WorldWideScience

Sample records for zinc activates damage-sensing

  1. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  2. Activity incorporation into zinc doped PWR oxides

    International Nuclear Information System (INIS)

    Maekelae, Kari

    1998-01-01

    Activity incorporation into the oxide layers of PWR primary circuit constructional materials has been studied in Halden since 1993. The first zinc injection tests showed that zinc addition resulted in thinner oxide layers on new metal surfaces and reduced further incorporation of activity into already existing oxides. These tests were continued to find out the effects of previous zinc additions on the pickup of activity onto the surface oxides which were subsequently exposed to zinc-free coolant. The results showed that previous zinc addition will continue to reduce the rate of Co-60 build-up on out-of-core surfaces in subsequent exposure to zinc-free coolants. However, the previous Zn free test was performed for a relatively short period of time and the water chemistry programme was continued to find out the long term effects for extended periods without zinc. The activity incorporation into the stainless steel oxides started to increase as soon as zinc dosing to the coolant was stopped. The Co-60 concentration was lowest on all of the coupons which were first oxidised in Zn containing primary coolant. After the zinc injection period the thickness of the oxides increased, but activity in the oxide films did not increase at the same rate. This could indicate that zinc in the oxide blocks the adsorption sites for Co-60 incorporation. The Co-60 incorporation rate into the oxides on Inconel 600 seemed to be linear whether the oxide was pre-oxidised with or without Zn. The results indicate that zinc can either replace or prevent cobalt transport in the oxides. The results show that for zinc injection to be effective it should be carried out continuously. Furthermore the actual mechanism by which Zn inhibits the activity incorporation into the oxides is still not clear. Therefore, additional work has to follow with specified materials to verify the conclusions drawn in this work. (author)

  3. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  4. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  5. The effects of Zinc supplementation on serum zinc, alkaline phosphatase activity and fracture healing of bones

    International Nuclear Information System (INIS)

    Sadighi, A.; Moradi, A.; Roshan, Marjan M.; Ostadrahimi, A.

    2009-01-01

    Objective was to determine the effect of zinc supplementation on callus information, serum zinc and alkaline phosphatase activity in humans. This randomized, double-blind, placebo controlled clinical trial was conducted on 60 patients with traumatic bone fracture referred to Shohada Hospital of Tabriz, Iran from August to December 2007. Subjects were randomly divided into 2 groups: cases (n=30), receiving one capsule of zinc sulfate consists of 50 mg zinc each day and the controls (n=30), receiving placebo for 60 days. Individual and clinical information was determined by a questionnaire: nutritional intake by 3 days food records at the beginning and the end of trial. Serum zinc and alkaline phosphatase was measured by atomic absorption spectroscopy and by enzymatic method. Callus information during fracture healing was evaluated by radiography of the bone. There was no significant difference in physical activity, gender, age, type of fractures and nutrient intake, between the 2 groups. The administration of zinc caused a significant elevation of serum zinc and alkaline phosphatase activity. Assessment of bone x-rays showed a significant progress in callus formation in cases compared to the controls. This study shows that zinc supplementation can stimulate fracture healing, however, it needs further study. (author)

  6. Zinc vanadate nanorods and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y.

    2015-01-01

    Highlights: • Zinc vanadate nanorods have been synthesized by a facile hydrothermal process. • The size of zinc vanadate nanorods can be controlled by growth conditions. • Zinc vanadate nanorods show good photocatalytic activities of methylene blue under solar light. - Abstract: Zinc vanadate nanorods have been synthesized by a simple hydrothermal process using zinc acetate and sodium vanadate as the raw materials. The zinc vanadate nanorods have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and solid UV–vis diffuse reflectance spectrum. XRD pattern and HRTEM image show that the zinc vanadate nanorods are composed of single crystalline monoclinic Zn 2 V 2 O 7 phase. SEM and TEM observations show that the diameter and length of the zinc vanadate nanorods are 50–100 nm and about 5 μm, respectively. Sodium dodecyl sulfonate (SDS) has an essential role in the formation of zinc vanadate nanorods. The SDS-assisted nucleation and growth process have been proposed to explain the formation and growth of the zinc vanadate nanorods. Solid UV–vis diffuse reflectance spectrum shows that the zinc vanadate nanorods have a band gap of 2.76 eV. The photocatalytic activities of the zinc vanadate nanorods have been evaluated by the photocatalytic degradation of methylene blue (MB) under solar light irradiation. The MB with the concentration of 10 mg L −1 can be degraded totally under the solar light irradiation for 4 h. It is suggested that the zinc vanadate nanorods exhibit promising application potential for the degradation of organic pollutants under solar light irradiation

  7. Zinc

    Science.gov (United States)

    ... Some early research suggests that zinc supplementation increases sperm count, testosterone levels, and pregnancy rates in infertile men with low testosterone levels. Other research suggests that taking zinc can improve sperm shape in men with moderate enlargement of a ...

  8. Influence of extracellular zinc on M1 microglial activation.

    Science.gov (United States)

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  9. Neutron activation analysis of high-purity zinc

    International Nuclear Information System (INIS)

    Khodzhamberdyeva, A.A.; Usmanova, M.M.; Gil'bert, Eh.N.; Ivanov, I.M.; Yankovskaya, T.A.; Kholyavko, E.P.

    1987-01-01

    The methods of neutron activation analysis of high-purity zinc with preliminary separation of the zinc base using extraction by trialkylbenzylammonium rhodanide in carbon tetrachloride from 0.5-2.0 M nitric acid solutions is developed. Only rhenium is quantitatively extracted together with zinc. Gold, iridium and molybdenum are extracted to 50-60%, and selenium - to 20%. The Na, K, La, Cr, Sc, Co, Cs, Rb, Fe, Zr, Sn, Te, As, Cd, Hf, W, Sb, Sm impurities remain in the aqueous phase. The methods permits to determine the impurities above with detection limits from 1x10 -6 to 4x10 -11 g

  10. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.

    2011-01-01

    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  11. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.; Ho, J. C.

    2000-01-01

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn 0.55 2+ Fe 0.18 3+ ) tet [Zr 0.45 2+ Fe 1.82 3+ ] oct O 4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe 3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  12. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  13. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  14. short communication binding of nickel and zinc ions with activated

    African Journals Online (AJOL)

    a

    Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of ... their toxicity, accumulative behaviour and effects on human health, heavy metal pollution has become ... The determination of the total surface charge was made .... These values suggest high efficiency of the activated carbon,.

  15. Study on bioavailability of zinc for children's diet by using activable isotopic tracer 70Zn and neutron activation analysis techniques

    International Nuclear Information System (INIS)

    Zhang Yangmei; Ni Bangfa; Wang Pingsheng; Tian Weizhi; Cao Lei

    2001-01-01

    Bioavailability of zinc for three groups (low amount of diet zinc, balance amount of diet zinc and high amount of diet zinc) of children's diet is studied by using activable isotopic tracer 70 Zn and neutron activation analysis techniques. The results indicate that the fractional absorption of zinc from balance diet zinc group is the highest, up to 33.9%. A procedure of pre-irradiation concentration zinc for fecal samples using anion exchanger is developed, and the enriched 70 Zn with isotopic abundance of 18.3% is used for tracer. The mass ratios between 70 Zn and 68 Zn or 64 Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc. Instrumental neutron activation analysis of 64 Zn of each original fecal samples and pre-irradiation concentrated zinc samples are used to normalize the chemical yield in order to reduce the uncertainty during the chemical separation procedure

  16. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, Divya; Huijser, Jannetje Maria; Savolainen, Janne; Steen, Gerrit Willem; Herek, Jennifer Lynn

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  17. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, S. A. [Center for Electromagnetic Research, Northeastern University, Boston, Massachusetts 02115 (United States); Harris, V. G. [Complex Materials Section, Code 6342, Naval Research Laboratory, Washington, DC 20375 (United States); Hamdeh, H. H. [Department of Physics, Wichita State University, Wichita, Kansas 67260 (United States); Ho, J. C. [Department of Physics, Wichita State University, Wichita, Kansas 67260 (United States)

    2000-05-08

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.

  18. Chelatable trace zinc causes low, irreproducible KDAC8 activity.

    Science.gov (United States)

    Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J

    2018-01-01

    Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  20. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  1. Enhancement of hippocampal mossy fiber activity in zinc deficiency and its influence on behavior.

    Science.gov (United States)

    Takeda, Atsushi; Itoh, Hiromasa; Yamada, Kohei; Tamano, Haruna; Oku, Naoto

    2008-10-01

    The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.

  2. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  3. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    Science.gov (United States)

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  4. Zinc and copper status of women by physical activity and menstrual status

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Deuster, P.A.; Kyle, S.B.; Moser, P.B.

    1986-03-01

    The zinc and copper status of 33 eumenorrheic (EU) and 12 amenorrheic (AM) female marathon runners and 19 EU and 8 AM nonrunners were determined from 3-day diet records and plasma and erythrocyte (RBC) levels. The study was conducted as a completely randomized 2 x 2 factorial. Mean daily zinc intakes of all groups fell below the recommended dietary allowances. Copper intakes of runners (EU = 1.3 mg; AM = 1.3 mg) were not significantly different. Menstrual status did not affect plasma zinc, RBC zinc or plasma copper levels. Physical activity however, affected RBC zinc and plasma copper levels. Both these parameters were significantly higher in runners. These findings suggest that exercise influences blood zinc and copper levels.

  5. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.

    Science.gov (United States)

    Lee, Jin-Yeon; Kim, Yu-Jin; Kim, Tae-Youn; Koh, Jae-Young; Kim, Yang-Hee

    2008-10-22

    Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc is required for ischemic PC of the brain in rats. Mild, transient zinc accumulation was observed in certain neurons after ischemic PC. Moreover, intraventricular administration of CaEDTA during ischemic PC abrogated both zinc accumulation and the protective effect against subsequent full ischemia. To elucidate the mechanism of the zinc-triggered PC (Zn PC) effect, cortical cultures were exposed to sublethal levels of zinc, and 18 h later to lethal levels of zinc or NMDA. Zn PC exhibited the characteristic features of ischemic PC, including caspase-3 activation, PARP-1 cleavage, and HSP70 induction, all of which are crucial for subsequent neuroprotection against NMDA or zinc toxicity. HSP70 induction was necessary for protection, as it halted caspase-3 activation before apoptosis. Interestingly, in both Zn PC in vitro and ischemic PC in vivo, p75(NTR) was necessary for neuroprotection. These results suggest that caspase-3 activation during ischemic PC, a necessary event for subsequent neuroprotection, may result from mild zinc accumulation and the consequent p75(NTR) activation in neurons.

  6. Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available The goal of this work was to apply several zinc chelates as activators for sulphur vulcanization of acrylonitrilebutadiene elastomer (NBR, in order to find alternatives for the conventionally used zinc oxide. In this article, we discuss the effects of different zinc complexes on the cure characteristics, crosslinks distribution in the elastomer network and mechanical properties of acrylonitrile-butadiene rubber. Zinc chelates seem to be good substitutes for zinc oxide as activators for sulphur vulcanization of NBR rubber, without detrimental effects on the crosslinking process and physical properties of the obtained vulcanizates. Moreover, application of zinc complexes allows to reduce the amount of zinc ions in rubber compounds by 40% compared to conventionally crosslinked vulcanizates with zinc oxide. It is a very important ecological goal since zinc oxide is classified as toxic to aquatic species and its amount in rubber products must be reduced below 2.5% at least. From a technological point of view it is a very important challenge.

  7. ANTIMYCOTIC ACTIVITY OF ACTIVATED ZINC PYRITHIONE IN RELATION TO MALASSEZIA IN PATIENTS WITH ATOPIC DERMATITIS

    Directory of Open Access Journals (Sweden)

    E.V. Golysheva

    2010-01-01

    Full Text Available The article illustrates the results of a study whose purpose was to determine the antimycotic action of activated zinc pyrithione (AZP against Malassezia in patients with atopic dermatitis (AD. 30 patients diagnosed with AD and aged 3 to 18 years were studied. A mycological study that aimed to identify Malassezia was done by the scraping method and skin surface collection using a cotton ball on a 1 cm2 area, with further yeast maintenance procedure in a selective environment. The activated zinc pyrithione in the form of cream was applied on children’s skin of the left shoulder and forearm twice a day. Nothing but a moisturizing cream was applied to the skin on the right shoulder and forearm. The samples for mycobiota were taken on both sides three times: before AZP treatment, 1 and 2 weeks after treatment. As a result of treatment, a two-fold reduction in skin colonization with Malassezia just in a week’s time (up to 102–105 КОЕ/cm2. The significant dynamics was observed in the modification of species diversity which got more sparse in skin areas where activated zinc pyrithione cream was applied. The follow-up results confirm that AZP has a moderate antimycotic effect. Key words: atopic dermatitis, treatment, activated zinc pyrithione, antimycotic action, children. (Pediatric Pharmacology. – 2010; 7(6:58-62

  8. Estrogenic activity of zinc pyrithione: an and study

    Directory of Open Access Journals (Sweden)

    Kyung Sik Yoon

    2017-02-01

    Full Text Available Zinc pyrithione (ZP is commonly used to prevent dandruff and seborrheic dermatitis. Many consumers are exposed daily to high doses of ZP, causing serious concerns about its toxicity. The reproductive and developmental toxicities were previously reported in pregnant rats. However, the estrogenic activity of ZP at varying degrees of exposure has been rarely studied. Thus, we performed an uterotrophic assay, E-screen assay, and gene expression profiling to assess the estrogenic activity of ZP. For the uterotrophic assay, ZP (2, 10, or 50 mg/kg/d was subcutaneously administered to ovariectomized rats every day for three days. Uteri were extracted 24 hours after the last dose. Then, wet and blotted uterine weights were measured. For the E-screen essay, MCF-7 cells (a breast cancer cell line were exposed to 10-9 to 10-6 M of ZP, and cell proliferation was then measured. For the gene expression analysis, changes of gene expression levels in uterine samples taken for the uterotrophic assay were analyzed. In the uterotrophic assay, the concentration of ZP had no significant effect on uterine weight. In the E-screen assay, ZP at any concentration showed no significant increase in MCF-7 cell proliferation, compared to the control group. However, 10-6 M of ZP significantly reduced cell viability. The changes in gene expression slightly differed between the ZP and control groups. The in vivo and in vitro assays, together with gene expression analysis, demonstrated that ZP showed no significant estrogenic activity.

  9. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    Science.gov (United States)

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  10. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    Science.gov (United States)

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  11. Phytase activity, phytic acid, zinc, phosphorus and protein contents ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... Key words: Zinc, nitrogen, phosphorus, phytic acid, phytase. .... speculated that the synthesizing metabolism of grain PA probably was closely ..... Efficiency when Grown in the Chelate-Buffered Nutrient Solution. II. Nutrient ...

  12. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  13. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.

    Directory of Open Access Journals (Sweden)

    Yanmei Zhao

    2018-06-01

    Full Text Available Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.

  14. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  15. Effect of zinc supplementation on E-ADA activity, seric zinc, and cytokines levels of Trypanosoma evansi infected Wistar rats.

    Science.gov (United States)

    Bottari, Nathieli B; Baldissera, Matheus D; Oliveira, Camila B; Duarte, Thiago; Duarte, Marta M M F; Leal, Marta L R; Thomé, Gustavo R; Zanini, Daniela; Schetinger, Maria Rosa C; Nunes, Matheus A G; Dressler, Valderi L; Monteiro, Silvia G; Tonin, Alexandre A; Da Silva, Aleksandro S

    2014-09-01

    The aim of this study was to evaluate the effect of zinc supplementation on the ecto-adenosine deaminase activity (E-ADA), zinc seric levels and cytokines (TNF-α, IL-1, IL-6, and IL -10) on rats experimentally infected by Trypanosoma evansi. Four groups with 10 rats each were used as negative controls (groups A and B), while the animals from the groups C and D were infected intraperitoneally with 0.1 mL of cryopreserved blood containing 1.4 × 10(4) of trypanosomes. Animals of groups B and D received two doses of Zinc (Zn) at 5 mg kg(-1), subcutaneously, on the 2nd and 7th day post-infection (PI). Blood samples were collected on days 5 (n = 5) and 15 PI (n = 5). Zn supplementation was able to increase the rat's longevity and to reduce their parasitemia. It was observed that seric Zn levels were increased on infected animals under Zn supplementation. Animals that were infected and supplemented with Zn showed changes in E-ADA activity and in cytokine levels (P ADA activity, as well as reduced the concentration of cytokines. Infected animals from groups C and D showed increased levels of cytokines. Finally, we observed that Zn supplementation led to a modulation on cytokine's level in rats infected by T. evansi, as well as in E-ADA activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  17. Sorption Kinetics for the Removal of Cadmium and Zinc onto Palm Kernel Shell Based Activated Carbon

    Directory of Open Access Journals (Sweden)

    Muhammad Muhammad

    2010-12-01

    Full Text Available The kinetics and mechanism of cadmium and zinc adsorption on palm kernel shell based activated carbons (PKSAC have been studied. A series of batch laboratory studies were conducted in order to investigate the suitability of palm kernel shell based activated carbon (PKSAC for the removal of cadmium (cadmium ions and zinc (zinc ions from their aqueous solutions. All batch experiments were carried out at pH 7.0 and a constant temperature of 30+-1°C using an incubator shaker that operated at 150 rpm. The kinetics investigated includes the pseudo first order, the pseudo-second order and the intraparticle diffusion models. The pseudo-second order model correlate excellently the experimental data, suggesting that chemisorption processes could be the rate-limiting step. Keywords: adsorption, cadmium, kinetics, palm kernel shell, zinc

  18. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  19. Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.

    Science.gov (United States)

    Takeda, Atsushi; Fuke, Sayuri; Tsutsumi, Wataru; Oku, Naoto

    2007-12-01

    The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity. (c) 2007 Wiley-Liss, Inc.

  20. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.; Bessone, J.B.

    2007-01-01

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions

  1. Instrumental neutron activation analysis of iron and zinc in compact cosmetic products

    International Nuclear Information System (INIS)

    Kanias, G.D.

    1987-01-01

    An instrumental neutron activation analysis method is described for the determination of iron and zinc in compact eye shadow, compact face powder and compact rouge make-up cosmetic products. The steps of the procedure are: Irradiation of samples with thermal neutrons, counting of gamma-radioactivity of the radioisotopes of iron and zinc produced by this irradiation and calculation of the concentration of these elements from the gamma-ray spectra of samples and standards. Analysis of the I.A.E.A. standard reference material by this procedure give results in close agreement with certified values. The limit of quantitation is 45 μg for iron and 0.35 μg for zinc. The developed procedure could possibly be established as an official method for the simultaneous determination of iron and zinc in compact cosmetic products. (orig.) [de

  2. Determination of Zinc in Wheat and Wheat Bran by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Ghazi Zahedi, M.; Bahrami Samani, A.; Sedaghati Zadeh, M.; Ghannadi Maragheh, M.

    2012-01-01

    The knowledge of concentration of elements in foodstuffs is of significant interest. Wheat is one of the most consumed food stuffs in Iran and zinc is also considered as one of the necessary and vital elements. Since the measurement of some trace elements is not practical by the conventional analytical methods, due to the lower detection limit, the neutron activation analysis was applied to determine the zinc in wheat and wheat bran. Food sample of roughly 50 mg was irradiated for 24 hours. After cooling, the interval samples were counted by a gamma spectrometry system. The concentration of zinc in wheat without bran and the wheat bran were 18.444±0.656 and 19.927±0.698 ppm, respectively. The amount of zinc in wheat bran was noticeable so it showed that consuming wheat with bran is more beneficial than the wheat with no bran for the human-beings body requirements.

  3. Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process

    Energy Technology Data Exchange (ETDEWEB)

    Flamini, D.O. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Saidman, S.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)], E-mail: ssaidman@criba.edu.ar; Bessone, J.B. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2007-07-31

    The electrodeposition of gallium and/or zinc on aluminium, aluminium-zinc alloy and vitreous carbon electrodes in chloride solutions is analysed. The electrodissolution of the formed interfaces is also described and discussed. For this purpose, potentiodynamic and potentiostatic techniques and open circuit potential measurements were employed and surface characterisation was performed by scanning electron microscopy and energy dispersive X-ray analysis. The presence of zinc, electrodeposited from the solution or as an alloying component, facilitates gallium enrichment at the interface and improves the wetting on the aluminium oxide. These conditions ensure the formation of a surface Ga-Al amalgam. As a result, the dissolution process occurs at potentials which are more active than those observed for aluminium or aluminium-zinc alloy in halide solutions.

  4. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Amperometric Biosensor for Monitoring Respiration Activity of Saccharomyces cerevisiae in the Presence of Cobalt and Zinc

    Directory of Open Access Journals (Sweden)

    Miroslav Mikšaj

    2002-01-01

    Full Text Available For efficient control of heavy metal concentrations electrochemical methods, such as polarography and related techniques, are applied. Their advantages are simplicity, short analysis time and small quantities of samples needed. The presence of some heavy metals, such as zinc and cobalt, accelerates the growth of yeast. For the measurements of concentration changes, amperometric biosensor containing yeast Saccharomyces cerevisiae was used. The influence of zinc and cobalt on respiratory activity of the yeast Saccharomyces cerevisiae was estimated by measuring oxygen in the solution that was earlier enriched with cobalt or zinc. Measurements were performed using modified Clark’s oxygen electrode and the investigated concentrations of cobalt and zinc were up to 100 mg/L.

  6. Toxic action of zinc on growth and enzyme activities of rice Oryza sativa L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Nag, P.; Nag, P.; Paul, A.K.; Mukherji, S.

    1984-01-01

    This paper provides information on the effects of toxic concentrations of zinc sulfate (ZnSO/sub 4/.7H/sub 2/O) on the growth and metabolism of rice Oryza sativa L. seedlings. Root growth inhibition was always more pronounced than was shoot growth inhibition. Root growth was completely inhibited at 40 m M concentration, whereas the magnitude of reduction of shoot length was only 56% at this concentration. Gibberellic acid (GA/sub 3/) was partially capable of relieving zinc inhibition. The activities of peroxidase, IAA oxidase and ascorbic acid oxidase of seedlings increased in response to zinc addition, whereas catalase and IAA synthetase decreased. All the hydrolyzing enzymes, viz., ..cap alpha..-amylase and phytase of endosperm together with RNase and ATPase of the embryo, showed distinct inhibition from the control, the exception being endosperm RNase which was stimulated under zinc treatment. 50 references, 6 figures.

  7. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  8. Hair-zinc levels determination in Algerian psoriatics using Instrumental Neutron Activation Analysis (INAA)

    International Nuclear Information System (INIS)

    Mansouri, A.; Hamidatou Alghem, L.; Beladel, B.; Mokhtari, O.E.K.; Bendaas, A.; Benamar, M.E.A.

    2013-01-01

    Psoriasis is a multifactorial skin disease with an unknown etiology. Zinc has a positive impact on psoriasis. The aim of this study is to determine hair-zinc concentration in Algerian psoriatics. 58 psoriatics and 31 normal controls of both genders were selected. Hair zinc levels were determined using Instrumental Neutron Activation Analysis technique (INAA). Student's t-test and One-Way ANOVA were applied. The average zinc concentration for controls and patients were 152±53 μg/g and 167±52 μg/g respectively. They are not significantly different (p>0.05). Zn concentration for males and females controls and patients were 171±27 μg/g, 151±37 μg/g and 145±59 μg/g, 178±58 μg/g respectively. However, for females we have observed a significant difference (p<0.05). - Highlights: ► Psoriasis is a multifactorial skin disease with an unknown etiology. ► About 2–5% of global population in the world suffers from psoriasis. ► The aim of this study is to determine hair-zinc concentration in Algerian psoriatics. ► The average zinc concentration for controls and patients were 152±53 μg/g and 167±52 μg/g respectively.

  9. Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats

    Directory of Open Access Journals (Sweden)

    L.H. Santos

    2004-08-01

    Full Text Available We investigated the anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex (5.5 or 11 mg/kg in male Wistar rats (180-300 g, N = 6 and compared it to free diclofenac (5 or 10 mg/kg and to the combination of diclofenac (5 or 10 mg/kg and zinc acetate (1.68 or 3.5 mg/kg. The carrageenin-induced paw edema and the cotton pellet-induced granulomatous tissue formation models were used to assess the anti-inflammatory activity, and the Hargreaves model of thermal hyperalgesia was used to assess the antinociceptive activity. To investigate the effect of orally or intraperitoneally (ip administered drugs on cold-induced gastric lesions, single doses were administered before exposing the animals to a freezer (-18ºC for 45 min in individual cages. We also evaluated the gastric lesions induced by multiple doses of the drugs. Diclofenac plus zinc complex had the same anti-inflammatory and antinociceptive effects as diclofenac alone. Gastric lesions induced by a single dose administered per os and ip were reduced in the group treated with zinc-diclofenac when compared to the groups treated with free diclofenac or diclofenac plus zinc acetate. In the multiple dose treatment, the complex induced a lower number of the most severe lesions when compared to free diclofenac and diclofenac plus zinc acetate. In conclusion, the present study demonstrates that the zinc-diclofenac complex may represent an important therapeutic alternative for the treatment of rheumatic and inflammatory conditions, as its use may be associated with a reduced incidence of gastric lesions.

  10. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation

    Directory of Open Access Journals (Sweden)

    Boyanov B.

    2004-01-01

    Full Text Available The influence of different parameters (duration, temperature, zinc dust quantity, concentration of activators - copper and antimony on the process of activated cementation of Co and Ni has been studied. We have worked with industrial zinc sulphate solutions. During the process of activated cementation of Co and Ni, copper (involved as CuSO4.5H2O and antimony (involved as Sb2O3 were used as activators. The lowest values of Co content have been obtained at a temperature of 80-85 oC, CCu = 200-300 mg/dm3 and 18 multiple surplus of zinc dust. After adding Cu to the solution, mainly the cementation of Ni is activated, and that of Co is activated to a lower degree. It was found that when GSb : GCo ratio is between 0.5 : 1 and 2 : 1, the solution is purified from Co and Ni to a great degree. After intensive stirring and increasing the duration of the process the cement sediments dissolve reversely. This holds true of Co to a greater extent, as compared to Ni. The results obtained will be used to establish optimal conditions for the carrying out of activated cementation in Zinc Production Plant in KCM SA, Plovdiv.

  11. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  12. Comparative study between the PIXE technique and neutron activation analysis for Zinc determination

    International Nuclear Information System (INIS)

    Cruvinel, Paulo Estevao; Crestana, Silvio; Artaxo Netto, Paulo Eduardo

    1997-01-01

    This work presents a comparative study between the PIXE, proton beams and neutron activation analysis (NAA) techniques, for determination of total zinc concentration. Particularly, soil samples from the Pindorama, Instituto Agronomico de Campinas, Sao Paulo State, Brazil, experimental station have been analysed and measuring the zinc contents in μg/g. The results presented good correlation between the mentioned techniques. The PIXE and NAA analyses have been carried out by using the series S, 2.4 MeV proton beams Pelletron accelerator and the IPEN/CNEN-IEA-R1 reactor, both installed at the Sao Paulo - Brazil university

  13. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site

    Directory of Open Access Journals (Sweden)

    Misquitta Stephanie A

    2004-02-01

    Full Text Available Abstract Background Glutaminyl cyclase (QC forms the pyroglutamyl residue at the amino terminus of numerous secretory peptides and proteins. We previously proposed the mammalian QC has some features in common with zinc aminopeptidases. We now have generated a structural model for human QC based on the aminopeptidase fold (pdb code 1AMP and mutated the apparent active site residues to assess their role in QC catalysis. Results The structural model proposed here for human QC, deposited in the protein databank as 1MOI, is supported by a variety of fold prediction programs, by the circular dichroism spectrum, and by the presence of the disulfide. Mutagenesis of the six active site residues present in both 1AMP and QC reveal essential roles for the two histidines (140 and 330, QC numbering and the two glutamates (201 and 202, while the two aspartates (159 and 248 appear to play no catalytic role. ICP-MS analysis shows less than stoichiometric zinc (0.3:1 in the purified enzyme. Conclusions We conclude that human pituitary glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site residues. In contrast to the aminopeptidase, however, QC does not appear to require zinc for enzymatic activity.

  14. ANTIMICROBIAL ACTIVITY OF COPPER AND ZINC ACCUMULATED BY EASTERN OYSTER AMEBOCYTES

    Science.gov (United States)

    Fisher, William S. Submitted. Antimicrobial Activity of Copper and Zinc Accumulated by Eastern Oyster Amebocytes. J. Shellfish Res. 54 p. (ERL,GB 1196). The distribution of eastern oysters Crassostrea virginica near terrestrial watersheds has led to a general impression t...

  15. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties

    Science.gov (United States)

    Afify, Abd El-Moneim M. R.; El-Beltagi, Hossam S.; Abd El-Salam, Samiha M.; Omran, Azza A.

    2011-01-01

    The changes in phytate, phytase activity and in vitro bioavailability of iron and zinc during soaking and germination of three white sorghum varieties (Sorghum bicolor L. Moench), named Dorado, Shandweel-6, and Giza-15 were investigated. Sorghum varieties were soaked for 20 h and germinated for 72 h after soaking for 20 h to reduce phytate content and increase iron and zinc in vitro bioavailability. The results revealed that iron and zinc content was significantly reduced from 28.16 to 32.16% and 13.78 to 26.69% for soaking treatment and 38.43 to 39.18% and 21.80 to 31.27% for germination treatments, respectively. Phytate content was significantly reduced from 23.59 to 32.40% for soaking treatment and 24.92 to 35.27% for germination treatments, respectively. Phytase enzymes will be activated during drying in equal form in all varieties. The results proved that the main distinct point is the change of phytase activity as well as specific activity during different treatment which showed no significant differences between the varieties used. The in vitro bioavailability of iron and zinc were significantly improved as a result of soaking and germination treatments. PMID:22003395

  16. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  17. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  18. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  20. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells

    International Nuclear Information System (INIS)

    Yang Ting; Lua, Aik Chong

    2006-01-01

    The effects of activation temperature on the textural and chemical properties of the activated carbons prepared from pistachio-nut shells using zinc chloride activation under both inert nitrogen gas atmosphere and vacuum condition were studied. Relatively low temperature of 400 deg. C was beneficial for the development of pore structures. Too high an activation temperature would lead to sintering of volatiles and shrinkage of the carbon structure. The microstructures and microcrystallinity of the activated carbons prepared were examined by scanning electron microscope and powder X-ray diffraction techniques, respectively, while Fourier transform infrared spectra determined the changes in the surface functional groups at the various stages of preparation

  1. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yang [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Lua, Aik Chong [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2006-12-10

    The effects of activation temperature on the textural and chemical properties of the activated carbons prepared from pistachio-nut shells using zinc chloride activation under both inert nitrogen gas atmosphere and vacuum condition were studied. Relatively low temperature of 400 deg. C was beneficial for the development of pore structures. Too high an activation temperature would lead to sintering of volatiles and shrinkage of the carbon structure. The microstructures and microcrystallinity of the activated carbons prepared were examined by scanning electron microscope and powder X-ray diffraction techniques, respectively, while Fourier transform infrared spectra determined the changes in the surface functional groups at the various stages of preparation.

  2. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    International Nuclear Information System (INIS)

    Carvalho, Fernando Ramos de

    2009-01-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 μg-g -1 ) is lower than in the uterus (118 μg-g -1 ), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  3. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando Ramos de, E-mail: framosc@oi.com.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Oliveira, Arno Heeren de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina. Dept. de Ginecologia e Obstetricia; Ferreira, Claudia R.C.; Ferreira, Ricardo Alberto Neto; Menezes, Maria Angela de B.C., E-mail: claudia@medicina.ufmg.b, E-mail: ranf@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 mug-g{sup -1}) is lower than in the uterus (118 mug-g{sup -1}), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  4. Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity

    Science.gov (United States)

    Zare, Elham; Pourseyedi, Shahram; Khatami, Mehrdad; Darezereshki, Esmaeel

    2017-10-01

    Nanoparticles with antimicrobial activity, especially as a new class of biomedical materials for use in increasing the level of public health in daily life have emerged. In this study, green synthesis of zinc oxide) ZnO(nanoparticles was studied by Cuminum cyminum (cumin) as novel natural source and zinc nitrate [Zn(NO3)2] as Zn2+ source. The results showed that parameters such as concentration, time, temperature and pH have a direct impact on the synthesis of zinc nanoparticles and change in any of the factors causing the change in the process of synthesis. The properties of synthesized nanoparticles were examined by UV-visible Spectrophotometer, X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The UV-visible spectroscopy presented the absorption peak in the range of 370 nm. Transmission electron microscopy images of synthesized nanoparticles are mainly spherical or oval with an average size of about 7 nm. The effect of antimicrobial nanoparticles calculated using disk diffusion method and broth MIC and MBC in different strains of bacteria, which showed that gram positive and negative were sensitive to zinc oxide nanoparticles. The sensitivity of gram-negative bacteria was more.

  5. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang; Kuang, Fangcheng; Xu, Jiangping

    2013-01-01

    was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity

  6. Preparation of mesoporous carbon from fructose using zinc-based activators

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2015-07-01

    Full Text Available Mesoporous carbons were synthesized from fructose using activators of zinc silicate (ZS, zinc borate (ZB, and zinc borosilicate (ZBS. The synthesis involves 3 steps, including caramelization of sugar, carbonization of caramel, and washing of carbon to separate the activator from the carbon. The solid products were characterized by N2 gas adsorption-desorption, X-ray diffraction, FTIR spectrophotometry, and Transmission Electron Microscopy. The pore characterizations of the carbons indicate that in ZBS system, ZB may have the role as mesopore size controller, whereas silica component may improve porosity created by ZB without changing the size. This role of ZB may be connected to it’s performance as catalyst of caramelization and it’s crystalinity, as supported by measurement of caramel intermediete and characterization of the activators with X-ray diffraction. The infrared spectra confirms that the carbons’s surfaces have C=O, C-O, and O-H functional groups. The XRD patterns of the carbons show that all activators create the turbotratic carbons.

  7. Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1.

    Directory of Open Access Journals (Sweden)

    Siddhesh Aras

    2009-06-01

    Full Text Available Epstein-Barr Nuclear Antigen 1 (EBNA1 is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO(2. Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO(2 and redox potential.

  8. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Outdoor corrosion of zinc coated carbon steel, determined by thin layer activation

    International Nuclear Information System (INIS)

    Agostini, M.L.; Laguzzi, G.; De Cristofaro, N.; Stroosnijder, M.F.

    2001-01-01

    Thin Layer Activation was applied in the frame of a European programme addressed to the evaluation of the corrosion the behaviour of different steels. This included outdoor exposure of zinc coated carbon steel in a rural-marine climatic environment, for a period of several months. The zinc layer of specimens was 10 micrometers thick. For the TLA studies 65Zn radio nuclides were produced along the full depth of the coating, by a cyclotron accelerated deuteron beam. For quantification of the material release, activity versus depth was determined using different thickness of Zn coatings on top the carbon steel. After exposure corrosion product were removed from the surface using a pickling solution and the residual activity was determined by gamma spectrometry. The high sensitivity of the method allowed the evaluation of relatively small thickness losses (i.e. 1.2 micrometer). Thickness loss results, obtained by the TLA method, were compared with those arising from the Atomic Absorption analysis of zinc detected in the pickling solutions. A good agreement was observed between the different methods

  10. The effect of gamma irradiation and zinc on changes of the activity of adaptive enzymes in the poultry

    International Nuclear Information System (INIS)

    Danova, D.; Kafka, I.; Kalenicova, Z.; Luptakova, L.

    2008-01-01

    We observed changes of the activity of alanine aminotransferase and aspartate aminotransferase in the serum of broiler chicks after single whole-body gamma irradiation in time gap 3., 7., 14. and 21 day. We applied zinc to organism of chicks after irradiation. Our observations showed that most of the changes in the enzyme activity were very different at irradiation groups and zinc groups of chickens compared to controls. (authors)

  11. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang

    2013-04-04

    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  12. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania); Vodnar, Dan Cristian [University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, 3-5 Manastur Street, 400372 Cluj-Napoca (Romania); Katona, Gabriel [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania)

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  13. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    International Nuclear Information System (INIS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-01-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn 2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs

  14. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

    International Nuclear Information System (INIS)

    Qi Xingzhu; Li Yongqing; Xiao Jing; Yuan Wuzhou; Yan Yan; Wang Yuequn; Liang Shuyuan; Zhu Chuanbing; Chen Yingduan; Liu Mingyao; Wu Xiushan

    2006-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C 2 H 2 -type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE

  15. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  16. Embedded Aligned Carbon Nanotube Sheets for Strain and Damage sensing in Composite Structures

    Science.gov (United States)

    Aly, Karim Aly Abdelomoaty Elsayed

    The world demand for fiber reinforced composite materials has been steadily increasing because of the widespread adoption of this class of material in many markets. The automotive, aerospace, marine and energy sectors account for a large percentage of this grow. Outstanding fatigue performance, high specific stiffness and strength, and low density are among the most important properties that fiber reinforced polymer composites offer. Furthermore, their properties can be tailored to meet the specific needs of the final applications. However, this class of material is composed of multiple layers of inhomogeneous and anisotropic constituents, i.e. fibers and matrix. Therefore, this laminated nature make the composite material prone to intrinsic damage including interfacial debonding and delamination and their strength and failure are dependent on the fiber architecture and direction of the applied stresses. Consequently, it is of prime importance to monitor the health of these structures. New and improved methods for early detection of damage and structural health monitoring of composite materials may allow for enhanced reliability, lifetime and performance while minimizing maintenance time during a composite part's service life. Over the last few decades different non-destructive methods and materials have been investigated for use as strain sensors. Since the discovery of carbon nanotubes (CNTs), they have attracted much research interest due to their superior electrical, thermal and mechanical properties as well as their high aspect ratio. In this context, CNTs have been used in the recent years to enable sensing capabilities. In this dissertation, the usage of CNTs for performing strain and damage sensing in composites is evaluated. This was enabled by embedding aligned sheets of two millimeters long, interconnected CNTs into laminated structures that were then subjected to different forms of mechanical loading. The localization of the CNT sheets inside the host

  17. Determination of arsenic, chromium, mercury, selenium and zinc in tropical marine fish by neutron activation

    International Nuclear Information System (INIS)

    Sharif, A.K.M.; Alamgir, M.; Krishnamoorthy, K.R.; Mustafa, A.I.

    1993-01-01

    Determination of arsenic, chromium, mercury, selenium and zinc in several commonly consumed tropical marine fishes have been carried out by neutron activation followed by radiochemical separation to remove the interfering activities of sodium, potassium, bromine, and phosphorus, etc., in order to establish the baseline data and to measure the levels of contamination, if any. The results positively indicate that the marine fishes of Bangladesh have concentrations much below the permissible levels for these toxic elements. A radiochemical scheme for the separation of seven trace elements in biological material is also presented. (author) 47 refs.; 3 tabs

  18. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    Science.gov (United States)

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  19. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  20. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used

  1. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  2. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  3. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  4. Zinc mediated activation of terminal alkynes: stereoselective synthesis of alkynyl glycosides.

    Science.gov (United States)

    Tatina, Madhu Babu; Kusunuru, Anil Kumar; Yousuf, Syed Khalid; Mukherjee, Debaraj

    2014-10-28

    Zinc mediated alkynylation reaction was studied for the preparation of C-glycosides from unactivated alkynes. Different glycosyl donors such as glycals and anomeric acetates were tested towards an alkynyl zinc reagent obtained from alkynes using zinc dust and ethyl bromoacetate as an additive. The method provides simple, mild and stereoselective access to alkynyl glycosides both from aromatic and aliphatic acetylenes.

  5. Zinco, estresse oxidativo e atividade física Zinc, oxidative stress and physical activity

    Directory of Open Access Journals (Sweden)

    Josely Correa Koury

    2003-12-01

    Full Text Available A atividade física intensa aumenta a formação de espécies reativas de oxigênio que podem causar lesões musculares e danos na membrana de eritrócitos, prejudicando o desempenho de atletas. Para prevenir os efeitos causados pelo estresse oxidativo, o organismo possui vários mecanismos antioxidantes, alguns dependentes de zinco. As propriedades antioxidantes desse mineral são explicadas pelo seu papel na regulação da síntese da metalotioneína, na estrutura da enzima superóxido dismutase e na proteção de agrupamentos sulfidrila de proteínas de membranas celulares por antagonismo com metais pró-oxidantes como ferro e cobre. Estudos têm demonstrado que a fragilidade osmótica de eritrócitos está relacionada à função do zinco na membrana celular. Atletas geralmente apresentam ingestão dietética desse mineral insuficiente para compensar as perdas aumentadas pelo suor e urina e para atender a demanda bioquímica. Este trabalho de revisão visa mostrar a importância biológica e nutricional do zinco na proteção antioxidante durante a atividade física intensa.During intense physical activity there is an increased production of reactive oxygen species that can cause muscle injury and damage to erythrocyte cell membranes, thus impairing athletic performance. In order to prevent the effects caused by oxidative stress, the organism has several antioxidant mechanisms, some of which depending on zinc. The antioxidant properties of this mineral are explained by its role in the regulation of metallothionein synthesis, in the structure of superoxide dismutase, and in the protection of sulfhydryl groups of cell membrane proteins through antagonism with pro-oxidant metals such as iron and copper. Recent studies have shown that the osmotic fragility of erythrocytes is related to the zinc function in cell membranes. Athletes generally have dietary zinc intakes inadequate to compensate for the increased sweat and urine losses to meet and

  6. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc

    OpenAIRE

    Jin, Fei; Al-Tabbaa, Abir

    2014-01-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration pr...

  7. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    Science.gov (United States)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  8. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  9. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    International Nuclear Information System (INIS)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-01-01

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn 2+ , while Fe 2+ and Mn 2+ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca 2+ , phorbol ester, or antigen

  10. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn/sup 2 +/, while Fe/sup 2 +/ and Mn/sup 2 +/ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca/sup 2 +/, phorbol ester, or antigen.

  11. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Namvar F

    2016-07-01

    were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50 value via the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was 10.8±0.3 µg/mL, 15.4±1.2 µg/mL, 12.1±0.9 µg/mL, and 6.25±0.5 µg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5 cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. Keywords: green synthesis, hyaluronan, zinc oxide nanocomposite, anticancer activity

  13. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Science.gov (United States)

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  14. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe.

    Science.gov (United States)

    Fen, Yap Wing; Yunus, W Mahmood Mat; Talib, Zainal Abidin; Yusof, Nor Azah

    2015-01-05

    In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. In vitro Antioxidant Activities of Sodium Zinc and Sodium Iron Chlorophyllins from Pine Needles

    Directory of Open Access Journals (Sweden)

    Ruzhen Zhan

    2014-01-01

    Full Text Available Chlorophyll was extracted from pine needles, and then sodium zinc chlorophyllin (SZC and sodium iron chlorophyllin (SIC were synthesised by saponification, purification and substitution reaction, using sodium copper chlorophyllin (SCC as a control. Their crystalline structures were verified by atomic absorbance spectroscopy, UV-VIS spectroscopy and HPLC. Moreover, their antioxidant activities were evaluated and compared with that of ascorbic acid through four biochemical assays: DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, reducing power, inhibition of β-carotene bleaching and O2– scavenging activity. SZC had better antioxidant properties at a lower dosage than SIC and SCC in all assays. In the β-carotene bleaching assay, EC50 of SZC, SIC and SCC was 0.04, 0.38 and 0.90 mg/mL, respectively, much lower than that of ascorbic acid (4.0 mg/mL. SZC showed a better result (p<0.05 than ascorbic acid in the O2 – scavenging activity assay. The results obtained from reducing power determination were also excellent: the absorbance values were all about 1.0 at 0.5 mg/mL, about half of that of ascorbic acid. In the investigation of DPPH radical scavenging activity, all chlorophyllins had lower activities than ascorbic acid. These results demonstrated the potential bioactivities of chlorophyll derivatives and supported their possible role in human health protection and disease prevention.

  16. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanhui, E-mail: liyanhui@tsinghua.org.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Du Qiuju [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Xiaodong [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Zhang Pan [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Dechang [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Wang Zonghua; Xia Yanzhi [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-11-15

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m{sup 2}/g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  17. Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation

    International Nuclear Information System (INIS)

    Li Yanhui; Du Qiuju; Wang Xiaodong; Zhang Pan; Wang Dechang; Wang Zonghua; Xia Yanzhi

    2010-01-01

    Activated carbon was prepared from Enteromorpha prolifera (EP) by zinc chloride activation. The physico-chemical properties of EP-activated carbon (EPAC) were characterized by thermal stability, zeta potential and Boehm titration methods. The examination showed that EPAC has a porous structure with a high surface area of 1688 m 2 /g. Batch adsorption experiments were carried out to study the effect of various parameters such as initial pH, adsorbent dosage, contact time and temperature on Pb(II) ions adsorption properties by EPAC. The kinetic studies showed that the adsorption data followed a pseudo second-order kinetic model. The isotherm analysis indicated that the adsorption data can be represented by Freundlich isotherm model. Thermodynamic studies indicated that the adsorption reaction was a spontaneous and endothermic process.

  18. Determination of selenium and zinc in rat plasma by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Munoz A, Luis.

    1997-01-01

    To evaluate the effects on the thyroid function when simple or multiple zinc, selenium and iodine deficiency are induced, research was carried out in laboratory animals. For simultaneously determining the Zn and Se concentration in rat plasma, an instrumental neutron activation analysis technique was applied. A clean laboratory, was used for the preparation of samples. High purity materials were used for sample collection and storage. Irradiation, decay and counting parameters were optimized to obtain the best sensitivity, accuracy and precision analysis. The Zn and Se concentrations were determined from the peak area of gamma-rays of 1115 and 265 KeV respectively. The analytical methodology used was validated with standard reference materials. The procedure used for the analysis, including the phases of collection, treatment of the samples and analytical determination was considered suitable for the study of trace elements in biological samples, especially plasma. (author) [es

  19. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  20. The Determination of Manganese, Zinc and Mercury in Hair by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Busamongkol, Arporn [Chemistry Division, Office of Atomic Energy for Peace, Bangkok (Thailand)

    1999-07-01

    The concentration of Manganese, Zinc and Mercury in hair of 30 Bangkok's residents and 62 workers in dry cell battery plant are determined by Instrumental Neutron Activation Analysis. After washing and grinding, the sample is separated into two portions, one to determine Mn, the other to determine Zn and Hg. The accuracy is evaluated by comparison with Atomic Absorption Spectroscopy method. The accuracy of this method are 0.46 and 0.74% for Mn and Zn, respectively. The precision are indicated by the relative standard deviation of 7.51, 4.32 and 6.49% for Mn, Zn and Hg, respectively. The average concentration of Mn, Zn and Hg in the first group are 1.87, 175.96 and 5.39 {mu}g/g, in the second group are 14.43, 236.38 and 13.55 {mu}g/g, respectively.

  1. Photocatalytic Role of Zinc Oxide Nanoparticles on Synthetic Activated Carbon to Remove Antibiotic from Aquatic Environment

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2017-10-01

    Full Text Available Background & Aims of the Study: The presence of antibiotics in the environment, especially in aquatic environments is a major concern for health and the environment. The advanced oxidation process due to the ease of use, economical advantages and high performance have attracted a lot of attention. The purpose of this study was Evaluating of the photocatalytic role of zinc oxide on synthetic activated carbon to remove antibiotic from aquatic environment. Materials & Methods: This experimental study was done in batch reactor that has a 1 L volume. In this study effect of parameters such as initial pH (3-9, initial concentration of cefazolin (20-200 mg/L, modified photocatalyst concentration (20-100 mg/L and reaction time (10-60 min was investigated. In this study a low-pressure mercury lamp with the power of 55 watts in stainless case has been used. The cefazolin concentrations in different steps were measured using UV-Vis spectrophotometer in Wavelength of 262 nm. Results: The results showed that the highest removal efficiency (96% of cefazolin was at the pH=3, 0.1 mg/L of modified photocatalyst, retention time of 60 min and cefazolin concentrations of 100 mg/L. In the case of changing any of the above mentioned values, process efficiency was decreased. Conclusion: The results showed that the photocatalytic process of zinc oxide nanoparticles on synthetic activated carbon can be used as an advanced oxidation process to effectively remove pollutants like cefazolin and other similar pollutants.

  2. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  3. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    Science.gov (United States)

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  4. Studies on some influential factors of the zinc-activated carbon composite adsorbent on adsorptivity for uranium

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Kitamura, Takao; Takagi, Norio; Katoh, Shunsaku; Miyazaki, Hidetoshi

    1978-01-01

    Factors, which influence the uranium adsorption of powdery composite adsorbent of basic zinc carbonate and activated carbon were studied. In the range studied, zinc content of the adsorbent was the most influential factor on the uranium adsorption, and the second influential factor was sea water volume and the third factor was adsorption period. Interactive effects were observed between zinc content and sea water volume, and between zinc content and adsorption period, and it was deduced that there existed the optimum value of sea water volume and adsorption period respectively for the zinc content of the adsorbent. Maximum uranium adsorption of adsorbent with 40% zinc content was observed at sea water volume of 15 liters and adsorption period of 25 hrs. As for temperature in the range of 15 - 35 0 C, the lower the temperature, the larger amount of adsorbed uranium was. The powdery adsorbent was made into granule, and its strength and its uranium adsorptivity were studied in relation to the granulating conditions. By use of PVA with degree of polymerization above 1,700 as binder, the granular adsorbent with the same strength as commercial granular activated carbon was obtained. PVA amount and its degree of polymerization gave only small effect on uranium adsorption of the adsorbent. Effect of granule size on the uranium adsorption rate in the range of 1 - 4 mm was that the uranium adsorption rate changed proportionally to surface area of assumed sphere. As a test for practical use, five times repetitions of adsorption and desorption were carried out on the same granular adsorbent. During the repetition the amount of adsorbed uranium rather increased, and desorption ratio of adsorbed uranium was constant at 91 - 93%. The weight loss of the adsorbent in a cycle of adsorption and desorption was about 3%. (author)

  5. Assessment of selenium and zinc status in Korean middle-aged male patients with coronary heart disease using neutron activation analysis method

    International Nuclear Information System (INIS)

    Lee, Ok Hee; Kim, Bo Ha; Moon, Jong Hwa; Chung, Yong Sam

    2005-01-01

    The presented study aimed to evaluate the selenium and zinc status of Korean middle -aged male patients with CHD. The serum concentration of zinc and selenium was measured by Neutron activation analysis method. The mean serum selenium and zinc concentrations of patients were 94.9 μg/l and 826.4 μg/l, respectively compared to the 97.8μg/l, 891.6 μg/l of control group, showing no any difference in selenium status, but showed significant difference for zinc status of middle -aged men. The deficiency of zinc in control group was 9.8%, but that was 31.3% in patient group. Conclusively, this study indicated that zinc status, which is associated with inflammatory reaction, is low in Korean male patients with CHD

  6. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  7. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  8. Growth and Extracellular Carbonic Anhydrase Activity of Zooxanthellae Symbiodinium sp. in Response of Zinc Enrichment

    Directory of Open Access Journals (Sweden)

    WIDIASTUTI KARIM

    2011-12-01

    Full Text Available Coral reef communities contain a wide variety of mutualistic associations none more important than the relationship between corals and their symbiotic dinoflagellates of the genus Symbiodinium sp., commonly referred to as zooxanthellae. The function of Zinc (Zn as cofactor of several enzyme systems such as extracellular carbonic anhydrase (extracellular CA which catalyzes the interconversion of HCO3- and CO2. Concentrations of dissolved Zn in oligothropic waters are often very low therefore may limit the growth of zooxanthellae and their ability to fix CO2 from seawater via the carbonic anhydrase. The aim of this research is to investigate the effect of various concentrations of Zn on the growth and extracellular CA activity in zooxanthellae. Cell density was monitored daily by enumeration with hemocytometer-type chamber (0.1 mm. Extracellular CA was measured in homogenized intact whole cell by a pH drift assay. Results revealed that Zn status strongly influences the growth rate and extracelullar CA activity in zooxanthellae. The specific growth rate and cell density increased two-fold whilst extracelullar CA activity increased 10.5 times higher than that in control with increasing concentrations of Zn from 0 to 80 nM, but decreased when Zn was over 80 nM. Under a concentration of 80 nM was not Zn limited culture, consequently the growth rate of zooxanthellae not dependent on CO2 concentration yet offset by extracelullar CA activity.

  9. Growth and Extracellular Carbonic Anhydrase Activity of Zooxanthellae Symbiodinium sp. in Response of Zinc Enrichment

    Directory of Open Access Journals (Sweden)

    WIDIASTUTI KARIM

    2011-12-01

    Full Text Available Coral reef communities contain a wide variety of mutualistic associations none more important than the relationship between corals and their symbiotic dinoflagellates of the genus Symbiodinium sp., commonly referred to as zooxanthellae. The function of Zinc (Zn as cofactor of several enzyme systems such as extracellular carbonic anhydrase (extracellular CA which catalyzes the interconversion of HCO3− and CO2. Concentrations of dissolved Zn in oligothropic waters are often very low therefore may limit the growth of zooxanthellae and their ability to fix CO2 from seawater via the carbonic anhydrase. The aim of this research is to investigate the effect of various concentrations of Zn on the growth and extracellular CA activity in zooxanthellae. Cell density was monitored daily by enumeration with hemocytometer-type chamber (0.1 mm. Extracellular CA was measured in homogenized intact whole cell by a pH drift assay. Results revealed that Zn status strongly influences the growth rate and extracelullar CA activity in zooxanthellae. The specific growth rate and cell density increased two-fold whilst extracelullar CA activity increased 10.5 times higher than that in control with increasing concentrations of Zn from 0 to 80 nM, but decreased when Zn was over 80 nM. Under a concentration of 80 nM was not Zn limited culture, consequently the growth rate of zooxanthellae not dependent on CO2 concentration yet offset by extracelullar CA activity.

  10. Shape-control of Zinc Oxide nanoparticles: enhancing photocatalytic activity under UV irradiation

    International Nuclear Information System (INIS)

    Montero-Muñoz, M; Ramos-Ibarra, J E; Huamaní-Coaquira, J A; Rodríguez-Páez, J E; Ramirez, A

    2017-01-01

    Zinc oxide (ZnO) nanostructures with different sizes and morphologies were synthesized using the Controlled Precipitation Method. It follows a standard process, but with different synthesis and washing solvents to modify the features related to the photocatalytic activity. The solid phase evolution during aging step was followed using Infrared Spectroscopy (FTIR) and the solids obtained, after the washing process, were characterized using X-ray diffraction (XRD). The Rietveld refinement indicates a Wurtzite phase (space group P63mc) as majority phase with lattice parameters a = 3.2530 Å and c = 5.2125 Å. Scanning electron microscopy (SEM) image shows a sponge-like morphology for the sample synthesized with ethylene glycol as solvent, acidified with nitric acid and washed with water. The sample synthesized and washed with water shows a needle-like morphology; and the sample synthesized in acetic acid and washed with water shows particles with undefined morphology. The optical properties of the as-prepared ZnO samples were investigated by UV-vis absorption spectroscopy. Finally, the photocatalytic activity of ZnO powders was studied from the initial rate of decomposition of H 2 O 2 in aqueous solution. The best results were obtained with samples synthesized and washed with water; the influence of all the solvents on the morphology of ZnO samples and the effect of the morphologies on the photocatalytic activity are discussed. (paper)

  11. Biocompatibility and antimicrobial activity of zinc(II doped hydroxyapatite, synthesized by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Kojić Vesna

    2012-01-01

    Full Text Available In order to obtain multifunctional materials with good biocompatibility and antimicrobial effect, hydroxyapatite (HAp doped with Zn2+ was synthesized by hydrothermal method. Powders with different content of zinc ions were synthesized and compared with undoped HAp to investigation of Zn2+ ion influence on the antimicrobial activity of HAp. Analyses of undoped and Zn2+-doped powders before and after thermal treatment at 1200ºC were performed by SEM and XRD. Antimicrobial effects of powders were examined in relation to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans in liquid medium. The results showed that the obtained powders have good antimicrobial activity, but higher antimicrobial activities of powders doped with Zn2+ were observed after annealing at 1200°C. For powders annealed at 1200°C in vitro biocompatibility tests MTT and DET with MRC-5 fibroblast cells in liquid medium were carried out. Based on MTT and DET tests it was shown that powders do not have a significant cytotoxic effect, which was confirmed by SEM analysis of MRC-5 fibroblast cells after theirs in vitro contact with powders. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 and FP7-REGPOT-2009-1 NANOTECH FTM

  12. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    Science.gov (United States)

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Jesline, A.; John, Neetu P.; Narayanan, P. M.; Vani, C.; Murugan, Sevanan

    2015-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major nosocomial pathogens responsible for a wide spectrum of infections and the emergence of bacterial resistance to antibiotics has lead to treatment drawbacks towards large number of drugs. Formation of biofilms is the main contributing factor to antibiotic resistance. The development of reliable processes for the synthesis of zinc oxide nanoparticles is an important aspect of nanotechnology today. Zinc oxide and titanium dioxide nanoparticles comprise well-known inhibitory and bactericidal effects. Emergence of antimicrobial resistance by pathogenic bacteria is a major health problem in recent years. This study was designed to determine the efficacy of zinc and titanium dioxide nanoparticles against biofilm producing methicillin-resistant S. aureus. Biofilm production was detected by tissue culture plate method. Out of 30 MRSA isolates, 22 isolates showed strong biofilm production and 2 showed weak and moderate biofilm formation. Two strong and weak biofilm-producing methicillin-resistant S. aureus isolates were subjected to antimicrobial activity using commercially available zinc and titanium dioxide nanoparticles. Thus, the nanoparticles showed considerably good activity against the isolates, and it can be concluded that they may act as promising, antibacterial agents in the coming years.

  14. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.

    Science.gov (United States)

    Timofeeva, Olga; Nadler, J Victor

    2006-03-17

    Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.

  15. Zinc salt enhances gastroprotective activity of risperidone in indomethacin-induced gastric ulcer.

    Science.gov (United States)

    Oluwole, F S; Onwuchekwa, C

    2016-09-01

    Zinc has been reported to mediate cellular responses to injury by producing cytoprotection via the scavenging of reactive oxygen species. Anti-stress medications are generally anti-psychotic drugs and anti- depressants. Some Anti-psychotic drugs such as risperidone have been reported to possess anti-ulcer activity. Risperidone as an antipsychotic drug blocks several neurotransmitter systems including dopaminergic, adrenergic, histaminergic and serotonergic pathways. The study investigated the antiulcer activity of Zinc Chloride (ZnCl(2)) in combination with risperidone in male Wistar rats. The animals were divided into two groups of twenty animals each for ZnCl(2) and risperidone groups. Each group was further divided into four subgroups. ZnCl(2) was administered orally at 20mg/kg, 40mg/kg and 80mg/kg to a subgroup, while 80mg/kg of ZnCl(2) was administered in combination with risperidone (0.1mg/kg, 0.3mg/kg and 0.5mg/kg) orally once daily for 21 days. The controls were treated with distilled water. Ulcer was induced using indomethacin. Histology of the stomach tissues was prepared with PAS and H& E stains. Ulcer score and ulcer area were assessed using standard methods. Data were analysed using student t-test and Graphpad Prism 5. There were decreases in ulcer scores using the different doses of ZnCl, (20mg/kg, 40mg/kg and 80mg/kg). Also using the highest dose ZnCl(2) (80mg/ kg) and different doses of risperidone there were decreases in ulcer scores compared to the control. This effect of the risperidone showed a significant dose- dependent reduction. The effect ZnCl(2), and risperidone were also reflected in the ulcer area and in the histology. These findings suggest that ZnCl(2), enhances the gastroprotective activity ofrisperidone in indomethacin- induced gastric ulcer. However, more detailed studies are necessary to confirm the relevance of this finding and its implications in clinical settings.

  16. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Simultaneous analysis of Zn, Cu, Mn, In, As and Sb in Zinc concentrates by neutron activation

    International Nuclear Information System (INIS)

    Tenorio, F.; Mendoza, P.; Espinosa, R.

    1986-01-01

    A method has been developed for simultaneous analysis by neutronic activation of Zn, Cu, As, Mn, In and Sb in concentrated minerals of Zn. The method is based entirely on the use of instruments as it does not comprise any chemical treatments. Samples and models are submitted to irradiation for 60 minutes in a flux of thermal neutrons of 1.5x10 n/cm 2 s in the reactor RP-0 of IPEN. The induced activities are measured by gamma spectrometry of high resolution using an intrinsic detector of germanium. One measurement is made immediately after the irradiation of 2000s and another 24 hours after the 3600s irradiation. The interference, the reproductibility, and the limits of detection of each element are discussed. The analytic results of 5 zinc concentrates are compared with the ones obtained by atomic absorption showing excellent concordance. The method is particularly adaptable to portable radioisotope sources of neutrons making it possible to use it in sites such as industrial plants

  18. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  19. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  20. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities

    Science.gov (United States)

    Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig

    2018-03-01

    In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.

  1. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  2. Bacillus licheniformis BlaR1 L3 Loop Is a Zinc Metalloprotease Activated by Self-Proteolysis

    Science.gov (United States)

    Sépulchre, Jérémy; Amoroso, Ana; Joris, Bernard

    2012-01-01

    In Bacillus licheniformis 749/I, BlaP β-lactamase is induced by the presence of a β-lactam antibiotic outside the cell. The first step in the induction mechanism is the detection of the antibiotic by the membrane-bound penicillin receptor BlaR1 that is composed of two functional domains: a carboxy-terminal domain exposed outside the cell, which acts as a penicillin sensor, and an amino-terminal domain anchored to the cytoplasmic membrane, which works as a transducer-transmitter. The acylation of BlaR1 sensor domain by the antibiotic generates an intramolecular signal that leads to the activation of the L3 cytoplasmic loop of the transmitter by a single-point cleavage. The exact mechanism of L3 activation and the nature of the secondary cytoplasmic signal launched by the activated transmitter remain unknown. However, these two events seem to be linked to the presence of a HEXXH zinc binding motif of neutral zinc metallopeptidases. By different experimental approaches, we demonstrated that the L3 loop binds zinc ion, belongs to Gluzincin metallopeptidase superfamily and is activated by self-proteolysis. PMID:22623956

  3. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    International Nuclear Information System (INIS)

    Prach, Morag; Stone, Vicki; Proudfoot, Lorna

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form ( 2+ ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  4. Study of Structural Properties of Mesoporous Carbon From Fructose with Zinc Borosilicate Activator

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2014-04-01

    Full Text Available Structural properties, including pore structure, functional group of carbon surface, and crystal structure of carbon built by zinc borosilicate (ZBS and ZnCl2 (Z have been investigated in this work. Physically, ZBS and ZnCl2 may act as template of carbon, whereas the Zn(II cation act as chemical activator of carbonization. All precursors of ZBS (silicagel, boric acid, and ZnCl2 may act as catalysts of caramelization. The caramelization was conducted hydrothermally at 85oC and thermally 130oC. The carbonization was conducted at 450oC. The resulted carbons were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively. The solid products were characterized by using nitrogen gas adsorption, infrared spectrophotometry, X-ray diffraction, and Transmition Electron Microscopy. Result of research showed that ZBS built larger mesopore volume, larger pore domination of pore size, more hydrophobic carbon, and more amorf than ZnCl2.

  5. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of zinc from zinc sulfate on trace mineral concentrations of milk ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... It suggests that supplementation of ewes diet with zinc sulfate could be an effective way to increase zinc ... alkaline phosphates activity. Zinc supplements were .... Similar results have been reported previously when dairy cows.

  7. Method Comparison of Neutron Activation Analysis and Atomic Absorption Spectrometry for Determination of Zinc in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Syukria Kurniawati; Natalia Adventini

    2009-01-01

    Zinc as a micro nutrient, has important roles in human metabolism system. It is required by the body in appropriate amount from food intake. Due to the very low concentration of Zinc in food, high selectivity and sensitivity analysis technique is required for the determination, such as Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS). In this experiment, both methods were compared in zinc analysis of food samples. The subject of this experiment is to examine of those methods conformity and improving the technique capability in zinc analysis in food sample. Those methods were validated by analyzing zinc in SRM NIST 1548a Typical Diet and were tested its accuracy and precision. The results of Zn concentration were 25.1 ± 2.14 mg/kg by NAA and 24.1 ± 1.40 mg/kg by AAS while the certificate value was 24.6 ± 1.80 mg/kg. Percentage of relative bias, %CV, μ-test score and HORRAT(Horwitz ratio) value given by NAA were 2%, 8.5%, 0.18 and 0.9 respectively, while %relative bias, %CV, μ-test score and HORRAT value given by AAS were 2%, 5.8 %, 0.20 and 0.6 respectively. The result obtained for Zn concentration in various food samples by NAA and AAS were varied from 13.7 – 29.3 mg/kg with mean value 19.8 mg/kg and 11.2 – 26.0 mg/kg with mean value 17.3 mg/kg (author)

  8. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    Science.gov (United States)

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  9. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  10. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    Science.gov (United States)

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.

  11. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L.; Yoho, M.; Landsberger, S.

    2015-09-01

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide 110 Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide 199 Au and 438.6 keV of metastable radionuclide 69m Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide 66 Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used, various geological

  12. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  13. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5- and delta-6-desaturase activities and incident metabolic syndrome.

    Science.gov (United States)

    Yary, T; Voutilainen, S; Tuomainen, T-P; Ruusunen, A; Nurmi, T; Virtanen, J K

    2017-08-01

    The associations of n-6 polyunsaturated fatty acids (PUFA) with metabolic syndrome have been poorly explored. We investigated the associations of the serum n-6 PUFA and the activities of enzymes involved in the PUFA metabolism, delta-5-desaturase (D5D) and delta-6-desaturase (D6D) with risk of incident metabolic syndrome. We also investigated whether zinc, a cofactor for these enzymes, modifies these associations. A prospective follow-up study was conducted on 661 men who were aged 42-60 years old at baseline in 1984-1989 and who were re-examined in 1998-2001. Men in the highest versus the lowest serum total omega-6 PUFA tertile had a 70% lower multivariate-adjusted risk of incident metabolic syndrome [odds ratio (OR) = 0.30; 95% confidence interval (CI) = 0.18-0.51, P trend metabolic syndrome components at the re-examinations. Most associations were attenuated after adjustment for body mass index. Finally, the associations of D6D and LA were stronger among those with a higher serum zinc concentration. Higher serum total n-6 PUFA, linoleic acid and arachidonic acid concentrations and D5D activity were associated with a lower risk of developing metabolic syndrome and higher D6D activity was associated with a higher risk. The role of zinc also needs to be investigated in other populations. © 2016 The British Dietetic Association Ltd.

  14. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1

    International Nuclear Information System (INIS)

    Ou Ying; Wang Shenqiu; Cai Zhenyu; Wang Yuequn; Wang Canding; Li Yongqing; Li Fang; Yuan Wuzhou; Liu Bisheng; Wu Xiushan; Liu Mingyao

    2005-01-01

    The zinc finger proteins containing the Kruppel-associated box domain (KRAB-ZFPs) are the single largest class of transcription factors in human genome. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here, we have identified a novel human KRAB zinc finger gene, named ZNF328, from the human fetal heart cDNA library. The complete sequence of ZNF328 cDNA contains a 2376-bp open reading frame (ORF) and encodes a 792 amino acid protein with an N-terminal KRAB domain and classical zinc finger C 2 H 2 motifs in the C-terminus. Northern blot analysis indicates that the protein is expressed in most of the examined human adult and embryonic tissues. ZNF328 is a transcription suppressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF328 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when cotransfected with VP-16. Similar results were obtained when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF328 protein may act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions

  15. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  16. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, and energy dispersive spectrometer (EDS. The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1 Zn2+ absorbed on the surface of HA crystal and (2 Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization.

  17. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    Science.gov (United States)

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  18. A novel, donor-active solvent-assisted liquid-phase microextraction procedure for spectrometric determination of zinc

    Energy Technology Data Exchange (ETDEWEB)

    Kocurova, Livia; Fatlova, Martina; Bazel, Yaroslav; Serbin, Rastislav; Andruch, Vasil, E-mail: liviamonika.kocurova@gmail.com [Department of Analytical Chemistry, University of P. J. Safarik, Kosice (Slovakia); Balogh, Ioseph S. [Department of Chemistry, College of Nyiregyhaza (Hungary); Simon, Andras [Department of General and Analytical Chemistry, Budapest University of Technology and Economics, Budapest (Hungary); Badida, Miroslav; Rusnak, Radoslav [Department of Environmentalistics, Faculty of Mechanical Engineering, Technical University of Kosice (Slovakia)

    2014-02-15

    Based on the reaction of Zn(II), thiocyanate and 2-[2-(5-dimethylamino-thiophen-2-yl)-vinyl]- 1,3,3-trimethyl-3H-indolium bromide (DTVTI), a donor-active solvent-assisted liquid-phase microextraction procedure followed by spectrophotometric determination of zinc at 570 nm was developed. The optimum experimental conditions were investigated and found to be as follows: concentration of NH{sub 4}SCN 0.02 mol L{sup -1} concentration of DTVTI 4 x 10{sup -5} mol L{sup -1}. Various extraction solvents were studied alone as well as in mixtures with different improvers, and a mixture of toluene as the extraction solvent and tributylphosphate as the donor-active solvent in a 4:1 v/v ratio was selected. The calibration plot was linear up to 2.62 mg L{sup 1} of zinc with limit of detection 0.09 mg L{sup -1}. The developed procedure was applied for zinc determination in dietary supplements. (author)

  19. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes.

    Science.gov (United States)

    Csermely, P; Szamel, M; Resch, K; Somogyi, J

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested (Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D., and Ullrich, A. (1986) Science 233, 853-859). In the present report, we demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes, and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn2+, while Fe2+ and Mn2+ are only partially counteractive. Our results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca2+, phorbol ester, or antigen.

  20. Enhancement of oxygen vacancies and solar photocatalytic activity of zinc oxide by incorporation of nonmetal

    International Nuclear Information System (INIS)

    Patil, Ashokrao B.; Patil, Kashinath R.; Pardeshi, Satish K.

    2011-01-01

    B-doped ZnO and N-doped ZnO powders have been synthesized by mechanochemical method and characterized by TG–DTA, XRD, SEM–EDX, XPS, UV–visible and photoluminescence (PL) spectra. X-ray diffraction data suggests the hexagonal wurtzite structure for modified ZnO crystallites and the incorporation of nonmetal expands the lattice constants of ZnO. The room temperature PL spectra suggest more number of oxygen vacancies exist in nonmetal-doped ZnO than that of undoped zinc oxide. XPS analysis shows the substitution of some of the O atoms of ZnO by nonmetal atoms. Solar photocatalytic activity of B-doped ZnO, N-doped ZnO and undoped ZnO was compared by means of oxidative photocatalytic degradation (PCD) of Bisphenol A (BPA). B-doped ZnO showed better solar PCD efficiency as compare to N-doped ZnO and undoped ZnO. The PCD of BPA follows first order reaction kinetics. The detail mechanism of PCD of Bisphenol A was proposed with the identification of intermediates such as hydroquinone, benzene-1,2,4-triol and 4-(2-hydroxypropan-2-yl) phenol. - Graphical Abstract: B-doped ZnO and N-doped ZnO synthesized by mechanochemical method were characterized by various techniques. Solar photocatalytic degradation of Bisphenol-A is in the order of B-ZnO>N-ZnO>ZnO. Highlights: ► B-doped ZnO and N-doped ZnO powders have been synthesized by mechanochemical method. ► PL spectra suggest oxygen vacancies are in order of B-doped ZnO>N-doped ZnO>ZnO. ► Solar PCD efficiency is in order of B-doped ZnO>N-doped ZnO>ZnO for Bisphenol A.

  1. Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status

    Energy Technology Data Exchange (ETDEWEB)

    Prach, Morag [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom); Stone, Vicki [Heriot-Watt University, School of Life Sciences, Edinburgh (United Kingdom); Proudfoot, Lorna, E-mail: l.proudfoot@napier.ac.uk [Edinburgh Napier University, School of Life, Sport and Social Science, Edinburgh (United Kingdom)

    2013-01-01

    Zinc oxide (ZnO) particle induced cytotoxicity was dependent on size, charge and solubility, factors which at sublethal concentrations may influence the activation of the human monocytic cell line THP1. ZnO nanoparticles (NP; average diameter 70 nm) were more toxic than the bulk form (< 44 μm mesh) and a positive charge enhanced cytotoxicity of the NP despite their relatively high dissolution. A positive charge of the particles has been shown in other studies to have an influence on cell viability. Centrifugal filtration using a cut off of 5 kDa and Zn element analysis by atomic absorption spectroscopy confirmed that exposure of the ZnO particles and NP to 10% foetal bovine serum resulted in a strong association of the Zn{sup 2+} ion with protein. This association with protein may influence interaction of the ZnO particles and NP with THP1 cells. After 24 h exposure to the ZnO particles and NP at sublethal concentrations there was little effect on immunological markers of inflammation such as HLA DR and CD14, although they may induce a modest increase in the adhesion molecule CD11b. The cytokine TNFα is normally associated with proinflammatory immune responses but was not induced by the ZnO particles and NP. There was also no effect on LPS stimulated TNFα production. These results suggest that ZnO particles and NP do not have a classical proinflammatory effect on THP1 cells. -- Highlights: ► ZnO is cytotoxic to THP-1 monocytes. ► ZnO nanoparticles are more toxic than the bulk form. ► Positive charge enhances ZnO nanoparticle cytotoxicity. ► Sublethal doses of ZnO particles do not induce classical proinflammatory markers.

  2. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  3. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial.

    Science.gov (United States)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2014-12-23

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078-1.250 mg ml(-1) and 0.156-2.500 mg ml(-1), respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml(-1) of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation.

  4. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Determination of selenium and zinc in rat plasma by instrumental neutron activation analysis; Determinacion de selenio y zinc en plasma mediante analisis por activacion neutronica instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Munoz A, Luis

    1998-12-31

    To evaluate the effects on the thyroid function when simple or multiple zinc, selenium and iodine deficiency are induced, research was carried out in laboratory animals. For simultaneously determining the Zn and Se concentration in rat plasma, an instrumental neutron activation analysis technique was applied. A clean laboratory, was used for the preparation of samples. High purity materials were used for sample collection and storage. Irradiation, decay and counting parameters were optimized to obtain the best sensitivity, accuracy and precision analysis. The Zn and Se concentrations were determined from the peak area of gamma-rays of 1115 and 265 KeV respectively. The analytical methodology used was validated with standard reference materials. The procedure used for the analysis, including the phases of collection, treatment of the samples and analytical determination was considered suitable for the study of trace elements in biological samples, especially plasma. (author). Dissertation to obtain the title of Bachelor in Chemistry; 46 refs., 12 figs., 17 tabs. [Espanol] Con el proposito de evaluar los efectos que se producen sobre la funcion tiroidea cuando se induce un deficiencia simple o multiple de zinc, selenio y yodo, se llevo a cabo una investigacion en animales de experimentacion. Se aplico la tecnica de analises por activacion neutronica instrumental para la determinacion de Se y Zn en plasma de ratas. Se utilizo un laboratorio limpio clase 100 para la preparacion de las muestras y se emplearon materiales de alta pureza para su recoleccion y almacenamiento. Se optimizaron los parametros de irradiacion, decaimiento y conteo de las muestras con el proposito de alcanzar la mejor sensibilidad, exactitud y precision analitica. Las concentracion de Se y Zn fueron determinadas evaluando las areas de los fotopicos de 265 y 1115 KeV respectivamente. El metodo analitico fue validado utilizando materiales de referencia. El procedimiento utilizado para el analisis

  6. Thermal decomposition and antimicrobial activity of zinc(II) 2-bromobenzoates with organic ligands

    Czech Academy of Sciences Publication Activity Database

    Krajníková, A.; Györyová, K.; Hudecová, D.; Kovářová, Jana; Vargová, Z.

    2011-01-01

    Roč. 105, č. 2 (2011), s. 451-460 ISSN 1388-6150. [European Symposium on Thermal Analysis and Calorimetry /10./. Rotterdam, 22.08.2010-27.08.2010] Institutional research plan: CEZ:AV0Z40500505 Keywords : zinc 2-bromobenzoate * spectral properties * thermal behaviour Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2011

  7. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers.

    Science.gov (United States)

    Pavani, Christiane; Uchoa, Adjaci F; Oliveira, Carla S; Iamamoto, Yassuko; Baptista, Maurício S

    2009-02-01

    A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phif, and singlet oxygen quantum yield PhiDelta), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phifzinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.

  8. Zinc as a Gatekeeper of Immune Function

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2017-11-01

    Full Text Available After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14, zinc “exporters” (ZnT 1–10, and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

  9. Concentration differences between serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kasperek, K.; Kiem, J.; Iyengar, G.V.; Feinendegen, L.E.

    1981-01-01

    The differences in concentrations of cesium, cobalt, iron, mercury, rubidium, selenium and zinc between serum and plasma were examined with the aid of instrumental neutron activation analysis. Eighty serum and plasma samples obtained from 13 donors were compared. Serum was prepared in plastic tubes immediately after clotting, and plasma was separated with heparin as anticoagulant. No significant differences in the concentrations of cesium, cobalt, mercury and selenium were observed. However, the concentrations of iron, rubidium and zinc were significantly higher in serum than in plasma. The average differences were 322, 12 and 20 ng/ml for iron, rubidium and zinc, respectively. The average differences found for cesium, rubidium and zinc were far below that which can be expected from a complete, or considerable release of these elements from platelets which aggregate or disintegrate during the clotting process in preparing serum. (orig.)

  10. Synthesis and Characterization of Salicylate-zinc Layered Hydroxide Nano hybrid for Antiinflammatory Active Delivery

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Munirah Ramli; Khatijah Yusoff

    2011-01-01

    The emergence of nano technology has prompted much advancement in various areas of research that includes cellular delivery systems, particularly those dealing with delivery of compounds with therapeutic effects. This study aimed at investigating the use of a layered nano material for formation of a new organic-inorganic nano hybrid material. In this work, a compound of zinc layered hydroxide (ZLH) used as a host for a guest, anti-inflammatory agent salicylate (SA) was synthesized. Through simple, direct reaction of SA solution at various concentrations with commercial zinc oxide, SA was found to be intercalated between the ZLH inorganic layers. Powder x-ray diffraction (PXRD) patterns revealed that the basal spacing of the nano hybrid is around 16.14 Angstrom. Further characterizations also confirmed that SA was successfully intercalated into the interlayers of the nano hybrid. Results generated from this work provide information beneficial for development of a new delivery system for therapeutic compounds consisting of antiinflammatory agents. (author)

  11. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    Energy Technology Data Exchange (ETDEWEB)

    Montazerozohori, Morteza, E-mail: mmzohori@mail.yu.ac.ir [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Zahedi, Saeedeh [Department of Chemistry, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Naghiha, Asghar [Department of Animal Sciences, Faculty of Agriculture, Yasouj University, Yasouj (Iran, Islamic Republic of); Zohour, Mostafa Montazer [Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan (Iran, Islamic Republic of)

    2014-02-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, {sup 1}H and {sup 13}C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX{sub 2} (X = Cl{sup −}, Br{sup −}, I{sup −}, SCN{sup −} and N{sub 3}{sup −}) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E{sup ⁎}), enthalpy (∆H{sup ⁎}), entropy (∆S{sup ⁎}) and Gibbs free energy change (∆G{sup ⁎}) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The

  12. Synthesis, characterization and thermal behavior of antibacterial and antifungal active zinc complexes of bis (3(4-dimethylaminophenyl)-allylidene-1,2-diaminoethane

    International Nuclear Information System (INIS)

    Montazerozohori, Morteza; Zahedi, Saeedeh; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-01-01

    In this work, synthesis of a new series of zinc halide/pseudohalide complexes of a bidentate Schiff base ligand entitled as bis (3-(4-dimethylaminophenyl)-allylidene)-1,2-diaminoethane(L) is described. The ligand and its zinc complexes were characterized by various techniques such as elemental analysis, FT-IR, UV–visible, 1 H and 13 C NMR spectra, cyclic voltammetry, and conductometry. Accordingly ZnLX 2 (X = Cl − , Br − , I − , SCN − and N 3 − ) was suggested as molecular formula of the complexes. Redox behaviors of ligand and its zinc complexes were investigated by cyclic voltammetry method. Furthermore, the ligand and its zinc halide/pseudohalide complexes were tested for their in vitro antibacterial activities against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Also in vitro antifungal activities of them against Candida albicans and Aspergillus niger were investigated. The results indicated that all compounds are antibacterial and antifungal active. Thermal behaviors of ligand and its zinc complexes were studied from room temperature to 1100 °C under argon atmosphere. It was found that the ligand and zinc iodide are decomposed completely via three and four steps respectively while other zinc complexes leave out the metal or organometallic compounds as final residuals after 3–4 decomposition steps at above temperature range. Moreover evaluation of some thermo-kinetic parameters such as activation energy (∆E ⁎ ), enthalpy (∆H ⁎ ), entropy (∆S ⁎ ) and Gibbs free energy change (∆G ⁎ ) of the thermal decomposition steps were performed based on the Coats–Redfern relation. - Highlights: • Some novel complexes of Zn(II) with a bidentate Schiff base ligand have been synthesized. • Redox behavior of ligand and zinc complexes was investigated by cyclic voltammetry. • The ligand and its zinc complexes are antibacterial and

  13. Evaluation of antibacterial and Antibiofilm activity of Synthesized Zinc-Hydroxyapatite Biocomposites from Labeo rohita fish scale waste

    Science.gov (United States)

    Sathiskumar, Swamiappan; Vanaraj, Sekar; Sabarinathan, Devaraj; Preethi, Kathirvel

    2018-02-01

    Materials based on hydroxyapatite (HAp) Synthesized from bio-wastes have been regarded as useful, novel, eco-friendly medical applications that are targeted primarily for their antibacterial nature. In the present study, HAp was Synthesized from the fish scales of Labeo rohita using alkaline heat treatment and subsequently mixed with 1, 2 and 3 wt% of zinc (Zn) at 800 °C using calcination method to yield Zn-HAp composites. A detailed characterization of the generated composites was analysed by XRD, FT-IR, SEM, EDX and DLS methods. Further, antibacterial and biofilm inhibitory activity of the generated composites was determined using strains of Staphylococcus aureus and Escherichia coli. The confirmation of the presence of zinc, confirmed by EDAX spectra, XRD, FT-IR, SEM and DLS observations, established that HAp and Zn-HAp composites were without impurities, irregular in shape and were 848 nm sized particles. Although 1-3 wt% Zn-HAp composites showed antibacterial activity, the 3 wt% Zn-HAp composite was found suitable to kill the surrounding bacterial growth and showed potent inhibitory activity against biofilm formation.

  14. Binding of nickel and zinc ions with activated carbon prepared from sugar cane fibre (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    E.U. Ikhuoria

    2007-04-01

    Full Text Available Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of metal ion concentrations. The sorption data was observed to have an adequate fit for the Langmuir isotherm equation. The level of metal ion uptake was found to be of the order: Ni2+ > Zn2+. The difference in the removal efficiency could be explained in terms of the hydration energy of the metal ions. The distribution coefficient for a range of concentration of the metal ions at the sorbent water interface is found to be higher than the concentration in the continuous phase.

  15. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate

    International Nuclear Information System (INIS)

    Shoeb, M; Singh, Braj R; Khan, Javed A; Khan, Wasi; Naqvi, Alim H; Singh, Brahma N; Singh, Harikesh B

    2013-01-01

    Zinc oxide nanoparticles (ZnO NPs) have attracted great attention because of their superior optical properties and wide application in biomedical science. However, little is known about the anticandidal activity of ZnO NPs against Candida albicans (C. albicans). This study was designed to develop the green approach to synthesize ZnO NPs using egg white (denoted as EtZnO NPs) and investigated its possible mechanism of antimicrobial activity against C. albicans 077. It was also notable that anticandidal activity of EtZnO NPs is correlated with reactive oxygen species (ROS) production in a dose dependent manner. Protection of histidine against ROS clearly suggests the implication of ROS in anticandidal activity of EtZnO NPs. This green approach based on egg white-mediated synthesis of ZnO NPs paves the way for developing cost effective, eco-friendly and promising antimicrobial nanomaterial for applications in medicine. (paper)

  16. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation

    Science.gov (United States)

    Lee, Eun-Jae; Lee, Hyejin; Huang, Tzyy-Nan; Chung, Changuk; Shin, Wangyong; Kim, Kyungdeok; Koh, Jae-Young; Hsueh, Yi-Ping; Kim, Eunjoon

    2015-01-01

    Genetic aspects of autism spectrum disorders (ASDs) have recently been extensively explored, but environmental influences that affect ASDs have received considerably less attention. Zinc (Zn) is a nutritional factor implicated in ASDs, but evidence for a strong association and linking mechanism is largely lacking. Here we report that trans-synaptic Zn mobilization rapidly rescues social interaction in two independent mouse models of ASD. In mice lacking Shank2, an excitatory postsynaptic scaffolding protein, postsynaptic Zn elevation induced by clioquinol (a Zn chelator and ionophore) improves social interaction. Postsynaptic Zn is mainly derived from presynaptic pools and activates NMDA receptors (NMDARs) through postsynaptic activation of the tyrosine kinase Src. Clioquinol also improves social interaction in mice haploinsufficient for the transcription factor Tbr1, which accompanies NMDAR activation in the amygdala. These results suggest that trans-synaptic Zn mobilization induced by clioquinol rescues social deficits in mouse models of ASD through postsynaptic Src and NMDAR activation. PMID:25981743

  17. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  18. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schothorst, Joep; Zeebroeck, Griet V; Thevelein, Johan M

    2017-03-02

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc . We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  19. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Joep Schothort

    2017-03-01

    Full Text Available Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  20. Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity.

    Science.gov (United States)

    Karpuraranjith, M; Thambidurai, S

    2017-11-01

    A new biopolymer based ZnO-PVP nanocomposite was successfully synthesized by single step in situ precipitation method using chitosan as biosurfactant, zinc chloride as a source material, PVP as stabilizing agent and sodium hydroxide as precipitating agent. The chemical bonding and crystalline behaviors of chitosan, zinc oxide and PVP were confirmed by FT-IR and XRD analysis. The biopolymer connected ZnO particles intercalated PVP matrix was layer and rod like structure appeared in nanometer range confirmed by HR-SEM and TEM analysis. The surface topography image of CS/ZnO-PVP nanocomposite was obtained in the average thickness of 12nm was confirmed by AFM analysis. Thermal stability of cationic biopolymer based ZnO intercalated PVP has higher stability than CS-PVP and chitosan. Consequently, antimicrobial activity of chitosan/ZnO-PVP matrix acts as a better microbial inhibition activity than PVP-ZnO nanocomposite. The obtained above results demonstrate that CS and ZnO intercalated PVP matrix has better reinforced effect than other components. Therefore, Chitosan/ZnO-PVP nanocomposite may be a promising material for the biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Zinc-phosphate nanoparticles with reversibly attached TNF-α analogs: an interesting concept for potential use in active immunotherapy

    International Nuclear Information System (INIS)

    Hribar, Gorazd; Žnidaršič, Andrej; Bele, Marjan; Maver, Uroš; Caserman, Simon; Gaberšček, Miran; Gaberc-Porekar, Vladka

    2011-01-01

    The authors’ intention was to prepare nanometer-sized zinc-phosphate nanoparticles that would be capable of binding histidine-rich TNF-α analogs onto their surface via a coordinative bond. Zinc-phosphate nanoparticles with a size of around 60 nm were prepared by a wet precipitation method and characterized using SEM, EDX, XRD, and DLS. First, BSA was bound as a testing protein, afterward two TNF-α analogs with decreased activity were bound to the described nanoparticles. The efficiency of binding and the existence of coordinative bond were confirmed with SDS-PAGE analysis. During binding, particle storage, and release experiments, the prepared TNF-α analogs retained their biological activity—hence the epitopes necessary for formation of antibodies stayed intact. The particle size did not change within a period of 2 weeks. No significant agglomeration was observed, the particles could be quickly dispersed in ultrasound. The present nanoparticles and the general approach of coordinative binding are widely applicable for natural and engineered histidine-rich proteins. The nanoparticles bearing appropriate TNF-α analogs could also be potentially used for active immunotherapy to tackle the chronic inflammatory diseases associated with pathogenically elevated levels of TNF-α.

  2. Separation of cesium from simulated active waste using zinc hexacyanoferrate supported composite

    International Nuclear Information System (INIS)

    Somida, H.H.; El Zahhar, A.A.; Shehata, M.K.; El Naggar, H.A.

    2003-01-01

    Potassium zinc hexacyanoferrate (KZnHCF) was prepared and supported on polyacrylonitrile (PAN) binding polymer. This composite was characterized and used to study the elimination of cesium from acidic radioactive waste containing Sr(II), Eu(II), Am(II), Zr(IV), Hf(IV) and Nb(V) using batch and column techniques. The sorption capacity of this composite for cesium was found to be 1.14 meq/g for column technique. The effect of presence of NH 4 SCN, NaNo 3 and other complexing agents in the aqueous solutions was studied

  3. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; Bedem, Henry van den; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an RmlC-type cupin with zinc acetate bound at the putative active site reveals significant differences from a previous structure without any bound ligand. The functional implications of the ligand-induced conformational changes are discussed. In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006 ▶), Proteins, 65, 1046–1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein

  4. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    Science.gov (United States)

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  5. Re-evaluation of activities of magnesium and zinc components in the magnesium-zinc binary system from very low to high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Masao; Yamamoto, Hiroaki [Univ. of Hyogo, Dept. of Materials Science and Chemistry, Himeji (Japan); Shikada, Shinichi [Misubishi Varbide Kobe Tools Ltd., Akashi (Japan); Kusumoto, Minoru [Sony Semiconductor Kyushu Corporation, Isahaya (Japan); Matsumoto, Yasutomo [Santoku Corporation, Kobe (Japan)

    2011-02-15

    The activities of zinc, a{sub Zn}, and magnesium, a{sub Mg}, from very low to high temperatures in the Mg-Zn binary system were evaluated for the first time from the relationship between the Gibbs energies of formation, {delta}{sub f}G{sub T}{sup o}, of Mg{sub 48}Zn{sub 52}, Mg{sub 2}Zn{sub 3}, MgZn{sub 2} and Mg{sub 2}Zn11 and their phase equilibria. The {delta}{sub f}G{sub T}{sup o} values adopted were determined in our previous calorimetric studies. It was found that the a{sub Zn} and a{sub Mg} values in the compounds steeply changed from the minimum to maximum as a function of the composition in a narrow solubility range. Such a change was more emphasized toward low temperatures (3 K). Since one of the dominant factors for the composition change in a narrow solubility range in Mg{sub 48}Zn{sub 52} and Mg{sub 2}Zn{sub 3} is the formation of vacancies at the Zn site, the relative partial molar Gibbs energies of the vacancy formation, {delta} anti G{sub Zn}{sup Zn} {sup vacancy}, were estimated from the obtained a{sub Zn} values. At 298 K, the {delta} anti G{sub Zn}{sup Zn} {sup vacancy} values of Mg{sub 48}Zn{sub 52} and Mg{sub 2}Zn{sub 3} were 73.5 and 344.3 kJ mol{sup -1}, consistent with about the same order of the enthalpy of the vacancy formation in Ni{sub 3}Al (= 173.7 kJ mol{sup -1}) as determined by positron annihilation spectroscopy. When the symmetric atomic configuration at the stoichiometric composition was violated by the formation of vacancies, the change in relative partial molar value of lattice defects was found to be large. (orig.)

  6. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)

    Energy Technology Data Exchange (ETDEWEB)

    Elumalai, K. [Department of Physics, Annamalai University, Annamalai Nagar 608002 (India); Velmurugan, S., E-mail: drvelmurganphy@gmail.com [Department of Engineering Physics (FEAT), Annamalai University, Annamalai Nagar 608 002 (India)

    2015-08-01

    Graphical abstract: - Highlights: • Phenolic acid and flavonoid compounds play a major role in bioreduction reaction confirmed by FT-IR. • PL spectrum identified peaks were located in the range of the blue-violet spectrum. • XRD pattern confirmed ZnO hexagonal phase (wurtzite structure). • The result of (AFM) images depicted polycrystalline with porous nature of ZnO NPs. • Antimicrobial activities of green synthesized ZnO NPs were more potent than Bare ZnO and leaf of A. indica. - Abstract: The synthesis of metal and semiconductor nanoparticles is an expanding research area due to the potential applications in the development of novel technologies. Especially, biologically synthesized nanomaterial has become an important branch of nanotechnology. The present work, described the synthesis of zinc oxide nanoparticles (ZnO NPs) using leaf aqueous extract of Azadirachta indica (L.) and its antimicrobial activities. The nanoparticles was obtain characterized by UV–Vis spectroscopy, Photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM) analysis, Energy dispersive X-ray analysis (EDAX), Field emission scanning electron microscopy (FESEM) and Atomic force microscope (AFM) analysis. In this study we also investigated antimicrobial activity of green synthesized ZnO NPs. The results depicted concentration of ZnO NPs was increased (50, 100, 200 μg/mL) and also increase in antimicrobial activities was due to the increase of H{sub 2}O{sub 2} concentration from the surface of ZnO. However, green synthesized ZnO NPs was more potent than Bare ZnO and leaf of A. indica. Finally concluded the zinc oxide nanoparticles exhibited an interesting antimicrobial activity with both Gram positive and Gram negative bacterial and yeast at micromolar concentration.

  7. Catalytic activity in reactions of isotopic exchange of carbon monoxide and adsorption properties of catalysts on zinc oxide base

    International Nuclear Information System (INIS)

    Mikheeva, T.M.; Kasatkina, L.A.; Volynkina, A.Ya.

    1987-01-01

    Activity of different zinc oxide samples in reaction of CO homomolecular isotopic exchnge (HMIE) ( 13 C 18 O+ 12 C 16 O= 13 C 16 O+ 12 C 18 O), CO adsorption on ZnO and isotopic exchange between adsorbed and gaseous CO are investigated. The most active is ZnO sample prepared from ZnCO 3 . Quantitative ratio between different with respect to surface strength molecules of adsorbed CO are experimentally determined. It is shown that by increase of ZnO time contact with CO the quantity of adsorbed CO(N σ/0 ), capable of fast exchange with a gaseous phase, is reduced and the quantity of slowly exchanged adsorbed CO is increased. Correlation between decrease of N σ/0 and decrease of CO HMIE with the catalyst holding time in CO medium is stated

  8. Three-dimensional structure of porcine pancreatic carboxypeptidase B with an acetate ion and two zinc atoms in the active site

    Energy Technology Data Exchange (ETDEWEB)

    Akparov, V. Kh., E-mail: valery@akparov.ru [State Research Institute for Genetics and Selection of Industrial Microorganisms (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Maghsoudi, N. N., E-mail: maghsudi@yahoo.com [Shahid Beheshti University of Medical Sciences, Neuroscience Research Center (Iran, Islamic Republic of); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Crystals of porcine pancreatic carboxypeptidase B (CPB) were grown by the capillary counter-diffusion method in the presence of polyethylene glycol and zinc acetate. The three-dimensional structure of CPB was determined at 1.40 Å resolution using the X-ray diffraction data set collected from the crystals of the enzyme at the SPring 8 synchrotron facility and was refined to R{sub fact} = 17.19%, R{sub free} = 19.78%. The structure contains five zinc atoms, two of which are present in the active site of the enzyme, and an acetate ion. The arrangement of an additional zinc atom in the active site and the acetate ion is different from that reported by Yoshimoto et al.

  9. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    International Nuclear Information System (INIS)

    Nishida, Tamotsu; Yamada, Yoshiji

    2016-01-01

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  10. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  11. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  12. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    Science.gov (United States)

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  14. Regulation of S100A8/A9 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing activity.

    Science.gov (United States)

    Nakatani, Yuichi; Yamazaki, Masatoshi; Chazin, Walter J; Yui, Satoru

    2005-10-24

    S100A8/A9 (calprotectin), which is released by neutrophils under inflammatory conditions, has the capacity to induce apoptosis in various cells. We previously reported that S100A8/A9 induces apoptosis of EL-4 lymphoma cells via the uptake of extracellular zinc in a manner similar to DTPA, a membrane-impermeable zinc chelator. In this study, S100A8/A9-induced apoptosis was examined in several cell lines that are weakly sensitive to DTPA, suggesting S100A8/A9 is directly responsible for apoptosis in these cells. Since zinc inhibits apoptosis of MM46, one of these cells, the regulation by zinc of the capacity of S100A8/A9 to bind MM46 cells was studied. When MM46 cells were incubated with S100A8/A9 in standard or zinc-depleted medium, the amounts of S100A8/A9 bound to cells was markedly lower at 3 h than at 1 h. In contrast, when MM46 cells were incubated with S100A8/A9 in the presence of high levels of zinc, binding to cells was the same at 1 and 3 h. When the cells were permeabilized with saponin prior to analysis, a larger amount of cell-associated S100A8/A9 was detected at 3 h. The amount was further increased in cells treated with chloroquine, suggesting that S100A8/A9 was internalized and degraded in lysosomes. Although it has been reported that S100A8/A9 binds to heparan sulfate on cell membranes, the amount of S100A8/A9 bound to MM46 cells was not reduced by heparinase treatment, but was reduced by trypsin treatment. These results suggest that S100A8/A9 induces apoptosis by direct binding to MM46 cells, and that this activity is regulated by zinc.

  15. Facile synthesis of pegylated zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities.

    Science.gov (United States)

    Bai, Ming; Lo, Pui-Chi; Ye, Jing; Wu, Chi; Fong, Wing-Ping; Ng, Dennis K P

    2011-10-21

    Treatment of 4,5-bis[4-(methoxycarbonyl)phenoxy]phthalonitrile and 4,5-bis[3,5-bis(methoxycarbonyl)phenoxy]phthalonitrile with an excess of 1,3-diiminoisoindoline in the presence of Zn(OAc)(2)·2H(2)O and 1,8-diazabicyclo[5.4.0]undec-7-ene in triethylene glycol monomethyl ether or polyethylene glycol monomethyl ether (with an average molecular weight of 550) led to "3 + 1" mixed cyclisation and transesterification in one pot, affording the corresponding di-β-substituted zinc(II) phthalocyanines in 7-23% yield. As shown by absorption spectroscopy, these compounds were essentially non-aggregated in N,N-dimethylformamide and could generate singlet oxygen effectively. The singlet oxygen quantum yields (Φ(Δ) = 0.53-0.57) were comparable with that of the unsubstituted zinc(II) phthalocyanine (Φ(Δ) = 0.56). These compounds in Cremophor EL emulsions also exhibited photocytotoxicity against HT29 human colorectal adenocarcinoma and HepG2 human hepatocarcinoma cells with IC(50) values in the range of 0.25-3.72 μM. The analogue with four triethylene glycol chains was the most potent photosensitiser and localised preferentially in the mitochondria of HT29 cells. The bis(polyethylene glycol)-counterpart could form surfactant-free nanoparticles both in water and in the culture medium. The hydrodynamic radii, as determined by dynamic laser light scattering, ranged from 6.3 to 79.8 nm depending on the preparation methods and conditions. The photocytotoxicity of these nanoparticles (IC(50) = 0.43-0.56 μM) was comparable with that of the Cremophor EL-formulated system (IC(50) = 0.34 μM).

  16. Potentiated virucidal activity of pomegranate rind extract (PRE and punicalagin against Herpes simplex virus (HSV when co-administered with zinc (II ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV.

    Directory of Open Access Journals (Sweden)

    David M J Houston

    Full Text Available There is a clinical need for new therapeutic products against Herpes simplex virus (HSV. The pomegranate, fruit of the tree Punica granatum L, has since ancient times been linked to activity against infection. This work probed the activity of pomegranate rind extract (PRE and co-administered zinc (II ions.PRE was used in conjunction with zinc (II salts to challenge HSV-1 and aciclovir-resistant HSV in terms of virucidal plaque assay reduction and antiviral activities in epithelial Vero host cells. Cytotoxicity was determined by the MTS assay using a commercial kit.Zinc sulphate, zinc citrate, zinc stearate and zinc gluconate demonstrated similar potentiated virucidal activity with PRE against HSV-1 by up to 4-fold. A generally parabolic relationship was observed when HSV-1 was challenged with PRE and varying concentrations of ZnSO4, with a maximum potentiation factor of 5.5. Punicalagin had 8-fold greater virucidal activity than an equivalent mass of PRE. However, antiviral data showed that punicalagin had significantly lower antiviral activity compared to the activity of PRE (EC50 = 0.56 μg mL-1 a value comparable to aciclovir (EC50 = 0.18 μg mL-1; however, PRE also demonstrated potency against aciclovir-resistant HSV (EC50 = 0.02 μg mL-1, whereas aciclovir showed no activity. Antiviral action of PRE was not influenced by ZnSO4. No cytotoxicity was detected with any test solution.The potentiated virucidal activity of PRE by coadministered zinc (II has potential as a multi-action novel topical therapeutic agent against HSV infections, such as coldsores.

  17. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  18. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity.

    Science.gov (United States)

    Hadler-Olsen, Elin; Kanapathippillai, Premasany; Berg, Eli; Svineng, Gunbjørg; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2010-01-01

    In situ zymography is a method for the detection and localization of enzymatic activity in tissue sections. This method is used with frozen sections because routine fixation of tissue in neutral-buffered formalin inhibits enzyme activity. However, frozen sections present with poor tissue morphology, making precise localization of enzymatic activity difficult to determine. Ethanol- and zinc-buffered fixative (ZBF) are known to preserve both morphological and functional properties of the tissue well, but it has not previously been shown that these fixatives preserve enzyme activity. In the present study, we show that in situ zymography can be performed on ethanol- and ZBF-fixed paraffin-embedded tissue. Compared with snap-frozen tissue, ethanol- and ZBF-fixed tissue showed stronger signals and superior morphology, allowing for a much more precise detection of gelatinolytic activity. Gelatinolytic enzymes could also be extracted from both ethanol- and ZBF-fixed tissue. The yield, as analyzed by SDS-PAGE gelatin zymography and Western blotting, was influenced by the composition of the extraction buffer, but was generally lower than that obtained from unfixed tissue.

  19. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity.

    Science.gov (United States)

    Yui, Satoru; Nakatani, Yuichi; Hunter, Michael J; Chazin, Walter J; Yamazaki, Masatoshi

    2002-06-01

    Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner. The present study was undertaken to elucidate which subunit is responsible for the apoptosis-inducing activity, and to explore the mechanism of zinc-reversible apoptosis induction. The apoptosis-inducing activity of recombinant human MRP8 (rhMRP8) and recombinant human MRP14 (rhMRP14) was examined against EL-4 lymphoma cells in vitro. To determine whether zinc deprivation by calprotectin was essential for the cytotoxicity, the activity of calprotectin was tested under conditions where physical contact between the factor and the cells was precluded by a low molecular weight cut-off dialysis membrane. The cytotoxicity of rhMRP14 against EL-4 cells was first detected at 10 microM in a standard medium, whereas rhMRP8 caused only marginal cytotoxicity at 40 microM. A mixture of both proteins showed higher specific activity (onset of cytotoxicity at 5 microM). When the cells were cultured in divalent cation-depleted medium, each dose-response curve was shifted to about a four-fold lower concentration range. Calprotectin was found to induce cell death even when the complex and the target cells were separated by dialysis membrane. A membrane-impermeable zinc chelator, diethylenetriamine pentaacetic acid (DTPA), also induced target cell apoptosis in a similar time-course as calprotectin. Moreover, the activities of calprotectin and DTPA were completely inhibited by the presence of zinc ions. These data indicate that calprotectin has higher specific activity to induce apoptosis than the Individual subunits, and that the mechanism is exclusion of zinc

  20. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    Science.gov (United States)

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  2. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area.

    Science.gov (United States)

    Ciarkowska, Krystyna; Sołek-Podwika, Katarzyna; Wieczorek, Jerzy

    2014-01-01

    The activities of soil enzymes in relation to the changes occurring in the soil on a degraded area in southern Poland after zinc and lead mining were analyzed. An evaluation of the usefulness of urease and invertase activities for estimating the progress of the rehabilitation processes in degraded soil was performed. The data show that the soil samples differed significantly in organic carbon (0.68-104.0 g kg(-1)) and total nitrogen (0.03-8.64 g kg(-1)) content in their surface horizons. All of the soil samples (apart from one covered with forest) had very high total concentrations of zinc (4050-10,884 mg kg(-1)), lead (959-6661 mg kg(-1)) and cadmium (24.4-174.3 mg kg(-1)) in their surface horizons, and similar concentrations in their deeper horizons. Nevertheless, the amounts of the soluble forms of the above-mentioned heavy metals were quite low and they accounted for only a small percentage of the total concentrations: 1.4% for Zn, 0.01% for Pb and 2.6% for Cd. Urease activities were ranked as follows: soil from flotation settler (0.88-1.78 μg N-NH4(+) 2h(-1) g(-1))slag heaps (1.77-2.51 μg N-NH4(+) 2h(-1) g(-1))slag heaps, ranging from 20.5 to 77.1mg of the inverted sugar, but they were much lower in soil from the flotation settler (0.12-6.95 mg of the inverted sugar). The results demonstrated that heavy pollution with Zn, Pb and Cd slightly decreased the activities of urease and invertase. It is thought that it resulted from the enzyme reactions occurring in slightly acidic or alkaline soil conditions. Under such conditions, heavy metals occur mainly in insoluble forms. The activities of these enzymes are strongly dependent on the content and decomposition of organic matter in the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  4. Nitrate Removal from Aqueous Solutions Using Almond Charcoal Activated with Zinc Chloride

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-10-01

    Full Text Available Background & Aims of the Study: Nitrate is one of the most important contaminants in aquatic environments that can leached to water resources from various sources such as sewage, fertilizers and decomposition of organic waste. Reduction of nitrate to nitrite in infant’s blood stream can cause “blue baby” disease in infants. The aim of this study was to evaluate the nitrate removal from aqueous solutions using modified almond charcoal with zinc chloride. Materials &Methods: This study is an experimental survey. At the first charcoal almond skins were prepared in 5500C and then modified with ZnCl2. Morphologies and characterization of almond shell charcoal were evaluated by using FTIR, EDX, BET and FESEM. Adsorption experiments were conducted with 500 ml sample in Becker. The nitrate concentration removal, contact time, pH and charcoal dosage were investigated. The central composite design method was used to optimizing the nitrate removal process. The results analyzed with ANOVA test. Results: The best condition founded in 48 min, 1250 ppm, 125 mg/l and 3 for retention time, primary nitrate concentration, charcoal dosage and pH respectively. The results showed that the nitrate removal decreases with increasing pH. Modification of skin charcoal is show increasing of nitrate removal from aquatic solution. Conclusion: In this study, the maximum nitrate removal efficiency for raw charcoal and modified charcoal was determined 15.47% and 62.78%, respectively. The results showed that this method can be used as an effective method for removing nitrate from aqueous solutions.

  5. Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch

    Science.gov (United States)

    Agustin, Y. E.; Padmawijaya, K. S.

    2017-07-01

    Bioplastic is a biopolymer plastic that can be degraded easily by microorganisms so it can be used as alternative replaced commercial plastic. This research aims to study the effects of additive (glycerol and zinc oxide) addition in the characteristic of antimicrobial activity and biodegradability bioplastic from chitosan and Kepok banana peel starch. In this research, bioplastics were synthesized by chitosan as the backbone and antimicrobial, Kepok banana peel starch as filler, glycerol as plasticizer, also ZnO as an amplifier. Bioplastics were characterized their antimicrobial activity using agar diffusion method (zone inhibition assay) and biodegradability test using microbe (EM4). The result showed the optimum composition of bioplastic is kitosan 4 - 30% starch - 5 mL glycerol - 5% ZnO gives the good antimicrobial activity towards gram positive and gram negative bacteria, and this bioplastic will be degraded within an hour and 12 min. Thus, this bioplastics may have potential to be use for food packaging by having biodegradable properties and also inhibit bacterial growth.

  6. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28.

    Directory of Open Access Journals (Sweden)

    Kristin E Murphy

    Full Text Available KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.

  7. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    Science.gov (United States)

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  8. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  9. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis; Determinacion de plata, oro, zinc y cobre en muestras minerales mediante diversas tecnicas de analisis por activacion de neutrones instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Yoho, M.; Landsberger, S., E-mail: neisla126@hotmail.com [University of Texas at Austin, Nuclear Engineering Teaching Laboratory, Austin 78712, Texas (United States)

    2015-09-15

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide {sup 110}Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide {sup 199}Au and 438.6 keV of metastable radionuclide {sup 69m}Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide {sup 66}Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used

  11. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  12. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sedira, Sofiane, E-mail: sofianebilel@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Ayachi, Ahmed Abdelhakim, E-mail: ayachi-med@hotmail.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Lakehal, Sihem, E-mail: lakehal.lakehal@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Fateh, Merouane, E-mail: merouane.fateh@gmail.com [Microbiological Laboratory Engineering and Application, University of Constantine1, Constantine (Algeria); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria)

    2014-08-30

    Graphical abstract: - Highlights: • Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method. • Ag NPs exert their bactericidal effect mainly by Ag{sup +} ions. • CH{sub 3}COOH addition to Ag NPs improves bactericidal effect more than ZnO Qds addition. • E. coli and P. aeruginosa are more sensitive to NPs than K. pneumonia and S. aureus. - Abstract: Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag{sup +}. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag{sup +} release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV–vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM)

  13. Facile Synthesis of Uniform Zinc-blende ZnS Nanospheres with Excellent Photocatalytic Activity toward Methylene Blue Degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Si-Yan; YANG Liu-Sai; LV Ying-Ying; YU Le-Shu; HUANG Hai-Jin; WU Li-Dan

    2017-01-01

    Uniform and well-dispersed ZnS nanospheres have been successfully synthesized via a facile chemical route.The crystal structure,morphology,surface area and photocatalytic properties of the sample were characterized by powder X-ray diffraction (XRD),scanning electron microscopy (SEM),Brunauer-Emmett-Teller (BET) and ultraviolet-visible (UV-vis) spectrum.The results of characterizations indicate that the products are identified as mesoporous zinc-blende ZnS nanospheres with an average diameter of 200 nm,which are comprised of nanoparticles with the crystallite size of about 3.2 nm calculated by XRD.Very importantly,photocatalytic degradation of methylene blue (MB)shows that the as-prepared ZnS nanospheres exhibit excellent photocatalytic activity with nearly 100% of MB decomposed after UV-light irradiation for 25 min.The excellent photocatalytic activity of ZnS nanospheres can be ascribed to the large specific surface area and hierarchical mesoporous structure.

  14. In silico, in vitro and antifungal activity of the surface layers formed on zinc during this biomaterial degradation

    Science.gov (United States)

    Alves, Marta M.; Marques, Luísa M.; Nogueira, Isabel; Santos, Catarina F.; Salazar, Sara B.; Eugénio, Sónia; Mira, Nuno P.; Montemor, M. F.

    2018-07-01

    Zinc (Zn) has been proposed as an alternative metallic biodegradable material to support transient wound-healing processes. Once a Zn piece is implanted inside the organism the degradation will depend upon the physiological surrounding environment. This, by modulating the composition of the surface layers formed on Zn devices, will govern the subsequent interactions with the surrounding living cells (e.g. biocompatibility and/or antifungal behaviour). In silico simulation of an implanted Zn piece at bone-muscle interface or inside the bone yielded the preferential precipitation of simonkolleite or zincite, respectively. To study the impact of these surface layers in the in vitro behaviour of Zn biomaterials, simonkolleite and zincite where synthesised. The successful production of simonkolleite or zincite was confirmed by an extensive physicochemical characterization. An in vitro layer formed on the top of these surface layers revealed that simonkolleite was rather inert, while zincite yielded a complex matrix containing hydroxyapatite, an important bone analogue. When analysing the "anti-biofilm" activity simonkolleite stood out for its activity against an important pathogenic fungi involved in implant-device infections, Candida albicans. The possible physiological implications of these findings are discussed.

  15. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  16. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  17. Selective UV–O3 treatment for indium zinc oxide thin film transistors with solution-based multiple active layer

    Science.gov (United States)

    Kim, Yu-Jung; Jeong, Jun-Kyo; Park, Jung-Hyun; Jeong, Byung-Jun; Lee, Hi-Deok; Lee, Ga-Won

    2018-06-01

    In this study, a method to control the electrical performance of solution-based indium zinc oxide (IZO) thin film transistors (TFTs) is proposed by ultraviolet–ozone (UV–O3) treatment on the selective layer during multiple IZO active layer depositions. The IZO film is composed of triple layers formed by spin coating and UV–O3 treatment only on the first layer or last layer. The IZO films are compared by X-ray photoelectron spectroscopy, and the results show that the atomic ratio of oxygen vacancy (VO) increases in the UV–O3 treatment on the first layer, while it decreases on last layer. The device characteristics of the bottom gated structure are also improved in the UV–O3 treatment on the first layer. This indicates that the selective UV–O3 treatment in a multi-stacking active layer is an effective method to optimize TFT properties by controlling the amount of VO in the IZO interface and surface independently.

  18. The use of retardion 11A8 amphoteric ion exchange resin for separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Samczynski, Z.; Dybczynski, R.

    2001-01-01

    In this work the ion exchange separation scheme with the use of amphoteric ion exchange resin Retardion 11A8 underlying the method for the determination of cadmium and zinc in geological and environmental materials by neutron activation analysis has been devised. The accuracy of the elaborated method was tested by determining Cd and Zn content in two reference materials: Lake Sediment (SL-1) of environmental and Zinnwaldite ZW-C of geological origin. The results of quantitative determinations show good agreement with the certified values. Gamma ray spectra of zinc and cadmium fractions are practically free from other activities apart from those, which are normally observed in the background. Analytical results were corrected for the blank resulting from using reagents, glassware and contact with atmosphere when isolation of analytes before neutron activation is accomplished. Considerable minimization and good reproducibility of the blank was finally achieved.(authors)

  19. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    Science.gov (United States)

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  20. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    Science.gov (United States)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  1. Comparison of anti-oxidant enzymes activity and levels of zinc and selenium in sperm and seminal plasma between fertile and idiopathic infertile men

    Directory of Open Access Journals (Sweden)

    Hadi Kharazi

    2010-12-01

    Full Text Available Background: Reactive oxygen species (ROS-induced lipidperoxidation can lead to dysfunction of sperm and thereby, infertility may be occurred. So, always there is a balance between amount of ROS and anti-oxidant molecules in semen. Anti-oxidant enzymes of sperm; superoxide dismutase (SOD, glutathione peroxidase (GPX, catalse and zinc and selenium can protect it from destructive effects of ROS. Hence, the present study was designed to compare the activities of these enzymes and trace elements between fertile and idiopathic infertile men.Methods: Semen specimens were collected from 30 infertile men with proven infertility by an urologist, and 30 fertile men as control donors, with age range between 20-40 years old. Semen analysis was conducted by CASA method. Atomic absorption method was used for measuring of zinc and selenium concentration. Activity assays of SOD and GPX were performed by Randox Kits. Aebi method also was applied for evaluation of catalase activity.Results: There was no difference between the activities of enzymes in fertile men and infertile ones. Also, it wasn't seen any difference in the selenium and zinc levels of seminal plasma. There was no relationship between evaluated items with sperm parameters. Only, in asthenoteratospermic individuals negative correlations were found between GPX and sperm motility, selenium and sperm morphology. Also, in these individuals ,there was a positive correlation between SOD and catalse activity.Conclusion: Measuring activities of SOD, GPx, and catalase and the contents of zinc and selenium of seminal plasma do not appear to be suitable tools for determining the fertility potential of sperm.

  2. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS

    International Nuclear Information System (INIS)

    Dong, Ming; Zhang, Jinfeng; Yu, Jiaguo

    2015-01-01

    Semiconductor zinc sulphide (ZnS) has two common phases: hexagonal wurtzite and cubic zinc-blende structures. The crystal structures, energy band structures, density of states (DOS), bond populations, and optical properties of wurtzite and zinc-blende ZnS were investigated by the density functional theory of first-principles. The similar band gaps and DOS of wurtzite and zinc-blende ZnS were found and implied the similarities in crystal structures. However, the distortion of ZnS 4 tetrahedron in wurtzite ZnS resulted in the production of spontaneous polarization and internal electric field, which was beneficial for the transfer and separation of photogenerated electrons and holes

  3. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.

    Science.gov (United States)

    Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-06-01

    To evaluate the influence of zinc oxide quantum dots (ZnO QDs ) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. ZnO QDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnO QDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnO QDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ZnO QDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnO QDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. ZnO QDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity.

    Science.gov (United States)

    Raja, A; Ashokkumar, S; Pavithra Marthandam, R; Jayachandiran, J; Khatiwada, Chandra Prasad; Kaviyarasu, K; Ganapathi Raman, R; Swaminathan, M

    2018-04-01

    The present work reports the green synthesis of Zinc Oxide Nanoparticles (ZnO NPs) using aqueous Tabernaemontana divaricata green leaf extract. ZnO NPs have been characterized by X-ray diffraction (XRD), Ultra Violet-Visible (UV-Vis) studies, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infra Red (FT-IR) analysis. XRD pattern analysis confirms the presence of pure hexagonal wurtzite crystalline structure of ZnO. The TEM images reveal the formation of spherical shape ZnO NPs with the sizes ranging from 20 to 50 nm. The FT-IR analysis suggests that the obtained ZnO NPs have been stabilized through the interactions of steroids, terpenoids, flavonoids, phenyl propanoids, phenolic acids and enzymes present in the leaf extract. Mechanism for the formation of ZnO NPs using Tabernaemontana divaricata as bioactive compound is proposed. As prepared ZnO NPs reveals antibacterial activity against three bacterial strains, Salmonella paratyphi, Escherichia coli and Staphylococcus aureus. The ZnO NPs shows higher antibacterial activity against S. aureus and E. coli and lesser antibacterial activity against S. paratyphi compared to the standard pharmaceutical formulation. Photocatalytic activity of synthesized ZnO NPs was analyzed for methylene blue (MB) dye degradation with sunlight. Almost complete degradation of dye occurred in 90 min. This nano-ZnO, prepared by eco-friendly method will be much useful for dye removal and bacterial decontamination. Copyright © 2018. Published by Elsevier B.V.

  5. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  6. The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2014-10-01

    Full Text Available Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C. The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization and 450 °C (carbonization, including Vmeso about 2.21 cm3/g (pore cage and 2.32 cm3/g (pore window with pore uniformity centered at 300 Å (pore cage and 200 Å (pore window, containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.

  7. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Bose, Madhuparna; Mondal, Subhadip; Choudhary, Sumita; Gangopadhyay, Subhashis; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra

    2018-07-01

    Carbon dots with heteroatom co-doping associated with consummate luminescence features are of acute interest in diverse applications such as biomolecule markers, chemical sensing, photovoltaic, and trace element detection. Herein, we demonstrate a straightforward, highly efficient hydrothermal dehydration technique to synthesize zinc and nitrogen co-doped multifunctional carbon dots (N, Zn-CDs) with superior quantum yield (50.8%). The luminescence property of the carbon dots can be tuned by regulating precursor ratio and surface oxidation states in the carbon dots. A unique attribution of the as-prepared carbon dots is the high monodispersity and robust excitation-independent emission behavior that is stable in enormously reactive environment and over a wide range of pH. These N, Zn-CDs unveils captivating bacteriostatic activity against gram-negative bacteria Escherichia coli. Furthermore, the excellent luminescence properties of these carbon dots were applied as a platform of sensitive biosensor for the detection of hydrogen peroxide. Under optimized conditions, these N, Zn-CDs reveals high sensitivity over a broad range of concentrations with an ultra-low limit of detection (LOD) indicating their pronounced prospective as a fluorescent probe for chemical sensing. Overall, the experimental outcomes propose that these zero-dimensional nano-dots could be developed as bacteriostatic agents to control and prevent the persistence and spreading of bacterial infections and as a fluorescent probe for hydrogen peroxide detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Comparisons of the spectroscopic and microbiological activities among coumarin-3-carboxylate, o-phenanthroline and zinc(II) complexes

    Science.gov (United States)

    Islas, María S.; Martínez Medina, Juan J.; Piro, Oscar E.; Echeverría, Gustavo A.; Ferrer, Evelina G.; Williams, Patricia A. M.

    2018-06-01

    Coumarins (2H-chromen-2-one) are oxygen-containing heterocyclic compounds that belong to the benzopyranones family. In this work we have synthesized different coordination complexes with coumarin-3-carboxylic acid (HCCA), o-phenanthroline (phen) and zinc(II). In the reported [Zn(CCA)2(H2O)2] complex, coumarin-3-carboxylate (CCA) is acting as a bidentate ligand while in the two prepared complexes, [Zn(phen)3]CCA(NO3) (obtained as a single crystal) and [Zn(CCA)2phen].4H2O, CCA is acting as a counterion of the complex cation [Zn(phen)3]+2 or coordinated to the metal center along with phen, respectively. These compounds were characterized on the basis of elemental analysis and thermogravimetry. NMR, FTIR and Raman spectroscopies of the compounds and the CCA potassium salt (KCCA) allow to determine several similarities and differences among them. Finally, their behavior against alkaline phosphatase enzyme and their antimicrobial activities were also measured.

  9. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  10. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    Science.gov (United States)

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  11. Neutron activation analysis of zinc in forages used in intensive dairy cattle production systems

    International Nuclear Information System (INIS)

    Armelin, M.J.A.; Piasentin, R.M.; Primavesi, O.

    2002-01-01

    Instrumental neutron activation analysis (INAA) was applied for the determination of Zn concentration in the main tropical grass forages used in intensive dairy cattle production systems, in Brazil. Smaller Zn concentration could be verified in the rainy period. Comparison of results obtained in these analyses of forages dry matter with daily requirements pointed towards deficiency of Zn in the forages. (author)

  12. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Tiwari, Archana [Department of Physics, Sikkim University, 737102 Sikkim (India); Chatterjee, Somenath, E-mail: somenath@gmail.com [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Electronics & Communication Engineering Department, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India)

    2017-01-01

    Highlights: • ZnS nanosphere synthesis in hydrothermal method with biomolecule as capping ligand. • Effect of reaction parameters to tune the size of ZnS nanoparticles. • Obtain multiple defect emission, which arises from interstitials/vacancies. • 87% degradation of Rh-B in the presence of ZnS nanoparticles under solar radiation. - Abstract: Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV–vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  13. Uncertainty Estimation of Neutron Activation Analysis in Zinc Elemental Determination in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Muhayatun; Diah Dwiana L

    2009-01-01

    Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)

  14. New Insight into Polydopamine@ZIF-8 Nanohybrids: A Zinc-Releasing Container for Potential Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Jingyu Ran

    2018-04-01

    Full Text Available Despite the initial evidence on the role of zinc and zinc transporters in cancer prevention, little attention has been paid to the zinc-derived compounds. In the present work, we reported a strategy to prepare a kind of zinc-releasing container with enhanced biocompatibility and release dynamics using ZIF-8 nanocrystals as the sacrificial templates. Transmission electron microscopy (TEM analysis demonstrated that the ZIF-8 nanocrystals were gradually etched out in the aqueous media within 48 h, resulting in hollow nanocapsules. Notably, we found the self-polymerization of dopamine can form nanoshells around the ZIF-8 nanocrystals, which served as a type of functional membranes during the release of zinc. More interestingly, PDA@ZIF-8–based nanohybrids expressed stronger inhibition to the cancer cell growth, which implied that the nanohybrids could be a drug carrier for chemotherapy. This study broadens the biomedical application of ZIF-8 and also provides a versatile strategy toward the development of multifunctional delivery system.

  15. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  16. Covalent modification of mutant rat P2X2 receptors with a thiol-reactive fluorophore allows channel activation by zinc or acidic pH without ATP.

    Directory of Open Access Journals (Sweden)

    Shlomo S Dellal

    Full Text Available Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C(5-maleimide (AM546. Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM or acidic external solution (pH 6.5 elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.

  17. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  18. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content

    International Nuclear Information System (INIS)

    Figlewicz, D.P.; Forhan, S.E.; Hodgson, A.T.; Grodsky, G.M.

    1984-01-01

    Uptake of 65 Zn and distribution of 65 Zn, total zinc, and insulin were measured in rat islets and islet granules under different conditions of islet culture. Specific activity of islet zinc ( 65 Zn/zinc) was less than 15% that of extracellular zinc even after 48 h. In contrast, once in the islet, 65 Zn approached 70% of equilibrium with granular zinc in 24 h and apparent equilibrium by 48 h. During a 24-h culture, at either high or low glucose, reduction of both islet zinc and insulin occurred. However, zinc depletion was greater than that predicted if zinc loss was proportional to insulin depletion and occurred only from the granular compartment, which represents only one third of the total islet zinc. Extension of culture to 48 h caused additional insulin depletion, but islet zinc was unchanged. Omission of calcium during the 48-h culture caused a predicted increase in insulin retention, presumably by inhibiting secretion; however, zinc retention was not increased proportionately. Pretreatment of rats with tolbutamide caused a massive depletion of insulin stored in isolated islets, with little change in total islet zinc; subsequent culture of these islets resulted in a greater loss of granular zinc than predicted from the small loss of granular insulin. None of the conditions tested affected the percentage of either 65 Zn or total zinc that was distributed in the islet granules. Results show that zinc exists in a metabolically labile islet compartment(s) as well as in secretory granules; and extra-granular zinc, although not directly associated with insulin storage, may act as a reservoir for granular zinc and may regulate insulin synthesis, storage, and secretion in ways as yet unknown

  19. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Alharby Hesham F.

    2016-01-01

    Full Text Available The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen contents and changes in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl, and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1. The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1 was more effective than a higher concentration (30 mg L-1. This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

  20. Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-02-01

    Full Text Available Polyacrylic acid (PAA is an important industrial chemical, which has been extensively applied in various fields, including for several biomedical purposes. In this study, we report the synthesis and modification of this polymer with various phenol imides, such as succinimide, phthalimide and 1,8-naphthalimide. The as-synthesized derivatives were used to prepare polymer metal composites by the reaction with Zn+2. These composites were characterized by using various techniques, including NMR, FT-IR, TGA, SEM and DSC. The as-prepared PAA-based composites were further evaluated for their anti-microbial properties against various pathogens, which include both Gram-positive and Gram-negative bacteria and different fungal strains. The synthesized composites have displayed considerable biocidal properties, ranging from mild to moderate activities against different strains tested.

  1. Contributions to the prompt neutron activation analysis of industrially used coals and zinc roasting products

    International Nuclear Information System (INIS)

    Dammermann, H.

    1982-01-01

    The construction of an irradiation plant for calibration measurement by means of prompt neutron activation analysis is described. A 5.84 μg and 16.3 μg Cf-252 source serve as neutron sources. Tests have shown an inner centred arrangement to offer the best solution for sources of this strength. The use of the PNAA method for determining sulphur, iron and chloride content in brown coal was tested and calibration curves drawn. The sulphur content of the coal briquettes tested was found to be 0.27% S, the iron content amounting to 0.21% Fe and chloride to 0.06%. These values correlate closely with values obtained from wet chemical industrial analysis. (WI)

  2. Determination of iron, cobalt and zinc in caries teeth by neutron activation analysis

    International Nuclear Information System (INIS)

    Moriwaki, Kazunari; Shimpuku, Yasuhiro; Furuyama, Shunsuke

    1999-01-01

    The concentration of Fe, Zn and Co in caries teeth was determined by neutron activation analysis to compare with those of complete impacted wisdom teeth. In order to investigate the distribution of three elements, molar teeth were separated not by conventional method like precipitation or UV absorption method but by ashing method. Furthermore, the same elements for dental pulp and softened dentin were determined. The following results were obtained: The concentration of three elements (Fe, Zn and Co) in enamel, dentin and cementum of caries teeth was higher than that in control teeth. Enamel contained more Fe and Co than those in dentin or cementum, whereas Zn was found to be evenly distributed in three parts of the teeth. The concentration of the elements was Zn>Fe>Co in softened dentin, Fe>Zn>Co in dental pulp. (author)

  3. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    Science.gov (United States)

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  4. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  5. Effects of mouthrinses with chlorhexidine and zinc ions combined with fluoride on the viability and glycolytic activity of dental plaque.

    Science.gov (United States)

    Giertsen, E; Scheie, A A

    1995-10-01

    Inhibition of plaque acidogenicity by a mouthrinse with chlorhexidine (CHX) or zinc ions has been ascribed to a prolonged bacteriostasis due to substantive properties of the agents. The present aim was to study the effects of mouthrinses with CHX and Zn ions combined with fluoride on the viability and glycolytic activity of dental plaque in order to assess the bacteriostatic versus possible bactericidal effects. Following 2 d of plaque accumulation, 4 groups of 10 students rinsed with either 12 mM NaF (F), 0.55 mM CHX diacetate+F (F-CHX), 10 mM Zn acetate+F (F-Zn), or with the three agents in combination (F-CHX-Zn). Plaque samples were collected before and 90 min after mouthrinsing. Thereafter, the in vivo plaque pH response to sucrose was monitored in each student using touch microelectrodes. F-CHX and F-CHX-Zn reduced the in vivo pH fall significantly as compared with F, whereas F-Zn exerted a non-significant inhibition. Pooled pre- and post-rinse plaque samples were used to measure the pH fall during fermentation of [14C]-glucose, and the glycolytic profiles were analyzed by HPLC. Bacterial viability was assessed by counting the colony-forming units (CFU). All mouthrinses except F reduced glucose consumption and acid formation and thus the pH fall. F-CHX reduced the CFU equal to the reduction of glucose consumption, indicating that inhibition of plaque acidogenicity was due to a bactericidal rather than a bacteriostatic effect. F and F-Zn did not reduce the CFU, thus F-Zn decreased glucose metabolism without affecting plaque viability. F-CHX-Zn reduced both the CFU and glucose metabolism of surviving plaque microorganisms.

  6. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  7. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Science.gov (United States)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  8. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  9. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    International Nuclear Information System (INIS)

    Kumar, Arvind; Mohan Jena, Hara

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl 2 . • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m 2 /g, 2124 m 2 /g, and 1.96 cm 3 /g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m 2 /g, 1.68 cm 3 /g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl 2 as an activator. The process has been conducted at different impregnation (ZnCl 2 /Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m 2 /g, 2124 m 2 /g, 1.96 cm 3 /g, and 1.68 cm 3 /g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  10. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction.

    Science.gov (United States)

    Kuang, Pan-Yong; Ran, Jing-Run; Liu, Zhao-Qing; Wang, Hong-Juan; Li, Nan; Su, Yu-Zhi; Jin, Yong-Gang; Qiao, Shi-Zhang

    2015-10-19

    The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica.

    Science.gov (United States)

    Chandran, Rashmi; Sivakumar, A A; Mohandass, S; Aruchami, M

    2005-01-01

    Heavy metal stress results in the production of O(2)(.-), H(2)O(2) and (.)OH, which affect various cellular processes, mostly the functioning of membrane systems. Cells are normally protected against free oxyradicals by the operation of intricate antioxidant systems. The aim of the present work is to examine the effect of CdCl(2) and ZnSO(4) on antioxidative enzyme activity in the gastropod, Achatina fulica. The concentrations of antioxidant enzymes--superoxide dismutase (SOD), catalase (Cat) and glutathione peroxidase (GPx)--and nonenzymatic antioxidants--glutathione and vitamin-C--were found to be decreased in both digestive gland and kidney of the gastropod, Achatina fulica treated with individual concentrations of 0.5 ppm and 1ppm of CdCl(2) and ZnSO(4), compared to that of control animals. Based on the above study, it is evident that Achatina fulica can be used as a bioindicator to monitor the environmental heavy metal pollution.

  12. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Mohan Jena, Hara, E-mail: hmjena@nitrkl.ac.in

    2015-11-30

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl{sub 2}. • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, and 1.96 cm{sup 3}/g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m{sup 2}/g, 1.68 cm{sup 3}/g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl{sub 2} as an activator. The process has been conducted at different impregnation (ZnCl{sub 2}/Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, 1.96 cm{sup 3}/g, and 1.68 cm{sup 3}/g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  14. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    Science.gov (United States)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  15. Zinc absorption in inflammatory bowel disease

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-01-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered

  16. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  17. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  18. Electrical features of an amorphous indium-gallium-zinc-oxide film transistor using a double active matrix with different oxygen contents

    International Nuclear Information System (INIS)

    Koo, Ja Hyun; Kang, Tae Sung; Hong, Jin Pyo

    2012-01-01

    The electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFTs) are systematically studied using a double a-IGZO active layer that is composed of a-IGZO x (oxygen-ion-poor region) and a-IGZO y (oxygen-ion-rich-region). An active layer is designed to have a serially-stacked bi-layer matrix with different oxygen contents, providing the formation of different electron conduction channels. Two different oxygen contents in the active layer are obtained by varying the O 2 partial pressure during sputtering. The a-IGZO TFT based on a double active layer exhibits a high mobility of 9.1 cm 2 /Vsec, a threshold voltage (V T ) of 16.5 V, and ΔV T shifts of less than 1.5 V under gate voltage stress. A possible electrical sketch for the double active layer channel is also discussed.

  19. Zinc comprising coordination compounds as growth stimulants of cotton seeds

    International Nuclear Information System (INIS)

    Yusupov, Z.N.; Nurmatov, T.M.; Rakhimova, M.M.; Dzhafarov, M.I.; Nikolaeva, T.B.

    1991-01-01

    Present article is devoted to zinc comprising coordination compounds as growth stimulants of cotton seeds. The influence of zinc coordination compounds with physiologically active ligands on germinative energy and seed germination of cotton was studied. The biogical activity and effectiveness of zinc comprising coordination compounds at application them for humidification of cotton seeds was studied as well.

  20. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  1. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Science.gov (United States)

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  2. Lead and zinc concentrations in plasma, erythrocytes, and urine in relation to ALA-D activity after intravenous infusion of Ca-EDTA.

    OpenAIRE

    Ishihara, N; Shiojima, S; Hasegawa, K

    1984-01-01

    Lead and zinc concentrations in plasma, erythrocytes, and urine, urinary ALA concentration, and ALA-D activity in blood were studied for four hours in two male lead workers during and after a one hour infusion of Ca-EDTA 2Na. Urinary and plasma lead concentrations increased as a result of administering Ca-EDTA 2Na, and the ratios of lead concentrations in plasma to those in urine were greatly increased. The increase of plasma lead concentration was not due to the haemolytic effect of Ca-EDTA ...

  3. Activation of methane by zinc: gas-phase synthesis, structure, and bonding of HZnCH3.

    Science.gov (United States)

    Flory, Michael A; Apponi, Aldo J; Zack, Lindsay N; Ziurys, Lucy M

    2010-12-08

    The methylzinc hydride molecule, HZnCH3, has been observed in the gas phase for the first time in the monomeric form using high-resolution spectroscopic techniques. The molecule was synthesized by two methods: the reaction of dimethylzinc with hydrogen gas and methane in an AC discharge and the reaction of zinc vapor produced in a Broida-type oven with methane in a DC discharge. HZnCH3 was identified on the basis of its pure rotational spectrum, which was recorded using millimeter/submillimeter direct-absorption and Fourier transform microwave techniques over the frequency ranges 332-516 GHz and 18-41 GHz, respectively. Multiple rotational transitions were measured for this molecule in seven isotopic variants. K-ladder structure was clearly present in all of the spectra, indicating a molecule with C3v symmetry and a (1)A1 ground electronic state. Extensive quadrupole hyperfine structure arising from the (67)Zn nucleus was observed for the H(67)ZnCH3 species, suggesting covalent bonding to the zinc atom. From the multiple isotopic substitutions, a precise structure for HZnCH3 has been determined. The influence of the axial hydrogen atom slightly distorts the methyl group but stabilizes the Zn-C bond. This study suggests that HZnCH3 can be formed through the oxidative addition of zinc to methane in the gas phase under certain conditions. HZnCH3 is the first metal-methane insertion complex to be structurally characterized.

  4. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  5. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: ► Zinc is an essential trace element with numerous functions in the human body. ► Several biokinetic models for zinc have been developed from tracer studies on humans. ► More rudimentary biokinetic models for zinc have been developed in radiation protection. ► Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. ► The proposed model may also be useful for investigation of zinc physiology and homeostasis.

  7. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  8. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  10. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site.

    Science.gov (United States)

    Kanda, Hironori; Toyama, Takashi; Shinohara-Kanda, Azusa; Iwamatsu, Akihiro; Shinkai, Yasuhiro; Kaji, Toshiyuki; Kikushima, Makoto; Kumagai, Yoshito

    2012-11-01

    We previously developed a screening method to identify proteins that undergo aggregation through S-mercuration by methylmercury (MeHg) and found that rat arginase I is a target protein for MeHg (Kanda et al. in Arch Toxicol 82:803-808, 2008). In the present study, we characterized another S-mercurated protein from a rat hepatic preparation that has a subunit mass of 42 kDa, thereby facilitating its aggregation. Two-dimensional SDS-polyacrylamide gel electrophoresis and subsequent peptide mass fingerprinting using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry revealed that the 42 kDa protein was NAD-dependent sorbitol dehydrogenase (SDH). With recombinant rat SDH, we found that MeHg is covalently bound to SDH through Cys44, Cys119, Cys129 and Cys164, resulting in the inhibition of its catalytic activity, release of zinc ions and facilitates protein aggregation. Mutation analysis indicated that Cys44, which ligates the active site zinc atom, and Cys129 play a crucial role in the MeHg-mediated aggregation of SDH. Pretreatment with the cofactor NAD, but not NADP or FAD, markedly prevented aggregation of SDH. Such a protective effect of NAD on the aggregation of SDH caused by MeHg is discussed.

  11. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    Science.gov (United States)

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  12. The activation controlled galvanic corrosion of Carbon Steel/Zinc couple in deaerated stirred 0.2 N HCl

    International Nuclear Information System (INIS)

    Saeed, F. M. M.; Slaiman, Q. J. M.

    2005-01-01

    The effect of galvanic coupling of carbon steel to zinc (C.S. /Zn) in Deaerated 0.2 N HCl was studied using the multiple zero resistance technique to measure the galvanic current (Ig) and the coupling potential (Ecop,) versus time for the coupled metals. It was found that altering area ratio (AR) (Cathode/Anode) of the coupled metals and increasing temperature played an important role in the increasing corrosion rate as well as changing the galvanic factor (GF), galvanic current (Ig), and dissolution current (Id), in most of the cases. (author)

  13. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  14. Zinc: a multipurpose trace element

    Energy Technology Data Exchange (ETDEWEB)

    Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. [University of Athens, Department of Forensic Medicine and Toxicology, Athens (Greece)

    2006-01-01

    Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning. (orig.)

  15. Thermodynamic and Kinetic Study of Zinc bis-(Dipalmithyl Dithiophosphate Activity as Anti-Corrosion Additive-Fatty Acid Based Through Potentiodynamic Polarization Technique

    Directory of Open Access Journals (Sweden)

    Komar Sutriah

    2016-08-01

    Full Text Available Zinc bis-(dipalmithyl dithiophosphate (ZDTP16 is one product variant of zinc dialkyl dithiophosphate (ZDTP-fatty acid based having function as corrosion inhibitor. By using 3% of effective dose for the application, its effectiveness of ZDTP16 corrosion inhibition will achieve 97% and it will be able to decrease Cu metal corrosion rate from 0.152 to 0.004 mm per year. Thermodynamic and kinetic parameter verification indicates the decreasing of spontaneity and corrosion rate by existence of ZDTP16 inhibitor. Gibbs free energy transition corrosion of Cu metal in electrolyte medium is measured in corrosion simulator increased from +85.22 to +91.77 kJ mol-1, while its activation energy increased from +16.66 to +33.68 kJ mol-1. Morphology observation of Cu metal substrate surface using SEM-EDX shows that the adsorption of ZDTP16 at substrate surface is able to protect surface from corrosion indicated by the existence of Zn, P, S, and C constituents representing composer atoms of ZDTP16, and the decreasing of Cl- corrosive constituent at substrate surface.

  16. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc

    1976-07-01

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days [fr

  17. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  18. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  19. Zinc and gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    Sonja; Skrovanek; Katherine; DiGuilio; Robert; Bailey; William; Huntington; Ryan; Urbas; Barani; Mayilvaganan; Giancarlo; Mercogliano; James; M; Mullin

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.

  20. Discrimination between low dietary zinc and endotoxin exposure : a model study on weaning rats

    NARCIS (Netherlands)

    Wouwe, van J.P.; Veldhuizen, M.; Hamer, van den C.J.A.; de Goeij, J.J.M.

    1990-01-01

    To establish a parameter for zinc status that is independent of the occurrence of infection, we studied the effects of low dietary zinc and endotoxin in weaning rats 21 d after 65Zn intubation. We monitored aspects of zinc status (tissue zinc content, 65Zn distribution, and specific 65Zn activity in

  1. Various ways to reduce zinc oxide levels in S-SBR rubber compounds

    NARCIS (Netherlands)

    Heideman, G.; Noordermeer, Jacobus W.M.; Datta, Rabin; van Baarle, Ben

    2007-01-01

    Because of environmental concerns, the zinc content in rubber compounds has come under scrutiny. The research described in this article encompasses zinc-oxide, various zinc-complexes and alternative metal oxides as activators for sulphur vulcanisation. Regarding zinc complexes, it can be concluded

  2. Synergetic Enhancement of the Photocatalytic Activity of TiO2 with Visible Light by Sensitization Using a Novel Push-Pull Zinc Phthalocyanine

    Directory of Open Access Journals (Sweden)

    A. Luna-Flores

    2017-01-01

    Full Text Available A new one-pot synthesis of a novel A3B-type asymmetric zinc phthalocyanine (AZnPc was developed. The phthalocyanine complex was characterized unambiguously and used to prepare a TiO2 hybrid photocatalyst to enhance its photocatalytic activity in the visible range. Different compositions of the phthalocyanine dye were tested in order to find the optimum amount of sensitizer to get the highest activity during the photocatalytic tests. The hybrid photocatalyst was characterized by UV-Vis diffuse reflectance (DRS and Fourier transform infrared spectroscopy (FT-IR and its photocatalytic activity was compared with that of the individual components considering the effects of sensitization on their efficiency to degrade Rhodamine B as a model reaction. A synergic improvement of the photocatalytic activity for the hybrid system was explained in terms of an improved electron injection from the photo-activated phthalocyanine to the TiO2. Considering the structural features of the phthalocyanine sensitizer and their effect on aggregation, some mechanistic aspects of its binding to TiO2 are suggested to account for the photocatalytic activity enhancement. Finally, the inhibitory effect on the sprouting of chia seeds (Salvia hispanica was evaluated in order to test the toxicity of the water effluent obtained after the photodegradation process. According to our growth inhibition assays, it was found that the Rh-B degradation by-products do not lead to an acute toxicity.

  3. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  4. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  5. Zinc absorption study using an enriched stable isotope (70Zn)

    International Nuclear Information System (INIS)

    Li Gongpan.

    1990-04-01

    A weaning food from fermented soybean was prepared for increasing the bioavailability of zinc. The zinc absorption was compared with that of a weaning food from non-fermented soybean and normal staple food. A stable isotope tracer technique ( 70 Zn) and neutron activation were used for determining the absorption of zinc. Nine children aged 7 to 18 months were tested. Zinc bioavailability of weaning food from fermented soybean is higher than that of normal weaning food. The weight increment and zinc nutrition of children having weaning food from fermented soybean are improved by this diet. 5 tabs

  6. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  7. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  8. Comparative studies on Indian traditional nanomedicine Yashadha Bhasma and zinc oxide nanoparticles for anti-diabetic activity

    Science.gov (United States)

    Durgalakshmi, D.; Ajay Rakkesh, R.; Bhargavi Ram, T.; Balakumar, S.

    2017-07-01

    Diabetes mellitus is the most common endocrine disorder due to carbohydrate metabolism. Also, zinc and its supplements have been used in Indian traditional medicines for treating urinary tract infections. In this work, an attempt has been made to compare the properties of ‘Yashadha Bhasma’ a traditional ayurvedic ZnO supplement for diabetic treatment with the laboratory-synthesized ZnO nanoparticles. The nano-sized ZnO particles are synthesized using co-precipitation method and calcined at 400 °C for further purification. Confirmation of ZnO and presence of Ca and K elements additional to Zn in Yashadha Bhasma is confirmed from XPS. The morphology of ZnO is found to be spherical with average diameter of 15 nm. TEM results show that ZnO rods of Yashadha Bhasma are porous and non-uniform. Glucose degradation studies revealed good performance with ZnO nanoparticles with 80% degradation occurring within 15 min itself. Antibacterial studies also performed well establishing efficacy of ZnO nanoparticles against both gram-positive and gram-negative bacterial strains, thereby establishing suitable material for treating diabetes mellitus and also curing bacterial wound infections arising due to diabetes mellitus.

  9. Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material

    Science.gov (United States)

    Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês

    2014-01-01

    The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798

  10. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils

    International Nuclear Information System (INIS)

    Liu Pulin; Huang Qiaoyun; Chen Wenli

    2012-01-01

    The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment. - Highlights: ► A zinc-specific bacterial biosensor was developed. ► Four spiked soils were used to test the application of this biosensor. ► The bioavailable zinc in soil-water extracts decreased due to aging. ► The immobilization and speciation of zinc were highly dependent on the soil type. - The immobilization and bioavailability of zinc in soil were investigated as a function of soil type and aging by a newly constructed zinc-specific biosensor coupled with chemical analysis.

  11. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  12. A Mini Zinc-Finger Protein (MIF from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation

    Directory of Open Access Journals (Sweden)

    Meixiang Han

    2017-09-01

    Full Text Available Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]–stimulated transcript 1 [GAST1] from tomato, a gene from the GA stimulated Arabidopsis (GASA family, was reported to be an inhibitor of ray petal growth in the ornamental species, G. hybrida. To explore the molecular regulatory mechanism of GEG in petal growth inhibition, a mini zinc-finger protein (MIF was identified using yeast one-hybrid (Y1H screen. The direct binding of GhMIF to the GEG promoter was verified by using an electrophoretic mobility shift assay and a dual-luciferase assay. A yeast two-hybrid (Y2H revealed that GhMIF acts as a transcriptional activator. Transient transformation assay indicated that GhMIF is involved in inhibiting ray petal elongation by activating the expression of GEG. Spatiotemporal expression analyses and hormone treatment assay showed that the expression of GhMIF and GEG is coordinated during petal development. Taken together, these results suggest that GhMIF acts as a direct transcriptional activator of GEG, a gene from the GASA protein family to regulate the petal elongation.

  13. Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis.

    Science.gov (United States)

    Huang, Chien-Hsun; Kuo, Wen-Yu; Jinn, Tsung-Luo

    2012-03-01

    Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent pathway), and the other works independently of CCS (referred to as CCS-independent pathway). In our previous study, we suggest an unidentified factor will work with glutathione (GSH) for CSD activation in the absence of the CCS. Here, two models of the CCS-independent mechanism are proposed. The role of the unidentified factor may work as a scaffold protein, which provides a platform for the CSD protein and Cu-GSH to interact, or as a Cu carrier, which itself can bind Cu and interact with CSD proteins. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unidentified factor to access.

  14. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  15. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  16. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    Science.gov (United States)

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels.

    Science.gov (United States)

    Zhang, Zhanxia; Sharon, Etery; Freeman, Ronit; Liu, Xiaoqing; Willner, Itamar

    2012-06-05

    The zinc(II)-protoporphyrin IX (ZnPPIX) fluorophore binds to G-quadruplexes, and this results in the enhanced fluorescence of the fluorophore. This property enabled the development of DNA sensors, aptasensors, and a sensor following telomerase activity. The DNA sensor is based on the design of a hairpin structure that includes a "caged" inactive G-quadruplex sequence. Upon opening the hairpin by the analyte DNA, the resulting fluorescence of the ZnPPIX/G-quadruplex provides the readout signal for the sensing event (detection limit 5 nM). Addition of Exonuclease III to the system allows the recycling of the analyte and its amplified analysis (detection limit, 200 pM). The association of the ZnPPIX to G-quadruplex aptamer-substrate complexes allowed the detection of adenosine-5'-triphosphate (ATP, detection limit 10 μM). Finally, the association of ZnPPIX to the G-quadruplex repeat units of telomers allowed the detection of telomerase activity originating from 380 ± 20 cancer 293T cell extract.

  18. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    Science.gov (United States)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  19. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  20. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    Science.gov (United States)

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (Pbone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  1. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    Science.gov (United States)

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  2. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14 from target cells in its apoptosis-inducing activity

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2002-01-01

    Full Text Available Background: Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner.

  3. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  4. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  5. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    Science.gov (United States)

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Biofabrication of Zinc Oxide Nanoparticle from Ochradenus baccatus Leaves: Broad-Spectrum Antibiofilm Activity, Protein Binding Studies, and In Vivo Toxicity and Stress Studies

    Directory of Open Access Journals (Sweden)

    Nasser A. Al-Shabib

    2018-01-01

    Full Text Available Biofilms are complex aggregation of cells that are embedded in EPS matrix. These microcolonies are highly resistant to drugs and are associated with various diseases. Biofilms have greatly affected the food safety by causing severe losses due to food contamination and spoilage. Therefore, novel antibiofilm agents are needed. This study investigates the antibiofilm and protein binding activity of zinc nanoparticles (ZnNPs synthesized from leaf extract of Ochradenus baccatus. Standard physical techniques, including UV-visible spectroscopy Fourier transform infrared spectroscopy and X-ray diffraction and transmission electron microscopy, were used to characterize the synthesized OB-ZnNPs. Synthesized OB-ZnNPs demonstrated significant biofilm inhibition in human and food-borne pathogens (Chromobacterium violaceum, Escherichia coli, P. aeruginosa, Klebsiella pneumoniae, Serratia marcescens, and Listeria monocytogenes at subinhibitory concentrations. OB-ZnNPs significantly reduced the virulence factors like violacein, prodigiosin, and alginate and impaired swarming migration and EPS production. OB-ZnNPs demonstrated efficient binding with HSA protein and no change in their structure or stability was observed. In addition, in vivo toxicity evaluation confirmed that OB-ZnNPs possessed no serious toxic effect even at higher doses. Moreover, they were found to have excellent antioxidant properties that can be employed in the fields of food safety and medicine. Hence, it is envisaged that the OB-ZnNPs can be used as potential nanomaterials to combat drug resistant bacterial infections and prevent contamination/spoilage of food.

  7. Zinc release contributes to hypoglycemia-induced neuronal death.

    Science.gov (United States)

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  8. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  9. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    Science.gov (United States)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  10. Improved Visible Light Photocatalytic Activity for TiO2 Nanomaterials by Codoping with Zinc and Sulfur

    Directory of Open Access Journals (Sweden)

    Qianzhi Xu

    2015-01-01

    Full Text Available S/Zn codoped TiO2 nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2 exhibited higher photocatalytic activity than pure TiO2 and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.

  11. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  12. The effect of severe zinc deficiency and zinc supplement on spatial learning and memory.

    Science.gov (United States)

    Tahmasebi Boroujeni, S; Naghdi, N; Shahbazi, M; Farrokhi, A; Bagherzadeh, F; Kazemnejad, A; Javadian, M

    2009-07-01

    Zinc deficiency during pregnancy and during lactation has been shown to impair cognitive function and motor activity in offspring rats. In the present study, the effect of zinc deficiency and zinc supplement on spatial learning and memory in Morris Water Maze (MWM) and motor activity in open field were investigated. Pregnant rats after mating were divided to three groups. Control group fed a standard diet and a zinc deficient (ZnD) group fed a diet deficient in zinc (0.5-1.5 ppm) and a zinc supplement (ZnS) group fed a standard diet and enhanced zinc in the drinking water (10 ppm). All the diets were exposed during the last trisemester of pregnancy and during lactation. Rat's offspring in these groups were tested for spatial learning and memory in MWM at post natal day (PND) 56 and were tested for motor activity in open field at PND 66.The Escape Latency (EL) and Traveled Distance (TD) in the ZnD group were increased but Percentage of Time Spent in the target quadrant (PTS) was decreased compared to the control group. In addition, these were no significant differences in EL and TD, but PTS had significant increase in ZnS compared to the control group. In the open field, Total Distance Moved (TDM) and Time of Motor Activity (TMA) for the ZnD were decreased compared to the control group, but there were no significant differences in TDM and TMA between control and ZnS groups. These findings suggest that zinc deficiency during the last trimester of pregnancy and during lactation impaired spatial learning and memory in their offsprings and has also negative effect on motor activity. In addition, ZnS has a significant effect on spatial learning and memory but no effect on motor activity in their offsprings.

  13. Iron and Zinc Complexes of Bulky Bis-Imidazole Ligands : Enzyme Mimicry and Ligand-Centered Redox Activity

    NARCIS (Netherlands)

    Folkertsma, E.

    2016-01-01

    The research described in this thesis is directed to the development of cheap and non-toxic iron-based homogeneous catalysts, using enzyme models and redox non-innocent ligands. Inspired by nature, the first approach focuses on the synthesis of structural models of the active site of non-heme iron

  14. Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties.

    Science.gov (United States)

    Sun, Yucong; Shao, Changlu; Li, Xinghua; Guo, Xiaohui; Zhou, Xuejiao; Li, Xiaowei; Liu, Yichun

    2018-04-15

    P-type bismuth oxychloride (p-BiOCl) nanosheets were uniformly grown on n-type zinc ferrite (n-ZnFe 2 O 4 ) electrospun nanofibers via a solvothermal technique to form hierarchical heterostructures of p-BiOCl/n-ZnFe 2 O 4 (p-BiOCl/n-ZnFe 2 O 4 H-Hs). The density and loading amounts of the BiOCl nanosheets with exposed {0 0 1} facets were easily controlled by adjusting the reactant concentration in the solvothermal process. The p-BiOCl/n-ZnFe 2 O 4 H-Hs exhibited enhanced visible-light photocatalytic activities for the degradation of Rhodamine B (RhB). The apparent first-order rate of the p-BiOCl/n-ZnFe 2 O 4 H-Hs and its normalized constant were about 12.6- and 8-fold higher than pure ZnFe 2 O 4 nanofibers. This suggests that both the improved charge separation efficiency from the uniform p-n heterojunctions and the enlarged active surface sites from the hierarchical structures increase the photocatalytic performances. Furthermore, the p-BiOCl/n-ZnFe 2 O 4 H-Hs could be efficiently separated from the solution with an external magnetic field via the ferromagnetic behavior of ZnFe 2 O 4 nanofibers. The magnetic p-BiOCl/n-ZnFe 2 O 4 H-Hs with enhanced visible-light photocatalytic performances might have potential applications in water treatment. Copyright © 2018. Published by Elsevier Inc.

  15. A study on copper and zinc effects in the growth of Aechmea blanchetiana (Baker) L.B. Smith seedlings cultivated in vitro. Application of neutron activation analysis

    International Nuclear Information System (INIS)

    Zampieri, Maria Cristina Tessari

    2010-01-01

    Metals are components of the biosphere, occurring naturally in soil and plants, but as a result of human actions, their levels have been greatly increased, depending on the region. Copper (Cu) and zinc (Zn) are essential for the growth and development of plants, however if in excess become toxic. The aim of this study was to evaluate the potential of plants to absorb Cu and Zn and what effects they cause in seedlings cultivated in vitro. The results of this study may contribute primarily in agricultural and environmental research. The plant investigated was the Aechmea blanchetiana species of the Bromeliaceae family. It is a terrestrial or epiphytic species used as an ornamental plant. The cultivation of seedlings for this study and their exposure to different concentrations of Cu and Zn were performed at the Institute of Botany (IBt) of Sao Paulo. After seed germination, the seedlings were transferred for growth in a culture media containing different concentrations of Cu or Zn. After this period of in vitro cultivation, the seedlings were analyzed for morphometry, anatomy and by neutron activation analysis. Quality control of the results from neutron activation analysis was carried out by the analysis of certified reference materials. The data obtained showed good precision and accuracy for several elements determined. The highest concentrations of Cu used in the exposure were those that caused major structural changes in morphometric and anatomical parameters, however for the Zn no significant differences were verified for most parameters. The A. blanchetiana proved to be a bioaccumulator species of Zn, absorbing high levels of this element in the aerial parts and roots. (author)

  16. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Grenho, L; Salgado, C L; Monteiro, F J; Fernandes, M H; Ferraz, M P

    2015-01-01

    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA–ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections. (paper)

  17. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.

    Science.gov (United States)

    Ishwarya, Ramachandran; Vaseeharan, Baskaralingam; Kalyani, Subramanian; Banumathi, Balan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Al-Anbr, Mohammed N; Khaled, Jamal M; Benelli, Giovanni

    2018-01-01

    The bioactivity of semiconductor nanocomplexes has been poorly studied in the field of pesticide science. In this research, the synthesis of zinc nanoparticles was accomplished through new effortless green chemistry process, using the Ulva lactuca seaweed extract as a reducing and capping agent. The production of U. lactuca-fabricated ZnO nanoparticles (Ul-ZnO Nps) was characterized by powder X-ray diffraction (XRD), UV-visible, Fourier transform infrared (FTIR) spectroscopy, selected area electron diffraction (SAED) analysis and transmission electron microscopy (TEM). The U. lactuca-fabricated ZnO NPs were tested for their photodegradative action against organic dyes, as well as for antibiofilm and larvicidal activities. The UV visible absorbance spectrum of Ul-ZnO NPs exhibited the absorbance band at 325nm and TEM highlighted average crystallite sizes of nanoparticles of 10-50nm. Methylene blue (MB) dye was efficiently corrupted under sunlight in presence of Ul-ZnO NPs. Excellent bactericidal activity was shown by the Ul-ZnO Nps on Gram positive (Bacillus licheniformis and Bacillus pumilis) and Gram negative (Escherichia coliand Proteus vulgaris) bacteria. High antibiofilm potential was noted under both dark and sunlight conditions. The impact of a single treatment with Ul-ZnO NPs on biofilm architecture was also analyzed by confocal laser scanning microscopy (CLSM) on both Gram positive and Gram negative bacteria. Moreover, Ul-ZnO NPs led to 100% mortality of Aedes aegypti fourth instar larvae at the concentration of 50μg/ml within 24h. The effects of ZnO nanoparticle-based treatment on mosquito larval morphology and histology were monitored. Overall, based on our results, we believe that the synthesis of multifunctional Ul-ZnO Nps using widely available seaweed products can be promoted as a potential eco-friendly option to chemical methods currently used for nanosynthesis of antimicrobials and insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an in vitro and in vivo study

    Science.gov (United States)

    Grenho, L.; Salgado, C. L.; Fernandes, M. H.; Monteiro, F. J.; Ferraz, M. P.

    2015-08-01

    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA-ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections.

  19. PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection

    Science.gov (United States)

    Jung, Jee Yong; Chang, Kwang-Poo; Olivier, Martin

    2015-01-01

    Parasites of the Leishmania genus infect and survive within macrophages by inhibiting several microbicidal molecules, such as nitric oxide and pro-inflammatory cytokines. In this context, various species of Leishmania have been reported to inhibit or reduce the production of IL-1β both in vitro and in vivo. However, the mechanism whereby Leishmania parasites are able to affect IL-1β production and secretion by macrophages is still not fully understood. Dependent on the stimulus at hand, the maturation of IL-1β is facilitated by different inflammasome complexes. The NLRP3 inflammasome has been shown to be of pivotal importance in the detection of danger molecules such as inorganic crystals like asbestos, silica and malarial hemozoin, (HZ) as well as infectious agents. In the present work, we investigated whether Leishmania parasites modulate NLRP3 inflammasome activation. Using PMA-differentiated THP-1 cells, we demonstrate that Leishmania infection effectively inhibits macrophage IL-1β production upon stimulation. In this context, the expression and activity of the metalloprotease GP63 - a critical virulence factor expressed by all infectious Leishmania species - is a prerequisite for a Leishmania-mediated reduction of IL-1β secretion. Accordingly, L. mexicana, purified GP63 and GP63-containing exosomes, caused the inhibition of macrophage IL-1β production. Leishmania-dependent suppression of IL-1β secretion is accompanied by an inhibition of reactive oxygen species (ROS) production that has previously been shown to be associated with NLRP3 inflammasome activation. The observed loss of ROS production was due to an impaired PKC-mediated protein phosphorylation. Furthermore, ROS-independent inflammasome activation was inhibited, possibly due to an observed GP63-dependent cleavage of inflammasome and inflammasome-related proteins. Collectively for the first time, we herein provide evidence that the protozoan parasite Leishmania, through its surface

  20. Enhanced visible light photocatalytic activity of copper-doped titanium oxide–zinc oxide heterojunction for methyl orange degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dorraj, Masoumeh, E-mail: masidor20@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alizadeh, Mahdi [UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4 Wisma R& D, University of Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur (Malaysia); Sairi, Nor Asrina, E-mail: asrina@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, Wan Jefrey [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Goh, Boon Tong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng; Alias, Yatimah [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2017-08-31

    Highlights: • The novel Cu-TiO{sub 2}/ZnO heterojunction nanocomposite was synthesized for the first time via a two-step process. • The Cu-TiO{sub 2}/ZnO heterostructured nanocomposite exhibited an enhanced visible-light-driven photocatalytic activity for MO degradation. • The heterostructured nanocomposite could be recycled during the degradation of MO in a three-cycle experiment with good stability. - Abstract: A novel Cu-doped TiO{sub 2} coupled with ZnO nanoparticles (Cu-TiO{sub 2}/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO{sub 2}/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra and Brunauer–Emmett–Teller adsorption isotherm techniques. The Cu-TiO{sub 2}/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO{sub 2} and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO{sub 2}/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron−hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  1. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    Science.gov (United States)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  2. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  3. Protection against ionising radiation and synergism with thiols by zinc aspartate

    International Nuclear Information System (INIS)

    Floersheim, G.L.; Floersheim, P.

    1986-01-01

    Pre-treatment with zinc aspartate protected mice against the lethal effects of radiation and raised the LD 50 from 8 gy to 12.2 Gy. Zinc chloride and zinc sulphate were clearly less active. The radioprotective effect of zinc aspartate was equivalent to cysteamine and slightly inferior to S,2-aminoethylisothiourea (AET). Zinc aspartate displayed a similar therapeutic index to the thiols but could be applied at an earlier time before irradiation. Synergistic effects occurred with the combined administration of zinc aspartate and thiols. By giving zinc aspartate with cysteamine, the LD 50 was increased to 13.25 Gy and, by combining it in the optimal protocol with AET, to 17.3 Gy. The radioprotection by zinc and its synergism with thiols is explained by the stabilisation of thiols through the formation of zinc complexes. (author)

  4. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  5. Hydrocracking mechanisms in molten zinc chloride. Isotope scrambling and pyrolysis studies

    International Nuclear Information System (INIS)

    Larsen, J.W.; Earnest, S.

    1979-01-01

    Bruceton coal was hydrocracked in molten zinc chloride using H 2 -D 2 mixtures. No H-D was observed. The pyrolysis of Bruceton coal and a lignite in molten zinc chloride and an inert salt was carried out and the tetrahydrofuran and pyridine extractability of the products determined. In the absence of H 2 , zinc chloride is not an effective cracking catalyst. It is tentatively concluded that the catalytically active species is formed from zinc chloride and something in the coal and H 2 . The interactions between zinc chloride and the lignite appear to be significantly different than the interactions between zinc chloride and the bituminous coal. (Auth.)

  6. Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of zinc-deficient rats.

    Science.gov (United States)

    Lee, Bao-Hong; Ho, Bing-Ying; Wang, Chin-Thin; Pan, Tzu-Ming

    2009-11-25

    Zn deficiency is a common disease leading to memory impairment with increasing age. This study evaluated the protection effects of red mold rice (RMR) administration and Zn supplementation against memory and learning ability impairments from oxidative stress caused by Zn deficiency. Rats (4 weeks old) were induced to be Zn deficiency by a Zn-deficient diet for 12 weeks. After that, rats were administered Zn, 1xRMR, 5xRMR, and various dosages of RMR plus Zn, respectively. Decreases of antioxidant enzyme activities in the hippocampus and cortex were observed, and the levels of Ca, Fe, and Mg were increased in the hippocampus and cortex of Zn-deficient rats, leading to memory and learning ability injury. However, the administration of RMR (1- or 5-fold dosage) and with or without Zn significantly improved the antioxidase and neural activity to maintain cortex and hippocampus functions. This study demonstrates that RMR is a possible functional food for the prevention or cure of neural injury associated with Zn deficiency.

  7. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  8. RETRACTED: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity

    Science.gov (United States)

    Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S.

    2015-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editor. The article contains the same image in two panels (Fig. 8A and B) which was previously published in "Facile, eco-friendly and template free photosynthesis of cauliflower like ZnO nanoparticles using leaf extract of Tamarindus indica (L.) and its biological evolution of antibacterial and antifungal activities" by K. Elumalai et al. in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015) 1052-1057, http://dx.doi.org/10.1016/j.saa.2014.09.129 despite being attributed to different nanoparticles. Furthermore, Figures 9C, D and E are the same, despite being indicated as analysis of different microorganisms. The scientific community takes a very strong view on this scientific misbehavior and apologies are offered to readers of the journal that this was not detected during the submission process.

  9. Zinc in diet

    Science.gov (United States)

    ... Effects Symptoms of zinc deficiency include: Frequent infections Hypogonadism in males Loss of hair Poor appetite Problems with the ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  10. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor.

    Science.gov (United States)

    Sarwar, Shamila; Ali, Asif; Pal, Mahadeb; Chakrabarti, Pinak

    2017-11-03

    Vibrio cholerae causes cholera and is the leading cause of diarrhea in developing countries, highlighting the need for the development of new treatment strategies to combat this disease agent. While exploring the possibility of using zinc oxide (ZnO) nanoparticles (NPs) in cholera treatment, we previously found that ZnO NPs reduce fluid accumulation in mouse ileum induced by the cholera toxin (CT) protein. To uncover the mechanism of action of ZnO NPs on CT activity, here we used classical (O395) and El Tor (C6706) V. cholerae biotypes in growth and biochemical assays. We found that a ZnO NP concentration of 10 μg/ml did not affect the growth rates of these two strains, nor did we observe that ZnO NPs reduce the expression levels of CT mRNA and protein. It was observed that ZnO NPs form a complex with CT, appear to disrupt the CT secondary structure, and block its interaction with the GM1 ganglioside receptor in the outer leaflet of the plasma membrane in intestinal (HT-29) cells and thereby reduce CT uptake into the cells. In the range of 2.5-10 μg/ml, ZnO NPs exhibited no cytotoxicity on kidney (HEK293) and HT-29 cells. We conclude that ZnO NPs prevent the first step in the translocation of cholera toxin into intestinal epithelial cells without exerting measurable toxic effects on HEK293 and HT-29 cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: Operational factors, mechanism and performance optimization using central composite design and surface modeling.

    Science.gov (United States)

    Zbair, M; Anfar, Z; Ait Ahsaine, H; El Alem, N; Ezahri, M

    2018-01-15

    Zinc Oxide/Activated Carbon Powder was used for the adsorptive removal of Acridine Orange dye (AO) from aqueous solution. The prepared composite material was characterized using XRD, XPS, SEM, EDS, FTIR, XRF, Raman, BET surface area and TGA/DTA. The adsorption isotherms, kinetics and thermodynamic studies of AO onto the ZnO-AC were thoroughly analyzed. The kinetic modeling data revealed that the adsorption of AO has a good adjustment to the pseudo-second-order model. Langmuir isotherm model is better fitted for adsorption data and the maximum adsorption capacity was found to be 909.1 mg/g at 313 K. The negative values of ΔG showed the spontaneous nature of the AO adsorption onto ZnO-AC. The results indicated the adsorption was pH dependent which is mainly governed by electrostatic attraction, hydrogen bonding and π-π interaction. Reusability test showed a low decrease in the removal performance of ZnO-AC due to the mesopore filling mechanism confirmed by BET analysis after adsorption. Also, thermal regeneration could deposit AO dye on the surface of the composite leading to the efficiency decrease. Finally, the effect of various parameters such as pH, temperature, contact time and initial dye concentration was studied using response surface methodology (RSM). The model predicted a maximum AO removal (99.42 ± 0.57%) under the optimum conditions, which was very close to the experimental value (99.32 ± 0.18%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Selective Solid-Phase Extraction of Zinc(II) from Environmental Water Samples Using Ion Imprinted Activated Carbon.

    Science.gov (United States)

    Moniri, Elham; Panahi, Homayon Ahmad; Aghdam, Khaledeh; Sharif, Amir Abdollah Mehrdad

    2015-01-01

    A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using FTIR spectroscopy, elemental analysis, and thermogravimetric analysis and evaluated for the preconcentration and determination of trace Zn(II) in environmental water samples. The optimum pH value for sorption of the metal ion was 6-7.5. The sorption capacity of the functionalized sorbent was 66.6 mg/g. The chelating sorbent can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 0.5 M nitric acid as the eluent. Compared with nonimprinted polymer particles, the prepared Zn-imprinted sorbent showed high adsorption capacity, significant selectivity, and good site accessibility for Zn(II). Scatchard analysis revealed that the homogeneous binding sites were formed in the polymer. The equilibrium sorption data of Zn(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin, and Redlich-Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.139, 12.82, and 2.34, respectively, at 25°C.

  13. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  14. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    Science.gov (United States)

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  15. Oral zinc for treating diarrhoea in children

    Science.gov (United States)

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    from dehydration. Giving fluids by mouth (using an oral rehydration solution (ORS)) has been shown to save children's lives, but it has no effect on the length of time the children suffer with diarrhoea. Zinc supplementation could help reduce the duration and the severity of diarrhoea, and therefore have an additional benefit over ORS in reducing children mortality. What is oral zinc and how may it shorten the duration and severity of diarrhoea Zinc is usually given as zinc sulphate, zinc acetate, or zinc gluconate, which are all water-soluble compounds. The World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) recommend 10 mg to 20 mg of zinc per day for children with diarrhoea. There are several mechanism of action of zinc on acute diarrhoea, some of which are specific to the gastrointestinal system: zinc restores mucosal barrier integrity and enterocyte brush-border enzyme activity, it promotes the production of antibodies and circulating lymphocytes against intestinal pathogens, and has a direct effect on ion channels, acting as a potassium channel blocker of adenosine 3-5-cyclic monophosphate-mediated chlorine secretion. Cochrane researchers examined the evidence available up to 30 September 2016. What the evidence in the review suggests Thirty-three trials that included 10,841 children met the inclusion criteria of this review. Among children with acute diarrhoea, we don't know if treating children with zinc has an effect on death or number of children hospitalized (very low certainty evidence). In children older than six months, zinc supplementation may shorten the average duration of diarrhoea by around half a day (low certainty evidence), and probably reduces the number of children whose diarrhoea persists until day seven (moderate certainty evidence). In children with signs of malnutrition the effect appears greater, reducing the duration of diarrhoea by around a day (high certainty evidence). Conversely, in children younger than six

  16. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  17. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Kryštof, Vladimír; Šipl, M.

    2006-01-01

    Roč. 100, č. 2 (2006), s. 214-225 ISSN 0162-0134 R&D Projects: GA ČR GA203/04/1168 Institutional research plan: CEZ:AV0Z50380511 Keywords : Zinc(II) complexes * 6-Benzylaminopurine derivatives * Bohemine * Olomoucine * X-ray structures Subject RIV: CA - Inorganic Chemistry Impact factor: 2.654, year: 2006

  18. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  19. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  20. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells.

    Science.gov (United States)

    Abreu, Isidro; Saéz, Ángela; Castro-Rodríguez, Rosario; Escudero, Viviana; Rodríguez-Haas, Benjamín; Senovilla, Marta; Larue, Camille; Grolimund, Daniel; Tejada-Jiménez, Manuel; Imperial, Juan; González-Guerrero, Manuel

    2017-11-01

    Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone. © 2017 John Wiley & Sons Ltd.

  1. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  2. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  3. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  4. The effect of a moderate zinc deficiency and dietary fat source on the activity and expression of the Δ(3)Δ (2)-enoyl-CoA isomerase in the liver of growing rats.

    Science.gov (United States)

    Justus, Jennifer; Weigand, Edgar

    2014-06-01

    Auxiliary enzymes participate in β-oxidation of unsaturated fatty acids. The objective of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on Δ(3)Δ(2)-enoyl-CoA isomerase (ECI) in the liver and other tissues. Five groups of eight weanling rats each were fed moderately zinc-deficient (ZD) or zinc-adequate (ZA) semisynthetic diets (7 or 50 mg Zn/kg) enriched with 22 % cocoa butter (CB) or 22 % safflower oil (SO) for 4 weeks: (1) ZD-CB, fed free choice; (2) ZA-CBR, ZA-CB diet fed in equivalent amounts consumed by the ZD-CB group; (3) ZD-SO, fed free choice; (4) ZA-SOR, ZA-SO diet fed in equivalent amounts consumed by the ZD-SO group; and (5) ZA-SO, fed free choice. Growth and Zn status markers were markedly reduced in the ZD groups. ECI activity in the liver of the animals fed the ZD- and ZA-SO diets were significantly higher (approximately 2- and 3-fold, respectively) as compared with the CB-fed animals, whereas activities in extrahepatic tissues (kidneys, heart, skeletal muscle, testes, adipose tissue) were not altered by dietary treatments. Transcript levels of the mitochondrial Eci gene in the liver did not significantly differ between ZD and ZA rats, but were 1.6-fold higher in the ZA-SO- than in the ZD-CB-fed animals (P safflower oil as a source high in linoleic acid induce markedly increased hepatic ECI activities and that a moderate Zn deficiency does not affect transcription of the mitochondrial Eci gene in the liver.

  5. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  6. Effect of zinc on grain characteristics of draught-resistant rice mutants

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.; Rofail, N.B.; Eissa, E.A.; Hassan, A.M.

    1996-01-01

    Through the use of Instrumental Neutron Activation Analysis (INAA), zinc concentration was determined in kernels resulted on plants of six drought-resistant rice mutant lines fertilized with zinc sulphate. It was found that zinc fertilization increased zinc residues in the kernels with varying concentrations depending on the line, each line reacted and responded to zinc independently. Zinc content in the kernels ranged from 5.63 to 91.4 ppm in the unfertilized control lines. This range was enlarged due to zinc fertilization of the plants to be from 93.51 to 554.53 ppm. It was also noticed that zinc fertilization increased seed heaviness in varying degrees depending on the line itself. This increase may be due to the increase in kernel thickness rather than in kernel width or length. (author). 26 refs., 3 figs

  7. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  8. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs

  9. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  10. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  11. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

    Directory of Open Access Journals (Sweden)

    Shawn Sanctis

    2015-03-01

    Full Text Available Tobacco mosaic virus (TMV has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET. A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS, transmission electron microscopy (TEM, grazing incidence X-ray diffractometry (GI-XRD and atomic force microscopy (AFM. TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  12. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  13. Potential ecological risk assessment and predicting zinc accumulation in soils.

    Science.gov (United States)

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2018-02-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg -1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg -1 d.m. (0.01 mol dm -3 CaCl 2 ), and between 0.03 and 71.54 mg kg -1 d.m. (1 mol dm -3 NH 4 NO 3 ). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90

  14. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  15. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  16. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    Science.gov (United States)

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  17. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  18. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  19. short communication determination of trace amounts of zinc by flame

    African Journals Online (AJOL)

    Preferred Customer

    Zinc ions were separated by solid phase extraction onto modified natural ... short analysis time, high enrichment factor, low cost and consumption of organic ... Up to now, several kinds of sorbents, such as thiol cotton [18], activated carbon [19],.

  20. Zinc bioavailability in the chick

    International Nuclear Information System (INIS)

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic 65 Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%

  1. A bio-inspired zinc finger analogue anchored in 2D hexagonal meso-porous silica for room temperature CO_2 activation via a hydrogeno-carbonate route

    International Nuclear Information System (INIS)

    Doghri, Hanene; Baranova, Elena A.; Albela, Belen; Bonneviot, Laurent; Mongia Said-Zina

    2017-01-01

    Bio-inspired diethylenetriamine-zinc(II) complexes were anchored into the nano-pores of hexagonal meso-porous MCM41-like silicas targeting a carbamate free and low temperature CO_2 recycling process. A step-by-step approach was adopted to perform an in situ synthesis in order to mimic the zinc finger of carbonic anhydrases, the fastest family of enzymes. In the presence of a surface-masking pattern of TMA"+ ions, some silanol groups were capped using grafted trimethylsilyl functions, TMSgr, (gr for grafted). After removing the masking ions, a tridentate diethylenetriamine ligand was anchored using diethylenetriamine propyl-trimethoxysilane. The so-called DETA_a_n ligands (an for anchored) were partially mono-protonated using either cyclohexane or isopropanol as a solvent. Nonetheless, up to two thirds of them were metallated by Zn(II) ions, leading to the targeted anchored zinc finger mimic [Zn(DETAan)L]+(L = Cl or OH). CO_2 is then adsorbed at room temperature and in humid ambient air by the formation of an intermediate hydrogeno-carbonate-zinc complex. Specific IR signatures at 1330 and 1400 cm"-"1 together with characteristic C 1s and Zn 2p3/2 XPS binding energies at 286.4 and 1024.6 eV advocate for a rather symmetrical bidentate [η"2-CO_3] structural unit in the anchored complex [Zn(DETA_a_n)(η"2-HCO_3"*)]"+, where the Zn(II) ion is most likely penta-coordinated. The internal pH value varied by less than 0.5 depending on the metal reacting with the DETA_a_n ligand and its ability to generate HCO_3"-, due to the buffering effect of surface silanol and amino groups according to the level of protonation of the DETA moieties measured from the N 1s XPS spectra. In contrast to nitrate ions, chloride ions were found to inhibit the formation of hydrogeno-carbonate. (authors)

  2. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  3. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  4. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  5. Zinc-nickel alloy electrodeposits for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheela, G.; Pushpavanam, Malathy; Pushpavanam, S. [Central Electrochemical Research Inst., Karaikudi (India)

    2002-06-01

    Electrodeposited zinc-nickel alloys of various compositions were prepared. A suitable electrolyte and conditions to produce alloys of various compositions were identified. Alloys produced on electroformed nickel foils were etched in caustic to leach out zinc and to produce the Raney type, porous electro catalytic surface for hydrogen evolution. The electrodes were examined by polarisation measurements, to evaluate their Tafel parameters, cyclic voltammetry, to test the change in surface properties on repeated cycling, scanning electron microscopy to identify their microstructure and X-ray diffraction. The catalytic activity as well as the life of the electrode produced from 50% zinc alloy was found to be better than others. (Author)

  6. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  7. Zinc injection in German PWR plants

    International Nuclear Information System (INIS)

    Streit, K.

    2004-01-01

    50% after 5 years of zinc chemistry. Further cycles with zinc injection will show whether local dose rates decrease to even lower levels. Zinc injection now has become a mature method and is now being successfully applied at several old design, co containing PWRs in Germany, Brazil and US. Several PWRs in Europe and Asia are preparing for zinc chemistry in the near future. The method is inexpensive and thus also attractive in terms of the cost/benefit criterion of the ALARA principle. In Germany, Zinc injection for reducing radiation fields was introduced first at Unit B of Biblis NPP in September 1996 and at Obrigheim NPP in February 1998. Zinc injection is still being implemented today at these plants. This paper gives an overview of the experience acquired with this method. The main topic addressed in this paper is the evolution of dose rates at the primary system and work-related doses since introduction of the zinc chemistry. Reductions in high dose rate areas have meanwhile achieved values of 40 to 50%. Annual collective doses per man-hour spent in the controlled access area of the plant as well as personal doses for specific activities are also decreasing

  8. Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2

    Science.gov (United States)

    Fong, Louise Y.Y.; Jiang, Yubao; Riley, Maurisa; Liu, Xianglan; Smalley, Karl J.; Guttridge, Denis C.; Farber, John L.

    2009-01-01

    Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced for-estomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive bio-markers COX-2, nuclear factor (NF)-κ B p65 and leukotriene A4 hydrolase (LTA4H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2−/− forestomachs displayed strong LTA4H immunostaining, indicating activation of an alter-native pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer. PMID:17985342

  9. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    Science.gov (United States)

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.

  10. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    Science.gov (United States)

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  11. [Influence of hormonal contraceptives on indices of zinc homeostasis and bone remodeling in young adult women].

    Science.gov (United States)

    Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino

    2015-09-01

    To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, puse decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.

  12. Bioaccumulation of zinc in foodstuffs by nuclear and related techniques

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Olivares Reumont, S.; Lima Cazorla, L.; Gelen Rudnikas, A.; D'Alessandro Rodriguez, K.; Arado Lopez, J. O.; Denis Alpizar, O.; Diaz Arado, O.; Viguri Fuente, J.

    2011-01-01

    The bioaccumulation of zinc in regular consumption foodstuff (sugar, rice, some vegetables, roots and shellfishes) in Cuba is reported. Zinc content in food samples and its corresponding soils or sediments are determined by Instrumental Neutron Activation analysis (INAA), X-Ray Fluorescence analysis (XRF), inductively coupled plasma emission spectrometry (ICP-AES) and Atomic Absorption spectrometry (AES). The obtained results show rice as the major Zn bioaccumulator of the studied products and the main Zn source in Cuban human diet. (Author)

  13. Electrochemical Activity of a La0.9Ca0.1Co1−xFexO3 Catalyst for a Zinc Air Battery Electrode

    Directory of Open Access Journals (Sweden)

    Seungwook Eom

    2015-01-01

    Full Text Available The optimum composition of cathode catalyst has been studied for rechargeable zinc air battery application. La0.9Ca0.1Co1−xFexO3  (x=0–0.4 perovskite powders were prepared using the citrate method. The substitution ratio of Co2+ with Fe3+ cations was controlled in the range of 0–0.4. The optimum substitution ratio of Fe3+ cations was determined by electrochemical measurement of the air cathode composed of the catalyst, polytetrafluoroethylene (PTFE binder, and Vulcan XC-72 carbon. The substitution by Fe enhanced the electrochemical performances of the catalysts. Considering oxygen reduction/evolution reactions and cyclability, we achieved optimum substitution level of x=0.1 in La0.9Ca0.1Co1−xFexO3.

  14. Efficient synthesis of zinc-containing mesoporous silicas by microwave irradiation method and their high activities in acetylation of 1,2-dimethoxybenzene with acetic anhydride

    Directory of Open Access Journals (Sweden)

    K. Bachari

    2016-09-01

    Full Text Available A series of acid zinc-containing mesoporous materials have been synthesized by microwave irradiation method with different Si/Zn ratios (Si/Zn = 100, 65, 15 and characterized by several spectroscopic techniques such as: N2 physical adsorption, ICP, XRD, TEM, FT-IR and a temperature-programmed-desorption (TPD of pyridine. The liquid phase of acetylation of 1,2-dimethoxybenzene with acetic anhydride has been investigated over this series of catalysts. In fact, the catalyst Zn-JLU-15 (15 showed bigger performance in the acid-catalyzed acetylation of 1,2-dimethoxybenzene employing acetic anhydride as an acylating agent. Furthermore, the kinetics of the acetylation of 1,2-dimethoxybenzene over these catalysts have also been investigated.

  15. Innovative uses for zinc in dermatology.

    Science.gov (United States)

    Bae, Yoon Soo; Hill, Nikki D; Bibi, Yuval; Dreiher, Jacob; Cohen, Arnon D

    2010-07-01

    Severe zinc deficiency states, such as acrodermatitis enteropathica, are associated with a variety of skin manifestations, such as perioral, acral, and perineal dermatitis. These syndromes can be reversed with systemic zinc repletion. In addition to skin pathologies that are clearly zinc-dependent, many dermatologic conditions (eg, dandruff, acne, and diaper rash) have been associated and treated with zinc. Success rates for treatment with zinc vary greatly depending on the disease, mode of administration, and precise zinc preparation used. With the exception of systemic zinc deficiency states, there is little evidence that convincingly demonstrates the efficacy of zinc as a reliable first-line treatment for most dermatologic conditions. However, zinc may be considered as an adjunctive treatment modality. Further research is needed to establish the indications for zinc treatment in dermatology, optimal mode of zinc delivery, and best type of zinc compound to be used. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation.

    Science.gov (United States)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Karthikeyan, Dhanapalan; Lee, Yong Rok

    2016-09-01

    Zinc oxide nanoparticles decorated graphene oxide (ZnO@GO) composite was synthesized by simple solvothermal method where zinc oxide (ZnO) nanoparticles and graphene oxide (GO) were synthesized via simple thermal oxidation and Hummers method, respectively. The obtained materials were thoroughly characterized by various physico-chemical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Raman spectrum shows the intensity of D to G value was close to one which confirms the obtained GO and ZnO@GO composite possesses moderate graphitization. TEM images shows the ZnO nanoparticles mean size of 15±5nm were dispersed over the wrinkled graphene layers. The photocatalytic performance of ZnO@GO composite on degradation of methylene blue (MB) is investigated and the results show that the GO plays an important role in the enhancement of photocatalytic performance. The synthesized ZnO@GO composite achieves a maximum degradation efficiency of 98.5% in a neutral solution under UV-light irradiation for 15min as compared with pure ZnO (degradation efficiency is 49% after 60min of irradiation) due to the increased light absorption, the reduced charge recombination with the introduction of GO. Moreover, the resulting ZnO@GO composite possesses excellent degradation efficiency as compared to ZnO nanoparticles alone on MB. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evidence for a zinc/proton antiporter in rat brain.

    Science.gov (United States)

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  18. Properties of tire rubber with zinc-containing technological additives

    Directory of Open Access Journals (Sweden)

    S. N. Kayushnikov

    2017-01-01

    Full Text Available In this paper, we studied the influence of zinc-containing technological additives on partial replacement of zinc oxide and stearic acid on deformation-strength and performance properties of tire elastomeric compositions based on polyisoprene rubber and combination of oil-filled butadiene-styrene and polybutadiene rubbers. It was revealed that partial replacement of zinc oxide and stearic acid with zinc-containing technological additives does not significantly affect the basic physico-mechanical properties of rubbers based on synthetic rubbers of general use. It was determined that the introduction of zinc-containing technological additives SCC2 in combination with zinc oxide in all the studied ratios and SCC3 in combination with zinc oxide in 4: 1 and 3: 1 ratios leads to increase (up to 10.4% of the resistance of these rubbers under the action of temperature-force fields, which is probably due to a more even distribution of polar components of curing system in non-polar elastomeric matrix, as well as the type of cross-links formed during vulcanization under the action of surface-active additives. It has been found that the introduction of zinc-containing additives into the elastomeric compositions based on SRMS-30 ARKM-15 + SRD in combination with zinc oxide leads to increase to 6.3% of wear resistance of rubbers, which may be due to a lower defectiveness of vulcanization structure of these rubbers, concentration of stress centers in the material. For rubbers based on SRI-3, preservation of bond strength of rubber with a textile cord at a sufficiently high level is shown.

  19. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  20. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  1. Fluoride Alters Serum Elemental (Calcium, Magnesium, Copper, and Zinc) Homeostasis Along with Erythrocyte Carbonic Anhydrase Activity in Fluorosis Endemic Villages and Restores on Supply of Safe Drinking Water in School-Going Children of Nalgonda District, India.

    Science.gov (United States)

    Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen

    2018-02-17

    The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing water for 5 years in school-going children.

  2. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  3. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  4. Zinc: an essential oligoelement

    OpenAIRE

    Rubio, C.; González Weller, D.; Martín-Izquierdo, R. E.; Revert, C.; Rodríguez, I.; Hardisson, A.

    2007-01-01

    En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas) del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively review...

  5. Cadmium and zinc

    International Nuclear Information System (INIS)

    Safaya, N.M.; McLean, J.E.; Halverson, G.A.

    1987-01-01

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  6. Structure of Stenotrophomonas maltophilia FeoA complexed with zinc: a unique prokaryotic SH3-domain protein that possibly acts as a bacterial ferrous iron-transport activating factor

    International Nuclear Information System (INIS)

    Su, Yi-Che; Chin, Ko-Hsin; Hung, Hui-Chih; Shen, Gwan-Han; Wang, Andrew H.-J.; Chou, Shan-Ho

    2010-01-01

    The crystal structure of FeoA from Stenotrophomonas maltophilia has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach and revealed a unique dimer cross-linked by two zinc ions and six chloride ions. Iron is vital to the majority of prokaryotes, with ferrous iron believed to be the preferred form for iron uptake owing to its much better solubility. The major route for bacterial ferrous iron uptake is found to be via an Feo (ferrous iron-transport) system comprising the three proteins FeoA, FeoB and FeoC. Although the structure and function of FeoB have received much attention recently, the roles played by FeoA and FeoC have been little investigated to date. Here, the tertiary structure of FeoA from Stenotrophomonas maltophilia (Sm), a vital opportunistic pathogen in immunodepressed hosts, is reported. The crystal structure of SmFeoA has been determined to a resolution of 1.7 Å using an Se single-wavelength anomalous dispersion (Se-SAD) approach. Although SmFeoA bears low sequence identity to eukaryotic proteins, its structure is found to adopt a eukaryotic SH3-domain-like fold. It also bears weak similarity to the C-terminal SH3 domain of bacterial DtxR (diphtheria toxin regulator), with some unique characteristics. Intriguingly, SmFeoA is found to adopt a unique dimer cross-linked by two zinc ions and six anions (chloride ions). Since FeoB has been found to contain a G-protein-like domain with low GTPase activity, FeoA may interact with FeoB through the SH3–G-protein domain interaction to act as a ferrous iron-transport activating factor

  7. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio development.

    Directory of Open Access Journals (Sweden)

    Laura M Beaver

    Full Text Available Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes.

  8. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  9. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  10. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    Walters, W.S.; Page, J.D.; Gaffka, A.P.; Kingsbury, A.F.; Foster, J.; Anderson, A.; Wickenden, D.; Henshaw, J.; Zmitko, M.; Masarik, V.; Svarc, V.

    2002-01-01

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  11. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    Directory of Open Access Journals (Sweden)

    Azzouz I

    2013-12-01

    Full Text Available Inès Azzouz, Hamdi Trabelsi, Amel Hanini, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh AbdelmelekLaboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, TunisiaAbstract: The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip] in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip and selenium (0.20 mg/L, per os [by mouth] led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium to malondialdehyde level in rat liver.Keywords: nanocomplexes biosynthesis, antioxidative responses, X-ray diffraction, fluorescence microscopy, liver

  12. Regulating the electrodeposition of zinc and cadmium coatings with mixtures of o-oxyazomethyne derivatives

    International Nuclear Information System (INIS)

    Grigor'ev, V.P.; Shpan'ko, S.P.; Dymnikova, O.V.; Popov, L.D.

    2000-01-01

    The results of electrodeposition of zinc and cadmium metals from the sulfate electrolyte in presence of the organic compounds of the oxyazomethine reaction series are described. It is shown that the current dependences retardation coefficient and cathode polarization of electrodeposited zinc and cadmium are described by equations, following from the principle of the reaction and activation free energy linearity. The character of these dependence for the negatively charged zinc and positively charged cadmium cathodes is similar [ru

  13. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  14. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    Science.gov (United States)

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating.

  15. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    Science.gov (United States)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  16. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils. Derivation of relationships for free metal ion activities and validation with independent data

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, J.E.; Roemkens, P.F.A.M.; De Vries, W. [Soil Science Centre, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Comans, R.N.J. [Energy Research Centre of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands); Luster, J. [Research Unit Soil Sciences, Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111 CH-8903 Birmensdorf (Switzerland); Pampura, T. [Laboratory of Physical Chemistry of Soils, Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Moscow Region, 142290 (Russian Federation); Shotbolt, L. [Department of Geography, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Tipping, E. [Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2010-07-01

    Models to predict the solid-solution partitioning of trace metals are important tools in risk assessment, providing information on the biological availability of metals and their leaching. Empirically based models, or transfer functions, published to date differ with respect to the mathematical model used, the optimization method, the methods used to determine metal concentrations in the solid and solution phases and the soil properties accounted for. Here we review these methodological aspects before deriving our own transfer functions that relate free metal ion activities to reactive metal contents in the solid phase. One single function was able to predict free-metal ion activities estimated by a variety of soil solution extraction methods. Evaluation of the mathematical formulation showed that transfer functions derived to optimize the Freundlich adsorption constant (Kf ), in contrast to functions derived to optimize either the solid or solution concentration, were most suitable for predicting concentrations in solution from solid phase concentrations and vice versa. The model was shown to be generally applicable on the basis of a large number of independent data, for which predicted free metal activities were within one order of magnitude of the observations. The model only over-estimated free-metal ion activities at alkaline pH (>7). The use of the reactive metal content measured by 0.43 m HNO3 rather than the total metal content resulted in a close correlation with measured data, particularly for nickel and zinc.

  17. Removal of lead and zinc ions from water by low cost adsorbents.

    Science.gov (United States)

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  18. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  19. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  20. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  1. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood.We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex.Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  2. Two mechanisms of oral malodor inhibition by zinc ions.

    Science.gov (United States)

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  3. Zinc allocation and re-allocation in rice

    Science.gov (United States)

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  4. Lead and Zinc pollution of soils in the Kabwe lead-zinc mining area

    International Nuclear Information System (INIS)

    Musonda, B.M.; Tembo, F

    2004-01-01

    Lead and Zinc pollution of soils related to mining activities in Kabwe district is one of the major environmental problems in Zambia today. In this study, we investigated the distribution of lead and zinc in topsoil and subsoil. Samples were collected from topsoil(0-20cm) and subsoil(20-50cm)at predetermined sites using a 5km x 5km regional grid and a 500m x 500m local grid. After preparation 260 local and 200 regional samples were analysed for heavy metals by atomic absorption spectrophotometry. The background levels of cold HNO3 extractable lead and zinc are 50mg/kg and 70mg/kg respectively. The degree of Pb and Zn contamination of the soils varies with proximity of the soils to Kabwe mining centre. The content of Pb and Zn in topsoil that is very close to the mine is up to 1.6% and 3.9% respectively while soils that are very far from the mine generally contain less than 10mg/kg Pb and 20mg/kg Zn. The heavy metal contamination patterns in soils adjacent to the mine have been formed by wind dispersion of particulate matter and dry deposition. The risk of exposure of humans to lead and zinc is very high in areas that are adjacent to the mining centre. (author)

  5. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  6. Role of Heavy Metal Pumps in Transport of Zinc from Soil to Seeds of Plants

    DEFF Research Database (Denmark)

    Olsen, Lene Irene

    . In Arabidopsis roots, the heavy metal ATPases AtHMA2 and AtHMA4 are localized to the pericycle cells and are important for the export of zinc, in order for zinc to enter the xylem and get to the shoot. I have identified a new novel role for AtHMA2 and AtHMA4 in the developing seed. The Arabidopsis seed consists...... at this location actively export zinc from the mother plant seed coat. Mutant plants that lack AtHMA2 and AtHMA4 accumulate zinc in the seed coat, and consequently have vastly reduced amounts of zinc inside the seed. The finding that AtHMA2 and AtHMA4 are involved in pumping zinc out of the mother plant seed coat...

  7. Radiotracer investigations of the shaft processes in Polish zinc and lead metallurgy. 2

    International Nuclear Information System (INIS)

    Michalik, J.S.; Bazaniak, Z.; Palige, J.

    1990-01-01

    The conditions and the physico-chemical processes occurring in the ISP furnace cause the possibility of partial reoxidation of vapourized zinc escaping from the furnace counter-current to the batch material. In order to determine the reoxidation degree and localize the active zone the radiotracer method was applied. The method of solving the convolution integral was used. The experimental part resulted indetermination of impulse characteristics of the zinc condenser; in the next step, the curves of zinc concentration distribution at the ISP furnace outlet were found by calculations. 65 Zn was used as tracer for the industrial experiments. About 25-30% of total amount of zinc obtained as a result of zinc oxides reduction processes undergoes reoxidation in the surface layer of the bath in the furnace shaft. The method of tracer preparation for investigating the behaviour of zinc occurring in the form of silicates and ferrates in the shaft has been proposed. (author)

  8. Allergic contact dermatitis induced by zinc pyrithione in shampoo: a case report

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hsieh

    2010-12-01

    Full Text Available Shampoo-induced allergic contact dermatitis is difficult to diagnose clinically because it can involve multiple and variable areas where the shampoo flows. Zinc pyrithione is a common active agent in medicated shampoo that is known to have good anti-dandruff and antifungal effects. Despite its low risk of sensitization, cases of allergic contact dermatitis still occur because of the popularity of such products. We report a 33-year-old man who developed pruritic rash on his scalp, face, neck, and hands after using a new shampoo containing zinc pyrithione. A patch test revealed a positive reaction to zinc pyrithione and personal shampoo containing zinc pyrithione.

  9. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  10. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    Science.gov (United States)

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Comparison of the Effects of Pre-training Administration of Zinc Oxide and ‎Zinc Oxide Nanoparticles on Long-term Memory of Adult Male Mice

    Directory of Open Access Journals (Sweden)

    N Issapare

    2016-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: Zinc oxide nanoparticles are one of the most widely used nanoparticles in fields of industry, medicine, pharmaceutical sciences, cosmetics, and nutrition. Multiple studies have demonstrated the negative effects of zinc oxide nanoparticles on the nervous system, while others have revealed their enhancing effects on the activity of nerve cells, involved in memory processes. The aim of this study was to compare the effects of zinc oxide nanoparticles and zinc oxide on long-term memory of mice. METHODS: In this experimental study, 49 NMRI adult male mice, with the mean weight of 25±5 g, were randomly divided into seven groups, each consisting of seven mice: control group, three treatment groups receiving zinc oxide nanoparticles (1, 2.5, and 5 mg/kg of  zinc oxide nanoparticles, respectively, and three treatment groups receiving zinc oxide (1, 2.5, and 5 mg/kg of zinc oxide, respectively. Intraperitoneal injections were performed before training (electric shock. Passive avoidance memory of mice was evaluated, using the Step-Down device. The latency time to descend the platform was regarded as an indicator of memory on days 1, 3, and 7 following training. FINDINGS: Pre-training administration of zinc oxide nanoparticles and zinc oxide at a dose of 2.5 mg/kg yielded no effects on the motor activity of mice. However, a significant decline was reported in the latency time to descend the platform on days 1, 3, and 7 following training (58±17, 45±13, and 39±14 in the zinc oxide group and 93±18, 62±12, and 14±3 in the nano zinc oxide group, respectively (p<0.01 however, the dosage of 5 mg/kg had less significant short-term effects (130±38, 49±14, and 68±10 in the zinc oxide group and 132±46, 41±13, and 58±24 in the nano zinc oxide group, respectively. Also, the dosage of 1 mg/kg was almost ineffective. CONCLUSION: The results showed that weakened long-term memory, caused by zinc oxide administration, is not

  12. Zinc-induced Self-association of Complement C3b and Factor H

    Science.gov (United States)

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  13. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    Wintec

    The particles size was also characterized by TEM analysis. Keywords. Electrochemical ... netic materials for magnetic recording, and electrocatalyst for hydrogen .... polarization behaviour was studied in the test electrolyte for zinc deposit of ...

  14. Daya antibakteri penambahan Propolis pada zinc oxide eugenol dan zinc oxide terhadap kuman campur gigi molar sulung non vital (The antibacterial effect of propolis additional to zinc oxide eugenol and zinc oxide on polybacteria of necrotic primary molar

    Directory of Open Access Journals (Sweden)

    Yemy Ameliana

    2014-12-01

    Full Text Available Background: Materials commonly used for root canal filling of primary teeth is zinc oxide eugenol. Eugenol has some disadvantages that can irritate the periapical tissues, has the risk of disturbing the growth and development of permanent tooth buds, and has a narrow antibacterial spectrum. Studies showed that propolis at concentration of 20 % has antibacterial activity against Staphylococcus aureus. Purpose: The purpose of this study was to examine the antimicrobial activity of root canal pastes with the additional of propolis additional to zinc oxide eugenol (ZOEP and to zinc oxide (ZOP. Methods: Polybacteria cultures collected from root canals of necrotic primary molar from 5 children patients who received root canal treatment. The bacteria were grown in BHI Broth, and inoculated into Muller Hinton Agar media. The agar plates was divided into 3 areas, and one well was made at each area. The first well filled with ZOE as a control, second well filled with ZOEP and the third well filled with ZOP, then incubated for 24 hour at 370 C. Antimicrobial activity was determined by measuring the diameters of inhibition zones of polybacteria growth. The data were statistically analyzed by independent T-test. Results: The pasta mixture of zinc oxide propolis had the strongest antibacterial activity against polybacteria of necrotic primary molar, followed by zinc oxide eugenol propolis paste, and zinc oxide eugenol paste. There were significant differences of inhibition zones between ZOE, ZOEP and ZOP (p<0,05. Conclusion: The study suggested that the additional of propolis to zinc oxide paste could increase the antimicrobial effect against root canal polybacteria of necrotic primary molar.Latar belakang: Bahan yang sering digunakan untuk pengisian saluran akar gigi sulung adalah zinc oxide eugenol. Eugenol memiliki beberapa kekurangan yaitu dapat mengiritasi jaringan periapikal, beresiko mengganggu pertumbuhan dan perkembangan benih gigi permanen pengganti

  15. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  16. Zinc-zincate electrochemical behaviour in NaOH medium

    International Nuclear Information System (INIS)

    Pessine, E.J.

    1984-01-01

    The reaction mechanism of zinc/NaOH-zincate system was investigated with the rotating disk electrode technique, using both the surfaces of mercury film and zinc in 1M NaOH concentration and 25 0 C temperature. It was found that, at the mercury surface, the zincate ion deposition reaction occurs by two steps with one electron each, with comparable rates, with b sup(-) sub(K1) = (132+ -20)mV/decade and b sup(-) sub(K2) = (74 + - 9)mV/decade cathodic Tafel slopes. At the zinc surface the mechanism of the anodic and cathodic reactions is the same and is by two steps with one electron each. The rate-determining step is the first reaction in the cathodic direction. The exchange current density was found to be between 1.00 and 6.00mA/cm 2 , with b sup(-) sub(K) = (95+ -3)mV/decade cathodic and b sup(-) sub(a) = (61+ -5)mV/decade anodic Tafel slopes. The mechanism of passivation of zinc occurs as a result of the two reactions, the adsorption of the dissolved species of zinc II and the precipitation of the zincate ions over the electrode active sites. It has been verified that of all the chemical species studied namely the zincate, chloride, benzoate, silicate ions and the benzotriazole that affect the zinc anodic reaction the silicate ion is the one that change the reaction rate. However, for all the species studied we have the same anodic reaction mechanism (active dissolution). The deposition reaction mechanism of the zincate ion on zinc electrode is the same with NaOH plus benzoate or chloride. The diffusion coefficient found for the diffusion of the zincate ion in 1M NaOH with the mercury film RDE is D sup(-) = (4,90+ -0,20) x 10 -6 cm 2 s -1 . (Author) [pt

  17. Influence of cysteine and selenodicysteine on the uptake of zinc by Chlorella vulgaris Beijerinck

    International Nuclear Information System (INIS)

    Czauderna, M.; Samochocka, K.

    1982-01-01

    The uptake of zinc labelled with radioactive 65 Zn in the presence of cysteine and selenodicysteine by Chlorella vulgaris was examined. The concentration of zinc ions in the medium was 20 mg per 1. The uptake yield was found to be enhanced by selenodicysteine. At concentration of 10 - 7 -10 - 6 M the growth rate of Chlorella vulgaris was accelerated by the latter, provided that the specific activity of 65 Zn was 3.7 MBq/1. At this specific zinc activity cysteine increased the uptake yield during the initial 50 h of the incubation process. At specific 65 Zn-activity of 55.5 MBq/1 selenodicysteine and cysteine only slightly influenced the zinc uptake by Chlorella vulgaris. No increment in the biomass was observed at this specific zinc radioactivity. (author)

  18. Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition.

    Science.gov (United States)

    Anderson, Charles T; Kumar, Manoj; Xiong, Shanshan; Tzounopoulos, Thanos

    2017-09-09

    In many excitatory synapses, mobile zinc is found within glutamatergic vesicles and is coreleased with glutamate. Ex vivo studies established that synaptically released (synaptic) zinc inhibits excitatory neurotransmission at lower frequencies of synaptic activity but enhances steady state synaptic responses during higher frequencies of activity. However, it remains unknown how synaptic zinc affects neuronal processing in vivo. Here, we imaged the sound-evoked neuronal activity of the primary auditory cortex in awake mice. We discovered that synaptic zinc enhanced the gain of sound-evoked responses in CaMKII-expressing principal neurons, but it reduced the gain of parvalbumin- and somatostatin-expressing interneurons. This modulation was sound intensity-dependent and, in part, NMDA receptor-independent. By establishing a previously unknown link between synaptic zinc and gain control of auditory cortical processing, our findings advance understanding about cortical synaptic mechanisms and create a new framework for approaching and interpreting the role of the auditory cortex in sound processing.

  19. Copper and zinc in hair samples from Filipinos with pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Tolosa, L.M.; Sevilla, F. III.

    1987-01-01

    An investigation of the copper and zinc concentrations in active cases of pulmonary tuberculosis was undertaken. Concentrations of copper and zinc in scalp hair of TB patients and controls were determined by atomic absorption spectrophotometry. Elevated copper levels were characteristics of hair samples from TB patients. (Author)

  20. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  1. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    International Nuclear Information System (INIS)

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-01-01

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  2. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  3. Metal Accumulation, Blood δ-Aminolevulinic Acid Dehydratase Activity and Micronucleated Erythrocytes of Feral pigeons (Columba Livia Living Near Former Lead-Zinc Smelter “ Trepça” – Kosovo

    Directory of Open Access Journals (Sweden)

    Elezaj I. R.

    2013-04-01

    Full Text Available The concentration of lead in blood and tibia (Pb, zinc (Zn and cupper (Cu in tibia, blood δ- aminolevulinic acid dehydratase (ALA-D; EC: 4.2.1.24 activity, hematocrit value (Hct and micronuclei frequency (MN of peripheral erythrocytes have been determinated in three different populations of feral pigeons (Columba livia; forma urbana and forma domestica, collected in Mitrovica town (situated close to smelter “Trepça”, down closed in 2000 year and in rural area (Koshare willage . The blood lead level in feral pigeons from Mitrovica (forma urbana was 3 times higher (149.6; 50.5 μg% in comparison with that in feral pigeons from Mitrovica (forma domestica and 27.7 times higher (5.4 μg% in comparison with pigeons from rural area. The Pb concentration of tibia of feral pigeons (froma urbana and forma domestica, from Mitrovica town was significantly higher (P<0.001 in comparison with control. The concentration of Zn in tibia of feral pigeons from Mitrovica town (forma urbana, was significantly higher (P<0.006 in comparison with control. The blood ALA-D activity of feral pigeons from Mitrovica town (forma urbana and froma domestica, was significantly inhibited in comparison with control. The blood ALA-D activity of feral pigeons –forma urbana from Mitrovica town was significantly inhibited (P<0.001 in comparison with the blood ALA-D activity of feral pigeons-forma domestica from Mitrovica town. The erythrocyte MN frequency of feral pigeons from Mitrovica was significantly higher (P <0.001 in comparison with controls. The smelter “Trepça” ten year after closed down pose a threat to the local environment, biota and people’s health.

  4. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate.

    Science.gov (United States)

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min; Chung, Tae Nyoung; Suh, Sang Won

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30  μ M and 100  μ M of ZnCl 2 . Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  5. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate

    Directory of Open Access Journals (Sweden)

    Mi-Young Moon

    2018-01-01

    Full Text Available Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  6. Characterization and Analysis of Ionic Zinc Alloy Running a Potential Dynamic Polarization in Sea Water

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    Zinc is an active metal. The reactive nature of zinc allows it to be used for sacrificial anode in cathodic protection systems by electrically coupled to the protected metal. Zinc is especially well suited for cathodic protection on ships that move between salt water and harbors in brackish rivers or estuaries (1). Zinc anodes also are used to protect ballast tank, heat exchangers, and many mechanical components on ships, coastal power plants, and similar structures. Cathodic protective by zinc is used in sea water, brackish water, fresh water, and in some soil. The relative reactivity of zinc and its ability to attract oxidation to itself makes it an efficient sacrificial anode in cathodic protection (2). For example, cathodic protection of a buried pipeline can be achieved by connecting anodes made from zinc to the pipe. Zinc acts as the anode (negative terminus) by slowly corroding away as it passes electric current to the steel pipeline. When exposed to environment containing halide ions, of which the chloride (Cl-) is the most frequently encountered in service, the oxide film breaks down at specific points leading to the formation of pits on the zinc surface (3). (author)

  7. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  8. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  9. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  10. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  11. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    Science.gov (United States)

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.

  13. The study and microstructure analysis of zinc and zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2015-01-01

    Full Text Available The given paper is closely connected with the process of the manufacturing of ZnO. The purity of the metal zinc has crucial influence on the quality of ZnO. ZnO can be produced by pyrometallurgical combustion of zinc and hard zinc. But this mentioned method of preparation leads to the creation of the enormous amount of waste including chemical complexes. On the basis of the occurrence of the residual content of other elements, it is possible to make prediction about the material behavior in the metallographic process. The input and finally materials were investigated and this investigation was done from the aspect of structural and chemical composition of the materials.

  14. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  15. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    Science.gov (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2017-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  17. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)

    2014-12-05

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  18. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    International Nuclear Information System (INIS)

    Hosni, Mongia; Farhat, Samir; Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine; Viana, Bruno; Mgaidi, Arbi

    2014-01-01

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation

  19. Zinc deprivation of methanol fed anaerobic granular sludge bioreactors

    Science.gov (United States)

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan

    2008-01-01

    The effect of omitting zinc from the influent of mesophilic (30 °C) methanol fed upflow anaerobic sludge bed (UASB) reactors, and latter zinc supplementation to the influent to counteract the deprivation, was investigated by coupling the UASB reactor performance to the microbial ecology of the bioreactor sludge. Limitation of the specific methanogenic activity (SMA) on methanol due to the absence of zinc from the influent developed after 137 days of operation. At that day, the SMA in medium with a complete trace metal solution except Zn was 3.4 g CH4-COD g VSS−1 day−1, compared to 4.2 g CH4-COD g VSS−1 day−1 in a medium with a complete (including zinc) trace metal solution. The methanol removal capacity during these 137 days was 99% and no volatile fatty acids accumulated. Two UASB reactors, inoculated with the zinc-deprived sludge, were operated to study restoration of the zinc limitation by zinc supplementation to the bioreactor influent. In a first reactor, no changes to the operational conditions were made. This resulted in methanol accumulation in the reactor effluent after 12 days of operation, which subsequently induced acetogenic activity 5 days after the methanol accumulation started. Methanogenesis could not be recovered by the continuous addition of 0.5 μM ZnCl2 to the reactor for 13 days. In the second reactor, 0.5 μM ZnCl2 was added from its start-up. Although the reactor stayed 10 days longer methanogenically than the reactor operated without zinc, methanol accumulation was observed in this reactor (up to 1.1 g COD-MeOH L−1) as well. This study shows that zinc limitation can induce failure of methanol fed UASB reactors due to acidification, which cannot be restored by resuming the continuous supply of the deprived metal. PMID:18283507

  20. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Application of zinc oxide fiber in the photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2011-01-01

    In this work, zinc oxide fibers were obtained by electrospinning using polyvinylbutyral and zinc nitrate as precursors. After the synthesis, the material was heat treated at different temperatures to evaluate the effect of microstructure on its photocatalytic activity. The fibers obtained after heat treatment were characterized for morphology, phases, crystallinity and photocatalytic activity. The photocatalysis reaction was accompanied by the degradation of methyl orange in the presence of zinc oxide under UV illumination. It was observed that the crystallinity of zincite is a fundamental factor for the control of the photocatalytic activity of this material. (author)

  2. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  3. Bioavailability of zinc from sweet potato roots and leaves

    International Nuclear Information System (INIS)

    Baiden, H.N.; Ercanli-Huffman, F.G.

    1986-01-01

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with 65 Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL). Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their 65 Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P 65 Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of 65 Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose)

  4. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2017-06-09

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  5. The Recovery of Zinc Heavy Metal from Industrial Liquid Waste

    International Nuclear Information System (INIS)

    Panggabean, Sahat M.

    2000-01-01

    It had been studied the recovery of zinc heavy metal from liquid waste of electroplating industry located at East Jakarta. The aim of this study was to minimize the waste arisen from industrial activities by taking out zinc metal in order to reused on-site. The method of recovery was two steps precipitation using NaOH reagent and pH variation. The first step of precipitation at pH optimum around 6 yielded iron metal. The second step at pH optimum around 10 yielded zinc metal. The zinc metal was taken out assessed to the possibility of reused at that fabric. By applying its, it will yield the volume reduction of sludge waste about 36.1% or 53.2% of zinc metal containing in the waste. It means the cost of waste treatment will be lower. Beside its, the effluent arisen from the method had fulfill the maximum limit and it allowed to release to the environment. (author)

  6. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  7. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel

    2012-01-01

    Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function...... as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified...

  8. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  9. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  10. A Suicide Attempt Using Zinc Phosphide (A Case Study

    Directory of Open Access Journals (Sweden)

    Aysenur Sumer Coskun

    2013-10-01

    Full Text Available Zinc phosphide is a toxin that is added to wheat for use in rodent control and is the active ingredient of rodenticide. A 17 year-old male attempted suicide by drinking pesticide [Zinc PHOSPHIDE (Zn3P2] and was subsequently admitted to the emergency department: the patient’s general condition was poor, he was unconscious and vomiting, the skin had a garlic odor and advanced acidosis was present. The patient was treated symptomatically, followed by mechanical ventilation, and was transferred to a psychiatric clinic on the fifth day.

  11. Low temperature activation of methane over a zinc-exchanged heteropolyacid as an entry to its selective oxidation to methanol and acetic acid

    KAUST Repository

    Patil, Umesh; Saih, Youssef; Abou-Hamad, Edy; Hamieh, Ali Imad Ali; Pelletier, Jeremie; Basset, Jean-Marie

    2014-01-01

    A Zn-exchanged heteropolyacid supported onto silica (Zn-HPW/SiO2) activates methane at 25 °C into Zn-methyl. At higher temperatures and with CH4/O2 or CH4/CO2, it gives methanol and acetic acid respectively. This journal is

  12. Photocatalysis application of zinc oxide fibers obtained by electrospinning; Fribras de oxido de zinco obtidas por electrospinning aplicadas a fotocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEM/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  13. Application of zinc oxide quantum dots in food safety

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  14. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis

    DEFF Research Database (Denmark)

    Khare, Sagar D.; Kipnis, Yakov; Greisen, Per Junior

    2012-01-01

    The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc...

  15. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...

  16. Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-10-01

    Copper-zinc-superoxide dismutase (CuZnSOD) from Hippocampus abdominalis (HaCuZnSOD) is a metalloenzyme which belongs to the ubiquitous family of SODs. Here, we determined the characteristic structural features of HaCuZnSOD, analyzed its evolutionary relationships, and identified its potential immune responses and biological functions in relation to antioxidant defense mechanisms in the seahorse. The gene had a 5' untranslated region (UTR) of 67 bp, a coding sequence of 465 bp and a 3' UTR of 313 bp. The putative peptide consists of 154 amino acids. HaCuZnSOD had a predicted molecular mass of 15.94 kDa and a theoretical pI value of 5.73, which is favorable for copper binding activity. In silico analysis revealed that HaCuZnSOD had a prominent Cu-Zn_superoxide_dismutase domain, two Cu/Zn signature sequences, a putative N-glycosylation site, and several active sites including Cu(2+) and Zn(2+) binding sites. The three dimensional structure indicated a β-sheet barrel with 8 β-sheets and two short α-helical regions. Multiple alignment analyses revealed many conserved regions and active sites among its orthologs. The highest amino acid identity to HaCuZnSOD was found in Siniperca chuatsi (87.4%), while Maylandia zebra shared a close relationship in the phylogenetic analysis. Functional assays were performed to assess the antioxidant, biophysical and biochemical properties of overexpressed recombinant (r) HaCuZnSOD. A xanthine/XOD assay gave optimum results at pH 9 and 25 °C indicating these may be the best conditions for its antioxidant action in the seahorse. An MTT assay and flow cytometry confirmed that rHaCuZnSOD showed peroxidase activity in the presence of HCO3(-). In all the functional assays, the level of antioxidant activity of rHaCuZnSOD was concentration dependent; metal ion supplementation also increased its activity. The highest mRNA expressional level of HaCuZnSOD was found in blood. Temporal assessment under pathological stress showed a delay

  17. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  18. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  19. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  20. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  1. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  2. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  3. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  4. relationship between maternal serum zinc, cord blood zinc and birth

    African Journals Online (AJOL)

    FOBUR

    those obtained by Okonofua et al in Ile-Ife and. 17. Iqbal et al in Bangladesh but lower than the values. 18. 11 reported in studies in India and the United States. The similarity in the mean maternal serum zinc obtained in this study with the studies in Ife and. Bangladesh could be a reflection of the similarity among the study ...

  5. Galvanostatic polarization of zinc microanodes in KOH electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.B.; Cook, G.M.; Yao, N.P.

    1980-05-01

    This report includes a critical review of the current literature on the anodic passivation of zinc electrodes, a description of supplementary experimental studies to extend the data to a low-current-density region and to provide a basis for evaluating conflicting results of published work, and a new interpretation of the anodic passivation mechanism. This work provides a starting point for understanding passivation phenomena in battery electrodes. The utilization of a zinc electrode in alkaline batteries depends on the ability of the electrode to remain active during the anodic dissolution process. This dissolution period is often terminated by the onset of passivation. Experiments were conducted on the effects of current density on passivation time of a small zinc anode (6.6 x 10/sup -3/ cm/sup 2/) in KOH at concentrations of 0.784, 2.92, 4.98 and 7.24M KOH as well as 7.24M KOH saturated with zinc oxide. It was concluded that there are two mechanisms for anodic passivation, one occurring at current densities below about 150 mA/cm/sup 2/ and another at higher current densities. Accordingly, in the overall mechanism, the total time to passivation includes the times to achieve the maximum zincate concentration as well as to form porous type I ZnO and compact type II ZnO. In Ni/Zn batteries under development for vehicle propulsion, the electrolyte is usually 30% KOH (7M) saturated with zinc oxide; and the zinc electrode is formed in-situ by electrodeposition of zinc onto the grid. For a current density of 20 mA/cm/sup 2/ in a Ni/Zn battery cycled at a 2-h rate and a zinc electrode with a porosity of 0.6 at the fully charged state, a current density of 338 mA/cm/sup 2/ was calculated to be that above which the passivation limits the utilization of the zinc electrode. 7 figures, 4 tables.

  6. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding.

    Science.gov (United States)

    Zinn, K R; Chaudhuri, T R; Cheng, T P; Morris, J S; Meyer, W A

    1994-02-01

    Positron emission tomography offers advantages for radioimmunodiagnosis of cancer but requires radionuclides of appropriate half-life that have high specific activity and high radio-purity. This work was designed to develop a viable method to produce and purify 64Cu, which has high specific activity, for positron emission tomography. 64Cu was produced at the University of Missouri Research Reactor by the nuclear reaction, 64Zn(n,p)64Cu. Highly pure zinc metal (99.9999%) was irradiated in a specially designed boron nitrite lined container, which minimized thermal neutron reactions during irradiation. A new two-step procedure was developed to chemically separate the no-carrier-added 64Cu from the zinc metal target. 64Cu recovery for 24 runs averaged 0.393 (+/- 0.007) mCi per milligram of zinc irradiated. The boron-lined irradiation container reduced unwanted zinc radionuclides 14.3-fold. Zinc radionuclides and non-radioactive zinc were separated successfully from the 64Cu. The new separation technique was fast (2 hours total time) and highly efficient for removing the zinc. The zinc separation factor for this technique averaged 8.5 x 10(-8), indicating less than 0.0000085% of the zinc remained after separation. Thus far, the highest 64Cu specific activity at end of irradiation was 683 Ci/mg Cu, with an average of 512 Ci/mg Cu for the last six analyzed runs. The boron-lined irradiation container has sufficient capacity for 75-fold larger-sized zinc targets (up to 45 g). The new separation technique was excellent for separating 64Cu, which appears to be a radionuclide with great potential for positron emission tomography.

  7. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity

    Science.gov (United States)

    Mohamed, Gehad G.; Soliman, Madiha H.

    2010-08-01

    Sulpiride (SPR; L) is a substituted benzamide antipsychotic which is reported to be a selective antagonist of central dopamine receptors and claimed to have mood-elevating properties. The ligation behaviour of SPR drug is studied in order to give an idea about its potentiality towards some transition metals in vitro systems. Metal complexes of SPR have been synthesized by reaction with different metal chlorides. The metal complexes of SPR with the formula [MCl 2(L) 2(H 2O) 2]· nH 2O [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); n = 0-2] and [FeCl 2(HL)(H 2O) 3]Cl·H 2O have been synthesized and characterized using elemental analysis (CHN), electronic (infrared, solid reflectance and 1H NMR spectra) and thermal analyses (TG and DTA). The molar conductance data reveal that the bivalent metal chelates are non-electrolytes while Fe(III) complex is 1:1 electrolyte. IR spectra show that SPR is coordinated to the metal ions in a neutral monodentate manner with the amide O. From the magnetic and solid reflectance spectra, octahedral geometry is suggested. The thermal decomposition processes of these complexes were discussed. The correlation coefficient, the activation energies, E*, the pre-exponential factor, A, and the entropies, Δ S*, enthalpies, Δ H*, Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves. The synthesized ligand and its metal complexes were also screened for their antibacterial and antifungal activity against bacterial species ( Escherichia coli and Staphylococcus aureus) and fungi ( Aspergillus flavus and Candida albicans). The activity data show that the metal complexes are found to have antibacterial and antifungal activity than the parent drug and less than the standard.

  8. Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc.

    Science.gov (United States)

    Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto

    2008-10-01

    The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.

  9. Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.

    Science.gov (United States)

    Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo

    2017-10-07

    Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.

  10. Preparation of ciprofloxacin-coated zinc oxide nanoparticles and their antibacterial effects against clinical isolates of Staphylococcus aureus and Escherichia coli

    DEFF Research Database (Denmark)

    Seif, Sepideh; Kazempour, Zarah Bahri; Pourmand, Mohammad Reza

    2011-01-01

    In the present research study, ciprofloxacincoated zinc oxide nanoparticles were prepared using a precipitation method. The nature of interactions between zinc oxide nanoparticles and ciprofloxacin (CAS 85721-33-1) was studied by Fourier transform infrared spectroscopy. The results show...... that the carbonyl group in ciprofloxacin is actively involved in forming chemical - rather than physical - bonds with zinc oxide nanoparticles. Also the antibacterial activity of free zinc oxide nanoparticles and ciprofloxacin-coated zinc oxide nanoparticles have been evaluated against different clinical isolates...... of Staphylococcus aureus and Escherichia coli. The free zinc oxide nanoparticles did not show potent antibacterial activity against all test strains. In contrast, only the low concentrations of ciprofloxacincoated zinc oxide nanoparticles (equivalent to the sub-minimum inhibitory concentrations of pure...

  11. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  12. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid

    International Nuclear Information System (INIS)

    Thareja, R.K.; Shukla, Shobha

    2007-01-01

    We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal

  13. The behavior of thiourea and flotation reagents in zinc electrowinning circuits

    Science.gov (United States)

    MacKinnon, D. J.; Dutrizac, J. E.; Brannen, J. M.; Hardy, D. J.

    1988-04-01

    The effect of thiourea and flotation reagents on the electrowinning of zinc from industrial electrolytes was studied, and all the compounds were found to reduce the zinc deposition current efficiency and to change the properties of the zinc deposits. The effectiveness of activated carbon, two-stage cementation, and hot acid leaching on the destruction/removal of the organic compounds also was addressed. Activated carbon pretreatment of thiourea-containing electrolytes restored the current efficiency for 1-hour zinc deposits to values comparable to those obtained for thiourea-free electrolytes. The activated carbon pretreatment, however, altered the deposit morphology and orientation, but produced a cyclic voltammogram similar to that of the thiourea-free solution. Two-stage cementation did not counteract the harmful effects of thiourea. Hot acid leaching destroyed the thiourea but generated large concentrations of ferrous ion that reduced the current efficiency. The ferrous concentrations, however, were readily controlled by KMnO4 or MnO2 oxidation. None of the treatment options (activated carbon, two-stage cementation, or hot acid leaching) was effective in controlling the flotation reagents, and their moderately harmful effect on zinc electrowinning persisted. Even low concentrations of these reagents polarized zinc deposition, and this resulted in a “glue-type” zinc deposit.

  14. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  15. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis

    Science.gov (United States)

    Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A.

    2017-04-01

    This work addresses low cost, non-toxic green synthesis of Zinc Oxide nanoparticles prepared using different amounts of Camellia sinensis extract. The Synthesized material was studied and characterized through Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM). The Zinc Oxide nanoparticles presented the desired Znsbnd O bond at 618 cm-1, demonstrated growth in a purely hexagonal Wurtzite crystal structure, and, depending on the amount of extract used, they presented different size and shape homogeneity. The photocatalytic activity of the obtained Zinc Oxide nanoparticles was studied. The photocatalytic degradation studies were done at a 1:1 M ratio of methylene blue to Zinc Oxide nanoparticles under UV light. The obtained results presented a better degradation rate than commercially available Zinc Oxide nanoparticles.

  16. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    Directory of Open Access Journals (Sweden)

    I.M. Ahmed

    2016-09-01

    Full Text Available Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent recovery amounts to 95% and 99% for zinc and copper, respectively. The experimental data of this leaching process were well interpreted with the shrinking core model under chemically controlled processes. The apparent activation energy for the leaching of zinc has been evaluated using the Arrhenius expression. Based on the experimental results, a separation method and a flow sheet were developed and tested to separate zinc, copper, iron, aluminum and silica gel from the brass slag.

  17. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji; Kuwahara, Jun

    2009-01-01

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  18. Analysis of Lead and Zinc by Mercury-Free Potentiometric Stripping Analysis

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    A method is presented for trace-element analysis of lead and zinc by potentiometric stripping analysis (PSA) where both the glassy-carbon working electrode and the electrolyte are free of mercury. Analysis of zinc requires an activation procedure of the glassy-carbon electrode. The activation...... is performed by pre-concentrating zinc on glassy carbon at -1400 mV(SCE) in a mercury-free electrolyte containing 0.1 M HCl and 2 ppm Zn2+, followed by stripping at approx. -1050 mV. A linear relationship between stripping peak areas, recorded in the derivative mode, and concentration was found...

  19. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  20. Serum zinc level in thalassemia

    International Nuclear Information System (INIS)

    Keikhaei, B.; Badavi, M.; Pedram, M.; Zandian, K.

    2010-01-01

    To compare serum zinc level between Thalassemia Major (TM) patients and normal population at Shafa Hospital in South West of Iran. A total of 25 male and 36 female of TM patients were enrolled in this study. Out of 61 patients thirty were treated by deferroxamine (DFO) and 31 were on the combination of DFO and deferiprone (DEF) protocol therapy. Sixty normal subjects of the matching age and gender were recruited as controls. From each patient and control group 2 ml of blood was taken in fasting condition. Cell blood count and serum zinc were carried out for both thalassemia patients and normal subjects. The mean age of patients and control group was 15+- 5 years. Mean serum zinc level was 68.97+- 21.12 mu g/dl, 78.10-28.50 mu g/dl, and 80.16+- 26.54 mu g/dl in the TM with DFO, TM with DFO + DEF combination protocol and control group respectively. There was no significant correlation between patients and control group. However 50 percent of TM with DFO, 38.7 percent of TM with DFO + DEF and 32.8 percent of control group had hypozincemia. Nearly 40 to 50 percent of TM patients and one third of normal subjects are suffering from hypozincemia. This study shows that low level of serum zinc is a health problem in both thalassemia patients and normal population in South West of Iran. (author)

  1. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...

  2. Zinc in the prevention of Fe2initiated lipid and protein oxidation

    Directory of Open Access Journals (Sweden)

    M. PAOLA ZAGO

    2000-01-01

    Full Text Available In the present study we characterized the capacity of zinc to protect lipids and proteins from Fe2+-initiated oxidative damage. The effects of zinc on lipid oxidation were investigated in liposomes composed of brain phosphatidylcholine (PC and phosphatidylserine (PS at a molar relationship of 60:40 (PC:PS, 60:40. Lipid oxidation was evaluated as the oxidation of cis-parinaric acid or as the formation of 2-thiobarbituric acid-reactive substances (TBARS. Zinc protected liposomes from Fe2+ (2.5-50 muM-supported lipid oxidation. However, zinc (50 muM did not prevent the oxidative inactivation of glutamine synthelase and glucose 6-phosphate dehydrogenase when rat brain superntants were oxidized in the presence of 5 muM Fe2+ and 0.5 mM H2O2 .We also studied the interactions of zinc with epicatechin in the prevention of liid oxidation in liposomes. The simulaneous addition of 0.5 muM epicatechin (EC and 50 muM zinc or EC separately. Zinc (50 muM also protecte liposomes from the stimulatory effect of aluminum on Fe2+-initiated lipid oxidation. Zinc could play an important role as an antioxidant in biological systems, replacing iron and other metals with pro-oxidant activity from binding sites and interacting with other components of the oxidant defense system.

  3. Improved colorimetric determination of serum zinc.

    Science.gov (United States)

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  4. Selenization of Cu2ZnSnS4 Enhanced the Performance of Dye-Sensitized Solar Cells: Improved Zinc-Site Catalytic Activity for I3.

    Science.gov (United States)

    Wang, Xiuwen; Xie, Ying; Bateer, Buhe; Pan, Kai; Jiao, Yanqing; Xiong, Ni; Wang, Song; Fu, Honggang

    2017-11-01

    Cu 2 ZnSnS 4 (CZTS) and Cu 2 ZnSn(S,Se) 4 (CZTSSe) as promising photovoltaic materials have drawn much attention because they are environmentally benign and earth-abundant elements. In this work, the monodispersed, low-cost Cu 2 ZnSnS 4 nanocrystals with small size have been controllably synthesized via a wet chemical routine. And CZTSSe could be easily prepared after selenization of CZTS. When they are employed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), the power conversion efficiency (PCE) has been improved from 3.54% to 7.13% as CZTS is converted to CZTSSe, which is also compared to that of Pt (7.62%). The exact reason for the enhanced catalytic activity of I 3 - is discussed with the work function and density functional theory (DFT) when CZTSSe converted from CZTS. The results of a Kelvin probe suggest that the work function of CZTSSe (5.61 eV) is closer to that of Pt (5.65 eV) and higher than that of CZTS, which matched the redox shuttle potential better. According to the theory calculation, all the atomic and bond populations changed significantly when Se replaced partly the S on the CZTS system, especially in the Zn site. During the catalytic process as CEs, the adsorption energy obviously increased compared to those at other sites when I 3 - adsorbed on the Zn site in CZTSSe. So, Zn plays an important role for the reduction of I 3 - after CZTS is converted to CZTSSe. Based on above analysis, the reason for enhanced performance of DSSCs when CZTS converted to CZTSSe is mainly due to the enhancement of Zn-site activity. This work is beneficial for understanding the catalytic reaction mechanism of CZTS(Se) as CEs of DSSCs.

  5. Photodynamic effect of aluminium and zinc tetrasulfophthalocyanines on melanoma cancer cells

    CSIR Research Space (South Africa)

    Maduray, K

    2010-06-01

    Full Text Available Aluminium and zinc tetrasulfophthalocyanines were activated with a 672nm wavelength laser to investigate the photodynamic effects on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Aluminium tetrasulfophthalocyanine was more...

  6. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Dent, A.J.; Hasnain, S.S.; Beyersmann, D.; Block, C.

    1990-01-01

    The zinc coordination in 5-aminolevulinate dehydratase was investigated by extended x-ray absorption fine structure (EXAFS) associated with the zinc K-edge. The enzyme binds 8 mol of zinc/mol of octameric protein, but only four zinc ions seem sufficient for full activity. The authors have undertaken a study on four forms of the enzyme: (a) the eight-zinc native enzyme; (b) the enzyme with only the four zinc sites necessary for full activation occupied; (c) the enzyme with the vacant sites of (b) occupied by four lead ions; (d) the product complex between (b) and porphobilinogen. They have shown that two structurally distinct types of zinc sites are available in the enzyme. The site necessary for activity has an average zinc environment best described by two/three histidines and one/zero oxygen from a group such as tyrosine or a solvent molecule at 2.06 ± 0.02 angstrom, one tyrosine or aspartate at 1.91 ± 0.03 angstrom, and one cysteine sulfur at 2.32 ± 0.03 angstrom with a total coordination of five ligands. The unoccupied site in (b) is dominated by a single contribution of four cysteinyl sulfur atoms at 2.28 ± 0.02 angstrom. Spectra from samples (c) and (d) show only small changes from that of (b), reflecting a slight rearrangement of the ligands around the zinc atom

  7. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  8. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    International Nuclear Information System (INIS)

    Quirós, Jennifer; Borges, João P.; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-01-01

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  9. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  10. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.

    Science.gov (United States)

    Der, Bryan S; Edwards, David R; Kuhlman, Brian

    2012-05-08

    Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein-protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 10(5) and a k(cat)/K(M) of 630 M(-1) s(-1) and 4-nitrophenyl phosphate with a rate acceleration of 10(4) and a k(cat)/K(M) of 14 M(-1) s(-1). These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein-protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.

  11. Antimicrobial and mutagenic activity of some carbono- and thiocarbonohydrazone ligands and their copper(II), iron(II) and zinc(II) complexes.

    Science.gov (United States)

    Bacchi, A; Carcelli, M; Pelagatti, P; Pelizzi, C; Pelizzi, G; Zani, F

    1999-06-15

    Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.

  12. Effects of serum zinc level on tinnitus.

    Science.gov (United States)

    Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz

    2015-01-01

    The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Developmental programming of vascular dysfunction by prenatal and postnatal