WorldWideScience

Sample records for zero-waste low-cost direction

  1. Low-Cost Voltage Zero-Crossing Detector for AC-Grid Applications

    Directory of Open Access Journals (Sweden)

    Vorobyov Maxim

    2014-10-01

    Full Text Available Renewable energy sources and energy storage devices are becoming more popular. Some of them like small hydropower turbines, wind turbines and diesel generators produce AC voltage with different frequency and voltage than the main grid. For them power electronics converters are necessary. Power electronics converters presented in industry use two or three level energy conversion, although direct AC to AC converters exist, but one of the main problems is the switch commutation when current or voltage is crossing the zero point. Zero crossing sensors are used to solve this problem. They consist of current or voltage measurement unit and zero crossing detector. Different approaches are used for zero crossing: hardware or software. Hardware approach is simple but it has low precision. Software approach has high precision but it is complicated and expensive. In this paper a simple low cost high precision approach is presented. It takes all advantages from both approaches. While tested with two types of microcontrollers the precision of experimental measurement is 25 μs - 40 μs.

  2. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-01-01

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  3. Waste Management Facilities cost information for low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  4. Towards Zero Waste in emerging countries - A South African experience

    International Nuclear Information System (INIS)

    Matete, Ntlibi; Trois, Cristina

    2008-01-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management , which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa

  5. Towards zero waste in emerging countries - a South African experience.

    Science.gov (United States)

    Matete, Ntlibi; Trois, Cristina

    2008-01-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management [DEAT, 2001. Department of Environmental Affairs and Tourism, Government of South Africa. Polokwane Declaration. Drafted by Government, Civil Society and the Business Community. National Waste Summit, Polokwane, 26-28 September 2001], which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.

  6. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  7. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  8. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  9. Cost-benefit analysis for management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1979-01-01

    There are several types of cost-benefit analyses that can be used in evaluating a technical activity such as waste management. A direct comparison can be made of the benefits to be gained versus the costs to be accrued. If the balance is favorable the activity is considered to be acceptable. In many cases, however, a number of alternatives may be available requiring a comparative cost-benefit analysis so that the most favorable option is chosen. After the basic option is chosen, a further analysis is required in which additional control technologies can be considered to further reduce specific types of impact; this represents a differential cost-benefit analysis or, perhaps more properly, a study of cost-effectiveness. Also, because of the wide variety of parameters that go into a cost-benefit analysis and the range of value judgements that may be applied by different interest groups, it is likely that each additional increment of technology will have a slightly different balance point. Factors and impacts that need to be considered in management of low-level wastes will be discussed and a simplified example will be used to demonstrate the difficulties that may be encountered

  10. Cost-benefit analysis for management of low-level radioactive waste

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1977-01-01

    There are several types of cost-benefit analyses that can be used in evaluating a technical activity such as waste management. A direct comparison can be made of the benefits to be gained versus the costs to be accrued. If the balance is favorable, the activity is considered to be acceptable. In many cases, however, a number of alternatives may be available requiring a comparative cost-benefit analysis so that the most favorable option is chosen. After the basic option is chosen, a further analysis is required in which additional control technologies can be considered to further reduce specific types of impact; this represents a differential cost-benefit analysis or, perhaps more properly, a study of cost-effectiveness. Also, because of the wide variety of parameters that go into a cost-benefit analysis and the range of value judgements that may be applied by different interest groups, it is likely that each additional increment of technology will have a slightly different balance point. Factors and impacts that need to be considered in management of low-level wastes will be discussed and a simplified example will be used to demonstrate the difficulties that may be encountered

  11. Development and Performance Evaluation of a Low Cost Waste ...

    African Journals Online (AJOL)

    The design, development and performance evaluation of a low cost waste-water treatment plant had been carried out. The aim was to harness the usefulness of waste-waters from residential, institutional and commercial sources. The facultative lagoon method of waste-water treatment was adopted. Biological analysis of ...

  12. Estimation of the conditioning and storage costs of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lo Moro, A.; Panciatici, G.

    1977-01-01

    The conditioning and storage costs of low- and intermediate-level solid radioactive wastes are analyzed. The cost of direct labour is assumed as the reference cost for their computation and the storage cost is considered as resulting from the contract cost ''una tantum'' and from the leasing cost. As an example, the cost trends are reported, relevant to the solution adopted at CAMEN (conditioning in concrete containers and storage on concrete open-air bed)

  13. Interim report: Waste management facilities cost information for mixed low-level waste

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1994-03-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report

  14. Unit costs of waste management operations

    International Nuclear Information System (INIS)

    Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

    1994-04-01

    This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ''cradle to grave'') cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics

  15. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  16. Production of proteases from organic wastes by solid-state fermentation: downstream and zero waste strategies.

    Science.gov (United States)

    Marín, Maria; Artola, Adriana; Sánchez, Antoni

    2018-04-01

    Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w : v solid-solvent in static mode is advised for SF, and 1:2 w : v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.

  17. Challenges and Opportunities in Transforming a City into a “Zero Waste City”

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2011-11-01

    Full Text Available The currently consumption-driven society produces an enormous volume of waste every day. Continuous depletion of natural finite resources by urban populations is leading the globe to an uncertain future. Therefore, to prevent further depletion of global resources, sustainable consumption and a strategic waste management system would be required. It is evident that a significant number of global non-renewable resources such as cadmium, mercury and tellurium will experience permanent shortfall in global supply within the next two to three decades. Astonishingly, the current recycling rate of these very scarce metals is significantly low in all cities around the globe. The concept of the zero waste city includes a 100% recycling of municipal solid waste and a 100% recovery of all resources from waste materials. However, transforming currently over-consuming cities into zero waste cities is challenging. Therefore, this study aims to understand the key factors waste management systems in cities such as consumption, resource depletion and possible decoupling opportunity through implementing the “zero waste city” concept. The study proposes five significant principles for transforming current cities into zero waste cities in the context of long-term sustainability. A simultaneous and harmonized application of sustainable behaviour and consumption, product stewardship, a 100% recycling and recovery of resources, legislated zero landfill and incineration are required to transform current city into a zero waste city.

  18. Comparison of costs for alternative mixed low-level waste treatment systems

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Harvego, L.; Cooley, C.R.; Biagi, C.

    1996-01-01

    Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies' results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%

  19. ZeroWaste BYG: Redesigning construction materials towards zero waste society

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Schmidt, Jacob Wittrup; Ottosen, Lisbeth M.

    2014-01-01

    material. The physical‐chemical characteristics of fly ash, such as large uniformity coefficient, clay‐sized particles and rich in some metal elements and salts, show the possibility ofbeing a raw material also for bricks and lightweight aggregates. In the future we expect increasing political pressure......The ZeroWaste research group (www.zerowaste.byg.dtu.dk) at the Department of Civil Engineering was established in 2012 and covers the broad range of expertise required for turning waste materials into attractive, new materials. Members of the group have developed methods for removal of heavy metals...... and phosphorous from waste incineration, sewage sludge and other bio ashes [1], providing the basis to make these ash types an attractive, new material for the building sector.The amount of waste increases and it is both difficult and expensive to handle many waste types as e.g.different ashes. At the same time...

  20. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    International Nuclear Information System (INIS)

    Rogers, B.C.; Walter, P.L.; Baird, R.D.

    1999-01-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation

  1. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  2. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  3. Soluble protein isolated from low cost fish and fish wastes

    OpenAIRE

    Lekshmy Nair, A.; Gopakumar, K.

    1982-01-01

    The method of preparation, composition, amino acid content, protein efficiency ratio and areas of possible application of water soluble protein isolates from low cost fish and fish wastes are discussed in detail in this communication.

  4. Comparative Cost of Colour Removal from Textile Effluents Using Agriculture Wastes

    International Nuclear Information System (INIS)

    Afifi, T.H.; Aboul Fetouh, M.S.; Nassar, F.A.; Riyad, Y.M.

    1999-01-01

    In recent years, investigations have been oriented towards practical use of low cost materials in the treatment of wastewater polluted by dyestuffs. The use of bagasse pith and maize cob as agricultural wastes for the colour removal of dyestuffs, namely, Direct Orange 34, Direct Red 23, Reactive Violet 2 and Reactive Blue 19 from aqueous solution at different concentrations has been investigated. The adsorption capacity for each dye- adsorbent system has been determined. The relative costs of dye removal were reported based on adsorption capacity only. The aim of the present work is to assess the feasibility of two low-cost agriculture-wastes materials to adsorb both direct and reactive dyestuffs on economic basis

  5. 2014 Zero Waste Strategic Plan Executive Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Wrons, Ralph J.

    2016-05-01

    Sandia National Laboratories/New Mexico is located in Albuquerque, New Mexico, primarily on Department of Energy (DOE) permitted land on approximately 2,800 acres of Kirtland Air Force Base. There are approximately 5.5 million square feet of buildings, with a workforce of approximately 9200 personnel. Sandia National Laboratories Materials Sustainability and Pollution Prevention (MSP2) program adopted in 2008 an internal team goal for New Mexico site operations for Zero Waste to Landfill by 2025. Sandia solicited a consultant to assist in the development of a Zero Waste Strategic Plan. The Zero Waste Consultant Team selected is a partnership of SBM Management Services and Gary Liss & Associates. The scope of this Plan is non-hazardous solid waste and covers the life cycle of material purchases to the use and final disposal of the items at the end of their life cycle.

  6. Low cost technologies for the industrial waste water treatment; Tecnologia de tratamiento de aguas residuales industriales de bajo coste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Nowadays, the industrialism is gradually becoming more and more concerned on the way of reducing the disposal of pollutant waste. As well, he demands solutions for this problem but he usually guests a great disparity of technologies and costs. This article presents three low cost systems for purification of industrial waste water which are suitable for numerous applications.

  7. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  8. A new low-cost method of reclaiming mixed foundry waste sand based on wet-thermal composite reclamation

    OpenAIRE

    Fan Zitian; Liu Fuchu; Long Wei

    2014-01-01

    A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The wast...

  9. Operating cost guidelines for benchmarking DOE thermal treatment systems for low-level mixed waste

    International Nuclear Information System (INIS)

    Salmon, R.; Loghry, S.L.; Hermes, W.H.

    1994-11-01

    This report presents guidelines for estimating operating costs for use in benchmarking US Department of Energy (DOE) low-level mixed waste thermal treatment systems. The guidelines are based on operating cost experience at the DOE Toxic Substances Control Act (TSCA) mixed waste incinerator at the K-25 Site at Oak Ridge. In presenting these guidelines, it should be made clear at the outset that it is not the intention of this report to present operating cost estimates for new technologies, but only guidelines for estimating such costs

  10. Low-level radioactive waste treatment technology. Low-level radioactive waste management handbook series

    International Nuclear Information System (INIS)

    1984-07-01

    Each generator of low-level radioactive waste must consider three sequential questions: (1) can the waste in its as-generated form be packaged and shipped to a disposal facility; (2) will the packaged waste be acceptable for disposal; and (3) if so, is it cost effective to dispose of the waste in its as-generated form. These questions are aimed at determining if the waste form, physical and chemical characteristics, and radionuclide content collectively are suitable for shipment and disposal in a cost-effective manner. If not, the waste management procedures will involve processing operations in addition to collection, segregation, packaging, shipment, and disposal. This handbook addresses methods of treating and conditioning low-level radioactive waste for shipment and disposal. A framework is provided for selection of cost-effective waste-processing options for generic categories of low-level radioactive waste. The handbook is intended as a decision-making guide that identifies types of information required to evaluate options, methods of evaluation, and limitations associated with selection of any of the processing options

  11. Towards zero solid waste: utilising tannery waste as a protein source for poultry feed

    OpenAIRE

    Paul, Hiralal; Antunes, A Paula M; Covington, Anthony D; Evans, Paul; Phillips, Paul S

    2013-01-01

    Zero waste is now a strongly emerging issue for sustainable industrial development where minimisation and utilisation of waste are a priority in the leather industry. In a tannery hides and skins converted in to leather through various processes. Approximately 20% (w/w) of the chrome containing tannery solid waste (TSW) is generated from one tonne of raw hides and skins. However, tannery solid waste may also be a resource if it is managed expertly as we move towards zero waste.\\ud This resear...

  12. A {open_quotes}zero waste{close_quotes} coolant management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kennicott, M.A.

    1994-04-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant`s Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant`s liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study`s goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a {open_quotes}zero waste{close_quotes} machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs.

  13. Conceptual costing study for the long-term management of the Port Hope area low-level radioactive wastes

    International Nuclear Information System (INIS)

    1989-12-01

    Comparative conceptual cost estimates for several possible options for the long-term management of the Port Hope area low-level radioactive wastes have been developed. Five potentially applicable concepts were considered in the study: shallow land burial, using either unlined trenches, lined trenches or concrete canisters; engineered storage mounds; above-ground concrete vaults; below-ground concrete vaults; and intermediate-depth caverns using either open stopes or shrinkage mining. The objective was to develop comparative estimates. The differences in costs between concepts reflect the differences in handling methodology or costs of additional engineered barriers around the stored waste. An in situ waste volume of 805 000 m 3 , relatively favorable site conditions, a four-year disposal schedule and a consistent costing basis were assumed for each concept. Limited effort was made to optimize specific facility designs or disposal operations. The projected disposal costs vary from $68/m 3 of waste for shallow land burial in unlined trenches, to $312/m 3 of waste disposal in concrete canisters in trenches. The results of this study are reasonably consistent with previous estimates prepared for the low-level Radioactive Waste Management Office

  14. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    Science.gov (United States)

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  15. Ratio methods for cost-effective field sampling of commercial radioactive low-level wastes

    International Nuclear Information System (INIS)

    Eberhardt, L.L.; Simmons, M.A.; Thomas, J.M.

    1985-07-01

    In many field studies to determine the quantities of radioactivity at commercial low-level radioactive waste sites, preliminary appraisals are made with field radiation detectors, or other relatively inaccurate devices. More accurate determinations are subsequently made with procedures requiring chemical separations or other expensive analyses. Costs of these laboratory determinations are often large, so that adequate sampling may not be achieved due to budget limitations. In this report, we propose double sampling as a way to combine the expensive and inexpensive aproaches to substantially reduce overall costs. The underlying theory was developed for human and agricultural surveys, and is partially based on assumptions that are not appropriate for commercial low-level waste sites. Consequently, extensive computer simulations were conducted to determine whether the results can be applied in circumstances of importance to the Nuclear Regulatory Commission. This report gives the simulation details, and concludes that the principal equations are appropriate for most studies at commercial low-level waste sites. A few points require further research, using actual commercial low-level radioactive waste site data. The final section of the report provides some guidance (via an example) for the field use of double sampling. Details of the simulation programs are available from the authors. Major findings are listed in the Executive Summary. 9 refs., 9 figs., 30 tabs

  16. Waste management facilities cost information: System cost model product description. Revision 2

    International Nuclear Information System (INIS)

    Lundeen, A.S.; Hsu, K.M.; Shropshire, D.E.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for DOE wastes. Transportation costs are provided for truck and rail and include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities

  17. Evaluation of solid waste management at campus using the “Zero Waste Index”: The case on campus of Islamic University of Indonesia

    Directory of Open Access Journals (Sweden)

    Kasam

    2018-01-01

    Full Text Available Faculty of Civil Engineering and Planning (FCEP Islamic University of Indonesia (UII after doing zero waste program which has been going on September 2016. Zero waste concept are needed to measure how far the ability virgin material substitution to balance with the system of zero waste. The aims of this research is to calculate zero waste index (ZWI value, to know the impact of zero waste index, and to give the solution for zero waste program. The location was doing in FCEP UII Campus. The method of sampling was using for this research is refers to SNI 19-3964-1994 about to calculate waste generation of residential. The result shows value of zero waste index at FCEP UII are 0,26. FCEP UII reuse 134,19 kg waste of total 516,37 kg waste that has been produced. The waste that has been reuse is organic waste 87,93 kg, plastic waste 21,49 kg, and paper waste 24,77 kg. 80,10% FCEP peoples already know about zero waste program at FCEP UII. 98,90% of FCEP peoples, was agree with waste segregate, and 57,50% FCEP peoples are don’t know that waste from FCEP have been manage. Although as many as 29% of element campus do not understand about the zero waste program but the majority of them support the program.

  18. Evaluation of solid waste management at campus using the “Zero Waste Index”: The case on campus of Islamic University of Indonesia

    OpenAIRE

    Kasam; Mulya Iresha Fajri; Ajie Prasojo Satrio

    2018-01-01

    Faculty of Civil Engineering and Planning (FCEP) Islamic University of Indonesia (UII) after doing zero waste program which has been going on September 2016. Zero waste concept are needed to measure how far the ability virgin material substitution to balance with the system of zero waste. The aims of this research is to calculate zero waste index (ZWI) value, to know the impact of zero waste index, and to give the solution for zero waste program. The location was doing in FCEP UII Campus. The...

  19. Low-level waste management

    International Nuclear Information System (INIS)

    Levin, G.B.

    1980-01-01

    An overview of the current situation in the United States and a look to the future of low-level waste management are presented. Current problems and challenges are discussed, such as: the need of additional disposal sites in the future; risks and costs involved in transport of low-level wastes; reduction of low-level waste volume through smelting, incineration, and storage for wastes containing nuclides with short half lives; development of a national policy for the management of low-level waste, and its implementation through a sensible system of regulations. Establishing a success with low-level waste management should provide the momentum and public confidence needed to continue on and to resolve the technical and politically more difficult low-level waste problems

  20. Los Alamos Waste Management Cost Estimation Model

    International Nuclear Information System (INIS)

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs

  1. Cost effective waste management through composting in Africa

    International Nuclear Information System (INIS)

    Couth, R.; Trois, C.

    2012-01-01

    Highlights: ► The financial/social/institutional sustainability of waste management in Africa is analysed. ► This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. ► This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

  2. Long-term, low-level radwaste volume-reduction strategies. Volume 4. Waste disposal costs. Final report

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Adam, J.A.; Rogers, V.C.; Merrell, G.B.

    1984-11-01

    Volume 4 establishes pricing levels at new shallow land burial grounds. The following conclusions can be drawn from the analyses described in the preceding chapters: Application of volume reduction techniques by utilities can have a significant impact on the volumes of wastes going to low-level radioactive waste disposal sites. Using the relative waste stream volumes in NRC81 and the maximum volume reduction ratios provided by Burns and Roe, Inc., it was calculated that if all utilities use maximum volume reduction the rate of waste receipt at disposal sites will be reduced by 40 percent. When a disposal site receives a lower volume of waste its total cost of operation does not decrease by the same proportion. Therefore the average cost for a unit volume of waste received goes up. Whether the disposal site operator knows in advance that he will receive a smaller amount of waste has little influence on the average unit cost ($/ft) of the waste disposed. For the pricing algorithm postulated, the average disposal cost to utilities that volume reduce is relatively independent of whether all utilities practice volume reduction or only a few volume reduce. The general effect of volume reduction by utilities is to reduce their average disposal site costs by a factor of between 1.5 to 2.5. This factor is generally independent of the size of the disposal site. The largest absolute savings in disposal site costs when utilities volume reduce occurs when small disposal sites are involved. This results from the fact that unit costs are higher at small sites. Including in the pricing algorithm a factor that penalizes waste generators who contribute larger amounts of the mobile nuclides 3 H, 14 C, 99 Tc, and 129 I, which may be the subject of site inventory limits, lowers unit disposal costs for utility wastes that contain only small amounts of the nuclides and raises unit costs for other utility wastes

  3. Considerations for Informed Pursuit of Zero Waste: Lessons from Two Case Studies

    OpenAIRE

    Thangavelu, Jennifer Anne

    2013-01-01

    Starting in the early 2000s, a number of U.S. communities have adopted "zero waste" commitments to reduce waste as much as possible through recycling, composting, and other means. Little in-depth information exists about the impetus for or efficacy of these efforts. The author sought to build knowledge on the topic by conducting case studies of two communities: the zero waste efforts of Boulder, Colorado, and the Zero Waste Zones established in Atlanta. The two cases presented an interesting ...

  4. Zero Waste and Conversion Efficiencies of Various Technologies for Disposal of Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenyang

    2005-01-01

    Zero waste is a philosophy and a design principle of dealing with our waste stream for the 21st century. After reviewing the available information, the goal of zero waste from landfill is considered to be unachievable by using known and proven methods and approaches. The comparison of various technologies shows that the conversion efficiencies depend upon the type of system chosen for processing residual waste, and the best overall diversion rate of waste management system that can be achieved is about 71%. The maximum achievable overall diversion rate can be increased to approximate 92% if current environmental regulations to permit the routine use of the bottom ash or char for advanced thermal technologies.

  5. Intense volume reduction of mixed and low-level waste, solidification in sulphur polymer concrete, and excellent disposal at minimum cost

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1990-01-01

    Progressive changes in regulations governing the disposal of the nation's radioactive and hazardous wastes demand the development of more advanced treatment and disposal systems. The U.S. Department of Energy's Radioactive Waste Technology Support Program (formerly the Defense Low-Level Waste Management Program) was given the task of demonstrating the degree of excellence that could be achieved at reasonable cost using existing technology. The resulting concept is a Waste Treatment and Disposal Complex that will fully treat contact-handled mixed and low-level radioactive waste to a disposable product that is totally liquid-free and approximately 98% inorganic. An excellent volume reduction factor is achieved through sorting, sizing, incineration, vitrification, and final grouting. Inorganic waste items larger than 1/4 in. will be placed in inexpensive, uniform-sized, smooth-sided, thin-walled steel boxes. The smaller particles will be mixed with sulfur polymer concrete and pumped into the boxes, filling most voids. The appendage-free boxes measuring 1 by 1 by 1 m will be stacked tightly in an abovegrade, earth-mounded, concrete disposal vault where a temporary roof will protect them from rain and snow. A concrete roof poured directly on top of the dense, essentially voidless waste stack will be topped by an engineered, water-shedding earthen cover. Total cost for design, construction, testing, 30 years of treatment and disposal, administration, decontamination and decommissioning, site closure, and postclosure monitoring and maintenance will cost less per cubic foot than is currently expended for subsurface disposal. A radiological performance assessment shows this concept will exceed the nation's existing disposal systems and governmental performance objectives for the protection of the general public by a factor of 30,000

  6. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab

  7. Cost effective waste management through composting in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Couth, R. [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

  8. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    1994-08-01

    This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders

  9. A self-synchronizing and low-cost structural health monitoring scheme based on zero crossing detection

    International Nuclear Information System (INIS)

    Guyomar, Daniel; Lallart, Mickaël; Li, Kaixiang; Gauthier, Jean-Yves; Monnier, Thomas

    2010-01-01

    Owing to their high specific strength and stiffness, composite materials are increasingly being used in aeronautics and astronautics, but such materials are vulnerable to impact damage and delamination. Structural health monitoring (SHM) techniques have been developed for detecting such defects in recent years. In situ, self-powered and low-cost SHM systems are a developmental tendency of this technique. This paper introduces the principles of a low-cost and self-synchronizing scheme for SHM. Based on the Lamb wave interactions with the structure, the proposed technique relies on detecting zero crossing time instants in order to derive an estimation of the structural state. It is shown that such a method provides a very simple and low-cost way to assess the structural integrity while being computationally efficient. Experimental investigations carried out on a composite plate with an increasing penetration hold validating the proposed technique show its effectiveness for detecting the damage. The proposed approach has also been applied on an aircraft outboard flap to detect the impact damage. The robustness is discussed versus time-shift and magnitude jitter assumptions by using the plate case. The temperature effect is also considered by defining a coefficient array in order to compensate for the material property changes. Finally, an embedded implementation of such a SHM technique is presented by using the proposed damage index

  10. Comparison of SUREPAK life cycle costs to other methods of low-level radioactive waste management

    International Nuclear Information System (INIS)

    Winston, S.J.; Little, C.C.

    1985-01-01

    Comparisons of costs of low-level radioactive waste management techniques invariably degenerate into parochial arguments over differences in commercial objectives. The purpose of this paper is to establish a common basis for comparing technologies and then to examine the result as a complete cycle instead of a snapshot view taken at an arbitrary point in the progression. One objective is to portray cost sensitivity in terms of the options available for waste management. A second, perhaps less obvious, point is the definition of cost factors hidden from the short-term view. The final objective is to show the cumulative effects of costs externally imposed without reference to the technology employed (e.g., legislated surcharges based on arbitrary parameters)

  11. Development of a low cost, low environmental impact process for disposal of nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.

    1975-01-01

    A uranium recycle process in the Y-12 Plant generates nitrate ions which must be discarded. Scrap enriched uranium is dissolved in nitric acid and solvent extracted to remove impurities from the uranium. Aluminum nitrate is also used in the process to remove the purified uranium from the solvent extraction process. Dilute nitric acid, aluminum nitrate, and metallic impurities must be discarded from this process. A program was started to develop a low cost, low environmental impact process for disposal of these nitrate wastes. Several disposal methods were considered. A process was selected which included: distillation and recycle of nitric acid; crystallization and recycle of aluminum nitrate; and biodegradation of the remaining nitrate waste solutions. For this presentation, only the biodegradation process will be discussed. A colony of Pseudomonas stutzeri, which is capable of using the nitrate ion as the oxygen supply, was used. An excess of organic material was used to insure that the maximum amount of nitrate was destroyed

  12. Low-level waste program technical strategy

    International Nuclear Information System (INIS)

    Bledsoe, K.W.

    1994-01-01

    The Low-Level Waste Technical Strategy document describes the mechanisms which the Low-Level Waste Program Office plans to implement to achieve its mission. The mission is to manage the receipt, immobilization, packaging, storage/disposal and RCRA closure (of the site) of the low-level Hanford waste (pretreated tank wastes) in an environmentally sound, safe and cost-effective manner. The primary objective of the TWRS Low-level waste Program office is to vitrify the LLW fraction of the tank waste and dispose of it onsite

  13. Development of an innovative PWR for low cost fuel recycle and waste reduction

    International Nuclear Information System (INIS)

    Kanagawa, Takashi; Onoue, Masaaki

    2001-01-01

    In order to bear long-term and stable energy supply, it is important for nuclear power generation to realize establishment of energy security controlling dependence on natural resources and reduction of long-life radioactive wastes such as minor actinide elements (MA) and so on. For this, establishment of fast breeder reproducible on its fuel and of fuel recycling is essential and construction of the fuel recycling capable of repeatedly recycling of plutonium (Pu) and MA with low cost is required. Here were proposed a fuel recycling system combining recycling type PWR with advanced recycling system under development for Na cooling fast breeder reactor as a candidate filling such conditions, to show its characteristics and effects after its introduction. By this system, some facilities to realize flexible and low cost fuel recycling, to reduce longer-life radioactive wastes due to recycling burning of Pu and MA, and to realize an electric power supplying system independent on natural resources due to fuel breeding feature, were shown. (G.K.)

  14. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  15. Combined Waste Form Cost Trade Study

    International Nuclear Information System (INIS)

    Gombert, Dirk; Piet, Steve; Trickel, Timothy; Carter, Joe; Vienna, John; Ebert, Bill; Matthern, Gretchen

    2008-01-01

    A new generation of aqueous nuclear fuel reprocessing, now in development under the auspices of the DOE Office of Nuclear Energy (NE), separates fuel into several fractions, thereby partitioning the wastes into groups of common chemistry. This technology advance enables development of waste management strategies that were not conceivable with simple PUREX reprocessing. Conventional wisdom suggests minimizing high level waste (HLW) volume is desirable, but logical extrapolation of this concept suggests that at some point the cost of reducing volume further will reach a point of diminishing return and may cease to be cost-effective. This report summarizes an evaluation considering three groupings of wastes in terms of cost-benefit for the reprocessing system. Internationally, the typical waste form for HLW from the PUREX process is borosilicate glass containing waste elements as oxides. Unfortunately several fission products (primarily Mo and the noble metals Ru, Rh, Pd) have limited solubility in glass, yielding relatively low waste loading, producing more glass, and greater disposal costs. Advanced separations allow matching the waste form to waste stream chemistry, allowing the disposal system to achieve more optimum waste loading with improved performance. Metals can be segregated from oxides and each can be stabilized in forms to minimize the HLW volume for repository disposal. Thus, a more efficient waste management system making the most effective use of advanced waste forms and disposal design for each waste is enabled by advanced separations and how the waste streams are combined. This trade-study was designed to juxtapose a combined waste form baseline waste treatment scheme with two options and to evaluate the cost-benefit using available data from the conceptual design studies supported by DOE-NE

  16. Food waste in South Africa: Understanding the magnitude, water footprint and cost

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2014-11-01

    Full Text Available by type to water loss as a result of food waste Table 2: Contribution of food commodities to water loss as a result of food waste THE VISION ZERO WASTE HANDBOOK 67 8 FOOD WASTE IN SOUTH AFRICA that cereals (32%), meat (26%) and fruit and vegetables (24... impact of fruit and vegetables are the highest (42%) followed by meat (32%)( Nahman and de Lange, 2013), cereals are contributing the most to water loss (32%) followed by meat (26%) (Figure 3). It is therefore evident that actions to reduce cost vs...

  17. Biodiesel from waste cooking oils via direct sonication

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Grant, Georgene Elizabeth

    2013-01-01

    Highlights: • Thermal effects of direct sonication on transesterification reaction were studied. • Ultrasonics may effectively transesterify waste oils without external heating. • Intense mixing with temperature rise completes transesterification instantly. • Plug flow process reactor design with ultrasound may prove energy efficient. • Process optimization and biodiesel conversion analysis was presented. - Abstract: This study investigates the effect of direct sonication in conversion of waste cooking oil into biodiesel. Waste cooking oils may cause environmental hazards if not disposed properly. However, waste cooking oils can serve as low-cost feedstock for biodiesel production. Ultrasonics, a non-conventional process technique, was applied to directly convert waste cooking oil into biodiesel in a single step. Ultrasonics transesterify waste cooking oils very efficiently due to increased mass/heat transfer phenomena and specific thermal/athermal effects at molecular levels. Thus, energy and chemical consumption in the overall process is greatly reduced compared to conventional biodiesel processes. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with effects of different ultrasonic, energy intensities and energy density are reported. Optimization of process parameters such as methanol to oil ratio, catalyst concentration and reaction time are also presented. It was observed that small reactor design such as plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction due to increased energy density and ultrasonic intensity

  18. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    International Nuclear Information System (INIS)

    Carilli, J.T.; Krenzien, S.K.; Geisinger, R.G.; Gordon, S.J.; Quinn, B.

    2009-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams

  19. The construction and operation of a low-cost poultry waste digester.

    Science.gov (United States)

    Steinsberger, S C; Shih, J C

    1984-05-01

    A simple and low-cost poultry waste digester (PWD) was constructed to treat the waste from 4000 caged laying hens on University Research Unit No. 2 at North Carolina State University. The system was built basically of a plastic lining with insulation, a heating system, a hot-water tank, and other metering equipment. It was operated at 50 degrees C and pH 7.5-8.0. The initiation of methane production was achieved using the indigenous microflora in the poultry waste. At an optimal loading rate (7.5 kg volatile solids/m(3) day), the PWD produced biogas (55% methane) at a rate of 4.0 m(3)/m(3) day. The PWD was biologically stable and able to tolerate temporary overloads and shutdowns. A higher loading rate failed to maintain a high gas production rate and caused drops in methane content and pH value. Under optimal conditions, a positive energy balance was demonstrated with a net surplus of 50.6% of the gross energy. For methane production, the PWD system was proved to be technically feasible. The simple design and inexpensive materials used for this model could significantly reduce the cost of digestion compared to more conventional systems. More studies are needed to determine the durability, the required maintenance of the system, and the most economical method of biogas and solid residue utilization.

  20. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    The Net Zero Energy Building (Net ZEB) concept is worldwide recognised as a promising solution for decreasing buildings’ energy use. Nevertheless, a consistent definition of the Net ZEB concept is constantly under discussion. One of the points on the Net ZEB agenda is the zero energy balance...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...... have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance....

  1. Life cycle costs for disposal and assured isolation of low-level radioactive waste in Connecticut

    International Nuclear Information System (INIS)

    Chau, B.; Sutherland, A.A.; Baird, R.D.

    1998-03-01

    This document presents life cycle costs for a low-level radioactive disposal facility and a comparable assured isolation facility. Cost projections were based on general plans and assumptions, including volume projections and operating life, provided by the Connecticut Hazardous Waste Management Service, for a facility designed to meet the State's needs. Life cycle costs include the costs of pre-construction activities, construction, operations, closure, and post-closure institutional control. In order to provide a better basis for understanding the relative magnitude of near-term costs and future costs, the results of present value analysis of ut-year costs are provided

  2. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  3. Water reuse achieved by zero discharge of aqueous waste

    International Nuclear Information System (INIS)

    Kelchner, B.L.

    1976-01-01

    Plans for zero discharge of aqueous waste from ERDA's nuclear weapons plant near Denver are discussed. Two plants - a process waste treatment facility now under construction, and a reverse osmosis desalting plant now under design, will provide total reuse of waste water for boiler feed and cooling tower supply. Seventy million gallons of water per year will be conserved and downstream municipalities will be free of inadvertent pollution hazards

  4. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.

    1987-01-01

    A minimal health and environmental risk, limitations on disposal capacity, and the relatively high costs of low level waste (LLW) disposal are basic driving forces that lead to consideration of less restrictive disposal of wastes with very low levels of radiological contamination. The term threshold limit describes radioactive wastes that have sufficiently low-levels of radiological content to be managed according to their nonradiological properties. Given the efforts described elsewhere to provide guidance on the definition of below threshold (BT) doses and concentration levels, the purpose of this study was to quantify the resultant quantities, costs and cost effectiveness of BT disposal. For purposes of consistency with the previous demonstrations of the application of the threshold concept, available data for waste streams at the Idaho National Engineering Laboratory (INEL) and the Savannah River Plant (SRP) sites were collected and analyzed with regard to volumes, radionuclide concentrations, and disposal costs. From this information, quantities of BT waste, potential cost savings and cost effectiveness values were estimated. 1 reference, 5 tables

  5. Low-level radioactive biomedical wastes

    International Nuclear Information System (INIS)

    Casarett, G.W.

    A summary of the management and hazards of low-level radioactive biomedical wastes is presented. The volume, disposal methods, current problems, regulatory agencies, and possible solutions to disposal problems are discussed. The benefits derived from using radioactivity in medicine are briefly described. Potential health risks are discussed. The radioactivity in most of the radioactive biomedical waste is a small fraction of that contained naturally in the human body or in the natural environment. Benefit-risk-cost considerations are presented. The cost of managing these wastes is getting so high that a new perspective for comparison of radioactivity (facts, risks, costs, benefits and trade-offs) and alternate approaches to minimize the risk and cost and maximize the benefits is suggested

  6. Preliminary estimate of the costs involved in the implantation of a low and medium level radioactive waste repository in Brazil

    International Nuclear Information System (INIS)

    Branco, Otavio E.A.; Carvalho Filho, Carlos A.; Ferreira, Vinicius V.M.; Alves, Paulo R.R.

    2009-01-01

    One relevant subject in the decision making process linked to the implantation of a low and intermediate level waste (LILW) repository in Brazil is regarding to the project expected costs. It is important to estimate in a solid way the total and partial costs expected, considering each one of the enterprise implantation phases. This work shows an initial estimative of these costs, based on reports and papers that evaluate the implantation, operation, closure and post closure costs of radioactive LILW waste repositories. In the development of this research only the costs regarding to near surface repositories, or similar ones, were considered. The total cost was estimated as approximately 115 million dollars, considering the whole project lifetime as 300 years. Considering the repository start-up costs (site selection, licensing, project and construction), the total value is estimated as 48 million dollars (1600 dollars/m 3 ). It is important to emphasize that some cares should be taken when costs obtained from the acquired experience by another countries in the repositories development are analyzed. As example, the costs for disposal 1 m 3 of low and medium level radioactive waste vary significantly from one country to another, even when repositories with similar projects are compared. Also the total costs of construction and licensing are significantly higher when compared those ones from 'conventional' facilities with similar technological characteristics. Finally, although about a dozen low and medium level radioactive waste repository are operating in Europe, new projects should be faced, as the international practice demonstrate, as original developments. (author)

  7. Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4

    International Nuclear Information System (INIS)

    1994-06-01

    One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report

  8. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    International Nuclear Information System (INIS)

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO's proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO's cleanup mission. FERMCO's goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo

  9. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    International Nuclear Information System (INIS)

    None

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  10. Future directions for the US Nuclear Regulatory Commission's low-level waste management program

    International Nuclear Information System (INIS)

    Starmer, R.J.

    1986-01-01

    The Low-Level Radioactive Waste Policy Act envisioned that all states would be able to dispose of commercial low-level waste generated within their borders by 1986, either individually or through interstate compacts. Based on the current status of state and compact efforts, it is clear that no new disposal sites will be available by 1986 or for some period thereafter. In the short-term, there is uncertainty that the existing disposal sites will remain open after January 1, 1986, or if restrictions will apply after that time. If restrictions occur, storage, treatment or even curtailed generation may result for individual waste producers. Other uncertainties clouding implementation of the Policy Act include the final configuration of regional compacts - in the northeast in particular - clear assignment of responsibility for disposal of classes of waste, the method of disposal - shallow land burial or alternatives - that will be employed for low-level waste, and regulation of mixed wastes, wastes which have both radioactive and non-radioactive hazardous constituents. The NRC strategy for low-level waste management aims to resolve or reduce these uncertainties, and to encourage transition to a stable, national system based on timely state action. NRC will continue development of regulatory and technical guidance for disposal site licensing and build on its capabilities to address specific areas of state concern, such as alternatives to shallow land burial, and site characterization and modeling. NRC also plans to expand state and compact outreach efforts to help ensure that our technical work is properly focused. The authors will also be directly assisting those states and compacts on technical matters they confront in actual disposal site development and licensing

  11. National Low-Level Radioactive Waste Management Program. Use of compensation and incentives in siting Low-Level Radioactive Waste Disposal Facilities. Revision 1

    International Nuclear Information System (INIS)

    1985-10-01

    This document was prepared to increase understanding of compensation and incentives as they pertain to the siting of Low-Level Radioactive Waste Disposal Facilities. Compensation and incentives are discussed as methods to facilitate siting Low-Level Radioactive Waste Facilities. Compensations may be in the form of grants to enable host communities to evaluate potential impacts of the proposed facility. Compensations may also include reimbursements to the host community for costs incurred during facility construction, operation and closure. These may include required improvements to local roads, new equipment, and payments for revenue losses in local property taxes when disposal sites are removed from the tax base. Incentives provide benefits to the community beyond the costs directly related to the operation of the facility. Greater local control over waste facilities can be a powerful incentive. Local officials may be more willing to accept a facility if they have some control over the operation and monitoring associated with the facility. Failure to secure new disposal sites may cause such problems as illegal dumping which would create public health hazards. Also, lack of disposal capacity may restrict research and medical use of radioactive materials. The use of compensation and incentives may increase acceptance of communities for hosting a low-level waste disposal facility

  12. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1989-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: - Transportsystem for radioactive wastes. - A control spent fuel intermediate storage plant. - A repository for low and medium level wastes. These are planned: - A treatment plant for used fuels. A repository for high-level wastes and repository for decommissioning wastes. The costs include Rand D and decommissioning. Total future costs from 1990 are estimated to be 43 billion SEK (6,5 billion dollars), during 60 years. Up to 1990 7,4 billion SEK (1,1 billion dollars) have been spent. (L.E.)

  13. Regional waste treatment with monolith disposal for low-level radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1983-01-01

    An alternative system is proposed for the disposal of low-level radioactive waste. This system, called REgional Treatment with MOnolith Disposal (RETMOD), is based on integrating three commercial technologies: automated package warehousing, whole-barrel rotary kiln incineration, and cement-based grouts for radioactive waste disposal. In the simplified flowsheet, all the sludges, liquids, resins, and combustible wastes are transported to regional facilities where they are incinerated. The ash is then mixed with special cement-based grouts, and the resulting mixture is poured into trenches to form large waste-cement monoliths. Wastes that do not require treatment, such as damaged and discarded equipment, are prepositioned in the trenches with the waste-cement mixture poured on top. The RETMOD system may provide higher safety margins by conversion of wastes into a solidified low-leach form, creation of low-surface area waste-cement monoliths, and centralization of waste processing into a few specialized facilities. Institutional problems would be simplified by placing total responsibility for safe disposal on the disposal site operator. Lower costs may be realized through reduced handling costs, the economics of scale, simplified operations, and less restrictive waste packaging requirements

  14. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  15. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

    KAUST Repository

    Barbe, Jeremy; Eid, Jessica; Ahlswede, Erik; Spiering, Stefanie; Powalla, Michael; Agrawal, Rakesh; Del Gobbo, Silvano

    2016-01-01

    Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning

  16. Directions of organisational and low-cost energy saving of engineering enterprises

    Directory of Open Access Journals (Sweden)

    Dzhedzhula Viacheslav V.

    2014-01-01

    Full Text Available The article analyses directions of energy saving of industrial enterprises. Taking into account the tendency to continuous growth of cost of energy resources, introduction of measures that would allow reduction of energy consumption of enterprises is an urgent task. One of the most important obstacles in the process of introduction of energy efficient solutions are fund limits and low awareness of owners and managers of industrial enterprises. The article offers a new classification of energy saving measures: apart from traditional expense and organisation measures it introduces the low-cost measures notion. It offers to consider low-cost those measures that are realised by the enterprise by means of own funds, moreover, their repayment term is not more than one year. It offers analytical expression for identification of annual funds saving from introduction of low-cost measures. It considers the process of identification of saving of funds from introduction of some of the main low-cost measures in detail: replacement of lighting units, balancing of ventilation networks and elimination of water leakages from pipelines and water supply equipment. Based on the analysis of bibliography information the article provides a list of main measures on energy saving, which could be referred to the low-cost ones. The proposed approaches would allow paying more attention to practical aspects of realisation of the concept of energy saving in the industry.

  17. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1992-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: * Transport system for radioactive wastes, * A control spent fuel intermediate storage plant, * A repository for low and medium level wastes. These are planned: * A treatment plant for used fuels, * A repository for high-level wastes, and * Repository for decommissioning wastes. The costs include R and D and decommissioning. Total future costs from 1993 are estimated to be 46.4 billion SEK (8.3 billion USD), during 60 years. Up to 1992 8.7 billion SEK (1.6 billion USD) have been spent

  18. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Debora Luiza Postai

    2016-06-01

    Full Text Available Removal of the cationic dyes rhodamine B (RhB and methylene blue (MB by waste seeds Aleurites moluccana (WAM was studied in a batch system. The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, point of zero charge measurement, and the Boehm titration method. The effects of contact time and pH were investigated for the removal of cationic dyes. An increase in pH from 3 to 9 was accompanied by an approximately three-fold increase in the amount of dye adsorbed. The adsorptions equilibrium values were obtained and analyzed using the Langmuir, Freundlich, Sips, and Redlich–Peterson equations, the Sips isotherm being the one that showed the best correlation with the experimental values. The maximum adsorption capacities of the dyes were 178 mg/g for the MB and 117 mg/g for the RhB. The kinetic sorption was evaluated by the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models, where it was observed that sorption follows the pseudo-second-order kinetic model. The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. The results indicate that waste seeds of A. moluccana could be used as a low cost material for the removal of cationic dyes from wastewater.

  19. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Tonini, Davide; Møller, Flemming

    2016-01-01

    assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household......Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial...... be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated....

  20. PACCOM: A nuclear waste packaging facility cost model: Draft technical report

    International Nuclear Information System (INIS)

    Dippold, D.G.; Tzemos, S.; Smith, D.J.

    1985-05-01

    PACCOM is a computerized, parametric model used to estimate the capital, operating, and decommissioning costs of a variety of nuclear waste packaging facility configurations. The model is based upon a modular waste packaging facility concept from which functional components of the overall facility have been identified and their design and costs related to various parameters such as waste type, waste throughput, and the number of operational shifts employed. The model may be used to either estimate the cost of a particular waste packaging facility configuration or to explore the cost tradeoff between plant capital and labor. That is, one may use the model to search for the particular facility sizes and associated cost which when coupled with a particular number of shifts, and thus staffing level, leads to the lowest overall total cost. The functional components which the model considers include hot cells and their supporting facilities, transportation, cask handling facilities, transuranic waste handling facilities, and administrative facilities such as warehouses, security buildings, maintenance buildings, etc. The cost of each of these functional components is related either directly or indirectly to the various independent design parameters. Staffing by shift is reported into direct and indirect support labor. These staffing levels are in turn related to the waste type, waste throughput, etc. 2 refs., 11 figs., 3 tabs

  1. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  2. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  3. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  4. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  5. Developing a holistic strategy for integrated waste management within municipal planning: Challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction

    International Nuclear Information System (INIS)

    Zotos, G.; Karagiannidis, A.; Zampetoglou, S.; Malamakis, A.; Antonopoulos, I.-S.; Kontogianni, S.; Tchobanoglous, G.

    2009-01-01

    The present position paper addresses contemporary waste management options, weaknesses and opportunities faced by Hellenic local authorities. It focuses on state-of-the-art, tested as well as innovative, environmental management tools on a municipal scale and identifies a range of different collaboration schemes between local authorities and related service providers. Currently, a policy implementation gap is still experienced among Hellenic local authorities; it appears that administration at the local level is inadequate to manage and implement many of the general policies proposed; identify, collect, monitor and assess relevant data; and safeguard efficient and effective implementation of MSWM practices in the framework of integrated environmental management as well. This shortfall is partly due to the decentralisation of waste management issues to local authorities without a parallel substantial budgetary and capacity support, thus resulting in local activity remaining often disoriented and isolated from national strategies, therefore yielding significant planning and implementation problems and delays against pressing issues at hand as well as loss or poor use of available funds. This paper develops a systemic approach for MSWM at both the household and the non-household level, summarizes state-of-the-art available tools and compiles a set of guidelines for developing waste management master plans at the municipal level. It aims to provide a framework in the MSWM field for municipalities in Greece as well as other countries facing similar problems under often comparable socioeconomic settings

  6. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    International Nuclear Information System (INIS)

    Murphy, E. S.; Holter, G. M.

    1980-01-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  7. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  8. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    International Nuclear Information System (INIS)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation's generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO's quality standards during the software maintenance phase. 8 refs., 1 tab

  9. Waste Management facilities cost information: System Cost Model Software Quality Assurance Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B.L.; Lundeen, A.S.

    1996-02-01

    In May of 1994, Lockheed Idaho Technologies Company (LITCO) in Idaho Falls, Idaho and subcontractors developed the System Cost Model (SCM) application. The SCM estimates life-cycle costs of the entire US Department of Energy (DOE) complex for designing; constructing; operating; and decommissioning treatment, storage, and disposal (TSD) facilities for mixed low-level, low-level, transuranic, and mixed transuranic waste. The SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing facilities at DOE installations. In addition, SCM can model new facilities based on capacity needs over the program life cycle. The SCM also provides transportation costs for truck and rail, which include transport of contact-handled, remote-handled, and alpha (transuranic) wastes. The user can provide input data (default data is included in the SCM) including the volume and nature of waste to be managed, the time period over which the waste is to be managed, and the configuration of the waste management complex (i.e., where each installation`s generated waste will be treated, stored, and disposed). Then the SCM uses parametric cost equations to estimate the costs of pre-operations (designing), construction costs, operation management, and decommissioning these waste management facilities. For the product to be effective and useful the SCM users must have a high level of confidence in the data generated by the software model. The SCM Software Quality Assurance Plan is part of the overall SCM project management effort to ensure that the SCM is maintained as a quality product and can be relied on to produce viable planning data. This document defines tasks and deliverables to ensure continued product integrity, provide increased confidence in the accuracy of the data generated, and meet the LITCO`s quality standards during the software maintenance phase. 8 refs., 1 tab.

  10. Directions in low-level radioactive-waste management. Planning state policy on low-level radioactive waste

    International Nuclear Information System (INIS)

    1982-10-01

    The majority of states face a growing problem in the management of low-level radioactive waste generated within their borders. The current uncertainty regarding the availability of disposal sites for these waste products exacerbates their increasing generation rate. The purpose of this publication is to assist state governments in planning effective policy to address these problems. Background information is presented on the current situation, the responsibilities of state government, and the assistance available to states from federal agencies and national groups. The document then focuses on state policy planning, including: (a) methodology for assessing a state's current waste management status and for projecting future needs, (b) consideration of waste management options for a state, and (c) insight into the possible effects and implications of planned policies. This information is intended primarily for state officials - executive, legislative, and agency - and does not include detailed technical information on waste characteristics or handling techniques

  11. Waste management facilities cost information for transportation of radioactive and hazardous materials

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations

  12. Waste management facilities cost information for transportation of radioactive and hazardous materials

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  13. Status of low-level radioactive waste disposal: how to plan a disaster

    International Nuclear Information System (INIS)

    McArthur, W.C.

    1979-01-01

    The nuclear industry is faced with serious problems in the transportation and burial of low-level radioactive wastes. Soaring burial costs, state regulations regarding transportation routes, and lack of direction from regulatory agencies are problems that must quickly be resolved. In order to gain control of this situation four major steps must be taken. First, states must accept their fair share of responsibility in the waste problem. Regulatory agencies must recognize the seriousness of the problem and develop a schedule for action. The nuclear industry must assert itself in a positive manner regarding the safety of nuclear power, and the low-level waste burial ground situation must improve

  14. Cost-benefit analysis for waste segregation at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    This report presents a cost-benefit analysis for the segregation of mixed, hazardous, and nonhazardous wastes at Lawrence Livermore National Laboratory (LLNL). The cost-benefit analysis was conducted to determine if current waste segregation practices and additional candidates for waste segregation at LLNL might have the potential for significant waste source reduction and annual savings in treatment and disposal costs. In the following cost-benefit analysis, capital costs and recurring costs of waste segregation practices are compared to the economic benefits of savings in treatment and disposal costs. Indirect or overhead costs associated with these wastes are not available and have not been included. Not considered are additional benefits of waste segregation such as decreased potential for liability to LLNL for adverse environmental effects, improved worker safety, and enhanced LLNL image within the community because of environmental improvement. The economic evaluations in this report are presented on a Lab-wide basis. All hazardous wastes generated by a program are turned over to the Hazardous Waste Management (HWM) group, which is responsible for the storage, treatment, or disposal of these wastes and funded funded directly for this work

  15. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  16. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  17. Vitrification of low-level and mixed wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Bates, J.K.; Feng, Xiangdong.

    1994-01-01

    The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories

  18. DISPOSALSITE, Low-Level Radioactive Waste Storage Cost Analysis

    International Nuclear Information System (INIS)

    Smith, P.R.

    1990-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associated Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operating life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem - Maxima of: 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  19. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  20. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  1. Direct model-based predictive control scheme without cost function for voltage source inverters with reduced common-mode voltage

    Science.gov (United States)

    Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin

    2018-04-01

    This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.

  2. Comparative life-cycle cost analysis for low-level mixed waste remediation alternatives

    International Nuclear Information System (INIS)

    Jackson, J.A.; White, T.P.; Kloeber, J.M.; Toland, R.J.; Cain, J.P.; Buitrago, D.Y.

    1995-03-01

    The purpose of this study is two-fold: (1) to develop a generic, life-cycle cost model for evaluating low-level, mixed waste remediation alternatives, and (2) to apply the model specifically, to estimate remediation costs for a site similar to the Fernald Environmental Management Project near Cincinnati, OH. Life-cycle costs for vitrification, cementation, and dry removal process technologies are estimated. Since vitrification is in a conceptual phase, computer simulation is used to help characterize the support infrastructure of a large scale vitrification plant. Cost estimating relationships obtained from the simulation data, previous cost estimates, available process data, engineering judgment, and expert opinion all provide input to an Excel based spreadsheet for generating cash flow streams. Crystal Ball, an Excel add-on, was used for discounting cash flows for net present value analysis. The resulting LCC data was then analyzed using multi-attribute decision analysis techniques with cost and remediation time as criteria. The analytical framework presented allows alternatives to be evaluated in the context of budgetary, social, and political considerations. In general, the longer the remediation takes, the lower the net present value of the process. This is true because of the time value of money and large percentage of the costs attributed to storage or disposal

  3. The effect of alternative cost and environmental impact minimisation strategies on radioactive waste disposal strategies

    International Nuclear Information System (INIS)

    Laundy, R.S.; James, A.R.; Groom, M.S.; Dalrymple, G.J.

    1985-06-01

    The study reported here investigates the effects of different cost and environmental impact minimisation strategies for a single waste disposal scenario. Four disposal options are considered. The study examines the environmental impacts from waste storage and transport and the disposal impacts in terms of collective dose, maximum individual dose and individual dose from intrusion. The total cost of disposing of waste takes account of storage, transport and disposal costs to each of the four facilities. Two minimum cost scenarios and seven minimum impact assessments were performed. The results showed clearly that a trade-off has to be made between the environmental impacts from transport and storage of waste. A low objective risk of transport is achieved by directing waste to the engineered trench, assumed to have a central location. This waste is stored until the facility is available in 1995 thus increasing the potential impact from storage. The results also show a trade-off has to be made between minimising the maximum individual dose from disposal and collective dose. The study shows that for relatively little cost large reductions in the impacts can be obtained particularly in short and long-term collective dose and the individual dose from intrusion. (author)

  4. Cost Considerations and Financing Mechanisms for the Disposal of Low and Intermediate Level Radioactive Waste

    International Nuclear Information System (INIS)

    2007-06-01

    The overall objective of this publication is to provide Member States who are currently planning or preparing new near surface repositories for low and intermediate level radioactive waste (LILW), guidance on cost considerations and funding mechanisms for the repositories' entire life cycle. The report focuses on both technical and non-technical factors affecting repository costs. It considers the major cost elements that comprise a cost evaluation for a disposal facility for LILW and identifies those factors which may result in major uncertainties in an overall cost estimate. In particular, the report lists the basic disposal options and summarizes the legal basis and infrastructure requirements for establishing an effective financing system. It further includes the cost estimation methodology, considers the major cost categories and discusses factors to be considered when planning the financing mechanism, and describes relevant financing schemes

  5. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  6. Bayesian models for cost-effectiveness analysis in the presence of structural zero costs.

    Science.gov (United States)

    Baio, Gianluca

    2014-05-20

    Bayesian modelling for cost-effectiveness data has received much attention in both the health economics and the statistical literature, in recent years. Cost-effectiveness data are characterised by a relatively complex structure of relationships linking a suitable measure of clinical benefit (e.g. quality-adjusted life years) and the associated costs. Simplifying assumptions, such as (bivariate) normality of the underlying distributions, are usually not granted, particularly for the cost variable, which is characterised by markedly skewed distributions. In addition, individual-level data sets are often characterised by the presence of structural zeros in the cost variable. Hurdle models can be used to account for the presence of excess zeros in a distribution and have been applied in the context of cost data. We extend their application to cost-effectiveness data, defining a full Bayesian specification, which consists of a model for the individual probability of null costs, a marginal model for the costs and a conditional model for the measure of effectiveness (given the observed costs). We presented the model using a working example to describe its main features. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  7. Low-level radioactive waste management technology development

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1985-01-01

    Although reviews of disposal practices and site performance indicated that there were no releases to the environment that would affect public health and safety, it became clear that: (a) several burial grounds were not performing as expected; (b) long-term maintenance of closed trenches could be a costly problem, and (c) more cost-effective methods could be developed for the treatment, packing, and disposal of low-level waste. As a result of these reviews, the Department of Energy developed the Low-level Waste Management Program to seek improvements in existing practices, correct obvious deficiencies, and develop site closure techniques that would avoid expensive long-term maintenance and monitoring. Such technology developments provide a better understanding of the physical and technical mechanisms governing low-level waste treatment and disposal and lead to improvement in the performance of disposal sites. The primary means of disposal of low-level waste has been the accepted and regulated practice of shallow land disposal, i.e., placement of low-level waste in trenches 5 to 10 meters deep with several meters of special soil cover. Department of Energy waste is primarily disposed at six major shallow land disposal sites. Commercial waste is currently disposed of at three major sites in the nation - Barnwell, South Carolina; Richland, Washington; and Beatty, Nevada. In the late 1970's public concern arose regarding the management practices of sites operated by the civilian sector and by the Department of Energy

  8. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  9. Cost of organic waste technologies: A case study for New Jersey

    Directory of Open Access Journals (Sweden)

    Gal Hochman

    2015-09-01

    Full Text Available This paper evaluates the benefits of converting food waste and manure to biogas and/or fertilizer, while focusing on four available waste treatment technologies: direct combustion, landfilling, composting, and anaerobic digestion. These four alternative technologies were simulated using municipal-level data on food waste and manure in New Jersey. The criteria used to assess the four technologies include technological productivity, economic benefits, and impact on land scarcity. Anaerobic digestion with gas collection has the highest technological productivity; using anaerobic digesters would supply electricity to nearly ten thousand families in New Jersey. In terms of economic benefits, the landfill to gas method is the least costly method of treating waste. In comparison, direct combustion is by far the most costly method of all four waste-to-energy technologies.

  10. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  11. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  12. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  13. Revenue Sufficiency and Reliability in a Zero Marginal Cost Future

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-17

    Features of existing wholesale electricity markets, such as administrative pricing rules and policy-based reliability standards, can distort market incentives from allowing generators sufficient opportunities to recover both fixed and variable costs. Moreover, these challenges can be amplified by other factors, including (1) inelastic demand resulting from a lack of price signal clarity, (2) low- or near-zero marginal cost generation, particularly arising from low natural gas fuel prices and variable generation (VG), such as wind and solar, and (3) the variability and uncertainty of this VG. As power systems begin to incorporate higher shares of VG, many questions arise about the suitability of the existing marginal-cost-based price formation, primarily within an energy-only market structure, to ensure the economic viability of resources that might be needed to provide system reliability. This article discusses these questions and provides a summary of completed and ongoing modelling-based work at the National Renewable Energy Laboratory to better understand the impacts of evolving power systems on reliability and revenue sufficiency.

  14. A Tactical Database for the Low Cost Combat Direction System

    Science.gov (United States)

    1990-12-01

    A Tactical Database for the Low Cost Combat Direction System by Everton G. de Paula Captain, Brazilian Air Force B.S., Instituto Tecnologico de...objects as a unit. The AVANCE object management system [Ref. 29] uses the timestamp 156 model (pessimistic approach) for concurrency control. The Vbase...are no longer used). In AVANCE [Ref. 291, garbage collection is performed on user request. In GemStone [Ref. 25], garbage collection is executed in

  15. The direct product of right zero semigroups and certain groupoids ...

    African Journals Online (AJOL)

    This paper investigates first the structure of semigroups which are direct products of right zero semigroups and cancellative semigroups with identity. We consider the relationship of these semigroups to right groups (the direct products of groups and right zero semigroups). Finally, we consider groupoids which are direct ...

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. Generalized economic model for evaluating disposal costs at a low-level waste disposal facility

    International Nuclear Information System (INIS)

    Baird, R.D.; Rogers, V.C.

    1985-01-01

    An economic model is developed which can be used to evaluate cash flows associated with the development, operations, closure, and long-term maintenance of a proposed Low-Level Radioactive Waste disposal facility and to determine the unit disposal charges and unit surcharges which might result. The model includes the effects of nominal interest rate (rate of return on investment, or cost of capital), inflation rate, waste volume growth rate, site capacity, duration of various phases of the facility history, and the cash flows associated with each phase. The model uses standard discounted cash flow techniques on an after-tax basis to determine that unit disposal charge which is necessary to cover all costs and expenses and to generate an adequate rate of return on investment. It separately considers cash flows associated with post-operational activities to determine the required unit surcharge. The model is applied to three reference facilities to determine the respective unit disposal charges and unit surcharges, with various values of parameters. The sensitivity of the model results are evaluated for the unit disposal charge

  18. Packaged low-level waste verification system

    International Nuclear Information System (INIS)

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-01-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL)

  19. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  20. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO 2 and CH 4 ) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report

  1. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    Science.gov (United States)

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to

  2. Directions in low-level radioactive-waste management. Incentives and compensation: providing resources for communities hosting low-level waste facilities

    International Nuclear Information System (INIS)

    1982-10-01

    State responsibility for the management of low-level radioactive waste necessitates the selection of candidate locations for a disposal facility. Concern over potential impacts can be expected from segments of the citizenry neighboring a proposed site. A number of national organizations comprising state and local officials have recommended the use of incentives and compensation to help offset the negative local impacts. This document explores that concept. Discussion provides background information on potential local impacts from a low-level waste facility and considers the nature and types of incentives and compensation benefits that could be provided. The document then examines realistic options for planning and implementing the benefit program. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for and managing low-level waste disposal facilities

  3. Optimal design of zero-water discharge rinsing systems.

    Science.gov (United States)

    Thöming, Jorg

    2002-03-01

    This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.

  4. Solid low level waste management guidelines

    International Nuclear Information System (INIS)

    Saunders, P.

    1995-01-01

    In the 1980's the nuclear industry began focusing a great deal of attention on minimizing the volume of low level radioactive waste (LLW) that required disposal. This was driven by several factors including rising disposal costs, increased regulatory pressures, and increased pressure from other organizations such as INPO. In the 1990's most utilities are faced with intense competition in the electrical generation market. The survival of a utility is based on their ability to produce electricity by the most efficient and economical means available. Waste management related costs are a substantial portion of most utilities O ampersand M budgets. Disposal site access denial continues to be a major factor in waste management program decision, and the pressures to minimize waste volumes from outside organizations is greater than ever

  5. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  6. Waste Management Facilities Cost Information for transportation of radioactive and hazardous materials. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1994-09-01

    This report contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, greater-than-Class C (GTCC) LLW and DOE equivalent waste, transuranic waste (TRU), spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled ( 200 mrem/hr contact dose) radioactive waste have been estimated previously, and a summary has been included in earlier WMFCI reports. In order to have a single source for obtaining transportation cost for all radioactive waste, the transportation costs for the contact- and remote-handled wastes are repeated in this report. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the US Department of Transportation (DOT), the US Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations. It should be noted that the trend is toward greater restrictions on transportation of radioactive waste (e.g., truck or rail car speed, shipping route, security escort, and personnel training requirements), which may have a significant impact on future costs

  7. Toward zero waste events: Reducing contamination in waste streams with volunteer assistance.

    Science.gov (United States)

    Zelenika, Ivana; Moreau, Tara; Zhao, Jiaying

    2018-03-22

    Public festivals and events generate a tremendous amount of waste, especially when they involve food and drink. To reduce contamination across waste streams, we evaluated three types of interventions at a public event. In a randomized control trial, we examined the impact of volunteer staff assistance, bin tops, and sample 3D items with bin tops, on the amount of contamination and the weight of the organics, recyclable containers, paper, and garbage bins at a public event. The event was the annual Apple Festival held at the University of British Columbia, which was attended by around 10,000 visitors. We found that contamination was the lowest in the volunteer staff condition among all conditions. Specifically, volunteer staff reduced contamination by 96.1% on average in the organics bin, 96.9% in the recyclable containers bin, 97.0% in the paper bin, and 84.9% in the garbage bin. Our interventions did not influence the weight of the materials in the bins. This finding highlights the impact of volunteers on reducing contamination in waste streams at events, and provides suggestions and implications for waste management for event organizers to minimize contamination in all waste streams to achieve zero waste goals. Copyright © 2018. Published by Elsevier Ltd.

  8. A comparison of the costs of treating wastes from a radio analytical laboratory

    International Nuclear Information System (INIS)

    Moore, R.

    1996-01-01

    The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL's traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it

  9. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.

  10. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1993-07-01

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosed vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report

  11. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review

    Directory of Open Access Journals (Sweden)

    Maria Ferrara

    2018-06-01

    Full Text Available Since the introduction of the recast of the EPBD European Directive 2010/31/EU, many studies on the cost-effective feasibility of nearly zero-energy buildings (NZEBs were carried out either by academic research bodies and by national bodies. In particular, the introduction of the cost-optimal methodology has given a strong impulse to research in this field. This paper presents a comprehensive and significant review on scientific works based on the application of cost-optimal analysis applications in Europe since the EPBD recast entered into force, pointing out the differences in the analyzed studies and comparing their outcomes before the new recast of EPBD enters into force in 2018. The analysis is conducted with special regard to the methods used for the energy performance assessment, the global cost calculation, and for the selection of the energy efficiency measures leading to design optimization. A critical discussion about the assumptions on which the studies are based and the resulting gaps between the resulting cost-optimal performance and the zero energy target is provided together with a summary of the resulting cost-optimal set of technologies to be used for cost-optimal NZEB design in different contexts. It is shown that the cost-optimal approach results as an effective method for delineating the future of NZEB design throughout Europe while emerging criticalities and open research issues are presented.

  12. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

  13. Alpha low-level stored waste systems design study

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

  14. Alpha low-level stored waste systems design study

    International Nuclear Information System (INIS)

    Feizollahi, F.; Teheranian, B.

    1992-08-01

    The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT ampersand E) requirements for each of the three concepts

  15. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    PM Daling; SB Ross; BM Biwer

    1999-01-01

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  16. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    PM Daling; SB Ross; BM Biwer

    1999-12-17

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal

  17. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented

  18. A waste characterization monitor for low-level radioactive waste management

    International Nuclear Information System (INIS)

    Davey, E.C.; Csullog, G.W.; Kupca, S.; Hippola, K.B.

    1985-06-01

    The exploitation of nuclear processes and technology for the benefit of Canadians results in the routine generation of approximately 12 000 m 3 of solid low-level radioactive waste annually. To protect the public and the environment, this waste must be isolated for the duration of its potential hazard. In Canada, current planning foresees the development and use of a range of storage and disposal facilities exhibiting differing containment capabilities. To demonstrate adequate isolation safety and to minimize overall costs, the radionuclide content of waste items must be quantified so that the radiological hazards of each waste item can be matched to the isolation capabilities of specific containment facilities. This paper describes a non-invasive, waste characterization monitor that is capable of quantifying the radionuclide content of low-level waste packages to the 9 Bq/g (250 pCi/g) level. The assay technique is based on passive gamma-ray spectroscopy where the concentration of gamma-ray emitting radionuclides in a waste item can be estimated from the analysis of the gamma-ray spectra of the item and calibrated standards

  19. A nationwide low-level waste management system

    International Nuclear Information System (INIS)

    1985-01-01

    The National Governors' Association, in conjunction with the Department of Energy's National Low-Level Waste Management Program, invited various representatives of states, regions, and federal agencies to comment on their perceptions of what major features would constitute a nationwide low-level waste management system. Three meetings were conducted and this report summarizes results of those meetings. The Low-Level Radioactive Waste Policy Act of 1980 placed primary responsibility on the states for disposal of low-level waste. Although initial efforts of states have been directed toward establishing compacts, it is evident that a successful long term system requires significant cooperation and communication among states, regions, federal agencies, and Congress

  20. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions.

    Science.gov (United States)

    Tong, Tiezheng; Elimelech, Menachem

    2016-07-05

    Zero liquid discharge (ZLD)-a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency - has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is constrained by high cost and intensive energy consumption. In this critical review, we discuss the drivers, incentives, technologies, and environmental impacts of ZLD. Within this framework, the global applications of ZLD in the United States and emerging economies such as China and India are examined. We highlight the evolution of ZLD from thermal- to membrane-based processes, and analyze the advantages and limitations of existing and emerging ZLD technologies. The potential environmental impacts of ZLD, notably greenhouse gas emission and generation of solid waste, are discussed and the prospects of ZLD technologies and research needs are highlighted.

  1. Development of Low-Cost Solar Water Heater Using Recycled Solid Waste for Domestic Hot Water Supply

    Directory of Open Access Journals (Sweden)

    Talib Din Abdul

    2018-01-01

    Full Text Available This research is focused on the development of a low-cost solar water heater (SWH system by utilizing solid waste material as part of system elements. Available technologies of the solar water heater systems, heat collectors and its components were reviewed and the best system combinations for low cost design were chosen. The passive-thermosiphon system have been chosen due to its simplicity and independency on external power as well as conventional pump. For the heat collector, flat plate type was identified as the most suitable collector for low cost design and suits with Malaysia climate. Detail study on the flat plate collector components found that the heat absorber is the main component that can significantly reduce the solar collector price if it is replaced with recycled solid waste material. Review on common solid wastes concluded that crushed glass is a non-metal material that has potential to either enhance or become the main heat absorber in solar collector. A collector prototype were then designed and fabricated based on crashed glass heat collector media. Thermal performance test were conducted for three configurations where configuration A (black painted aluminum absorber used as benchmark, configuration B (crushed glass added partially that use glass for improvement, and lastly configuration C (black colored crushed glass that use colored glass as main absorber. Result for configuration B have shown a negative effect where the maximum collector efficiency is 26.8% lower than configuration A. Nevertheless, configuration C which use black crushed glass as main heat absorber shown a comparable maximum efficiency which is at 82.5% of the maximum efficiency for configuration A and furthermore have shown quite impressive increment of efficiency at the end of the experiment. Hence, black colored crushed glass is said to have quite a good potential as the heat absorber material and therefore turn out to be a new contender to other non

  2. Assessing the 'Waste Hierarchy' a social cost-benefit analyse of MSW management in the European Union

    International Nuclear Information System (INIS)

    Brisson, I. E.

    1997-01-01

    This paper discusses, in the context of an impending 'waste crisis', the concept of optimal waste generation and an optimal mix of municipal solid waste (MSW) management methods. It argues that excessive quantities of MSW are likely to be generated, and consequently excessive demand for waste services will exist, as long as the marginal cost of waste services facing the household is zero. In order to avoid this excess demand, households should be charged for waste services according to their use of it, and not as presently at a flat rate. In the price to be paid by householders should be included financial as well as external costs. With respect to the optimal mix of MSW management methods, the paper asserts that this would be attained when the marginal net social costs of each management methods were equal. After setting out the theoretical background, the paper then proceeds to undertake a social cost-benefit analysis of waste management methods currently employed by the 12 'old' European Union Member States, including external and financial costs of landfill, incineration, recycling and composting. The estimates obtained from this analysis are used to assess the validity of the 'waste hierarchy', which has won widespread acceptance, and is used as a guideline in a number of countries' waste policies. In the light of the widespread focus on increasing recycling efforts, a sensitivity analysis is carried out to ascertain whether particular materials are especially suited for recycling, and whether there are other materials for which recycling should not be encouraged. (au) 16 refs

  3. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    International Nuclear Information System (INIS)

    Hamel, W. F.; Gerdes, K.; Holton, L. K.; Pegg, I.L.; Bowan, B.W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  4. Steam Reforming of Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  5. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    -connected ZEBs - Net ZEBs, and the annual primary energy balance. The Life Cycle Cost (LCC) analysis conducted with a study case of a multi-storey residential Net ZEB aimed to determine the cost-optimal ''zero'' energy balance, minimum energy performance requirements and options of supplying renewable energy. The calculation encompassed three levels of energy frames, which mirrored the Danish low-energy building classes included in the current building code, and ten renewable energy supply systems including both on-site and off-site options. The results indicated that although the off-site options have lower life cycle costs than the on-site alternatives, their application would promote renewable technologies over energy efficiency measures. Thus, they oppose the Danish plans to gradually make the energy performance requirements stricter. Moreover, the results showed that district heating is a less cost-attractive solution than a ground source heat pump for a private building owner. Finally, with 2010-level of energy prices, cost-optimal ''zero'' energy balance accounts only for the building related energy use. (Author)

  6. Revenue Sufficiency and Reliability in a Zero Marginal Cost Future: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.; Milligan, Michael; Brinkman, Greg; Bloom, Aaron; Clark, Kara; Denholm, Paul

    2016-12-01

    Features of existing wholesale electricity markets, such as administrative pricing rules and policy-based reliability standards, can distort market incentives from allowing generators sufficient opportunities to recover both fixed and variable costs. Moreover, these challenges can be amplified by other factors, including (1) inelastic demand resulting from a lack of price signal clarity, (2) low- or near-zero marginal cost generation, particularly arising from low natural gas fuel prices and variable generation (VG), such as wind and solar, and (3) the variability and uncertainty of this VG. As power systems begin to incorporate higher shares of VG, many questions arise about the suitability of the existing marginal-cost-based price formation, primarily within an energy-only market structure, to ensure the economic viability of resources that might be needed to provide system reliability. This article discusses these questions and provides a summary of completed and ongoing modelling-based work at the National Renewable Energy Laboratory to better understand the impacts of evolving power systems on reliability and revenue sufficiency.

  7. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  8. Zero-Release Mixed Waste Process Facility Design and Testing

    International Nuclear Information System (INIS)

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-01-01

    A zero-release off-gas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotary kiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release off-gas cleaning system is to recycle the bulk of the off-gas stream to the thermal treatment process. A slip stream is taken off the off-gas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the off-gas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing off-gas emissions. Consideration of the proposed closed-system off-gas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis

  9. Waste management facilities cost information for transuranic waste

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report's information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  10. Direct measurement of γ-emitting radionuclides in waste drum

    International Nuclear Information System (INIS)

    Ma Ruwei; Mao Yong; Zhang Xiuzhen; Xia Xiaobin; Guo Caiping; Han Yueqin

    1993-01-01

    The low-level rad waste produced from nuclear power plant, nuclear facilities, and in the process of their decommissioning is stored in waste depository. For the safety of transport and storage of these wastes, some test must be done. One of them is to analyse the kinds and activities of radionuclides in each waste drum. Segmented scanning gamma spectrum analysis can be used for direct measurement of gamma-emitting radionuclides in drum. Gamma emitters such as Co-60, Cs-137, Ra-226 can be measured directly from outside of drum. A method and system for direct measuring gamma emitters in waste drum are described, and measuring apparatus and measurement results as well

  11. Evaluation of storage and disposal costs for conditioned radioactive waste in several European countries

    International Nuclear Information System (INIS)

    Zaccai, H.

    1990-01-01

    A survey on radioactive waste storage and disposal costs has been performed. In order to proceed to such a cost assessment, a survey has been carried on within various nuclear waste agencies throughout Europe. In addition, in order to collect sufficient related economic data, reference has been made to other available information. The results may be summarized as follows: until disposal sites become available, many countries store low-level waste at costs between 400 and 1 400 ECU/m 3 ; little information is supplied for medium- and high-level waste storage; however, for the projects under way, levels of the order of 100 000 ECU/m 3 for vitrified waste are probable, whereas for medium- and high-level waste these costs are expected to vary from 10 000 to 20 000 ECU/m 3 ; the economic analysis of disposal facilities shows that cost elasticity is high at low capacities both for the surface disposal ( 3 ) and deep burial ( 3 ). The economic benefit that might result from the scaling effect at larger capacities appears to be of little significance; despite the diversity of geological formations and disposal concepts for which economic data were compared, a certain coherence can be detected; thus, for the disposal of low-level waste, costs evolve as a function of site capacity from 2 000 to 6 000 ECU/m 3 for deep burial, and from 1 000 to 3 000 ECU/m 3 for surface disposal or shallow burial. For deep burial of medium- and high-level waste, costs vary as a function of site capacity from 10 000 to 70 000 ECU/m 3 for non-heat-emitting waste, and from 0.4 to 1.4 MECU/m 3 for vitrified waste

  12. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  13. A low-cost transportable ground station for capture and processing of direct broadcast EOS satellite data

    Science.gov (United States)

    Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.

    1994-01-01

    The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.

  14. Directions in low-level radioactive waste management. The siting process: establishing a low-level waste-disposal facility

    International Nuclear Information System (INIS)

    1982-11-01

    The siting of a low-level radioactive waste disposal facility encompasses many interrelated activities and, therefore, is inherently complex. The purpose of this publication is to assist state policymakers in understanding the nature of the siting process. Initial discussion focuses on the primary activities that require coordination during a siting effort. Available options for determining site development, licensing, regulating, and operating responsibilities are then considered. Additionally, the document calls attention to technical services available from federal agencies to assist states in the siting process; responsibilities of such agencies are also explained. The appendices include a conceptual plan for scheduling siting activities and an explanation of the process for acquiring agreement state status. An agreement state takes responsibility for licensing and regulating a low-level waste facility within its borders

  15. Thermal cooling using low-temperature waste heat. A cost-effective way for industrial companies to improve energy efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Schall, D.; Hirzel, S. [Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139 Karlsruhe (Germany)

    2012-11-15

    As a typical cross-cutting technology, cooling and refrigeration equipment is used for a variety of industrial applications. While cooling is often provided by electric compression cooling systems, thermal cooling systems powered by low-temperature waste heat could improve energy efficiency and promise a technical saving potential corresponding to 0.5 % of the total electricity demand in the German industry. In this paper, we investigate the current and future cost-effectiveness of thermal cooling systems for industrial companies. Our focus is on single-stage, closed absorption and adsorption cooling systems with cooling powers between 40 and 100 kW, which use low-temperature waste heat at temperature levels between 70C and 85C. We analyse the current and future cost-effectiveness of these alternative cooling systems using annual cooling costs (annuities) and payback times. For a forecast until 2015, we apply the concept of experience curves, identifying learning rates of 14 % (absorption machines) and 17 % (adsorption machines) by an expert survey of the German market. The results indicate that thermal cooling systems are currently only cost-effective under optimistic assumptions (full-time operation, high electricity prices) when compared to electric compression cooling systems. Nevertheless, the cost and efficiency improvements expected for this still young technology mean that thermal cooling systems could be more cost-effective in the future. However, depending on future electricity prices, a high number of operating hours is still crucial to achieve payback times substantially below 4 years which are usually required for energy efficiency measures to be widely adopted in the industry.

  16. The conditioning of low-level waste and of hazardous waste in Austria

    International Nuclear Information System (INIS)

    Krejsa, P.

    1988-01-01

    In 1978 in Austria some 50% (total 30%) of the people voted against the use of nuclear power for the production of electricity. Nevertheless radioactive wastes are produced in Austria from hospitals, industrial and research activities. The concept of waste management was therefore not altered. This paper discusses how, due to the low amounts of wastes (some 200 m 3 /y), of high costs of the waste treatment and of the concept of a central final disposal for radwastes the research center Seibersdorf was charged with the task to act as central storage and conditioning plant for the wastes arising from Austria

  17. Estimating and understanding DOE waste management costs'

    International Nuclear Information System (INIS)

    Kang, J.S.; Sherick, M.J.

    1995-01-01

    This paper examines costs associated with cleaning up the US Department of Energy's (DOE's) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties

  18. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  19. Conceptual designs for waste quality checking facilities for low level and intermediate level radioactive wastes and hazardous waste

    International Nuclear Information System (INIS)

    Driver, S.; Griffiths, M.; Leonard, C.D.; Smith, D.L.G.

    1992-01-01

    This report summarises work carried out on the design of facilities for the quality checking of Intermediate and Low Level Radioactive Waste and Hazardous Waste. The procedures used for the quality checking of these categories of waste are summarised. Three building options are considered: a separate LLW facility, a combined facility for LLW and HW and a Waste Quality Checking Facility for the three categories of waste. Budget Cost Estimates for the three facilities are given based on 1991 prices. (author)

  20. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  1. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  2. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  3. Cost effectiveness of below-threshold waste disposal at DOE sites

    International Nuclear Information System (INIS)

    Wickham, L.E.; Smith, C.F.; Cohen, J.J.

    1986-01-01

    Previous study has indicated the feasibility of establishing a threshold of concentration below which certain low-level (radioactive wastes) (LLW) could be safely handled and disposed of by conventional means such as landfills. Such below-threshold wastes have been synonymously termed de minimis or below regulatory concern (BRC) and can be deemed appropriate for management according to their nonradiological characteristics. The objective of this study was to determine the cost effectiveness for management and disposal of below-threshold waste at certain US Department of Energy sites. The sites selected for this study were the Idaho National Engineering Laboratory and Savannah River Laboratory. Cost-benefit analysis was used to determine the impacts, benefits, and potential cost advantages of establishing and implementing a threshold limit

  4. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  5. Low-level radioactive waste management: an economic assessment

    International Nuclear Information System (INIS)

    Peery, R.J.

    1981-07-01

    This paper has presented an overview of the economics of low-level radioactive waste disposal. It is hoped that this paper will assist the states in their efforts to determine their approach to the management of low-level wastes. Although the economies of scale realized by a larger facility are emphasized, the conclusion is that every state and region must examine its need for low-level waste disposal services and consider the interrelated factors that affect the volume of waste to be disposed, including waste reduction techniques, interim storage for not a single recommended capacity for a facility, but an acknowledgement of contingencies. In theory, per cubic foot disposal costs decrease as facility size increases. But theory does not preclude a state from constructing its own site, or a region generating small volumes of waste from building a shared facility. All factors should be weighed before a site is chosen and its size is determined

  6. Incineration as a low-level radioactive waste disposal alternative for the very low level (approx. 200 mCi/yr) institutional waste generator

    International Nuclear Information System (INIS)

    Miller, S.D.

    1982-01-01

    As a result of increased shipping costs and decreased land availability, serious questions have arisen regarding the continued use of shallow land burial for disposal of institutional radioactive wastes. These factors are of special significance to very low-level waste generators such as Arizona State University whose most recent waste shipment averaged approximately 2 mCi per shipped barrel at an effective cost of over $100 per mCi disposed - a total cost of over $14,000. Recent studies have shown incineration to be an attractive waste disposal alternative both in terms of volume reduction of waste, and in its expected insignificant radiological and environmental impact. Arizona State University has purchased an incinerator and has initiated a program to incinerate radioactive wastes. Licensing restrictions involving stack monitoring for a variety of possibly hazardous effluents and 10CFR20 restrictions affecting incineration of certain isotopes could render the change to incineration completely inefficient unless accompanied by a rigorous program of waste segregation designed to ease licensing restrictions. This paper reviews incinerator technology as it applies to radioactive waste management and presents the analysis performed during the licensing phase, along with some of the difficulties inherent in the development process

  7. Solid low level waste management guidelines: Final report

    International Nuclear Information System (INIS)

    Castagnacci, A.; Dalton, D.; Genoa, P.

    1994-11-01

    Since 1989, the nuclear industry has been moving in the direction of greater minimization of low level radioactive waste (LLW). This has been driven in part by increasing regulatory attention, but it also is in response to the desire on the part of nuclear utilities to be more cost efficient and to be environmentally responsive. Over the past half-dozen years, LLW disposal costs have increased dramatically. In addition, improvements in LLW volume reduction technologies have substantially reduced the volume of LLW that is disposed. At the same time, utilities are implementing aggressive source reduction programs and programs to reuse materials so as to extend the useful life of many materials. Thus, there has been a dramatic change in LLW economics and LLW management practices in just the past few years. This report was developed by utility nuclear experts to provide guidance to all utilities on mechanisms for integrating the program economics, advanced volume reduction techniques, and approaches to source reduction. Thus, utilizes will be able to use this report as a guide to optimizing their LLW program economics and minimizing LLW disposal volumes to the smallest reasonable fraction. This report discusses the implementation of these guidelines, management support, waste materials and waste inventory, radioactive tool and equipment management, protective clothing management, processing and volume reduction, solid LLW tracking, outage LLW management, and interim storage of LLW

  8. Determination of the zero point of charge of kaolin waste from the Northeast of Para, BR

    International Nuclear Information System (INIS)

    Pinto, R.L.S.; Maia, R.F.S.; Felipe, A.M.P.F.

    2012-01-01

    The Para contributes with more than 50% of national production of kaolin of which 12.5% correspond to the waste generated, which has similar composition to benefited kaolin, can be used as adsorbent of heavy metals. The viscosity influences the design of equipment that can reuse that waste. The pH changes the pulp viscosity and the determination of the zero point of charge can estimate this variation. This study analyzes the influence of pH on the pulp rheology by the determination of the zero point of charge. Tests were made by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, potentiometric titulation and rheological analysis. The results showed zero point of charge equal to 3.7 and confirmed that the viscosity increase at pH values near the zero point of charge and decrease at pH values away from this. (author)

  9. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  10. 1989 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites: National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1990-12-01

    The National Low-Level Waste Management Program has published eleven annual state-by-state assessment reports. These reports provide both national and state-specific disposal data on low-level radioactive wastes. Data in this report are divided into generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1989 and a comparison of waste volumes by state for 1985 through 1989; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1989. In this year's report, a distinction has been made between low-level radioactive waste shipped directly for disposal by generators and that handled by an intermediary. 7 refs., 4 tabs

  11. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  12. AX Tank Farm waste retrieval alternatives cost estimates

    International Nuclear Information System (INIS)

    Krieg, S.A.

    1998-01-01

    This report presents the estimated costs associated with retrieval of the wastes from the four tanks in AX Tank Farm. The engineering cost estimates developed for this report are based on previous cost data prepared for Project W-320 and the HTI 241-C-106 Heel Retrieval System. The costs presented in this report address only the retrieval of the wastes from the four AX Farm tanks. This includes costs for equipment procurement, fabrication, installation, and operation to retrieve the wastes. The costs to modify the existing plant equipment and systems to support the retrieval equipment are also included. The estimates do not include operational costs associated with pumping the waste out of the waste receiver tank (241-AY-102) between AX Farm retrieval campaigns or transportation, processing, and disposal of the retrieved waste

  13. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  14. US Army facility for the consolidation of low-level radioactive waste

    International Nuclear Information System (INIS)

    Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

    1983-12-01

    A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables

  15. Fee structures for low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Baird, R.D.; Rogers, V.C.

    1988-01-01

    Some compacts and states require that the fee system at their new low-level waste (LLW) disposal facility be based on the volume and radioactive hazard of the wastes. The fee structure discussed in this paper includes many potential fee elements that could be used to recover the costs of disposal and at the same time influence the volume and nature of waste that arrives at the disposal facility. It includes a base fee which accounts for some of the underlying administrative costs of disposal, and a broad range of charges related to certain parameters of the waste, such as volume, radioactivity, etc. It also includes credits, such as credits for waste with short-lived radionuclides or superior waste forms. The fee structure presented should contain elements of interest to all states and compacts. While no single disposal facility is likely to incorporate all of the elements discussed here in its fee structure, the paper presents a fairly exhaustive list of factors worth considering

  16. Report on waste burial charges: Escalation of decommissioning waste disposal costs at low-level waste burial facilities

    International Nuclear Information System (INIS)

    1988-07-01

    One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plant, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised annually, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC, and contains values for the escalation of radioactive waste burial costs, by site and by year. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analysis, or may use an escalation rate at least equal to the escalation approach presented herein. 4 refs., 2 tabs

  17. Low level waste solidification practice in Japan

    International Nuclear Information System (INIS)

    Sakata, S.; Kuribayashi, H.; Kono, Y.

    1981-01-01

    Both sea dumping and land isolation are planned to be accomplished for low level waste disposal in Japan. The conceptual design of land isolation facilities has been completed, and site selection will presently get underway. With respect to ocean dumping, safety surveys are being performed along the lines of the London Dumping Convention and the Revised Definitions and Recommendations of the IAEA, and the review of Japanese regulations and applicable criteria is being expedited. This paper discusses the present approach to waste solidification practices in Japan. It reports that the bitumen solidification process and the plastic solidification process are being increasingly used in Japan. Despite higher investment costs, both processes have advantages in operating cost, and are comparable to the cement solidification process in overall costs

  18. Life Cycle Costing Model for Solid Waste Management

    DEFF Research Database (Denmark)

    Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2014-01-01

    To ensure sustainability of solid waste management, there is a need for cost assessment models which are consistent with environmental and social assessments. However, there is a current lack of standardized terminology and methodology to evaluate economic performances and this complicates...... LCC, e.g. waste generator, waste operator and public finances and the perspective often defines the systemboundaries of the study, e.g. waste operators often focus on her/his own cost, i.e. technology based,whereas waste generators and public finances often focus on the entire waste system, i.......e. system based. Figure 1 illustrates the proposed modeling framework that distinguishes between: a) budget cost, b) externality costs and 3) transfers and defines unit costs of each technology (per ton of input waste). Unitcosts are afterwards combined with a mass balance to calculate the technology cost...

  19. Mobile encapsulation and volume reduction system for wet low-level wastes

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1985-08-01

    This report describes the results of the program entitled ''A Preconceptual Study for a Transportable Vitrification Process''. The objective of the study is to determine the feasibility of a Mobile Encapsulation and Volume Reduction System (MEVS). The report contains design criteria, a preconceptual design of the system, a comparison of disposal costs with other solidification technologies, and an assessment of utility interests in the transportable volume reduction service MEVS can provide. The MEVS design employs the use of a joule-heated glass melter to convert the wet low-level wastes into glass. The process is self-sufficient, requiring no direct facility services or reactor personnel. It is capable of servicing one waste type from a minimum of three reactors. The design was used to prepare capital and operating cost estimates. The capital cost for the MEVS is $4,680,000, which includes all labor necessary for design, engineering, inspection, and licensing. The operating cost of the system for servicing a minimum of three reactors is $1,530,000/y for resins or $2,280,000/y for concentrated liquids. The cost estimates compared favorably to the more common solidification process of cementation. Total MEVS operating costs which include processing, transportation and burial, are $191 to $218/ft 3 waste, whereas quoted costs for cementation and disposal from reactor operators range from $155 to $350/ft 3 . The report concludes with the requirements for additional development, which can be accomplished for less than one sixth of the capital costs. The report also presents the results of an assessment conducted with utility representatives to obtain their expressions of interest in a service of this type

  20. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  1. A cost effective waste management methodology for power reactor waste streams

    International Nuclear Information System (INIS)

    Granus, M.W.; Campbell, A.D.

    1984-01-01

    This paper describes a computer based methodology for the selection of the processing methods (solidification/dewatering) for various power reactor radwaste streams. The purpose of this methodology is to best select the method that provides the most cost effective solution to waste management. This method takes into account the overall cost of processing, transportation and disposal. The selection matrix on which the methodology is based is made up of over ten thousand combinations of liner, cask, process, and disposal options from which the waste manager can choose. The measurement device for cost effective waste management is the concurrent evaluation of total dollars spent. The common denominator is dollars per cubic foot of the input waste stream. Dollars per curie of the input waste stream provides for proper checks and balances. The result of this analysis can then be used to assess the total waste management cost. To this end, the methodology can then be employed to predict a given number of events (processes, transportation, and disposals) and project the annual cost of waste management. For the purposes of this paper, the authors provide examples of the application of the methodology on a typical BWR at 2, 4 and 6 years. The examples are provided in 1984 dollars. Process selection is influenced by a number of factors which must be independently evaluated for each waste stream. Final processing cost is effected by the particular process efficiency and a variety of regulatory constraints. The interface between process selection and cask selection/transportation driven by the goal of placing the greatest amount of pre-processed waste in the package and remaining within the bounds of weight, volume, regulatory, and cask availability limitations. Disposal is the cost of burial and can be affected by disposal, but availability of burial space, and the location of the disposal site in relation to the generator

  2. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  3. Low-cost coding of directivity information for the recording of musical instruments

    Science.gov (United States)

    Braasch, Jonas; Martens, William L.; Woszczyk, Wieslaw

    2004-05-01

    Most musical instruments radiate sound according to characteristic spatial directivity patterns. These patterns are usually not only strongly frequency dependent, but also time-variant functions of various parameters of the instrument, such as pitch and the playing technique applied (e.g., plucking versus bowing of string instruments). To capture the directivity information when recording an instrument, Warusfel and Misdariis (2001) proposed to record an instrument using four channels, one for the monopole and the others for three orthogonal dipole parts. In the new recording setup presented here, it is proposed to store one channel at a high sampling frequency, along with directivity information that is updated only every few milliseconds. Taking the binaural sluggishness of the human auditory system into account in this way provides a low-cost coding scheme for subsequent reproduction of time-variant directivity patterns.

  4. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  5. Photochemical oxidation: A solution for the mixed waste dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A. [Vulcan Peroxidation Systems, Inc., Tucson, AZ (United States)] [and others

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  6. Greater-confinement disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs

  7. New York State interim waste management cost evaluation

    International Nuclear Information System (INIS)

    Ma, M.S.; Watts, R.J.; Jorgensen, J.R.; Rochester Gas and Electric Corp., NY)

    1985-01-01

    The purpose of this study is to investigate and quantify the comparative costs associated with including or excluding Class A utility wastes at a centralized interim waste management facility in New York State. The objective of the study is to assess the unit costs and total statewide costs associated with two distinct scenarios: (1) the case where non-utility Class A LLRW is received, incinerated and stored at the centralized interim facility, and utility Class A wastes are held without incineration at respective nuclear power plant interim onsite facilities without incineration; and (2) the alternative case where both utility and non-utility Class A wastes are accepted, incinerated and stored at the centralized facility. Unit costs to waste generators are estimated for each of the two cases described. This is followed by an estimation of the statewide cost impact to the public. The cost impact represents the cost differential resulting from the exclusion of utility Class A waste from the centralized NYS interim waste management facility. The principal factors comprising the cost differential include (1) higher unit disposal fees charged to non-utility waste generators, which are passed along in the costs of products and services; and (2) costs to utilities due to construction of additional onsite storage capacity, which in turn are charged to electric rate payers

  8. Low-level radioactive waste form qualification testing

    International Nuclear Information System (INIS)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing

  9. Low-level radioactive waste form qualification testing

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  10. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    International Nuclear Information System (INIS)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin; Kim, Seong Jip; Nahm, Sahn

    2013-01-01

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process

  11. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    Energy Technology Data Exchange (ETDEWEB)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2013-12-16

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

  12. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    Science.gov (United States)

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Research paper 2000-B-8: the implementation of the municipal waste incineration directives

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    End-of-pipe options are needed whenever recycling and source reduction can not cope with waste streams at acceptable costs. One of the disposal options is waste incineration. The incineration of waste was considered 'clean' for a long time. In the 1970's and 1980's it proved that the incineration of municipal waste was a significant source of air pollution. Notorious pollutants were hydrogen chloride, hydrogen florid, sulphur dioxide, oxides of nitrogen, fine particulate matter, 'heavy metals' and dioxines and furans. Most notorious and issue of public anxiety in some countries were emissions of dioxines and that might cause cancer and birth defects. Municipal waste is domestic waste from households and comparable waste from markets and companies. Consent is present that in the long history of waste incinerators, incineration in plants started in Europe around 1900, important steps to secure health and the environment have been taken and will be taken in the future. Debates are still going on the level of emissions that is negligible and acceptable. Also in the European arena waste management is about knowledge, perceptions, uncertainties and negotiations. Arguments are on the right level of ambition and the right level of fine-tuning where precautionary measures are discussed. The European Union decided to issue two European Directives on the atmospheric emissions from municipal waste incineration in 1989. This chapter focuses on the implementation and effects of the 1989 Directives. In section 2 of this chapter we summarize the bargaining on the 1989 European Directives. Section 2 indicates that characteristics of municipal waste incineration and the level of pre-existing national regulation sectors in individual member states played decisive roles. When the 1989 Directives came into force, the requirements had to be integrated in the national legislation in European Member States. In section 3 Germany and the Netherlands will prove

  14. The transport implications of siting policies for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    James, I.A.

    1986-01-01

    This report has been produced to be complementary to the previously issued report ''The Transport Implications of Regional Policies for The Disposal of Intermediate Level Radioactive Wastes''. The same combinations of disposal facilities have been used so that direct comparison with intermediate waste results can be made. Low level wastes and short-lived intermediate level wastes for near-surface disposal are assumed to share a common infrastructure on the rail system and hence a methodology of separating total costs between these two waste types has been derived. Two transport modes, road and rail have been analysed. Hybrid transport, a combination of road and rail systems, has not been examined since no site is considered to produce sufficient waste to justify a dedicated rail service. Sellafield, has not been included in this examination since it is assumed to be served by its own disposal site at Drigg. (author)

  15. Waste management facilities cost information for hazardous waste. Revision 1

    International Nuclear Information System (INIS)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report's information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report

  16. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  17. Impact of technology applications to the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1989-01-01

    Low-level radioactive wastes are generated from reactor sources (nuclear power reactors) as well as from nonreactor sources (academic, medical, governmental, and industrial). In recent years, about 50,000 m 3 per year of such wastes have been generated in the United States and about 10,000 m 3 per year in Canada. Direct disposal of these wastes in shallow ground has been a favored method in both countries in the past. In the United States, three operating commercial sites at Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington, receive most of the commercial low-level waste generated. However, with recent advances in waste management, technologies are being applied to achieve optimum goals in terms of protection of human health and safety and the environment, as well as cost-effectiveness. These technologies must be applied from the generation sources through waste minimization and optimum segregation -- followed by waste processing, conditioning, storage, and disposal. A number of technologies that are available and can be applied as appropriate -- given the physical, chemical, and radiological characteristics of the waste -- include shredding, baling, compaction, supercompaction, decontamination, incineration, chemical treatment/conditioning, immobilization, and packaging. Interim and retrievable storage can be accomplished in a wide variety of storage structures, and several types of engineered disposal facility designs are now available. By applying an integrated approach to radioactive waste management, potential adverse impacts on human health and safety and the environment can be minimized. 15 refs., 1 fig., 1 tab

  18. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Prosthetic design directives: Low-cost hands within reach.

    Science.gov (United States)

    Jones, G K; Rosendo, A; Stopforth, R

    2017-07-01

    Although three million people around the world suffer from the lack of one or both upper limbs 80% of this number is located within developing countries. While prosthetic prices soar with technology 3D printing and low cost electronics present a sensible solution for those that cannot afford expensive prosthetics. The electronic and control design of a low-cost prosthetic hand, the Touch Hand II, is discussed. This paper shows that sensorless techniques can be used to reduce design complexities, costs, and provide easier access to the electronics. A closing and opening finite state machine (COFSM) was developed to handle the actuated digit joint control state and a supervisory switching control scheme, used for speed and grip strength control. Three torque and speed settings were created to be preset for specific grasps. The hand was able to replicate ten frequently used grasps and grip some common objects. Future work is necessary to enable a user to control it with myoelectric signals (MESs) and to solve operational problems related to electromagnetic interference (EMI).

  20. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  1. A comparison of costs associated with utility management options for dry active waste

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, C. [EPRI, Palo Alto, CA (United States)

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.

  2. Development and Evaluation of A Novel and Cost-Effective Approach for Low-Cost NO₂ Sensor Drift Correction.

    Science.gov (United States)

    Sun, Li; Westerdahl, Dane; Ning, Zhi

    2017-08-19

    Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO₂) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO₂ electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO₂ as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO₂ analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air.

  3. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  4. Environmental costs connected to various types of waste; Miljoekostander knyttet til ulike typer avfall

    Energy Technology Data Exchange (ETDEWEB)

    Vennemo, Haakon

    1995-07-01

    The report estimates environmental costs (external impacts) from municipal waste through discharges into air, water and soil. We look at the wastes paper/cardboard, plastic, metal, wood and glass and give separate estimates for wastes at fillings with and without gaseous collection and combusted waste. The figure estimates are uncertain. Paper/cardboard at fillings without gas exhaust have the highest external impacts, about 2.5 pr. kg as the best estimate. The main reason is methane discharge. Plastic and wood at fillings also have high external impacts. These components ought to be combusted if the aim is low environmental costs. Metal and glass have external impacts beneath 0.01 pr. kg at the fillings. This is due to discharges from the fillings take long time and do not go into air. These components ought to be deposited if the aim is low environmental costs.

  5. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  6. Benefit-cost-risk analysis of alternatives for greater-confinement disposal of radioactive waste

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Peterson, J.M.

    1983-01-01

    Seven alternatives are included in the analysis: near-surface disposal; improved waste form; below-ground engineered structure; augered shaft; shale fracturing; shallow geologic repository; and high-level waste repository. These alternatives are representative generic facilities that span the range from low-level waste disposal practice to high-level waste disposal practice, tentatively ordered according to an expected increasing cost and/or effectiveness of confinement. They have been chosen to enable an assessment of the degree of confinement that represents an appropriate balance between public health and safety requirements and costs rather than identification of a specific preferred facility design. The objective of the analysis is to provide a comparative ranking of the alternatives on the basis of benefit-cost-risk considerations

  7. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  8. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  9. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  10. Special waste disposal in Austria - cost benefit analysis

    International Nuclear Information System (INIS)

    Kuntscher, H.

    1983-01-01

    The present situation of special waste disposal in Austria is summarized for radioactive and nonradioactive wastes. A cost benefit analysis for regulary collection, transport and disposal of industrial wastes, especially chemical wastes is given and the cost burden for the industry is calculated. (A.N.)

  11. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowles, D.E.; Bonner, W.F.

    1983-01-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the U.S. as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations are met in a cost-effective manner

  12. Costs of food waste in South Africa: Incorporating inedible food waste

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2015-06-01

    Full Text Available The economic, social and environmental costs of food waste are being increasingly recognised. Food waste consists of both edible and inedible components. Whilst wastage of edible food is problematic for obvious reasons, there are also costs...

  13. Low-level Radioactive waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    This meeting describes low-level radioactive waste management problems and contains 8 papers: 1 Low-level radioactive waste management: exemption concept and criteria used by international organizations. 2 Low-level radioactive waste management: french and foreign regulations 3 Low-level radioactive waste management in EDF nuclear power plants (FRANCE) 4 Low-level radioactive waste management in COGEMA (FRANCE) 5 Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE) 6 Low-level radioactive waste management in hospitals 7 Low-level radioactive waste disposal: radiation protection laws 8 Methods of low-level radioactive materials measurements during reactor dismantling or nuclear facilities demolition (FRANCE)

  14. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    International Nuclear Information System (INIS)

    1995-09-01

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool

  15. Managing low-level radioactive wastes: a proposed approach

    International Nuclear Information System (INIS)

    Peel, J.W.; Levin, G.B.

    1980-01-01

    In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document

  16. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  17. Net Zero Fort Carson: Integrating Energy, Water, and Waste Strategies to Lower the Environmental Impact of a Military Base

    Science.gov (United States)

    Military bases resemble small cities and face similar sustainability challenges. As pilot studies in the U.S. Army Net Zero program, 17 locations are moving to 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases target net z...

  18. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  19. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  20. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  1. [Rocky Mountain regional low-level waste compact development and establishment of disposals

    International Nuclear Information System (INIS)

    1986-01-01

    This Compact Issue Study was intended to determine if state institutions in the Rocky Mountain region could reduce low-level radioactive waste shipping and disposal costs through jointly shipping their low-level radioactive wastes. Public institutions in the state of Colorado were used as a test case for this study

  2. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  3. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  4. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  5. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  6. Reconfigurable WDM-PON empowered by a low-cost 8-channel directly modulated laser module

    Science.gov (United States)

    Zhang, Yi-ming; Liu, Yu; Zhang, Zhi-ke; Zhao, Ze-ping; Tian, Ye; Zhu, Ning-hua

    2017-11-01

    A 10 Gbit/s 16-km-long reconfigurable wavelength-division-multiplexing passive optical network (WDM-PON) is presented empowered by a low-cost multi-channel directly modulated laser (DML) module. Compared with the case using discrete devices in conventional scheme, the proposed DML module provides a cost-effective solution with reduced complexity. The clear eye diagram and the bit error rate ( BER) of less than 2×10-7 with a sensitivity of -7 dBm are obtained. Due to the special packaging design, the crosstalk between channels under condition of simultaneous operation can be negligible.

  7. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance, and lessons learned in each country. The audience is invited to participate in the discussion.

  8. Low-level radioactive waste in the Midwest: an economic analysis of selected management options

    International Nuclear Information System (INIS)

    1983-06-01

    Possible economic scenarios for disposal of low-level radioactive waste generated in the Midwest are presented. Relative waste disposal site costs are estimated for each state separately, and for 5-state, 13-state, and 16-state regions. Costs for publicly and privately owned and operated sites are estimated as are incineration and transportation costs

  9. Optimizing Urban Material Flows and Waste Streams in Urban Development through Principles of Zero Waste and Sustainable Consumption

    Directory of Open Access Journals (Sweden)

    Steffen Lehmann

    2011-01-01

    Full Text Available Beyond energy efficiency, there are now urgent challenges around the supply of resources, materials, energy, food and water. After debating energy efficiency for the last decade, the focus has shifted to include further resources and material efficiency. In this context, urban farming has emerged as a valid urban design strategy, where food is produced and consumed locally within city boundaries, turning disused sites and underutilized public space into productive urban landscapes and community gardens. Furthermore, such agricultural activities allow for effective composting of organic waste, returning nutrients to the soil and improving biodiversity in the urban environment. Urban farming and resource recovery will help to feed the 9 billion by 2050 (predicted population growth, UN-Habitat forecast 2009. This paper reports on best practice of urban design principles in regard to materials flow, material recovery, adaptive re-use of entire building elements and components (‘design for disassembly’; prefabrication of modular building components, and other relevant strategies to implement zero waste by avoiding waste creation, reducing wasteful consumption and changing behaviour in the design and construction sectors. The paper touches on two important issues in regard to the rapid depletion of the world’s natural resources: the built environment and the education of architects and designers (both topics of further research. The construction and demolition (C&D sector: Prefabricated multi-story buildings for inner-city living can set new benchmarks for minimizing construction wastage and for modular on-site assembly. Today, the C&D sector is one of the main producers of waste; it does not engage enough with waste minimization, waste avoidance and recycling. Education and research: It’s still unclear how best to introduce a holistic understanding of these challenges and to better teach practical and affordable solutions to architects, urban

  10. The future of very low level radioactive wastes in question

    International Nuclear Information System (INIS)

    Vignes, Emmanuelle

    2016-01-01

    After having recalled that nuclear plants produce various radioactive wastes, that the Cigeo project is the proposed solution to store these radioactive wastes, this article more particularly addresses the issue of very low level radioactive wastes which are now the main matter of concern for the IRSN as their quantity is expected to increase during the years to come (notably in relationship with nuclear reactor lifetime extension), and as present storage capacities will soon be saturated. The author first outlines that these wastes are not very dangerous but very cumbersome. Among these so-defined 'very low level' wastes, 30 to 50 per cent could be considered as harmless, but are now processed as dangerous wastes through costly processes. Various possibilities are then envisaged such as a diversification of storage options

  11. Status, direction, and critical issues of waste treatment technology

    International Nuclear Information System (INIS)

    Knowlton, D.E.; Bonner, W.F.

    1983-06-01

    Nuclear power production and related activities generate radioactive wastes that must be safely managed to protect workers and the general public. The liquid-fed ceramic melting (LFCM) vitrification process is the reference process for vitrifying high-level nuclear waste in the US as well as in Japan and India. The French are currently using a rotary kiln calciner/metallic melter system at their reprocessing facility. Compaction or controlled-air incineration are the currently preferred options for low-level waste solids, followed by immobilization in an appropriate matrix. The Nuclear Waste Policy Act of 1982 is a significant step in proceeding with waste treatment and disposal. Programs can now build on past work to assure that public safety and regulations atre met in a cost-effective manner. 7 references, 2 figures, 3 tables

  12. TRU-ART: A cost-effective prototypical neutron imaging technique for transuranic waste certification systems

    International Nuclear Information System (INIS)

    Horton, W.S.

    1989-01-01

    The certification of defense radioactive waste as either transuranic or low-level waste requires very sensitive and accurate assay instrumentation to determine the specific radioactivity within an individual waste package. An assay instrument that employs a new technique (TRU-ART), which can identify the location of the radioactive material within a waste package, was designed, fabricated, and tested to potentially enhance the certification of problem defense waste drums. In addition, the assay instrumentation has potential application in radioactive waste reprocessing and neutron tomography. The assay instrumentation uses optimized electronic signal responses from an array of boral- and cadmium-shielded polyethylene-moderated 3 H detector packages. Normally, thermal neutrons that are detected by 3 H detectors have very poor spatial dependency that may be used to determine the location of the radioactive material. However, these shielded-detector packages of the TRU-ART system maintain the spatial dependency of the radioactive material in that the point of fast neutron thermalization is immediately adjacent to the 3 H detector. The TRU-ART was used to determine the location of radioactive material within three mock-up drums (empty, peat moss, and concrete) and four actual waste drums. The TRU-ART technique is very analogous to emission tomography. The mock-up drum and actual waste drum data, which were collected by the TRU-ART, were directly input into a algebraic reconstruction code to produce three-dimensional isoplots. Finally, a comprehensive fabrication cost estimate of the fielded drum assay system and the TRU-ART system was determined, and, subsequently, these estimates were used in a cost-benefit analysis to compare the economic advantage of the respective systems

  13. Geotechnical reduction of void ratio in low-level radioactive waste burial sites: treatment alternatives

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.; McGuire, H.E.

    1981-01-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have proven to be unstable. Some surface feature manifestations such as large cracks, basins, and cave-ins are caused by voids filling and physico-chemical degradation and solubilization of the buried wastes which could result in the release of contamination. The surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. As a guideline, a reduction of the voids within the waste to 80% or more of maximum relative dry density (a measure of in situ voids within the waste) is proposed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass and pile driving engineering alternatives were selected for further development

  14. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    International Nuclear Information System (INIS)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate (1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and (2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost

  15. Cost-benefit analysis for waste compaction alternatives at Lawrence Livermore National Laboratory: Addendum A to the Waste Minimization and Pollution Prevention Awareness Plan of May 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents a cost-benefit analysis of the potential procurement and operation of various solid waste compactors or of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost-benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs

  16. Cost savings associated with landfilling wastes containing very low levels of uranium

    International Nuclear Information System (INIS)

    Boggs, C.J.; Shaddoan, W.T.

    1996-01-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a open-quotes contained landfill.close quotes These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal

  17. Successfully burying low-level waste for fun and profit

    International Nuclear Information System (INIS)

    Strong, T.R.; Kirner, N.P.

    1984-01-01

    The state of Washington, now receiving more than half the nation's waste, is here to provide a practical review of the benefits of having a low-level waste disposal site and to provide our perspective on how the state of Washington carries out its responsibilities through regulation of that disposal site. This information is offered in the hope that it may be useful to other states when they accept their responsibility to provide for the disposal of their low-level radioactive waste. The 1980 Low-Level Waste Policy Act very directly gave the responsibility for finding and developing new waste disposal capacity to the states. Through the process of compacting, the states have begun to accept this responsibility. From Washington's perspective, however, the progress shown to date, especially in some states generating very large amounts of waste, has not been adequate to meet the 1986 deadline

  18. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  19. Disposal costs for SRP high-level wastes in borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    Rozsa, R.B.; Campbell, J.H.

    1982-01-01

    Purpose of this document is to compare and contrast the overall burial costs of the glass and ceramic waste forms, including processing, storage, transportation, packaging, and emplacement in a repository. Amount of waste will require approximately 10,300 standard (24 in. i.d. x 9-5/6 ft length) canisters of waste glass, each containing about 3260 lb of waste at 28% waste loading. The ceramic waste form requires about one-third the above number of standard canisters. Approximately $2.5 billion is required to process and dispose of this waste, and the total cost is independent of waste form (glass or ceramic). The major cost items (about 80% of the total cost) for all cases are capital and operating expenses. The capital and 20-year operating costs for the processing facility are the same order of magnitude, and their sum ranges from about one-half of the total for the reference glass case to two-thirds of the total for the ceramic cases

  20. Historic low-level radioactive waste federal policies, programs and oversight

    International Nuclear Information System (INIS)

    Blanchette, M.; Kenney, J.; Zelmer, B.

    2011-01-01

    uranium mine and mill tailings. Natural Resources Canada's (NRCan's) Uranium and Radioactive Waste Management Division (URWD) provides policy direction and funding to two specific Offices within Atomic Energy of Canada (AECL), which operate on a cost recovery basis as NRCan's proponents for the management of historic waste: the Low-Level Radioactive Waste Management Office (LLRWMO), and the Port Hope Area Initiative Management Office (PHAI MO). For policy purposes historic waste is defined as low-level radioactive waste that was managed in the past in a manner no longer considered acceptable but for which the owner cannot reasonably be held responsible and for which the federal government has accepted responsibility for its long-term management. The LLRWMO was established in 1982 as Canada's agent for the management of historic LLRW. Its ongoing mandate also includes the provision of public information on low-level radioactive waste management generally. It provides services such as characterization, identification, management, remediation, and removal of LLRW soils, artefacts and structures as well as radiological, planning, and technical expertise in the field. Through oversight of these activities NRCan ensures the proper management of LLRW for which the federal government has accepted responsibility. The LLRWMO also operates community co-existence programs which facilitate safe occupancy and use of land and structures awaiting final remediation at various locations in Canada. Regulatory requirements are met in accordance with the requirements of the Canadian Nuclear Safety Commission (CNSC). From time to time new sources of contamination are identified, although this is now less frequent than when the LLRWMO was first established. LLRWMO activities are carried out under three programs: historic waste, ongoing waste, and information. Under the Historic Waste program, the LLRWMO carries out cleanup and long-term management of this waste on behalf of

  1. Life cycle cost analysis changes mixed waste treatment program at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; England, J.L.; Martin, H.L.

    1992-01-01

    A direct result of the reduced need for weapons production has been a re-evaluation of the treatment projects for mixed (hazardous/radioactive) wastes generated from metal finishing and plating operations and from a mixed waste incinerator at the Savannah River Site (SRS). A Life Cycle Cost (LCC) analysis was conducted for two waste treatment projects to determine the most cost effective approach in response to SRS mission changes. A key parameter included in the LCC analysis was the cost of the disposal vaults required for the final stabilized wasteform(s) . The analysis indicated that volume reduction of the final stabilized wasteform(s) can provide significant cost savings. The LCC analysis demonstrated that one SRS project could be eliminated, and a second project could be totally ''rescoped and downsized.'' The changes resulted in an estimated Life Cycle Cost saving (over a 20 year period) of $270,000,000

  2. Treatment of low-level radioactive waste using Volcanic ash

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Junio, J.B.; Caseria, E.S.; Salom, D.S.; Alamares, A.L.

    1997-01-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing 137 Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs

  3. Treatment of low-level radioactive waste using Volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Valdezco, E M; Marcelo, E A; Junio, J B; Caseria, E S; Salom, D S; Alamares, A L [Philippine Nuclear Research Inst., Manila (Philippines). Radiation Protection Services

    1997-02-01

    The effective application of volcanic ash, an indigenous adsorptive material abundant in the Mt. Pinatubo area, in the removal of radioiodine from radioactive waste streams was demonstrated. Factors such as availability, low cost and comparative retention capacity with respect to activated charcoal make volcanic ash an attractive alternative in the conditioning of radioactive waste containing radioiodine. Chemical precipitation was employed in the treatment of low level aqueous waste containing {sup 137}Cs. It was shown that there exists an optimum concentration of ferric ion that promotes maximum precipitation of caesium. It was further demonstrated that complete removal of caesium can be achieved with the addition of nickel hexacyanoferrate. (author). 5 refs, 3 figs.

  4. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    International Nuclear Information System (INIS)

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was a result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release

  5. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  6. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  7. Research on near-surface disposal of very low level radioactive waste

    International Nuclear Information System (INIS)

    Wang Shaowei; Yue Huiguo; Hou Jie; Chen Haiying; Zuo Rui; Wang Jinsheng

    2012-01-01

    Radioactive waste disposal is one of the most sensitive environmental problems to control and solve. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low level radioactive waste and its disposal were introduced, and then siting principles of near-surface disposal of very low level radioactive waste were discussed. The near- surface disposal siting methods of very low level radioactive waste were analyzed from natural and geographical conditions assessment, geological conditions analysis, hydrogeological conditions analysis, geological hazard assessment and radioactive background investigation; the near-surface disposal sites'natural barriers of very low level radioactive waste were analyzed from the crustal structure and physico-chemical characteristics, the dynamics characteristics of groundwater, the radionuclide adsorption characteristics of natural barriers and so on; the near-surface disposal sites' engineered barriers of very low level radioactive waste were analyzed from the repository design, the repository barrier materials selection and so on. Finally, the improving direction of very low level radioactive waste disposal was proposed. (authors)

  8. Development and Evaluation of A Novel and Cost-Effective Approach for Low-Cost NO2 Sensor Drift Correction

    Science.gov (United States)

    Sun, Li; Westerdahl, Dane; Ning, Zhi

    2017-01-01

    Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO2) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO2 electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO2 as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO2 analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air. PMID:28825633

  9. More reliable financing of future nuclear waste costs

    International Nuclear Information System (INIS)

    1994-01-01

    This appendix contains seven reports written by consultants to the Commission. The report titles are: Basic document regarding the inquiry on fund management; Scenarios for growth and real interest rates in a long perspective; Stability of the Swedish financing system; Report concerning the financing of nuclear waste management in Sweden and Finland and the cost control system in Sweden; Evaluation of the cost estimates and calculation methods of SKB; A study of the costs for nuclear waste - The basis for cost estimation; A review of scope and costs for the Swedish system for management of nuclear waste. The four last reports are separately indexed

  10. Integrated process analyses studies on mixed low level and transuranic wastes. Summary report

    International Nuclear Information System (INIS)

    1997-12-01

    Options for integrated thermal and nonthermal treatment systems for mixed low-level waste (MLLW) are compared such as total life cycle cost (TLCC), cost sensitivities, risk, energy requirements, final waste volume, and aqueous and gaseous effluents. The comparisons were derived by requiring all conceptual systems to treat the same composition of waste with the same operating efficiency. Thus, results can be used as a general guideline for the selection of treatment and disposal concepts. However, specific applications of individual systems will require further analysis. The potential for cost saving options and the research and development opportunities are summarized

  11. Integrated process analyses studies on mixed low level and transuranic wastes. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Options for integrated thermal and nonthermal treatment systems for mixed low-level waste (MLLW) are compared such as total life cycle cost (TLCC), cost sensitivities, risk, energy requirements, final waste volume, and aqueous and gaseous effluents. The comparisons were derived by requiring all conceptual systems to treat the same composition of waste with the same operating efficiency. Thus, results can be used as a general guideline for the selection of treatment and disposal concepts. However, specific applications of individual systems will require further analysis. The potential for cost saving options and the research and development opportunities are summarized.

  12. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms

  13. PERANCANGAN PEMBANGKIT LISTRIK TENAGA SAMPAH ORGANIK ZERO WASTE DI KABUPATEN TEGAL (STUDI KASUS DI TPA PENUJAH KABUPATEN TEGAL

    Directory of Open Access Journals (Sweden)

    Abdul Muiz Liddinillah Sanfiyan

    2017-12-01

    Full Text Available Permasalahan sistem pengolahan sampah yang ada di Kabupaten Tegal adalah masih menggunakan sistem Open Dumping. Berdasarkan data yang diperoleh dari Badan Pusat Statistik (BPS Kabupaten Tegal pada tahun 2016, komposisi sampah organik adalah yang terbesar kedua setelah sampah plastik dan sangat berpotensi mengalami penambahan setiap tahunnya. Tujuan dari penelitian ini adalah untuk membuat perancangan pembangkit listrik tenaga sampah organik zero waste di Kabupaten Tegal, dengan studi kasus di Tempat Pembuangan Akhir (TPA sampah Penujah. Objek dalam penelitian ini adalah sistem pengolahan sampah organik yang ada di Kabupaten Tegal dengan menggunakan sistem pengolahan sampah zero waste. Sistem pengolahan sampah organik zero waste adalah sistem pengolahan sampah yang tidak menghasilkan sampah kembali. Jadi, diharapkan jumlah sampah organik akan berkurang secara bertahap. Sampah organik dapat dirubah menjadi biogas melalui proses fermentasi yang dibantu oleh bakteri secara anaerob di dalam reaktor biodigester. Biogas tersebut ditampung di dalam tempat penampungan untuk kemudian didistribusikan ke dalam genset biogas sebagai bahan bakar pembangkit listrik. Sisa pengolahan biogas dapat dirubah menjadi pupuk cair dan pupuk kompos yang bernilai ekonomis.

  14. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  15. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  16. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  17. Integrated process analysis of treatment systems for mixed low level waste

    International Nuclear Information System (INIS)

    Cooley, C.R.; Schwinkendorf, W.E.; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE's mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements

  18. Direct degradation of dyes by piezoelectric fibers through scavenging low frequency vibration

    Science.gov (United States)

    Zhu, Ruijian; Xu, Yunhua; Bai, Qing; Wang, Zengmei; Guo, Xinli; Kimura, Hideo

    2018-06-01

    A newly discovered nanometer material-mediated piezoelectrochemical (PZEC) for the direct conversion of mechanical energy to chemical energy has attracted increasing attention, for its great potential to be a green dye water decomposition technique. However, it is far from being a cost-effective and practical technique because only ultrasonic can be scavenged to decomposed organic pollutant in previous studies. Here, we prepared 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) piezoelectric fibers for the degradation of dye solution via slow stirring and studied the degradation mechanism. It provides a practical, green and low-cost method for decomposing organic dye by scavenging waste mechanical energy from the surrounding environment.

  19. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    Energy Technology Data Exchange (ETDEWEB)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  20. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi-directional piezoel......This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  1. Nutritional, Economic, and Environmental Costs of Milk Waste in a Classroom School Breakfast Program.

    Science.gov (United States)

    Blondin, Stacy A; Cash, Sean B; Goldberg, Jeanne P; Griffin, Timothy S; Economos, Christina D

    2017-04-01

    To measure fluid milk waste in a US School Breakfast in the Classroom Program and estimate its nutritional, economic, and environmental effects. Fluid milk waste was directly measured on 60 elementary school classroom days in a medium-sized, urban district. The US Department of Agriculture nutrition database, district cost data, and carbon dioxide equivalent (CO 2 e) emissions and water footprint estimates for fluid milk were used to calculate the associated nutritional, economic, and environmental costs. Of the total milk offered to School Breakfast Program participants, 45% was wasted. A considerably smaller portion of served milk was wasted (26%). The amount of milk wasted translated into 27% of vitamin D and 41% of calcium required of School Breakfast Program meals. The economic and environmental costs amounted to an estimated $274 782 (16% of the district's total annual School Breakfast Program food expenditures), 644 893 kilograms of CO 2 e, and 192 260 155 liters of water over the school year in the district. These substantial effects of milk waste undermine the School Breakfast Program's capacity to ensure short- and long-term food security and federal food waste reduction targets. Interventions that reduce waste are urgently needed.

  2. Management of defense beta-gamma contaminated solid low-level wastes

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    In DOE defense operations, approx. 70,000 m 3 of beta-gamma low-level radioactive waste are disposed of annually by shallow land burial operations at six primary sites. Waste generated at other DOE sites are transported on public roads to the primary sites for disposal. In the practice of low-level waste (LLW) disposal in the US, the site hydrology and geology are the primary barriers to radioactive migration. To date, little emphasis has been placed on waste form improvements or engineered site modifications to reduce migration potential. Compaction is the most common treatment step employed. The performance of ground disposal of radioactive waste in this country, in spite of many practices that we would consider unacceptable in today's light, has resulted in very little migration of radioactivity outside site boundaries. Most problems with previously used burial grounds have been from subsidence at the arid sites and subsidence and groundwater contact at the humid sites. The radionuclides that have shown the most significant migration are tritium, 90 Sr, and 99 Tc. The unit cost for disposal operations at a given DOE site is dependent on many variables, but the annual volume to be disposed is probably the major factor. The average cost for current DOE burial operation is approximately $170/m 3 . 23 figures

  3. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  4. Community R and D programme on radioactive waste management and storage (Shared Cost Action). List of scientific reports

    International Nuclear Information System (INIS)

    Hebel, W.; Falke, W.

    1984-11-01

    The scientific reports listed herein have been brought out in the scope of the Research and Development programme sponsored by the Commission of the European Communities in the field of Radioactive Waste Management and Storage. The list systematically contains the references of all final R and D reports and equivalent scientific publications drawn up since 1975 on the various contractual research works sponsored by the Commission in its programme on shared cost terms (Shared Cost Action). It states the autor of the work, the title, the EUR report number (where applicable), the way of publication and the contractor's reference (CEC contract number). The content headings are: conditioning of fuel cladding and dissolution residues, immobilization and storage of gaseous waste, treatment of Low and Medium Level waste, processing of alpha contaminated waste, characterization of conditioned Low and Medium Level waste forms, testing of solidified High Level waste forms, shallow land burial of solid Low Level waste, waste disposal in geological formations, safety of radioactive waste disposal, and annual progress reports of the Community programme

  5. Segregation practices in the management of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.

    1981-10-01

    A scoping study has been undertaken to determine the state-of-the-art of waste segregation technology as applied to the management of low-level waste (LLW). Present-day waste segregation practices were surveyed through a review of the recent literature and by means of personal interviews with personnel at selected facilities. Among the nuclear establishments surveyed were Department of Energy (DOE) laboratories and plants, nuclear fuel cycle plants, public and private laboratories, institutions, industrial plants, and DOE and commercially operated shallow land burial sites. These survey data were used to analyze the relationship between waste segregation practices and waste treatment/disposal processes, to assess the developmental needs for improved segregation technology, and to evaluate the costs and benefits associated with the implementation of waste segregation controls. For improved processing and disposal of LLW, it is recommended that waste segregation be practiced wherever it is technically feasible and cost-effective to do so. It is noted that LLW management practices are now undergoing rapid change such that the technology and requirements for waste segregation in the near future may differ significantly from those of the present day

  6. Cost risk analysis of radioactive waste management Preliminary study

    International Nuclear Information System (INIS)

    Forsstroem, J.

    2006-12-01

    This work begins with exposition of the basics of risk analysis. These basics are then applied to the Finnish radioactive waste disposal environment in which the nuclear power companies are responsible for all costs of radioactive waste management including longterm disposal of spent fuel. Nuclear power companies prepare cost estimates of the waste disposal on a yearly basis to support the decision making on accumulation of resources to the nuclear waste disposal fund. These cost estimates are based on the cost level of the ongoing year. A Monte Carlo simulation model of the costs of the waste disposal system was defined and it was used to produce preliminary results of its cost risk characteristics. Input data was synthesised by modifying the original coefficients of cost uncertainty to define a cost range for each cost item. This is a suitable method for demonstrating results obtainable by the model but it is not accurate enough for supporting decision making. Two key areas of further development were identified: the input data preparation and identifying and handling of (i.e. eliminating or merging) interacting cost elements in the simulation model. Further development in both of the mentioned areas can be carried out by co-operating with the power companies as they are the sources of the original data. (orig.)

  7. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  8. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  9. Design and Evaluation of a Net Zero Energy Low-Income Residential Housing Development in Lafayette, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; VanGeet, O.; Simkus, S.; Eastment, M.

    2012-03-01

    This report outlines the lessons learned and sub-metered energy performance of an ultra low energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. Affordable housing development authorities throughout the United States continually struggle to find the most cost-effective pathway to provide quality, durable, and sustainable housing. The challenge for these authorities is to achieve the mission of delivering affordable housing at the lowest cost per square foot in environments that may be rural, urban, suburban, or within a designated redevelopment district. With the challenges the U.S. faces regarding energy, the environmental impacts of consumer use of fossil fuels and the increased focus on reducing greenhouse gas emissions, housing authorities are pursuing the goal of constructing affordable, energy efficient and sustainable housing at the lowest life-cycle cost of ownership. This report outlines the lessons learned and sub-metered energy performance of an ultra-low-energy single family ranch home and duplex unit, called the Paradigm Pilot Project and presents the final design recommendations for a 153-unit net zero energy residential development called the Josephine Commons Project. In addition to describing the results of the performance monitoring from the pilot project, this paper describes the recommended design process of (1) setting performance goals for energy efficiency and renewable energy on a life-cycle cost basis, (2) using an integrated, whole building design approach, and (3) incorporating systems-built housing, a green jobs training program, and renewable energy technologies into a replicable high performance, low-income housing project development model.

  10. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Geimer, R.M.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  11. Alternative techniques for low-level waste shallow land burial

    International Nuclear Information System (INIS)

    Levin, G.B.; Mezga, L.J.

    1983-01-01

    Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance

  12. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  13. Treatment of complex electroplating waste by 'zero discharge' technique

    International Nuclear Information System (INIS)

    Khattak, B.Q.; Ram Sankar, P.; Jain, A.K.

    2009-01-01

    Surface treatment processes generate lot of liquid waste, which contains toxic substances and are potentially harmful to the living beings. It is extremely difficult to treat the pollutants where processes and frequencies are not fixed. In Chemical Treatment Facility of RRCAT, surface treatment processes are user dependent and makes the electroplating waste very complicated. Initially the waste was treated by simple chemical transformation technique in which heavy metal ions are converted to hydroxide precipitates. Non metallic ions that contribute much to the plating waste could not be treated by this process. To remove maximum possible pollutants, many experiments were conducted on the laboratory scale. Based on those results, a pilot ion exchange plant of various resins was introduced in the process to achieve disposal quality effluent. Anionic load of Phosphate, Nitrate and fluoride caused frequent anionic bed exhaustions and polymeric network damaging. To avoid this phenomenon a new setup was designed. This pre treatment has the capacity to treat 500 litres per hour connected to a platter with clarifier followed by high pressure carbon and pebbles filters. Analysis of these ions was carried out on the advanced ion chromatography system and is found free of toxic metals, phosphate and fluoride. This effluent can be reused by adding a reverse osmosis system followed by ion exchange system to produce good quality de mineralized water needed for surface treatment activities. In this paper we describe the existing status of effluent treatment facility and future plans for achieving 'zero discharge'. (author)

  14. Packaged low-level waste verification system

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, K.; Winberg, M.R.; McIsaac, C.V. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    The Department of Energy through the National Low-Level Waste Management Program and WMG Inc. have entered into a joint development effort to design, build, and demonstrate the Packaged Low-Level Waste Verification System. Currently, states and low-level radioactive waste disposal site operators have no method to independently verify the radionuclide content of packaged low-level waste that arrives at disposal sites for disposition. At this time, the disposal site relies on the low-level waste generator shipping manifests and accompanying records to ensure that low-level waste received meets the site`s waste acceptance criteria. The subject invention provides the equipment, software, and methods to enable the independent verification of low-level waste shipping records to ensure that the site`s waste acceptance criteria are being met. The objective of the prototype system is to demonstrate a mobile system capable of independently verifying the content of packaged low-level waste.

  15. Removal of organic matter from dairy industry waste water using low-cost adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Bhole, A.G. [College of Engineering, Badnera (India). Civil Engineering Department

    2002-07-01

    The present study envisages the use of cost-effective adsorbents such as fly ash, bagasse, wheat straw dust, sawdust, and coconut coir for the reduction of the TDS (total dissolved solids) from dairy industry effluent waste water. PAC (powdered activated carbon) was also used and the results were compared. Sorption data have been correlated with both the Langmuir and the Freundlich adsorption isotherm models. The Freundlich static isotherm model is found applicable to all the six adsorbents for removing TDS from the dairy waste water. The order of selectivity is PAC, bagasse, fly ash, sawdust, wheat straw, coconut coir for the removal of TDS at optimum conditions. 8 refs., 6 figs., 3 tabs.

  16. The role of the national low level waste repository operator in delivering new solutions for the management of low level wastes in the UK - 16217

    International Nuclear Information System (INIS)

    Walkingshaw, Martin

    2009-01-01

    The UK National Low Level Waste Repository (LLWR) is located near to the village of Drigg in West Cumbria. It is the principal site for disposal of solid Low Level Radioactive Waste (LLW) in the United Kingdom. This paper describes the program of work currently being undertaken by the site's operators, (LLW Repository Ltd and its newly appointed Parent Body Organisation), to extend the life of the LLWR and reduce the overall cost of LLW management to the UK taxpayer. The current focus of this program is to prevent disposal capacity being taken up at LLWR by waste types which lend themselves to alternative treatment and/or disposition routes. The chosen approach enables consignors to segregate LLW at source into formats which allow further treatment for volume reduction or, (for wastes with lower levels of activity), consignment in the future to alternative disposal facilities. Segregated waste services are incorporated into LLW Disposal commercial agreements between the LLWR operator and waste consignors. (author)

  17. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  18. Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review.

    Science.gov (United States)

    Pietzsch, Natália; Ribeiro, José Luis Duarte; de Medeiros, Janine Fleith

    2017-09-01

    Considering the growing concern with solid wastes problems and the pressing need for a holistic approach to their management, this study developed a literature review about the subject "Zero Waste". To that end, a systematic literature review was executed, through which 102 published articles were analyzed with the aim to, initially, comprehend the concept of Zero Waste, and, then, map its benefits, challenges, and critical success factors. The results show that scholars have not reached a consensus regarding the concept of ZW. While some studies fully address this philosophy, other studies are based on just one or on some of its topics. The benefits were grouped and organized into four dimensions: benefits to the community, financial-economic benefits, benefits to the environment and benefits to the industry and stakeholders. As to the challenges, barriers were identified both in the macro environment (mainly political and cultural) and in the meso and micro environments (stakeholders, industries, and municipalities). The analysis of the articles enabled listing critical success factors, supported by a set of activities that must be carried out. Regarding future studies, it is worth noting that more empirical studies about ZW implementation are necessary, particularly with regard to educational practices designed to promote changes in user behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Low-level wastes pathways at EDF

    International Nuclear Information System (INIS)

    Hilmoine, R.; Casseau, L.Ph.

    1999-01-01

    First, what are, for EDF, the main issues dealing with the future management of low level wastes (LLW) will be recalled; and followed by a description of what are the implications of implementing these management principles: areas zoning, set up of pathways, traceability of the wastes and associated controls. The origin of the wastes will then be described using both qualitative and quantitative approaches; the description will specifically address the spreading of wastes production in time. LLW management at EDF will then be envisaged: storage in a specific discharge, pathways for treatment and elimination of wastes with acceptable radiological impact and costs. The example of LLW oils will be developed: particularly as far as hypothesis and results concerning the radiological impacts are concerned. The choice of incineration will then be justified, however expected difficulties to implement it industrially will be pointed out. Other on going studies and their main results will be mentioned: the present time is a turning point on that issue between thought and action; to be on going dismantling must take into account the emerging principles and give rise to good communication. (author)

  20. A systems engineering cost analysis capability for use in assessing nuclear waste management system cost performance

    International Nuclear Information System (INIS)

    Shay, M.R.

    1990-04-01

    The System Engineering Cost Analysis (SECA) capability has been developed by the System Integration Branch of the US Department of Energy's Office of Civilian Radioactive Waste Management for use in assessing the cost performance of alternative waste management system configurations. The SECA capability is designed to provide rapid cost estimates of the waste management system for a given operational scenario and to permit aggregate or detailed cost comparisons for alternative waste system configurations. This capability may be used as an integral part of the System Integration Modeling System (SIMS) or, with appropriate input defining a scenario, as a separate cost analysis model

  1. High Performance Zero-Bleed CLSM/Grout Mixes for High-Level Waste Tank Closures Strategic Research and Development - FY99 Report

    International Nuclear Information System (INIS)

    Langton, C.A.

    2000-01-01

    The overall objective of this program, SRD-99-08, was to design and test suitable materials, which can be used to close high-level waste tanks at SRS. Fill materials can be designed to perform several functions including chemical stabilization and/or physical encapsulation of incidental waste so that the potential for transport of contaminants into the environment is reduced. Also they are needed to physically stabilize the void volume in the tanks to prevent/minimize future subsidence and inadvertent intrusion. The intent of this work was to develop a zero-bleed soil CLSM (ZBS-CLSM) and a zero-bleed concrete mix (ZBC) which meet the unique placement and stabilization/encapsulation requirements for high-level waste tank closures. These mixes in addition to the zero-bleed CLSM mixes formulated for closure of Tanks 17-F and 20-F provide design engineers with a suite of options for specifying materials for future tank closures

  2. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  3. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  4. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  5. Colleges Struggle to Dispose of Hazardous Wastes in Face of Rising Costs and Increased Regulation.

    Science.gov (United States)

    Magner, Denise K.

    1989-01-01

    After years of being ignored by federal regulators because of the low volume of hazardous waste in question, colleges and universities are facing increased enforcement of environmental laws concerning waste disposal and storage, at great cost in money, facilities, and personnel. (MSE)

  6. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  7. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  8. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  9. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  10. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  11. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  12. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  13. A model for a national low level waste program

    International Nuclear Information System (INIS)

    Blankenhorn, James A.

    2009-01-01

    services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

  14. Low-level radioactive waste treatment systems in northern Europe

    International Nuclear Information System (INIS)

    Sjoeblom, R.

    1987-08-01

    In the United States, the use of low-level waste (LLW) treatment systems by low level waste generators can be expected to expand with increasing costs for disposal and continuing uncertainty over the availability of disposal space. This development increases the need for performance information and operational data and has prompted the US Department of Energy to commission several compilations of LLW systems experience. The present paper summarizes some of the know-how from Northern Europe where the incentive for LLW treatment and volume reduction is very high since deposition space has not been available for many years. 65 refs., 10 figs., 4 tabs

  15. Cu II Removal from Industrial Wastewater Using Low Cost Adsorbent

    Directory of Open Access Journals (Sweden)

    Salwa Hadi Ahmed

    2018-01-01

    Full Text Available Study the possibility of utilization of waste tires rubber ash (WTRA as a low-cost adsorbent and are available as a type of solid waste for the removal of copper ions from industrial wastewater. Depending on batch adsorption experiments, the effect of different parameters including pH, adsorbent dosage WTRA, contact time, initial concentration of the ion and shacking speed were studied. Results showed that the highest removal Cu+2 ions was 97.8% at pH equal to 6, 120 min contact time, dose WTRA 1.5 g/L, shacking speed 150 rpm. The experimental data were analyzed using the Freundlich and Langmuir isotherm models showed great compatibility with Langmuir model (R2=0.923. Adsorption kinetics was studied and the data was showed agree with Pseudo-first-order equation where the value of (kt=0.5115/min. The study also showed the possibility of using WTRA efficiently as adsorbent and low cost in the removal of copper ions from industrial waste water. DOI: http://dx.doi.org/10.25130/tjes.24.2017.17

  16. Implications of long-term surface or near-surface storage of intermediate and low-level wastes in the UK

    International Nuclear Information System (INIS)

    Murray, N.; Vande Putte, D.; Ware, R.J.

    1986-02-01

    Various options for 200 year-long storage of all Low- and Intermediate-Level wastes generated to the year 2030 are considered. On-site storage and centralised storage have been examined and compared. The feasibility of storing some of the wastes in underground facilities that are convertible to repositories has been demonstrated, but it is shown that centralised, surface storage of wastes would be more economical. There appears to be little merit in storing Intermediate Level wastes in separate facilities that could be converted to repositories. Storage is shown to be more expensive than direct disposal, except if future costs are discounted by more than about 10%. With carefully designed stores and remote handling, the collective dose to operators could be limited to about 20-40 man Sv over the whole period of storage. (author)

  17. A nuclear waste deposit in space - the ultimate solution for low-cost and safe disposal

    International Nuclear Information System (INIS)

    Ruppe, H.O.; Hayn, D.; Braitinger, M.; Schmucker, R.H.

    1980-01-01

    The disposal of nuclear high-active waste (HAW) is representative for the problem of burdening the environment with highly active or toxic waste products at present and in the future. Safe disposal methods on Earth are technically very difficult to achieve and the costs of establishment and maintenance of such plants are extremely high. Furthermore the emotionally based rejection by a wide sector of the population gives sufficient reason to look for new solutions. Here, space technology can offer a real alternative - a waste deposit in space. With the Space Transportation System, which shall soon be operative, and the resulting high flight frequencies it will be possible to transport all future HAW into space at economical casts. (orig.) [de

  18. Macroencapsulation of low-level debris waste with the phosphate ceramic process

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

    1997-03-01

    Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy's Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes

  19. New developments for medium and low level waste vitrification

    International Nuclear Information System (INIS)

    Boen, A.J.-R.; Pujadas, S.M.-V.

    1997-01-01

    Converting ultimate waste material into a stable, inert product is beneficial, notably in the case of potentially very toxic wastes. Vitrification, in which a glass or glass-ceramic material is fabricated from a particular waste form, is now a proven solution. This high-temperature process uses additives-notably silica-if necessary to form a glass network. Vitrification confines the waste by forming a stable, inert, nontoxic material suitable for safe disposal; it usually also results in a significant volume reduction having a major effect on the disposal cost. France is actively engaged in an ongoing research effort in this area, not only to enhance the production capacity and the containment quality, but also to extend the process to low and medium level wastes such as those produced in nuclear power stations

  20. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  1. Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, W. D.

    2008-05-14

    This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

  2. Methodology for the cost evaluation of radioactive waste management routes

    International Nuclear Information System (INIS)

    Kowa, S.; Stenersen, F.; Shamsi, T.; Thiels, G.M.

    1990-01-01

    One of the significant aspects of radioactive waste management is cost. To determine plant costs for radioactive waste management routes, a method was developed by the Joint Venture Kraftanlagen Heidelberg (FRG) and Task R ampersand S (Italy) to perform a realistic, economic cost assessment of different waste management schemes. This assessment procedure was first developed for System Studies concerning the Management and Storage of radioactive waste in the frame of the 2nd R ampersand D program of the Commission of the European Communities (CEC) and is presently being applied in the 3rd R ampersand D program to assess the costs of different management schemes for LWR Waste and Zircaloy hulls. 9 refs., 4 figs., 3 tabs

  3. Nuclear shipping and waste disposal cost estimates

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1977-11-01

    Cost estimates for the shipping of spent fuel from the reactor, shipping of waste from the reprocessing plant, and disposal of reprocessing plant wastes have been made for five reactor types. The reactors considered are the light-water reactor (LWR), the mixed-oxide-fueled light-water reactor (MOX), the Canadian deuterium-uranium reactor (CANDU), the fast breeder reactor (FBR), and the high-temperature gas-cooled reactor (HTGR). In addition to the cost estimates, this report provides details on the bases and assumptions used to develop the cost estimates

  4. Cost analysis for final disposal of double-shell tank waste

    International Nuclear Information System (INIS)

    Seifert, T.W.; Markillie, K.D.

    1996-01-01

    The Cost Analysis For Final Disposal of Double-Shell Tank Waste provides the Department of Energy (DOE) and DOE contractors with a better understanding of costs associated with the transfer, storage, and treatment of liquid mixed wasted within the Double-Shell Tank System (DST). In order to evaluate waste minimization/pollution prevention ideas, it is necessary to have reliable cost data that can be used in cost/benefit analyses; preparation of funding requests and/or proposals; and provide a way for prioritizing and allocating limited resources. This cost per gallon rate will be used by DST waste generators to assess the feasibility of Pollution Prevention Opportunity Assessments (P20A) and to determine the cost avoidances or savings associated with the implementation of those P20As

  5. Low-speed shredder and waste shreddability tests

    International Nuclear Information System (INIS)

    Darnell, G.R.; Aldrich, W.C.

    1983-04-01

    Most waste drums and large crates in the nuclear industry are or will be opened by hand, in gloveboxes, or with manipulators. The Transuranic Waste Treatment Facility (TWTF), which was being designed for the Idaho National Engineering Laboratory (INEL), was no exception. The TWTF's manipulator concept required 4 to 6 hours to open and route a crate or drum for further processing; a costly operation. An alternative method was sought. Four of the relatively new low-speed shredders were tested on simulated transuranic waste packaged in 55-gal drums and 4- x 4- x 4-ft boxes. Three of the shredders were capable of shredding these containers and their contents in 1 to 15 minutes. Two were able to shred typical TWTF waste to acceptable particle size. The test waste included concrete, 1/4-in. steel plate (carbon and stainless), 1-in. rebar, rock, glass, plastic, paper, cloth, wood, steel cable, chain, etc. The two shredders were able to shred drums even with unshreddable items inside; the unshreddable items lay on top for later recovery by a manipulator while the other waste was being shredded

  6. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: milling of uranium ores

    International Nuclear Information System (INIS)

    Sears, M.B.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Ryon, A.D.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model uranium ore processing mills, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model mills are representative of mills which will process a major fraction of the ore in the next 20 years. Each mill processes 2,000 short tons of ore per day. Additional radwaste treatment techniques are applied to the base case mill and the waste tailings area in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration and is not suitable for immediate use. The methodology used in estimating the costs, detailed calculations, and tabulations are presented in ORNL-TM-4903, Volume 2. The methodology and assumptions for the radiological doses are found in ORNL-4992. (U.S.)

  7. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  8. Economics of a small-volume low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    1993-04-01

    This report was prepared by the US Department of Energy National Low-Level Waste Management Program to present the results of a life-cycle cost analysis of a low-level radioactive waste disposal facility, including all support facilities, beginning in the preoperational phase and continuing through post-closure care. The disposal technology selected for this report is earth-covered concrete vaults, which use reinforced concrete vaults constructed above grade and an earth cover constructed at the end of the operational period for permanent closure. The report develops a design, cost estimate, and schedule for the base case and eight alternative scenarios involving changes in total disposal capacity, operating life, annual disposal rate, source of financing and long-term interest rates. The purpose of this analysis of alternatives is to determine the sensitivity of cost to changes in key analytical or technical parameters, thereby evaluating the influence of a broad range of conditions. The total estimated cost of each alternative is estimated and a unit disposal charge is developed

  9. Mixed low-level waste minimization at Los Alamos

    International Nuclear Information System (INIS)

    Starke, T.P.

    1998-01-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL

  10. Mixed low-level waste minimization at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  11. A container for storage and disposal of low-level waste

    International Nuclear Information System (INIS)

    Fish, R.L.; Butler, B.D.

    1989-01-01

    A unique concept for corrosion-resistant containers for storing and disposing of low-level radioactive, mixed and toxic wastes has been developed. The strength and low cost of carbon steel has been combined with the corrosion and abrasion resistance of a proprietary combination of polymers to provide an inexpensive alternative to currently available waste containers. The initial development effort has focused on a 55-gallon container, the B and W ECOSAFE-55 tm . However, Babcock and Wilcox (B and W) can develop a family of ECOSAFE waste containers using this technology to accommodate user-preferred configurations and volumes. The containers will be capable of accepting a wide range of low-level radioactive (LLRW) and industrial waste forms. Basic engineering design analyses and functional tests were performed to show compliance of the container with transportation functional requirements. These tests and analyses, along with chemical resistance tests, qualify the container for use in storing a wide range of radioactive and chemical wastes. For the container to be licensed for use as a high-integrity container in shallow land, low-level radioactive waste burial facilities, the Nuclear Regulatory Commission requires certain tests and analyses to demonstrate that container gross physical properties and identity can be maintained for 300 years. This paper describes the container concept in generic terms and provides information on the initial, ECOSAFE-55 container design, testing and engineering analysis efforts

  12. Life cycle cost estimation and systems analysis of Waste Management Facilities

    International Nuclear Information System (INIS)

    Shropshire, D.; Feizollahi, F.

    1995-01-01

    This paper presents general conclusions from application of a system cost analysis method developed by the United States Department of Energy (DOE), Waste Management Division (WM), Waste Management Facilities Costs Information (WMFCI) program. The WMFCI method has been used to assess the DOE complex-wide management of radioactive, hazardous, and mixed wastes. The Idaho Engineering Laboratory, along with its subcontractor Morrison Knudsen Corporation, has been responsible for developing and applying the WMFCI cost analysis method. The cost analyses are based on system planning level life-cycle costs. The costs for life-cycle waste management activities estimated by WMFCI range from bench-scale testing and developmental work needed to design and construct a facility, facility permitting and startup, operation and maintenance, to the final decontamination, decommissioning, and closure of the facility. For DOE complex-wide assessments, cost estimates have been developed at the treatment, storage, and disposal module level and rolled up for each DOE installation. Discussions include conclusions reached by studies covering complex-wide consolidation of treatment, storage, and disposal facilities, system cost modeling, system costs sensitivity, system cost optimization, and the integration of WM waste with the environmental restoration and decontamination and decommissioning secondary wastes

  13. Applicability of the cost-effectiveness approach for comparison of waste management options

    International Nuclear Information System (INIS)

    Vuori, S.; Peltonen, E.; Vieno, T.; Vira, J.

    1984-01-01

    There is an obvious need to consider the achievable level of safety of waste management in view of the costs involved. The feasibility of the cost-effectiveness approach for this purpose is discussed in the framework of practical case studies. The analysis indicates that such an approach has clear benefits, but it also reveals several issues and ambiguities in its application. The waste management alternatives considered include various concepts for the disposal of low- and intermediate-level reactor wastes as well as of the unreprocessed spent fuel. The employed impact indicators describe both the individual and collective risks. In addition, indicators simultaneously giving a perspective into other risks in the society and a means to make a rank ordering of the alternative options are proposed. The cost-effectiveness ratios for collective risks vary in the range of ten to hundreds of millions US $ per man.Sv. The examples considered also indicate that increased costs do not necessarily improve safety. Furthermore, the comparison of the safety of different options requires more sophisticated and realistic models than those employed in the present analyses, because an unbalanced degree of conservatism could result in misleading conclusions. (author)

  14. Application research of cost construction on radioactive waste management

    International Nuclear Information System (INIS)

    Gao Yanfeng; Bi Sheng; Liu Zhenhe

    2009-01-01

    This paper summarizes the theoretical basis systems for the cost component on radioactive waste management. Through the decomposition production of various types of project content, analysis of the cost elements of operating activities, study subjects at reason-able cost and expense. On the basis of the formation of radioactive waste management costs of the various operating structure Into, and established a comprehensive system of price system. (authors)

  15. Estimating heel retrieval costs for underground storage tank waste at Hanford. Draft

    International Nuclear Information System (INIS)

    DeMuth, S.

    1996-01-01

    Approximately 100 million gallons (∼400,000 m 3 ) of existing U.S. Department of Energy (DOE) owned radioactive waste stored in underground tanks can not be disposed of as low-level waste (LLW). The current plan for disposal of UST waste which can not be disposed of as LLW is immobilization as glass and permanent storage in an underground repository. Disposal of LLW generally can be done sub-surface at the point of origin. Consequently, LLW is significantly less expensive to dispose of than that requiring an underground repository. Due to the lower cost for LLW disposal, it is advantageous to separate the 100 million gallons of waste into a small volume of high-level waste (HLW) and a large volume of LLW

  16. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  17. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 4. Supplement 1: Cost estimate

    International Nuclear Information System (INIS)

    Burgess, A.S.; Thompson, S.N.

    1978-05-01

    The costs for injecting 3 million gallons of waste/grout mix in 200,000-gallon batches over 2 years are estimated to be 9.75 million dollars (including direct, indirect, operational, and decommissioning costs)

  18. Management of low- and intermediate level waste in Sweden

    International Nuclear Information System (INIS)

    Carlsson, Jan

    1999-01-01

    This presentation describes how the management of radioactive waste is organised in Sweden, where Swedish law places the responsibility for such management with the waste generators. The four nuclear utilities have formed a joint company, the Swedish Nuclear Fuel and Waste Management Co., SKB, to handle the nuclear waste. The Swedish waste management system includes a final repository for short-lived low level waste (LLW) and intermediate level waste (ILW) and an interim storage facility for spent nuclear fuel and long-lived waste. Some very low-level, short-lived waste is disposed of in shallow-land repositories at the nuclear power stations. The final repository is situated in underground rock caverns close to the Forsmark nuclear power plant. The rock caverns have been excavated to a depth of more than 50 m beneath the Baltic Sea floor. LLW is compacted into bales or packaged in metal drums or cases that can be transported in standard freight containers. Radioactive materials used in other sectors such as hospitals are collected and packaged at Studsvik and later deposited in the deep repository. ILW is mixed with cement or bitumen and cast in cement or steel boxes or metal drums. The final repository has different chambers for different kinds of waste. The environmental impact of the repository is negligible. Because Sweden's nuclear power plants and the SKB facilities all are located on the coast, all the waste transport can be conducted by sea. The costs of managing and disposing of Sweden's nuclear waste are small compared to the price of electricity

  19. Do managerial incentives drive cost behavior? Evidence about the role of the zero earnings benchmark for labor cost behavior in Belgian private firms

    NARCIS (Netherlands)

    Dierynck, B.; Landsman, W.R.; Renders, A.

    2012-01-01

    This study investigates the influence of managerial incentives to meet or beat the zero earnings benchmark on labor cost behavior of private Belgian firms. We posit that relative to managers of firms reporting healthy profits, managers meeting or beating the zero earnings benchmark will increase

  20. Low-level-waste-treatment handbook

    International Nuclear Information System (INIS)

    Clinton, S.D.; Goeller, H.E.; Holladay, D.W.; Donaldson, T.L.

    1982-01-01

    The initial draft of the Low-Level Waste Treatment Handbook has been prepared and submitted to the DOE Low-Level Waste Management Program for review and comment. A revised draft is scheduled to be delivered to DOE Headquarters in December 1982. The Handbook is designed to be useful to all individuals and groups concerned with low-level wastes. It is one of several volumes that will ultimately comprise a Low-Level Waste Technology Handbook. The objective of the Low-Level Waste Treatment Handbook is to present an overview of current practices related to the segregation, classification, volume reduction, solidification, handling, packaging, and transportation of LLW for disposal in a shallow land burial facility. The Handbook is intended to serve as a guide to individuals interested in the treatment and handling of low-level radioactive waste. The Handbook will not explicitly tell the user how to design and operate LLW treatment facilities, but rather will identify (1) kinds of information required to evaluate the options, (2) methods that may be used to evaluate these options, and (3) limitations associated with the selection of the treatment options. The focus of the Handbook is providing guidance on how to do waste treatment for disposal by shallow land burial

  1. General directions and practices for management of radioactive waste

    International Nuclear Information System (INIS)

    Fioroni, M.

    1990-12-01

    The present work underlines and synthesises the essential principles, directions and methodologies developed by Industrialized Nations and by the International Organizations for management of radioactive waste of high, intermediate and low levels. It fills a gap in scientific Italian literature and represents a valid introduction to the subject. (author)

  2. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  3. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs across Europe

    Directory of Open Access Journals (Sweden)

    Delia D'Agostino

    2018-04-01

    Full Text Available This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO2 emissions, envelope, materials, lighting, appliances and systems.

  4. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    Science.gov (United States)

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  5. Costs of the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Drasdo, P.

    2001-01-01

    The study on the costs of radioactive waste disposal covers the topic of national concepts for the countries Germany, France, United Kingdom, Sweden, Switzerland and Unites States of America. The introduction into the topic of radioactive waste disposal is concerned with the classification of radioactive wastes, the safety of final repositories and the different concepts of final disposal. The used methods of data acquisition and data processing are described. The study compares the national final disposal concepts in order to identify the reasons for the differences in capital costs and annuity costs in the respective countries. The final chapter is concerned with the optimum timing for the start-up of operation of final repositories

  6. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  7. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    Science.gov (United States)

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Assessment of the requirements for DOE's annual report to congress on low-level radioactive waste

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-level Radioactive Waste Policy Amendments Act of 1985 (PL99-240; LLRWPAA) requires the Department of Energy (DOE) to ''submit to Congress on an annual basis a report which: (1) summarizes the progress of low-level waste disposal siting and licensing activities within each compact region, (2) reviews the available volume reduction technologies, their applications, effectiveness, and costs on a per unit volume basis, (3) reviews interim storage facility requirements, costs, and usage, (4) summarizes transportation requirements for such wastes on an inter- and intra-regional basis, (5) summarizes the data on the total amount of low-level waste shipped for disposal on a yearly basis, the proportion of such wastes subjected to volume reduction, the average volume reduction attained,, and the proportion of wastes stored on an interim basis, and (6) projects the interim storage and final disposal volume requirements anticipated for the following year, on a regional basis (Sec. 7(b)).'' This report reviews and assesses what is required for development of the annual report specified in the LLRWPAA. This report addresses each of the subject areas set out in the LLRWPAA

  9. Low level waste repositories

    International Nuclear Information System (INIS)

    Hill, P.R.H.; Wilson, M.A.

    1983-11-01

    Factors in selecting a site for low-level radioactive waste disposal are discussed. South Australia has used a former tailings dam in a remote, arid location as a llw repository. There are also low-level waste disposal procedures at the Olympic Dam copper/uranium project

  10. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  11. Towards Zero emissions. The challenge for hydrocarbons

    International Nuclear Information System (INIS)

    1999-01-01

    The limited availability of natural resources, a still rapidly rising world population combined with overall economic growth will be stretching the Earth's carrying capacity beyond its limit, unless a suitable strategy is set in place. This scenario renders the concept of Zero Emissions all the more relevant, stressing as it does that the problem of environmental pollution cannot be effectively solved simply by reducing the production of wastes. In practical terms Zero Emissions can be conceived along similar lines to already establish corporate programs aiming to achieve zero accidents. Although no one claims that accidents are never going to occur, unless a clear objective is established, systems will not evolve in that direction. The target of Zero Emissions is therefore to move towards achieving the highest possible level of material productivity and energy efficiency. Considering how the hydrocarbon industry could become ever more engaged in applying the concept of Zero Emissions, and what in practice this means, can therefore play an important role in defining an appropriate innovation policy, and promoting long term corporate competitiveness

  12. A post-contract project analysis of material waste and cost overrun ...

    African Journals Online (AJOL)

    Material waste and cost overrun have been identified as common problems in the construction industry. These problems occur at both pre- and post-contract stages of a construction project. As a result of a dearth of empirical research and low level of awareness, the majority of managers of construction projects in Nigeria ...

  13. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  14. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  15. Toward a national policy for managing low-level radioactive waste: key issues and recommendations

    International Nuclear Information System (INIS)

    Duerksen, C.J.; Mantell, M.; Thompson, G.P.

    1981-06-01

    The Conservation Foundation, a not-for-profit research and public education organization, asked individuals with diverse backgrounds and viewpoints to come together under Foundation leadership as a Dialogue Group on Low-Level Radioactive Waste Management. The group, including persons who represent waste generators, concerned citizens, state regulators, and environmentalists, met over an 18-month period to discuss issues crucial to the development of a national policy on low-level wastes. The Dialogue Group agreed that three principles, if accepted broadly, would form the basis of a sound national policy for managing low-level radioactive wastes: with proper implementation, technology exists to manage low-level waste safely; generators and their customers should pay disposal costs; and greater public involvement at all stages can improve the disposal system. These principles acted as polestars for the group as it worked toward a series of policy recommendations in four main areas: (1) cleaning up closed commercial sites; (2) remodeling a system for defining and classifying low-level radioactive waste; (3) siting new low-level waste disposal facilities; and (4) decommissioning, long-term care, and liability. This report presents an extensive discussion of these recommendations covering qualifications, limitations, and alternatives

  16. Rigorous classification and carbon accounting principles for low and Zero Carbon Cities

    International Nuclear Information System (INIS)

    Kennedy, Scott; Sgouridis, Sgouris

    2011-01-01

    A large number of communities, new developments, and regions aim to lower their carbon footprint and aspire to become 'zero carbon' or 'Carbon Neutral.' Yet there are neither clear definitions for the scope of emissions that such a label would address on an urban scale, nor is there a process for qualifying the carbon reduction claims. This paper addresses the question of how to define a zero carbon, Low Carbon, or Carbon Neutral urban development by proposing hierarchical emissions categories with three levels: Internal Emissions based on the geographical boundary, external emissions directly caused by core municipal activities, and internal or external emissions due to non-core activities. Each level implies a different carbon management strategy (eliminating, balancing, and minimizing, respectively) needed to meet a Net Zero Carbon designation. The trade-offs, implications, and difficulties of implementing carbon debt accounting based upon these definitions are further analyzed. - Highlights: → A gap exists in comprehensive and standardized accounting methods for urban carbon emissions. → We propose a comprehensive and rigorous City Framework for Carbon Accounting (CiFCA). → CiFCA classifies emissions hierarchically with corresponding carbon management strategies. → Adoption of CiFCA allows for meaningful comparisons of claimed performance of eco-cities.

  17. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  18. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

    International Nuclear Information System (INIS)

    Feng, X.; Ordaz, G.; Krumrine, P.

    1994-01-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program for supporting DOE's environmental restoration efforts. These glassy slags are composed of various metal oxide crystalline phases embedded in an alumino-silicate glass phase. The slags are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and that have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and glassy slag waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The MAWS approach was a plied to glassy slags by blending multiple waste streams to produce the final waste form, minimizing overall waste form volume and reducing costs. The crystalline oxide phases formed in the glassy slags can be specially formulated so that they are very durable and contain hazardous and radioactive elements in their lattice structures. The Structural Bond Strength (SBS) Model was used to predict the chemical durability of the product from the slag composition so that optimized slag compositions could be obtain with a limited number of crucible melts and testing

  19. Update on low-level waste compacts and state agencies

    International Nuclear Information System (INIS)

    Tenan, M.; Rabbe, D.; Thompson, P.

    1995-01-01

    This article updates information on the following agencies involved in low-level radioactive wastes: Appalachian States Low-Level Radioactive Waste Commission; Central Interstate Low-Level radioactive Waste Commission; Central Midwest Interstate Low-Level radioactive Waste Compact; Massachusetts Low-Level radioactive Waste Management Board; Michigan Low-Level Radioactive Waste Authority; Midwest Interstate Low-Level Radioactive Waste Commission; New York State Low-Level Radioactive Waste Siting Commission; Northeast Interstate Low-Level Radioactive Waste Compact; Northwest Interstate Compact on Low-Level Radioactive Waste Management; Rocky Mountain Low-Level Radioactive Waste Board; Southeast Compact Commission for Low-Level Radioactive Waste Management;Southwest Low-Level Radioactive Waste Commission; Texas Low-Level Radioactive Waste Disposal Authority

  20. Intelligent Controls for Net-Zero Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

  1. Documentation of currently operating low-level radioactive waste treatment systems: Shredder/compactor report

    International Nuclear Information System (INIS)

    1987-04-01

    The report documents a volume reduction waste treatment system for dry active waste, a shredder/compactor, and includes specifics on system selection, system descriptions, and detailed system performance data from three operational nuclear power plants. Data gathered from the plants have shown the ability to increase the density (thereby reducing the volume) of dry active waste to /approximately/50 pounds per cubic foot when using shredder/compactors and/approximately/80 to 100 pounds per cubic foot for shredder/high pressure compactors depending on reactor type and plant specific waste characteristics. An economic evaluation of various alternative volume reduction systems for dry active waste is also presented. The report presents a method on calculating the associated costs and paybacks achieved using various volume reduction alternatives. A 10 year cost (operating expenses and capital outlay for equipment) for a shredder/high pressure compactor is 1.85 million dollars for a BWR as compared to /approximately/3 million for a conventional drum compactor. The resulting payback for the shredder/compactor is as low as 1.7 years. The report provides generators of low level waste additional information to understand the nuances of shredder/compactor systems to select a system which best suits their individual needs. 4 refs., 6 figs., 10 tabs

  2. Establishing managerial requirements for low-and intermediate-level waste repository

    International Nuclear Information System (INIS)

    Chung, C. W.; Lee, Y. K.; Kim, H. T.; Park, W. J.; Suk, T. W.; Park, S. H.

    2004-01-01

    This paper reviews basic considerations for establishing managerial requirements on the domestic low-and intermediate-level radioactive waste repository and presents the corresponding draft requirements. The draft emphasizes their close linking with the related regulations, standards and safety assessment for the repository. It also proposes a desirable direction towards harmonizing together with the existing waste acceptance requirements for the repository

  3. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  4. Low profile, low cost, new geometry integrated inductors

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2011-01-01

    windings with well-defined thickness. Many advantages and disadvantages are described in depth. In this work, inverse coupling and direct coupling in the new geometry integrated inductors have been analyzed. Coupling characteristic caused by a special saturation behavior has been emphasis. And also...... variable inductors caused by the special saturation behavior may be utilized in some applications. The new integrated inductors make it possible to build low-profile, low-cost, flexibility DC/DC converters, and it can be extensively designed for the low-voltage and high-current required by the modern...

  5. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  6. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  7. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  8. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Kitts, F.G.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations is presented in Appendix A and ORNL-4992. (U.S.)

  9. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  10. Order of magnitude cost appraisal for selected aspects of clad waste management

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-02-01

    A simple formula, incorporating the fixed charge rate principle, is applied to a clad waste management exercise involving densification, canning, transportation and salt disposal. For the purpose of comparison with the bulk of published nuclear waste management costs, cost and fixed charge rate data appropriate to roughly the period 1970 to 1973 are used. Within the context of this order of magnitude appraisal, densification displays some cost advantage, reflected principally in the transportation cost. Dependent on the degree of densification, above a certain clad waste generation rate the transportation savings may be expected to exceed reasonable densification costs. There is no explicit consideration of the decontamination step in this appraisal. The limited accessibility of surface effect decontamination to internal transuranic and activation product contamination suggests a quite small influence of decontamination on the transportation and disposal costs. Decontamination may, however, have a significant effect on the ease of establishing a practicable containment envelope of high reliability throughout the clad waste history. A brief comparison is made of clad waste management costs with the major costs of the nuclear power economy. This comparison implies a virtually unlimited technical latitude for clad waste treatment in accommodating the public safety without significant perturbation of nuclear power costs. It is submitted that clad waste management optimization will be under the primal constraint of maximizing thelong term public safety, with economic analysis useful only as a discriminator between waste handling alternatives of sensibly equivalent containment qualities. Some areas of clad waste treatment meriting increased attention are noted

  11. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  12. Performance objectives for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Performance objectives for the disposal of low activity waste from Hanford Waste Tanks have been developed. These objectives have been based on DOE requirements, programmatic requirements, and public involvement. The DOE requirements include regulations that direct the performance assessment and are cited within the Radioactive Waste Management Order (DOE Order 435.1). Performance objectives for other DOE complex performance assessments have been included

  13. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  14. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian [ITN Energy Systems, Inc., Littleton, CO (United States); Hollingsworth, Russell [ITN Energy Systems, Inc., Littleton, CO (United States)

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  15. Cost avoidance techniques through the Fernald controlled area trash segregation program and the RIMIA solid waste reduction program

    International Nuclear Information System (INIS)

    Menche, C.E.

    1997-01-01

    The Fernald Environmental Management Project is a Department of Energy owned facility that produced high quality uranium metals for military defense. The Fernald mission has changed from one of production to remediation. Remediation is intended to clean up legacy (primary) waste from past practices. Little opportunity is available to reduce the amount of primary waste. However, there is an opportunity to reduce secondary waste generation, primarily through segregation. Two programs which accomplish this are the Controlled Area Trash Segregation Program and the RIMIA Solid Waste Reduction Program. With these two programs now in place at the FEMP, it has been estimated that a 60% reduction has been achieved in unnecessary clean waste being disposed as Low Level Waste at the Nevada Test Site. The cost savings associated with these programs (currently 79,000 cubic feet, $428,000) could easily run into the millions of dollars based on the upcoming restoration activities to be undertaken. The segregation of non-radiological waste in the radiologically Controlled Area not only establishes a firm commitment to send only low-level radioactive waste to the Nevada Test Site, but also results in substantial cost avoidance

  16. Evaluating Fenestration Products for Zero-Energy Buildings: Issuesfor Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Arasteh, Dariush; Curcija, Charlie; Huang, Joe; Huizenga,Charlie; Kohler, Christian

    2006-07-25

    Computer modeling to determine fenestration product energy properties (U-factor, SHGC, VT) has emerged as the most cost-effective and accurate means to quantify them. Fenestration product simulation tools have been effective in increasing the use of low-e coatings and gas fills in insulating glass and in the widespread use of insulating frame designs and materials. However, for more efficient fenestration products (low heat loss products, dynamic products, products with non-specular optical characteristics, light re-directing products) to achieve widespread use, fenestration modeling software needs to be improved. This paper addresses the following questions: (1) Are the current properties (U, SHGC, VT) calculated sufficient to compare and distinguish between windows suitable for Zero Energy Buildings and conventional window products? If not, what data on the thermal and optical performance, on comfort, and on peak demand of windows is needed. (2) Are the algorithms in the tools sufficient to model the thermal and optical processes? Are specific heat transfer and optical effects not accounted for? Is the existing level of accuracy enough to distinguish between products designed for Zero Energy Buildings? Is the current input data adequate?

  17. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  18. Alternatives for packaging and transport of greater-than-class C low-level waste

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-06-01

    Viable methods for packaging greater-than-class C (GTCC) low-level wastes and for transporting those wastes from the waste generator sites or from an eastern interim storage site to the Yucca Mountain repository site have been identified and evaluated. Estimated costs for packaging and transporting the population of GTCC wastes expected to be accumulated through the year 2040 have been developed for three waste volume scenarios, for two preferred packaging methods for activated metals from reactor operations and from reactor decommissioning, and for two packaging density assumptions for the activated metals from reactor decommissioning. 7 refs. 7 tabs

  19. Briquetting of wastes from coffee plants conducted in zero harvest system

    Directory of Open Access Journals (Sweden)

    Oberdan Everton Zerbinatti

    2014-06-01

    Full Text Available The briquetting process consists of lignocellulosic residues densification in solid biofuel with high calorific value denominated briquette. Coffee crop is one of the most important Brazilian commodities and according to the cultural practices produces plant residues in different amounts. The zero harvest system in coffee crop is based in pruning of plagiotropic branches in alternated years to make possible to concentrate the harvest and to avoid coffee biannual production. The aim of the present work was to verify the viability of briquette production using the biomass waste obtained by zero harvest system. The treatments were composed of briquetting process: 1 coffee rind; 2 mixture of branches and leaves; 3 25% of coffee rind + 75% of branches and leaves; 4 75% of coffee rind + 25% of branches and leaves; 5 50% of coffee rind + 50% of branches and leaves; 6 40% of coffee rind + 60% of branches and leaves. The mixtures were realized in v/v base, milled to produce 5-10 mm particles and were briqueted with 12% of humidity. The C-teor of briquettes produced ranged from 41.85 to 43. 84% and sulphur teor was below 0.1%. The calorific value of briquettes produced ranged from 3,359 to 4, 028 Kcal/ kg and the ashes were below 6%. The isolated use of coffee rind or branches and leaves, as well the mixtures of coffee rind with 50% or more of branches and leaves allow the production of briquettes with calorific value around 4,000 Kcal/ kg which is within the quality parameters. The briquetting of coffee crop wastes is viable and sustainable energetically.

  20. Advice concerning the advantages of a reference incinerator for low-level and intermediate-level radioactive waste processing

    International Nuclear Information System (INIS)

    Luyten, G.B.

    1985-05-01

    In this report, an inventory is presented of new incinerators and flue gas filters used in low and intermediate-level radioactive waste combustion. It is argued that a 'reference equipment' for the combustion of solid and liquid low- and intermediate-level wastes best meets existing Dutch radiation protection standards. A cost-benefit analysis of such an equipment is given including annual costs of investment, capital and exploration. A separate combustion process of organic liquids and carrions is considered finally. (G.J.P.)

  1. Biological waste by-production costs in forest management and possibilities for their reduction

    Directory of Open Access Journals (Sweden)

    Jiří Kadlec

    2004-01-01

    Full Text Available Biological wastes in forestry were observed from view of their by-production in silvicultural and logging operations. There were identified points where biological waste was produced in this paper, waste costs ratio for silvicultural and logging operations and were made suggestions for reduction of these costs. Biological waste costs give 34.4% of total costs of silvicultural operations and 30% of total costs of logging operations. Natural regeneration and minor forest produce operations are opportunities for reduction of these costs.

  2. Steam reforming of low-level mixed waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  3. Steam reforming of low-level mixed waste. Final report

    International Nuclear Information System (INIS)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies

  4. Controlling low-level radioactive waste

    International Nuclear Information System (INIS)

    1990-01-01

    This series of information sheets describes at a popular level the sources of low-level radioactive wastes, their associated hazards, methods of storage, transportation and disposal, and the Canadian regulations that cover low-level wastes

  5. Treatment of low and intermediate aqueous waste containing Cs-137 by chemical precipitation

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Marcelo, E.A.; Alamares, A.L.; Junio, J.B.; Dela Cruz, J.M.

    1996-01-01

    The use of radioactive materials in various applications has been increasing since its introduction in the early sixties. The Philippine Nuclear Research Institute has established a centralized facility for treating radioactive wastes i.e. aqueous wastes with assistance from the International Atomic Energy Agency - Technical Cooperation Programme. Liquid wastes containing Cs-137 are generated from aqueous wastes containing Cs-137 by nickel ferrocyanide precipitation will be presented. The aim of this study is to investigate the efficiency treatment in removing Cs-137 from an aqueous effluent. Actual aqueous wastes known to contain Cs-137 were used in the experiments. Low cost and simple nickel ferrocyanide precipitation method with the aid of a flocculant has been selected for the separation of Cs-137 from low and intermediate aqueous waste. By varying the chemical dosage added into the aqueous waste, different decontamination factors were obtained. Hence, the optimum dosage of the chemicals that give the highest decontamination factor can be determined. (author)

  6. 1995 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1996-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included are tables showing the distribution of waste by state for 1995 and a comparison of waste volumes and radioactivity by state for 1991 through 1995; also included is a list of all commercial nuclear power reactors in US as of Dec. 31, 1994. This report distinguishes low-level radioactive waste shipped directly for disposal by generators and waste handled by an intermediary.

  7. Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization

    International Nuclear Information System (INIS)

    1988-12-01

    This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base

  8. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  9. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  10. The high cost of low-acuity ICU outliers.

    Science.gov (United States)

    Dahl, Deborah; Wojtal, Greg G; Breslow, Michael J; Holl, Randy; Huguez, Debra; Stone, David; Korpi, Gloria

    2012-01-01

    Direct variable costs were determined on each hospital day for all patients with an intensive care unit (ICU) stay in four Phoenix-area hospital ICUs. Average daily direct variable cost in the four ICUs ranged from $1,436 to $1,759 and represented 69.4 percent and 45.7 percent of total hospital stay cost for medical and surgical patients, respectively. Daily ICU cost and length of stay (LOS) were higher in patients with higher ICU admission acuity of illness as measured by the APACHE risk prediction methodology; 16.2 percent of patients had an ICU stay in excess of six days, and these LOS outliers accounted for 56.7 percent of total ICU cost. While higher-acuity patients were more likely to be ICU LOS outliers, 11.1 percent of low-risk patients were outliers. The low-risk group included 69.4 percent of the ICU population and accounted for 47 percent of all LOS outliers. Low-risk LOS outliers accounted for 25.3 percent of ICU cost and incurred fivefold higher hospital stay costs and mortality rates. These data suggest that severity of illness is an important determinant of daily resource consumption and LOS, regardless of whether the patient arrives in the ICU with high acuity or develops complications that increase acuity. The finding that a substantial number of long-stay patients come into the ICU with low acuity and deteriorate after ICU admission is not widely recognized and represents an important opportunity to improve patient outcomes and lower costs. ICUs should consider adding low-risk LOS data to their quality and financial performance reports.

  11. Statistical characteristics of L1 carrier phase observations from four low-cost GPS receivers

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2010-01-01

    Statistical properties of L1 carrier phase observations from four low-cost GPS receivers are investigated through a case study. The observations are collected on a zero baseline with a frequency of 1 Hz and processed with a double difference model. The carrier phase residuals from an ambiguity...

  12. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    2000-01-01

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials

  13. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery.

    Science.gov (United States)

    Ma, Yingqun; Yin, Yao; Liu, Yu

    2017-03-01

    This study developed a holistic approach which was based on the ultra-fast hydrolysis of food waste with the fungal mash rich in various hydrolytic enzymes produced in situ from food waste as well. After the 8-h hydrolytic treatment, the solid residue and liquor were separated. It was found that the produced solid residue can meet all the requirements for biofertilizer in terms of NPK and heavy metal contents, while the separated liquor with high soluble organics concentration was further subject to anaerobic digestion for enhanced biomethane production. The results showed that 0.41kg of biofertilizer with a moisture content of 76.9% and 54.4L of biomethane could be produced from 1kg of food waste. As such, it is expected that this study may lead to the paradigm shift in food waste management with the ultimate target of zero-solid discharge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Operational and regulatory impacts of regional management on transportation of commercial low-level radioactive waste

    International Nuclear Information System (INIS)

    Shirley, C.G.; Wilmot, E.L.; Shepherd, E.W.

    1981-09-01

    The 96th Congress of the United States, as part of the Low-level Radioactive Waste Policy Act of 1980 (Public Law 96-573), instructed the Secretary of the Department of Energy (DOE) to prepare a report on the current US low-level waste management situation and the conditions and requirements for management on a regional basis. The Transportation Technology Center has compared the transportation requirement and regional management scenarios for commercial low-level radioactive waste in support of the DOE response to this instruction. Using 1979 low-level waste volumes shipped to commercial burial grounds and six management regions postulated by DOE, transportation requirements were estimated and compared for the two management scenarios in terms of cumulative shipping distance and transportation cost. Effects of these results on the demand for transportation services and equipment and on population risks were considered. Finally, current regulatory issues and the potential effects of regional management on regulation of low-level waste transportation were reviewed

  15. Equity of commercial low-level radioactive waste disposal fees. Report to Congress

    International Nuclear Information System (INIS)

    1998-02-01

    In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees

  16. Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization

    Directory of Open Access Journals (Sweden)

    Álvaro Lozano

    2018-05-01

    Full Text Available New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach.

  17. Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization.

    Science.gov (United States)

    Lozano, Álvaro; Caridad, Javier; De Paz, Juan Francisco; Villarrubia González, Gabriel; Bajo, Javier

    2018-05-08

    New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach.

  18. A Review of the Decommissioning Plan and Cost Estimate for the Studsvik Rock Facility (AM) for the Storage of Low and Intermediate Level Wastes

    International Nuclear Information System (INIS)

    Varley, Geoff

    2004-03-01

    The AM facility is a storage facility for packaged wastes that have been conditioned at the Studsvik site. It is located inside a rock mass on the Studsvik industrial site. The task of the facility is to store the wastes on an interim basis before dispatch to a repository. The waste packages sentenced for storage in AM include: Low-level waste (LLW) packages that do not need any special protection against ionising radiation; Intermediate-level waste (ILW) packages that must be handled with a protective shield and using remote controlled equipment. In all cases the waste packages delivered to AM do not have any surface radioactive contamination. To date no release of contamination has been known to occur. The AM decommissioning cost estimate prepared for SVAFO addresses a Main Case (all wastes removed) and an Alternate Case (in which the scope of removal of equipment is unclear). The cost estimates for the Main Case and the Alternate case are MSEK 16.8 and MSEK 10.0 respectively. The overall program, comprising preparation, dismantling and concluding work, is projected to take 24 months. There are a number of aspects of the program that are not clear in the AB SVAFO report. For example, the assumed route for the disposition of wastes generated in dismantling process equipment and building materials is unclear. In addition, the detailed schedule of program items (Section A items in cost estimate) is somewhat confusing with the possibility that several cost elements have been omitted. AM normalised unit costs for selected, individual decommissioning activities have been derived and compared with relevant benchmark data from other recent decommissioning cost estimate analyses performed for SKI. Taking into account that there is very good access at AM, the results of these analyses give some comfort that the AM equipment dismantling estimate is in the correct ballpark. Regarding resources needed for project planning and management, the AM ratio of man-hours to project

  19. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  20. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  1. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid

  2. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  3. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  4. Risk management for noncombustion wastes

    International Nuclear Information System (INIS)

    Connor, K.K.; Rice, J.S.

    1991-01-01

    The Noncombustion Waste Risk Management Project is designed to incorporate the insights and information developed in these projects into tools that will help utilities make better noncombustion waste management decisions. Specific project goals are to synthesize information useful to utilities on noncombustion wastes, emphasize waste reduction as a priority over end-of-pipe management, develop methods to manage the costs and risks associated with noncombustion wastes (e.g., direct costs, permitting costs, liability costs, public relations costs), develop software and documentation to deliver the information and analysis methods to the industry. This project was initiated EPRI's Environment Division in late 1988. The early phases of the project involved gathering information on current noncombustion waste management practices, specific utility problems and concerns with respect to these wastes, current and potential future regulations, and current and emerging management options. Recent efforts have focused on characterizing the direct and indirect (e.g., lawsuits, remedial action) costs of managing these wastes and on developing and implementing risk management methods for a subset of wastes. The remainder of this paper describes the specific issues addressed by and the results and insights from the three completed waste-specific studies

  5. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  6. Estimation of marginal costs at existing waste treatment facilities

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus

    2016-01-01

    , marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading...... a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven...

  7. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  8. Activation of zero-error classical capacity in low-dimensional quantum systems

    Science.gov (United States)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  9. Vitrification of low level and mixed (radioactive and hazardous) wastes: Lessons learned from high level waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1994-01-01

    Borosilicate glasses will be used in the USA and in Europe immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Simultaneously, tehnologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to immobilize low-level and mixed (radioactive and hazardous) wastes (LLMW) in durable glass formulations for permanent disposal or long-term storage. Vitrification of LLMW achieves large volume reductions (86--97 %) which minimize the associated long-term storage costs. Vitrification of LLMW also ensures that mixed wastes are stabilized to the highest level reasonably possible, e.g. equivalent to HLLW, in order to meet both current and future regulatory waste disposal specifications The tehnologies being developed for vitrification of LLMW rely heavily on the technologies developed for HLLW and the lessons learned about process and product control

  10. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  11. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codesand international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building...... owners’ approach to it. For thisparticular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took theperspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that isbalanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  12. Low-level radioactive waste technology: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description

  13. Low-level radioactive waste technology: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  14. Low and intermediate radioactive waste management at OPG's western waste management facility

    International Nuclear Information System (INIS)

    Ellsworth, M.

    2006-01-01

    'Full text:' This paper will discuss low and intermediate level radioactive waste operations at Ontario Power Generation's Western Waste Management Facility. The facility has been in operation since 1974 and receives about 5000 - 7000 m 3 of low and intermediate level radioactive waste per year from Ontario's nuclear power plants. Low-level radioactive waste is received at the Waste Volume Reduction Building for possible volume reduction before it is placed into storage. Waste may be volume reduced by one of two methods at the WWMF, through either compaction or incineration. The Compactor is capable of reducing the volume of waste by a factor up to 5:1 for most waste. The Radioactive Incinerator is capable of volume reducing incinerable material by a factor up to 70:1. After processing, low-level waste is stored in above ground concrete warehouse-like structures called Low Level Storage Buildings. Low-level waste that cannot be volume reduced is placed into steel containers and stored in the Low Level Storage Buildings. Intermediate level waste is stored mainly in steel lined concrete storage structures. WWMF has both above ground and in-ground storage structures for intermediate level waste. Intermediate level waste consists primarily of resin and filters used to keep reactor water systems clean, and some used reactor core components. All low and intermediate level waste storage at the WWMF is considered interim storage and the material can be retrieved for future disposal or permanent storage. Current improvement initiatives include the installation of a new radioactive incinerator and a shredder/bagger. The new incinerator is a continuous feed system that is expected to achieve volume reduction rates up to 70:1, while incinerating higher volumes of waste than its predecessor. The shredder will break down large/bulky items into a form, which can be processed for further volume reduction. A Refurbishment Waste Storage Project is underway in anticipation of the

  15. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Richards, J.M.

    1989-01-01

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  16. The disposal of low-level radioactive waste into the sea

    International Nuclear Information System (INIS)

    Saruhashi, Katsuko

    1979-01-01

    Disposal of low-level radioactive wastes is made both on land and in sea. Though the land disposal has been already carried out in the U.S.A. and the U.S.S.R., it is impossible in the narrow land of Japan. In the United States, the wastes solidified with cement in drums were previously abandoned in deep seas of the Pacific and the Atlantic. This is no longer done presently; instead, the land disposal is employed due to its lower costs. In European countries, the sea disposal is performed under OECDNEA, trial disposal in 1961 and full-scale disposal since 1967, in the Atlantic. Meanwhile, in Japan, test sea disposal will be carried out in the near future in deep sea of the northern Pacific, the important sea area for fisheries. The international trends of the deep sea disposal of low-level wastes and the correspondent trends of the same in Japan, in the past years are described. (J.P.N.)

  17. Financial sustainability in municipal solid waste management – Costs and revenues in Bahir Dar, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Lohri, Christian Riuji, E-mail: christian.lohri@eawag.ch; Camenzind, Ephraim Joseph, E-mail: ephraimcamenzind@hotmail.com; Zurbrügg, Christian, E-mail: christian.zurbruegg@eawag.ch

    2014-02-15

    Highlights: • Cost-revenue analysis over 2 years revealed insufficient cost-recovery. • Expenses for motorized secondary collection increased by 82% over two years. • Low fee collection rate and reliance on only one revenue stream are problematic. • Different options for cost reduction and enhanced revenue streams are recommended. • Good public–private alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar’s SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident

  18. Financial sustainability in municipal solid waste management – Costs and revenues in Bahir Dar, Ethiopia

    International Nuclear Information System (INIS)

    Lohri, Christian Riuji; Camenzind, Ephraim Joseph; Zurbrügg, Christian

    2014-01-01

    Highlights: • Cost-revenue analysis over 2 years revealed insufficient cost-recovery. • Expenses for motorized secondary collection increased by 82% over two years. • Low fee collection rate and reliance on only one revenue stream are problematic. • Different options for cost reduction and enhanced revenue streams are recommended. • Good public–private alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar’s SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident

  19. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10 6 Ci of activity; the principal nuclides are 90 Sr and 137 Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use

  20. Assessment of management alternatives for LWR wastes. Volume 8. Cost and radiological impact associated with near-surface disposal of reactor waste (Spanish concept)

    International Nuclear Information System (INIS)

    Alamo Berna, S.; Sanchez Delgado, N.

    1993-01-01

    This report deals with the determination of the cost and the radiological impact associated with a near-surface disposal site (Spanish concept) for low and medium-level radioactive waste generated during operation of a 20 GWe nuclear park composed of LWRs for 30 years. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  1. Assessment of management alternatives for LWR wastes. Volume 7. Cost and radiological impact associated with near-surface disposal of reactor waste (French concept)

    International Nuclear Information System (INIS)

    Malherbe, J.

    1993-01-01

    This report deals with the determination of the cost and the radiological impact associated with a near-surface disposal site (French concept) for low and medium-level radioactive waste generated during operation of a 20 GWe nuclear park composed of LWRs for 30 years. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  2. Low-level radioactive waste vitrification: effect of Cs partitioning

    International Nuclear Information System (INIS)

    Horton, W.S.; Ougouag, A.M.

    1986-01-01

    The traditional Low-Level Radioactive Waste (LLW) immobilization options are cementation or bituminization. Either of these options could be followed by shallow-land burial (SLB) or above-ground disposal. These rather simple LLW procedures appeared to be readily available, to meet regulatory requirements, and to satisfy cost constraints. The authorization of State Compacts, the forced closure of half of the six SLB disposal facilities of the nation, and the escalation of transportation/disposal fees diminish the viability of these options. The synergetic combination of these factors led to a reassessment of traditional methods and to an investigation of other techniques. This paper analyzes the traditional LLW immobilization options, reviews the impact of the LLW stream composition on Low-Level Waste Vitrification (LLWV), then proposes and briefly discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV)

  3. The exemption of regulatory control for the management of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ortiz, M.T.; Carboneras, P.

    1993-01-01

    A high number of wastes produced in different fields of science and technology, as well as nuclear power plants, contain a significant volume of byproducts contaminated with radioisotopes, having a very low radioactive level. This kind of wastes might be managed as ordinary wastes by conventional methods or even reused. In order to carry out this procedure, a new regulation exempting these products from the regulatory control normatives would be necessary. This paper analyzes the big advantages of introducing these exemptions (costs recycling, radioactive wastes minimization) and how they follow the recommendations of ICRP, IAEA, EC and NRC

  4. Low-level waste workshops. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Low-Level Radioactive Waste Policy Act of 1980 specifies that each state is responsible for the disposal of the low-level waste which is generated within its boundaries. The Act states that such wastes can be most safely and efficiently managed on a regional basis through compacts. It also defines low-level waste as waste which is not classified as high-level radioactive waste, transuranic waste, spent nuclear fuel, or by-product material as defined in the Atomic Energy Act of 1954. The Policy Act also stipulates that regional agreements or compacts shall not be applicable to the transportation, management, or disposal of low-level radioactive waste from atomic energy defense activities or federal research and development activities. It also specifies that agreements or compacts shall take affect on January 1, 1986, upon Congressional approval. In February 1983, the US Department of Energy awarded a grant to the Council of State Governments' Midwestern Office. The grant was to be used to fund workshops for legislation on low-level radioactive waste issues. The purpose of the workshops was to provide discussion specifically on the Midwest Interstate Compact on Low-Level Radioactive Waste. Legislators from the states which were eligible to join the compact were invited: Delaware, Illinois, Indiana, Iowa, Kentucky, Maryland, Michigan, Minnesota, Missouri, North Dakota, Ohio, South Dakota and Wisconsin. Virginia, Kansas and Nebraska were also eligible but had joined other compacts. Consequently, they weren't invited to the workshops. The Governor's office of West Virginia expressed interest in the compact, and its legislators were invited to attend a workshop. Two workshops were held in March. This report is a summary of the proceedings which details the concerns of the compact and expresses the reasoning behind supporting or not supporting the compact

  5. Household food waste to wastewater or to solid waste? That is the question.

    Science.gov (United States)

    Diggelman, Carol; Ham, Robert K

    2003-12-01

    Decision makers need sound analyses of economic and environmental impacts of options for managing household food waste. Food waste impacts public health (it rots, smells, and attracts rodents) and costs (it drives collection frequency). A life cycle inventory is used to quantify total materials, energy, costs and environmental flows for three municipal solid waste systems (collection followed by compost, waste-to-energy or landfill) and two wastewater systems (kitchen food waste disposer followed by rural on-site or municipal wastewater treatment) for food waste management. Inventory parameters are expressed per 100 kg of food waste (wet weight) to place data on a normalised basis for comparison. System boundaries include acquisition, use and decommissioning. Parameters include inputs (land, materials, water) and output emissions to air, water and land. Parameters are ranked simply from high to low. Ranking highest overall was the rural wastewater system, which has a high amount of food waste and carrier water relative to the total throughput over its design life. Waste-to-energy was second; burning food waste yields little exportable energy and is costly. Next, municipal wastewater tied with landfill. Municipal wastewater is low for land, material, energy and cost, but is highest for food waste by-product (sludge). Landfill ranks low for air emissions and cost. Compost ranks lowest; it has the lowest material and water inputs and generates the least wastewater and waterborne waste.

  6. Operating cost estimate low-level radioactive waste volume reduction and packaging options

    International Nuclear Information System (INIS)

    Williams, P.C.; Collins, E.G.

    1983-01-01

    The projected operating cost data examine the differences in compaction and incineration for DAW. Two commonly achieved densities for compaction are presented, while a third case approaching the theoretical density of the cloth and paper materials shows the interesting possibilities of improved compaction. Incineration at two benchmarks for the chlorinated plastic component of typical DAW illustrates the impact waste stream make-up has on economics. Evaporator concentrates are considered as a liquid at four concentrations (6%, 12%, 25% and 50%) and after all water has been removed for the cement and polymer cases. Five separate processing schemes are presented for bead resins. These range from dewatering and packaging in high integrity containers to incineration with solidification

  7. Development of a low-level radioactive waste shipper model. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-03-01

    During 1982, Inter/Face Associates, Inc., conducted a low-level radioactive waste management survey of Nuclear Regulatory Commission (NRC) licensees in Massachusetts for the US Department of Energy's National Low-Level Waste Management Program. In the process of conducting the survey, a model was developed, based on existing NRC license classification systems, that would identify licensees who ship low-level waste for disposal. This report presents the model and documents the procedures used in developing and testing it. After the model was tested, several modifications were developed with the goal of determining the model's ability to identify waste shippers under different parameters. The report includes a discussion of the modifications

  8. In situ grouting of a low-level radioactive waste trench

    International Nuclear Information System (INIS)

    Spence, R.D.; Godsey, T.T.; McDaniel, E.W.

    1987-11-01

    A shallow land burial trench containing low level radioactive waste was injected with a particulate grout to help control subsidence and radionuclide migration. The trench's accessible voids have been estimated at 20 vol %, and most of these voids appear to have been filled with grout. This injection was accomplished with a simple, labor intensive technique, and an inexperienced crew at an estimated cost of about $55,000. The grout costs $0.21/gal and 8081 gal was injected into the trench. 5 refs., 10 figs., 4 tabs

  9. Low-level dry active waste management planning for Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Butler, C.N.; Feizollani, F.; Jarboe, Th.B.

    1984-01-01

    To offset the rising cost of low-level radioactive waste disposal and to provide contingency measures for disposal space unavailability after January 1, 1986, Baltimore Gas and Electric (BG and E) has undertake efforts to establish a long-term waste management program. This plan, which was developed after detailed study of a number of options, consists of four elements: management of dry active wastes; implementation of 10CFR61 requirements; storage of process wastes; and enhancement of liquid/solid waste systems and equipment performance. Each element was scheduled for implementation in accordance with an established set of priorities. Accordingly, detailed engineering for implementation of the first two elements was initiated in December of 1982. This paper focuses on BGandE's experience in implementation of the first element o the program, i.e., the management of dry active waste (DAW). DAW is managed by providing a new buildin dedicated to its handling, processing, volume-reduction, and storage. This building, which is equipped with state-of-the-art decontamination and processing techniques, allows for implementation of waste minimization and for interim storage of DAW in a safe and cost effective manner

  10. Nirex plans for low and intermediate level waste

    International Nuclear Information System (INIS)

    Mathieson, J.

    1995-01-01

    Two main events have dominated Nirex's recent history: the Radioactive Waste Review and the Company's plans to build a Rock Characterisation facility at its investigation site near Sellafield in Cumbria. The outcome of the former was announced in a White Paper in July 1995. Decisions on the RCF are subject to a public inquiry starting in September 1995. Given a successful result and confirmation that the site could meet the safety target, a deep repository for intermediate and some low level waste could be available by 2011 or thereabouts. As financing of Nirex's activities is in line with the ''polluter pays'' principle, the Company is aiming to deliver a cost-effective disposal system which complies fully with the stringent safety requirements placed on it. (author)

  11. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    International Nuclear Information System (INIS)

    Martinez-Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  12. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark); Kromann, Mikkel A. [COWI A/S, Parallelvej 2, 2800 Kgs. Lyngby (Denmark); Astrup, Thomas Fruergaard [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, 2800 Kgs. Lyngby (Denmark)

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  13. Observations on the use of cost-benefit analysis in the control of radioactive waste disposal

    International Nuclear Information System (INIS)

    Shepherd, J.G.; Hetherington, J.A.

    1975-10-01

    The disposal of radioactive waste to the environment can lead to the irradiation of large numbers of people, and although the individual doses may be very small compared with the ICRP dose limits the total population dose may not be insignificant. In these circumstances the control procedure is likely to be determined by the requirement that doses be kept 'as low as is readily achievable'(see ICRP-9, para. 52). This recommendation has been interpreted in ICRP-22, where the use of cost-benefit analysis is suggested as a means of application in practice. This paper discusses some of the implications of these recommendations in relation to the control of radioactive waste disposal, under the following headings: the use of collective dose; the costing of collective dose; the assessment and use of detrimental costs; and the payment of detrimental costs. (author)

  14. The direct cost of "Thriasio" school screening program

    Directory of Open Access Journals (Sweden)

    Maziotou Christina

    2007-05-01

    Full Text Available Abstract Background There is great diversity in the policies for scoliosis screening worldwide. The initial enthusiasm was succeeded by skepticism and the worth of screening programs has been challenged. The criticisms of school screening programs cite mainly the negative psychological impact on children and their families and the increased financial cost of visits and follow-up radiographs. The purpose of this report is to evaluate the direct cost of performing the school screening in a district hospital. Methods A cost analysis was performed for the estimation of the direct cost of the "Thriasio" school-screening program between January 2000 and May 2006. The analysis involved all the 6470 pupils aged 6–18 years old who were screened at schools for spinal deformities during this period. The factors which were taken into consideration in order to calculate the direct cost of the screening program were a the number of the examiners b the working hours, c the examiners' salary, d the cost of transportation and finally e the cost of examination per child. Results During the examined period 20 examiners were involved in the program and worked for 1949 working hours. The hourly salary for the trainee doctors was 6.80 euro, for the Health Visitors 6.70 euro and for the Physiotherapists 5.50 euro in current prices. The cost of transportation was 32 euro per year. The direct cost for the examination of each child for the above studied period was calculated to be 2.04 euro. Conclusion The cost of our school-screening program is low. The present study provides a strong evidence for the continuation of the program when looking from a financial point of view.

  15. Status report on Texas Low-Level Radioactive Waste Disposal Authority activities

    International Nuclear Information System (INIS)

    Avant, R.V. Jr.

    1990-01-01

    In 1981, the Texas Low-Level Radioactive Waste Disposal Authority was created by Article 4590f-1 to site, develop, operate, decommission, and close a low-level radioactive waste disposal facility for Texas generated waste. In 1989, the Authority's act was recodified by the Texas legislature in the Health and Safety Code., Title 5. Sanitation and Environmental Quality, Subtitle D. Nuclear and Radioactive Materials, Chapter 402. The Authority is governed by a Board of Directors appointed by the Governor, composed of a certified health physicist, geologist, attorney, medical doctor, and two private citizens. Under the statute, low-level radioactive waste is defined as any radioactive material with a half-life of 35 years or less or having less than 10 nanocuries per gram of transuranics. Materials with half-lives of greater than 35 years may be classed as low-level waste if special criteria are established by the Texas Department of Health Bureau of Radiation Control. Subsequent sessions of the legislature have amended the act to revise siting criteria, require consideration of state land, create a Citizen's Advisory Committee, incorporate alternative designs, and establish a special low-level radioactive waste account in the state treasury. The Authority began its activities in 1982. The Authority has proposed a site in far West Texas near Fort Hancock, but El Paso County, the neighboring county to the west, has instituted three separate lawsuits to slow or stop the site selection process. Particular attention was paid early in the site selection process to items which could be fatal flaws from a licensing standpoint. This paper discusses the Fort Hancock site description, site evaluation studies, siting issues, waste volume projections, facility design, license application, cost and schedule

  16. Treatment of radioactive mixed wastes in commercial low-level wastes

    International Nuclear Information System (INIS)

    Kempf, C.R.; MacKenzie, D.R.

    1985-01-01

    Management options for three generic categories of radioactive mixed waste in commercial low-level wastes have been identified and evaluated. These wastes were characterized as part of a BNL study in which a large number of generators were surveyed for information on potentially hazardous low-level wastes. The general management targets adopted for mixed wastes are immobilization, destruction, and reclamation. It is possible that these targets may not be practical for some wastes, and for these, goals of stabilization or reduction of hazard are addressed. Solidification, absorption, incineration, acid digestion, segregation, and substitution have been considered for organic liquid wastes. Containment, segregation, and decontamination and re-use have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, containment, substitution, chemical reduction, and biological removal have been considered. For each of these wastes, the management option evaluation has necessarily included assessment/estimation of the effect of the treatment on both the radiological and potential chemical hazards present. 10 refs

  17. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  18. Plan 96 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents a calculation of the costs for implementing all measures needed to manage and dispose of spent nuclear fuel and radioactive wastes from the Swedish nuclear power reactors. The cost calculations include costs for R,D and D as well as for decommissioning and dismantling the reactor plants etc. The following facilities and systems are already in operation: Transportation system for radioactive waste products, Central interim storage facility for spent nuclear fuel, Final repository for radioactive operational wastes. Plans exist for: Encapsulation plant for spent nuclear fuel, Deep repository for spent fuel and other long-lived waste, Final repository for decommissioning waste. The total future costs, in Jan 1996 prices, for the Swedish waste system from 1997 have been calculated to be 42.2 billion SEK (about 6.4 billion USD). The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. It is estimated that 10.6 billion SEK in current money has been spent through 1996. Costs based on waste quantities from operation of the reactors for 40 years are also reported. 6 refs

  19. 1996 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.

    1997-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the US. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1996 and a comparison of waste volumes and radioactivity by state for 1992 through 1996; also included is a list of all commercial nuclear power reactors in the US as of December 31, 1996. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  20. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  1. Use of low cost dead biomasses in the removal of heavy metal toxic/radiotoxic ions from aqueous wastes- a radiotracer study

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.

    2005-01-01

    In an environmental context, accelerating pollution by toxic metal ions, metalloids, radionuclides and organometal (loid)s has provided the impetus for the research to look into the biotechnological potential of utilizing several low cost dead biomasses/agricultural byproducts to replace existing expensive technologies. Unlike organic pollutants which are biodegradable, these metallic contaminants tend to persist rather indefinitely in the environment, and are eventually accumulated through the food chain thus posing a serious threat to plants, animal and man. The use of radiotracer technique by several workers and ourselves in the study of adsorption uptake or ions (cations and anions) from aqueous solutions by metals/metals oxide surfaces at micro down to tracer level concentrations had been quite rewarding. In continuation of this work the present studies were directed to assess the uptake behaviour of abundantly available low cost dead biomasses [e.g. Rice hulls (oryza sativa L),] Mango (mangifera indica) and Neem (azadirachta indica)barks] towards some heavy metal (Hg 2+ , Cd 2+ , Cr 2+ , Zn 2+ and Ce 3+ ) toxic and radiotoxic (Sr 2+ and Cs l+ )ions from aqueous solutions at low ionic concentrations (10 -2 -10 -8 mol dm -3 ). In all these studies the adsorptive solution was labeled by a suitable radiotracer of the metal ion and the uptake of ions by the three biosorbents was assessed through monitoring of the decrease in radioactivity of the bulk. A parametric study through change of temperature, pH and addition of other co-ions/complexing agents has helped in deducing the thermodynamic parameters and mechanism of the uptake of the ions. The extent of removal of metal ions by these dead biomasses is quite high in most cases and the nature of the uptake appears to be exchange type. These findings show that the agricultural byproducts (dead biomasses) can be utilized in the development of waste water treatment technology for removal of heavy metal toxic and

  2. Desactivation of liquid radioactive wastes of low and medium activity

    International Nuclear Information System (INIS)

    Golinski, M.; Charomska, K.

    1978-01-01

    The results of research made according to the prodranm of scientific and technical cooperation of the CMEA countries are discussed. The main direction of these research works is on future improvement of installations for purification of liquid radioactive wastes by chemical methods of coprecipitation and coagulation, ion exchange, sorption, distillation and electrolysis. It was shown that methods of coprecipitation and coagulation have low efficiency and the activity reduction factor seldom was more than 10. In sorption processes different sorbents, both organic and nonorganic were used. The modified bentonite used as a sorbent agent has shown high selectivity towards zesium ions. Waste concentration by means of distillation is an universal but rather expensive method and is applied mainly in the cases of high salts concentration and high specific activity of liquid wastes. Electrolysis, as a method of the liquid wastes purification is used in the USSR and has high efficiency with low energy consumption. (I.T.) [ru

  3. A data base for low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs

  4. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  5. Analysis of capital and operating costs associated with high level waste solidification processes

    International Nuclear Information System (INIS)

    Heckman, R.A.; Kniazewycz, B.G.

    1978-03-01

    An analysis was performed to evaluate the sensitivity of annual operating costs and capital costs of waste solidification processes to various parameters defined by the requirements of a proposed Federal waste repository. Five process methods and waste forms examined were: salt cake, spray calcine, fluidized bed calcine, borosilicate glass, and supercalcine multibarrier. Differential cost estimates of the annual operating and maintenance costs and the capital costs for the five HLW solidification alternates were developed

  6. Who regulates the disposal of low-level radioactive waste under the Low-Level Radioactive Waste Policy Act

    International Nuclear Information System (INIS)

    Mostaghel, D.M.

    1988-01-01

    The present existence of immense quantities of low-level nuclear waste, a federal law providing for state or regional control of such waste disposal, and a number of state disposal laws challenged on a variety of constitutional grounds underscore what currently may be the most serious problem in nuclear waste disposal: who is to regulate the disposal of low-level nuclear wastes. This problem's origin may be traced to crucial omissions in the Atomic Energy Act of 1946 and its 1954 amendments (AEA) that concern radioactive waste disposal. Although the AEA states that nuclear materials and facilities are affected with the public interest and should be regulated to provide for the public health and safety, the statute fails to prescribe specific guidelines for any nuclear waste disposal. The Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA) grants states some control over radioactive waste disposal, an area from which they were previously excluded by the doctrine of federal preemption. This Comment discusses the question of who regulates low-level radioactive waste disposal facilities by examining the following: the constitutional doctrines safeguarding federal government authority; area of state authority; grants of specific authority delegations under the LLRWPA and its amendment; and finally, potential problems that may arise depending on whether ultimate regulatory authority is deemed to rest with single states, regional compacts, or the federal government

  7. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    . However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private...... building owners’ approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...... in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...

  8. A open-quotes zero wasteclose quotes coolant management strategy

    International Nuclear Information System (INIS)

    Kennicott, M.A.

    1994-01-01

    In June of 1992 the Waste Minimization Program at Rocky Flats Plant (RFP) began a study to determine the best methods of managing water-based industrial metalworking fluids in the plant's Tool Manufacturing Shop. The shop was faced with the challenge of managing fluids that could no longer be disposed of in the traditional manner, through the plant's liquid process waste drains, due to a problem they, were having causing in the Liquid Waste Operations Evaporator. The study's goal was to reduce the waste coolants being generated and to reduce worker exposure to a serious health risk. Results of this study and those of a subsequent study to determine relative compatibilities of various coolants and metals, led to the application of a open-quotes zero wasteclose quotes machine coolant management program. This program is currently saving the generation of 10,000 gallons of liquid waste annually, has eliminated worker exposure to harmful bacteria and biocides, and should result in extended machine tool life, increased product quality, fewer rejected parts, and decreases labor costs

  9. Disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Hendee, W.R.

    1986-01-01

    The generation of low-level radioactive waste is a natural consequence of the societal uses of radioactive materials. These uses include the application of radioactive materials to the diagnosis and treatment of human disease and to research into the causes of human disease and their prevention. Currently, low level radioactive wastes are disposed of in one of three shallow land-burial disposal sites located in Washington, Nevada, and South Carolina. With the passage in December 1980 of Public Law 96-573, The Low-Level Radioactive Waste Policy Act, the disposal of low-level wastes generated in each state was identified as a responsibility of the state. To fulfill this responsibility, states were encouraged to form interstate compacts for radioactive waste disposal. At the present time, only 37 states have entered into compact agreements, in spite of the clause in Public Law 96-573 that established January 1, 1986, as a target date for implementation of state responsibility for radioactive wastes. Recent action by Congress has resulted in postponement of the implementation date to January 1, 1993

  10. Learning the ABCs: Activity based costing in waste operations

    International Nuclear Information System (INIS)

    Zocher, Marc A.

    1992-01-01

    The United States Department of Energy (DOE) is facing a challenging new national role based on current world events, changing public perception and awareness, and a legacy of wastes generated in the past. Clearly, the DOE must put mechanisms in place to comply with environmental rules, regulations, and good management practices so that public health risk is minimized while programmatic costs are controlled. DOE has begun this process and has developed a Five-Year Plan to describe the activities necessary to comply with both cleanup, or environmental restoration, and waste management of existing waste streams. The focus of this paper is how to best manage the treatment, storage, disposal, and transportation of waste throughout the DOE weapons complex by using Activity Based Costing (ABC) to both plan and control expenditures in DOE Waste Management (WM). The basics of ABC, along with an example, will be detailed. (author)

  11. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  12. Greater-than-Class C low-level radioactive waste characterization. Appendix A-2: Timing of greater-than-Class C low-level radioactive waste from nuclear power plants

    International Nuclear Information System (INIS)

    Steinke, W.F.

    1994-09-01

    Planning for the storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste. Timing, or the date the waste will require storage or disposal, is an integral aspect of that planning. The majority of GTCC LLW is generated by nuclear power plants, and the length of time a reactor remains operational directly affects the amount of GTCC waste expected from that reactor. This report uses data from existing literature to develop high, base, and low case estimates for the number of plants expected to experience (a) early shutdown, (b) 40-year operation, or (c) life extension to 60-year operation. The discussion includes possible effects of advanced light water reactor technology on future GTCC LLW generation. However, the main focus of this study is timing for shutdown of current technology reactors that are under construction or operating

  13. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    Science.gov (United States)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  14. Assessment of LANL solid low-level waste management documentation

    International Nuclear Information System (INIS)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.; Danna, J.G.; Davis, K.D.; Rutz, A.C.

    1991-04-01

    DOE Order 5820.2A requires that a system performance assessment be conducted to assure efficient and compliant management of all radioactive waste. The objective of this report is to determine the present status of the Radioactive Waste Operations Section's capabilities regarding preparation and maintenance of appropriate criteria, plans and procedures and identify particular areas where these documents are not presently in existence or being fully implemented. DOE Order 5820.2A, Radioactive Waste Management, Chapter III sets forth the requirements and guidelines for preparation and implementation of criteria, plans and procedures to be utilized in the management of solid low-level waste. The documents being assessed in this report are: Solid Low-Level Waste Acceptance Criteria, Solid Low-Level Waste Characterization Plan, Solid Low-Level Waste Certification Plan, Solid Low-Level Waste Acceptance Procedures, Solid Low-Level Waste Characterization Procedures, Solid Low-Level Waste Certification Procedures, Solid Low-Level Waste Training Procedures, and Solid Low-Level Waste Recordkeeping Procedures. Suggested outlines for these documents are presented as Appendix A

  15. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    Science.gov (United States)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  16. Levelized cost-risk reduction prioritization of waste disposal options

    International Nuclear Information System (INIS)

    Wilkinson, V.K.; Young, J.M.

    1992-01-01

    The prioritization of solid waste disposal options in terms of reduced risk to workers, the public, and the environment has recently generated considerable governmental and public interest. In this paper we address the development of a methodology to establish priorities for waste disposal options, such as incineration, landfills, long-term storage, waste minimization, etc. The study is one result of an overall project to develop methodologies for Probabilistic Risk Assessments (PRAs) of non-reactor nuclear facilities for the US Department of Energy. Option preferences are based on a levelized cost-risk reduction analysis. Option rankings are developed as functions of disposal option cost and timing, relative long- and short-term risks, and possible accident scenarios. We examine the annual costs and risks for each option over a large number of years. Risk, in this paper, is defined in terms of annual fatalities (both prompt and long-term) and environmental restoration costs that might result from either an accidental release or long-term exposure to both plant workers and the public near the site or facility. We use event timing to weigh both costs and risks; near-term costs and risks are discounted less than future expenditures and fatalities. This technique levels the timing of cash flows and benefits by converting future costs and benefits to present value costs and benefits. We give an example Levelized Cost-Benefit Analysis of incinerator location options to demonstrate the methodology and required data

  17. Laboratory Optimization Tests of Technetium Decontamination of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Melter Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  18. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  19. 1992 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; McDonald, S.D.

    1993-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1992 and a comparison of waste volumes and radioactivity by state for 1988 through 1992; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1992. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report

  20. 1994 state-by-state assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This report provides both national and state-specific disposal data on low-level radioactive waste commercially disposed in the United States. Data in this report are categorized according to disposal site, generator category, waste class, volumes, and radionuclide activity. Included in this report are tables showing the distribution of waste by state for 1994 and a comparison of waste volumes and radioactivity by state for 1990 through 1994; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1994. This report distinguishes between low-level radioactive waste shipped directly for disposal by generators and waste that was handled by an intermediary, a reporting change introduced in the 1988 state-by-state report.

  1. Low-Level Waste (LLW) forum meeting report

    International Nuclear Information System (INIS)

    1995-01-01

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties

  2. Low-Level Waste (LLW) forum meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources.

    Science.gov (United States)

    Huang, Haiming; Xiao, Dean; Zhang, Qingrui; Ding, Li

    2014-12-01

    This paper presents a study concerning ammonia removal from landfill leachate by struvite precipitation with the use of waste phosphoric acid as the phosphate source. The results indicated that the Al(3+) ions present in the waste phosphoric acid significantly affected the struvite precipitation, and a removal ratio of ammonia close to that of pure phosphate salts could be achieved. Nevertheless, large amounts of NaOH were necessary to neutralize the H(+) present in the waste phosphoric acid. To overcome this problem, a low-cost magnesium source was proposed to be used as well as an alkali reagent in the struvite precipitation. The ammonia removal ratios were found to be 83%, with a remaining phosphate of 56 mg/L, by dosing the low-cost MgO in the Mg:N:P molar ratio of 3:1:1. An economic analysis showed that using waste phosphoric acid plus the low-cost MgO could save chemical costs by 68% compared with the use of pure chemicals. Post-treatment employment of a biological anaerobic filter process demonstrated that the high concentration of Mg(2+) remaining in the effluent of the struvite precipitation has no inhibitory effect on the performance of the biological treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Bioenergy, material, and nutrients recovery from household waste: Advanced material, substance, energy, and cost flow analysis of a waste refinery process

    International Nuclear Information System (INIS)

    Tonini, Davide; Dorini, Gianluca; Astrup, Thomas Fruergaard

    2014-01-01

    Highlights: • We modeled material, substance, energy, and cost flows of a waste refinery process. • Ca. 56% of 1 Mg dry waste input can be recovered as bioliquid yielding 6.2 GJ biogas. • Nutrients and carbon recovery in the bioliquid was estimated to 81–89%. • The biogenic carbon in the input waste was 63% of total carbon based on 14 C analyses. • The quality of the digestate may be critical with respect to use on land. - Abstract: Energy, materials, and resource recovery from mixed household waste may contribute to reductions in fossil fuel and resource consumption. For this purpose, legislation has been enforced to promote energy recovery and recycling. Potential solutions for separating biogenic and recyclable materials are offered by waste refineries where a bioliquid is produced from enzymatic treatment of mixed waste. In this study, potential flows of materials, energy, and substances within a waste refinery were investigated by combining sampling, analyses, and modeling. Existing material, substance, and energy flow analysis was further advanced by development of a mathematical optimization model for determination of the theoretical recovery potential. The results highlighted that the waste refinery may recover ca. 56% of the dry matter input as bioliquid, yielding 6.2 GJ biogas-energy. The potential for nitrogen, phosphorous, potassium, and biogenic carbon recovery was estimated to be between 81% and 89% of the input. Biogenic and fossil carbon in the mixed household waste input was determined to 63% and 37% of total carbon based on 14 C analyses. Additional recovery of metals and plastic was possible based on further process optimization. A challenge for the process may be digestate quality, as digestate may represent an emission pathway when applied on land. Considering the potential variability of local revenues for energy outputs, the costs for the waste refinery solution appeared comparable with alternatives such as direct incineration

  5. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    International Nuclear Information System (INIS)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs

  6. 1990 State-by-State assessment of low-level radioactive wastes received at commercial disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, R.L.; Culbertson-Arendts, K.

    1991-09-01

    Each year the National Low-Level Waste Management Program publishes a state-by-state assessment report. This annual report provides both national and state-specific disposal data on low-level radioactive wastes. Data in this report are categorized according to disposal site, generator category, waste class, volume, and activity. Included in this report are tables showing a distribution of wastes by state for 1990 and a comparison of waste volumes by state for 1986 through 1990; also included is a list of all commercial nuclear power reactors in the United States as of December 31, 1990. In this year's report, a distinction has been made between low-level radioactive waste shipped directly by generators for disposal and that which was handled by an intermediary. 5 refs., 4 tabs.

  7. Collection of low-grade waste heat for enhanced energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng [Toyota Research Institute, Toyota Motor Engineering & Manufacturing North America, Ann Arbor, Michigan 48105 (United States); Nomura, Tsuyoshi [Toyota Central Research and Development Laboratories, Inc., Nagakute 480-1192 (Japan)

    2016-05-15

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  8. Collection of low-grade waste heat for enhanced energy harvesting

    International Nuclear Information System (INIS)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-01-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  9. Low-level waste forum meeting reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  10. Low-level waste forum meeting reports

    International Nuclear Information System (INIS)

    1995-01-01

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards

  11. Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells

    KAUST Repository

    Barbe, Jeremy

    2016-12-13

    Cu(In,Ga)Se2 (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S2 (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

  12. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  13. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  14. Risk and cost tradeoffs for remote retrieval of buried waste

    International Nuclear Information System (INIS)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-01-01

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program's technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste

  15. A logistic and cost model for the transport of radioactive waste to a repository

    International Nuclear Information System (INIS)

    Hutchinson, D.L.; Gray, I.L.S.; Manville, W.D.

    1997-01-01

    UK Nirex Ltd is planning a deep repository for intermediate level radioactive waste, and also some low level waste. Part of this work is to develop a transport system to bring the packaged waste to the repository from nuclear industry sites across the United Kingdom. To assess the logistics and costs of this transport system and to provide inputs to the repository specification and design, Nirex has commissioned the development of a flexible computer model which can be used on a desktop PC. The requirements for the LOGCOST model are explained, and the solutions adopted, and then examples shown of the graphical and tabular outputs that LOGCOST can provide. (Author)

  16. Radioactive waste management complex low-level waste radiological composite analysis

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  17. Radioactive waste management complex low-level waste radiological composite analysis

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective

  18. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Measurement methodology for fulfilling of waste acceptance criteria for low and intermediate level radioactive waste in storages - 59016

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.

    2012-01-01

    Low and intermediate level radioactive waste must be sorted and treated before it can be sent to radioactive waste storage. The waste must fulfil an extensive amount of acceptance criteria (WAC) to guarantee a safe storage period. NUKEM Technologies has a broad experience with the building and management of radioactive waste treatment facilities and has developed methods and equipment to produce the waste packages and to gather all the required information. In this article we consider low and intermediate level radioactive waste excluding nuclear fuel material, even fresh fuel with low radiation. Only solid radioactive waste (RAW) will be considered. (Liquid RAW is usually processed and solidified before storage. Exception is the reprocessing of nuclear fuel.) Low and intermediate level radioactive waste has to be kept in storage facilities until isotopes are decayed sufficiently and the waste can be released. The storage has to fulfil certain conditions regarding the possible radiological impact and the possible chemical impact on the environment. With the inventory of nuclear waste characterised, the radiological impact can be estimated. RAW mainly originates from the operation of nuclear power plants. A small amount comes from reprocessing installations or from research entities. Chemical safety aspects are of qualitative nature, excluding substances in whole but not compared to limit values. Therefore they have minor influence on the storage conditions. Hereby corrosion and immobilisation of the waste play important roles. The storage concept assumes that the waste will be released if the radioactivity has decreased to an acceptable level. NUKEM Technologies has been specialised on collecting all data needed for the fulfilling of waste acceptance criteria (WAC). The classification as low or intermediate level waste is made on base of surface dose rate of the waste package as well as on the mass specific beta activity. Low level waste must not include isotopes

  20. 48 CFR 31.202 - Direct costs.

    Science.gov (United States)

    2010-10-01

    ... REQUIREMENTS CONTRACT COST PRINCIPLES AND PROCEDURES Contracts With Commercial Organizations 31.202 Direct... amount as an indirect cost if the accounting treatment— (1) Is consistently applied to all final cost... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Direct costs. 31.202...

  1. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    Science.gov (United States)

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  2. School Lunch Waste among Middle School Students: Implications for Nutrients Consumed and Food Waste Costs

    Science.gov (United States)

    Cohen, Juliana F.W.; Richardson, Scott; Austin, S. Bryn; Economos, Christina D.; Rimm, Eric B.

    2013-01-01

    Background The National School Lunch Program has been guided by modest nutrient standards, and the palatability of meals, which drives consumption, receives inadequate attention. School food waste can have important nutritional and cost implications for policy makers, students, and their families. Purpose Nutrient losses and economic costs associated with school meal waste were examined. The study also assessed if school foods served were valid proxies for foods consumed by students. Methods Plate waste measurements were collected from middle school students in Boston attending two Chef Initiative schools (n=1609) and two control schools (n=1440) during a two-year pilot study (2007-2009) where a professional chef trained cafeteria staff to make healthier school meals. The costs associated with food waste were calculated and the percent of foods consumed was compared with a gold standard of 85% consumption. Analyses were conducted in 2010-2011. Results Overall, students consumed less than the required/recommended levels of nutrients. An estimated $432,349 of food (26.1% of the total food budget) was discarded by middle school students annually at lunch in Boston middle schools. For most meal components, significantly less than 85% was consumed. Conclusions There is substantial food waste among middle school students in Boston. Overall, students' nutrient consumption levels were below school meal standards and foods served were not valid proxies for foods consumed. The costs associated with discarded foods are high; if translated nationally for school lunches, roughly $1,238,846,400 annually is wasted. Students would benefit if additional focus was given to the quality and palatability of school meals. PMID:23332326

  3. Low-temperature waste-heat recovery in the food and paper industries

    Energy Technology Data Exchange (ETDEWEB)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  4. Regionalization as a strategy for management of low-level and mixed wastes in the DOE system

    International Nuclear Information System (INIS)

    Bradford, J.D.; Garcia, E.C.; Gillins, R.L.

    1988-01-01

    The Department of Energy has been routinely performing low-level waste volume reduction and/or stabilization treatment at various sites for some time. In general, treatment is performed on waste generated onsite. Disposal is also usually performed onsite since most DOE sites have their own LLW disposal facilities. The DOE initiated studies to evaluate strategies for treatment, storage, and disposal of hazardous and mixed wastes covered in the Resource Conservation and Recovery Act (RCRA) and to ensure that DOE sites are in compliance with RCRA. These studies recommend regionalization as the most cost-effective solution to the treatment and disposal of hazardous and mixed wastes. The DOE's Defense Low-Level Waste Management Program conducted an additional survey of DOE sites to evaluate the status of one specific treatment method, incineration, at these sites. This study included facilities currently in use or intended for treatment of low-level and mixed wastes. A summary of the findings is presented in this paper

  5. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  6. Low-cost feedstock conversion to biodiesel via ultrasound technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, O.; Petrik, L.; Amigun, B.; Ameer, F. [Environmental and Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Amigun, B. [Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa)

    2010-10-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock - in this case waste cooking oil - in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 {sup o}C, a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration were obtained for the transesterification of the waste oil via the use of ultrasound. (authors)

  7. Low-Cost Feedstock Conversion to Biodiesel via Ultrasound Technology

    Energy Technology Data Exchange (ETDEWEB)

    Babajide, Omotola [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Petrik, Leslie [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa); Amigun, Bamikole [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa) and Sustainable Energy Futures, Council for Scientific and Industrial Research (CSIR), Stellenbosch (South Africa); Ameer, Faraouk [Environmental and Nano Science Research Group, Dept. of Chemistry, Univ. of the Western Cape, Bellville, Cape Town (South Africa)

    2010-09-15

    Biodiesel has attracted increasing interest and has proved to be a good substitute for fossil-based fuels due to its environmental advantages and availability from renewable resources such as refined and waste vegetable oils. Several studies have shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial production methods, which in turn calls for the development of technically and economically sound process technologies. This paper explores the applicability of ultrasound in the optimization of low-cost feedstock – in this case waste cooking oil – in the transesterification conversion to biodiesel. It was found that the conversion efficiency of the waste oil using ultrasound was higher than with the mechanical stirring method. The optimized variables of 6:1 methanol/oil ratio at a reaction temperature of 30 deg C and a reaction time of 30 min and 0.75% KOH (wt/wt) catalyst concentration was obtained for the transesterification of the waste oil via the use of ultrasound.

  8. Intermediate, low, and very low level waste management at ANDRA (agence nationale pour la gestion des dechets radioactifs) in France

    International Nuclear Information System (INIS)

    Senoo, Muneaki

    2005-01-01

    On 28th September in 2004, RANDEC invited Mr. Jean-Louis Tison from ANDRA as a lecturer of the special session of the 16th RANDEC Annual Symposium. An ANDRA-RANDEC technical meeting was held on the next day, where Mr. Vincent Carlier invited from ANDRA, too participated. Here, present status of intermediate, low, and very low level waste management in France is reviewed based on the information which were obtained from the special session of the 16th RANDEC Annual Symposium and the ANDRA-RANDEC technical meeting. In France, ANDRA is implementing radioactive waste management under the following policy; 'Intermediate, low, and very-low-level (ILVLL) waste is managed in order to establish as soon as possible a final disposal system, the temporary or long term storage option being considered only for the high-level waste (HLW) such as the vitrified fission products or particular materials such as some sealed sources for which no final disposal solution still exists.' The Agency is financed on the basis of the 'polluter-pays' principle and contracts its services directly with waste owners. (author)

  9. The costs of disposing of radioactive waste in Switzerland

    International Nuclear Information System (INIS)

    McCombie, C.; Weyermann, P.; Lieb, R.

    1996-01-01

    Conservative estimates indicate that the cost of disposing of all radioactive waste arising from the operation and decommissioning of the Swiss nuclear power plants will be around 6 billion Francs, distributed over a period of almost 90 years. If the power plants are assumed to have an operational lifetime of 40 years, this adds around 0.7 Rappen (100 Rappen = 1 Swiss Franc) per kilowatt hour to electricity production costs. Although the majority of these costs will arise only in the relatively distant future, the waste producers attach great importance to securing the necessary financial means in good time. The practice followed to date for setting aside financial reserves has been confirmed by recent cost estimates and planning strategies.(author) 4 figs

  10. Cost efficiency of waste management in Dutch municipalities

    NARCIS (Netherlands)

    de Groot, Hans; van Heezik, A.; Hollanders, D.; Felsö, F.

    2011-01-01

    This paper analyses the cost efficiency of waste management of Dutch municipalities. For the first time stochastic frontier analysis is applied to Dutch data, employing recent multi-year data (2005-2008). The preliminary findings confirm earlier results on the importance for cost efficiency of

  11. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  12. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    Science.gov (United States)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  13. Low-level waste certification plan

    International Nuclear Information System (INIS)

    Greenhalph, W.O.

    1995-01-01

    This plan describes the organization and methodology for the certification of solid low-level waste (LLW) and mixed-waste (MW) generated at any of the facilities or major work activities of the Engineered Process Application (EPA) organization. The primary LLW and MW waste generating facility operated by EPA is the 377 Building. This plan does not cover the handling of hazardous or non-regulated waste, though they are mentioned at times for completeness

  14. Commercial low-level radioactive waste management

    International Nuclear Information System (INIS)

    Coleman, J.A.

    1982-01-01

    The goals, objectives and activities of the Department of Energy's Low-Level Radioactive Waste Management program are reviewed. The goal of the overall Program is to support development of an acceptable, nationwide, near surface waste disposal system by 1986. The commercial LLW program has two major functions: (1) application of the technology improvements for waste handling, treatment and disposal, and (2) assistance to states as they carry out their responsibilities under the Low-Level Radioactive Waste Policy Act of 1980. The priorities for the commercial side of the Low-Level Waste Management Program have been established to meet one goal: to support development of an effective commercial management system by 1986. The first priority is being given to supporting state efforts in forming the institutional structures needed to manage the system. The second priority is the state and industry role in transferring and demonstrating treatment and disposal technologies

  15. The low-level radioactive waste crisis

    International Nuclear Information System (INIS)

    Bord, R.J.

    1988-01-01

    According to the author, the goals of the 1980 Low-Level Radioactive Waste Policy Act have not been met. That act stipulated that regional disposal sites were to be established by 1986. To date, no new sites have been established and none are anywhere near the construction phase. Congress, responding to existing impasse, has extended the deadline to the end of 1992 with the passage of the Low-Level Radioactive Waste Policy Act. The reasons for the impasse are no mystery: local intransigence regarding waste of any kind, public fears of radiation hazards, and politicians' anxieties about their constituents' fears. The focus of this paper is the viability of ongoing attempts to overcome public intransigence in the case of disposal siting for low-level radioactive waste (LLRW)

  16. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    Science.gov (United States)

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  17. Background information for the development of a low-level waste performance assessment methodology

    International Nuclear Information System (INIS)

    Shipers, L.R.

    1989-12-01

    This document identifies and describes the potential postclosure pathways of radionuclide release, migration, and exposure from low-level radioactive waste disposal facilities. Each pathway identified is composed of a combination of migration pathways (air, surface water, ground water, food chain) and exposure pathways (direct gamma, inhalation, ingestion, surface contact). The pathway identification is based on a review and evaluation of existing information, and not all pathways presented in the document would necessarily be of importance at a given low-level waste disposal site. This document presents pathways associated with undisturbed (ground water, gas generation), naturally disturbed (erosion, bathtubbing, earth creep, frost heave, plant and animal intruder), and inadvertent intruder (construction, agriculture) scenarios of a low-level waste disposal facility. 20 refs., 1 fig

  18. Net Zero Pilot Program Lights the Path to Big Savings in Guam

    Energy Technology Data Exchange (ETDEWEB)

    PNNL

    2016-11-03

    Case study describes how the Army Reserve 9th Mission Support Command (MSC) reduced lighting energy consumption by 62% for a total savings of 125,000 kWh and more than $50,000 per year by replacing over 400 fluorescent troffers with 36 W LED troffers. This project was part of the Army Reserve Net Zero Pilot Program, initiated in 2013, to reduce energy and water consumption, waste generation, and utility costs.

  19. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: executive summary

    International Nuclear Information System (INIS)

    1985-04-01

    The total-system life-cycle cost (TSLCC) analysis for the Department of Energy's Civilian Radioactive Waste Management Progrram is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 is sufficient to cover the cost of the program. This report is an input into the third evaluation of the adequacy of the fee. The total-system cost for the reference waste-management program in this analysis is estimated to be 24 to 30 billion (1984) dollars. For the sensitivity cases studied in this report, the costs could be as high as 35 billion dollars and as low as 21 billion dollars. Because factors like repository location, the quantity of waste generated, transportation-cask technology, and repository startup dates exert substantial impacts on total-system costs, there are several tradeoffs between these factors, and these tradeoffs can greatly influence the total cost of the program. The total-system cost for the reference program described in this report is higher by 3 to 5 billion dollars, or 15 to 20%, than the cost for the reference program of the TSLCC analysis of April 1984. More than two-thirds of this increase is in the cost of repository construction and operation. These repository costs have increased because of changing design concepts, different assumptions about the effort required to perform the necessary activities, and a change in the source data on which the earlier analysis was based. Development and evaluation costs have similarly increased because of a net addition to the work content. Transportation costs have increased because of different assumptions about repository locations and several characteristics of the transportation system. It is expected that the estimates of total-system costs will continue to change in response to both an evolving program strategy and better definition of the work required to achieve the program objectives

  20. DOE`s integrated low-level waste management program and strategic planning

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, G. [Dept. of Energy, Washington, DC (United States). Office of Environmental Restoration and Waste Management; Hwang, J. [Science Applications International Corp., Germantown, MD (United States)

    1993-03-01

    To meet the DOE`s commitment to operate its facilities in a safe, economic, and environmentally sound manner, and to comply with all applicable federal, state, and local rules, regulations, and agreements, DOE created the Office of Environmental Restoration and Waste Management (EM) in 1989 to focus efforts on controlling waste management and cleaning up contaminated sites. In the first few years of its existence, the Office of Waste Management (EM-30) has concentrated on operational and corrective activities at the sites. In 1992, the Office of Waste Management began to apply an integrated approach to managing its various waste types. Consequently, DOE established the Low-Level Waste Management Program (LLWMP) to properly manage its complex-wide LLW in a consistent manner. The objective of the LLWMP is to build and operate an integrated, safe, and cost-effective program to meet the needs of waste generators. The program will be based on acceptable risk and sound planning, resulting in public confidence and support. Strategic planning of the program is under way and is expected to take two to three years before implementation of the integrated waste management approach.

  1. Research paper 2000-B-6: adjustments in the Dutch domestic waste incineration sector in the context of the European directive 89/429/EEC. A case study on national implementation, environmental effectiveness, allocative efficiency, productive efficiency and administrative costs

    Energy Technology Data Exchange (ETDEWEB)

    Lulofs, K. [Twente Univ., Center for Clean Technology and Environmental Policy, Enschede (Netherlands)

    2000-07-01

    Within the context of the IMPOL project several fields of European environmental policy are studied on aspects as national implementation and environmental and efficiency outcomes. For the IMPOL project a case study was done on the transformation of the Dutch sector of domestic waste incineration in the context of the European Directive Directives 89/369/EEC and 89/429/ EEC. The case study was done and indicators for environmental effectiveness, allocative efficiency, productive efficiency and administrative costs were chosen in line with a document to coordinate the efforts in the four IMPOL countries. The European Directives 89/369/EEC and 89/429/ EEC regulate Plants for Domestic waste Incineration on the emissions of several pollutants. These emissions are relevant for air quality in general, acidification and the spreading of toxic substances. In the empirical part of this report emphasis is laid on 'existing' incineration plants, being permitted before 1990. In chapter 2 of this report the implementation of the directives 89/369/EEC and 89/429/EEC in the Netherlands is described. In section 2.1 already existing 'older' Dutch policy and regulation is presented. In paragraph 2.2 the integration of the European Directives into Dutch national law is described. In chapter 2.3 the efforts and outcomes on monitoring and enforcement are presented. Chapter 3 goes into the environmental effectiveness. Section 3.1 describes the abatement performance of the whole municipal waste incineration sector during the period of research. Section 3.2 goes into factors that explain the environmental outcomes. Within the IMPOL research-team the decision was taken to concentrate on a number of pollutants of existing waste incinerators. In section 3.3 the data for the existing incinerators are given. In chapter 4 the allocative efficiency of adjustments is elaborated. In section 4.1 the abatement patterns of existing municipal waste incineration plants are presented

  2. Risk and cost tradeoffs for remote retrieval of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.; Grienbenow, B.E.; Nickelson, D.F.

    1994-12-31

    The Buried Waste Integrated Demonstration is supporting the development, demonstration, testing, and evaluation of a suite of technologies that, when integrated with commercially available technologies, form a comprehensive system for the remediation of radioactive and hazardous buried waste. As a part of the program`s technology development, remote retrieval equipment is being developed and tested for the remediation of buried waste. During remedial planning, several factors are considered when choosing remote versus manual retrieval systems. Time that workers are exposed to radioactivity, chemicals, air particulate, and industrial hazards is one consideration. The generation of secondary waste is also a consideration because it amounts to more waste to treat and some wastes may require special handling or treatment. Cost is also a big factor in determining whether remote or manual operations will be used. Other considerations include implementability, effectiveness, and the number of required personnel. This paper investigates each of these areas to show the risk and cost benefits and limitations for remote versus manual retrieval of buried waste.

  3. An installation for low and medium active waste (ALMA). The report on complementary and preliminary investigations

    International Nuclear Information System (INIS)

    Degerman, O.

    1980-01-01

    The report presents complimentary data which show that transportation by sea of low and medium level waste can take place in a way to ensure safety. This also is valid for the final disposal. The waste emanates from the nuclear power plants. The cost of the disposal siting for 125 000 m 3 waste will be between 275 and 400 million Skr which is equivalent to 0.015 to 0.02 oere per kWh. The installation is to lie 50 to 300 m below the surface level. Lesser requirements may reduce the costs by 50 percent. The waste would be surrounded by 70 cm concrete and 1.5 m moraine/bentonite. The barrier may have a simplified construction. The amount and form of waste works upon the choice of alternatives. New methods of waste treatment may reduce the volume. The rock which is in the immediate vicinity of the storage should be relatively dense with no adjacent well-digging. (G.B.)

  4. DOE low-level waste long term technology development

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1982-01-01

    The objective of the Department of Energy's Low-Level Waste Management Program is to provide a low-level waste management system by 1986. Areas of concentration are defined as: (1) Waste Generation Reduction Technology, (2) Process and Handling Technology, (3) Environmental Technology, (4) Low-Level Waste Disposal Technology. A program overview is provided with specific examples of technical development. 2 figures

  5. Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application.

    Science.gov (United States)

    Yap, Hong Kai; Sebastian, Frederick; Wiedeman, Christopher; Yeow, Chen-Hua

    2017-07-01

    We present the design of low-cost fabric-based Hat pneumatic actuators for soft assistive glove application. The soft assistive glove is designed to assist hand impaired patients in performing activities of daily living and rehabilitation. The actuators consist of flexible materials such as fabric and latex bladder. Using zero volume actuation concept, the 2D configuration of the actuators simplifies the manufacturing process and allows the actuators to be more compact. The actuators achieve bi-directional flexion and extension motions. Compared to previously developed inflatable soft actuators, the actuators generate sufficient force and torque to assist in both finger flexion and extension at lower air pressure. Preliminary evaluation results show that the glove is able to provide both active finger flexion and extension assistance for activities of daily living and rehabilitative training.

  6. Management of very low-level radioactive waste

    International Nuclear Information System (INIS)

    Chapalain, E.; Damoy, J.; Joly, J.M.

    2003-01-01

    This document comprises 3 articles. The first article presents the concern of very low-level radioactive wastes generated in nuclear installations, the second article describes the management of the wastes issued from the dismantling operations of the ALS (linear accelerator of Saclay) and of the Saturn synchrotron both located in Saclay Cea's center. The last article presents the storage facility which is specifically dedicated to very low-level radioactive wastes. This storage facility, which is located at Morvilliers, near the 'Centre de l Aube' (used to store the low-, and medium-level, short-lived radioactive wastes), will receive the first packages next summer. Like the other storage facilities, it will be managed by ANDRA (national radioactive waste management agency)

  7. Effect of canister size on costs of disposal of SRP high-level wastes

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-01-01

    The current plan for managing the high-level nuclear wastes at the Savannah River Plant (SRP) calls for processing them into solid forms contained in stainless steel canisters for eventual disposal in a federal geologic repository. A new SRP facility called the Defense Waste Processing Facility (DWPF) is being designed for the onsite waste processing operations. Preliminary evaluations indicate that costs of the overall disposal operation will depend significantly on the size of the canisters, which determines the number of waste forms to be processed. The objective of this study was to evaluate the effects of canister size on costs of DWPF process operations, including canister procurement, waste solidification, and interim storage, on offsite transport, and on repository costs of disposal, including provision of suitable waste packages

  8. Oak Ridge Low Level Waste Management Task Force summary

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.

    1985-01-01

    New facilities are required in the next five years to manage low level radioactive wastes (LLW) produced on the Oak Ridge Reservation (ORR). The Central Waste Disposal Facility (CWDF) was planned to provide the needed additional facilities beginning in late 1985. The CWDF was planned as a shallow land burial facility to dispose of non-stabilized LLW. However, comments on the CWDF Draft Environmental Impact Statement (DEIS) received from the State of Tennessee, the Environmental Protection Agency, and the Nuclear Regulatory Commission identified major issues related to the treatment of alternatives as required by the National Environmental Policy Act, and the potential for unacceptable groundwater contamination resulting from shallow land burial of non-stabilized waste. A series of initial and detailed evaluations are being conducted to develop the basic environmental performance and cost information needed to compare several LLW management approaches and arrive at a proposed system for development. The evaluations are targeted for completion by October

  9. Overview of low level waste disposal facility costs

    International Nuclear Information System (INIS)

    Saverot, P.M.

    1995-01-01

    Economics and uncertainty go hand-in-hand and it is too soon to have conclusive data on the life cycle costs of a disposal facility. While LLW volumes from are decreasing year after year, the effect of the projected LLW volumes from decommissioning may have a significant impact on the final unit costs. This overview recognizes that countries see LLW disposal costs differently depending on the scale of their programs and on the geographical, political and economic frameworks within which they operate. The reasons for the cost differences arise from a number of factors: differences in designs and in technologies (near surface engineered vault, enhanced shallow land burial, silo type caverns,...), disposal capacities, programmatic and regulatory requirements, organizational, managerial and institutional frameworks, contractual arrangements, etc. Comparison of actual project costs, if done incorrectly, can lead to invalid conclusions and little purpose would be served by so doing since cost variations reflect the reality faced by each country

  10. Cost calculation and financial measures for high-level waste disposal business

    International Nuclear Information System (INIS)

    Sekiguchi, Hiromasa.

    1987-01-01

    A study is made on the costs for disposal of high-level wastes, centering on financial problems involving cost calculation for disposal business and methods and systems for funding the business. The first half of the report is focused on calculation of costs for disposal business. Basic equations are shown to calculate the total costs required for a disposal plant and the costs for disposal of one unit of high-level wastes. A model is proposed to calculate the charges to be paid by electric power companies to the plant for disposal of their wastes. Another equation is derived to calculate the disposal charge per kWh of power generation in a power plant. The second half of the report is focused on financial measures concerning expenses for disposal. A financial basis should be established for the implementation of high-level waste disposal. It is insisted that a reasonable method for estimating the disposal costs should be set up and it should be decided who will pay the expenses. Discussions are made on some methods and systems for funding the disposal business. An additional charge should be included in the electricity bill to be paid by electric power users, or it should be included in tax. (Nogami, K.)

  11. Zero-crossing detection algorithm for arrays of optical spatial filtering velocimetry sensors

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Pedersen, Finn; Hanson, Steen Grüner

    2008-01-01

    This paper presents a zero-crossing detection algorithm for arrays of compact low-cost optical sensors based on spatial filtering for measuring fluctuations in angular velocity of rotating solid structures. The algorithm is applicable for signals with moderate signal-to-noise ratios, and delivers...... repeating the same measurement error for each revolution of the target, and to gain high performance measurement of angular velocity. The traditional zero-crossing detection is extended by 1) inserting an appropriate band-pass filter before the zero-crossing detection, 2) measuring time periods between zero...

  12. New Low-Level Radioactive Waste Storage/Disposal Facilities at the Savannah River Plant: Environmental information document

    International Nuclear Information System (INIS)

    Cook, J.R.; Grant, M.W.; Towler, O.O.

    1987-04-01

    Site selection, alternative facilities, and alternative operations are described for a new low-level solid radioactive waste storage/disposal operation at the Savannah River Plant. Performance assessments and cost estimates for the alternatives are presented. Appendix G contains an intensive archaeological survey of alternative waste disposal areas in the Savannah River Plant area. 117 refs., 99 figs., 128 tabs

  13. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Warner, D.L.; Steindler, M.J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10 -4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  14. Engineering evaluation/cost analysis for 100-N area waste

    International Nuclear Information System (INIS)

    Mihalik, L.A.

    1996-08-01

    The 100 Area of the Hanford Site was placed on the U.S. Environmental Protection Agency's National Priorities List (NPL) in November 1989 under the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980.' The 100 Area NPL site includes the 100-N Area, which is in the early stages of the cleanup process. To facilitate the disposal of wastes generated in preparation for cleanup, the U.S. Department of Energy, Richland Operations Office in cooperation with the Washington State Department of Ecology and the U.S. Environmental Protection Agency, has prepared this Engineering Evaluation/Cost Analysis (EE/CA). The scope of this EE/CA includes wastes from cleanout of the EDB and deactivation facilities. Volumes and costs for disposal of investigation-derived waste are also included

  15. Inkjet printed Cu(In,Ga)S{sub 2} nanoparticles for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Barbé, Jérémy, E-mail: jeremy.barbe@kaust.edu.sa; Eid, Jessica [King Abdullah University of Science and Technology, Solar and Photovoltaics Engineering Research Center (SPERC), Division of Physical Sciences and Engineering (Saudi Arabia); Ahlswede, Erik; Spiering, Stefanie; Powalla, Michael [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) (Germany); Agrawal, Rakesh [Purdue University, School of Chemical Engineering (United States); Del Gobbo, Silvano, E-mail: silvano.delgobbo@gmail.com [King Abdullah University of Science and Technology, Solar and Photovoltaics Engineering Research Center (SPERC), Division of Physical Sciences and Engineering (Saudi Arabia)

    2016-12-15

    Cu(In,Ga)Se{sub 2} (CIGSe) thin film solar cells were fabricated by direct inkjet printing of Cu(In,Ga)S{sub 2} (CIGS) nanoparticles followed by rapid thermal annealing under selenium vapor. Inkjet printing is a low-cost, low-waste, and flexible patterning method which can be used for deposition of solution-based or nanoparticle-based CIGS films with high throughput. XRD and Raman spectra indicate that no secondary phase is formed in the as-deposited CIGS film since quaternary chalcopyrite nanoparticles are used as the base solution for printing. Besides, CIGSe films with various Cu/(In + Ga) ratios could be obtained by finely tuning the composition of CIGS nanoparticles contained in the ink, which was found to strongly influence the devices performance and film morphology. To date, this is the first successful fabrication of a solar device by inkjet printing of CIGS nanoparticles.

  16. Low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T [Radioactive Waste Management Center, Tokyo (Japan)

    1980-08-01

    In the development and utilization of nuclear energy, variety of radioactive wastes arise. A largest part is low level radioactive wastes. In Japan, they are concentrated and solidified, and stored in drums. However, no low level wastes have yet been finally disposed of; there are now about 260,000 drums of such wastes stored on the sites. In Japan, the land is narrow, and its structure is geologically unstable, so that the sea disposal is sought. On the other hand, the development of technology for the ground disposal has lagged behind the sea disposal until recently because of the law concerned. The following matters are described: for the sea disposal, preparatory technology studies, environment safety assessment, administrative measures, and international control; for the ground disposal, experiments, surveys, disposal site selection, and the concept of island repositories.

  17. Cost estimation for solid waste management in industrialising regions – Precedents, problems and prospects

    International Nuclear Information System (INIS)

    Parthan, Shantha R.; Milke, Mark W.; Wilson, David C.; Cocks, John H.

    2012-01-01

    Highlights: ► We review cost estimation approaches for solid waste management. ► Unit cost method and benchmarking techniques used in industrialising regions (IR). ► Variety in scope, quality and stakeholders makes cost estimation challenging in IR. ► Integrate waste flow and cost models using cost functions to improve cost planning. - Abstract: The importance of cost planning for solid waste management (SWM) in industrialising regions (IR) is not well recognised. The approaches used to estimate costs of SWM can broadly be classified into three categories – the unit cost method, benchmarking techniques and developing cost models using sub-approaches such as cost and production function analysis. These methods have been developed into computer programmes with varying functionality and utility. IR mostly use the unit cost and benchmarking approach to estimate their SWM costs. The models for cost estimation, on the other hand, are used at times in industrialised countries, but not in IR. Taken together, these approaches could be viewed as precedents that can be modified appropriately to suit waste management systems in IR. The main challenges (or problems) one might face while attempting to do so are a lack of cost data, and a lack of quality for what data do exist. There are practical benefits to planners in IR where solid waste problems are critical and budgets are limited.

  18. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    International Nuclear Information System (INIS)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste

  19. Low-activity waste envelope definitions for the TWRS Privatization Phase I Request For Proposal

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Lauerhass, L.; Myers, R.L.; Wiemers, K.D.

    1996-11-01

    Radioactive waste has been stored in large underground storage tanks at the Hanford Site since 1944. Approximately 212 million liters of waste containing approximately 240,000 metric tons of processed chemicals and 177 mega-curies of radionuclides are now stored in 177 tanks. These caustic wastes are in the form of liquids, slurries, saltcakes, and sludge. In 1991, the Tank Waste Remediation System (TWRS) Program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, environmentally sound, and cost-effective manner. The Department of Energy (DOE) has believes that it is feasible to privatize portions of the TWRS Program. Under the privatization strategy embodied in the Request for Proposal (RFP), DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price contract. Phase I of the TWRS privatization strategy is a proof-of-concept/commercial demonstration-scale effort. The objectives of Phase I are to demonstrate the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process, and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. Three low-activity waste (LAW) envelopes are identified for Phase I of the privatization contract and are representative of the range of Hanford double-shelled tank (DST) waste.

  20. Polyethylene solidification of low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1985-02-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive waste in polyethylene. Waste streams selected for this study included those which result from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Four types of commercially available low-density polyethylenes were employed which encompass a range of processing and property characteristics. Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste and polyethylene type. Property evaluation testing was performed on laboratory-scale specimens to assess the potential behavior of actual waste forms in a disposal environment. Waste form property tests included water immersion, deformation under compressive load, thermal cycling and radionuclide leaching. Recommended waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash, and 30 wt % ion exchange resins, which are based on process control and waste form performance considerations are reported. 37 refs., 33 figs., 22 tabs