo + Ru + Ag) and their mixtures act very similar on Zircaloy. The low melting fission products (Te + Sb + Cd) influence the ductility of Zircaloy in an advantageous manner, compared to pure UO 2+x fuel. The layer of zirconium tellurides seems to protect the Zircaloy metal against the embrittling attack of oxygen from UO 2+x . The most important events of tensile tests at 400 deg. C are the high values of the elongation of specimens which are brittled at room temperature. It should guarantee the integrity of fuel elements, which have been attacked chemically by fission products at temperatures of 400 deg. C and higher

  9. Comparison of the air oxidation behaviors of Zircaloy-4 implanted with yttrium and cerium ions at 500 deg. C

    International Nuclear Information System (INIS)

    Chen, X.W.; Bai, X.D.; Xu, J.; Zhou, Q.G.; Chen, B.S.

    2002-01-01

    As a valuable process for surface modification of materials, ion implantation is eminent to improve mechanical properties, electrochemical corrosion resistance and oxidation behaviors of varieties of materials. To investigate and compare the oxidation behaviors of Zircaloy-4, implantation of yttrium ion and cerium ion were respectively employed by using an MEVVA source at the energy of 40 keV with a dose ranging from 1x10 16 to 1x10 17 ions/cm 2 . Subsequently, weight gain curves of the different specimens including as-received Zircaloy-4 and Zircaloy-4 specimens implanted with the different ions were measured after oxidation in air at 500 deg. C for 100 min. It was obviously found that a significant improvement was achieved in the oxidation behaviors of implanted Zircaloy-4 compared with that of the as-received Zircaloy-4, and the oxidation behavior of cerium-implanted Zircaloy-4 was somewhat better than that of yttrium-implanted specimen. To obtain the valence and the composition of the oxides in the scale, X-ray photoemission spectroscopy was used in the present study. Glancing angle X-ray diffraction, employed to analyze the phase transformation in the oxide films, showed that the addition of yttrium transformed the phase from monoclinic zirconia to tetragonal zirconia, yet the addition of cerium transformed the phase from monoclinic zirconia to hexagonal zirconia. In the end, the mechanism of the improvement of the oxidation behavior was discussed

  10. Anticipated corrosion in the Vermont Yankee spent fuel pool

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1977-06-01

    The report provides additional information relating to a proposed modification to the spent fuel pool at the Vermont Yankee Nuclear Power Station (VYNPS) and addresses corrosion of spent fuel pool storage materials and zircaloy, and provides an analysis of the effectiveness of the Boral sealing

  11. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4; Filage et etirage du zircaloy 2. Realisation des tubes de force pour EL-4

    Energy Technology Data Exchange (ETDEWEB)

    Thevenet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Buffet, J [Cefilac (France)

    1964-07-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the {phi} = 340 ingot into {phi} = 220 billets, cutting into lengths and hot drilling at {phi} = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes ({phi} =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [French] Les auteurs donnent un resume succint des proprietes physiques mecaniques et chimiques du zircaloy 2 en ce qui concerne la transformation de cet alliage. Filage: Apres quelques generalites sur le filage et le cofilage, dont une comparaison entre les resistances a la deformation des metaux de gainage et du zircaloy 2, on etudie successivement: - les

  12. High temperature interaction between UO2 and Zircaloy-4/silver mixture

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Nagase, Fumihisa; Otomo, Takashi

    1995-12-01

    The reaction between UO 2 and Zircaloy is a main material interaction in the reactor core during a severe accident of LWR. With a view of examining the influence of the core materials having low melting temperatures on the reaction, the effect of silver that is main component of PWR control rod alloy was investigated in the temperature range from 1373 to 1703K. Zircaloy was completely liquefied by the same weight of liquid silver at tested temperatures. The reaction between UO 2 and (Zircaloy+silver) mixture roughly obeyed a parabolic rate law. The determined reaction rate below about 1600K was much lower than that obtained by Hofmann et al. for the reaction between UO 2 and Zircaloy. However, it sharply increased with temperature and became comparable with the rate of UO 2 /Zircaloy reaction at about 1700K. Metallurgical examination including EPMA analysis revealed that Zr(O) layer formed at the reaction interface only for the tests below about 1600K correlated with the discontinuity of the temperature dependence of reaction rate. (author)

  13. The hydrogen generated as a gas and storage in Zircaloy during steam quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    2000-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during steam quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 centigrade, 1400 centigrade and 1600 centigrade using as-received Zircaloy-4 (no pre-oxidation) and with Zircaloy specimens pre-oxidized to give oxide thickness of 100μm and 300μm. The results are relevant to accident management in nuclear power plants. (author)

  14. Mechanical behaviour and failure of fuel cladding zirconium alloys in nuclear power plants under accidental RIA-type situation

    International Nuclear Information System (INIS)

    Doan, D.T.

    2009-01-01

    In French Nuclear Pressurized Water Reactors (PWRs), most of structural parts of the fuel assembly consist of zirconium alloy tubes and plates. Optimizing the management of fuel in nuclear power plants led to the increase in the duration of fuel cycles and power. The use of high fuel burnups requires drastic changes in the rules for reactor design in the nuclear safety. The evaluation of nuclear reactors in accident situations is based on reference accident scenarios. One of these hypothetical accidents, examined in this study, is the 'Reactivity Initiated Accident'. In order to assess the structural integrity of these parts it is necessary to characterize both the plastic flow and fracture behaviour of the materials at various stages of the life cycle, (i.e. at increasing levels of hydriding, irradiation, oxidation or thermal mechanical loading). The purpose of this work is to provide experimental data and to develop a model of the thermo-mechanical behaviour and to propose a design analysis method in the case of non-irradiated clads, in RIA-type situations. Mechanical tests were conducted on Cold-Worked-Stress-Relieved and on Recrystallized Zircaloy-4 sheets using various kinds of samples including smooth and notched tensile specimens and small punch tests. Temperature was set to 25, 250 and 600 C with hydrogen contents between 0 and 1000 ppm. The model is based on a simplified description of a Zircaloy polycrystal in which scalar isotropic ductile damage including void nucleation and growth is added. The model is also physically based to easily transfer parameters determined for one material state to another (e.g. transfer between sheet and tube or between different levels of irradiation). The model was implemented in the Finite Element software Zebulon using either an explicit or an implicit time integration scheme. Uniaxial tension tests were used to tune the model parameters for both materials, considering various values of temperature and hydrogen levels

  15. Dynamic strain aging of zircaloy-4 PWR fuel cladding in biaxial stress state

    International Nuclear Information System (INIS)

    Park, Ki Seong; Lee, Byong Whi

    1989-01-01

    The expanding copper mandrel test performed at three strain rates (3.2x10E-5/s,2.0x10E-6/s and 1.2x10E-7/s) over 553-873 K temperature range by varying the heating rates (8-10deg C/s,1-2deg C/s and 0.5deg C/s) in air and in vacuum (5x10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in α-zirconium and Zircaloy-2 (207-220KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573K and 673K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress (σ y a -σ y v /σ y v ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase. (Author)

  16. Nuclear fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, J S; Coffing, L F

    1979-04-05

    The fuel element with circular cross-section for BWR and PWR consists of a core surrounded by a compound jacket container where there is a gap between the core and jacket during operation in the reactor. The core consists of U, Pu, Th compounds and mixtures of these. The compound jacket consists of zircaloy 2 or 4. In order to for example prevent the corrosion of the compound jacket, its inner surface has a metal barrier with smaller neutron absorbers than the jacket material in the form of a zirconium sponge. The zirconium of this metal barrier has impurities of various elements in the order of magnitude of 1000 to 5000 ppm. The oxygen content is in the range of 200 to 1200 ppm and the thickness of the metal barrier is 1-30% of the thickness of the jacket.

  17. Instrumented impact properties of zircaloy-oxygen and zircaloy-hydrogen alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garde, A.M.; Kassner, T.F.

    1980-04-01

    Instrumented-impact tests were performed on subsize Charpy speciments of Zircaloy-2 and -4 with up to approx. 1.3 wt % oxygen and approx. 2500 wt ppM hydrogen at temperatures between 373 and 823/sup 0/K. Self-consistent criteria for the ductile-to-brittle transition, based upon a total absorbed energy of approx. 1.3 x 10/sup 4/ J/m/sup 2/, a dynamic fracture toughness of approx. 10 MPa.m/sup 1/2/, and a ductility index of approx. 0, were established relative to the temperature and oxygen concentration of the transformed BETA-phase material. The effect of hydrogen concentration and hydride morphology, produced by cooling Zircaloy-2 specimens through the temperature range of the BETA ..-->.. ..cap alpha..' = hydride phase transformation at approx. 0.3 and 3 K/s, on the impact properties was determined at temperatures between 373 and 673 K. On an atom fraction basis, oxygen has a greater effect than hydrogen on the impact properties of Zircaloy at temperatures between approx. 400 and 600 K. 34 figures.

  18. Treatment of zircaloy cladding hulls by isostatic pressing

    International Nuclear Information System (INIS)

    Tegman, R.; Burstroem, M.

    1984-12-01

    A method for the treatment of Zircaloy fuel hulls is proposed. It involves hot isostatic pressing (HIP) for making large, completely densified metallic bodies of the waste. The hulls are packed into a bellows-shaped container of steel. On packing the fuel hulls give a filling factor of only 14%, which is too low for non-deformable compaction in a normal container, but by using a belloped container, a non-deformable compaction can be obtained without any pretreatment of the hulls. Fully dense and mechanically strong blocks of Zircaloy can be fabricated by holding them at temperatures of around 1000 degrees C for three hours. It is also feasible to incorporate the other metallic parts of the fuel bundle, such as top and bottom tie plates and spacers, in the pressing. The HIP-densified hulls provide an effective means of self-containment of radioactive waste due to the excellent corrosion resistance of Zircaloy. A waste loading factor of close to 100% can be realized. Futher, a volume reduction factor of 7 and a surface reduction factor of aout 250 for a 1-ton canister can be achieved. Equilibrium calculations have shown that tritium present in the hulls can quantitatively be contained in the HIPed block. A study has been made of a possible process for industrilscale use. (Author)

  19. A unified model to describe the anisotropic viscoplastic behavior of Zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Delobelle, P.; Robinet, P.; Bouffioux, P.; Geyer, P.; Pichon, I. Le

    1996-01-01

    This paper presents the constitutive equations of a unified viscoplastic model and its validation with experimental data. The mechanical tests were carried out in a temperature range of 20 to 400 C on both cold-worked stress-relieved and fully annealed Zircaloy-4 tubes. Although their geometry (14.3 by 1.2 mm) is different, the crystallographic texture was close to that expected in the cladding tubes. To characterize the anisotropy, mechanical tests were performed under both monotonic and cyclic uni- and bi-directional loadings, i.e., tension-compression, tension-torsion, and tension-internal pressure tests. The results obtained at ambient temperatures and the independence of the ratio R p = var-epsilon θθ p /var-epsilon zz p , with respect to temperature would seem to indicate that the set of anisotropy coefficients does not depend on temperature. Zircaloy-4 material also has a slight supplementary hardening during out-of-phase cyclic loading. The authors propose to extend the formulation of a unified viscoplastic model, developed and identified elsewhere for other initially isotropic materials, to the case of Zircaloy-4. Generally speaking, anisotropy is introduced through fourth order tensors affecting the flow directions, the linear kinematical hardening components, as well as the dynamic and static recoveries of the forementioned hardening variables. The ability of the model to describe all the mechanical properties of the material is shown. The application of the model to simulate mechanical tests (tension, creep, and relaxation) performed on true CWSR Zircaloy-4 cladding tubes with low tin content is also presented

  20. Investigation of the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4

    International Nuclear Information System (INIS)

    Soares, M.I.

    1981-12-01

    To investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes, deformation tests under pressure of samples hydrided in autoclave and of samples containing iodine were carried out, in order to simulate the fission product. The same tests were carried out in samples without hydride and iodine contents that were used as reference samples in the temperature range of 650 0 C-950 0 C. The hydrided samples and the samples containing iodine tested at 650 0 C and 750 0 C showed a higher ductility than the samples of reference. The hydrided samples tested at 850 0 C and 950 0 C showed a higher embritlement than the samples of reference and than the samples containing iodine tested at the same temperatures. A mechanical test has been developed to investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes. The mechanical test were carried out at room temperature. At room temperature the hydrition decreased the ductility of zircaloy-4. At room temperature the sample containing iodine showed a higher ductility than the sample without iodine. The combined action of hydrogen and iodine at room temperature enhanced the embrittlment of the samples zircaloy-4. (Author) [pt

  1. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  2. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  3. Different aspects of safety in Nuclear Fuel Plant at Pitesti, Romania

    International Nuclear Information System (INIS)

    Ivana, T.; Epure, Gh.

    2009-01-01

    Nuclear Fuel Plant (FCN) is a facility that produces fuel bundles of CANDU-6 type for the CANDU nuclear power plant. Only natural and depleted uranium in bulk and itemized form are present as nuclear materials in this facility. Uranium and wastes from the plant are handled, processed, treated and stored throughout the entire facility. The nuclear materials with natural and depleted uranium are entirely under nuclear safeguards. The amount of uranium present in the plant in different forms and activities together with zircaloy, beryllium and other hazardous substances, wastes, explosive materials at high temperatures, etc. lead to special measures undertaken by Nuclear Safety Department (DNS) to ensure nuclear safety. Different aspects of safety are continuously monitored in the plant: operational safety, industrial safety, radiological safety, labour safety, informational safety. The emergency preparedness and response, physical protection and the security of the plant and of the transportation of radioactive materials are contributing to cover the multitude of safety aspects. The safety culture of workers built directly on the safety components completes this activity in the plant. In addition the aspects of safety, security and safeguards are in permanent synergy, parts of the three components being included in each other. In the future the policy of FCN will be focused so that any improvement of one of the safety components will be reflected in improving the other safety aspects. (authors)

  4. Superficial characterization by XP S of silver nanoparticles and their hydrothermal deposit over zircaloy; Caracterizacion superficial por XPS de nanoparticulas de plata y su deposito hidrotermal sobre zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Gutierrez W, C.; Martinez M, I.; Medina A, A. L., E-mail: aida.contreras@inin.gob.mx [ININ, Departamento de Tecnologia de Materiales, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    The analysis technique of X-ray photoelectron spectroscopy (XP S) is sensitive exclusively to the first layers of the solids surface, which allows obtaining information about the chemical, physical and electronic properties of them. The combustible elements of the boiling water nuclear reactors (BWR) are formed by zircaloy pipes that contain in their interior pellets or uranium dioxide. In this work is studied the zircaloy surface, oxidized zircaloy under similar conditions to those of a reactor BWR type and oxidized zircaloy with a hydrothermal deposit of silver nanoparticles and zinc. The silver deposit is a proposal of the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, which has the same objective that the noble metals deposit (Pt, Pd, and Rh) that is practiced in some of the reactors BWR, in order to mitigating the speed of crack growth for IGSCC in stainless steels 304 Ss. (Author)

  5. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    OpenAIRE

    Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira

    2016-01-01

    Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...

  6. The characteristics of surface oxidation and corrosion resistance of nitrogen implanted zircaloy-4

    International Nuclear Information System (INIS)

    Tang, G.; Choi, B.H.; Kim, W.; Jung, K.S.; Kwon, H.S.; Lee, S.J.; Lee, J.H.; Song, T.Y.; Shon, D.H.; Han, J.G.

    1997-01-01

    This work is concerned with the development and application of ion implantation techniques for improving the corrosion resistance of zircaloy-4. The corrosion resistance in nitrogen implanted zircaloy-4 under a 120 keV nitrogen ion beam at an ion dose of 3 x 10 17 cm -2 depends on the implantation temperature. The characteristics of surface oxidation and corrosion resistance were analyzed with the change of implantation temperature. It is shown that as implantation temperature rises from 100 to 724 C, the colour of specimen surface changes from its original colour to light yellow at 100 C, golden at 175 C, pink at 300 C, blue at 440 C and dark blue at 550 C. As the implantation temperature goes above 640 C, the colour of surface changes to light black, and the surface becomes a little rough. The corrosion resistance of zircaloy-4 implanted with nitrogen is sensitive to the implantation temperature. The pitting potential of specimens increases from 176 to 900 mV (SCE) as the implantation temperature increases from 100 to 300 C, and decreases from 900 to 90 mV(SCE) as the implantation temperature increases from 300 to 640 C. The microstructure, the distribution of oxygen, nitrogen and carbon elements, the oxide grain size and the feature of the precipitation in the implanted surface were investigated by optical microscope, TEM, EDS, XRD and AES. The experimental results reveal that the ZrO 2 is distributed mainly on the outer surface. The ZrN is distributed under the ZrO 2 layer. The characteristics of the distribution of ZrO 2 and ZrN in the nitrogen-implanted zircaloy-4 is influenced by the implantation temperature of the sample, and in turn the corrosion resistance is influenced. (orig.)

  7. Irradiation creep and growth of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Lansiart, S.; Darchis, L.; Pelchat, J.

    1990-01-01

    The influence of temperature and fast neutron flux on irradiation creep and growth of stress relieved zircaloy-4 pressurized tubes has been derived from experimental irradiations in NaK, performed up to 2.5 10 25 n.m -2 in the temperature range [280, 350] 0 C. A significant influence of temperature on axial growth has been observed: at 280 0 C the elongation can no longer be expressed as a linear function of fluence as for the 350 0 C irradiation temperature; diametral growth, on the other hand, always appears negligible. Irradiation creep obviously depends on temperature too; the diametral strain (including thermal part) has been modelled as a sum of primary and secondary terms, the former being independent of fluence. For the tubing considered it is observed that the ranking of the different batches, with respect to diametral creep resistance, is the same before and under irradiation. Concerning axial creep strain the stress relieved material behaves as does an isotropic tube. This is not the case of recrystallized zircaloy-4 F, which shows a non negligible axial deformation, related to the diametral creep one, even though this diametral irradiation creep strain is strongly reduced comparatively to that of the stress relieved material. The comparison of the two materials growth rates is more complex since their dependence on temperature and flux differs

  8. Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C., E-mail: christian.duriez@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Drouan, D. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Pouzadoux, G. [Université Technologique de Troyes, BP 2060, Troyes 10010 (France)

    2013-10-15

    High temperature reactivity in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings has been studied by thermogravimetry. Claddings were pre-oxidised at low temperature with the aim of simulating spent fuel. Different pre-oxidation modes, inducing significant variation in the pre-oxides microstructure, were compared. The behaviour in air, investigated in the 850–1000 °C temperature range, was found to be strongly dependant on the type of pre-oxide: the compact pre-oxide formed in autoclave (at temperature, pressure, and water chemistry representative of PWR conditions) significantly slows down the degradation in air compared to the bare alloys; on the contrary, a pre-oxide formed at 500 °C at ambient pressure, either in oxygen or in steam, favours the initiation of post-breakaway type oxidation, which in air is associated with nitride formation. The behaviour in nitrogen has been investigated in the 800–1200 °C temperature range, with Zircaloy-4 pre-oxidised at 500 °C in O{sub 2}. Reactivity is low up to 1000 °C but becomes very significant at the highest temperatures investigated, 1100 and 1200 °C. Finally, cladding segments first reacted in N{sub 2} at 1100 °C, were exposed to air and show fast oxidation even at the lowest temperature investigated (600 °C)

  9. Boosting nuclear fuels

    International Nuclear Information System (INIS)

    Demarthon, F.; Donnars, O.; Dupuy-Maury, F.

    2002-01-01

    This dossier gives a broad overview of the present day status of the nuclear fuel cycle in France: 1 - the revival of nuclear power as a solution to the global warming and to the increase of worldwide energy needs; 2 - the security of uranium supplies thanks to the reuse of weapon grade highly enriched uranium; 3 - the fabrication of nuclear fuels from the mining extraction to the enrichment processes, the fabrication of fuel pellets and the assembly of fuel rods; 4 - the new composition of present day fuels (UO x and chromium-doped pellets); 5 - the consumption of plutonium stocks and the Corail and Apa fuel assemblies for the reduction of plutonium stocks and the preservation of uranium resources. (J.S.)

  10. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  11. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  12. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  13. CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions)

    International Nuclear Information System (INIS)

    Brachet, J.C.; Lorrette, C.; Michaux, A.; Sauder, C.; Idarraga-Trujillo, I.; Le Saux, M.; Le Flem, M.; Schuster, F.; Billard, A.; Monsifrot, E.; Torres, E.; Rebillat, F.; Bischoff, J.; Ambard, A.

    2015-01-01

    This paper gives an overview of CEA studies on advanced nuclear fuel claddings for enhanced Accident Tolerant LWR Fuel in collaboration with industrial partners AREVA and EDF. Two potential solutions were investigated: chromium coated zirconium based claddings and SiC/SiC composite claddings with a metallic liner. Concerning the first solution, the optimization of chromium coatings on Zircaloy-4 substrate has been performed. Thus, it has been demonstrated that, due in particular to their slower oxidation rate, a significant additional 'grace period( can be obtained on high temperature oxidized coated claddings in comparison to the conventional uncoated ones, regarding their residual PQ (Post-Quench) ductility and their ability to survive to the final water quenching in LOCA and, to some extent, beyond LOCA conditions. Concerning the second solution, the innovative 'sandwich' SiC/SiC cladding concept is introduced. Initially designed for the next generation of nuclear reactors, it can be adapted to obtain high safety performance for LWRs in LOCA conditions. The key findings of this work highlight the low sensitivity of SiC/SiC composites under the explored steam oxidation conditions. No signification degradation of the mechanical properties of CVI-HNI SiC/SiC specimen is particularly acknowledged for relatively long duration (beyond 100 h at 1200 Celsius degrees). Despite these very positive preliminary results, significant studies and developments are still necessary to close the technology gap. Qualification for nuclear application requires substantial irradiation testing, additional characterization and the definition of design rules applicable to such a structure. The use of a SiC-based fuel cladding shows promise for the highest temperature accident conditions but remains a long term perspective

  14. Design of an integrated system to recycle Zircaloy cladding using a hydride–milling–dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Randy, E-mail: rkelley@pitt.edu [Mechanical Engineering Department, 236 Engineering and Science Building, University of Pittsburgh – Johnstown, Johnstown, PA 15904 (United States); McDeavitt, Sean [Texas A and M University, Department of Nuclear Engineering, 327 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2013-10-15

    Highlights: • Dehydriding zirconium hydride was studied at relatively low temperatures (<800 °C). • High vacuum pressures decrease dehydriding temperatures. • Specialized equipment was designed, built and demonstrated to process zirconium. • The process hydrided–milled–dehydrided zirconium metal to a fine metal powder. • Two powder samples were analyzed and proved the operation of the machine. -- Abstract: A hydride–dehydride process was evaluated to recover a portion of spent nuclear fuel cladding; a zirconium alloy (Zircaloy), as a metal powder that may be used for advanced nuclear fuel applications. The investigation was part of a broader study that sought to determine the viability of recovering components of used nuclear fuel to for a metal matrix cermet for transuranic burning. The zirconium powder process begins with the conversion of Zircaloy cladding hulls into a brittle zirconium hydride, which is easily pulverized into a powder. The dehydriding process removes hydrogen by heating the powder in a vacuum, resulting in a zirconium metal powder. In support of this, a specialized piece of equipment was designed to demonstrate the entire zirconium conversion process to transform Zircaloy tubes into metal powder without intermediate handling. This was accomplished by building a milling system that rotates inside of controlled atmosphere chamber with an internal heater. The hydriding process was accomplished using an argon–5% hydrogen atmosphere at 500 °C. The process variables for the dehydriding process were determined using a thermogavimetric analysis (TGA) method. It was determined that a rough vacuum (∼0.001 bar) and 800 °C were sufficient to decompose the zirconium hydride. Zirconium metal powder was created using different milling times: 45 min (coarse powder) and 12 h (fine powder). X-ray diffraction (XRD) analysis indicated that the process produced a zirconium metal. Additionally, visual observations of the samples silvery

  15. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  16. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  17. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  18. Nondestructive characterization of hydrogen concentration in zircaloy cladding tubes with laser ultrasound technique

    International Nuclear Information System (INIS)

    Yang, Che Hua; Lai, Yu An

    2006-01-01

    This paper describes a laser ultrasound technique (LUT) for nondestructive characterization of hydrogen concentration (HC) in Zircaloy cladding tubes. With the LUT, guided ultrasonic waves are generated remotely and then propagate in the axial direction of Zircaloy tubes, and finally detected remotely by an optical probe. By measuring the dispersion spectra with the LUT, relations between the dispersion spectra and the HC of the Zircaloy tubes can be established. The LUT is non-contact, capable of remote inspection, and therefore suitable for nondestructive inspection of HC in Zircaloy cladding tubes used in nuclear power plant.

  19. Effect of deformation on crystallite characteristic and yield stress of zircaloy-4

    International Nuclear Information System (INIS)

    Sugondo; Futichah

    2007-01-01

    The effect of deformation (rolling) on micro strain, crystallite size, crystallite density, and yield strength of Zircaloy-4 was characterized by x-ray diffraction. The goal of this investigation is to characterize the cladding materials of PWR and the target is to have data on the crystallography of Zircaloy-4. The as-received material with the composition 1.3% Sn, 0.22% Fe, 0.1% Cr, and Zr balanced was cut 10 mm × 100 mm in size using diamond blade. The samples were cleaned and heated at 1100 °C for 2 hours and then quenched in cold water. Then the sample were cleaned and heated at 750 °C for 2 hours. Afterward the samples were cold rolled with 40%, 75%, and 80% reduction in thickness. After the preparation was completed, the crystals of the samples were characterized using X-ray diffraction. The processes being analysed were quenching followed by annealing, plastic deformation of annealing and reduction from 40% to 80%, and the constancy of the c/a ratio. From the analyses, three conclusions were obtained. Firstly, the annealing process at 750 °C of Zircaloy-4 from the quenched samples resulted in the recrystallization and the grain growth which was proven by the increase of micro strain from 25.05% to 32.83%, the increase of crystallite size from 10.1015 Å to 287.4798 Å, the decrease of dislocation density from 2.94E+16 m/m3 to 3.63E+13 m/m3, and the decrease of yield strength from 1125.52 MPa to 304.44 MPa. Secondly, the process of reduction of Zircaloy-4 from the annealed samples reduced to 80% resulted in the plastic deformation and crystallite which was shown by the decrease of micro strain from 32.83% to 3.15%, the decrease of crystallite size from 287.4798 Å to 10.9764 Å, the increase of dislocation density from 3.63E+13 m/m3 to 2.49E+16 m/m3, and the increase of yield strength from 304.44 MPa to 1057.69 MPa. Thirdly, the process of plastic deformation of Zircaloy-4 was limited by the constancy of the c/a ratio which was verified by the decrease

  20. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  1. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  2. Effects of Nitrogen Implantation on the Resistance to Localized Corrosion of Zircaloy-4 in a Chloride Solution

    International Nuclear Information System (INIS)

    Lee, Sung Joon; Kwon, Hyuk Sang; Kim, Wan; Choi, Byung Ho

    1996-01-01

    The influences of ion dose and substrate temperature on the resistance to localized corrosion of nitrogen-implanted Zircaloy-4 are examined in terms of potentiodynamic anodic polarization tests in deaerated 4M NaCl solution at 80 .deg. C. Nitrogen implantations into the Zircaloy-4 were performed under conditions of varying the ion dose from 3 x 10 17 to 1.2 x 10 18 ions/cm 2 and of maintaining the substrate temperatures respectively at 100, 200, and 300 .deg. C by controlling the current density of ion beam. The resistance to localized corrosion of Zircaloy-4 was significantly increased with increasing the ion dose when implanted at substrate temperatures above 200 .deg. C. However, it was not almost improved by implantation at 100 .deg. C. Specifically, the pitting potential increased from 350mV (vs. SCE) for the unimplanted to values of 900 to about 1400mV (vs. SCE) for the implanted alloy depending on the nitrogen dose. This significant improvement in the resistance to localized corrosion of the implanted Zircaloy-4 was found to be associate with the formation of compound layers of ZrO 2 + ZrN during the implantation. The galvanostatic anodization tests on the nitrogen-implanted Zircaloy-4 in 1M H 2 SO 4 at 20 .deg. C demonstrated that an increase in the ion dose and also in the substrate temperature increased the thickness of the compound layer of ZrO 2 + ZrN, and hence increased the pitting potential of the alloy. The low resistance to localized and general corrosion of the alloy implanted at 100 .deg. C was attributed to the increase in surface defect density and also to thinner implanted layer compared with those formed at higher temperatures

  3. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    Science.gov (United States)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  4. Rethinking the Zircaloy Embrittlement Criteria and Its Impact on Safety Margin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Ho; Kim, Bo Kyung; No, Hee Cheon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    These fuel rod failure modes include integral thermal shock fracture, and impact tests. It is quite remarkable to see that the proposed Zircaloy embrittlemt criteria attained from ring compression tests, in general, successfully assure structural integrity of fuel rods subject to relevant failure modes in accidents. This fact demonstrates that ductility of Zircaloy is the key metric to structural integrity of fuel rods. However, the Zircaloy embrittlement criteria set in 1970s inevitably pose limitations that have become increasingly important for today's nuclear fuel and reactor operations. In particular, the criteria do not take into account the steady-state hydrogen embrittlement with burnup. This may be understandable considering the markedly lower discharge burnup in 1970s compared to that of today. The revision of the rule has been already conducted by the U.S NRC to account for high burnup effects on ECR while the temperature limit remains unchanged. The newly proposed rule of the U.S NRC stick to the similar ring compression tests conducted in the early 1970s. In the monumental experimental investigation of Hobson and Rittenhouse in 1972 and 1973, the experimental evidence for the current 1204oC was first addressed. The study found a reasonably accurate correlation between zero ductility temperature and the sum of alpha and oxide layer thickness for the specimens oxidized below 2200oF (1204 .deg. C). However, in spite of the similar oxidation degree, specimens oxidized at 2400 .deg. F (1315 deg. C) were markedly more brittle than specimens oxidized at 2200 .deg. F (1204 .deg. C). The study explained this by the increase in solid-solution hardening due to a higher oxygen solubility at a higher temperature. Such a nice experimental correlation attained between the nil ductility temperature and the remaining beta layer thickness fraction below 1204 .deg. C has become a critical basis for the current temperature limit; at 1315 .deg. C- thecorrelation

  5. Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea V.

    2006-01-01

    In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es

  6. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2001-01-01

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  7. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  8. Substructure evolution of Zircaloy-4 during creep and implications for the Modified Jogged-Screw model

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, B.M., E-mail: morrow@lanl.gov [The Ohio State University, 2041 College Rd., 477 Watts Hall, Columbus, OH 43210 (United States); Los Alamos National Laboratory, P.O. Box 1663, MS G755, Los Alamos, NM 87545 (United States); Kozar, R.W.; Anderson, K.R. [Bettis Laboratory, Bechtel Marine Propulsion Corp., West Mifflin, PA 15122 (United States); Mills, M.J., E-mail: millsmj@mse.osu.edu [The Ohio State University, 2041 College Rd., 477 Watts Hall, Columbus, OH 43210 (United States)

    2016-05-17

    Several specimens of Zircaloy-4 were creep tested at a single stress-temperature condition, and interrupted at different accumulated strain levels. Substructural observations were performed using bright field scanning transmission electron microscopy (BF STEM). The dislocation substructure was characterized to ascertain how creep strain evolution impacts the Modified Jogged-Screw (MJS) model, which has previously been utilized to predict steady-state strain rates in Zircaloy-4. Special attention was paid to the evolution of individual model parameters with increasing strain. Results of model parameter measurements are reported and discussed, along with possible extensions to the MJS model.

  9. Temperature effect on Zircaloy-4 stress corrosion cracking

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    1999-01-01

    Stress corrosion cracking (SCC) susceptibility of Zircaloy-4 alloy in chloride, bromide and iodide solutions with variables as applied electrode potential, deformation rate and temperature have been studied. In those three halide solutions the susceptibility to SCC is only observed at potentials close to pitting potential, the crack propagation rate increases with the increase of deformation rate, and that the temperature has a notable effect only for iodide solutions. For chloride and bromide solutions and temperatures ranging between 20 to 90 C degrees it was not found measurable changes in crack propagation rates. (author)

  10. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  11. Irradiation creep and growth behavior of Zircaloy-4 inner shell of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jong-Ha; Cho, Yeong-Garp; Kim, Jong-In [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    The inner shell of the reflector vessel of HANARO was made of Zircaloy-4 rolled plate. Zircaloy-4 rolled plate shows highly anisotropic behavior by fast neutron irradiation. This paper describes the analysis method for the irradiation induced creep and growth of the inner shell of HANARO. The anisotropic irradiation creep behavior was modeled as uniaxial strain-hardening power law modified by Hill's stress potential and the anisotropic irradiation growth was modeled by using volumetric swelling with anisotropic strain rate. In this study, the irradiation induced creep and growth behavior of the inner shell of the HANARO reflector vessel was re-evaluated. The rolling direction, the fast neutron flux, and the boundary conditions were applied with the same conditions as the actual inner shell. Analysis results show that deformation of the inner shell due to irradiation does not raise any problem for the lifetime of HANARO. (author)

  12. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    Science.gov (United States)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  13. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  14. Investigation of in-pile formed corrosion films on zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization

    International Nuclear Information System (INIS)

    Gebhardt, O.

    1993-01-01

    Hot-cell investigations have been executed to study the corrosion behaviour of irradiated Zircaloy fuel-rod claddings by impedance spectroscopy and galvanostatic anodization. The thickness of the compact oxide at the metal/oxide interface and the thickness of the minimum barrier oxide have been determined at different positions along the claddings. As shown by analysis, both quantities first increase and then decrease with increasing thickness of the total oxide. (author) 6 figs., 33 refs

  15. Nondestructive examination of irradiated fuel rods by pulsed eddy current techniques

    International Nuclear Information System (INIS)

    Francis, W.C.; Quapp, W.J.; Martin, M.R.; Gibson, G.W.

    1976-02-01

    A number of fuel rods and unfueled zircaloy cladding tubes which had been irradiated in the Saxton reactor have undergone extensive nondestructive and corroborative destructive examinations by Aerojet Nuclear Company as part of the Water Reactor Safety Research Program, Irradiation Effects Test Series. This report discusses the pulsed eddy current (PEC) nondestructive examinations on the fuel rods and tubing and the metallography results on two fuel rods and one irradiated zircaloy tube. The PEC equipment, designed jointly by Argonne National Laboratory and Aerojet, performed very satisfactorily the functions of diameter, profile, and wall thickness measurements and OD and ID surface defect detection. The destructive examination provided reasonably good confirmation of ''defects'' detected in the nondestructive examination

  16. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  17. Morphology control of anodic ZrO2 layer for the prevention of H2 production from Zr-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Since the Fukushima disaster happened, studies on accident-resistant nuclear fuel has been carried out actively. There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. It reveals that the alloy transition from nanoporous structure to nanotube structure can be changed by varying water contents of anodizing solution and applied voltage. Anodizing conditions determining nanoporous structure were obtained. According to the mechanism already suggested, nanoporous oxide layer that can seal the fuel cladding perfectly, and increase critical heat flux (CHF) due to large surface area is easily produced. This results obtained in this paper expected to be facilitated fabrication of accident-resistant nuclear fuel cladding.

  18. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  19. Thermal diffusion of hydrogen in zircaloy-2 containing hydrogen beyond terminal solid solubility

    International Nuclear Information System (INIS)

    Maki, Hideo; Sato, Masao.

    1975-01-01

    The thermal diffusion of hydrogen is one of causes of uneven hydride precipitation in zircaloy fuel cladding tubes that are used in water reactors. In the diffusion model of hydrogen in zircaloy, the effects of the hydride on the diffusibility of hydrogen has been regarded as negligibly small in comparison with that of hydrogen dissolved in the matrix. Contrary to the indications given by this model, phenomena are often encountered that cannot be explained unless hydride platelets have considerable ostensible diffusibility in zircaloy. In order to determine quantitatively the diffusion characteristics of hydrogen in zircaloy, a thermal diffusion experiment was performed with zircaloy-2 fuel cladding tubes containing hydrogen beyond the terminal solid solubility. In this experiment, a temperature difference of 20 0 --30 0 C was applied between the inside and outside surfaces of the specimen in a thermal simulator. To explain the experimental results, a modified diffusion model is presented, in which the effects of stress are introduced into Markowitz's model with the diffusion of hydrogen in the hydride taken into account. The diffusion equation derived from this model can be written in a form that ostensibly represents direct diffusion of hydride in zircaloy. The apparent diffusion characteristics of the hydride at around 300 0 C are Dsub(p)=2.3x10 5 exp(-32,000/RT), (where R:gas constant, T:temperature) and the apparent heat of transport Qsub(p) =-60,000 cal/mol. The modified diffusion model well explains the experimental results in such respects as reaches a steady state after several hours. (auth.)

  20. On-line ultrasonic inside-diameter control system for Zircaloy

    International Nuclear Information System (INIS)

    Tanaka, Y.; Fujii, N.; Komatsu, M.; Kubota, H.

    1984-01-01

    An ultrasonic inside-diameter (ID) control system was used during the final etching process for producing Zircaloy nuclear fuel cladding tubes. This results in establishing automatic inside-diameter control during etching with an automatic etching system. In this system, the inside-diameter at the center point in the length of each tube is continuously measured with the ultrasonic inside-diameter measuring equipment during the etching process and the etching is automatically stopped by a signal from the control equipment when the inside-diameter reaches the target value. This made the final etching process economical and suitable for large-scale production, having an equal or better level at the inside-diameter of tubes etched with this system than those made by a process controlled by an air-micrometer

  1. Studies on the Electrochemical Dissolution for the Treatment of 10 g-Scale Zircaloy-4 Cladding Hull Wastes in LiCl-KCl Molten Salts

    International Nuclear Information System (INIS)

    Lee, You Lee; Lee, Jang Hwa; Jeon, Min Ku; Kang, Kweon Ho

    2012-01-01

    The electrochemical behaviors of 10 g-scale fresh and oxidized Zircaloy-4 cladding hulls were examined in 500 degree C LiCl-KCl molten salts to confirm the feasibility of the electrorefining process for the treatment of hull wastes. In the results of measuring the potential-current response using a stainless steel basket filled with oxidized Zircaloy-4 hull specimens, the oxidation peak of Zr appears to be at -0.7 to -0.8 V vs. Ag/AgCl, which is similar to that of fresh Zircaloy-4 hulls, while the oxidation current is found to be much smaller than that of fresh Zircaloy-4 hulls. These results are congruent with the outcome of current-time curves at -0.78 V and of measuring the change in the average weight and thickness after the electrochemical dissolution process. Although the oxide layer on the surface affects the uniformity and rate of dissolution by decreasing the conductivity of Zircaloy-4 hulls, electrochemical dissolution is considered to occur owing to the defect of the surface and phase properties of the Zr oxide layer.

  2. Superficial characterization by XP S of silver nanoparticles and their hydrothermal deposit over zircaloy

    International Nuclear Information System (INIS)

    Contreras R, A.; Gutierrez W, C.; Martinez M, I.; Medina A, A. L.

    2012-10-01

    The analysis technique of X-ray photoelectron spectroscopy (XP S) is sensitive exclusively to the first layers of the solids surface, which allows obtaining information about the chemical, physical and electronic properties of them. The combustible elements of the boiling water nuclear reactors (BWR) are formed by zircaloy pipes that contain in their interior pellets or uranium dioxide. In this work is studied the zircaloy surface, oxidized zircaloy under similar conditions to those of a reactor BWR type and oxidized zircaloy with a hydrothermal deposit of silver nanoparticles and zinc. The silver deposit is a proposal of the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, which has the same objective that the noble metals deposit (Pt, Pd, and Rh) that is practiced in some of the reactors BWR, in order to mitigating the speed of crack growth for IGSCC in stainless steels 304 Ss. (Author)

  3. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  4. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  5. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  6. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Chung, Haijung; ); Billone, Michael; Fuketa, Toyoshi; Nagase, Fumihisa; Grandjean, Claude; Hache, George; Papin, Joelle; Heins, Lothar; Hozer, Zoltan; In de Betou, Jan; Kelppe, Seppo; Mayer, Ralph; Scott, Harold; Voglewede, John; Sonnenburg, Heinz; Sunder, Sham; Valach, Mojmir; Vrtilkova, Vera; Waeckel, Nicolas; Wiesenack, Wolfgang; Zimmermann, Martin

    2009-01-01

    The NEA Working Group on Fuel Safety (WGFS) is tasked with advancing the current understanding of fuel safety issues by assessing the technical basis for current safety criteria and their applicability to high burn-up and to new fuel designs and materials. The group aims at facilitating international convergence in this area, including as regards experimental approaches and interpretation and the use of experimental data relevant for safety. In 1986, a working group of the NEA Committee on the Safety of Nuclear Installations (CSNI) issued a state-of-the-art report on water reactor fuel behaviour in design-basis accident (DBA) conditions. The 1986 report was limited to the oxidation, embrittlement and deformation of pressurised water reactor (PWR) fuel in a loss-of-coolant accident (LOCA). Since then, considerable experimental and analytical work has been performed, which has led to a broader and deeper understanding of LOCA-related phenomena. Further, new cladding alloys have been produced, which might behave differently than the previously used Zircaloy-4, both under normal operating conditions and during transients. Compared with 20 years ago, fuel burn-up has been significantly increased, which requires extending the LOCA database in order to cover the high burnup range. There was also a clear need to address LOCA performance for reactor types other than PWRs. The present report has been prepared by the WGFS and covers the following technical aspects: - Description of different LOCA scenarios for major types of reactors: BWRs, PWRs, VVERs and to a lesser extent CANDUs. - LOCA phenomena: ballooning, burst, oxidation, fuel relocation and possible fracture at quench. - Details of high-temperature oxidation behaviour of various cladding materials. - Metallurgical phase change, effect of hydrogen and oxygen on residual cladding ductility. - Methods for LOCA testing, for example two-sided oxidation and ring compression for ductility, and integral quench test for

  7. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  8. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  9. Temperature estimates from the zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near thermocouple locations

  10. Temperature estimates from the Zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of Zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of Zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near the thermocouple locations

  11. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  12. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  13. Spent Nuclear Fuel Cask and Storage Monitoring with {sup 4}He Scintillation Fast Neutron Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee jun; Kelley, Ryan P; Jordan, Kelly A [Univ. of Florida, Florida (United States); Lee, Wanno [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Yong Hyun [Yonsei Univ., Wonju (Korea, Republic of)

    2014-10-15

    With this increasing quantity of spent nuclear fuel being stored at nuclear plants across S. Korea, the demand exists for building a long-term disposal facility. However, the Korean government first requires a detailed plan for the monitoring and certification of spent fuel. Several techniques have been developed and applied for the purpose of spent fuel monitoring, including the digital Cerenkov viewing device (DCVD), spent fuel attribute tester (SFAT), and FORK detector. Conventional gamma measurement methods, however, suffer from a lack of nuclear data and interfering background radiation. To date, the primary method of neutron detection for spent fuel monitoring has been through the use of thermal neutron detectors such as {sup 3}He and BF{sub 3} proportional counters. Unfolding the neutron spectrum becomes extremely complicated. In an attempt to overcome these difficulties, a new fast neutron measurement system is currently being developed at the University of Florida. This system is based on the {sup 4}He scintillation detector invented by Arktis Radiation Detectors Ltd. These detectors are a relatively new technological development and take advantage of the high {sup 4}He cross-section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. This novel {sup 4}He scintillation neutron detector is characterized by its low electron density, leading to excellent gamma rejection. This detector also has a fast response time on the order of nanoseconds and most importantly, preserves some neutron energy information since no moderator is required. Additionally, these detectors rely on naturally abundant {sup 4}He as the fill gas. This study proposes a new technique using the neutron spectroscopy features of {sup 4}He scintillation detectors to maintain accountability of spent fuel in storage. This research will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation

  14. Corrosion performance of optimised and advanced fuel rod cladding in PWRs at high burnups

    International Nuclear Information System (INIS)

    Jourdain, P.; Hallstadius, L.; Pati, S.R.; Smith, G.P.; Garde, A.M.

    1997-01-01

    The corrosion behaviour both in-pile and out-of-pile for a number of cladding alloys developed by ABB to meet the current and future needs for fuel rod cladding with improved corrosion resistance is presented. The cladding materials include: 1) Zircaloy-4 (OPTIN) with optimised composition and processing and Zircaloy-2 optimised for Pressurised Water Reactors (PWR), (Zircaloy-2P), and 2) several alternative zirconium-based alloys with compositions outside the composition range for Zircaloys. The data presented originate from fuel rods irradiated in six PWRs to burnups up to about 66 MWd/kgU and from tests conducted in 360 o water autoclave. Also included are in-pile fuel rod growth measurements on some of the alloys. (UK)

  15. An extension of a high temperature creep model to account for fuel sheath oxidation

    International Nuclear Information System (INIS)

    Boccolini, G.; Valli, G.

    1983-01-01

    Starting from the high-temperature creep model for Zircaloy fuel sheathing, the NIRVANA (developed by AECL), a multilayer model, is proposed in this paper: it includes the outer oxide plus alpha retained layers, and the inner core of beta or alpha plus beta material, all constrained to deform with the same creep rate. The model has been incorporated into the SPARA fuel computer code developed for the transient analysis of fuel rod behaviour in the CIRENE prototype reactor, but it is in principle valid for all Zircaloy fuel sheathings. Its predictions are compared with experimental results from burst tests on BWR and PWR type sheaths; the tests were carried out at CNEN under two research contracts with Ansaldo Meccanico Nucleare and Sigen-Sopren, respectively

  16. Effect of ageing time and temperature on the strain ageing behaviour of quenched zircaloy-4

    International Nuclear Information System (INIS)

    Rheem, K.S.; Park, W.K.; Yook, C.C.

    1977-01-01

    The strain ageing behaviour of quenched Zircaloy-4 has been studied as a function of ageing time and temperature in the temperature range 523-588 K for a short-ageing time of 1 to 52 seconds. A the test conditions, the strain ageing stress increased with ageing time and temperature at a strain rate of 5.55x10 -4 sec -1 . Applying stress on the quenched Zircaloy-4, the strain ageing effect indicated following two states: an initial stage having an activation energy of 0.39ev considered to be due to Snoek type ordering of interstitial oxygen atoms in the stress field of a dislocaiton and a second stage havingan activation energy of 0.60 ev, due to mainly long range diffusion of oxygen atoms. (author)

  17. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  18. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  19. CEA fuel pencil qualification under irradiation: from component conception to fuel assembly irradiation in a power reactor

    International Nuclear Information System (INIS)

    Marin, J.-F.; Pillet, Claude; Francois, Bernard; Morize, Pierre; Petitgrand, Sylvie; Atabek, R.-M.; Houdaille, Brigitte.

    1981-06-01

    Fabrication of fuel pins made of uranium oxide pellets and of a zircaloy 4 cladding is described. Irradiation experiment results are given. Thermomechanical behavior of the fuel pin in a power reactor is examined [fr

  20. Fuel element clusters for nuclear reactors

    International Nuclear Information System (INIS)

    Anthony, A.J.; Hutchinson, J.J.

    1975-01-01

    In the fuel element assembly for nuclear reactors the influence of temperature cycles upon the stability of the joints between the individual components, especially between the control rod guide tubes and the connecting rods and end plates, respectively, is reduced. For this purpose, the connection is designed as a bolted connection connecting, on the one hand, the guide tubes and guide bolts and, on the other hand, these two components and the end plates. Moreover, the materials of the guide tubes, bolts and end plates are selected so that their respective thermal expansion coefficients differ. The material which can be used for the end plates and the guide bolts is stainless steel and stainless steel plus inconel (nickel-chrome-iron alloy), respectively; for the guide tubes it is a zirconium alloy (zircaloy). In addition to some technical designs of the bolted connections the materials and lengths of the components are selected in such a way that the expansion path of the components held by a bolted connection is equal to that of the stressing part. (DG/RF) [de

  1. Effects of oxidation in the mechanical behavior of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos.

    1981-07-01

    The kinetics of oxidation of zircaloy-4 is isothermally studied utilizing discontinous gravimetric method under two different oxidizing conditions, using gaseous oxigen and steam. The total weight gain during oxidation occurs in two different way: formation of oxide and solid solution. A mechanical test for studying the effect of embrittlement due to the absorption of oxygen in small zircalloy tubes have been developed. (Author) [pt

  2. Recent advances in PWR fuel design and performance experience at ABB-CENF

    International Nuclear Information System (INIS)

    Corsetti, Lawrence V.

    2004-01-01

    Utilities in the United States continue to move towards longer cycles and higher burnups to improve fuel cycle economics. This has placed increased demands for improved burnable absorber concepts. Zircaloy-4 corrosion behavior remains a high burnup performance concern. Over the past several years there has also been increasing utility interest in fuel reliability improvements. The development and application of erbia as a burnable absorber mixed directly with urania fuel will be discussed. Debris resistant fuel assembly designs and operating experience are reviewed. Oxide thickness measurements showing the improved corrosion resistance of optimized, low-tin Zircaloy-4 are presented. (author)

  3. Determination of uranium traces in nuclear cans of nuclear reactors

    International Nuclear Information System (INIS)

    Acosta L, E.; Benavides M, A.M.; Sanchez P, L.

    1996-01-01

    To quantify the uranium content as impurity can be found in zirconium alloys and zircaloy, utilized to construct the sheaths containing fuels of the reactors of nuclear plants. The determination by fluorescence spectroscopy was employed as quality control measurement, at once the corrosion resistance, diminish with the increase of the uranium content in the alloys. (Author)

  4. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  5. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  6. Oxidation of Zircaloy-4 under limited steam supply at 1000 and 13000C

    International Nuclear Information System (INIS)

    Uetsuka, H.

    1984-12-01

    With the view of examining the oxidation behavior of Zircaloy-4 under limited steam supply occurring in severe accidents of LWRs, Zircaloy-4 cladding specimens were examined at the isothermal oxidation temperatures of 1000 and 1300 0 C under a steam atmosphere, flowing at a reduced and constant rate in the range of 3proportional170 mg/cm 2 xmin. The effect of steam starvation, which was restricted to very low levels of steam supply rate, was observed at the two examined temperatures. And the critical supply rate of steam starvation was evaluated to be 13 and 20 mg/cm 2 xmin for the oxidation at 1000 and 1300 0 C, respectively. Variation of the oxidation duration between 2 and 60 min at 1000 0 C allowed to compare the reaction kinetics for three different rates of steam supply. The short-term results confirmed the reduced reaction rates for the lower steam supplies. At the longer times, however, a clear trend towards linear kinetics was observed for the lower supplies. This can be interpreted as the result of earlier breakaway transition under limited steam supply. In the test at 1300 0 C, an acceleration of the oxidation rate was measured for the specified steam supply rate between 20 and 60 mg/cm 2 xmin. This related strongly with high hydrogen concentration in the atmosphere. Hydrogen blanketing - the retarding effect of hydrogen on Zircaloy oxidation - was not identified in the examined temperature range. (orig./HP) [de

  7. The effect of stimulated fission products on the structure and the mechanical properties of zircaloy

    International Nuclear Information System (INIS)

    Holub, F.

    1982-01-01

    The objective of investigation was to study the long-term effects of individual simulated fission products on the mechanical properties and the structure of Zircaloy. Tensile Test specimens of Zircaloy were annealed with important simulated fission products at 350 0 C up to 10,000 hours and at higher temperatures (500, 700 0 C) up to 2,000 hours. The principal methods of investigation on annealed Zircaloy specimens were tension tests at room temperature and at 400 0 C, scanning electron microscopy and microprobe technique, X-ray diffraction, X-ray fluorescence, optical metallography. The action of fission products at normal temperatures of reactor operation will give rise to a small enhancement of strength and a small drop of ductility of the fuel cladding material only. At high fuel pin temperatures which may be realized under abnormal operation conditions, some of the fission products potentially will produce detrimental consequences on the integrity of fuel pins. The most effective fission products will be: lanthanum oxide, followed by the earth alkaline oxides and the other rare earth oxides, molybdenum, iodine and cadmium

  8. Contribution to study on recovery and recrystallization of cold rolling zircaloy-4

    International Nuclear Information System (INIS)

    Persiano, A.I.C.

    1977-01-01

    Recovery and recrystallization of work-hardened (40-60% - Cold rolling) Zircaloy-4 were studied between 200 and 600 0 C with times varying from 15 to 240 minutes, from electrical resistance and hardness measurements. Activation energy calculation for the recovery and recrystallization processes using the samples work-hardened 60% gave 0,7 and 2,1 eV. (author)

  9. The influence of hydrogen on the deformation behavior of zircaloy 4

    International Nuclear Information System (INIS)

    Flanagan, M. E.; Koss, D. A.; Motta, A. T.

    2008-01-01

    The deformation behavior of Zr based cladding forms a basis for fuel behavior codes and affects failure criteria; as such, it is critical to reactor safety. The present study examines the influence of hydrogen on the uniaxial deformation behavior of hydrided cold worked and stress relieved Zircaloy 4 plate material. Specimens of various orientations (i.e., stress axis aligned with the rolling direction, the transverse direction, or normal to the plate surface direction) were tested in compression at a range of temperatures (25 .deg. , 300 .deg. , and 400 .deg. C), and strain rates (from 10-4/s to 10-1/s). Contrasting the deformation behavior of the material containing ∼45 wt ppm H with that of the material containing ∼420 wt. ppm H shows that increasing H content (a) causes a small decrease in the 0.2% yield stress that is eliminated at 1.0% flow stress, (b) increases the strain hardening in the rolling direction but not in the other orientations, (c) has no effect on the temperature dependence of the strain hardening, and (d) does not affect the strain rate hardening behavior. Increasing H content also has no observable effect on the high degree of plastic anisotropy of this plate material which is manifested in difficult through thickness deformation, resulting in high flow stresses for specimens oriented in the normal to plate surface direction

  10. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  11. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  12. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600-1200 °C

    Science.gov (United States)

    Steinbrueck, Martin; da Silva, Fabio Oliveira; Grosse, Mirco

    2017-07-01

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  13. Integrated planning for a fuel industry with emphasis on minimum size to fabricate own fuel

    International Nuclear Information System (INIS)

    Kondal Rao, N.; Katiyar, H.C.; Rajendran, R.; Sinha, K.K.; Swaminathan, N.; Subramanyam, R.B.; Pande, B.P.; Krishnan, T.S.; Agarwala, G.C.; Chandramouli, V.A.

    1977-01-01

    The Indian nuclear energy programme is based on the utilization of indigenous resources for the economic generation of power, developing its own know-how. In order to gain time, the first nuclear power station at Tarapur is a turn-key job based on enriched uranium fuel. Taking into consideration the established resources of uranium and thorium in the country, a strategy for nuclear power programme has been drawn up. The first phase is based on natural uranium fuel, the second phase on the recycle of plutonium and conversion of thorium and the third phase is the breeder system based on utilization of U 233 and conversion of thorium. This programme is specially significant for India in view of its vast resources of thorium. After the experience and confidence gained with the manufacture of metallic uranium fuel for the research reactors and about 40 tonnes of fuel for the initial loading of the Rajasthan Reactor, the fuel manufacturing programme within the country has been implemented to meet the entire initial and reload fuel requirements. The plant capacities are small compared to similar activities in developed countries. Further, by planning for an integrated fuel and component manufacturing complex, any draw-back in smaller scale of some of the operations is off-set. At the Nuclear Fuel Complex, set up on the above principles, production plants are in operation for the manufacture of reload fuel for the 400 MW Tarapur station, natural uranium oxide fuel, various zircaloy components such as fuel sheaths, pressure tubes, calandria tubes, channels and various other zircaloy components. Provisions have been made to expand the production facilities as the demand for reload fuel grows. With the facilities provided, the production programme can be diversified to take up the production of fast breeder reactor components of stainless steel and also the blanket thorium elements. The unitary control of all aspects of the manufacture and quality control of different types

  14. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  15. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  16. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-04-01

    Strain anisotropy was investigated at temperatures in the range 293 to 1117K in circular tensile specimens prepared from rolled Zircaloy-2 plate so that their tensile axes were parallel to and transverse to the rolling direction. The strain anisotropy factor for both types of specimen increased markedly in the high alpha phase region above 923K reaching a maximum at circa 1070K. Above this temperature in the alpha-plus-beta phase region the strain anisotropy decreased rapidly as the proportion of beta phase increased and was almost non-existent at 1173K. The strain anisotropy was markedly strain dependent, particularly in the high alpha phase region. The study was extended to Zircaloy-4 pressurized water reactor (PWR) 17 x 17 type fuel rod tubing specimens which were strained under biaxial conditions using cooling conditions which promoted uniform diametral strain over most of their lengths (circa 250 mm). In these circumstances the strain anisotropy is manifest by a reduction in length. Measurement of this change along with that in diameter and wall thickness produced data from which the strain anisotropy factor was calculated. The results, although influenced by additional factors discussed in the paper, were similar to those observed in the uniaxial Zircaloy-2 tensile tests. (author)

  17. Review of zircaloy oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, F.C. [Royal Military College of Canada, Kingston, Ontario (Canada); Lewis, B.J. [Univ. of Ontario Inst. of Technology, Faculty of Energy Systems and Nuclear Science, Oshawa, Ontario (Canada)

    2013-07-01

    This paper provides an overview of the kinetics for Zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. The effect of internal clad oxidation due to Zircaloy/UO{sub 2} interaction is also discussed. Low-temperature oxidation of Zircaloy due to water-side corrosion is further described. (author)

  18. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  19. Experimental studies on the crystallographic and plastic anisotropies of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1982-01-01

    The crystallographic and plastic anisotropies of a zircaloy-4 tubing using direct pole figures and experimental yield loci are analyzed. Tensile and plane-strain compression tests were used to assess the mecahnical behaviour. The results are discussed with respect to the dimensional stability and mechanical behaviour expected for the tube in its use in the core of pressurized water cooled reactors. (Author) [pt

  20. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  1. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    International Nuclear Information System (INIS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ℃). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  2. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  3. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers

    International Nuclear Information System (INIS)

    Gabory, Benoit de; Motta, Arthur T.; Wang, Ke

    2015-01-01

    Waterside corrosion of zirconium alloy nuclear fuel cladding varies markedly from one alloy to another. In addition, for a given alloy, the corrosion rate evolves during the corrosion process, most notably when the oxide loses its stability at the oxide transition. In an effort to understand the mechanism resulting in the variations of corrosion rate observed at the oxide transition, oxide layers formed on Zircaloy-4 and ZIRLO™ in high temperature water autoclave environments, and archived before and after the transition, are characterized using transmission electron microscopy. The study characterizes and compares the oxide morphology in both alloys at different times during the corrosion process, in an effort to understand the oxide growth mechanism for these alloys. Results show that the oxide is mainly composed of monoclinic ZrO 2 , with a preponderance of columnar oxide grains which extend to the oxide/metal interface. The oxide formed right after the transition has occurred, exhibits a 150 nm-wide layer of small equiaxed grains with high tetragonal oxide fraction. This layer has a similar morphology and structure as the first oxide layer formed (observed near the oxide/water interface). A study of the oxygen-rich region near the oxide/metal interface reveals a complex structure of different phases at different stages of corrosion. The interface exhibits an intermediate layer, identified as ZrO, a discontinuous layer of “blocky” Zr 3 O grains embedded in the ZrO layer, and a suboxide layer corresponding to an oxygen saturated solid solution in the metal matrix side. The thickness of this interfacial layer decreased markedly at the transition. Hydrides are also observed in that region, with a definite orientation relationship with the matrix. The observations of the oxide/metal interface are qualitatively similar for the two alloys but quantitatively different. The incorporation of intermetallic precipitates into the oxide layer is also studied, and

  4. Zircaloy cladding corrosion degradation in a Tuff repository: initial experimental plan

    International Nuclear Information System (INIS)

    Smith, H.D.

    1984-07-01

    The projected environmental history of a Tuff repository sited in an unsaturated hydrologic setting is evaluated to identify the potentially most severe corrosion conditions for Zircaloy spent fuel cladding. Three distinct corrosion periods are identified over the projected history. In two of those, liquid water may be present which is believed to produce the most severe corrosive environment for Zircaloy spent fuel cladding. In the time interval 100 to 1000 years after emplacement in the repository, the most severe condition is exposure to 170 0 C water at about 100 psi in an unbreached canister. This condition will be reproduced experimentally in an autoclave. For times after 1000 years, the most severe condition is exposure to 90 0 C water that is equilibrated with the tuff and invades breached canisters. This condition will be reproduced with a water bath system

  5. Utilising DualEELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 °C pressurised water

    Energy Technology Data Exchange (ETDEWEB)

    Annand, Kirsty J., E-mail: k.annand.1@research.gla.ac.uk [Materials and Condensed Matter Physics, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); MacLaren, Ian [Materials and Condensed Matter Physics, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Gass, Mhairi [AMEC Foster Wheeler, Clean Energy, Walton House, Birchwood Park, WA3 6GA (United Kingdom)

    2015-10-15

    Characterisation of materials utilised for fuel cladding in nuclear reactors prior to service is integral in order to understand corrosion mechanisms which would take place in reactor. Zircaloy-4 is one such material of choice for nuclear fuel containment in Pressurised Water Reactors (PWRs). In particular, the metal-oxide interface has been a predominant focus of previous research, however, due to the complex oxidation process of zirconium cladding, there is still no clear understanding of what is present at the interface. Using Scanning Transmission Electron Microscopy (STEM) and Dual Electron Energy Loss Spectroscopy (DualEELS), we have studied the corrosion of this material under conditions similar to those that could be encountered in service. It is shown that under all conditions, whether during faster oxidation in the early stages, slow growth just prior to the transition to a new growth regime, or in the faster growth that happens after this transition, the surface of the metal below the scale is loaded with oxygen up to around 33 at%. Approaching transition, in conditions of slow growth and slow oxygen supply, an additional metastable suboxide is apparent with a thickness of tens of nm. By studying changes in both chemical composition and dielectric function of the material at the oxide scale – metal interface with nanometre resolution, quantitative mapping could be achieved, clearly showing that this is a suboxide composition of ZrO and a Zr oxidation state close to +2. - Highlights: • Metal-oxide interface evolution studied by few-nm resolution EELS mapping. • Low loss EELS is very effective for mapping phase evolution. • ZrO suboxide phase characterised using EELS, which fits theoretical predictions. • ZrO formation found to correlate to local growth rate of oxide scale.

  6. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  7. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  8. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  9. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  10. Mechanistic modeling of zircaloy deformation and fracture in fuel element analysis

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1987-01-01

    A review is given of the comprehensive model developed in the 1960s at the Bettis Atomic Power Laboratory to explain the creep of Zircaloy during neutron irradiation and applied to fuel element analysis and design. The in-pile softening observed at low stresses was hypothesized to be due to a combination of the growth-directed Roberts-Cottrell yielding creep originally proposed for α-uranium and the formation of point defect loops preferentially on certain planes in response to the applied stress, with the second process being of relatively greater importance. The in-pile hardening observed at high stresses (or strain-rates) was proposed to be due to the cutting by dislocations of radiation-produced obstacles. In this stress (strain-rate) region, in-pile behavior was proposed to be identical to post-irradiation behavior. At intermediate stresses (strain-rates) a mechanism of radiation-enhanced climb around obstacles was suggested as being rate-controlling. As the stress is decreased, the climb process becomes easier, and the rate was then predicted to be controlled by glide at a flow-stress characteristic of unirradiated, annealed material, where radiation-enhanced diffusion enabled climbing around the normal strain-hardening obstacles. At still lower stresses, this glide process became negligibly slow compared with the growth-connected creep mechanism that was presumed to operate independently. The overall scheme was shown to be in good agreement with all the in-pile data then available and implemented into the computer analysis of fuel element behavior

  11. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  12. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  13. The long range migration of hydrogen through Zircaloy in response to tensile and compressive stress gradients

    International Nuclear Information System (INIS)

    Kammenzind, B.F.; Berquist, B.M.; Bajaj, R.; Kreyns, P.H.; Franklin, D.G.

    1998-01-01

    Zircaloy-4, which is used widely as a core structural material in pressurized water reactors (PWRs), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and zirconium hydride phases precipitate after the Zircaloy-4 lattice becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4, degrading its mechanical performance as a structural material. Because hydrogen can move rapidly through the Zircaloy-4 lattice, the potential exists for large concentrations of hydride to accumulate in local regions of a Zircaloy component remote from its point of entry into the component. Much has been reported in the literature regarding the long range migration of hydrogen through Zircaloy under concentration gradients and temperature gradients. Relatively little has been reported, however, regarding the long range migration of hydrogen under stress gradients. This paper presents experimental results regarding the long range migration of hydrogen through Zircaloy in response to both tensile and compressive stress gradients. The importance of this driving force for hydrogen migration relative to concentration and thermal gradients is discussed

  14. Design features of the Light Water Breeder Reactor (LWBR) which improve fuel utilization in light water reactors (LWBR development program)

    International Nuclear Information System (INIS)

    Hecker, H.C.; Freeman, L.B.

    1981-08-01

    This report surveys reactor core design features of the Light Water Breeder Reactor which make possible improved fuel utilization in light water reactor systems and breeding with the uranium-thorium fuel cycle. The impact of developing the uranium-thorium fuel cycle on utilization of nuclear fuel resources is discussed. The specific core design features related to improved fuel utilization and breeding which have been implemented in the Shippingport LWBR core are presented. These design features include a seed-blanket module with movable fuel for reactivity control, radial and axial reflcetor regions, low hafnium Zircaloy for fuel element cladding and structurals, and a closely spaced fuel rod lattice. Also included is a discussion of several design modifications which could further improve fuel utilization in future light water reactor systems. These include further development of movable fuel control, use of Zircaloy fuel rod support grids, and fuel element design modifications

  15. Development of the spent fuel rod cutting device using the blade cutters

    International Nuclear Information System (INIS)

    Jung, Jae Hoo; Yoon, Ji Sup; Hong, Dong Hee; Kim, Young Hwan; Park, Gee Yong; Kim, Do Woo

    2000-11-01

    A spent fuel rod cutting device is to cut a spent nuclear fuel rod to optimal size for consequent decladding operation. In this paper, various properties of fuel rod, such as a dimension and material of zircaloy tubes and fuel pellets, are investigated. Also, commercially available cutting method and tools is investigated in terms of its performance. As a result, the blade cutter is selected for the design. In order to fabricate the durable blade cutter, various materials are analyzed in terms of material properties, cutter shape, and heat treatment method, etc. Also, the durability of this tool is tested by cutting the SUS tubes and zircaloy tubes. In the device design, the remote maintainability is considered so that the modularized design is accomplished. Also, the other factors considered in the design are the round shape sustainability at the cut surface, the amount of debris generation, and the fire risk, etc. Considering these design consideration, the spent fuel rod cutting device is fabricated and tested

  16. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  17. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  18. Application of 4-Face Fuel Visual Inspection System during Outage in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shin, J. C.; Kim, J. I.; Choi, C. B.; Kim, Y. C.; Kang, C. B.

    2008-01-01

    Recently, as a measure to reduce an outage duration in nuclear power plants (NPPs), a four-face fuel visual inspection system (4-FFVIS) built in 4 cameras was introduced by Ahlberg Electronics, Sweden. The 4- FFVIS is used to inspect the external appearance of irradiated fuel assemblies in order to confirm their integrity against mechanical defects and foreign materials. Until now, however, a typical one-face fuel inspection system(1-FFVIS) has been world-widely utilized in NPPs. The 1-FFVIS requires four turns with 90 degree to inspect every face of the fuel assembly, causing a relatively long inspecting time. But the 4- FFVIS allow us to inspect every face of the fuel assembly at the same time. The inspection time with the 4-FFVIS may be less than two minutes per fuel assembly, whereas that with the 1-FFVIS is about six minutes per fuel assembly. In viewpoint of this merit, the 4-FFVIS is expected to be world-widely used in the near future. In this paper, the technical requirements necessary to develop the 4-FFVIS as well as some improvements to complement the current 4-FFVIS are described

  19. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  20. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  1. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  2. Extrusion and drawing of zircaloy 2. Production of pressure tubes for EL-4

    International Nuclear Information System (INIS)

    Thevenet, J.

    1964-01-01

    The authors give briefly the physical mechanical and chemical properties of zircaloy 2, as far as the transformation of this alloy is concerned. Extrusion: After a few general remarks concerning the extrusion and co-extrusion, including a comparison of the deformation resistance of canning metals and of zircaloy 2, the following points are considered: - the difficulties occurring because of the use of this alloy: - atmosphere protection - adjustment on to the machine tools - low thermal conductivity - economy of the metal (price) - the factors affecting the quality of the extruded products extrusion under a copper can and under lubricant glass - fine grain structure - temperature homogeneity - working temperature The transformation cycle - '550 kg ingot - preliminary shape 'for drawing of EL-4 tubes (112 x 120 L 12 m)' - is described in detail (extrusion or forging of the φ = 340 ingot into φ = 220 billets, cutting into lengths and hot drilling at φ = 125, fixing into a copper can and rough extrusion). Drawing: The main difficulties are due to seizing of the tools and to the necessity of protecting the alloy from the atmosphere during annealings. A brief description is given of drawing out on a short mandrel, on a long mandrel, of laminating on a reducing machine and of the carrying out of an annealing, as well as of the production of EL-4 tubes (φ =107 x 113 L 430 m) by drawing out shapes having a size of 112 x 120 on long mandrels. Conclusion: It is possible by extrusion and drawing to produce zircaloy 2 tubes similar to those which may be obtained normally using stainless steel. (authors) [fr

  3. Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, Martin, E-mail: martin.steinbrueck@kit.edu; Oliveira da Silva, Fabio; Grosse, Mirco

    2017-07-15

    High-temperature oxidation of zirconium alloys in steam-nitrogen atmospheres may be relevant during various nuclear accident scenarios. Therefore, isothermal oxidation tests with Zircaloy-4 in steam-nitrogen mixtures have been performed at 600, 800, 1000, and 1200 °C using thermogravimetry. The gas compositions were varied between 0 and 100 vol% nitrogen including 0.1 and 90 vol%. The strong effect of nitrogen on the oxidation kinetics of zirconium alloys was confirmed in these tests in mixed steam-nitrogen atmospheres. Even very low concentrations of nitrogen (starting from less than 1 vol%) strongly increase reaction kinetics. Nitrogen reduces transition time from protective to non-protective oxide scale (breakaway). The formation of zirconium nitride, ZrN, and its re-oxidation is the main reason for the highly porous oxide scales after transition. The results of this study have shown the safety relevant role of nitrogen during severe accidents and, more generally, suggest the need of using well controlled gas atmospheres for experiments on oxidation of zirconium alloys.

  4. Zircaloy-steam reaction under a simulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kawasaki, Satoru; Furuta, Teruo; Hashimoto, Masao

    1975-07-01

    Under a simulated loss-of-coolant condition, the reaction between zircaloy and steam and the embrittlement of the zircaloy oxidized by this reaction have been studied. The parabolic rate constant, ksub(p), in the zircaloy-steam reaction is represented as ksub(p)=3.24x10 6 exp(-40500/RT) (mg 2 /cm 4 . sec) Ring compression test was made on the steam-reacted zircaloy tubes, and following results were obtained: Embrittlement of the steam-reacted zircaloy tube increases with oxidation at each oxidation temperature. For a given quantity of the oxidation, the incursion of α-phase into β-phase is more remarkable in the specimens reacted at low temperatures than those at high temperatures. The embrittlement, however, is larger in the specimens oxidized at high temperatures than those at low temperatures. (auth.)

  5. Chemical decontamination and melt densification of chop-leach fuel hulls

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    This paper reports on decontamination and densification studies of chop-leach fuel hull residues designed to minimize the transuranic element (TRU) contaminated waste stream. Decontamination requirements have been established from studies of TRU element distribution in the fuel hull residues. Effective surface decontamination of Zircaloy requires removal of zirconium oxide corrosion products. Good decontamination factors have been achieved with aqueous solutions following high temperature HF conditioning of oxide films. Molten fluoride salt mixtures are effective decontaminants, but pose problems in metal loss and salt dragout. Molten metal decontamination methods are highly preliminary, but may be required to reduce TRU originating from tramp uranium in Zircaloy. Low melting (1300 0 C) alloy of Zircaloy, stainless steel, and Inconel have been prepared in induction heated graphite crucibles. High quality ingots of Zircaloy-2 have been prepared directly from short sections of descaled fuel clad tubing using the Inductoslag process. This material is readily capable of refabrication. Inductoslag melts have also been prepared from heavily oxidized Zircaloy tubing demonstrating melt densification without prior decontamination is technically feasible. Hydrogen absorption kinetics have been demonstrated with cast Zircaloy-2 and cast Zircaloy-stainless steel-Inconel alloys. Metallic fuel hull residues have been proposed as a storage medium for tritium released from fuel during reprocessing. (author)

  6. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  7. Effect of current density on the anodic behaviour of zircaloy-4 and niobium: a comparative study

    International Nuclear Information System (INIS)

    Raghunath Reddy, G.; Lavanya, A.; Ch Anjaneyulu

    2004-01-01

    The kinetics of anodic oxidation of zircaloy-4 and niobium have been studied at current densities ranging from 2 to 14 mA.cm -2 at room temperature in order to investigate the dependence of ionic current density on the field across the oxide film. Thickness of the anodic films were estimated from capacitance data. The formation rate, current efficiency and differential field were found to increase with increase in the ionic current density for both zircaloy-4 and niobium. Plots of the logarithm of formation rate vs. logarithm of the current density are fairly linear. From linear plots of logarithm of ionic current density vs. differential field, and applying the Cabrera-Mott theory, the half-jump distance and the height of the energy barrier are deduced and compared. (author)

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  10. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  11. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  12. Nuclear fuel tax in court

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2014-01-01

    Besides the 'Nuclear Energy Moratorium' (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed 'Nuclear Energy Phase-Out' (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court (4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation 'at any price' is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. (orig.)

  13. Postirradiation examination results from the LP-FP-2 center fuel module

    International Nuclear Information System (INIS)

    Jensen, S.M.; Akers, D.W.

    1990-01-01

    The LP-FP-2 experiment was conducted on July 9, 1985 in the Loss of Fluid Test (LOFT) facility located at the Idaho National Engineering Laboratory (INEL). The primary purpose of this experiment was to provide information of the release, transport, and deposition of fission products and aerosols during a sever core damage event performed in a large scale nuclear reactor facility. Postirradiation nondestructive and destructive examinations of the fuel bundle provided information to assist in achieving this objective, as well as providing information on the material behavior and interactions that occurred within the fuel bundle during this sever core damage experiment. This was a large-scale integral test, incorporating an 11 x 11 array of fuel rods, control rods, and instrumentation tubes, with an active core length of 1.68 m. Peak temperatures in the fuel bundle exceeded 2100 K or approximately 4.5 min, with localized peak temperatures exceeding the melting point of the UO 2 fuel (3120 K). Large amounts of zircaloy oxidation and material relocation occurred during the experiment. The transient phase was terminated by a rapid reflood of cooling water, which resulted in significant oxidation and hydrogen generation. Zircaloy oxidation during the reflood period caused a rapid temperature excursion to occur in the upper two-thirds of the fuel bundle. This article summarizes the data and analysis from the postirradiation examinations of the LP-FP-2 fuel bundle. 12 refs., 39 figs., 8 tabs

  14. Conversion of zircaloy to a massive chemically inert form

    International Nuclear Information System (INIS)

    Atkinson, A.; Kearsey, H.A.; Knibbs, R.H.; Mercer, A.C.; Nickerson, A.K.; Pearson, D.; Sambell, R.A.J.; Taylor, R.I.

    1985-01-01

    The report covers work carried out in the period July 1980 - December 1982 on the development and assessment of an aqueous route for the conversion of Zircaloy fuel element cladding to a stable oxide form and on alternative methods for incorporating the oxide into monolithic waste forms suitable for long-term storage and disposal. The work included two aspects, preliminary process development studies aimed at demonstrating the key steps in the process, and studies on the alternative immobilization techniques and the properties of the resulting waste forms. Experimental studies have shown that the ''hydrous zirconium oxide'' (with a residual fluoride content), following calcination at about 500 0 C, can be hot-pressed at 800-1000 0 C and 22.5 MPa to a high density ceramic waste form with good capacity for the incorporation of active species, such as U 4+ and Sr 2+ , and high leach resistance. Parallel studies have been carried out on the incorporation of the washed ''hydrous zirconium oxide'' in a range of cement matrices. A preliminary chemical engineering assessment of the overall process has been made and flowsheets for a plant to convert 250 kg Zircaloy/day have been prepared

  15. BWR Spent Nuclear Fuel Interfacial Bonding Efficiency Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    The objective of this project is to perform a systematic study of spent nuclear fuel (SNF, also known as “used nuclear fuel” [UNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. Additional CIRFT testing was conducted on three HBR rods; two specimens failed, and one specimen was tested to over 2.23 × 107 cycles without failing. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of the SNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, eleven SNF rod segments from the Limerick BWR were tested using the ORNL CIRFT equipment; one test under static conditions and ten tests under dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at a maximum curvature of 4.0 m-1. The specimen did not show any sign of failure during three repeated loading cycles to a similar maximum curvature. Ten cyclic tests were conducted with amplitudes varying from 15.2 to 7.1 N·m. Failure was observed in nine of

  16. High temperature properties of Zircaloy--oxygen alloys

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Bates, J.L.

    1977-03-01

    The effect of oxygen on three properties of Zircaloy-4 cladding relevant to LOCA evaluation codes was determined. Thermal expansion, elastic moduli, and thermal diffusivity were measured over the range room temperature--1200 0 C (2192 0 F) and 0.7 to 28 at.% oxygen. Thermal expansion and elastic moduli showed increases with oxygen concentration, while thermal diffusivity tended to decrease. Zircaloy-2 was examined over the same temperature range, but only to 5 at.% oxygen, differences in the properties between the two alloys were minor. The thermal emittance of Zircaloy-4 was measured in argon over the wavelength range 1.5 to 2.5 μm on previously oxidized tubing and on surfaces in the process of oxidizing in unlimited steam. For the latter, a high emittance (approximately 0.9) was reached at an oxide thickness of about 100 mg/dm 2 , and the tubing surface remained black and substoichiometric as oxidation continued at temperatures to 1200 0 C

  17. Nuclear power plant

    International Nuclear Information System (INIS)

    Uruma, Hiroshi

    1998-01-01

    A metal element for suppressing corrosion of cladding tubes, namely, elements selected from Ce, Ti, V, Cr, W, Mn, Fe, Cu, Sn and Pb are caused to be present in the vicinity of the surface of a zircaloy fuel cladding tube under the circumstance of using zircaloy fuel cladding tubes. Namely, one or more of these metal elements are applied onto the surface of the cladding tube by using one or two of processes selected from laser cladding, plating, dry plating, flame-coating, ion implantation and lining. This can prevent corrosion of zircaloy fuel cladding tubes for a long period of time. (T.M.)

  18. Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated zircaloy-4 and Zr-1 Nb-O oxide scales

    International Nuclear Information System (INIS)

    Bossis, Ph.; Thomazet, J.; Lefebvre, F.

    2002-01-01

    In PWRs, the Zr-1Nb-O alloy shows a marked enhancement in corrosion resistance in comparison with Zircaloy-4. The aim of this work is to analyze the reasons for these different behaviors and to determine the respective nature of the oxide growth controlling mechanisms under irradiation. Samples taken from Zircaloy-4 irradiated 1, 2, and 4 cycles and Zr-1Nb-O irradiated 1 and 3 cycles have been systematically characterized by optical microscopy, SEM coupled with image analysis, hydride distribution, and XRD. Specific TEM characterizations have been performed on the Zr-1Nb-O samples. A XPS analysis of a nonirradiated sample is also reported. It has been shown that under irradiation the slow oxidation kinetics of the Zr-1Nb-O alloy is associated with very regular metal-oxide interface and oxide layer. On the contrary, the accelerated oxidation kinetics of Zircaloy-4 is associated with highly perturbed metal-oxide interface and oxide layer. On both irradiated alloys, cracks are observed to initiate preferentially above the delayed parts of the oxidation front. Hydrogen intake during water oxidation in PWR environment is found to be much lower on the Zr-1Nb-O alloy than on Zircaloy-4. More β-ZrO 2 is found on the oxide layer formed on Zircaloy-4 than on Zr-1NbO after oxidation in PWR. Classical irradiation-induced microstructural evolution is observed in the Zr-1Nb-O metallic alloy after 3 cycles, i.e., a fine β-Nb precipitation. β-Nb precipitates are observed to undergo a delayed oxidation associated with a crystalline to amorphous transformation. After water oxidation in autoclave, a pronounced Nb segregation is detected on the oxide surface of a Zr-1Nb-O sample. These results suggest that the oxidation kinetics of Zircaloy-4 is controlled essentially by oxygen diffusion through the inner barrier layer, which is significantly accelerated under irradiation. The oxidation kinetics of Zr-1Nb-O is controlled by both oxygen diffusion through the inner barrier and by

  19. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  20. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  1. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    nature of spent nuclear fuel, Anticipated evolution of fuel in dry storage, Anticipated evolution of fuel in deep geological disposal); Boiling-water reactor fuel (Similarities, and differences with PWR fuel, Axial and radial zoning, Rod and channel box sizes, Poisoning and reactivity control, Cladding specific characteristics, Trends in fuel evolution); 3 - Liquid-metal-cooled fast reactor fuel: Fast-neutron irradiation damage in structural materials (Fast-neutron-induced damage in metals, What materials should be used?); Fuels and targets for fast-reactor transmutation (Fast reactors: reactors affording the ability to carry out effective actinide transmutation, Recycling: homogeneous, or heterogeneous?); 4 - gas-cooled reactor fuel: Particle fuel (From the initial concept to the advanced TRISO particle concept, Kernel fabrication processes, Particle coating by chemical vapor deposition, Fuel element fabrication: particle compaction, Characterization of fuel particles, and elements, From HTR fuel to VHTR and GFR fuels: the GAIA facility at CEA/Cadarache); Irradiation behavior of particle fuels (Particle fuel: a variety of failure modes for a high-strength object, The amoeba effect, Fission product behavior, and diffusion in particle fuels); Mechanical modeling of particle fuel; Very-high-temperature reactor (VHTR) fuel; Gas-cooled fast reactor (GFR) fuel (The specifications for GFR fuel, GFR fissile material, First containment baffler materials, GFR fuel element concepts); 5 - Research reactor fuels (A considerable feedback from experience, Conversion of French reactors to low-enriched ({<=}20% U-235)U{sub 3}Si{sub 2} fuel, Conversion of all reactors: R and D requirements for high-performance reactors, An 'advanced' research reactor fuel: UMo, The startup fuel for the Jules Horowitz Reactor (JHR) will still be U{sub 3}Si{sub 2}-Al; 6 - An instrument for future fuel research: the Jules Horowitz Reactor (JHR): Fuel irradiation experiments in JHR, JHR: a flexible

  2. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  3. OECD - HRP Summer School on Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures

  4. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  5. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  6. Theoretical and experimental studies for selective removal of antimony from zircaloy using thiourea grafted polystyrene adsorbent. Contributed Paper MS-01

    International Nuclear Information System (INIS)

    Arora, Jyotsna S.; Gaikar, Vilas G.

    2014-01-01

    During the dissolution step in nuclear fuel reprocessing, hulls consisting of essentially zircaloy clad are produced as high active solid waste. For recovery and reuse of zircaloy from this solid waste, 58 Co and 125 Sb which are present as the activation products of cobalt and tin in zircaloy tubes need to be separated. The present work involves selective sorption of antimony on thiourea grafted polymeric adsorbent in the presence of cobalt and zirconium. The effect of pH for the optimum uptake of antimony ions was studied. Since the variation in pH influences the antimony species formed in the solution, density functional theoretical (DFT) studies were performed in order to understand the complexation of the metal species with the grafted adsorbent at the molecular level. The highest occupied molecular orbital (HOMO) of the adsorbent which is located on S atom of loaded thiourea interacts with lowest unoccupied molecular orbital (LUMO) of Sb(V). The grafted adsorbent exhibits higher interaction with antimony species as compared to cobalt and zirconium. The metal-S bond distances are in good agreement with the XRD values for similar systems. Including the effect of solvation model helps in validation of simulation results with experimental adsorption data suggesting the application of thiourea grafted adsorbent for antimony separation. (author)

  7. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale U3Si2 Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miao, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced accident tolerance when compared to traditional \\uo~fuel zircaloy clad fuel rods. One of the potential replacement fuels is uranium silicide (\\usi) for its higher thermal conductivity and uranium density. The lower melting temperature is of potential concern during postulated accident conditions. Another disadvantage for \\usi~ is the lack of experimental data under power reactor conditions. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022~\\cite{bragg-sitton_2014} multiscale multiphysics modeling approaches have been used to provide insight into these materials. \\\\ \

  8. Study The Effect Extension Of Fuel Element Life Time In The Core Small Power Reactor

    International Nuclear Information System (INIS)

    Dewita, E.; Rusli, A.; Tuka, V.

    1998-01-01

    Mini power reactor is a low power nuclear reactor which mostly are designed especially to supply energy demand in the remote areas, such as for electricity generation, industries, desalination and district heating.The goal of the operation cycle extension to 3 - 5 years is to maximize the use of the fuel in order to achieve much cheaper energy generated. From the stand point of fuel element, in order to maximize the fuel life time there is a need to see all possible effects of extended life time to the fuel behavior in the core. This study has been carried out in order to obtain the understanding on all influencing factors to the fuel element behaviors at extended operation cycle whose results are expected to be useful as the input to fuel design and fabrication. The study has show that the material selection for fuel and cladding materials are the essential factor in maximizing the fuel life time. Development of cladding and fuel materials has been done, and shown that the new zirconium alloy, zircaloy, having composition of Zr-1,0 Sn-0,27 Fe-0,16 Cr-0,1 Nb-0,01 Ni has higher corrosion resistance and mechanical characteristics better than that of the standard zircaloy-4. Adding the Nb content (0,005-0,2 wt %), decreasing the Sn content until 0,5 wt %, and decreasing the ratio of Fe/Cr from 0,6 to 0,5 can increase resistance to corrosion, while decreasing the ratio of Fe and Cr from 0,3 to 0,7 wt % can increase the mechanical characteristics. To enhance the resistance to nodular corrosion in the BWR system, adding the Nb-Mo, Nb-W and Nb-V at low Sn zircaloy-2 can be done. In improving the fuel element it has been shown that adding niobium (Nb 2 O 5 -0,3 wt %) can enlarge the particle size of fuel hence improving the fuel performance

  9. Monthly highlights for Office of Nuclear Regulatory research programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1975-04-01

    Summaries are given of the following programs: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer--separate effects, Zircaloy fuel cladding collapse studies, Zr metal--water oxidation kinetics, transient vaporization of LMFBR fuel, and HTGR safety analysis and research. Technical highlights and cost/budget reports are included. (U.S.)

  10. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-02-01

    Brief highlights are presented for the following activities: heavy section steel technology program, fission product β and γ energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, and design criteria for piping and nozzles

  11. Effect of water content on the stress corrosion cracking susceptibility of Zircaloy-4 in iodine-alcoholic solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea; Farina, Silvia B.; Duffo, Gustavo S.

    2005-01-01

    The stress corrosion cracking (SCC) susceptibility of Zircaloy-4 (UNS R60804) was studied in 10 g/L iodine dissolved in various alcohols: methanol, ethanol, 1 propanol, 1-butanol, 1-pentanol and 1-octanol. SCC was observed in all the systems studied and it was found that the higher the size of alcohol molecule, the lower the SCC susceptibility. The existence of intergranular attack -controlled by the diffusion of the active species- is a condition for the SCC process to occur. In the present work the inhibiting effect of water on the SCC susceptibility of Zircaloy-4 in iodine-alcoholic solutions was also investigated and the results showed that the minimum water content to inhibit the SCC process depends on the type of alcohol used as a solvent. (author) [es

  12. 242mAm Fueled Nuclear Battery

    International Nuclear Information System (INIS)

    Yigal Ronen, Y.; Hatav, A.; Hazenshprung, N.

    2004-01-01

    A nuclear battery based on a direct energy conversion of the fission products is presented. The principal behind direct-charging or direct-conversion [1] is based on the direct conversion of fission product energy into electrical energy, using a high voltage potential. The kinetic energy of the fission products is thus converted to potential energy and the charges collected in the conductive electrodes create an electrical current. High-power nuclear batteries are important due to the fact that they have almost no moving parts. As a result, maintenance problems (especially important in outer space) are considerably reduced. Such energy conversion is possible by using a nuclear reactor with ultra-thin fuel elements of 0.2 m of 242m Am. The amount of nuclear fuel is 376g and the dimensions of the battery are 2.4*2.4*2.4m (including the vacuum spacing), with a BeO moderator and Be electrodes. The total power of the reactor is 10.6 MW and the electrical power is 0.672 MW. The reactor is composed of 242m Am as a nuclear fuel with a thickness of 0.2μm and a moderator of 4 cm of BeO and two 0.5 cm thickness electrodes of Be, as presented in Fig. 1. The moderator-to-fuel-volume ratio is V m /V f = 250000. The infinite multiplication factor for this design is [2] k ∞ = 1.8

  13. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  14. Eddy-current testing and analysis of a sample of Zircaloy fuel cladding for the OECD Halden 'Round-Robin' exercise (Phase II)

    International Nuclear Information System (INIS)

    Watson, P.C.; Cross, M.T.

    1987-02-01

    Two samples of Zircaloy fuel cladding were supplied, one containing pre-measured defects of known type and size, and the other containing unknown defects. Eddy-current testing techniques were used to ascertain the nature of the unknown defects. By using a high resolution encircling coil and a probe coil and then processing digitally the data with specially prepared software, nine internal defects, of volume 0.18 to 0.86 mm 3 were located positively and identified, despite interference from heavily fluctuating background signals. (author)

  15. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    Science.gov (United States)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  16. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  17. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  18. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  19. Analysis of the tensile behaviour of zircaloy-4 in the region of dynamic strain aging

    International Nuclear Information System (INIS)

    Dellaretti Filho, O.

    1974-01-01

    An analysis of the tensile behavior of Zircaloy 4, centering around the influence of dynamic strain aging and strain rate history, is presented. This analysis is based on techniques introduced by Jaoul-Crussard and Reed-Hill. An attempt is also made to assess the experimental errors that influence these methods. (author)

  20. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  1. The effects of irradiation and temperature on the growth of Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Kendoush, A.A.

    1987-01-01

    The growth strain was measured after irradiation for 16 Zircaloy-4 tubes of the recrystallised and stress relieved types. The operating temperature during irradiation ranged between 317 and 344 0 C. The average fast neutron fluence was 9.6x10 20 n/cm 2 . Experimental results indicated the dependence of the growth on the irradiation temperature. The stress relieved result was compared with data of the literature. (orig.)

  2. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture

    Science.gov (United States)

    Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo

    2017-08-01

    In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.

  3. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    International Nuclear Information System (INIS)

    Raff, S.

    1982-11-01

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 1400 0 C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW) [de

  4. ABB Turbo advanced fuel for application in System 80 family of plants

    International Nuclear Information System (INIS)

    Karoutas, Z.E.; Dixon, D.J.; Shapiro, N.L.

    1998-01-01

    ABB Combustion Engineering Nuclear Operations (ABB CE) has developed an Advanced Fuel Design, tailored to the Combustion Engineering, Inc. (CE) Nuclear Steam Supply System (NSSS) environment. This Advanced Fuel Design called Turbo features a full complement of innovative components, including GUARDIAN debris-resistant spacer grids, Turbo Zircaloy mixing grids to increase thermal margin and grid-to-rod fretting resistance, value-added fuel pellets to increase fuel loading, advanced cladding to increase achievable burnup, and axial blankets and Erbium integral burnable absorbers for improving fuel cycle economics. This paper summarizes the Turbo Fuel Design and its application to a System 80 family type plant. Benefits in fuel reliability, thermal margin, improved fuel cycle economics and burn up capability are compared relative to the current ABB CE standard fuel design. The fuel management design and the associated thermal margin are also evaluated. (author)

  5. External attachment of titanium sheathed thermocouples to zirconium nuclear fuel rods for the LOFT reactor

    International Nuclear Information System (INIS)

    Welty, R.K.

    1980-01-01

    The Exxon Nuclear Company, Inc., acting as a Subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, has developed a welding process to attach titanium sheathed thermocouples to the outside of the zircaloy clad fuel rods. The fuel rods and thermocouples are used to test simulated loss-of-coolant accident (LOCA) conditions in a pressurized water reactor (LOFT Reactor, Idaho National Laboratory). A laser beam was selected as the optimum welding process because of the extremely high energy input per unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A commercial pulsed laser and energy control system was installed along with specialized welding fixtures. Laser room facility requirements and tolerances were established. Performance qualifications, and detailed welding procedures were also developed. Product performance tests were conducted to assure that engineering design requirements could be met on a production basis

  6. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  7. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  8. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    International Nuclear Information System (INIS)

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility

  9. Cladding the inside surface of a 3 1/4 in. ID Zircaloy-2 pressure tube with 1S aluminum

    International Nuclear Information System (INIS)

    Watson, R.D.

    1966-09-01

    A hot-press sizing technique has been developed for cladding the inside surface of Zircaloy-2 pressure tubes with 1S aluminum. The process is performed in air with the Zircaloy-2 and aluminum at a temperature of approximately 950 o F. A controlled atmosphere is not required, either during preheating or while the cladding is being applied. Tubes 30 inches long and 3 1/4 inches ID have been coated with 1S aluminum in thicknesses ranging from 0.005 inches to more than 0.02 inches; tubes longer than 30 inches have not been attempted. The lining of aluminum is firmly attached to the Zircaloy-2 at all points in the tube but the bond strength varies considerably - from. 6500 to 28000 lbf/in 2 . This work is the subject of Canadian Patent Application No. 955,358 filed March 21, 1966. (author)

  10. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  11. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  12. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  13. Some observations on pitting corrosion in the zircaloy cladding of fuel pins irradiated in a PWR loop

    International Nuclear Information System (INIS)

    Linde, A. van der; Letsch, A.C.; Hornsveld, E.M.

    1978-11-01

    A three-pins, zircaloy-4 clad, sphere-pac bundle was irradiated in a 280 0 C PWR loop in the HFR at Petten during 131 effective full power days to a bundle average burnup of 0.84 % FIMA. The pins contained a mixture of 61.5 w/o of 1050 μm (U,Pu) 0 2 spheres, 18.5 w/o of 115 μm UO 2 spheres and 20.0 w/o of 2 spheres. The as-fabricated smear density of the vibratory compacted mixture was 81-85 % T.D. The pressure of the pin filling gas was 1 bar helium for pin 306 and 25 bar helium for the pins 308 and 309. The cladding was zircaloy-4 tubing, stress relieved for 4 hours at 540 0 C, with an inner diameter of 9.30 mm and a wall thickness of 0.73 mm. Exposure of the pins in the loop started in the as-pickled, degreased surface condition. The pins operated at an average heat rating of 335 W/cm and at a peak rating of 620 W/cm. The end-of -life peak rating was 425 W/cm. Unfavourable water chemistry conditions of the coolant during the last weeks of the irradition, in particular low NH 3 concentrations resulting in low pH values, caused the deposition of heavy crud layers on the pin surfaces. This crud layer caused a small cladding defect in pin 306 at the axial position of the peak heat rating. The zircaloy-4 wall failed by complete oxidation, which started at and progressed from the outer, coolant side, surface. Immediately after the detection of fission product activity in the loop water, the irradiation of the bundle was terminated. Microscopic investigations on cross sections of the pins 306 and 309 revealed the presence of oxide pits at the outer surface of the zircalloy-4 wall

  14. Nuclear fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    Gerkey, K.S.

    1979-01-01

    An automatic apparatus for loading a predetermined amount of nuclear fuel pellets into a nuclear fuel element to be used in a nuclear reactor is described. The apparatus consists of a vibratory bed capable of supporting corrugated trays containing rows of nuclear fuel pellets and arranged in alignment with the open ends of several nuclear fuel elements. A sweep mechanism is arranged above the trays and serves to sweep the rows of fuel pellets onto the vibratory bed and into the fuel element. A length detecting system, in conjunction with a pellet stopping mechanism, is also provided to assure that a predetermined amount of nuclear fuel pellets are loaded into each fuel element

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  16. Chemical interaction of fuel and cladding tubes

    International Nuclear Information System (INIS)

    Kirihara, Tomoo; Yamawaki, Michio; Obata, Naomi; Handa, Muneo.

    1983-01-01

    It was attempted to take up the behavior of nuclear fuel in cores and summarize it by the expert committee on the irradiation behavior of nuclear fuel from fiscal 1978 to fiscal 1980 from the following viewpoints. The behavior of nuclear fuel in cores has been treated separately according to each reactor type, accordingly this point is reconsidered. The clearly understood points and the uncertain points are discriminated. It is made more easily understandable for people in other fields of atomic energy. This report is that of the group on the chemical interaction, and the first report of this committee. The chemical interaction as the behavior of fuel in cores is in the unseparable relation to the mechanical interaction, but this relation is not included in this report. The chemical interaction of fuel and cladding tubes under irradiation shows different phenomena in LWRs and FBRs, and is called SCC and FCC, respectively. But this point of causing the difference must be understood to grasp the behavior of fuel. The mutual comparison of oxide fuels for FBRs and LWRs, the stress corrosion cracking of zircaloy tubes, and fuel-cladding chemical interaction in FBRs are reported. (Kako, I.)

  17. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  18. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-08-01

    Brief highlights are presented for the following programs: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, multirod burst tests, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis, design criteria for piping and nozzles, and dose conversion factors for inhalation of radionuclides

  19. High-temperature thermal-chemical analysis of nuclear fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Nekhamkin, Y; Rosenband, V; Hasan, D; Elias, E; Wacholder, E; Gany, A [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-12-01

    In a severe accident situation, e.g., a postulated loss of coolant accident with a coincident loss of emergency core cooling (LOCA/LOECC), the core may become partially uncovered and steam may become the only coolant available. The thermodynamic conditions in the core, in this case, depend on ability of the steam to effectively remove the fuel decay heat and the heat generated by the exothermic steam/Zircaloy reaction., Therefore, it is important to understand the high-temperature behavior of an oxidizing fuel channel. The main objective of this work is to develop a methodology for calculating the clad temperature and rate of oxidation of a partially covered fuel pin. A criterion is derived to define the importance of the chemical reaction in the overall heat balance. The main parameters affecting the fuel thermal behavior are outlined (authors).

  20. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  1. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  3. Corrosion kinetic of 2 and 4 zircaloys in air at high temperatures

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Goncalves, Z.C.

    1986-01-01

    The corrosion results of 2 and 4 zircaloys obtained in a thermal balance between 500 and 850 0 C are discussed based on the model of 'reduction of diffusion path'. The behaviour of both alloys has shown almost similar in this interval of temperature, proving that the corrosion is processed by an identical kinetic mechanism. It is still analysed the formation of superposed layer of porous oxide and the possible influence of the oxygen partial pressure in inversion velocities between 750 and 800 0 C. (Author) [pt

  4. Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Dayal, R.K.; Gnanamoorthy, J.B.

    1993-01-01

    Corrosion studies on specimens of commercial Type 304L stainless steel (SS), nuclear grade type 304L SS, extra low-carbon nitric acid grade (NAG) Uranus-16 SS, NAG Uranus-65 SS, Ti, Ti-5% Ta, Ti-0.25% Pd, Zircaloy-2, weldments of Ti and of Ti-5% Ta, and surface-modified (thermally oxidised and anodised) Ti were carried out to assess their corrosion resistance in nitric acid medium. The results indicated that Zircaloy-2, Ti-5% Ta, Uranus-16 SS and Uranus-65 SS have excellent corrosion resistance in boiling nitric acid solution. Specimens of Zircaloy-2, Ti-5% Ta and thermally-oxidised Ti showed excellent corrosion resistance also in a simulated uranium-containing reprocessing medium in a concentrated nitric acid solution. SEM and XRD analyses were carried out on the tested specimens to examine the scale morphology and phases present on the surface. (orig.)

  5. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  6. Back-end nuclear fuel cycle strategy: The approaches in Ukraine

    International Nuclear Information System (INIS)

    Afnasyev, A.; Medun, V.; Trehub, Yu.

    2002-01-01

    Ukraine has 14 nuclear units in operation and 4 units more under construction. Now in Ukraine a share of installed nuclear capacity in total installed capacity is essential and it is planned to increase it further. In this connection a spent nuclear fuel management in Ukraine for the current period and future is becoming important in a nuclear fuel cycle. A current situation in relation to the spent nuclear fuel management in Ukraine is described in the paper. It is reviewed: legislative basis for a spent nuclear fuel management strategy; an assessment for a spent fuel growth; the national possibilities for the spent fuel management; an organization chart for a spent nuclear fuel management, etc. Some factors that can determine a long-term spent fuel management strategy in Ukraine are in the conclusion. (author)

  7. Development of hull compaction system for nuclear recycle facility

    International Nuclear Information System (INIS)

    Manole, A.A.; Karkhanis, P.P.; Agarwal, Kailash; Basu, Sekhar

    2013-01-01

    India has adopted closed fuel cycle strategy for efficient management of available resources to meet long term energy requirements. Nuclear Recycle Facility (NRF) provides a vital link in three-stage Indian nuclear power programme. In a NRF for PHWR fuel cycle, reprocessing of spent fuel bundles from PHWRs is carried out using a chop-leach process where the spent fuel bundles are chopped into small pieces using a spent fuel chopper and the contents inside the zircaloy clad are dissolved using concentric nitric acid. This process generates empty zircaloy shells called 'hulls'. The present practice followed for management of hulls is to transfer them into SS drums and store these drums in underground RCC tile holes at a Waste Management Facility (WMF). This waste needs to be stored in an engineered WMF for at least 30-60 years before transferred to a final repository. The storage volumes required for this hull waste will keep increasing as the reprocessing capacity is being enhanced multi-folds. Compaction of hull waste has been employed internationally to reduce the volume required for storage. Hence indigenous development of hull compaction system was initiated by NRB to meet the future requirements. This is being achieved through a set of experiments and analysis with the available resources within the country. This paper describes the process of compaction, conceptualization of the system and benefits accrued from it. (author)

  8. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  9. Investigation of flow condition on the oxidation of Zircaloy-4 in air at 850 and 1100 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Yun Hwan; Lee, Jae Young [Hangdong Global University, Pohang (Korea, Republic of); Park, Sang Gil [ACT Co. Ltd, Daejeon (Korea, Republic of)

    2016-05-15

    An oxidation behavior of the Zircaloy-4 was experimentally studied by varying a flow rate and partial pressure of air. Tests were conducted at two distinct temperatures in which a kinetic transition was occurred, or not: 850 .deg. C and 1100 .deg. C. The effects of flow rate and partial pressure of air was studied by a measurement of mass gain using thermogravimetric analyzer (TGA). After experiments, samples were observed with macrophotography and metallography using optical microscopy. The effect of flow rate and partial pressure of air were qualitatively analyzed with those methods. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were qualitatively studied. The flow rate and the partial pressure of air were changed and their effects was different when the temperature was changed.

  10. Fabrication and post-irradiation examination of a zircaloy-2 clad UO2-1.5 wt% PuO2 fuel pin irradiated in PWL, CIRUS

    International Nuclear Information System (INIS)

    Sah, D.N.; Sahoo, K.C.; Chatterjee, S.; Majumdar, S.; Kamath, H.S.; Ramachandran, R.; Bahl, J.K.; Purushottam, D.S.C.; Ramakumar, M.S.; Sivaramakrishnan, K.S.; Roy, P.R.

    1977-01-01

    A zircaloy-2 clad UO 2 -1.5 wt% PuO 2 fuel pin was fabricated at the Radiometallurgy Section of the Bhabha Atomic Research Centre, Bombay, for irradiation in the pressurised water loop in CIRUS. Requisite development work related to powder conditioning, blending, pressing and sintering parameters was carried out to meet the exacting fuel pellet specifications of CANDU fuel. The fuel pin ruptured while being irradiated in the pressurised water loop in CIRUS, after experiencing a low burn-up of 507 MWD/MTM and was subsequently examined at the Radiometallurgy Hot Cells Facility. The results showed that internal clad hydriding led to primary failure of the fuel pin. Subsequent ingress of the coolant water caused excessive swelling of the thermal insulating magnesia pellets located at the ends of the fuel column. The swelling of magnesia pellets caused severe rupturing of the fuel pin at the two ends. The delayed rupturing of the fuel pin at the upper end, caused the fuel column to be displaced downwards by 5.85mm. (author)

  11. French LEU fuel for research reactor with emphasis on the Osiris experience of core conversion and reactor operation with the new fuel

    International Nuclear Information System (INIS)

    Cerles, J.-M.

    1981-09-01

    One of the various activities carried out in France concerned with the design, fabrication and development of nuclear fuels was the development by the CEA of a plate type fuel (Caramel fuel). A Caramel fuel element is in the form of a plate consisting of two tight covering zircaloy sheets in which the UO 2 platelets are confined themselves within the network of a zircaloy grid. The plane geometry provides an effective means of overcoming the drawback of poor uranium oxide conductivity, and makes it possible to combine high specific power with low fuel temperature. The chief advantages of this fuel are the following: it is a very low enriched fuel. It can be used in research reactors demanding high volumetric powers and neutron fluxes, with a required enrichment significantly lower than 20% 235 U. The difference between the densities of UO 2 matrix and U-Al, 10.3 and 1.6 g/cm respectively, leads to a higher uranium charge, making it possible to reduce the enrichment to between 3 and 10%. Owing to fuel dispersion, any loss of tightness only puts a small amount of fissile material in contact with the coolant, thus limiting any contamination of the primary circuit. Another safety factor is the operating temperature, which is considerably lower than the temperature at which fission gases are liberated

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  13. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  14. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  15. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  16. Nuclear fuel quality assurance

    International Nuclear Information System (INIS)

    1976-01-01

    Full text: Quality assurance is used extensively in the design, construction and operation of nuclear power plants. This methodology is applied to all activities affecting the quality of a nuclear power plant in order to obtain confidence that an item or a facility will perform satisfactorily in service. Although the achievement of quality is the responsibility of all parties participating in a nuclear power project, establishment and implementation of the quality assurance programme for the whole plant is a main responsibility of the plant owner. For the plant owner, the main concern is to achieve control over the quality of purchased products or services through contractual arrangements with the vendors. In the case of purchase of nuclear fuel, the application of quality assurance might be faced with several difficulties because of the lack of standardization in nuclear fuel and the proprietary information of the fuel manufacturers on fuel design specifications and fuel manufacturing procedures. The problems of quality assurance for purchase of nuclear fuel were discussed in detail during the seminar. Due to the lack of generally acceptable standards, the successful application of the quality assurance concept to the procurement of fuel depends on how much information can be provided by the fuel manufacturer to the utility which is purchasing fuel, and in what form and how early this information can be provided. The extent of information transfer is basically set out in the individual vendor-utility contracts, with some indirect influence from the requirements of regulatory bodies. Any conflict that exists appears to come from utilities which desire more extensive control over the product they are buying. There is a reluctance on the part of vendors to permit close insight of the purchasers into their design and manufacturing procedures, but there nevertheless seems to be an increasing trend towards release of more information to the purchasers. It appears that

  17. Influence of surface treatment on the oxidation behavior of zirconium and zircaloy-4

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1986-01-01

    The influence of fluoride concentration in surface treatment solutions on the oxidation behavior of Zr and Zircaloy-4 in the temperature range 350-760 0 C have been studied by means of thermogravimetric analysis. Two solutions containing different concentrations of hydrofluoric acid have been used for surface treatments, following which surface roughness measurements were also carried out. The influence of fluoride ion concentration on oxidation behavior has been found to be significant at higher temperatures. (Author) [pt

  18. Hot hardness studies on zircaloy 2 pressure tube along three orientations

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ravi, K.; Jarvis, T.; Sengupta, A.K.; Majumdar, S.; Tewari, R.; Shrivastava, D.; Dey, G.K.

    2002-01-01

    Zirconium based alloys are the natural choice for both the fuel element cans and in-core structural components in water cooled nuclear reactors. In this paper, the hot hardness behaviour of zircaloy 2 pressure tubes has been examined from room temperature to 400 degC using a hot hardness tester. For the purpose of comparison, the hardness of the as cast and room temperature rolled specimens has also been carried out. For this, the samples were cut along three orientations and hardness was measured in each of these directions using Vickers diamond pyramid indenter. The variation in hardness of the pressure tube samples show that the hardness was highest along circumferential direction and least along the axial direction. The room temperature rolled samples showed highest hardness along the rolling planes. These variations in hardness could be explained in terms of development of texture during working on the material. (author)

  19. Development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy; Desenvolvimento e caracterizacao do combustivel nuclear tipo placa monolitico da liga U-2,5Zr-7,5Nb revestido em zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Geraldo Correa

    2014-06-01

    The autocthonal production of nuclear fuel in Brazil for test and research reactors is restricted to MTR (Material Test Reactor) fuel type dispersion plate, using U3Si2 alloy, coated and dispersed in aluminum, developed by IPEN-SP for use in IEA-R1 reactor. Moreover, the UO{sub 2} fuel rod type for power reactors is manufactured by Rezende (RJ) with a German technology by INB under license. Currently, Brazil is performing two programs of developing reactors. Currently, Brazil is developing two reactors. One of them is the development, by CNEN, the Brazilian Multipurpose Reactor (RMB), for testing, research and radioisotope production. The other one is the development a power reactor for naval propulsion, conducted by the Brazilian Navy. This dissertation presents the development and characterization of monolithic fuel miniplate alloy U-2.5Zr-7.5Nb, coated in zircaloy (ZRY), on a laboratory scale. Due to its innovative features and properties, this fuel can be used as fuel in both test reactors, research and producing radioisotopes for power reactors as small and medium sizes. Thus, this high potential fuel can be used in domestic reactors currently under development. The development of monolithic fuel plate type is made using the technique called 'picture-frame' where a sandwich composed of a monolith alloy U-2.5Zr- 7.5Nb coupled to a frame and coated sheets of Zry is obtained. The alloy U-2.5Zr-7.5Nb was obtained by melting in an induction furnace and then was cast into rectangular ingots of graphite, thus achieving an ingot with approximate dimensions of 170 x 50 x 60 mm. The obtained ingot was hot rolled at 850 ºC, with a 50 % reduction in thickness, in order to refine the raw structure of fusion. Samples cut from the alloy U-2.5Zr-7.5Nb, with dimensions 20 x 20 x 6 mm were placed in frames and plates Zry and joined by TIG (Tungsten Inert Gas) under an atmosphere of argon, obtaining a set of 10 mm thick, 45 mm wide and 100 mm long. The sandwiches were

  20. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  1. Investigation of Zircaloy-2 oxidation model for SFP accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Yoshiyuki, E-mail: nemoto.yoshiyuki@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki [Global Nuclear Fuel – Japan Co., Ltd., 2-3-1, Uchikawa, Yokosuka-shi, Kanagawa, 239-0836 (Japan)

    2017-05-15

    The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study. - Highlights: •An oxidation model of Zircaloy-2 in air environment was developed. •The oxidation model was validated by the comparison with oxidation tests using long cladding tubes in hypothetical spent fuel pool accident condition. •The oxidation model successfully reproduced the typical oxidation behavior in air.

  2. The physical and chemical degradation of PWR fuel rods in severe accident conditions

    International Nuclear Information System (INIS)

    Parsons, P.D.; Mowat, J.A.S.; Dewhurst, D.W.F.; Hughes, T.E.

    1983-01-01

    An experimental study of the interaction between Zircaloy-4 cladding and UO 2 in PWR fuel rods heated to high temperatures with a negligible differential pressure across the cladding wall is described. The fuel rods were of dimensions appropriate to the 17x17 PWR fuel sub-assembly and were heated in a non-oxidising environment (vacuum) up to approx. 1850 deg. C either isothermally or through heating ramps. Observations were made concerning the extent and nature of the reaction zone between Zircaloy-4 and UO 2 over the temperature range 1500-1850 deg. C for times ranging from 1 min to 125 min. The location, morphology and the chemical composition of the phases formed are described along with the kinetics of their formation. (author)

  3. An experiment to examine the mechanistic behaviour of irradiated CANDU fuel stored under dry conditions

    International Nuclear Information System (INIS)

    Oldaker, I.E.; Crosthwaite, J.L.; Keltie, R.J.; Truss, K.J.

    1979-01-01

    A program has begun to use the Whiteshell Nuclear Research Establishment dry-storage canisters to store some selected CANDU irradiated fuel bundles in an 'easily retrievable basket.' The object of the experimental program is to study the long-term stability of the Zircaloy-sheathed UO 2 and UC fuel elements when stored in air. Bundles were loaded into a canister in October 1979 following detailed examination and removal of up to three complete elements from most bundles. These elements are currently being subjected to detailed destructive examinations, including metallography and scanning electron micrography, to fully characterize their pre-storage condition. After four years, and every five years thereafter, further elements will be examined similarly to study the effects of the storage environment on the stability of the Zircaloy sheathing, and on its continued ability to contain the fuel safely in an interim storage facility. (author)

  4. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  5. Nuclear fuel in water reactors: Manufacturing technology, operational experience and development objectives in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Holzer, R.; Knoedler, D.

    1977-01-01

    The nuclear fuel industry in the Federal Republic of Germany comprises the full range of manufacturing capabilities for pressurized-, boiling- and heavy-water reactor technology. The existing manufacturing companies are Reaktor-Brennelement Union (RBU) and Alkem. RBU makes natural and enriched UO 2 -fuel assemblies, starting with powder preparation. Facilities to produce UO 2 -gadolinia and UO 2 -ThO 2 fuel are also available. Alkem manufactures mixed-oxide UO 2 /PuO 2 fuel and fuel rods. Zircaloy cladding tubes are produced by Nuklearrohr-Gesellschaft (NRG) and Mannesmannroehren-Werke (MRW). Construction of a new fuel manufacturing plant has been announced by Exxon. Supplementary to quality control, an integrated quality assurance system has been established between the reactor vendor's fuel design and engineering division and the existing manufacturing companies for fuel and tubing. Operating experience with LWR and HWR fuel dates back to 1964/65 and has shown good performance. Possible reasons for a small fraction of defective rods could be identified quickly by a fast feedback system incorporating close co-operation between Kraftwerk Union (KWU) and the utilities. KWU combines fuel development, hot-cell and pool-side service facilities as well as fuel technology linked to manufacturing. The responsibility of KWU for core and fuel design, which enabled an integral optimization, was also an important reason for the successful operation and design flexibility. (author)

  6. Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Pshenichnikov, Anton; Stuckert, Juri; Walter, Mario

    2016-01-01

    Highlights: • All δ-hydrides in Zr and Zircaloy-4 have basal or pyramidal types of habit planes. • Seven orientation relationships for δ-hydrides in Zr matrix were detected. • Decohesion fracture mechanism of hydrogenated Zr was investigated by fractography. - Abstract: The results of investigations of samples of zirconium and its alloy Zircaloy-4, hydrogenated at temperatures 900–1200 K (typical temperatures for loss-of-coolant accidents) are presented. The analyses, based on a range of complementary techniques (X-ray diffraction, scanning electron microscopy, electron backscatter diffraction) reveals the direct interrelation of internal structure transformation and hydride distribution with the degradation of mechanical properties. Formation of small-scale zirconium hydrides and their bulk distribution in zirconium and Zircaloy-4 were investigated. Fractographical analysis was performed on the ruptured samples tested in a tensile machine at room temperature. The already-known hydrogen embrittlement mechanisms based on hydride formation and hydrogen-enhanced decohesion and the applicability of them in the case of zirconium and its alloys is discussed.

  7. Monthly highlights for Office of Nuclear Regulatory Research Programs at Oak Ridge National Laboratory, August 1976

    International Nuclear Information System (INIS)

    Fee, G.G.

    1976-10-01

    Technical highlights are presented for the following activities: heavy section steel technology, fission product beta and gamma energy release, LOCA release from LWR fuel, Nuclear Safety Information Center, PWR blowdown heat transfer-separate effects, Zircaloy fuel cladding collapse studies, zirconium metal-water oxidation kinetics, aerosol release and transport from LMFBR fuel, HTGR safety analysis and research, design criteria for piping and nozzles, and dose conversion factors for inhalation of radionuclides

  8. Fuel column retainer using radially compressed spring

    International Nuclear Information System (INIS)

    Johansson, E.B.

    1989-01-01

    This patent describes a fuel rod construction including a fuel rod having an inside cylindrical diameter, cylindrical fuel pellets placed within the rod. The cylindrical fuel pellets having a diameter less than the inside cylindrical diameter and being stacked end to end for a distance less than the length of the fuel rod inside the fuel rod; Zircaloy end plugs for sealing the rod at either end; a compression spring adjacent one end of the rods for biasing the pellets to and towards the other end of the rod. An improvement in the Zircaloy spring is described

  9. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)