WorldWideScience

Sample records for zero-if direct conversion

  1. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  2. Perspective on direct conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1963-10-15

    The objective of direct conversion is high electrical output for minimum total cost, and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment, and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy, and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (auth)

  3. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  4. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  5. A perspective on direct conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W. B.

    1963-10-15

    As flowing energy, electricity is sought for its versatility. Its generation from some other flow or release of energy without mechanical power, or even sometimes heat, as intermediary is called direct conversion. The objective is high electrical output for minimum total cost and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (author)

  6. A perspective on direct conversion

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1963-10-01

    As flowing energy, electricity is sought for its versatility. Its generation from some other flow or release of energy without mechanical power, or even sometimes heat, as intermediary is called direct conversion. The objective is high electrical output for minimum total cost and not always high conversion efficiency. The wide range of techniques embracing cryogenics and hot plasma derives from the special requirements of source, environment and application. Sources include solar and other radiation, nuclear fission and fusion, chemical energy and heat. Environments and applications range from space vehicles to submarines and from giant power networks to isolated buoys and pocket devices. (author)

  7. Direct digital conversion detector technology

    Science.gov (United States)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  8. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1962-12-01

    TMMOELECTRIC 6 CONVERSION SYSTEMS. compiled by Edda 7p.. Aug.1960. (Spec. Bibl. 430) Barber. 48p., Mar. 1962. (Lit. Search 392) (Contract NAS 7-100) Covers...2865 BaranskiiP.I ............... 2905, 2945 Brogan, T.R. .............. 3322 Barber, Edda ................. . 2866 Brooklyn Polytechnic

  9. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  10. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  11. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  12. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  13. Direct and converse theorems the elements of symbolic logic

    CERN Document Server

    Gradshtein, I S; Stark, M; Ulam, S

    1963-01-01

    Direct and Converse Theorems: The Elements of Symbolic Logic, Third Edition explains the logical relations between direct, converse, inverse, and inverse converse theorems, as well as the concept of necessary and sufficient conditions. This book consists of two chapters. The first chapter is devoted to the question of negation. Connected with the question of the negation of a proposition are interrelations of the direct and converse and also of the direct and inverse theorems; the interrelations of necessary and sufficient conditions; and the definition of the locus of a point. The second chap

  14. Direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.

    1977-01-01

    Complex multistage plasma converters were tested at efficiencies approaching 90% at low energies and powers, and simpler, more cost-effective versions at 65% efficiency. Laboratory tests of neutral-beam direct converters at 15 keV and 2 kW gave 70% efficiency. A 120-keV, 1.5-MW version is being tested

  15. Compressed Sensing-Based Direct Conversion Receiver

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas; Larsen, Torben

    2012-01-01

    Due to the continuously increasing computational power of modern data receivers it is possible to move more and more processing from the analog to the digital domain. This paper presents a compressed sensing approach to relaxing the analog filtering requirements prior to the ADCs in a direct......-converted radio signals. As shown in an experiment presented in the article, when the proposed method is used, it is possible to relax the requirements for the quadrature down-converter filters. A random sampling device and an additional digital signal processing module is the price to pay for these relaxed...

  16. Review of direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1976-01-01

    The direct conversion to electrical energy of the energy carried by the leakage plasma from a fusion reactor and by the ions that are not converted to neutrals in a neutral-beam injector is discussed. The conversion process is electrostatic deceleration and direct particle collection as distinct from plasma expansion against a time-varying magnetic field or conversion in an EXB duct (both MHD). Relatively simple 1-stage plasma direct converters are discussed which can have efficiencies of about 50 percent. More complex and costly (measured in $/kW) 2-, 3-, 4-, and 22-stage concepts have been tested at efficiencies approaching 90 percent. Beam direct converters have been tested at 15 keV and 2 kW of power at 70 +- 2 percent efficiency, and a test of a 120-keV, 1-MW version is being prepared. Designs for a 120-keV, 4-MW unit are presented. The beam direct converter, besides saving on power supplies and on beam dumps, should raise the efficiency of creating a neutral beam from 40 percent without direct conversion to 70 percent with direct conversion for a 120-keV deuterium beam. The technological limits determining power handling and lifetime such as space-charge effects, heat removal, electrode material, sputtering, blistering, voltage holding, and insulation design, are discussed. The application of plasma direct converters to toroidal plasma confinement concepts is also discussed

  17. Calibration method for direct conversion receiver front-ends

    Directory of Open Access Journals (Sweden)

    R. Müller

    2008-05-01

    Full Text Available Technology induced process tolerances in analog circuits cause device characteristics different from specification. For direct conversion receiver front-ends a system level calibration method is presented. The malfunctions of the devices are compensated by tuning dominant circuit parameters. Thereto optimization techniques are applied which use measurement values and special evaluation functions.

  18. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  19. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  20. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  1. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  2. Direct conversion of nuclear energy into radiation: New direction in thermonuclear laser fusion

    International Nuclear Information System (INIS)

    Babaev, Yu.N.; Vedenov, A.A.; Filyukov, A.A.

    1995-01-01

    In investigations dealing with thermonuclear fusion, a radical new direction appeared some time ago, namely the direct conversion of nuclear and thermonuclear energy into radiation energy. This paper reviews early work on this topic in Russia and the United States and discusses some recent new directions

  3. The Signal and Noise Analysis of Direct Conversion EHM Transceivers

    Directory of Open Access Journals (Sweden)

    Shayegh

    2006-01-01

    Full Text Available A direct conversion modulator-demodulator with even harmonic mixers with emphasis on noise analysis is presented. The circuits consist of even harmonic mixers (EHMs realized with antiparallel diode pairs (APDPs. We evaluate the different levels of I/Q imbalances and DC offsets and use signal space concepts to analyze the bit error rate (BER of the proposed transceiver using M-ary QAM schemes. Moreover, the simultaneous analysis of the signal and noise has been presented.

  4. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  5. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  6. Direct ethanol conversion of pretreated straw by Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (National Technical Univ., Athens (GR). Dept. of Chemical Engineering)

    1991-01-01

    Factors affecting the direct conversion of alkali pretreated straw to ethanol by Fusarium oxysporum F3 were investigated and the alkali level used for pretreatment and the degree of delignification of straw were found to be the most important. A linear correlation between ethanol yield and both the degree of straw delignification and the alkali level was observed. At optimum delignified straw concentration (4% w/v), a maximum ethanol yield of 0.275 g ethanol g{sup -1} of straw was obtained corresponding to 67.8% of the theoretical yield. (author).

  7. The direct conversion of heat into electricity in reactors

    International Nuclear Information System (INIS)

    Devin, B.; Bliaux, J.; Lesueur, R.

    1964-01-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [fr

  8. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  9. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  10. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  11. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  12. The direct conversion of heat into electricity in reactors; Conversion directe de la chaleur en electricite dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Devin, B; Bliaux, J; Lesueur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The direct conversion of heat into electricity by thermionic emission in an atomic reactor has been studied with the triple aim of its utilisation: as an energy source for a space device, at the head of a conventional conversion system in power installations, or finally in association with the thermoelectric conversion in very low power installations. The laboratory experiments were mainly orientated towards the electron extraction of metals and compounds and their behaviour at high temperatures. Converters furnishing up to 50 amps at 0. 4 volts with an efficiency close to 10 p. 100 have been constructed in the laboratory; the emitters were heated by electron bombardment and were composed of tungsten covered with an uranium carbide deposit or molybdenum covered with cesium. The main aspects of the coupling between the converter and the reactor have been covered from the point of view of electronics: the influence of the mismatching of the load on the temperature of the emitter and the influence of thermal flux density on the temperature of the emitter and the stability of the converter. Converters using uranium carbide as the electron emitter have been tested in reactors. Tests have been made under dynamic conditions in order to determine the dynamic characteristics. The load matching curves have been constructed and the overall performances of several cells coupled in such a way as to form a reactor rod have been deduced. This information is fundamental to the design of a control system for a thermionic conversion reactor. The problems associated with the reliability of thermionic converters connected in series in the same reactor rod have been examined theoretically. Finally, the absorption isotherms have been drawn at the ambient temperatures for krypton and xenon on activated carbon with the aim of investigating the escape of fission products in a converter. (author) [French] La conversion directe de chaleur en electricite par emission thermionique dans une

  13. Correlation of the Auger electrons direction of movement with the internal electron conversion direction of movement

    International Nuclear Information System (INIS)

    Mitrokhovich, N.F.; Kupryashkin, V.T.; Sidorenko, L.P.

    2013-01-01

    On installation of coincidences of γ-quanta with electrons and with law energy electrons about zero area the spatial correlation of the direction emitting Auger-electrons and electron of internal conversion was investigated at the 152 Eu decay. Auger-electrons were registered on e 0 -electrons of the secondary electron emission (γ e IC e 0 -coincidences). It was established, that Auger-electrons of M-series, as well as electrons 'shake-off' at β-decay and internal conversion, are strongly correlated at the direction of movement with the direction of movement of basic particle (β -particle, conversion electron), moving together mainly in the forward hemisphere. The intensity of correlated M-Auger radiation in range energy 1000 - 1700 eV is equal to intensity of correlated radiation 'shake-off' electron from internal conversion in this range. The assumption, that the presence of spatial correlating Auger-electron and conversion electron caused by cur-rent components of electron-electron interaction of particles in the final state is made

  14. Direct energy conversion - state of the art in 1981

    International Nuclear Information System (INIS)

    Euler, K.J.

    1981-01-01

    Contemporary research and development of direct energy conversion (D.E.C.) started about 25 years ago. Having considered possibilities, cost, and advantages, the efforts have become more and more steady during the last decade. It has been recognized that, in most cases, D.E.C. methods will serve only as electricity sources for special application. This is true for radioisotopic generators used in space and submarine technologies, for thermoelectric devices used in air defence and along desert pipelines, and for thermionic convertors used in television satellites. Thus, the goal, to introduce these D.E.C. units in large scale manufacture has not been reached, and will not be reached even in the future. Only magneto-hydrodynamic channels exhibit a certain innovation potential as topping devices in advanced thermal power stations. Fuel cells will not be treated here, solar cells only mentioned briefly. (orig.) [de

  15. Hangout with CERN: a direct conversation with the public

    Science.gov (United States)

    Rao, Achintya; Goldfarb, Steven; Kahle, Kate

    2016-04-01

    Hangout with CERN refers to a weekly, half-hour-long, topical webcast hosted at CERN. The aim of the programme is threefold: (i) to provide a virtual tour of various locations and facilities at CERN, (ii) to discuss the latest scientific results from the laboratory, and, most importantly, (iii) to engage in conversation with the public and answer their questions. For each ;episode;, scientists gather around webcam-enabled computers at CERN and partner institutes/universities, connecting to one another using the Google+ social network's ;Hangouts; tool. The show is structured as a conversation mediated by a host, usually a scientist, and viewers can ask questions to the experts in real time through a Twitter hashtag or YouTube comments. The history of Hangout with CERN can be traced back to ICHEP 2012, where several physicists crowded in front of a laptop connected to Google+, using a ;Hangout On Air; webcast to explain to the world the importance of the discovery of the Higgs-like boson, announced just two days before at the same conference. Hangout with CERN has also drawn inspiration from two existing outreach endeavours: (i) ATLAS Virtual Visits, which connected remote visitors with scientists in the ATLAS Control Room via video conference, and (ii) the Large Hangout Collider, in which CMS scientists gave underground tours via Hangouts to groups of schools and members of the public around the world. In this paper, we discuss the role of Hangout with CERN as a bi-directional outreach medium and an opportunity to train scientists in effective communication.

  16. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  17. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  18. Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization

    Science.gov (United States)

    2017-03-01

    power source. Autonomous systems such as space satellites require power sources that have strict size , weight, and power (SWaP) limitations, which...conversion process, called beta- photovoltaics , has a system efficiency that is dependent on both the conversion efficiency of the phosphor and the...effectively providing 9 J per day for autonomous systems . However, the volume for beta- photovoltaics is larger due to the need for phosphors to

  19. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  20. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  1. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  2. Power conversion unit for the South African direct cycle HTGR

    International Nuclear Information System (INIS)

    Liebenberg, J.J.

    1997-01-01

    The system parameters chosen to optimise the thermal efficiency of the Eskom PBMR whilst maintaining component simplicity is discussed. Power Conversion Unit components, which are now at a preliminary design stage comprise a precooler, two turbo units consisting of a turbine driven compressor, recuperator and a power turbine, driving an alternator. Design aspects of every component is mentioned and the inventory method of poorer control is explained with reference to start-up and and shut-down events, the system an effective load following device, down to 4% of full power. Application of the same design principles for HTGRs smaller than 25 MWe is discussed. (author)

  3. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  4. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  5. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  6. Systems modeling for a laser-driven IFE power plant using direct conversion

    International Nuclear Information System (INIS)

    Meier, W R

    2008-01-01

    A variety of systems analyses have been conducted for laser driver IFE power plants being developed as part of the High Average Power Laser (HAPL) program. A key factor determining the economics attractiveness of the power plant is the net power conversion efficiency which increases with increasing laser efficiency, target gain and fusion-to-electric power conversion efficiency. A possible approach to increasing the power conversion efficiency is direct conversion of ionized target emissions to electricity. This study examines the potential benefits of increased efficiency when the expanding plasma is inductively coupled to an external circuit allowing some of the ion energy to be directly converted to electricity. For base case direct-drive targets with approximately 24% of the target yield in ions, the benefits are modest, especially for chamber designs that operate at high temperature and thus already have relatively high thermal conversion efficiencies. The reduction in the projected cost of electricity is ∼5-10%

  7. Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Geng, Yan; Zsigri, Beata

    2005-01-01

    An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...

  8. The direct conversion of solar energy to electricity

    International Nuclear Information System (INIS)

    1992-01-01

    Half the world's population lives without access to electricity in the rural areas and villages of developing countries. In 1987, world population reached 5 billion and, according to World Bank projections, will increase to over 6 billion in the year 2000 and to over 8 billion in 2025. Such population growth is not uniformly distributed: developed countries have small or negative growth and account for a declining proportion of the world's population. Inasmuch as 95 per cent of the extra inhabitants added each year are in developing countries, rapid population growth in those countries raises serious questions about energy availability for basic human needs and, of course, more broadly about the environment's capacity to support that growth. The present report makes reference to one of the most comprehensively documented conservative scenarios for world energy demand in the year 2020, namely, Energy for a Sustainable World, which assumed that long-term world sustainability must entail constraints on (a) use of natural resources and (b) combustion of fossil fuels resulting in the greenhouse effect. Solar energy is abundant and could become a major source of electricity. Photovoltaics has three particular advantages. It accomplishes sunlight-to-electricity conversion entirely with solid-state electronic components, and with no moving parts required, thereby promising high equipment availability and very low operating and maintenance costs. PV also appears to have very limited environmental impact, with no emissions of the gaseous pollutants associated with fossil-fuel burning and few of the possible local problems associated with some other renewable energy technologies. Finally, the products of photovoltaic technology are modular in construction and can be built up on site in a flexible way, thus minimizing front-end financial risk and investment costs. Figs and tabs

  9. Turbostar: an ICF reactor using both direct and thermal power conversion. Revision 1

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1986-01-01

    Combining direct and thermal power conversion results in a 52% gross plant efficiency with DT fuel and 68% with advanced DD fuel. We maximize the fraction of fusion-yield energy converted to kinetic energy in a liquid-lithium blanket, and use this energy directly with turbine generators to produce electricity. We use the remainder of the energy to produce electricity in a standard Rankine thermal power conversion cycle

  10. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  11. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  12. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  13. Review of the direct thermochemical conversion of lignocellulosic biomass for liquid fuels

    Directory of Open Access Journals (Sweden)

    Jianchun JIANG,Junming XU,Zhanqian SONG

    2015-03-01

    Full Text Available Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass, including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.

  14. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  15. Direct Student Loans: Overpayments during the Department of Education's Conversion to a New Payment System.

    Science.gov (United States)

    Joyner, Carlotta C.

    This report addresses concerns that the Department of Education may have erroneously made overpayments of as much as $400 million to schools participating in the William D. Ford Federal Direct Loan Program (FDLP) during the Department's conversion to a new computerized payment system. The investigation found that because the transition to the new…

  16. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Sørensen, Mathilde Grau; Riisager, Anders

    2010-01-01

    The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) in ionic liquids with lanthanide catalysts was examined in search of a possibly more environmentally feasible process not involving chromium. The highest HMF yield was obtained with ytterbium chloride or triflate together...

  17. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  18. Capability of the Direct Dimethyl Ether Synthesis Process for the Conversion of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ainara Ateka

    2018-04-01

    Full Text Available The direct synthesis of dimethyl ether (DME is an ideal process to achieve the environmental objective of CO2 conversion together with the economic objective of DME production. The effect of the reaction conditions (temperature, pressure, space time and feed composition (ternary mixtures of H2 + CO + CO2 with different CO2/CO and H2/COx molar ratios on the reaction indices (COx conversion, product yield and selectivity, CO2 conversion has been studied by means of experiments carried out in a fixed-bed reactor, with a CuO-ZnO-MnO/SAPO-18 catalyst, in order to establish suitable ranges of operating conditions for enhancing the individual objectives of CO2 conversion and DME yield. The optimums of these two objectives are achieved in opposite conditions, and for striking a good balance between both objectives, the following conditions are suitable: 275–300 °C; 20–30 bar; 2.5–5 gcat h (molC−1 and a H2/COx molar ratio in the feed of 3. CO2/CO molar ratio in the feed is of great importance. Ratios below 1/3 are suitable for enhancing DME production, whereas CO2/CO ratios above 1 improve the conversion of CO2. This conversion of CO2 in the overall process of DME synthesis is favored by the reverse water gas shift equation, since CO is more active than CO2 in the methanol synthesis reaction.

  19. Direct conversion of plutonium metal, scrap, residue, and transuranic waste to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Malling, J.F.; Rudolph, J.

    1995-01-01

    A method for the direct conversion of metals, ceramics, organics, and amorphous solids to borosilicate glass has been invented. The process is called the Glass Material Oxidation and Dissolution System (GMODS). Traditional glass-making processes can convert only oxide materials to glass. However, many wastes contain complex mixtures of metals, ceramics, organics, and amorphous solids. Conversion of such mixtures to oxides followed by their conversion to glass is often impractical. GMODS may create a practical method to convert such mixtures to glass. Plutonium-containing materials (PCMS) exist in many forms, including metals, ceramics, organics, amorphous solids, and mixtures thereof. These PCMs vary from plutonium metal to filters made of metal, organic binders, and glass fibers. For storage and/or disposal of PCMS, it is desirable to convert PCMs to borosilicate glass. Borosilicate glass is the preferred repository waste form for high-level waste (HLW) because of its properties. PCMs converted to a transuranic borosilicate homogeneous glass would easily pass all waste acceptance and storage criteria. Conversion of PCMs to a glass would also simplify safeguards by conversion of heterogeneous PCMs to homogeneous glass. Thermodynamic calculations and proof-of-principle experiments on the GMODS process with cerium (plutonium surrogate), uranium, stainless steel, aluminum, Zircaloy-2, and carbon were successfully conducted. Initial analysis has identified potential flowsheets and equipment. Major unknowns remain, but the preliminary data suggests that GMODS may be a major new treatment option for PCMs

  20. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  1. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  2. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.

    Science.gov (United States)

    Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong

    2017-12-08

    Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  4. Fabrication of ceramic grade UO2 by direct conversion of uranyl nitrate hexahydrate

    International Nuclear Information System (INIS)

    Lainetti, P.E.O.; Riella, H.G.

    1992-01-01

    A method of direct conversion of uranyl nitrate hexahydrate (UNH) solution to ceramic grade uranium dioxide powders by thermal denitration in a furnace that combines atomization nozzle and a gas stirred bed is described. The main purpose of this work is to show that this alternative process is technically viable, specially if the recovery of the scrap generated in the nuclear fuel pellet production is required, without further generation of new liquid wastes. (author)

  5. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  6. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  7. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  8. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  9. Photoactuators for Direct Optical-to-Mechanical Energy Conversion: From Nanocomponent Assembly to Macroscopic Deformation.

    Science.gov (United States)

    Hu, Ying; Li, Zhe; Lan, Tian; Chen, Wei

    2016-12-01

    Photoactuators with integrated optical-to-mechanical energy conversion capacity have attracted growing research interest in the last few decades due to their unique features of remote control and their wide applications ranging from bionic robots, biomedical devices, and switches to motors. For the photoactuator design, the energy conversion route and structure assembly are two important parts, which directly affect the performance of the photoactuators. In particular, the architectural designs at the molecular, nano-, micro-, and macro- level, are found to play a significant role in accumulating molecular-scale strain/stress to macroscale strain/stress. Here, recent progress on photoactuators based on photochemical and photothermal effects is summarized, followed by a discussion of the important assembly strategies for the amplification of the photoresponsive components at nanoscale to macroscopic scale motions. The application advancement of current photoactuators is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  11. A solar simulator-pumped gas laser for the direct conversion of solar energy

    Science.gov (United States)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  12. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  13. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  14. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  15. DIRECT ENERGY CONVERSION (DEC) FISSION REACTORS - A U.S. NERI PROJECT

    International Nuclear Information System (INIS)

    Beller, D.; Polansky, G.

    2000-01-01

    The direct conversion of the electrical energy of charged fission fragments was examined early in the nuclear reactor era, and the first theoretical treatment appeared in the literature in 1957. Most of the experiments conducted during the next ten years to investigate fission fragment direct energy conversion (DEC) were for understanding the nature and control of the charged particles. These experiments verified fundamental physics and identified a number of specific problem areas, but also demonstrated a number of technical challenges that limited DEC performance. Because DEC was insufficient for practical applications, by the late 1960s most R and D ceased in the US. Sporadic interest in the concept appears in the literature until this day, but there have been no recent programs to develop the technology. This has changed with the Nuclear Energy Research Initiative that was funded by the U.S. Congress in 1999. Most of the previous concepts were based on a fission electric cell known as a triode, where a central cathode is coated with a thin layer of nuclear fuel. A fission fragment that leaves the cathode with high kinetic energy and a large positive charge is decelerated as it approaches the anode by a charge differential of several million volts, it then deposits its charge in the anode after its kinetic energy is exhausted. Large numbers of low energy electrons leave the cathode with each fission fragment; they are suppressed by negatively biased on grid wires or by magnetic fields. Other concepts include magnetic collimators and quasi-direct magnetohydrodynamic generation (steady flow or pulsed). We present the basic principles of DEC fission reactors, review the previous research, discuss problem areas in detail and identify technological developments of the last 30 years relevant to overcoming these obstacles. A prognosis for future development of direct energy conversion fission reactors will be presented

  16. Experimental Investigations of Direct and Converse Flexoelectric Effect in Bilayer Lipid Membranes.

    Science.gov (United States)

    Todorov, Angelio Todorov

    Flexoelectric coefficients (direct and converse), electric properties (capacitance and resistivity) and mechanical properties (thickness and elastic coefficients) have been determined for bilayer lipid membranes (BLMs) prepared from egg yolk lecithin (EYL), glycerol monoleate (GMO), phosphatidyl choline (PC) and phosphatidyl serine (PS) as a function of frequency, pH and surface charge modifiers. Direct flexoelectric effect manifested itself in the development of microvolt range a.c. potential (U_{f}) upon subjecting one side of a BLM to an oscillating hydrostatic pressure, in the 100-1000 Hz range. Operationally, the flexoelectric coefficient (f) is expressed by the ratio between U_{f} and the change of curvature (c) which accompanied the flexing of the membrane. Membrane curvature was determined by means of either the electric method (capacitance microphone effect) or by the newly developed method of stroboscopic interferometry. Real-time stroboscopic interferometry coupled with simultaneous electric measurements, provided a direct method for the determination of f. Two different frequency regimes of f were recognized. At low frequencies (300 Hz), associated with free mobility of the surfactant, f-values of 24.1 times 10^{-19} and 0.87 times 10^ {-19} Coulombs were obtained for PC and GMO BLMs. At high frequencies (>300 Hz), associated with blocked mobility of the surfactant, f-values of 16.5 times 10^ {-19} and 0.30 times 10^{-19} Coulombs were obtained for PC and GMO BLMs. The theoretically calculated value for the GMO BLM oscillating at high frequency (0.12 times 10^{-19 } Coulombs) agreed well with that determined experimentally (0.3 times 10 ^{-19} Coulombs). For charged bovine brain PS BLM the observed flexocoefficient was f = 4.0 times 10^{ -18} Coulombs. Converse flexoelectric effect manifested itself in voltage-induced BLM curvature. Observations were carried out on uranyl acetate (UA) stabilized PS BLM under a.c. excitation. Frequency dependence of f

  17. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  18. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1995-01-01

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development

  19. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.

    Science.gov (United States)

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-06-17

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  20. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  1. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Harvind K. [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Muppaneni, Tapaswy [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Patil, Prafulla D. [American Refining Group, Inc., Bradford, PA (United States); Ponnusamy, Sundaravadivelnathan [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.; Cooke, Peter [New Mexico State Univ., Las Cruces, NM (United States). Core University Research Resource Lab.; Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States). Bio Security and Food Safety Center; Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States). Chemical Engineering Dept.

    2013-08-06

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel sample produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.

  3. Prospects of power conversion technology of direct-cycle helium gas turbine for MHTGR

    International Nuclear Information System (INIS)

    Li Yong; Zhang Zuoyi

    1999-01-01

    The modular high temperature gas cooled reactor (MHTGR) is a modern passively safe reactor. The reactor and helium gas turbine may be combined for high efficiency's power conversion, because MHTGR has high outlet temperature up to 950 degree C. Two different schemes are planed separately by USA and South Africa. the helium gas turbine methodologies adopted by them are mainly based on the developed heavy duty industrial and aviation gas turbine technology. The author introduces the differences of two technologies and some design issues in the design and manufacture. Moreover, the author conclude that directly coupling a closed Brayton cycle gas turbine concept to the passively safe MHTGR is the developing direction of MHTGR due to its efficiency which is much higher than that of using steam turbine

  4. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    Science.gov (United States)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  5. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe

    2012-08-03

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which heteromolybdic acids act as multifunctional catalysts to catalyze the hydrolysis of cellulose, the fragmentation of monosaccharides, and the selective oxidation of fragmentation products. With commercial α-cellulose powder as the substrate, the yield of glycolic acid reaches 49.3%. This catalytic system is also effective with raw cellulosic biomass, such as bagasse or hay, as the starting materials, giving rise to remarkable glycolic acid yields of ∼30%. Our heteropoly acid-based catalyst can be recovered in solid form after reaction by distilling out the products and solvent for reuse, and it exhibits consistently high performance in multiple reaction runs. © 2012 American Chemical Society.

  6. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may mot be possible by other techniques

  7. Direct conversion Si and CdZnTe detectors for digital mammography

    CERN Document Server

    Yin Shi Shi; Maeding, D; Mainprize, J; Mawdsley, G; Yaffe, M J; Gordon, E E; Hamilton, W J

    2000-01-01

    Hybrid pixel detector arrays that convert X-rays directly into charge signals are under development at NOVA for application to digital mammography. This technology also has wide application possibilities in other fields of radiology or in industrial imaging, nondestructive evaluation (NDE) and nondestructive inspection (NDI). These detectors have potentially superior properties compared to either emulsion-based film-screen systems which has nonlinear response to X-rays, or phosphor-based detectors in which there is an intermediate step of X-ray to light photon conversion (Feig and Yaffe, Radiol. Clinics North America 33 (1995) 1205-1230). Potential advantages of direct conversion detectors are high quantum efficiencies (QE) of 98% or higher (for 0.3 mm thick CdZnTe detector with 20 keV X-rays), improved contrast, high sensitivity and low intrinsic noise. These factors are expected to contribute to high detective quantum efficiency (DQE). The prototype hybrid pixel detector developed has 50x50 mu m pixel size,...

  8. A direct-conversion WLAN transceiver baseband with DC offset compensation and carrier leakage reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Fang; Yan Jun; Ma Heping; Shi Yin [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Foster, Dai Fa, E-mail: fyuan@sci-inc.com.c [Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201 (United States)

    2010-10-15

    A dual-band direct-conversion WLAN transceiver baseband compliant with the IEEE 802.11a/b/g standards is described. Several critical techniques for receiver DC offset compensation and transmitter carrier leakage rejection calibration are presented that enable the direct-conversion architecture to meet all WLAN specifications. The receiver baseband VGA provides 62 dB gain range with steps of 2 dB and a DC offset cancellation circuit is introduced to remove the offset from layout and self-mixing. The calibration loop achieves constant high-pass pole when gain changes; and a fast response time by programming the pole to 1 MHz during preamble and to 30 kHz during receiving data. The transmitter baseband employs an auto-calibration loop with on-chip AD and DA to suppress the carrier leakage, and AD can be powered down after calibration to save power consumption. The chip consumes 17.52 mA for RX baseband VGA and DCOC, and 8.3 mA for TX carrier leakage calibration (5.88 mA after calibration) from 2.85 V supply. Implemented in a 0.35 {mu}m SiGe technology, they occupy 0.68 mm{sup 2} and 0.18 mm{sup 2} die size respectively. (semiconductor integrated circuits)

  9. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    International Nuclear Information System (INIS)

    Barr, W.L.; Doggett, J.N.; Hamilton, G.W.; Kinney, J.D.; Moir, R.W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power, neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H + component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques

  10. A New Cost-Effective Multi-Drive Solution based on a Two-Stage Direct Power Electronic Conversion Topology

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    of a protection circuit involving twelve diodes with full voltage/current ratings used only during faulty situations, makes this topology not so attractive. Lately, two stage Direct Power Electronic Conversion (DPEC) topologies have been proposed, providing similar functionality as a matrix converter but allowing...... shared by many loads, making this topology more cost effective. The functionality of the proposed two-stage multi-drive direct power electronic conversion topology is validated by experiments on a realistic laboratory prototype....

  11. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  12. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  13. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels.

    Directory of Open Access Journals (Sweden)

    Elsa Petit

    Full Text Available Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  14. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  15. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  16. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...... constraints in both systems. An iterative method is proposed to deal with the nonlinearity in the proposed model. The models of the natural gas and power system are linearized in every iterative step. Simulation results demonstrate the effectiveness of the approach. Applicability of the proposed method...... is tested in the sample case. Finally, the effect of Power to Gas (P2G) on the daily economic dispatch is also investigated....

  17. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-01

    Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.

  18. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  19. Use of nuclear space technology of direct energy conversion for terrestrial application

    International Nuclear Information System (INIS)

    Chitaykin, V.I.; Meleta, Ye.A.; Yarygin, V.I.; Mikheyev, A.S.; Tulin, S.M.

    2000-01-01

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  20. Experiments to Improve Power Conversion Parameters in a Traveling Wave Direct Energy Converter Simulator

    International Nuclear Information System (INIS)

    Takeno, Hiromasa; Kiriyama, Yuusuke; Yasaka, Yasuyoshi

    2005-01-01

    An experimental study of direct power conversion for D- 3 He fusion is presented. In a small-scale simulator of direct energy converter, which is based on a principle of deceleration of 14.7MeV protons by traveling wave field, a new structure of an external transmission circuit in experiment is proposed for the purpose of enhancement of deceleration electrode voltages. A prototype circuit was designed and constructed, resulting improvement of voltage amplitude in an order of magnitude. A more practical circuit, in which inductor elements were manufactured by using coaxial cables, was also constructed and tested. An excitation of the third harmonic frequency with a significant amplitude was observed. The cause of this problem is attributed to the modulated ion beam which has a third harmonic component and fact that the inductance of the element nonlinearly depends on frequency. This problem is serious for a practical scale energy converter, and a careful design of the circuit could avoid the problem

  1. Direct energy conversion in fission reactors: A U.S. NERI project

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Seidel, David B.; Polansky, Gary F.; Rochau, Gary E.; Lipinski, Ronald J.; Besenbruch, G.; Brown, L.C.; Parish, T.A.; Anghaie, S.; Beller, D.E.

    2000-01-01

    In principle, the energy released by a fission can be converted directly into electricity by using the charged fission fragments. The first theoretical treatment of direct energy conversion (DEC) appeared in the literature in 1957. Experiments were conducted over the next ten years, which identified a number of problem areas. Research declined by the late 1960's due to technical challenges that limited performance. Under the Nuclear Energy Research Initiative the authors are determining if these technical challenges can be overcome with todays technology. The authors present the basic principles of DEC reactors, review previous research, discuss problem areas in detail, and identify technological developments of the last 30 years that can overcome these obstacles. As an example, the fission electric cell must be insulated to avoid electrons crossing the cell. This insulation could be provided by a magnetic field as attempted in the early experiments. However, from work on magnetically insulated ion diodes they know how to significantly improve the field geometry. Finally, a prognosis for future development of DEC reactors will be presented

  2. Electrohydrodynamics: a high-voltage direct energy conversion process; L'electrohydrodynamique: Un procede de conversion directe d'energie a haute tension

    Energy Technology Data Exchange (ETDEWEB)

    Brun, S [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-04-15

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [French] Cette analyse est une etude theorique et pratique d'un generateur de puissance electrique a haute tension, base sur le principe du generateur Van de Graaff, la difference principale etant que les charges produites sont transportees pur un gaz en mouvement et non par une courroie. Les proprietes electriques et thermiques d'un tel generateur sont etudiees ainsi que le probleme delicat de la production des particules ionisees utilisees dans la conversion. Un certain nombre de resultats publies sur ce procede de conversion d'energie cinetique en energie electrique sont reproduits, ainsi que les applications possibles aux problemes spatiaux. (auteur)

  3. Bias magnetic field and test period dependences of direct and converse magnetoelectric hysteresis of tri-layered magnetoelectric composite

    Science.gov (United States)

    Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao

    2018-04-01

    The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.

  4. Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    OpenAIRE

    Kivekäs, Kalle

    2002-01-01

    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion ...

  5. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Direct Energy Conversion for Low Specific Mass In-Space Power and Propulsion

    Science.gov (United States)

    Scott, John H.; George, Jeffrey A.; Tarditi, Alfonso G.

    2013-01-01

    "Changing the game" in space exploration involves changing the paradigm for the human exploration of the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition. For the purposes of this assessment an "annual expedition" capability is defined as an in-space power & propulsion system which, with launch mass limits as defined in NASA s Mars Architecture 5.0, enables sending a crew to Mars and returning them after a 30-day surface stay within one year, irrespective of planetary alignment. In this work the authors intend to show that obtaining this capability requires the development of an in-space power & propulsion system with an end-to-end specific mass considerably less than 3 kg/kWe. A first order energy balance analysis reveals that the technologies required to create a system with this specific mass include direct energy conversion and nuclear sources that release energy in the form of charged particle beams. This paper lays out this first order approximation and details these conclusions.

  7. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    Science.gov (United States)

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Apparatus for the direct conversion of the kinetic energy of charged particles

    International Nuclear Information System (INIS)

    Mims, L.S.

    1976-01-01

    An apparatus for converting the output of a high voltage dc source to a lower voltage and a higher current is described. The conversion system is comprised of a plurality of power conversion modules connected electrically in series across the dc source output so that each of the power conversion modules receives only a portion of the high voltage. Each power conversion module includes means for converting the high voltage portion to an ac signal and transformer means for reducing the voltage and increasing the current of such ac signal, the outputs of all of the transformers being connected electrically in parallel. Each of the power conversion means includes a pair of capacitors which are charged by the high voltage dc source and which are alternately, periodically only slightly discharged to convert the dc voltage to an ac signal

  9. Direct formation of gasoline hydrocarbons from cellulose by hydrothermal conversion with in situ hydrogen

    International Nuclear Information System (INIS)

    Yin, Sudong; Mehrotra, Anil Kumar; Tan, Zhongchao

    2012-01-01

    A new process based on aqueous-phase dehydration/hydrogenation (APD/H) has been developed to directly produce liquid alkanes (C 7–9 ), which are the main components of fossil gasoline, from cellulose in one single batch reactor without the consumption of external hydrogen (H 2 ). In this new process, part of the cellulose is first converted to in situ H 2 by steam reforming (SR) in the steam gas phase mainly; and, in the liquid water phase, cellulose is converted to an alkane precursor, such as 5-(hydroxymethyl)furfural (HMF). In the final reaction step, in situ H 2 reacts with HMF to form liquid alkanes through APD/H. Accordingly, this new process has been named SR(H 2 )-APD/H. Experimental results show that the volumetric ratio of the reactor headspace to the reactor (H/R) and an initial weakly alkaline condition are the two key parameters for SR(H 2 )-APD/H. With proper H/R ratios (e.g., 0.84) and initial weakly alkaline conditions (e.g., pH = 7.5), liquid alkanes are directly formed from the SR(H 2 )-APD/H of cellulose using in situ H 2 instead of external H 2 . In this study, compared with pyrolysis and hydrothermal liquefaction of cellulose at the same temperatures with same retetion time, SR(H 2 )-APD/H greatly increased the liquid alkane yields, by approximately 700 times and 35 times, respectively. Based on this process, direct formation of fossil gasoline from renewable biomass resources without using external H 2 becomes possible. -- Highlights: ► A process of producing gasoline alkanes from cellulose was proposed and studied. ► Alkane precursors and in situ H 2 were formed simultaneously in a single reactor. ► Alkanes subsequently formed by reactions between in situ H 2 and alkane precursors. ► The yields were 700 and 35 times higher than pyrolysis and hydrothermal conversion.

  10. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

    Science.gov (United States)

    Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian

    2015-01-01

    Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest. This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent. The newly isolated microbial consortium N3 and strain C. celevecrescens N3

  11. X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor

    International Nuclear Information System (INIS)

    Ariyoshi, Tetsuya; Funaki, Shota; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2017-01-01

    To reduce the radiation dose required in medical X-ray diagnoses, we propose a high-sensitivity direct-conversion-type silicon X-ray sensor that uses trench-structured photodiodes. This sensor is advantageous in terms of its long device lifetime, noise immunity, and low power consumption because of its low bias voltage. With this sensor, it is possible to detect X-rays with almost 100% efficiency; sensitivity can therefore be improved by approximately 10 times when compared with conventional indirect-conversion-type sensors. In this study, a test chip was fabricated using a single-poly single-metal 0.35 μm process. The formed trench photodiodes for the X-ray sensor were approximately 170 and 300 μm deep. At a bias voltage of 25 V, the absorbed X-ray-to-current signal conversion efficiencies were 89.3% (theoretical limit; 96.7%) at a trench depth of 170 μm and 91.1% (theoretical limit; 94.3%) at a trench depth of 300 μm. (author)

  12. Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.

    2014-01-01

    An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral

  13. 5 CFR 892.303 - Can I pay my premiums directly by check under the premium conversion plan?

    Science.gov (United States)

    2010-01-01

    ... under the premium conversion plan? 892.303 Section 892.303 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL FLEXIBLE BENEFITS PLAN: PRE-TAX PAYMENT OF HEALTH BENEFITS PREMIUMS Contributions and Withholdings § 892.303 Can I pay my premiums directly...

  14. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  15. Solar power conversion system with directionally- and spectrally-selective properties based on a reflective cavity

    Science.gov (United States)

    Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth; Weinstein, Lee A.; Chen, Gang

    2018-03-13

    Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.

  16. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghee, E-mail: jonghee.lee@etri.re.kr [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Koh, Tae-Wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Cho, Hyunsu [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Schwab, Tobias [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jae-Hyun [Department School of Global Convergence Studies, Hanbat National University, San 16-1, Duckmyoung-dong, Daejeon 305-719 (Korea, Republic of); Hofmann, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jeong-Ik [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Yoo, Seunghyup [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); and others

    2015-06-15

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m{sup −2}. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage.

  17. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    Lee, Jonghee; Koh, Tae-Wook; Cho, Hyunsu; Schwab, Tobias; Lee, Jae-Hyun; Hofmann, Simone; Lee, Jeong-Ik; Yoo, Seunghyup

    2015-01-01

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m −2 . At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  18. Experimental characterization of a direct conversion amorphous selenium detector with thicker conversion layer for dual-energy contrast-enhanced breast imaging.

    Science.gov (United States)

    Scaduto, David A; Tousignant, Olivier; Zhao, Wei

    2017-08-01

    Dual-energy contrast-enhanced imaging is being investigated as a tool to identify and localize angiogenesis in the breast, a possible indicator of malignant tumors. This imaging technique requires that x-ray images are acquired at energies above the k-shell binding energy of an appropriate radiocontrast agent. Iodinated contrast agents are commonly used for vascular imaging, and require x-ray energies greater than 33 keV. Conventional direct conversion amorphous selenium (a-Se) flat-panel imagers for digital mammography show suboptimal absorption efficiencies at these higher energies. We use spatial-frequency domain image quality metrics to evaluate the performance of a prototype direct conversion flat-panel imager with a thicker a-Se layer, specifically fabricated for dual-energy contrast-enhanced breast imaging. Imaging performance was evaluated in a prototype digital breast tomosynthesis (DBT) system. The spatial resolution, noise characteristics, detective quantum efficiency, and temporal performance of the detector were evaluated for dual-energy imaging for both conventional full-field digital mammography (FFDM) and DBT. The zero-frequency detective quantum efficiency of the prototype detector is improved by approximately 20% over the conventional detector for higher energy beams required for imaging with iodinated contrast agents. The effect of oblique entry of x-rays on spatial resolution does increase with increasing photoconductor thickness, specifically for the most oblique views of a DBT scan. Degradation of spatial resolution due to focal spot motion was also observed. Temporal performance was found to be comparable to conventional mammographic detectors. Increasing the a-Se thickness in direct conversion flat-panel imagers results in better performance for dual-energy contrast-enhanced breast imaging. The reduction in spatial resolution due to oblique entry of x-rays is appreciable in the most extreme clinically relevant cases, but may not profoundly

  19. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  20. Conversational agents for academically productive talk: a comparison of directed and undirected agent interventions

    DEFF Research Database (Denmark)

    Tegos, Stergios; Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2016-01-01

    Conversational agents that draw on the framework of academically productive talk (APT) have been lately shown to be effective in helping learners sustain productive forms of peer dialogue in diverse learning settings. Yet, literature suggests that more research is required on how learners respond...

  1. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  2. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  3. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    International Nuclear Information System (INIS)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi

    2003-01-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  4. Studies on the Effect of Radio Frequency Field in a Cusp-Type Charge Separation Device for Direct Energy Conversion

    OpenAIRE

    HAMABE, Masaki; IZAWA, Hiroaki; TAKENO, Hiromasa; NAKAMOTO, Satoshi; ICHIMURA, Kazuya; NAKASHIMA, Yousuke

    2016-01-01

    In D-3He fusion power generation, an application of direct energy conversion is expected in which separation of charged particles is necessary. A cusp-type direct energy converter (CuspDEC) was proposed as a charge separation device, but its performance was degraded for a high density plasma. The goal of the present study is to establish an additional method to assist charge separation by using a nonlinear effect of a radio frequency (rf) electric field. Following to the previous study, we ex...

  5. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular

  6. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh

    2015-01-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals

  7. The direct conversion of synthesis gas to chemicals / Ernest du Toit

    OpenAIRE

    Du Toit, Ernest

    2002-01-01

    The catalytic conversion of synthesis gas, obtainable from the processing of coal, biomass or natural gas, to a complex hydrocarbon product stream can be achieved via the Fischer-Tropsch process. The Fischer-Tropsch synthesis process has evolved from being mainly a fuel producing process in the early 1950's to that of a solvent and speciality wax production process towards the end of the 1970's. From the early 1980's there has been a clear shift towards the production of commod...

  8. A new simplified NO/NO2 conversion model under consideration of direct NO2-emissions

    Directory of Open Access Journals (Sweden)

    I. Düring

    2011-02-01

    Full Text Available Although many German monitoring sites report declines of NOx concentrations, NO2-concentrations actually stagnate or even increase quite often. Various analyses have identified the altered compositions of nitrogen oxides (NO2/NOx-ratio emitted by motor vehicles (resulting in an increase of primary NO2-emissions as well as the chemical environmental conditions (mainly ground level ozone as the main causes. The chemical conversion of NO to NO2 is often parameterized in dispersion calculations of exhaust emissions. A widely applied conversion model is the so-called Romberg approach from 1996. However, the Romberg approach has to be re-evaluated to accommodate the above-mentioned conditions. This article presents an adjustment to the Romberg approach in accordance with the measured data from 2000 to 2006, taking into consideration substantially higher NO2/NOx-ratios especially for higher NOx-concentrations. Model calculations with OSPM (Operational Street Pollution Model including its internal chemistry module are able to reproduce very well the trends in the measured annual NO2-concentrations over a 10 year period. The relevant parameters for variations between the years are the NOx-emissions, primary NO2-emissions, ozone concentrations, wind conditions, and background concentrations. A simplified chemistry model based on annual mean NOx- and NO2-concentrations, and background ozone concentrations, as well as primary NO2-emissions is presented as a better method than the updated Romberg approach. This model simulates the annual mean NO2-concentrations much more accurately than the conventional and the updated Romberg approaches.

  9. Potentiality of Yeasts in the Direct Conversion of Starchy Materials to Ethanol and Its Relevance in the New Millennium

    Science.gov (United States)

    Reddy, L. V. A.; Reddy, O. V. S.; Basappa, S. C.

    In recent years, the use of renewable and abundantly available starchy and cellulosic materials for industrial production of ethanol is gaining importance, in view of the fact, that ethanol is one of the most prospective future motor fuels, that can be expected to replace fossil fuels, which are fast depleting in the world scenario. Although, the starch and the starchy substrates could be converted successfully to ethanol on industrial scales by the use of commercial amylolytic enzymes and yeast fermentation, the cost of production is rather very high. This is mainly due to the non-enzymatic and enzymatic conversion (gelatinization, liquefaction and saccharification) of starch to sugars, which costs around 20 % of the cost of production of ethanol from starch. In this context, the use of amylolytic yeasts, that can directly convert starch to ethanol by a single step, are potentially suited to reduce the cost of production of ethanol from starch. Research advances made in this direction have shown encouraging results, both in terms of identifying the potentially suited yeasts for the purpose and also their economic ethanol yields. This chapter focuses on the types of starch and starchy substrates and their digestion to fermentable sugars, optimization of fermentation conditions to ethanol from starch, factors that affect starch fermentation, potential amylolytic yeasts which can directly convert starch to ethanol, genetic improvement of these yeasts for better conversion efficiency and their future economic prospects in the new millennium.

  10. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  11. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  12. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  13. Direct conversion of sorghum carbohydrates to ethanol by a mixed microbial culture

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, Paul; Lianwu Li; Kekos, Dimitris; Macris, B.J. (National Technical Univ. of Athens (Greece). Dept. of Chemical Engineering)

    1993-01-01

    The carbohydrates of sweet sorghum were directly converted to ethanol by a mixed culture of Fusarium oxysporum F3 and Saccharomyces cerevisiae 2541. A number of factors affecting this bioconversion was studied. Optimum ethanol yields of 33.2 g/100 g of total sorghum carbohydrates, corresponding to 10.3 g/100 g of fresh stalks, were obtained. These values represented 68.6% of the theoretical yield based on total polysaccharides and exceeded that based on oligosaccharides of sorghum by 53.7%. The results demonstrated that more than half of the sorghum polysaccharides were directly fermented to ethanol, thus making the process worthy of further investigation. (author)

  14. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  15. Studies on the effect of radio frequency field in a cusp-type charge separation device for direct energy conversion

    International Nuclear Information System (INIS)

    Hamabe, Masaki; Izawa, Hiroaki; Takeno, Hiromasa; Nakamoto, Satoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2016-01-01

    In D- 3 He fusion power generation, an application of direct energy conversion is expected in which separation of charged particles is necessary. A cusp-type direct energy converter (CuspDEC) was proposed as a charge separation device, but its performance was degraded for a high density plasma. The goal of the present study is to establish an additional method to assist charge separation by using a nonlinear effect of a radio frequency (rf) electric field. Following to the previous study, we experimentally examine the effect of an rf field to electron motion in a CuspDEC device. Two ring electrodes were newly installed in a CuspDEC simulator and the current flowing into the electron collector located in the line cusp region was measured on an rf field application. The significant variation in the current was found, and an improvement of the charge separation can be expected by using the phenomenon appropriately. (author)

  16. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  17. Mental Representation and Early Language Development: Directions for Exploring Relationships. Souvenir of Conversation Hour.

    Science.gov (United States)

    Nicolich, Lorraine McCune; And Others

    This collection of conference abstracts focuses on new directions for research on mental representation and early language development. One page summaries are provided on the following topics: Mental Representation and Initial Language Learning, by Lorraine M. Nicolich; Critical Issues in Language and Cognitive Development, by Roberta Corrigan;…

  18. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Science.gov (United States)

    Chien-Yuan Lin; Joseph E. Jakes; Bryon S. Donohoe; Peter N. Ciesielski; Haibing Yang; Sophie-Charlotte Gleber; Stefan Vogt; Shi-You Ding; Wendy A. Peer; Angus S. Murphy; Maureen C. McCann; Michael E. Himmel; Melvin P. Tucker; Hui Wei

    2016-01-01

    Background: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited,...

  19. Modeling the phenotype of spinal muscular atrophy by the direct conversion of human fibroblasts to motor neurons.

    Science.gov (United States)

    Zhang, Qi-Jie; Li, Jin-Jing; Lin, Xiang; Lu, Ying-Qian; Guo, Xin-Xin; Dong, En-Lin; Zhao, Miao; He, Jin; Wang, Ning; Chen, Wan-Jin

    2017-02-14

    Spinal muscular atrophy (SMA) is a lethal autosomal recessive neurological disease characterized by selective degeneration of motor neurons in the spinal cord. In recent years, the development of cellular reprogramming technology has provided an alternative and effective method for obtaining patient-specific neurons in vitro. In the present study, we applied this technology to the field of SMA to acquire patient-specific induced motor neurons that were directly converted from fibroblasts via the forced expression of 8 defined transcription factors. The infected fibroblasts began to grow in a dipolar manner, and the nuclei gradually enlarged. Typical Tuj1-positive neurons were generated at day 23. After day 35, induced neurons with multiple neurites were observed, and these neurons also expressed the hallmarks of Tuj1, HB9, ISL1 and CHAT. The conversion efficiencies were approximately 5.8% and 5.5% in the SMA and control groups, respectively. Additionally, the SMA-induced neurons exhibited a significantly reduced neurite outgrowth rate compared with the control neurons. After day 60, the SMA-induced neurons also exhibited a liability of neuronal degeneration and remarkable fracturing of the neurites was observed. By directly reprogramming fibroblasts, we established a feeder-free conversion system to acquire SMA patient-specific induced motor neurons that partially modeled the phenotype of SMA in vitro.

  20. Improved direct torque control of an induction generator used in a wind conversion system connected to the grid.

    Science.gov (United States)

    Abdelli, Radia; Rekioua, Djamila; Rekioua, Toufik; Tounzi, Abdelmounaïm

    2013-07-01

    This paper presents a modulated hysteresis direct torque control (MHDTC) applied to an induction generator (IG) used in wind energy conversion systems (WECs) connected to the electrical grid through a back-to-back converter. The principle of this strategy consists in superposing to the torque reference a triangular signal, as in the PWM strategy, with the desired switching frequency. This new modulated reference is compared to the estimated torque by using a hysteresis controller as in the classical direct torque control (DTC). The aim of this new approach is to lead to a constant frequency and low THD in grid current with a unit power factor and a minimum voltage variation despite the wind variation. To highlight the effectiveness of the proposed method, a comparison was made with classical DTC and field oriented control method (FOC). The obtained simulation results, with a variable wind profile, show an adequate dynamic of the conversion system using the proposed method compared to the classical approaches. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A 1.2-V CMOS front-end for LTE direct conversion SAW-less receiver

    International Nuclear Information System (INIS)

    Wang Riyan; Li Zhengping; Zhang Weifeng; Zeng Longyue; Huang Jiwei

    2012-01-01

    A CMOS RF front-end for the long-term evolution (LTE) direct conversion receiver is presented. With a low noise transconductance amplifier (LNA), current commutating passive mixer and transimpedance operational amplifier (TIA), the RF front-end structure enables high-integration, high linearity and simple frequency planning for LTE multi-band applications. Large variable gain is achieved using current-steering transconductance stages. A current commutating passive mixer with 25% duty-cycle LO improves gain, noise and linearity. A direct coupled current-input filter (DCF) is employed to suppress the out-of-band interferer. Fabricated in a 0.13-μm CMOS process, the RF front-end achieves a 45 dB conversion voltage gain, 2.7 dB NF, −7 dBm IIP3, and +60 dBm IIP2 with calibration from 2.3 to 2.7 GHz. The total RF front end with divider draws 40 mA from a single 1.2-V supply. (semiconductor integrated circuits)

  2. Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.

    Science.gov (United States)

    Wakao, Junko; Kishida, Tsunao; Fumino, Shigehisa; Kimura, Koseki; Yamamoto, Kenta; Kotani, Shin-Ichiro; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu; Tajiri, Tatsuro; Mazda, Osam

    2017-06-24

    The skeletal muscle consists of contractile myofibers and plays essential roles for maintenance of body posture, movement, and metabolic regulation. During the development and regeneration of the skeletal muscle tissue, the myoblasts fuse into multinucleated myotubes that subsequently form myofibers. Transplantation of myoblasts may make possible a novel regenerative therapy against defects or dysfunction of the skeletal muscle. It is reported that rodent fibroblasts are converted into myoblast-like cells and fuse to form syncytium after forced expression of exogenous myogenic differentiation 1 (MYOD1) that is a key transcription factor for myoblast differentiation. But human fibroblasts are less efficiently converted into myoblasts and rarely fused by MYOD1 alone. Here we found that transduction of v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog (MYCL) gene in combination with MYOD1 gene induced myoblast-like phenotypes in human fibroblasts more strongly than MYOD1 gene alone. The rate of conversion was approximately 90%. The directly converted myoblasts (dMBs) underwent fusion in an ERK5 pathway-dependent manner. The dMBs also formed myofiber-like structure in vivo after an inoculation into mice at the subcutaneous tissue. The present results strongly suggest that the combination of MYCL plus MYOD1 may promote direct conversion of human fibroblasts into functional myoblasts that could potentially be used for regenerative therapy for muscle diseases and congenital muscle defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne; Szeto, Kaï Chung; Merle, Nicolas; Thivolle-Cazat, Jean; Boyron, Olivier; Basset, Jean-Marie; Nicholas, Christopher P.; Taoufik, Mostafa

    2014-01-01

    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed

  4. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Christakopoulos, P.; Koullas, D.P.; Kekos, D.; Koukios, E.G.; Macris, B.J. (Ethnikon Metsovion Polytechneion, Athens (Greece))

    1991-03-01

    Wheat straw was successfully fermented to ethanol by Fusarium oxysporum F3 in a one-step process. Cellulose crystallinity was found to be a major factor in the bioconversion process. Ethanol yields increased linearly with decreasing crystallinity index. Approximately 80% of straw carbohydrates were converted directly to ethanol with a yield of 0.28 g ethanol/g{sup -1} of straw when the crystallinity index was reduced to 23.6%. (author).

  5. Direct conversion of human fibroblasts into functional osteoblasts by defined factors.

    Science.gov (United States)

    Yamamoto, Kenta; Kishida, Tsunao; Sato, Yoshiki; Nishioka, Keisuke; Ejima, Akika; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Yamamoto, Toshiro; Kanamura, Narisato; Mazda, Osam

    2015-05-12

    Osteoblasts produce calcified bone matrix and contribute to bone formation and remodeling. In this study, we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some defined factors and culturing in osteogenic medium. Osteoblast-specific transcription factors, Runt-related transcription factor 2 (Runx2), and Osterix, in combination with Octamer-binding transcription factor 3/4 (Oct4) and L-Myc (RXOL) transduction, converted ∼ 80% of the fibroblasts into osteocalcin-producing cells. The directly converted osteoblasts (dOBs) induced by RXOL displayed a similar gene expression profile as normal human osteoblasts and contributed to bone repair after transplantation into immunodeficient mice at artificial bone defect lesions. The dOBs expressed endogenous Runx2 and Osterix, and did not require continuous expression of the exogenous genes to maintain their phenotype. Another combination, Oct4 plus L-Myc (OL), also induced fibroblasts to produce bone matrix, but the OL-transduced cells did not express Osterix and exhibited a more distant gene expression profile to osteoblasts compared with RXOL-transduced cells. These findings strongly suggest successful direct reprogramming of fibroblasts into functional osteoblasts by RXOL, a technology that may provide bone regeneration therapy against bone disorders.

  6. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  7. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    Science.gov (United States)

    Thompson, Travis

    Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to

  8. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-12-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.

  9. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-01-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications. PMID:24346481

  10. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  11. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    Science.gov (United States)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  12. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    Science.gov (United States)

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F. [Stanford Univ., CA (United States). Dept. of Chemical Engineering. Shriram Center

    2016-04-20

    In this project, we have employed a systematic approach to develop active, selective, and stable catalyst materials for important electrochemical reactions involving energy conversion. In particular, we have focused our attention on developing active catalyst materials for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). HER: We have synthesized and investigated several highly active and acid stable non-precious metal HER catalysts, including: [Mo3S13]2- nanoclusters (Nature Chemistry, 2014) and molybdenum phosphosulfide (MoP|S) (Angewandte Chemie, 2014). We have also aimed to engineer these catalyst formulations in a membrane electrode assembly (MEA) for fundamental studies of water electrolysis at high current densities, approximately 1 A/cm2 (ChemSusChem, 2015). We furthermore investigated transition metal phosphide (TMP) catalysts for HER by a combined experimental–theoretical approach (Energy & Environmental Science, 2015). By synthesizing different TMPs and comparing experimentally determined HER activities with the hydrogen adsorption free energies, ΔGH, calculated by density functional theory, we showed that the TMPs follow a volcano relationship for the HER. Using our combined experimental–theoretical model, we predicted that the mixed metal TMP, Fe0.5Co0.5P, should have a near-optimal ΔGH. We synthesized several mixtures of Co and Fe phosphides alloys and confirmed that Fe0.5Co0.5P exhibits the highest HER activity of the investigated TMPs (Energy & Environmental Science, 2015). The understanding gained as to how to improve catalytic activity for the HER, particularly for non-precious metal materials, is important to DOE targets for sustainable H2 production. OER: We have developed a SrIrO3/IrOx catalyst for acidic conditions (submitted, 2016). The Sr

  15. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  16. Counting and integrating microelectronics development for direct conversion X-ray imaging

    International Nuclear Information System (INIS)

    Kraft, E.

    2008-02-01

    A novel signal processing concept for X-ray imaging with directly converting pixelated semiconductor sensors is presented. The novelty of this approach compared to existing concepts is the combination of charge integration and photon counting in every single pixel. Simultaneous operation of both signal processing chains extends the dynamic range beyond the limits of the individual schemes and allows determination of the mean photon energy. Medical applications such as X-ray computed tomography can benefit from this additional spectral information through improved contrast and the ability to determine the hardening of the tube spectrum due to attenuation by the scanned object. A prototype chip in 0.35-micrometer technology has been successfully tested. The pixel electronics are designed using a low-swing differential current mode logic. Key element is a configurable feedback circuit for the charge sensitive amplifier which provides continuous reset, leakage current compensation and replicates the input signal for the integrator. The thesis focusses on the electronic characterization of a second generation prototype chip and gives a detailed discussion of the circuit design. (orig.)

  17. Counting and integrating microelectronics development for direct conversion X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.

    2008-02-15

    A novel signal processing concept for X-ray imaging with directly converting pixelated semiconductor sensors is presented. The novelty of this approach compared to existing concepts is the combination of charge integration and photon counting in every single pixel. Simultaneous operation of both signal processing chains extends the dynamic range beyond the limits of the individual schemes and allows determination of the mean photon energy. Medical applications such as X-ray computed tomography can benefit from this additional spectral information through improved contrast and the ability to determine the hardening of the tube spectrum due to attenuation by the scanned object. A prototype chip in 0.35-micrometer technology has been successfully tested. The pixel electronics are designed using a low-swing differential current mode logic. Key element is a configurable feedback circuit for the charge sensitive amplifier which provides continuous reset, leakage current compensation and replicates the input signal for the integrator. The thesis focusses on the electronic characterization of a second generation prototype chip and gives a detailed discussion of the circuit design. (orig.)

  18. Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Sanan Eminov

    2016-10-01

    Full Text Available Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF. Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl− and Brønsted acidic (X = HSO4− anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration. Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation.

  19. Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state

    Science.gov (United States)

    Ginsberg, Michael; Schachterle, William; Shido, Koji; Rafii, Shahin

    2016-01-01

    Endothelial cells (ECs) have essential roles in organ development and regeneration, and therefore they could be used for regenerative therapies. However, generation of abundant functional endothelium from pluripotent stem cells has been difficult because ECs generated by many existing strategies have limited proliferative potential and display vascular instability. The latter difficulty is of particular importance because cells that lose their identity over time could be unsuitable for therapeutic use. Here, we describe a 3-week platform for directly converting human mid-gestation lineage-committed amniotic fluid–derived cells (ACs) into a stable and expandable population of vascular ECs (rAC-VECs) without using pluripotency factors. By transient expression of the ETS transcription factor ETV2 for 2 weeks and constitutive expression the ETS transcription factors FLI1 and ERG1, concomitant with TGF-β inhibition for 3 weeks, epithelial and mesenchymal ACs are converted, with high efficiency, into functional rAC-VECs. These rAC-VECs maintain their vascular repertoire and morphology over numerous passages in vitro, and they form functional vessels when implanted in vivo. rAC-VECs can be detected in recipient mice months after implantation. Thus, rAC-VECs can be used to establish a cellular platform to uncover the molecular determinants of vascular development and heterogeneity and potentially represent ideal ECs for the treatment of regenerative disorders. PMID:26540589

  20. Research Update: Direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air

    Directory of Open Access Journals (Sweden)

    Jagdish Narayan

    2016-02-01

    Full Text Available We report a direct conversion of hexagonal boron nitride (h-BN into pure cubic boron nitride (c-BN by nanosecond laser melting at ambient temperatures and atmospheric pressure in air. According to the phase diagram, the transformation from h-BN into c-BN can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa. Using nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to formation of super undercooled BN (Q-BN. The c-BN phase is nucleated from Q-BN depending upon the time allowed for nucleation and growth.

  1. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  2. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  3. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  4. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  5. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    Science.gov (United States)

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material.

    Science.gov (United States)

    Ricchiardi, Gabriele; Vitillo, Jenny G; Cocina, Donato; Gribov, Evgueni N; Zecchina, Adriano

    2007-06-07

    Hydrogen physisorption on porous high surface materials is investigated for the purpose of hydrogen storage and hydrogen separation, because of its simplicity and intrinsic reversibility. For these purposes, the understanding of the binding of dihydrogen to materials, of the structure of the adsorbed phase and of the ortho-para conversion during thermal and pressure cycles are crucial for the development of new hydrogen adsorbents. We report the direct observation by IR spectroscopic methods of structured hydrogen adsorption on a porous titanosilicate (ETS-10), with resolution of the kinetics of the ortho-para transition, and an interpretation of the structure of the adsorbed phase based on classical atomistic simulations. Distinct infrared signals of o- and p-H2 in different adsorbed states are measured, and the conversion of o- to p-H2 is monitored over a timescale of hours, indicating the presence of a catalyzed reaction. Hydrogen adsorption occurs in three different regimes characterized by well separated IR manifestations: at low pressures ordered 1:1 adducts with Na and K ions exposed in the channels of the material are formed, which gradually convert into ordered 2:1 adducts. Further addition of H2 occurs only through the formation of a disordered condensed phase. The binding enthalpy of the Na+-H2 1:1 adduct is of -8.7+/-0.1 kJ mol(-1), as measured spectroscopically. Modeling of the weak interaction of H2 with the materials requires an accurate force field with a precise description of both dispersion and electrostatics. A novel three body force field for molecular hydrogen is presented, based on the fitting of an accurate PES for the H2-H2 interaction to the experimental dipole polarizability and quadrupole moment. Molecular mechanics simulations of hydrogen adsorption at different coverages confirm the three regimes of adsorption and the structure of the adsorbed phase.

  7. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    Science.gov (United States)

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Materials and design concerning magnetohydrodynamic channels of direct power conversion from combustion gases thermal energy into electricity

    International Nuclear Information System (INIS)

    Yerouchalmi, David

    1970-01-01

    Direct power conversion of thermal energy into electricity by magnetohydrodynamic is defined through thermodynamic cycles of hot gases; the present work concerning only the channel-generator operating with fossil gases in open cycle. Insulating walls and electrodes are subject initially to general apparent working conditions and those are followed by several others which appear only when experimental stage is reached. First, a choice has to be made between cold walls and hot walls which have been both closely investigated. But experience and theory lead to a third solution: viz controlled temperature walls and to consequent thermal exchange design. Many additional phenomena such as: solid state electrolysis, vaporisation, corrosion and alkali seed migration are analysed; then some solutions are described, tried and suggested. Same is given for mechanical, cooling devices, cold electric junctions and current relays. Experimental devices and work done on several solutions are described and results given. New prospects are suggested; and, in conclusion, the subject still appears to merit quite an important amount of further research. (author) [fr

  9. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults

    Science.gov (United States)

    Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze

    2017-09-01

    Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.

  10. Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures

    International Nuclear Information System (INIS)

    Narayan, Jagdish; Bhaumik, Anagh; Xu, Weizong

    2016-01-01

    We have created a new state of BN (named Q-BN) through rapid melting and super undercooling and quenching by using nanosecond laser pulses. Phase pure c-BN is formed either by direct quenching of super undercooled liquid or by nucleation and growth from Q-BN. Thus, a direct conversion of hexagonal boron nitride (h-BN) into phase-pure cubic boron nitride (c-BN) is achieved by nanosecond pulsed laser melting at ambient temperatures and atmospheric pressure in air. According to the P-T phase diagram, the transformation from h-BN into c-BN under equilibrium processing can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa or 3700 K/7.0 GPa with a recent theoretical refinement. Using nonequilibrium nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to the formation of a new phase, named as Q-BN. We present detailed characterization of Q-BN and c-BN layers by using Raman spectroscopy, high-resolution scanning electron microscopy, electron-back-scatter diffraction, high-resolution TEM, and electron energy loss spectroscopy, and discuss the mechanism of formation of nanodots, nanoneedles, microneedles, and single-crystal c-BN on sapphire substrate. We have also deposited diamond by pulsed laser deposition of carbon on c-BN and created c-BN/diamond heterostructures, where c-BN acts as a template for epitaxial diamond growth. We discuss the mechanism of epitaxial c-BN and diamond growth on lattice matching c-BN template under pulsed laser evaporation of amorphous carbon, and the impact of this discovery on a variety of applications.

  11. Scalable Direct Writing of Lanthanide-Doped KMnF3 Perovskite Nanowires into Aligned Arrays with Polarized Up-Conversion Emission.

    Science.gov (United States)

    Shi, Shuo; Sun, Ling-Dong; Xue, Ying-Xian; Dong, Hao; Wu, Ke; Guo, Shi-Chen; Wu, Bo-Tao; Yan, Chun-Hua

    2018-05-09

    The use of one-dimensional nano- and microstructured semiconductor and lanthanide materials is attractive for polarized-light-emission studies. Up-conversion emission from single-nanorod or anisotropic nanoparticles with a degree of polarization has also been discussed. However, microscale arrays of nanoparticles, especially well-aligned one-dimensional nanostructures as well as their up-conversion polarization characterization, have not been investigated yet. Herein, we present a novel and facile paradigm for preparing highly aligned arrays of lanthanide-doped KMnF 3 (KMnF 3 :Ln) perovskite nanowires, which are good candidates for polarized up-conversion emission studies. These perovskite nanowires, with a width of 10 nm and length of a few micrometers, are formed through the oriented attachment of KMnF 3 :Ln nanocubes along the [001] direction. By the employment of KMnF 3 :Ln nanowire gel as nanoink, a direct-writing method is developed to obtain diverse types of aligned patterns from the nanoscale to the wafer scale. Up-conversion emissions from the highly aligned nanowire arrays are polarized along the array direction with a polarization degree up to 60%. Taking advantage of microscopic nanowire arrays, these polarized up-conversion emissions should offer potential applications in light or information transportation.

  12. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng; Chen, Tao; He, Lipeng; Pinnau, Ingo; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters

  13. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    Science.gov (United States)

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  15. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    Science.gov (United States)

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors.

  16. Neutron detection with integrated sub-2 nm Pt nanoparticles and 10B enriched dielectrics—A direct conversion device

    Directory of Open Access Journals (Sweden)

    Haisheng Zheng

    2016-07-01

    Full Text Available We report a direct conversion solid-state neutron detection device fabricated by combining the large neutron capture cross-section of 10B with the charge trapping attributes of sub-2 nm Pt nanoparticles (Pt NPs in MOSCAP structures. The 10B embedded polystyrene based neutron conversion layer also serves as the dielectric layer. Neutron sensing is achieved through carrier generation within the active 10B based dielectric layer and subsequent transfer to the embedded Pt NP layers, resulting in a significant change of the device's flat-band voltage upon ex-situ characterization. Both single and dual Pt NP layer embedded architectures, with varying electron addition energies, were tested within this study. While dual-layer Pt NPs embedded direct conversion devices with higher electron addition energy are shown to successfully capture charges generated through energetic reaction product upon neutron capture, the single Pt NP layer embedded device structure with lower electron addition energy displays signs of charge loss attributable to direct tunneling in the ex-situ capacitance–voltage measurement. Although only ex-situ detector operation is demonstrated within the realms of this study, sensitive in-situ neutron detectors and ultra-stable ex-situ dosimeters may be achievable utilizing a similar structure by fine-tuning the Pt NP size and the number of Pt NP layers in the device. Keywords: Neutron detection, Sub-2 nm Pt nanoparticles, 10B enriched dielectrics, Direct conversion, MOSCAP, Coulomb blockade

  17. Direct thermal to electrical energy conversion using 9.5/65/35 PLZT ceramics in the ergodic relaxor phase.

    Science.gov (United States)

    Chin, Thomas K; Lee, Felix Y; McKinley, Ian M; Goljahi, Sam; Lynch, Christopher S; Pilon, Laurent

    2012-11-01

    This paper reports on direct thermal to electrical energy conversion by performing the Olsen cycle on 9.5/65/35 lead lanthanum zirconate titanate (PLZT). The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. It was performed by alternatively dipping the material in hot and cold dielectric fluid baths under specified electric fields. The effects of applied electric field, sample thickness, electrode material, operating temperature, and cycle frequency on the energy and power densities were investigated. A maximum energy density of 637 ± 20 J/L/cycle was achieved at 0.054 Hz with a 250-μm-thick sample featuring Pt electrodes and coated with a silicone conformal coating. The operating temperatures varied between 3°C and 140°C and the electric field was cycled between 0.2 and 6.0 MV/m. A maximum power density of 55 ± 8 W/L was obtained at 0.125 Hz under the same operating temperatures and electric fields. The dielectric strength of the material, and therefore the energy and power densities generated, increased when the sample thickness decreased from 500 to 250 μm. Furthermore, the electrode material was found to have no significant effect on the energy and power densities for samples subject to the same operating temperatures and electric fields. However, samples with electrode material possessing thermal expansion coefficients similar to that of PLZT were capable of withstanding larger temperature swings. Finally, a fatigue test showed that the power generation gradually degraded when the sample was subject to repeated thermoelectrical loading.

  18. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    Science.gov (United States)

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  19. Direct conversion of cellulose using carbon monoxide and water on a Pt-Mo2C/C catalyst

    KAUST Repository

    Li, Jing

    2014-01-01

    CO and H2O were employed as the hydrogen source for cellulose conversion to polyols. Pt-Mo2C/C tandem catalyst with the Pt-Mo 2C domain responsible for H2 and/or H production and the Pt-C domain for cellulose conversion was fabricated. Considerable polyols were obtained over this tandem Pt-Mo2C/C catalyst. This journal is © 2014 The Royal Society of Chemistry.

  20. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  1. Clinical evaluation of digital angiographic system equipped with the Safire' flat-panel detector of a direct conversion type

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yoshiaki; Miura, Yusuke; Goto, Keiichi [Shimadzu Corporation, Medical Systems Division, Research and Development, Kyoto (JP)] [and others

    2003-06-01

    This report presents a report on clinical evaluation of our newly developed flat-panel X-ray detector of a direct conversion type, designed to provide images of a resolution higher than, or at least equal to, that ensured by X-ray photographic films, in clinical digital X-ray cinematography. This new detector was named 'Safire' the acronym of 'Shimadzu advanced flat imaging receptor', emphasizing its high technological level, such as the capability to ensure high quality of images. The clinical evaluation of Shimadzu DIGITEX Premier digital angiography system, equipped with this new flat-panel X-ray detector of a direct conversion type, has been started in March, 2003, at the Kokura Memorial Hospital in Kyushu, Japan. (author)

  2. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  3. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  4. Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects

    Science.gov (United States)

    Tsujiura, Yuichi; Kawabe, Saneyuki; Kurokawa, Fumiya; Hida, Hirotaka; Kanno, Isaku

    2015-10-01

    We evaluated the effective transverse piezoelectric coefficients (e31,f) of Pb(Zr,Ti)O3 (PZT) thin films from both the direct and converse piezoelectric effects of unimorph cantilevers. (001) preferentially oriented polycrystalline PZT thin films and (001)/(100) epitaxial PZT thin films were deposited on (111)Pt/Ti/Si and (001)Pt/MgO substrates, respectively, by rf-magnetron sputtering, and their piezoelectric responses owing to intrinsic and extrinsic effects were examined. The direct and converse |e31,f| values of the polycrystalline PZT thin films were calculated as 6.4 and 11.5-15.0 C/m2, respectively, whereas those of the epitaxial PZT thin films were calculated as 3.4 and 4.6-4.8 C/m2, respectively. The large |e31,f| of the converse piezoelectric property of the polycrystalline PZT thin films is attributed to extrinsic piezoelectric effects. Furthermore, the polycrystalline PZT thin films show a clear nonlinear piezoelectric contribution, which is the same as the Rayleigh-like behavior reported in bulk PZT. In contrast, the epitaxial PZT thin films on the MgO substrate show a piezoelectric response owing to the intrinsic and linear extrinsic effects, and no nonlinear contribution was observed.

  5. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  6. Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Elam, K.R.

    1995-01-01

    With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and 233 U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal

  7. Direct conversion of a three-atom W state to a Greenberger–Horne–Zeilinger state in spatially separated cavities

    International Nuclear Information System (INIS)

    Wang, Guo-Yuan; Wang, Dong-Yang; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    State conversion between the Greenberger–Horne–Zeilinger (GHZ) state and the W state is a challenging open problem because these states cannot be converted to each other by just local operations and classical communication. Here we propose a cavity quantum electrodynamics method based on interference of polarized photons emitted by the atoms trapped in spatially separated optical cavities that can convert a three-atom W state to a GHZ state. We calculate the success probability and fidelity of the converted GHZ state when the cavity decay, spontaneous atomic decay and photon leakage of the cavities are taken into account for a practical system, which shows that the proposed scheme is feasible and within the reach of current experimental technology. (paper)

  8. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    Science.gov (United States)

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  9. Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture.

    Science.gov (United States)

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-12-01

    The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.

  10. Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model

    Science.gov (United States)

    Salah, Zeinab; Shalaby, Ahmed; Steiner, Allison L.; Zakey, Ashraf S.; Gautam, Ritesh; Abdel Wahab, Mohamed M.

    2018-02-01

    This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2).

  11. Direct Conversion of Human Umbilical Cord Blood into Induced Neural Stem Cells with SOX2 and HMGA2.

    Science.gov (United States)

    Kim, Jae-Jun; Shin, Ji-Hee; Yu, Kyung-Rok; Lee, Byung-Chul; Kang, Insung; Lee, Jin Young; Kim, Da-Hyun; Seo, Yoojin; Kim, Hyung-Sik; Choi, Soon Won; Kang, Kyung-Sun

    2017-11-30

    Recent advances have shown the direct reprogramming of mouse and human fibroblasts into induced neural stem cells (iNSCs) without passing through an intermediate pluripotent state. Thus, direct reprogramming strategy possibly provides a safe and homogeneous cellular platform. However, the applications of iNSCs for regenerative medicine are limited by the restricted availability of cell sources. Human umbilical cord blood (hUCB) cells hold great potential in that immunotyped hUCB units can be immediately obtained from public banks. Moreover, hUCB samples do not require invasive procedures during collection or an extensive culture period prior to reprogramming. We recently reported that somatic cells can be directly converted into iNSCs with high efficiency and a short turnaround time. Here, we describe the detailed method for the generation of iNSCs derived from hUCB (hUCB iNSCs) using the lineage-specific transcription factors SOX2 and HMGA2. The protocol for deriving iNSC-like colonies takes 1∼2 weeks and establishment of homogenous hUCB iNSCs takes additional 2 weeks. Established hUCB iNSCs are clonally expandable and multipotent producing neurons and glia. Our study provides an accessible method for generating hUCB iNSCs, contributing development of in vitro neuropathological model systems.

  12. Direct conversion from tramadol to tapentadol prolonged release for moderate to severe, chronic malignant tumour-related pain.

    Science.gov (United States)

    Kress, H G; Koch, E D; Kosturski, H; Steup, A; Karcher, K; Dogan, C; Etropolski, M; Eerdekens, M

    2016-10-01

    A recent randomized-withdrawal, active- and placebo-controlled, double-blind phase 3 study showed that tapentadol prolonged release (PR) was effective and well tolerated for managing moderate to severe, chronic malignant tumour-related pain in patients who were opioid naive or dissatisfied with current treatment (Pain Physician, 2014, 17, 329-343). This post hoc, subgroup analysis evaluated the efficacy and tolerability of tapentadol PR in patients who previously received and were dissatisfied with tramadol for any reason and who had a pain intensity ≥5 (11-point numerical rating scale) before converting directly to tapentadol PR. In the original study, eligible patients had been randomized (2:1) and titrated to their optimal dose of tapentadol PR (100-250 mg bid) or morphine sulphate-controlled release (40-100 mg bid) over 2 weeks. The present report focuses on results during the titration period for a subgroup of patients randomized to tapentadol PR after having been on tramadol treatment prior to randomization in the study (n = 129). Results for this subgroup are compared with results for all 338 patients who received tapentadol PR during titration (overall tapentadol PR group). Responder rates (responders: completed titration, mean pain intensity pain could safely switch from prior treatment with the weak centrally acting analgesic tramadol directly to the strong centrally acting analgesic tapentadol PR, for an improved analgesic therapy for severe pain. WHAT DOES THIS STUDY ADD?: Results of this post hoc analysis show that patients who had received prior tramadol therapy could switch directly to tapentadol PR, with the majority (˜70%) experiencing improved efficacy. © 2016 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  13. NEBNext Direct: A Novel, Rapid, Hybridization-Based Approach for the Capture and Library Conversion of Genomic Regions of Interest.

    Science.gov (United States)

    Emerman, Amy B; Bowman, Sarah K; Barry, Andrew; Henig, Noa; Patel, Kruti M; Gardner, Andrew F; Hendrickson, Cynthia L

    2017-07-05

    Next-generation sequencing (NGS) is a powerful tool for genomic studies, translational research, and clinical diagnostics that enables the detection of single nucleotide polymorphisms, insertions and deletions, copy number variations, and other genetic variations. Target enrichment technologies improve the efficiency of NGS by only sequencing regions of interest, which reduces sequencing costs while increasing coverage of the selected targets. Here we present NEBNext Direct ® , a hybridization-based, target-enrichment approach that addresses many of the shortcomings of traditional target-enrichment methods. This approach features a simple, 7-hr workflow that uses enzymatic removal of off-target sequences to achieve a high specificity for regions of interest. Additionally, unique molecular identifiers are incorporated for the identification and filtering of PCR duplicates. The same protocol can be used across a wide range of input amounts, input types, and panel sizes, enabling NEBNext Direct to be broadly applicable across a wide variety of research and diagnostic needs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  15. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    International Nuclear Information System (INIS)

    Cho, Y J; Zullah, M A; Faizal, M; Lee, Y H; Choi, Y D

    2012-01-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  16. A study on the flow characteristics of a direct drive turbine for energy conversion generation by experiment and CFD

    Science.gov (United States)

    Cho, Y. J.; Zullah, M. A.; Faizal, M.; Choi, Y. D.; Lee, Y. H.

    2012-11-01

    A variety of technologies has been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales. Due to the complexity of most offshore wave energy devices and their motion response in different sea states, physical tank tests are common practice for WEC design. Full scale tests are also necessary, but are expensive and only considered once the design has been optimized. Computational Fluid Dynamics (CFD) is now recognized as an important complement to traditional physical testing techniques in offshore engineering. Once properly calibrated and validated to the problem, CFD offers a high density of test data and results in a reasonable timescale to assist with design changes and improvements to the device. The purpose of this study is to investigate the performance of a newly developed direct drive hydro turbine (DDT), which will be built in a caisson for extraction of wave energy. Experiments and CFD analysis are conducted to clarify the turbine performance and internal flow characteristics. The results show that commercial CFD code can be applied successfully to the simulation of the wave motion in the water tank. The performance of the turbine for wave energy converter is studied continuously for a ongoing project.

  17. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Insights into the deactivation mechanism of supported tungsten hydride on alumina (W-H/Al2O3) catalyst for the direct conversion of ethylene to propylene

    KAUST Repository

    Mazoyer, Etienne

    2014-04-01

    Tungsten hydride supported on alumina prepared by the surface organometallic chemistry method is an active precursor for the direct conversion of ethylene to propylene at low temperature and pressure. An extensive contact time study revealed that the dimerization of ethylene to 1-butene is the primary and also the rate limiting step. The catalytic cycle further involves isomerization of 1-butene to 2-butene, followed by cross-metathesis of ethylene and 2-butene to yield propylene with high selectivity. The deactivation mechanism of this reaction has been investigated. The used catalyst was extensively examined by DRIFTS, solid-state NMR, EPR, UV-Vis, TGA and DSC techniques. It was found that a large amount of carbonaceous species, which were due to side reaction like olefin polymerization took place with time on stream, significantly hindering the dimerization of ethylene to 1-butene and therefore the production of propylene. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

  19. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    Science.gov (United States)

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. MO-E-17A-12: Direct Realization of the CT Dose to Phantom: Energy to Heat Conversion in Polyethylene Using Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H; Tosh, R [NIST, Gaithersburg, MD (United States)

    2014-06-15

    Purpose: To develop a primary reference standard for absorbed dose to phantom for medical CT dosimetry. CT dosimetry relies on the implementation of the CTDI standard based on air kerma. We are taking a step toward an absorbed dose to water standard by first investigating the dose in a solid phantom. By directly measuring the heat converted from the incident radiation, the absorbed dose in the phantom at a point can be assessed with primary methods without relying on indirect conversions. Methods: The calorimeter contains two small thermistors embedded in a removable PE “core” inserted into the cylindrical HDPE phantom. A core made with polystyrene (PS) was also tested because of its purportedly negligible heat defect. Measurements were made using the two cores and with a calibrated ionization chamber in a CT beam. The air chamber values were converted to the dose to medium using appropriate stopping-power ratios from the literature, and then compared to the thermal data. Results: The PS core data yielded a dose of 1.3 times (4-run average, 3% std. dev.) higher than the converted chamber value, whereas the PE core data were inexplicably higher. The possible systematic errors include 1) excess heat from the thermistors, 2) in PE the exothermic chemical reactions, 3) uncertainties of the specific heat capacities of the materials, 4) thermal drift, and 5) theoretical conversion of chamber values. Monte Carlo simulations and finite element heat transfer calculations were performed to address some of these issues. The general validity was assessed in a 6 MV photon beam with an entirely different calibration scheme. Conclusion: This study demonstrates the feasibility but also revealed the difficulty in developing a new primary reference standard for absorbed dose to material for CT. Additional experimental and theoretical work is planned to achieve our goal.

  1. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1963-12-01

    17:3583, Feb.1S,1963). 4926 Atomics International, Division of North 4929 American Aviation,Inc., Canoga Park,Calif. General Electric Co., Special...1,1962 - Some tests of CdS front wall film cells February 28,1963, by T.A. Griffin, and and arrays indicate that they should be J.C. Schaefer . 17p., Feb...5159 Blue, E. .............. 4951, 5010 Atomics International . . . 4680, 4757, 4851 Bockris, J.O’M............ 5313 4926 , 4988, 5044, 5045

  2. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  3. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    Science.gov (United States)

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. X-ray spectroscopic study of amorphous and polycrystalline PbO films, α-PbO, and β-PbO for direct conversion imaging.

    Science.gov (United States)

    Qamar, A; LeBlanc, K; Semeniuk, O; Reznik, A; Lin, J; Pan, Y; Moewes, A

    2017-10-13

    We investigated the electronic structure of Lead Oxide (PbO) - one of the most promising photoconductor materials for direct conversion x-ray imaging detectors, using soft x-ray emission and absorption spectroscopy. Two structural configurations of thin PbO layers, namely the polycrystalline and the amorphous phase, were studied, and compared to the properties of powdered α-PbO and β-PbO samples. In addition, we performed calculations within the framework of density functional theory and found an excellent agreement between the calculated and the measured absorption and emission spectra, which indicates high accuracy of our structural models. Our work provides strong evidence that the electronic structure of PbO layers, specifically the width of the band gap and the presence of additional interband and intraband states in both conduction and valence band, depend on the deposition conditions. We tested several model structures using DFT simulations to understand what the origin of these states is. The presence of O vacancies is the most plausible explanation for these additional electronic states. Several other plausible models were ruled out including interstitial O, dislocated O and the presence of significant lattice stress in PbO.

  5. The Usefulness of Three-Dimensional Angiography with a Flat Panel Detector of Direct Conversion Type in a Transcatheter Arterial Chemoembolization Procedure for Hepatocellular Carcinoma: Initial Experience

    International Nuclear Information System (INIS)

    Kakeda, Shingo; Korogi, Yukunori; Hatakeyama, Yoshihisa; Ohnari, Norihiro; Oda, Nobuhiro; Nishino, Kazuyoshi; Miyamoto, Wataru

    2008-01-01

    The purpose of this study was to assess the usefulness of a three-dimensional (3D) angiography system using a flat panel detector of direct conversion type in treatments with subsegmental transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). Thirty-six consecutive patients who underwent hepatic angiography were prospectively examined. First, two radiologists evaluated the degree of visualization of the peripheral branches of the hepatic arteries on 3D digital subtraction angiography (DSA). Then the radiologists evaluated the visualization of tumor staining and feeding arteries in 25 patients (30 HCCs) who underwent subsegmental TACE. The two radiologists who performed the TACE assessed whether the additional information provided by 3D DSA was useful for treatments. In 34 (94.4%) of 36 patients, the subsegmental branches of the hepatic arteries were sufficiently visualized. The feeding arteries of HCCs were sufficiently visualized in 28 (93%) of 30 HCCs, whereas tumor stains were sufficiently visualized in 18 (60%). Maximum intensity projection images were significantly superior to volume recording images for visualization of the tumor staining and feeding arteries of HCCs. In 27 (90%) of 30 HCCs, 3D DSA provided additional useful information for subsegmental TACE. The high-quality 3D DSA with flat panel detector angiography system provided a precise vascular road map, which was useful for performing subsegmental TACE .of HCCs

  6. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  7. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  8. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  9. Performance evaluation of a direct-conversion flat-panel detector system in imaging and quality assurance for a high-dose-rate 192Ir source

    Science.gov (United States)

    Miyahara, Yoshinori; Hara, Yuki; Nakashima, Hiroto; Nishimura, Tomonori; Itakura, Kanae; Inomata, Taisuke; Kitagaki, Hajime

    2018-03-01

    In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ] dual rays (X  +  γ), [D], and subtracted data for depicting the source ([D]  -  [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D]  -  [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2  >  0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74  ±  0.02 mm and 1.01  ±  0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.

  10. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    OpenAIRE

    Supratik Kar; Juganta K. Roy; Danuta Leszczynska; Jerzy Leszczynski

    2016-01-01

    Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs). Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE) to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron...

  11. Pictorial Conversations.

    Science.gov (United States)

    Hooper, Kristina

    1982-01-01

    Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…

  12. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion

    DEFF Research Database (Denmark)

    Gobalasingham, Nemal S.; Carlé, Jon Eggert; Krebs, Frederik C

    2017-01-01

    of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which...... is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations...

  13. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  14. Quantum conversion

    OpenAIRE

    Mazilu, Michael

    2015-01-01

    ICOAM 2015 The electromagnetic momentum transferred transferred to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ℏk does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the tran...

  15. Conversational sensemaking

    Science.gov (United States)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  16. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  17. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  18. The Role of Conversation Policy in Carrying Out Agent Conversations

    International Nuclear Information System (INIS)

    Link, Hamilton E.; Phillips, Laurence R.

    1999-01-01

    Structured conversation diagrams, or conversation specifications, allow agents to have predictable interactions and achieve predefined information-based goals, but they lack the flexibility needed to function robustly in an unpredictable environment. We propose a mechanism that combines a typical conversation structure with a separately established policy to generate an actual conversation. The word ''policy'' connotes a high-level direction external to a specific planned interaction with the environment. Policies, which describe acceptable procedures and influence decisions, can be applied to broad sets of activity. Based on their observation of issues related to a policy, agents may dynamically adjust their communication patterns. The policy object describes limitations, constraints, and requirements that may affect the conversation in certain circumstances. Using this new mechanism of interaction simplifies the description of individual conversations and allows domain-specific issues to be brought to bear more easily during agent communication. By following the behavior of the conversation specification when possible and deferring to the policy to derive behavior in exceptional circumstances, an agent is able to function predictably under normal situations and still act rationally in abnormal situations. Different conversation policies applied to a given conversation specification can change the nature of the interaction without changing the specification

  19. Advanced-fueled fusion reactors suitable for direct energy conversion. Project note: temperature-gradient enhancement of electrical fields in insulators

    International Nuclear Information System (INIS)

    Blum, A.S.; Mancebo, L.

    1976-01-01

    Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element

  20. A New Generalized Two-Stage Direct Power Conversion Topology to Independently Supply Multiple AC Loads from Multiple Power Grids with Adjustable Power Loading

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    ) and continuously adjust these power fractions will become a desired feature. This paper presents a generalized Direct Power Converter topology, which is able to connect to multiple AC supplies proving complete decoupling and no circulating power between the input ports and to independently control multiple AC...

  1. Directed ortho-Lithiation: Observation of an Unexpected 1-Lithio to 3-Lithio Conversion of 1-Lithio-naphthyllithium Compounds with an ortho-Directing 2-(Dimethylamino)methyl Group

    NARCIS (Netherlands)

    Jastrzebski, J.T.B.H.; Arink, A.M.; Kleijn, H.; Braam, T.W.; Lutz, M.; Spek, A.L.; van Koten, G.

    2013-01-01

    Regioselectivity is an important aspect in the design of organic protocols involving Directed ortho-Lithiation (DoL) of arenes, in particular with those arenes containing heteroatom substituents as directing groups. The DoL of 2-[(dimethylamino)methyl]naphthalene (dman) that proceeds with low

  2. Improvement of skeleton conversion in ICRP reference phantom conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Seong Hoon [Dept. of Radiation Oncology, College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future.

  3. Improvement of skeleton conversion in ICRP reference phantom conversion project

    International Nuclear Information System (INIS)

    Wang, Zhao Jun; Yeom, Yeon Soo; Thang, Nguyen Tat; Kim, Han Sung; Han, Min Cheol; Kim, Chan Hyeong; Kim, Seong Hoon

    2014-01-01

    In the previous skeleton conversion, most bones were directly converted from the ICRP voxel phantoms by using the 3D rendering method whereas several complex-shape bones (cranium, ribs, spines, feet, and hands) were not able to be directly converted. We alternatively employed the corresponding well-defined polygonal models and attempted to adjust them to match the voxel models. However, this approach was unsatisfactory. The shapes of the alternative models were significantly different from those of the voxel models, making it virtually impossible to exactly match the voxel models as shown in Fig. 3 (left). In order to overcome the difficulty in the complex bone conversion, the present study developed a new conversion method and converted these complex bones voxel models of the ICRP male phantom to polygonal models. The present study developed the new conversion method and successfully improved polygonal models for cranium, ribs, and spines for the ICRP male phantom. The new conversion method will be also applied to the complex bone conversion for the ICRP female phantom as well as other complex organ conversion in the future

  4. Direct and remarkably efficient conversion of methane into acetic acid catalyzed by amavadine and related vanadium complexes. A synthetic and a theoretical DFT mechanistic study.

    Science.gov (United States)

    Kirillova, Marina V; Kuznetsov, Maxim L; Reis, Patrícia M; da Silva, José A L; da Silva, João J R Fraústo; Pombeiro, Armando J L

    2007-08-29

    Vanadium(IV or V) complexes with N,O- or O,O-ligands, i.e., [VO{N(CH2CH2O)3}], Ca[V(HIDPA)2] (synthetic amavadine), Ca[V(HIDA)2], or [Bu4N]2[V(HIDA)2] [HIDPA, HIDA = basic form of 2,2'-(hydroxyimino)dipropionic or -diacetic acid, respectively], [VO(CF3SO3)2], Ba[VO(nta)(H2O)]2 (nta = nitrilotriacetate), [VO(ada)(H2O)] (ada = N-2-acetamidoiminodiacetate), [VO(Hheida)(H2O)] (Hheida = 2-hydroxyethyliminodiacetate), [VO(bicine)] [bicine = basic form of N,N-bis(2-hydroxyethyl)glycine], and [VO(dipic)(OCH2CH3)] (dipic = pyridine-2,6-dicarboxylate), are catalyst precursors for the efficient single-pot conversion of methane into acetic acid, in trifluoroacetic acid (TFA) under moderate conditions, using peroxodisulfate as oxidant. Effects on the yields and TONs of various factors are reported. TFA acts as a carbonylating agent and CO is an inhibitor for some systems, although for others there is an optimum CO pressure. The most effective catalysts (as amavadine) bear triethanolaminate or (hydroxyimino)dicarboxylates and lead, in a single batch, to CH3COOH yields > 50% (based on CH4) or remarkably high TONs up to 5.6 x 103. The catalyst can remain active upon multiple recycling of its solution. Carboxylation proceeds via free radical mechanisms (CH3* can be trapped by CBrCl3), and theoretical calculations disclose a particularly favorable process involving the sequential formation of CH3*, CH3CO*, and CH3COO* which, upon H-abstraction (from TFA or CH4), yields acetic acid. The CH3COO* radical is formed by oxygenation of CH3CO* by a peroxo-V complex via a V{eta1-OOC(O)CH3} intermediate. Less favorable processes involve the oxidation of CH3CO* by the protonated (hydroperoxo) form of that peroxo-V complex or by peroxodisulfate. The calculations also indicate that (i) peroxodisulfate behaves as a source of sulfate radicals which are methane H-abstractors, as a peroxidative and oxidizing agent for vanadium, and as an oxidizing and coupling agent for CH3CO* and that (ii) TFA is

  5. Innovative direct energy conversion systems from fusion output thermal power to the electrical one with the use of electronic adiabatic processes of electron fluid in solid conductors

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.; Osuga, K.

    2003-07-01

    It is shown that with the use of the fusion output and/or environmental thermal energy, innovative open systems for permanent auto-working (PA) direct energy converting (DEC) from the thermal to the electrical (TE) and further to the chemical potential (TEC) energies, abbreviated as PA-TEC-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world. It is analytically shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is analytically proved that the energy conservation law is exactly satisfied in a simple form where the net absorbed thermal power is directly transferred to the electrical power and to the chemical power in the PA-TEC-DEC systems. It is analytically and experimentally clarified that the long distance separation between two π type elements of the heat absorption side and the production one of the Peltier effect circuit system or between the higher temperature side and the lower one of the Seebeck effect circuit one does not change mechanisms of the heat pumping by the Peltier effect and of the TE-DEC by the Seebeck effect. The proposed systems gives us freedom of no using the fossil fuel, such as coals, oils, and natural gases that yield serious greenhouse effect all over the earth, and the plant of nuclear fissions that left radiating wastes, i.e., no more environmental pollutions. The PA-TEC-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power and the hydrogen gas resources, compact transportable hydrogen gas producers, the refrigerators, the air conditions, home electrical apparatuses, and further the computer elements. (author)

  6. Surface Reduced CeO2 Nanowires for Direct Conversion of CO2 and Methanol to Dimethyl Carbonate: Catalytic Performance and Role of Oxygen Vacancy

    Directory of Open Access Journals (Sweden)

    Zhongwei Fu

    2018-04-01

    Full Text Available Ultralong 1D CeO2 nanowires were synthesized via an advanced solvothermal method, surface reduced under H2 atmosphere, and first applied in direct synthesis of dimethyl carbonate (DMC from CO2 and CH3OH. The micro morphologies, physical parameters of nanowires were fully investigated by transmission electron microscopy (TEM, X-ray diffraction (XRD, N2 adsorption, X-ray photoelectron spectrum (XPS, and temperature-programmed desorption of ammonia/carbon dioxide (NH3-TPD/CO2-TPD. The effects of surface oxygen vacancy and acidic/alkaline sites on the catalytic activity was explored. After reduction, the acidic/alkaline sites of CeO2 nanowires can be dramatically improved and evidently raised the catalytic performance. CeO2 nanowires reduced at 500 °C (CeO2_NW_500 exhibited notably superior activity with DMC yield of 16.85 mmol gcat−1. Furthermore, kinetic insights of initial rate were carried out and the apparent activation energy barrier of CeO2_NW_500 catalyst was found to be 41.9 kJ/mol, much tiny than that of CeO2_NW catalyst (74.7 KJ/mol.

  7. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  8. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  9. The FLIC conversion codes

    International Nuclear Information System (INIS)

    Basher, J.C.

    1965-05-01

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  10. The FLIC conversion codes

    Energy Technology Data Exchange (ETDEWEB)

    Basher, J C [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1965-05-15

    This report describes the FORTRAN programmes, FLIC 1 and FLIC 2. These programmes convert programmes coded in one dialect of FORTRAN to another dialect of the same language. FLIC 1 is a general pattern recognition and replacement programme whereas FLIC 2 contains extensions directed towards the conversion of FORTRAN II and S2 programmes to EGTRAN 1 - the dialect now in use on the Winfrith KDF9. FII or S2 statements are replaced where possible by their E1 equivalents; other statements which may need changing are flagged. (author)

  11. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  12. Hydrogen photoproduction by photoelectrochemical conversion

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The water-splitting reaction by photoelectrochemical processes has gained much more attention than any of many reactions proposed for solar generation of energy-rich molecules (fuels). The conversion efficiency of the photosystem is the key factor. The higher the efficiency, the more economically feasible will be the conversion scheme. The conversion efficiency is a function of the semiconductor properties, light intensity, spectral quality, properties of the electrolyte, counterelectrode, cell configuration, etc. The semiconductor parameters include band gap, absorption coefficient and diffusion length. The area and material used for a counterelectrode are important when considering polarization losses in a two-electrode system. Besides, the stability problem is also a very important one to meet the requirement for practical applications. This paper reviews some important issues on photoelectrochemical generation of hydrogen by water splitting. It includes energy conversion efficiency, market assessment and cost goal, state of the technology, and future directions for research

  13. The conversational interface talking to smart devices

    CERN Document Server

    McTear, Michael; Griol, David

    2016-01-01

    This book provides a comprehensive introduction to the conversational interface, which is becoming the main mode of interaction with virtual personal assistants, smart devices, various types of wearables, and social robots. The book consists of four parts: Part I presents the background to conversational interfaces, examining past and present work on spoken language interaction with computers; Part II covers the various technologies that are required to build a conversational interface along with practical chapters and exercises using open source tools; Part III looks at interactions with smart devices, wearables, and robots, and then goes on to discusses the role of emotion and personality in the conversational interface; Part IV examines methods for evaluating conversational interfaces and discusses future directions. · Presents a comprehensive overview of the various technologies that underlie conversational user interfaces; · Combines descriptions of conversational user interface technologies with a gui...

  14. Computer code conversion using HISTORIAN

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Kumakura, Toshimasa.

    1990-09-01

    When a computer program written for a computer A is converted for a computer B, in general, the A version source program is rewritten for B version. However, in this way of program conversion, the following inconvenient problems arise. 1) The original statements to be rewritten for B version are lost. 2) If the original statements of the A version rewritten for B version would remain as comment lines, the B version source program becomes quite large. 3) When update directives of the program are mailed from the organization which developed the program or when some modifications are needed for the program, it is difficult to point out the part to be updated or modified in the B version source program. To solve these problems, the conversion method using the general-purpose software management aid system, HISTORIAN, has been introduced. This conversion method makes a large computer code a easy-to-use program for use to update, modify or improve after the conversion. This report describes the planning and procedures of the conversion method and the MELPROG-PWR/MOD1 code conversion from the CRAY version to the JAERI FACOM version as an example. This report would provide useful information for those who develop or introduce large programs. (author)

  15. Conversion factors and oil statistics

    International Nuclear Information System (INIS)

    Karbuz, Sohbet

    2004-01-01

    World oil statistics, in scope and accuracy, are often far from perfect. They can easily lead to misguided conclusions regarding the state of market fundamentals. Without proper attention directed at statistic caveats, the ensuing interpretation of oil market data opens the door to unnecessary volatility, and can distort perception of market fundamentals. Among the numerous caveats associated with the compilation of oil statistics, conversion factors, used to produce aggregated data, play a significant role. Interestingly enough, little attention is paid to conversion factors, i.e. to the relation between different units of measurement for oil. Additionally, the underlying information regarding the choice of a specific factor when trying to produce measurements of aggregated data remains scant. The aim of this paper is to shed some light on the impact of conversion factors for two commonly encountered issues, mass to volume equivalencies (barrels to tonnes) and for broad energy measures encountered in world oil statistics. This paper will seek to demonstrate how inappropriate and misused conversion factors can yield wildly varying results and ultimately distort oil statistics. Examples will show that while discrepancies in commonly used conversion factors may seem trivial, their impact on the assessment of a world oil balance is far from negligible. A unified and harmonised convention for conversion factors is necessary to achieve accurate comparisons and aggregate oil statistics for the benefit of both end-users and policy makers

  16. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  17. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  18. 49 CFR 1018.7 - Conversion claims.

    Science.gov (United States)

    2010-10-01

    ... Conversion claims. These procedures are directed primarily to the recovery of money on behalf of the Government. The Board may demand: (a) The return of specific property; or (b) Either the return of property or the payment of its value. ...

  19. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  20. A Model for Conversation

    DEFF Research Database (Denmark)

    Ayres, Phil

    2012-01-01

    This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...

  1. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C] tyrosine in the postabsorptive state

    International Nuclear Information System (INIS)

    Clarke, J.T.; Bier, D.M.

    1982-01-01

    Steady state phenylalanine and tyrosine turnover and the rate of conversion of phenylalanine of tyrosine in vivo were determined in 6 healthy postabsorptive adult volunteers. Continuous infusions of tracer amounts of L-[ring- 2 H5]phenylalanine were determined intravenously for 13-14 hr. After 9-10 hr, a priming dose followed by a continuous infusion of L-[1- 13 C]tyrosine was added and maintained, along with the [ 2 H5]phenylalanine infusion, for 4 hr. Venous plasma samples were obtained before the initiation of each infusion and every 30 min during the course of the combined [ 2 H5]phenylalanine and [ 13 C]tyrosine infusion for determination of isotopic enrichments of [ 2 H5]phenylalanine, [ 13 C]tyrosine, and [ 2 H4]tyrosine by gas chromatograph-mass spectrometric analysis of the N-trifluoroacetyl-, methyl ester derivatives of the amino acids. Calculated from the observed enrichments, free phenylalanine and tyrosine turnover rates were 36.1 +/- 5.1 mumole . kg-1 . h-1 and 39.8 +/- 3.5 mumole . kg-1 . h-1, respectively. Phenylalanine was converted to tyrosine at the rate of 5.83 +/- 0.59 mumole . kg-1 . h-1, accounting for approximately 16% of either the phenylalanine or the tyrosine flux. The results indicate that the normal basal steady state phenylalanine hydroxylase activity in vivo in man is lower than that obtained from phenylalanine loading studies. This supports the existence of some type of substance activation of the enzyme as reflected in the previously reported exponential relationship between phenylalanine concentration and phenylalanine hydroxylase activity in vitro. The use of continuous simultaneous infusions of tracer amounts of stable isotope-labeled phenylalanine and tyrosine provides a direct means for studying physiological regulation of phenylalanine hydroxylase activity in vivo

  2. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    Science.gov (United States)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  3. Effect of irradiation power and time on ultrasound assisted co-precipitation of nanostructured CuO–ZnO–Al2O3 over HZSM-5 used for direct conversion of syngas to DME as a green fuel

    International Nuclear Information System (INIS)

    Allahyari, Somaiyeh; Haghighi, Mohammad; Ebadi, Amanollah; Hosseinzadeh, Shahin

    2014-01-01

    ) showed a very narrow particles size distribution. More than 65% of particles of this nanocatalyst were in the range of 1–30 nm. The performance of investigated nanocatalysts in direct synthesis of DME from syngas showed ultrasound-assisted synthesized nanocatalysts have higher CO conversion and DME selectivity in comparison to non-sonicated catalyst. Selectivity of DME in catalyst with 150 W and 60 min ultrasonic irradiation exceeds 80% while DME selectivity of non-sonicated catalyst barely reaches to 50%. Among sonicated nanocatalysts, with increasing power and time of irradiation, the nanocatalyst represents higher activity and DME selectivity. Time on stream test of sonicated nanocatalyst showed stability of the nanocatalyst in 1440 min at 40 bar and 275 °C

  4. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  5. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  6. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  7. Computers and conversation

    CERN Document Server

    Luff, Paul; Gilbert, Nigel G

    1986-01-01

    In the past few years a branch of sociology, conversation analysis, has begun to have a significant impact on the design of human*b1computer interaction (HCI). The investigation of human*b1human dialogue has emerged as a fruitful foundation for interactive system design.****This book includes eleven original chapters by leading researchers who are applying conversation analysis to HCI. The fundamentals of conversation analysis are outlined, a number of systems are described, and a critical view of their value for HCI is offered.****Computers and Conversation will be of interest to all concerne

  8. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into

  9. Process and apparatus for conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2006-01-01

    The invention is directed to a process for the conversion of biomass, in particular lignocellulose-containing biomass into a product that may be further processes in a fermentation step. The invention is further directed to apparatus suitable for carrying out such processes. According to the

  10. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  11. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  12. Conversations in African Philosophy

    African Journals Online (AJOL)

    JONATHAN

    Conversational philosophy is articulated by Jonathan O. Chimakonam as the new wave of philosophical practice both in “place” and in “space”. This journal adopts and promotes this approach to philosophizing for African philosophy. Readers are encouraged to submit their conversational piece (maximum of 2000 words) ...

  13. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  14. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  15. The conversion factor of α radiation efficiency

    International Nuclear Information System (INIS)

    Wang Weida; Zhou Zhixin; Xia Junding

    1997-01-01

    It is important in fine-grain TL dating that the full α dose must be converted into the equivalent β dose. Although the conversion coefficient K for internal radiation efficiency can not be measured directly for each sample, it is possible to measure the external radiation efficiency K 3.7 . For this purpose a special study for the conversion factor of K to K 3.7 has been made using ultrathin TLD. The results show that the conversion factor of the TLD for archaeological samples is 0.847, which is in agreement with the calculated value 0.85

  16. Political conversations on Facebook

    DEFF Research Database (Denmark)

    Sørensen, Mads P.

    2016-01-01

    Political conversations are according to theories on deliberative democracy essential to well-functioning democracies. Traditionally these conversations have taken place in face-to-face settings, in e.g. party meetings and town meetings. However, social media such as Facebook and Twitter offers new...... possibilities for online political conversations between citizens and politicians. This paper examines the presence on Facebook and Twitter of Members of the Danish national Parliament, the Folketing, and focusses on a quantitative mapping of the political conversation activities taking place in the threads...... following Facebook posts from Danish Members of Parliament (MPs). The paper shows that, in comparison with previous findings from other countries, Danish MPs have a relatively high degree of engagement in political conversations with citizens on Facebook – and that a large number of citizens follow MPs...

  17. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  18. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ

  19. Conversion of oligomeric starch, cellulose, or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A.; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2016-10-18

    The present invention is directed to the one step selective conversion of starch, cellulose, or glucose to molecules containing 7 to 26 contiguous carbon atoms. The invention is also directed to the conversion of those intermediates to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  20. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  1. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  2. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  3. Postoperative conversion disorder.

    Science.gov (United States)

    Afolabi, Kola; Ali, Sameer; Gahtan, Vivian; Gorji, Reza; Li, Fenghua; Nussmeier, Nancy A

    2016-05-01

    Conversion disorder is a psychiatric disorder in which psychological stress causes neurologic deficits. A 28-year-old female surgical patient had uneventful general anesthesia and emergence but developed conversion disorder 1 hour postoperatively. She reported difficulty speaking, right-hand numbness and weakness, and right-leg paralysis. Neurologic examination and imaging revealed no neuronal damage, herniation, hemorrhage, or stroke. The patient mentioned failing examinations the day before surgery and discontinuing her prescribed antidepressant medication, leading us to diagnose conversion disorder, with eventual confirmation by neuroimaging and follow-up examinations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  5. Freely flowing conversations

    DEFF Research Database (Denmark)

    Aakjær, Marie Kirstejn; Andrade, David; Dexters, Peter

    and in regards to rehabilitation efforts. In the context of prisons UDI is inspired by the complexity approach (Stacey 2005). We seek to facilitate freely flowing conversations between inmates, staff and managers – pushing the boundaries of existing norms, roles and beliefs. In the end however we rely...... relations by changing conversations. Through the theoretical framework of the complexity approach, we discuss how this may lead to organizational change. Finally we suggest that inviting inmates to take part in conversations about core organizational development may be a fundamental strategy in trying...

  6. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  7. Mining Conversational Social Video

    OpenAIRE

    Biel, Joan-Isaac

    2013-01-01

    The ubiquity of social media in our daily life, the intense user participation, and the explo- sion of multimedia content have generated an extraordinary interest from computer and social scientists to investigate the traces left by users to understand human behavior online. From this perspective, YouTube can be seen as the largest collection of audiovisual human behavioral data, among which conversational video blogs (vlogs) are one of the basic formats. Conversational vlogs have evolved fro...

  8. Persuasion detection in conversation

    OpenAIRE

    Gilbert, Henry T.

    2010-01-01

    Approved for public release; distribution is unlimited In this thesis, we present a system for annotating persuasion in conversation based on a social-psychological model. We augmented the social model developed by James Cialdini with some of our own categories for annotators to label. The conversations consisted of 37 hostage negotiation transcripts from private and public sources, with all personal information removed from the private source transcripts. We evaluated the level of agre...

  9. Conversational flow promotes solidarity.

    Science.gov (United States)

    Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H

    2013-01-01

    Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  10. Conversational flow promotes solidarity.

    Directory of Open Access Journals (Sweden)

    Namkje Koudenburg

    Full Text Available Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here. The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay. Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.

  11. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  12. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  13. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  14. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically have rather...... with the production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...... to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of fossil resources means...

  15. Predictability of Conversation Partners

    Science.gov (United States)

    Takaguchi, Taro; Nakamura, Mitsuhiro; Sato, Nobuo; Yano, Kazuo; Masuda, Naoki

    2011-08-01

    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song , ScienceSCIEAS0036-8075 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  16. Predictability of Conversation Partners

    Directory of Open Access Journals (Sweden)

    Taro Takaguchi

    2011-09-01

    Full Text Available Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al., Science 327, 1018 (2010SCIEAS0036-8075] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one’s conversation partners is defined as the degree to which one’s next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to a certain extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the position of the individual in the static social network derived from the data. Individuals confined in a community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and those bridging different communities tend to have high predictability.

  17. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  18. Dose conversion factors

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1992-01-01

    The following is discussed in this report: concepts and quantities used in calculating radiation dose from internal and external exposure. Tabulations of dose conversion factor for internal and external exposure to radionuclides. Dose conversion factors give dose per unit intake (internal) or dose per unit concentration in environment (external). Intakes of radionuclides for internal exposure and concentrations of radionuclides in environment for external exposure are assumed to be known. Intakes and concentrations are obtained, e.g., from analyses of environmental transport and exposure pathways. differences between dosimetry methods for radionuclides and hazardous chemicals are highlighted

  19. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  20. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  1. Topical papers on uranium conversion and enrichment

    International Nuclear Information System (INIS)

    Uranium conversion and enrichment are discussed in 5 papers by representatives of the USA, Great Britain and Switzerland. The state of the art is reviewed, and future prospects are given. Supply assurance is directly related to the necessary production capacities and the supply agreements

  2. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  3. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  4. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  5. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  6. Conversation and research

    NARCIS (Netherlands)

    Schuurman, Jan Gerrit; Veermans, K.H.

    2001-01-01

    Gordon Pask’s conversation theory was created in the 1970s. The theory encompasses a high-level framework for studying interactions between actors in artificial situations where people co-operate, have conflicts, follow rules, negotiate outcomes, invent new rules together, etc. Sadly, the theory is

  7. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  8. The Nanticoke conversion study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    A study was conducted to assess the conversion of the Nanticoke coal-fired power plant to cleaner burning natural gas combined-cycle gas turbines. The Nanticoke Generating Station on Lake Erie is responsible for more than 50 per cent of Ontario Power Generation's (OPG) coal-fired electricity production. The OPG is proposing to work towards compliance with the newly signed Ozone Annex to the 1991 Canada-United States Air Quality Agreement which will require fossil-fueled power plants in southern Ontario to reduce their smog-causing nitrogen oxides emissions by about 50 per cent by 2007. This study assessed the emission reduction benefits and financial costs of conversion compared to continuing to operate Nanticoke as a coal-fired plant. The analysis includes a base case set of data on fuel prices, retrofit costs, fuel efficiencies, annual capacity factors and other parameters. It was determined that conversion would cost the average household less than $3 per month on their electricity bill. Conversion would also reduce emissions nitrogen oxide, a major smog pollutant, by 83 per cent and the particulates that form the most health-threatening portion of smog would be reduced by 100 per cent. 15 tabs., 1 fig.

  9. Leadership is a conversation.

    Science.gov (United States)

    Groysberg, Boris; Slind, Michael

    2012-06-01

    Globalization and new technologies have sharply reduced the efficacy of command-and-control management and its accompanying forms of corporate communication. In the course of a recent research project, the authors concluded that by talking with employees, rather than simply issuing orders, leaders can promote operational flexibility, employee engagement, and tight strategic alignment. Groysberg and Slind have identified four elements of organizational conversation that reflect the essential attributes of interpersonal conversation: intimacy, interactivity, inclusion, and intentionality. Intimacy shifts the focus from a top-down distribution of information to a bottom-up exchange of ideas. Organizational conversation is less corporate in tone and more casual. And it's less about issuing and taking orders than about asking and answering questions. Interactivity entails shunning the simplicity of monologue and embracing the unpredictable vitality of dialogue. Traditional one-way media-print and broadcast, in particular-give way to social media buttressed by social thinking. Inclusion turns employees into full-fledged conversation partners, entitling them to provide their own ideas, often on company channels. They can create content and act as brand ambassadors, thought leaders, and storytellers. Intentionality enables leaders and employees to derive strategically relevant action from the push and pull of discussion and debate.

  10. Predicting AD conversion

    DEFF Research Database (Denmark)

    Liu, Yawu; Mattila, Jussi; Ruiz, Miguel �ngel Mu�oz

    2013-01-01

    To compare the accuracies of predicting AD conversion by using a decision support system (PredictAD tool) and current research criteria of prodromal AD as identified by combinations of episodic memory impairment of hippocampal type and visual assessment of medial temporal lobe atrophy (MTA) on MRI...

  11. Conversion tables. Appendix I

    International Nuclear Information System (INIS)

    McKerrell, H.

    1975-01-01

    Tables are presented for the conversion of standard (5568 year half-life) C-14 dates to calendar years. The major part of the data converts C-14 dates to tree-ring years: additional data are given, based on the Egyptian historical curve. (U.K.)

  12. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  13. Our Digital Conversion

    Science.gov (United States)

    Edwards, Mark

    2012-01-01

    In this article, the author describes their digital conversion initiative at Mooresville Graded School District. The project has placed a MacBook Air laptop in the hands of every 3rd through 12th grader and their teachers in the district over the past four years, with over 5,000 computers distributed. But they believe their academic successes have…

  14. Parametric down conversion of X-rays, recent experiments

    CERN Document Server

    Adams, B; Novikov, D V; Materlik, G; Mills, D M

    2001-01-01

    Parametric down conversion of X-ray photons in diamond crystals was detected in six experiments, all using the phase matching scheme first employed in the X-ray regime by Eisenberger and McCall (Eisenberger and McCall, Phys. Rev. Lett. 26 (1971) 684). The conversion events were detected by a combination of time correlation spectroscopy and energy discrimination. The time correlation spectra gave a direct comparison of the conversion rate over the accidental coincidence rate.

  15. Nuclear fuel conversion and fabrication chemistry

    International Nuclear Information System (INIS)

    Lerch, R.E.; Norman, R.E.

    1984-01-01

    Following irradiation and reprocessing of nuclear fuel, two operations are performed to prepare the fuel for subsequent reuse as fuel: fuel conversion, and fuel fabrication. These operations complete the classical nuclear fuel cycle. Fuel conversion involves generating a solid form suitable for fabrication into nuclear fuel. For plutonium based fuels, either a pure PuO 2 material or a mixed PuO 2 -UO 2 fuel material is generated. Several methods are available for preparation of the pure PuO 2 including: oxalate or peroxide precipitation; or direct denitration. Once the pure PuO 2 is formed, it is fabricated into fuel by mechanically blending it with ceramic grade UO 2 . The UO 2 can be prepared by several methods which include direct denitration. ADU precipitation, AUC precipitation, and peroxide precipitation. Alternatively, UO 2 -PuO 2 can be generated directly using coprecipitation, direct co-denitration, or gel sphere processes. In coprecipitation, uranium and plutonium are either precipitated as ammonium diuranate and plutonium hydroxide or as a mixture of ammonium uranyl-plutonyl carbonate, filtered and dried. In direct thermal denitration, solutions of uranium and plutonium nitrates are heated causing concentration and, subsequently, direct denitration. In gel sphere conversion, solutions of uranium and plutonium nitrate containing additives are formed into spherical droplets, gelled, washed and dried. Refabrication of these UO 3 -PuO 2 starting materials is accomplished by calcination-reduction to UO 2 -PuO 2 followed by pellet fabrication. (orig.)

  16. Conversion of Semipalatinsk test site

    International Nuclear Information System (INIS)

    Cherepnin, Yu. S.

    1997-01-01

    The conversion of the former defense enterprises of STS (Semipalatinsk Test Sate) started under very difficult conditions, when not only research and production activity, but all social life of Kurchatov city were conversed which was caused by a fast curtailment and restationing of Russian military units from the test site. A real risk of a complete destruction of the whole research and production structure of the city existed. From this point of view, the decision of the Republic of Kazakhstan Government to create the National Nuclear Center on the base of the test site research enterprises was actual and timely. During 1993, three research institutes of NNC RK - Institute of Atomic Energy, Institute of Geophysics Research and Institute of Radiation Safety and Environment were established. This decision, under conditions of the Ussr disintegration and liquidation of the test site military divisions, allowed to preserve the qualified personnel, to provide and follow-up the operation of nuclear dangerous facilities, to develop and start the realization of the full scale conversion program.At present time, directions and structure of basic research work in NNC RK are as follows: - liquidation of nuclear explosions consequences; - liquidation of technological infrastructure used for preparation and conduction of nuclear weapon testing; - creation of technology, equipment and places for acceptance and storage of radioactive wastes; - working out of atomic energy development conception in Kazakhstan; - study of reactor core melt behavior under severe accidents in NPP; - development of methods and means of nuclear testing detection, continuous monitoring of nuclear explosions; - experimental work on a study of structure materials behavior of ITER thermonuclear reactor; - creation of industries requiring a lage implementation of science

  17. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  18. Rectenna session: Micro aspects. [energy conversion

    Science.gov (United States)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  19. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  20. Reported Speech in Conversational Storytelling during Nursing Shift Handover Meetings

    Science.gov (United States)

    Bangerter, Adrian; Mayor, Eric; Pekarek Doehler, Simona

    2011-01-01

    Shift handovers in nursing units involve formal transmission of information and informal conversation about non-routine events. Informal conversation often involves telling stories. Direct reported speech (DRS) was studied in handover storytelling in two nursing care units. The study goal is to contribute to a better understanding of conversation…

  1. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    Rodriguez Machin, Lizet; Perez Bermudez, Raul; Quintana Perez, Candido Enrique; Ocanna Guevara, Victor Samuel; Duffus Scott, Alejandro

    2011-01-01

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  3. Feasibility of Colliding-beam fast-fission reactor via 238U80++238 U80+ --> 4 FF + 5n + 430 MeV beam with suppressed plutonium and direct conversion of fission fragment (FF) energy into electricity and/or Rocket propellant with high specific impulse

    Science.gov (United States)

    Maglich, Bogdan; Hester, Tim; Calsec Collaboration

    2015-10-01

    Uranium-uranium colliding beam experiment1, used fully ionized 238U92+ at energy 100GeV --> accelerated through 3 MV accelerator, will collide beam 240 MeV --> 4 FF + 5n + 430 MeV. Using a simple model1 fission σf ~ 100 b. Suppression of Pu by a factor of 106 will be achieved because NO thermal neutron fission can take place; only fast, 1-3 MeV, where σabs is negligible. Direct conversion of 95% of 430 MeV produced is carried by electrically charged FFs which are magnetically funneled for direct conversion of energy of FFs via electrostatic decelerators4,11. 90% of 930 MeV is electrically recoverable. Depending on the assumptions, we project electric _ power density production of 20 to 200 MWe m-3, equivalent to Thermal 1.3 - 13 GWthm-3. If one-half of unburned U is used for propulsion while rest powers system, heavy FF ion mass provides specific impulse Isp = 106 sec., 103 times higher than current rocket engines.

  4. Conversation Analysis in Applied Linguistics

    DEFF Research Database (Denmark)

    Kasper, Gabriele; Wagner, Johannes

    2014-01-01

    on applied CA, the application of basic CA's principles, methods, and findings to the study of social domains and practices that are interactionally constituted. We consider three strands—foundational, social problem oriented, and institutional applied CA—before turning to recent developments in CA research...... on learning and development. In conclusion, we address some emerging themes in the relationship of CA and applied linguistics, including the role of multilingualism, standard social science methods as research objects, CA's potential for direct social intervention, and increasing efforts to complement CA......For the last decade, conversation analysis (CA) has increasingly contributed to several established fields in applied linguistics. In this article, we will discuss its methodological contributions. The article distinguishes between basic and applied CA. Basic CA is a sociological endeavor concerned...

  5. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. Clinical linguistics: conversational reflections.

    Science.gov (United States)

    Crystal, David

    2013-04-01

    This is a report of the main points I made in an informal "conversation" with Paul Fletcher and the audience at the 14th ICPLA conference in Cork. The observations arose randomly, as part of an unstructured 1-h Q&A, so they do not provide a systematic account of the subject, but simply reflect the issues which were raised by the conference participants during that time.

  7. Conversations with Miss Jane

    Directory of Open Access Journals (Sweden)

    Geneviève Fabre

    2006-05-01

    Full Text Available Considering the wide range of conversations in the autobiography, this essay will attempt to appraise the importance of these verbal exchanges in relation to the overall narrative structure of the book and to the prevalent oral tradition in Louisiana culture, as both an individual and communal expression. The variety of circumstances, the setting and staging, the interlocutors , and the complex intersection of time and place, of stories and History, will be examined; in these conversations with Miss Jane many actors participate, from  the interviewer-narrator, to most characters; even the reader becomes involved.Speaking, hearing, listening, keeping silent is an elaborate ritual that performs many functions; besides conveying news or rumors, it imparts information on the times and on the life of a “representative” woman whose existence - spanning a whole century- is both singular and emblematic. Most importantly this essay will analyse the resonance of an eventful and often dramatic era on her sensibility and conversely show how her evolving sensibility informs that history and draws attention to aspects that might have passed unnoticed or be forever silenced. Jane’s desire for liberty and justice is often challenged as she faces the possibilities of life or death.Conversations build up a complex, often contradictory, but compelling portrait: torn between silence and vehemence, between memories and the urge to meet the future, Jane summons body and mind to find her way through the maze of a fast changing world; self-willed and obstinate she claims her right to speak, to express with wit and wisdom her firm belief in the word, in the ability to express deep seated convictions and faith and a whole array of feelings and emotions.

  8. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  9. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  10. Postoperative conversion disorder in a pediatric patient.

    Science.gov (United States)

    Judge, Amy; Spielman, Fred

    2010-11-01

    According to the Diagnostic and Statistical Manual IV (DSM IV), conversion disorder is classified as a somatoform illness and defined as an alteration or loss of physical function because of the expression of an underlying psychological ailment. This condition, previously known as hysteria, hysterical neurosis, or conversion hysteria occurs rarely, with an incidence of 11-300 cases per 100,000 people (American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th edn. Washington, DC: American Psychiatric Association, 1994). Presentation after an anesthetic is exceptional. After thorough review of the literature, fewer than 20 cases have been documented, with only two instances in patients younger than 18 years of age after general anesthesia; both were mild in nature. We present a severe case of postoperative conversion disorder that developed upon emergence from anesthesia in a previously healthy 16-year-old girl following direct laryngoscopy with vocal fold injection. © 2010 Blackwell Publishing Ltd.

  11. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform.

    Science.gov (United States)

    Shahrokhian, Saeed; Khaki Sanati, Elnaz; Hosseini, Hadi

    2018-07-30

    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically aligned arrays of Cu clusters and Cu(OH) 2 nanotubes, which can act as both mediator and positioning fixing factor for the rapid formation of self-supported MOFs on GCE surface. The effect of both chemically and electrochemically formed Cu(OH) 2 nanotubes on the morphological and electrochemical performance of the prepared MOFs were investigated. Due to the unique properties of the prepared MOFs thin film electrode such as uniform and vertically aligned structure, excellent stability, high electroactive surface area, and good availability to analyte and electrolyte diffusion, it was directly used as the electrode material for non-enzymatic electrocatalytic oxidation of glucose. Moreover, the potential utility of this sensing platform for the analytical determination of glucose concentration was evaluated by the amperometry technique. The results proved that the self-supported MOFs thin film on GCE is a promising electrode material for fabricating and designing non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Conversion of Questionnaire Data

    International Nuclear Information System (INIS)

    Powell, Danny H.; Elwood, Robert H. Jr.

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC and A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC and A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC and A tasks performed in the facility. If a specific material protection, control, and accountability (MPC and A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC and A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC and A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A

  13. Teaching Spanish Pragmatics Through Colloquial Conversations

    Directory of Open Access Journals (Sweden)

    Albelda Marco, Marta

    2017-11-01

    Full Text Available This paper focuses on the advantages of teaching and learning a foreign language with and through spoken discursive corpora, and especially colloquial and conversational ones. The benefits of developing oral competence and communicative skills in language learners using colloquial conversations will be exposed and discussed. In this paper, we characterise the colloquial conversation and the features that define this register and discursive genre. Being the most natural and original way to communicate among human beings, the colloquial conversation is the most common means to communicate, and therefore, this genre should have a greater presence in foreign-language classrooms. Secondly, we expound on the advantages of teaching using colloquial conversations corpora, particularly resulting from its contextualisation (the linguistic input is learnt in its real and authentic context and from its oral and conversational features (prosodic elements and interactional mechanisms. Thirdly, the paper provides a list of corpora of colloquial conversations that are available in Spanish, focusing on Val.Es.Co. colloquial corpus (peninsular Spanish oral corpus, Briz et al., 2002; Cabedo & Pons online, www.valesco.es. Finally, a set of pragmatic applications of corpora in foreign-language classroom is offered, in particular using the Val.Es.Co. colloquial corpus: functions of discourse markers and interjections (whose meanings change depending on the context, strategies of turn-takings, ways of introducing new topic in the dialogues, mechanisms of keeping or “stealing” the turn, devices to introduce direct speech, attitudes expressed by the falling and rising intonations, hedges and intensifiers, and so on. In general, this paper pretends to offer ideas, resources and materials to make the students more competent in communication using authentic discursive oral corpora.

  14. Nuclear spin conversion in formaldehyde

    OpenAIRE

    Chapovsky, Pavel L.

    2000-01-01

    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.

  15. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  16. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...

  17. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  18. Moodle 20 Course Conversion

    CERN Document Server

    Wild, Ian

    2011-01-01

    With clear instructions and plenty of screenshots, this book provides all the support and guidance you will need as you begin to convert your teaching to Moodle. Step-by-step tutorials use real-world examples to show you how to convert to Moodle in the most efficient and effective ways possible. Moodle Course Conversion carefully illustrates how Moodle can be used to teach content and ideas and clearly demonstrates the advantages of doing so. This book is for teachers, tutors, and lecturers who already have a large body of teaching material and want to use Moodle to enhance their course, rathe

  19. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  20. Conversion program in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, E.B. [Studsvik Nuclear AB, Nykoeping (Sweden)

    1997-08-01

    The conversion of the Swedish 50 MW R2 reactor from HEU to LEU fuel has been successfully accomplished over a 16 cycles long process. The conversion started in January 1991 with the introduction of 6 LEU assemblies in the 8*8 core. The first all LEU core was loaded in March 1993 and physics measurements were performed for the final licensing reports. A total of 142 LEU fuel assemblies have been irradiated up until September 1994 without any fuel incident. The operating licence for the R2 reactor was renewed in mid 1994 taking into account new fuel type. The Swedish Nuclear Inspectorate (SKI) pointed out one crucial problem with the LEU operation, that the back end of the LEU fuel cycle has not yet been solved. For the HEU fuel Sweden had the reprocessing alternative. The country is now relying heavily on the success of the USDOEs Off Site Fuels Policy to take back the spent fuel from the research reactors. They have in the meantime increased their intermediate storage facilities. There is, however, a limit both in time and space for storage of MTR-type of assemblies in water. The penalty of the lower thermal neutron flux in LEU cores has been reduced by improvements of the new irradiation rigs and by fine tuning the core calculations. The Studsvik code package, CASMO-SIMULATE, widely used for ICFM in LWRs has been modified to suit the compact MTR type of core.

  1. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  2. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  3. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  4. Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous Generators (D-PMSGs

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2014-11-01

    Full Text Available This paper investigates the use of an Electronic Power Transformer (EPT incorporated with an energy storage system to smooth the wind power fluctuations and enhance the low voltage ride-through (LVRT capability of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs. The decoupled control schemes of the system, including the grid side converter control scheme, generator side converter control scheme and the control scheme of the energy storage system, are presented in detail. Under normal operating conditions, the energy storage system absorbs the high frequency component of the D-PMSG output power to smooth the wind power fluctuations. Under grid fault conditions, the energy storage system absorbs the redundant power, which could not be transferred to the grid by the EPT, to help the D-PMSG to ride through low voltage conditions. This coordinated control strategy is validated by simulation studies using MATLAB/Simulink. With the proposed control strategy, the output wind power quality is improved and the D-PMSG can ride through severe grid fault conditions.

  5. Thermal Conversion of Methane to Acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2000-01-01

    This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

  6. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  7. Conversation with Meir Sternberg

    Directory of Open Access Journals (Sweden)

    Federico Pianzola

    2011-07-01

    Full Text Available Below are the videos of the interview recorded the 21st May 2011 in Fribourg (CH, in occasion of the first RRN conference. Conversation with Meir Sternberg. Part 1 of 8 - Narratology: classical and postclassical studies. Part 2 of 8 - The development of an original theoretical framework. Part 3 of 8 - Sternberg and Genette: different ways for the same problems. Part 4 of 8 - «There are no forms except in terms of functions». Part 5 of 8 - A life writing articles: so many papers and just four books. Part 6 of 8 - Two arguments against mimetical approaches to narrative. Part 7 of 8 - «Narrative is not given, it is a construct». Part 8 of 8 - The proteus principle. the many-to-many correspondence between forms and functions.

  8. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  9. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    Holm-Nielsen, J.B.; Huntingford, S.; Halberg, N.

    1993-03-01

    The aim was to show the agricultural advantages of farmers being in connection with Communal Biogas Plant. Whether a more environmentally protectire distribution of plant nutrients from animal manure takes place through a biogas plants distribution system, whether the nitrogen in the digested slurry is better utilized and whether the connection results in slurry transportation-time reduction, are discussed. The average amount of nitrogen from animal manure used per hectare was reduced. The area of manure distribution was larger. The nitrogen efficiency was increased when using digested slurry and purchase of N mineral fertilizer decreased, resulting in considerable reduction in nitrogen leaching. The amount of slurry delivered to the local storage tanks was approximately 45 per cent of the total amount treated on the biogas plant. Conditions of manure transport improved greatly as this was now the responsibility of the communal biomass conversion plant administrators. (AB) (24 refs.)

  10. Power conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M. A.

    1997-02-01

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  11. Biomass Thermochemical Conversion Program. 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  12. Absorption and emission from mode conversion theory

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-02-01

    The effects of mode conversion theory on emission have led to some surprising results. The classical expressions were originally derived from models which did not include mode conversion or its attendant reflection. When mode conversion was included, the first surprise was that the transmission coefficient is totally independent of absorption and due exclusively to tunneling. The other surprise is that the observed emission arises from two distinct sources, one direct, and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for laboratory plasmas, leading to the validation of the classical formula, but via an entirely new paradigm in its interpretation. This paper includes a summary of the absorption process for electron cyclotron harmonics, and reviews the emission physics, including both potential error estimates and a discussion of the spatial emission source distribution

  13. Paradoxical therapy in conversion disorder

    OpenAIRE

    ATAOĞLU, Ahmet

    1998-01-01

    Paradoxical therapy consists of suggesting that the patient intentionally engages in the unwanted behaviour, such as performing complusive ritual or bringing on a conversion attack. In this study paradoxical intention (PI) was used with to half of the patients with conversion disorders, while the other half were treated with diazepam in order to examine the efficiency of the PI versus diazepam in conversion disorder. Patients treated with PI appeared to have a greater improvement r...

  14. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  15. Biomass Conversion over Heteropoly Acid Catalysts

    KAUST Repository

    Zhang, Jizhe

    2015-04-01

    (Au/Cs2HPW12O40) that enabled the selective conversion of cellobiose to gluconic acid with a very high yield of 96.4% (Chapter II); we realized a direct oxidative conversion of cellulose to glycolic acid (yield of 49.3 %) in a water medium for the first time, by using a phosphomolybdic acid catalyst (chapter III); we found that a vanadium-substituted phosphomolybdic acid catalyst (H4PVMo11O40) is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity, and under optimized reaction conditions, high yield of formic acid (67.8%) can be obtained from cellulose (chapter IV); we discovered that the vanadium-substituted phosphomolybdic acids can also selectively oxidize glycerol, a low-cost by-product of biodiesel, to formic acid, and interestingly this conversion can be performed in highly concentration aqueous solution (glycerol: water = 50: 50), giving rise to exceptionally high conversion efficiency (chapter V). These results reveal that HPAs are useful and suitable catalysts for selective oxidation of biomass, and that the reaction pathway is largely determined by the type of addenda atom in the HPA catalyst. The optimization of the reaction conditions and processes in these systems are also discussed in this thesis.

  16. NASA thermionic-conversion program

    International Nuclear Information System (INIS)

    Morris, J.F.

    1977-01-01

    NASA's program for applied research and technology (ART) in thermionic energy conversion (TEC) has made worthwhile contributions in a relatively short time: Many of these accomplishments are incremental, yet important. And their integration has yielded gains in performance as well as in the knowledge necessary to point productive directions for future work. Both promise and problems derive from the degrees of freedom allowed by the current programmatic emphasis on out-of-core thermionics. Materials and designs previously prohibited by in-core nucleonics and geometries now offer new potentialities. But as a result a major TEC-ART responsibility is the efficient reduction of the glitter of diverse possibilities to the hard glint of reality. As always high-temperature material effects are crucial to the level and duration of TEC performance: New electrodes must increase and maintain power output regardless of emitter-vapor deposition on collectors. They must also serve compatibly with hot-shell alloys. And while space TEC must face high-temperature vaporization problems externally as well as internally, terrestrial TEC must tolerate hot corrosive atmospheres outside and near-vacuum inside. Furthermore, some modes for decreasing interelectrode losses appear to require rather demanding converter geometries to produce practical power densities. In these areas and others significant progress is being made in the NASA TEC-ART Program

  17. Phase conversion for fusion lasers

    International Nuclear Information System (INIS)

    Kessler, T.; Castle, W.; Sampat, N.; Skupsky, S.; Smith, D.; Swales, S.

    1988-01-01

    An essential requirement for direct drive laser fusion is the uniform irradiation of spherical targets that are located in the quasi-far field of a laser system. A major impediment to irradiation uniformity with high-power solid-state laser systems is the presence of a hot-spot structure at the target plane. The hot-spot intensity nonuniformities are caused by spatial variations in the near-field phase front of each laser beam. Although for many tabletop applications diffraction-limited laser performance can be obtained through static phase correction, adaptive optics, or phase conjugation, such approaches are either excessively expensive, difficult to implement, or not yet available for large-aperture, high-peak-power laser beams. An alternative to phase correcting a wavefront involves modifying the laser beam's coherence properties thereby changing its focusing characteristics. The method of induced spatial incoherence (ISI) involves a reduction in both spatial and temporal coherence. Other methods are based on modifications of only the spatial coherence of a laser beam. A phase conversion technology which incorporates a distribution of near-field phases to either perform static phase correction or induce spatial incoherence offers a route toward increasingly higher levels of irradiation uniformity

  18. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  19. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  20. Nanomaterials for photovoltaic conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Ltaief, A.; Barlier, V.; Boiteux, G.; Bouazizi, A.

    2008-01-01

    A promising route for photovoltaic conversion has emerged from the combination of electroactive nanomaterials and small bandgap polymers. The formation of bulk heterojunctions resulting from the extended interfaces leads to efficient dissociation of the charge pairs generated under sunlight shown by the rapid extinction of the polymer photoluminescence for increasing contents of fullerenes or TiO 2 nanoparticles in MEH-PPV or PVK. Unconventional elaboration routes of the blends have been developed to increase the nanofiller dispersion and inhibit phase separation at high concentration. The size reduction of the acceptor domains led to a complete quenching of the radiative recombinations, obtained by specific solvent processing of MEH-PPV / C 60 nanocomposites or sol gel elaboration of TiO 2 nanoparticles in a PVK film. A simultaneous increase of the photocurrents could be achieved by the dispersion and size optimisation of the nanofillers. In situ generation of silver particles in MEH-PPV provides an example of enhanced charge separation induced by the plasmon resonance at the metal/polymer interface. The strong influence of the molecular morphology on the nanocomposite properties emphasizes the large improvements which can still be gained on the performances of organic solar cells

  1. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil

  2. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  3. Product Conversion: The Link between Separations and Fuel Fabrication

    International Nuclear Information System (INIS)

    Felker, L.K.; Vedder, R.J.; Walker, E.A.; Collins, E.D.

    2008-01-01

    Several chemical processing flowsheets are under development for the separation and isolation of the actinide, lanthanide, and fission product streams in spent nuclear fuel. The conversion of these product streams to solid forms, typically oxides, is desired for waste disposition and recycle of product fractions back into transmutation fuels or targets. The modified direct denitration (MDD) process developed at Oak Ridge National Laboratory (ORNL) in the 1980's offers significant advantages for the conversion of the spent fuel products to powder form suitable for direct fabrication into recycle fuels. A glove-box-contained MDD system and a fume-hood-contained system have been assembled at ORNL for the purposes of testing the co-conversion of uranium and mixed-actinide products. The current activities are focused on the conversion of the first products from the processing of spent nuclear fuel in the Coupled End-to-End Demonstration currently being conducted at ORNL. (authors)

  4. Process and apparatus for the conversion of biomass

    NARCIS (Netherlands)

    Bakker, R.R.C.; Hazewinkel, J.H.O.; Groenestijn, van J.W.

    2008-01-01

    The invention is directed to a process for the conversion of cellulosic biomass, in particular lignocellulose-containing biomass into fermentable sugars. The invention is further directed to apparatus suitable for carrying out such processes. According to the invention biomass is converted into

  5. Tree value conversion standards revisited

    Science.gov (United States)

    Paul S. DeBald; Martin E. Dale; Martin E. Dale

    1991-01-01

    Updated tree value conversion standards (TVCS) are presented for 12 important hardwood species of the oak-hickory forest. These updated standards-developed for each species by butt-log grade, merchantable height, and diameter at breast height-reflect the changes in lumber prices and in conversion costs which have occurred since 1976 when the original TVCS were...

  6. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  7. Career conversations in vocational schools

    NARCIS (Netherlands)

    Mittendorff, K.M.; Brok, den P.J.; Beijaard, D.

    2010-01-01

    The purpose of this study was to examine career conversations between teachers and students in competence-based vocational education in the Netherlands. A total of 32 career conversations were observed and analysed with respect to four elements: content, teacher activities, student activities and

  8. [Neuropsychological assessment in conversion disorder].

    Science.gov (United States)

    Demır, Süleyman; Çelıkel, Feryal Çam; Taycan, Serap Erdoğan; Etıkan, İlker

    2013-01-01

    Conversion disorder is characterized by functional impairment in motor, sensory, or neurovegetative systems that cannot be explained by a general medical condition. Diagnostic systems emphasize the absence of an organic basis for the dysfunction observed in conversion disorder. Nevertheless, there is a growing body of data on the specific functional brain correlates of conversion symptoms, particularly those obtained via neuroimaging and neurophysiological assessment. The present study aimed to determine if there are differences in measures of cognitive functioning between patients with conversion disorder and healthy controls. The hypothesis of the study was that the patients with conversion disorder would have poorer neurocognitive performance than the controls. The patient group included 43 patients diagnosed as conversion disorder and other psychiatric comorbidities according to DSM-IV-TR. Control group 1 included 44 patients diagnosed with similar psychiatric comorbidities, but not conversion diosorder, and control group 2 included 43 healthy individuals. All participants completed a sociodemographic questionnaire and were administered the SCID-I and a neuropsychological test battery of 6 tests, including the Serial Digit Learning Test (SDLT), Auditory Verbal Learning Test (AVLT), Wechsler Memory Scale, Stroop Color Word Interference Test, Benton Judgment of Line Orientation Test (BJLOT), and Cancellation Test. The patient group had significantly poorer performance on the SDLT, AVLT, Stroop Color Word Interference Test, and BJLOT than both control groups. The present findings highlight the differences between the groups in learning and memory, executive and visuospatial functions, and attention, which seemed to be specific to conversion disorder.

  9. Light distribution system comprising spectral conversion means

    DEFF Research Database (Denmark)

    2012-01-01

    , longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....

  10. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  11. Development of GT-MGR plant power conversion unit design

    International Nuclear Information System (INIS)

    Kostin, V.I.; Kodochigov, N.G.; Belov, S.E.; Vasyaev, A.V.; Golovko, V.F.; Shenoj, A.

    2007-01-01

    The General Atomic Company (USA) and the Pilot Design Bureau for Machine-Building (Russia) are involved in the efforts to design the GT-MGR modular helium cooled reactor and the energy conversion unit with the direct gas turbine cycle. The reactor capacity is equal to 600 MW, it is cooled by helium under 7 MPa pressure. The energy conversion unit consists of a gas turbine, a recuperator, preliminary and intermediate coolers, a generator. The turbine shaft rotation frequency is equal to 4400 rotation/minute. One analyzed the alternate designs of the energy conversion unit to choose its configuration [ru

  12. The knowledge conversion SECI process as innovation indicator analysis factor

    OpenAIRE

    Silva, Elaine da [UNESP; Valentim, Marta Lígia Pomim [UNESP

    2013-01-01

    It highlights the innovation importance in the current society and presents innovation indicators applied in 125 countries. We made an analysis in the 80 variables distributed through seven GII pillars, trying to identify the direct, indirect or null incidences of the knowledge conversion way described by the SECI Process. The researched revealed the fact that knowledge management, in this case specifically the knowledge conversion SECI Process, is present in the variables that, according to ...

  13. Conversion of electromagnetic waves at the ionisation front

    International Nuclear Information System (INIS)

    Chegotov, M V

    2001-01-01

    It is shown that a weak electromagnetic pulse interacting with a copropagating ionisation front is converted in the general case into three electromagnetic pulses with higher and lower frequencies, which propagate in different directions. The coefficients of conversion to these pulses (for intensities) were found as functions of the frequency. The electromagnetic energy is shown to decrease during this conversion because of the losses for the residual electron energy. (interaction of laser radiation with matter. laser plasma)

  14. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  15. Direct Conversion of Radioisotope Energy to Electricity: Year 3 Report

    International Nuclear Information System (INIS)

    Marks Prelas; Alexey Spitsyn; Alejandro Suarez; Eric Stienfelds; Dickerson Moreno; Bia-Ling Hsu; Tushar Ghosh; Robert Tompson; Sudarshan Loyalka; Dabir Viswanath

    2003-01-01

    A new chemical reactor has been tested for Field Enhanced Diffusion by Optical Activation doping and purification of SiC, GaN and AlN films. Different conditions have been used on SiC, GaN and AlN samples including temperature variation, electrical field variation, variations in electrical current and optical activation. A 5mW (630-680) nm laser was used for optical activation. It was observed that optical activation has a major effect on ion drift rates. It was also observed that the magnitude of the electrical current also enhanced ion drift rates by a postulated current drag mechanism. I-V characteristic curves were measured to verify changes in the electrical properties of the samples SIMS was used to analyze the concentrations of impurities in the film samples before and after treatment. It has been demonstrated that the field-enhanced diffusion by optical activation method can dope and purify the films. As a result, the electrical properties of the wafers have been significantly improved during treatment especially in cases where a laser is used

  16. Direct Nanoscale Conversion of Biomolecular Signals into Electronic Information

    Science.gov (United States)

    2008-09-22

    configuration. A transimpedance amplifier configuration with a small integration capacitor is widely used for low-noise sensing of sub-picoampere...Zhang, S. "Designed short peptide detergents stabilize the structure of photosystem I membrane protein complex," submitted (2004). 17. " Amplified

  17. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  18. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  19. Direct solar energy conversion for large scale terrestrial use

    Science.gov (United States)

    Boeer, K. W.; Meakin, J. D.

    1975-01-01

    Various techniques to increase the open circuit voltage are being explored. It had been previously observed that cells made on CdS deposited from a single source gave a consistently higher V sub oc. Further tests have now shown that this effect may in fact relate to differences in source and substrate temperatures. The resulting differences in CdS structure and crystallinity are being documented. Deposits of mixed CdS and ZnS are being produced and will be initially made into cells using the conventional barriering technique. Analysis of I-V characteristics at temperatures between 25 and 110 C is being perfected to provide nondestructive analysis of the Cu2S. Changes due to vacuum heat treatments and exposure to oxygen are also being monitored by the same technique. Detailed spectral response measurements are being made.

  20. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  4. Power electronic converter systems for direct drive renewable energy applications

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic conversion systems for wind and marine energy generation applications, in particular, direct drive generator energy conversion systems. Various topologies are presented and system design optimization and reliability are briefly discussed....

  5. A Study on the RF-DC Conversion Efficiency of Microstrip Patch Rectenna

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Ha; Youn, Dong Gi; Kim, Kwan Ho [Korea Electrotechnology Research Institute (Korea); Rhee, Young Chul [Kyungnam University (Korea)

    2000-07-01

    We designed and manufactured microstrip patch antenna mainly used in the rectenna and then analysed RF-DC conversion efficiency of wireless power transmission system. We analyse conversion efficiency of load, direction of linear and dual polization rectenna. We found that the maximum efficiency would be about 70% of load and direction in patch type. In conclusion, we found that total conversion efficiency is 64% - 71% in patch Rectenna. (author). 5 refs., 8 figs., 1 tab.

  6. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  7. Conversion of Abbandoned Military Areas

    Directory of Open Access Journals (Sweden)

    Daiva Marcinkevičiūtė

    2011-03-01

    Full Text Available The article analyses the situation of abandoned military sites, their value and significance of their conservation. It also reviews their impact on their environment and their potential in tourism, environmental, economic and social spheres. Further the positive experiences in military sites' conversion are studied. The importance of society's involvement in the conversions is discussed. The situation of XIX-XX age's military object's, the significance of their conservation and their potential in tourism market is separately analysed. The results of two researches are introduced, one of which inquires about the Lithuanian military objects' potential in tourism sphere, another one explores the possibilities of conversion. Article in Lithuanian

  8. 5 CFR 317.302 - Conversion procedures.

    Science.gov (United States)

    2010-01-01

    ... conversion. (2) Pay. Upon conversion to the Senior Executive Service, an employee's SES rate will be... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion procedures. 317.302 Section... IN THE SENIOR EXECUTIVE SERVICE Conversion to the Senior Executive Service § 317.302 Conversion...

  9. Plasma Thermal Conversion of Methane to Acetylene

    International Nuclear Information System (INIS)

    Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Detering, Brent Alan; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

    2002-01-01

    This paper describes a re-examination of a known process for the direct plasma thermal conversion of methane to acetylene. Conversion efficiencies (% methane converted) approached 100% and acetylene yields in the 90-95% range with 2-4% solid carbon production were demonstrated. Specificity for acetylene was higher than in prior work. Improvements in conversion efficiency, yield, and specificity were due primarily to improved injector design and reactant mixing, and minimization of temperature gradients and cold boundary layers. At the 60-kilowatt scale cooling by wall heat transfer appears to be sufficient to quench the product stream and prevent further reaction of acetylene resulting in the formation of heavier hydrocarbon products or solid carbon. Significantly increasing the quenching rate by aerodynamic expansion of the products through a converging-diverging nozzle led to a reduction in the yield of ethylene but had little effect on the yield of other hydrocarbon products. While greater product selectivity for acetylene has been demonstrated, the specific energy consumption per unit mass of acetylene produced was not improved upon. A kinetic model that includes the reaction mechanisms resulting in the formation of acetylene and heavier hydrocarbons, through benzene, is described

  10. Cellulose conversion of corn pericarp without pretreatment.

    Science.gov (United States)

    Kim, Daehwan; Orrego, David; Ximenes, Eduardo A; Ladisch, Michael R

    2017-12-01

    We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conversational evidence in therapeutic dialogue.

    Science.gov (United States)

    Strong, Tom; Busch, Robbie; Couture, Shari

    2008-07-01

    Family therapists' participation in therapeutic dialogue with clients is typically informed by evidence of how such dialogue is developing. In this article, we propose that conversational evidence, the kind that can be empirically analyzed using discourse analyses, be considered a contribution to widening psychotherapy's evidence base. After some preliminaries about what we mean by conversational evidence, we provide a genealogy of evaluative practice in psychotherapy, and examine qualitative evaluation methods for their theoretical compatibilities with social constructionist approaches to family therapy. We then move on to examine the notion of accomplishment in therapeutic dialogue given how such accomplishments can be evaluated using conversation analysis. We conclude by considering a number of research and pedagogical implications we associate with conversational evidence.

  12. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  13. Conversion electrons in the SDC

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1991-01-01

    We summarize a preliminary analysis of the rates for conversion electrons in the SDC detector, relative to other interesting sources of prompt electrons. We have used Papageno V3.30, and other available NLO calculations to estimate inclusive rates in the central region (η less than 2.0), and we have cross checked these using CDF data at 1.8 TeV. We have considered three sources of ''isolated'' electrons, namely inclusive W/Z production; top quark (Mt=140); and QCD prompt photon production, followed by conversion in 10% XO. This value approximates the inner silicon detector at SDC. Additional conversions will occur in the outer tracking chamber, but the trigger and track reconstruction efficiency will be lower. We have also considered ''nonisolated'' leptons coming from inclusive bottom production, photon conversions resulting from π 0 ,η production in jets, and high pt hadrons faking electrons

  14. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  15. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  16. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  17. Effective communication during difficult conversations.

    Science.gov (United States)

    Polito, Jacquelyn M

    2013-06-01

    A strong interest and need exist in the workplace today to master the skills of conducting difficult conversations. Theories and strategies abound, yet none seem to have found the magic formula with universal appeal and success. If it is such an uncomfortable skill to master is it better to avoid or initiate such conversations with employees? Best practices and evidence-based management guide us to the decision that quality improvement dictates effective communication, even when difficult. This brief paper will offer some suggestions for strategies to manage difficult conversations with employees. Mastering the skills of conducting difficult conversations is clearly important to keeping lines of communication open and productive. Successful communication skills may actually help to avert confrontation through employee engagement, commitment and appropriate corresponding behavior

  18. Electron spectrometers with internal conversion

    International Nuclear Information System (INIS)

    Suita, J.C.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The efforts that the Department of Physics (DEFI) of Institute of Nuclear Engineering (IEN) are being made aiming at adjusting the electron spectrometers with internal conversion to its necessity, are shown. (E.G.) [pt

  19. A Conversation Well Worth Remembering

    Science.gov (United States)

    Woolven-Allen, John

    2009-01-01

    To mark the 200th anniversary of Charles Darwin's birth, a special event was held at Oxford, which included a "Conversation" between Professor Richard Dawkins and Bishop Richard Harries. Here we present a personal reminiscence of the event.

  20. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  1. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  2. A strong deletion bias in nonallelic gene conversion.

    Directory of Open Access Journals (Sweden)

    Raquel Assis

    Full Text Available Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic or paralogous (nonallelic genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.

  3. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  4. Converse flexoelectric effect in comb electrode piezoelectric microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan, E-mail: shenyuan675603@gmail.com [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Chen, Wei [Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2012-04-09

    We demonstrate the converse flexoelectric effect in a lead zirconate titanate microbeam. The fringe electric field of a comb electrode induces converse flexoelectric responses in uniformly poled and depoled beams. The simulated electric field distribution shows that bending of the beam is induced by piezoelectric and μ{sub 11}, μ{sub 12} flexoelectric coefficients. Simulations indicate that piezoelectric displacement occurs in different directions in the two opposite poled samples while flexoelectric displacement remains the same. This finding is verified by the displacement measurement results. -- Highlights: ► We demonstrate the converse flexoelectric effect in a PZT microbeam. ► Beams with upward and downward poling states are fabricated by MEMS technique. ► Converse flexoelectric deformation is induced by the fringe field. ► Electric field distribution is calculated by finite element analysis. ► The simulation results are verified by impedance and displacement measurements.

  5. Information for Consumers about Alternative Fuel Conversions

    Science.gov (United States)

    Here are some factors to be aware of if you are considering fuel conversion, including background information on fuel conversion, instructions for demonstrating compliance, and other related information.

  6. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  7. Mechanisms of Ectopic Gene Conversion

    Directory of Open Access Journals (Sweden)

    P.J. Hastings

    2010-11-01

    Full Text Available Gene conversion (conversion, the unidirectional transfer of DNA sequence information, occurs as a byproduct of recombinational repair of broken or damaged DNA molecules. Whereas excision repair processes replace damaged DNA by copying the complementary sequence from the undamaged strand of duplex DNA, recombinational mechanisms copy similar sequence, usually in another molecule, to replace the damaged sequence. In mitotic cells the other molecule is usually a sister chromatid, and the repair does not lead to genetic change. Less often a homologous chromosome or homologous sequence in an ectopic position is used. Conversion results from repair in two ways. First, if there was a double-strand gap at the site of a break, homologous sequence will be used as the template for synthesis to fill the gap, thus transferring sequence information in both strands. Second, recombinational repair uses complementary base pairing, and the heteroduplex molecule so formed is a source of conversion, both as heteroduplex and when donor (undamaged template information is retained after correction of mismatched bases in heteroduplex. There are mechanisms that favour the use of sister molecules that must fail before ectopic homology can be used. Meiotic recombination events lead to the formation of crossovers required in meiosis for orderly segregation of pairs of homologous chromosomes. These events result from recombinational repair of programmed double-strand breaks, but in contrast with mitotic recombination, meiotic recombinational events occur predominantly between homologous chromosomes, so that transfer of sequence differences by conversion is very frequent. Transient recombination events that do not form crossovers form both between homologous chromosomes and between regions of ectopic homology, and leave their mark in the occurrence of frequent non-crossover conversion, including ectopic conversion.

  8. [Conversation analysis for improving nursing communication].

    Science.gov (United States)

    Yi, Myungsun

    2007-08-01

    Nursing communication has become more important than ever before because quality of nursing services largely depends on the quality of communication in a very competitive health care environment. This article was to introduce ways to improve nursing communication using conversation analysis. This was a review study on conversation analysis, critically examining previous studies in nursing communication and interpersonal relationships. This study provided theoretical backgrounds and basic assumptions of conversation analysis which was influenced by ethnomethodology, phenomenology, and sociolinguistic. In addition, the characteristics and analysis methods of conversation analysis were illustrated in detail. Lastly, how conversation analysis could help improve communication was shown, by examining researches using conversation analysis not only for ordinary conversations but also for extraordinary or difficult conversations such as conversations between patients with dementia and their professional nurses. Conversation analysis can help in improving nursing communication by providing various structures and patterns as well as prototypes of conversation, and by suggesting specific problems and problem-solving strategies in communication.

  9. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  10. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  11. Nominal Performance Biosphere Dose Conversion Factor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis

  12. Nominal Performance Biosphere Dose Conversion Factor Analysis

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2005-01-01

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  13. Conversion of far ultraviolet to visible radiation: absolute measurements of the conversion efficiency of tetraphenyl butadiene

    Science.gov (United States)

    Vest, Robert E.; Coplan, Michael A.; Clark, Charles W.

    Far ultraviolet (FUV) scintillation of noble gases is used in dark matter and neutrino research and in neutron detection. Upon collisional excitation, noble gas atoms recombine into excimer molecules that decay by FUV emission. Direct detection of FUV is difficult. Another approach is to convert it to visible light using a wavelength-shifting medium. One such medium, tetraphenyl butadiene (TPB) can be vapor-deposited on substrates. Thus the quality of thin TPB films can be tightly controlled. We have measured the absolute efficiency of FUV-to-visible conversion by 1 μm-thick TPB films vs. FUV wavelengths between 130 and 300 nm, with 1 nm resolution. The energy efficiency of FUV to visible conversion varies between 1% and 5%. We make comparisons with other recent results. Work performed at the NIST SURF III Synchrotron Ultraviolet Radiation Facility,.

  14. [Hydroxylamine conversion by anammox enrichment].

    Science.gov (United States)

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway

  15. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...... interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices...

  16. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  17. ForConX: A forcefield conversion tool based on XML.

    Science.gov (United States)

    Lesch, Volker; Diddens, Diddo; Bernardes, Carlos E S; Golub, Benjamin; Dequidt, Alain; Zeindlhofer, Veronika; Sega, Marcello; Schröder, Christian

    2017-04-05

    The force field conversion from one MD program to another one is exhausting and error-prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl-Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate comprising also Urey-Bradley and Ryckaert-Bellemans potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The brain-gut interaction: the conversation and the implications ...

    African Journals Online (AJOL)

    Bi-directional interactions between the gut and the brain play a role in health and disease. It is involved in glucose homeostasis, satiety and obesity, functional gastrointestinal disorders and possibly in inflammatory disorders such as inflammatory bowel disease. Data is starting to elucidate the conversation between the mini ...

  19. maximum conversion efficiency of thermionic heat to electricity

    African Journals Online (AJOL)

    DJFLEX

    Dushman constant ... Several attempts on the direct conversion of heat to electricity ... The net current density in the system is equal to jE – jC , which gets over the potential barrier. jE and jC are given by the Richardson-. Dushman equation as. │. ⌋.

  20. Conversion of hydrocarbons in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Kammer Hansen, K.

    2003-01-01

    Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700degreesC) have been published. Even though the conversion of almost dry CH4 at 1000degreesC on ceramic anodes was demonstrated more than 10 years...

  1. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  2. Ethnicity as Conversational Style. Sociolinguistic Working Paper Number 55.

    Science.gov (United States)

    Tannen, Deborah

    The relationship of one aspect of conversational style, the degree of directness in the sending and interpretation of messages, to ethnicity was investigated in a comparison of the communication styles of Greeks and Americans. It was hypothesized that Greeks tend to be more indirect in speech than Americans, and that English speakers of Greek…

  3. Conversations, Individuals and Knowables: Toward a Theory of Learning

    Science.gov (United States)

    Daniel, John S.

    1975-01-01

    Presents a learning theory in the language of cybernetics based on the tenet that the minimal experimental situation for making psychological observations is a conversation. The account is directed at generating interest in the original work by G. Pask, et al. (GS)

  4. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun

    2008-01-01

    -chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P ... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...... involved in conversion events. CONCLUSION: The evolution of gene families in the rice genome may have been accelerated by conversion with pseudogenes. Our analysis suggests a possible role for gene conversion in the evolution of pathogen-response genes....

  5. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  6. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  7. Evolution of energy conversion plants

    International Nuclear Information System (INIS)

    Osnaghi, C.

    2001-01-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility [it

  8. Restarts in Conversation and Literature.

    Science.gov (United States)

    Person, Raymond F., Jr.

    1996-01-01

    Analyzes restarts, a common feature of conversation, in literary discourse. The term "restart" refers to the repetition of a word or words within an utterance by the same speaker. Restarts in literary discourse are of two types: (1) those produced by the characters in their "real" narrative world and (2) those produced by the narrators themselves.…

  9. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  10. Conversations to Transform Geometry Class

    Science.gov (United States)

    Szydlik, Jennifer Earles; Parrott, Amy; Belnap, Jason Knight

    2016-01-01

    Classroom culture is negotiated and established through both conversations and practices. Traditionally, teachers and researchers have focused primarily on the individual and social construction of mathematical content--that is, students' conceptual understanding and procedural skills--through mathematical actions and practices. This article…

  11. Conversation Analysis and Applied Linguistics.

    Science.gov (United States)

    Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David

    2002-01-01

    Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)

  12. Facilitating Conversations about Managerial Identities

    DEFF Research Database (Denmark)

    Madsen, Mona Toft

    -based organization in the engineering consulting sector b) a reflection meeting, where the same three managers were gathered, and conversations were facilitated based on identity work in the context of earlier interviews. More specifically, three themes were discussed; flat organizational structure, tensions between...

  13. Humor and Embodied Conversational Agents

    NARCIS (Netherlands)

    Nijholt, Antinus

    This report surveys the role of humor in human-to-human interaction and the possible role of humor in human-computer interaction. The aim is to see whether it is useful for embodied conversational agents to integrate humor capabilities in their internal model of intelligence, emotions and

  14. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  16. The national conversion pilot project

    International Nuclear Information System (INIS)

    Van Der Puy, M.; Francis, G.; Konczal, M.

    1994-01-01

    The Department of Energy is now faced with the prospect of terminating traditional defense production missions at several Department of Energy sites. Because of this, there is a critical need to develop a DOE process to convert former defense production facilities to private use so that underutilized workers and facilities may be used to minimize the impact on the United States economy. The purpose of the National Conversation Pilot Project (NCPP) at Rocky Flats near Denver, Colorado is to explore and demonstrate the feasibility of economic conversion of DOE facilities, in a manner consistent with ongoing site waste management and cleanup activities, and non-prejudicial to future land use planning decisions. The NCPP is divided into three stages: The first stage, now under way, is one of detailed planning for cleanup and building maintenance activities. The second stage involves building cleanup necessary to support the proposed industrial activities, maintenance of equipment and building infrastructure necessary to assure protection of human health and the environment, declassification work, and some small scale research and development activities. Stage III would involve DOE metals recycling. Specific approval from the DOE is required prior to each project stage. To ensure stakeholder involvement, a steering committee will advise the DOE on the desirability to proceed with the project from stage to stage. A key question in the conversion process is whether a competitive economic and regulatory environment can be created on a DOE facility, allowing an onsite conversion business to effectively compete with offsite businesses. If successful, the Rocky Flats project could become the model for economic conversion at other DOE facilities

  17. Implications of Fast Reactor Transuranic Conversion Ratio

    International Nuclear Information System (INIS)

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  18. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  19. Direct Sulfation of Limestone

    DEFF Research Database (Denmark)

    Hu, Guilin; Dam-Johansen, Kim; Wedel, Stig

    2007-01-01

    The direct sulfation of limestone was studied in a laboratory fixed-bed reactor. It is found that the direct sulfation of limestone involves nucleation and crystal grain growth of the solid product (anhydrite). At 823 K and at low-conversions (less than about 0.5 %), the influences of SO2, O-2...... and CO2 on the direct sulfation of limestone corresponds to apparent reaction orders of about 0.2, 0.2 and -0.5, respectively. Water is observed to promote the sulfation reaction and increase the apparent reaction orders of SO2 and O-2. The influence of O-2 at high O-2 concentrations (> about 15...... %) becomes negligible. In the temperature interval from 723 K to 973 K, an apparent activation energy of about 104 kJ/mol is observed for the direct sulfation of limestone. At low temperatures and low conversions, the sulfation process is most likely under mixed control by chemical reaction and solid...

  20. Weight conversations in romantic relationships: What do they sound like and how do partners respond?

    Science.gov (United States)

    Berge, Jerica M; Pratt, Keeley; Miller, Laura

    2016-09-01

    The limited research examining weight conversations (i.e., conversations about weight, body shape, or size) in adult romantic relationships has shown associations between engaging in these conversations and disordered eating behaviors, overweight/obesity, and psychosocial problems in adults. Given the potential harmful consequences of these conversations, it is important to gather more rich qualitative data to understand how weight talk is experienced in romantic relationships and how romantic partners respond to these conversations. Adults (n = 118; mean age 35 years) from a cross-sectional study were interviewed in their homes. The majority of adults (90% female; mean age = 35 years) were from minority (64% African American) and low-income (content analysis. Sixty-five percent of participants reported that weight conversations were occurring in their romantic relationships. Qualitative themes included the following: (a) Weight conversations were direct and focused on physical characteristics; (b) weight conversations included joking or sarcastic remarks; (c) weight conversations focused on "we" and being healthy; (d) weight conversations occurred after watching TV or movies, as a result of insecurities in oneself, as length of the relationship increased, or as partners aged; and (e) partners responded to weight conversations by feeling insecure or by engaging in reciprocal weight conversations with their romantic partner. Weight conversations were prevalent in romantic relationships, with some conversations experienced as negative and some positive. Qualitative themes from the current study should be confirmed in quantitative studies to inform future intervention research targeting weight conversations in romantic relationships. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conversion of DAP models to SPEEDUP

    International Nuclear Information System (INIS)

    Aull, J.E.

    1993-08-01

    Several processes at the Savannah River Site are modeled using Bechtel's Dynamic Analysis Program (DAP) which uses a sequential modular modeling architecture. The feasibility of conversion of DAP models to SPEEDUP was examined because of the benefits associated with this de facto industry standard. The equation-based approach used in SPEEDUP gives accuracy, stability, and ease of maintenance. The DAP licenses on our site are for single-user PS/2 machines whereas the SPEEDUP product is licensed on a VAX minicomputer which provides faster execution and ease of integration with existing visualization tools. In this paper the basic unit operations of a DAP model that simulates a ventilation system are described. The basic operations were modeled with both DAP and SPEEDUP, and the two models yield results that are in close agreement. Since the basic unit operations of the DAP model have been successfully duplicated using SPEEDUP, it is feasible to proceed with model conversion. DAP subroutines and functions that involve only algebraic manipulation may be inserted directly into the SPEEDUP model or their underlying equations may be extracted and written as SPEEDUP model equations. A problem modeled in SPEEDUP running on a VAX 8810 runs approximately fifteen times faster in elapsed time than the same problem modeled with DAP on a 33 MHz Intel 80486 processor

  3. Hyperthermophilic endoglucanase for in planta lignocellulose conversion

    Directory of Open Access Journals (Sweden)

    Klose Holger

    2012-08-01

    Full Text Available Abstract Background The enzymatic conversion of lignocellulosic plant biomass into fermentable sugars is a crucial step in the sustainable and environmentally friendly production of biofuels. However, a major drawback of enzymes from mesophilic sources is their suboptimal activity under established pretreatment conditions, e.g. high temperatures, extreme pH values and high salt concentrations. Enzymes from extremophiles are better adapted to these conditions and could be produced by heterologous expression in microbes, or even directly in the plant biomass. Results Here we show that a cellulase gene (sso1354 isolated from the hyperthermophilic archaeon Sulfolobus solfataricus can be expressed in plants, and that the recombinant enzyme is biologically active and exhibits the same properties as the wild type form. Since the enzyme is inactive under normal plant growth conditions, this potentially allows its expression in plants without negative effects on growth and development, and subsequent heat-inducible activation. Furthermore we demonstrate that the recombinant enzyme acts in high concentrations of ionic liquids and can therefore degrade α-cellulose or even complex cell wall preparations under those pretreatment conditions. Conclusion The hyperthermophilic endoglucanase SSO1354 with its unique features is an excellent tool for advanced biomass conversion. Here we demonstrate its expression in planta and the possibility for post harvest activation. Moreover the enzyme is suitable for combined pretreatment and hydrolysis applications.

  4. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    Science.gov (United States)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  5. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  6. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  7. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  8. Dry gel conversion synthesis of SAPO-34 nanocrystals

    International Nuclear Information System (INIS)

    Hirota, Yuichiro; Murata, Kenji; Tanaka, Shunsuke; Nishiyama, Norikazu; Egashira, Yasuyuki; Ueyama, Korekazu

    2010-01-01

    SAPO-34 nanocrystals were synthesized by a dry gel conversion method using tetraethylammonium hydroxide as a structure-directing agent. The crystal growth of SAPO-34 was studied by X-ray diffraction and field-emission scanning electron microscopy. After 3 h, 45-nm SAPO-34 crystals with an amorphous phase were observed. The crystal size increased to 70 nm after 6 h, but did not increase greatly thereafter. The average crystal size of the final product was 75 nm. The nucleation density for SAPO-34 crystals in dry gel conversion appeared to be much higher than that under hydrothermal conditions, resulting in the formation of small crystals.

  9. Space electric power design study. [laser energy conversion

    Science.gov (United States)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  10. Designing Instructional Text in a Conversational Style: A Meta-Analysis

    Science.gov (United States)

    Ginns, Paul; Martin, Andrew J.; Marsh, Herbert W.

    2013-01-01

    This article reviews research on the effects of conversational style on learning. Studies of conversational style have variously investigated "personalization" through changing instances of first-person address to second or third person, including sentences that directly address the learner; including more polite forms of address; and…

  11. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel

    2017-01-01

    This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-o...

  12. Hemicellulose conversion by anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S; Honry, M P; Christopher, R W

    1985-01-01

    This research was undertaken to study the digestibility of the hemicellulose fractions of an aquatic biomass, a land-based biomass and a biomass-waste blend under various fermentation conditions. The conversion of hemicellulose was higher than those of cellulose and protein under the mesophilic condition. Hemicellulose was converted at a much lower efficency than cellulose during thermophilic digestion. In contrast, cellulose conversion was about the same under mesophilic and thermophilic conditions. Cellulose was utilized in preference to hemicellulose during mesophilic fermentation of nitrogen-supplemented Bermuda grass. It was speculated that Bermuda grass cellulose was converted at a higher efficiency than hemicellulose in the pressure of external nitrogen because the metabolism of the breakdown product (glucose) of cellulose required the least investment of enzymes and energy. 4 references.

  13. IMAGE CONVERSION FOR LASER PYROGRAPHY

    Directory of Open Access Journals (Sweden)

    Adrian PETRU

    2015-12-01

    Full Text Available All previous studies of pyrography have been focussed on colour obtained through modifying the work parameters. This paper analyses colour nuances obtained by laser woodworking by measuring colour changes digitally. The investigated parameter is colour reproduction by laser technology, using different image conversion methods (Halftone Round, Jarvis, and so on. The changes of image reproduction are analysed globally and colour by colour. The results show that the colour nuances are represented to a more and less degree, according to the conversion method selected. To evaluate the aesthetic changes, CIEL*a*b* colour measurements were applied. The results show that laser burning on wood surfaces has a great influence on wood colour. These findings will be useful to develop innovative design possibilities for wood surfaces for furniture and other products.

  14. Progress in understanding conversion disorder

    Science.gov (United States)

    Allin, Matthew; Streeruwitz, Anna; Curtis, Vivienne

    2005-01-01

    Conversion disorder has a history that may reach back into antiquity, and it continues to present a clinical challenge to both psychiatrists and neurologists. This article reviews the current state of knowledge surrounding the prevalence, etiology, and neurobiology of conversion disorder. There have been improvements in the accuracy of diagnosis that are possibly related to improved technologies such as neuroimaging. Once the diagnosis is made, it is important to develop a therapeutic alliance between the patient and the medical team, and where comorbid psychiatric diagnoses have been made, these need to be adequately treated. While there have been no formal trials of medication or psychoanalytic treatments in this disorder, case reports suggest that a combination of antidepressants, psychotherapy, and a multidisciplinary approach to rehabilitation may be beneficial. PMID:18568070

  15. Electrical, magnetic, and direct and converse magnetoelectric properties of (1−x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}−(x)CoFe{sub 2}O{sub 4} (PZT–CFO) magnetoelectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jian-hong, E-mail: pjhhj@sohu.com [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); College of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Hojamberdiev, Mirabbos, E-mail: hmirabbos@gmail.com [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); Li, Hai-qing; Mao, Duo-lu; Zhao, Yuan-juan [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Liu, Peng; Zhou, Jian-ping; Zhu, Gang-qiang [College of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China)

    2015-03-15

    In this work, hydrothermal synthesis and ceramic sintering process were applied to fabricate (1−x)Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}−(x)CoFe{sub 2}O{sub 4} (PZT–CFO) (x=0.20, 0.35, and 0.50) magnetoelectric (ME) composites. The X-ray diffraction (XRD) studies revealed that no chemical reaction occurred between individual PZT and CFO phases and confirmed the manifestation of PZT and CFO phases within the ME composite. Scanning electron microscopy (SEM) was used to investigate the microstructure and connectivity scheme in the ME composites. The dielectric constant (ε) and loss tangent (tan δ) were determined as functions of frequency and temperature for all the composites prepared. The polarization–electric field (P–E) and magnetization–magnetic field (M–H) hysteresis loops obtained indicate that both ferroelectric and ferromagnetic properties coexist in the ME composites prepared. The direct (DME) and converse magnetoelectric effects (CME) were measured only for the PZT–CFO20 (20 mol% CoFe{sub 2}O{sub 4}) composite sintered at 1100 °C for 4 h. The maximum values of ME voltage coefficient α{sub ME}(dE/dH) and ME susceptibility coefficient α{sub me} (dH/dE) were 226 mV cm{sup −1} Oe{sup −1} at frequency of 75.1 kHz and 1.15×10{sup −8} s/m at frequency of 66.8 kHz, respectively. - Highlights: • PZT–CFO composite was prepared by hydrothermal method and ceramic sintering process. • Effect of CoFe{sub 2}O{sub 4} content on the electrical and magnetic properties is studied. • CoFe{sub 2}O{sub 4} particles are uniformly distributed in the PZT matrix. • P–E and M–H hysteresis loops confirm room-temperature multiferroic characteristics. • T{sub m} shifts to higher values with the increase in the measurement frequency.

  16. Rating Instructional Conversations: A Guide

    OpenAIRE

    Rueda, Robert; Goldenberg, Claude; Gallimore, Ronald

    1992-01-01

    The current focus on more effective ways to foster literacy in school-age children, especially language minority students, has led to the development of alternative instructional approaches. One such approach is the instructional conversation (IC), based on early work in the Hawaiian Kamehameha Elementary Education Project (KEEP), on neo-Vygotskian theory, and on recent classroom-based research on reading comprehension. The present report outlines preliminary efforts to operationaliz...

  17. FRM-II conversion revisited

    International Nuclear Information System (INIS)

    Glaser, A.; Pistner, C.; Liebert, W.

    2000-01-01

    The possibilities for a conversion of the currently constructed research reactor FRM-II has been extensively discussed at various RERTR meetings over the past years. In order to support the ongoing decision-making process in Germany, we prepared computer simulations providing extra information on the scientific usability of the converted reactor based on designs proposed by ANL and TUM. The most important results of these calculations are presented and discussed. Special attention is thereby given to the specific German context. (author)

  18. Conversation Analysis and Classroom Interaction

    Institute of Scientific and Technical Information of China (English)

    DING A-ning; LI Fan; CUI Jing

    2015-01-01

    Conversation Analysis shows the evidence of the social nature of people’s action including talk-in-interaction from a micro-level perspective. The method for basing its analysis on the authentic data rather than the retrospective interviews for gain⁃ing the participants’perception makes it unique in discovering the emic perspective of the social interaction. CA, often called as a“micro”methodology, provides theoretical insights and useful analytical tool for exploring the interaction in classrooms.

  19. A Conversation with Adam Heller

    OpenAIRE

    Heller, A; Cairns, EJ

    2015-01-01

    © 2015 by Annual Reviews. All rights reserved. Adam Heller, Ernest Cockrell Sr. Chair in Engineering Emeritus of the John J. McKetta Department of Chemical Engineering at The University of Texas at Austin, recalls his childhood in the Holocaust and his contributions to science and technology that earned him the US National Medal of Technology and Innovation in a conversation with Elton J. Cairns, Professor of Chemical and Biomolecular Engineering at the University of California, Berkeley. Dr....

  20. The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Roberts, A.V.

    1995-01-01

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process

  1. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    SCOFIELD C.F.

    1998-01-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  2. Metylcyclohexane conversion to light olefins

    OpenAIRE

    SCOFIELD, C.F.; BENAZZI, E.; CAUFFRIEZ, H.; MARCILLY, C.

    1998-01-01

    This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4=) were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and fa...

  3. Measurements of weak conversion lines

    International Nuclear Information System (INIS)

    Feoktistov, A.I.; Frantsev, Yu.E.

    1979-01-01

    Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line

  4. Carbon dioxide conversion over carbon-based nanocatalysts.

    Science.gov (United States)

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  5. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  6. Mechanical Conversion for High-Throughput TEM Sample Preparation

    International Nuclear Information System (INIS)

    Kendrick, Anthony B; Moore, Thomas M; Zaykova-Feldman, Lyudmila

    2006-01-01

    This paper presents a novel method of direct mechanical conversion from lift-out sample to TEM sample holder. The lift-out sample is prepared in the FIB using the in-situ liftout Total Release TM method. The mechanical conversion is conducted using a mechanical press and one of a variety of TEM coupons, including coupons for both top-side and back-side thinning. The press joins a probe tip point with attached TEM sample to the sample coupon and separates the complete assembly as a 3mm diameter TEM grid, compatible with commercially available TEM sample holder rods. This mechanical conversion process lends itself well to the high through-put requirements of in-line process control and to materials characterization labs where instrument utilization and sample security are critically important

  7. Conversion policy principles of defence factory

    International Nuclear Information System (INIS)

    Fedik, I.I.; Deniskin, V.P.; Stepanov, V.S.

    1997-01-01

    1.Research Production Association 'LUCH' (RPA 'LUCH') have worked at atomic industry for 51 years. Now it is one of the leading scientific production centers of Russia Ministry of Atomic Energy. Not long ago it was a complex of Scientific Research Institute, experimental plant and Obyedenennaya Expedicia at the Semipalatinsk test site (now it is the Institute of Atomic Energy NNC RK). Basic directions of the complex activity are defence tasks. These tasks are to develop structure and technology of producing fuel assemblies for NRE (nuclear rocket engine) reactors. Also the tasks include testing the fuel assemblies at IWG-1, RWD and RA reactors. Also the tasks include structure and technology development, production and testing electric generating channels for nuclear thermal emission converters of nuclear energy into electric one (space board power engineering), power metal optics for powerful lasers, high temperature gas reactors. 2.Main directions of RPA 'LUCH' conversion were determined on the basis of possibilities for developing main achievements in defence technology directions.These directions are high temperature materials and constructions (carbides, refractory metals, measurements, optics, uranium compound, beryllium, molybdenum) 3.At present at RPA 'LUCH' there have been created experimental and industrial productions making temperature sensors for Atomic Electric Power Stations (AEPS). Also these manufactures release commercial products. They produce technological equipment of carbide-silicon for electronic industry as well as parts or X-ray tubes, vermiculite parts for cable driving of AEP stations (high temperature, fireproof ones) of thermal and electrical accumulators. Thus, a scientific-production center is being created. Core of it is a scientific engineers group and development directions, generated from orders of defence department, as well as new foreign technologies (along with investments).The example of the said above can be development of a

  8. Efficient broadband third harmonic frequency conversion via angular dispersion

    International Nuclear Information System (INIS)

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-01-01

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3ω) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than ∼60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1ω input intensity of ∼ 4 GW/cm 2 for near optimal dispersion for phase matching, 5.2 μrad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 μrad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360 degrees about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%

  9. Selective conversion of butane into liquid hydrocarbon fuels on alkane metathesis catalysts

    KAUST Repository

    Szeto, Kaï Chung; Hardou, Lucie; Merle, Nicolas; Basset, Jean-Marie; Thivolle-Cazat, Jean; Papaioannou, Charalambos; Taoufik, Mostafa

    2012-01-01

    We report a selective direct conversion of n-butane into higher molecular weight alkanes (C 5+) by alkane metathesis reaction catalysed by silica-alumina supported tungsten or tantalum hydrides at moderate temperature and pressure. The product

  10. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  11. Conversion Disorder Presenting As Neuritic Leprosy

    Directory of Open Access Journals (Sweden)

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  12. Seeking the best training model for difficult conversations in neonatology.

    Science.gov (United States)

    Lechner, Beatrice E; Shields, Robin; Tucker, Richard; Bender, G Jesse

    2016-05-01

    We hypothesize that a formal simulation curriculum prepares neonatology fellows for difficult conversations better than traditional didactics. Single-center neonatology fellowship graduates from 1999 to 2013 were sent a retrospective web-based survey. Some had been exposed to a Difficult Conversations curriculum (simulation group), others had not (no simulation group). The simulation group participated in one workshop annually, consisting of lecture, simulation, and debriefing. Scenarios were customized to year of training. Epoch comparisons were made between the simulation and no simulation groups. Self-rated baseline effectiveness at discussing difficult topics was not different. The simulation group reported more supervised family meetings and feedback after fellow-led meetings. Simulations were rated very positively. The simulation group reported increased comfort levels. Strategic pause and body positioning were specific communication skills more frequently acquired in the simulation group. In both groups, the highest ranked contributors to learning were mentor observation and clinical practice. In the simulation group, simulation and debriefing outranked didactics or other experiences. Simulation-based workshops improve communication skills in high stakes conversations. However, they do not substitute for mentor observation and experience. Establishing a structured simulation-based difficult conversations curriculum refines vital communication skills necessary for the high stakes conversations neonatologists direct in clinical practice.

  13. Interrogative suggestibility in patients with conversion disorders.

    Science.gov (United States)

    Foong, J; Lucas, P A; Ron, M A

    1997-09-01

    We tested the hypothesis that increased interrogative suggestibility may contribute to the shaping and maintaining of conversions symptoms. Interrogative suggestibility was measured in 12 patients with conversion disorder and 10 control patients with confirmed neurological disease matched for age, premorbid intelligence, and as closely as possible in terms of their neurological symptoms to the patients with conversion disorder. Our observations do not support the contention that individual differences in interrogative suggestibility are of importance in the etiology of conversion disorders.

  14. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  15. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  16. Adaptive Feedback Improving Learningful Conversations at Workplace

    Science.gov (United States)

    Gaeta, Matteo; Mangione, Giuseppina Rita; Miranda, Sergio; Orciuoli, Francesco

    2013-01-01

    This work proposes the definition of an Adaptive Conversation-based Learning System (ACLS) able to foster computer-mediated tutorial dialogues at the workplace in order to increase the probability to generate meaningful learning during conversations. ACLS provides a virtual assistant selecting the best partner to involve in the conversation and…

  17. 5 CFR 534.506 - Conversion provisions.

    Science.gov (United States)

    2010-01-01

    ... conversion, other than to the minimum rate under 5 U.S.C. 5376, the increase must be approved by the head of... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Conversion provisions. 534.506 Section... OTHER SYSTEMS Pay for Senior-Level and Scientific and Professional Positions § 534.506 Conversion...

  18. 5 CFR 536.303 - Geographic conversion.

    Science.gov (United States)

    2010-01-01

    ... after geographic conversion is the employee's existing payable rate of basic pay in effect immediately before the action. (b) Geographic conversion when a retained rate employee's official worksite is changed... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Geographic conversion. 536.303 Section...

  19. Valproate in Conversion Disorder: A Case Report

    OpenAIRE

    Messina, Antonino; Fogliani, Anna Maria

    2010-01-01

    Few data are in literature about the pharmacological treatment of conversion disorder and there are not any studies about the use of Valproate extended release (ER) in treating conversion disorder. In this article, we are reporting a case of an Italian woman with a diagnosis of conversion disorder treated effectively and quickly by Valproate ER.

  20. 47 CFR 80.761 - Conversion graphs.

    Science.gov (United States)

    2010-10-01

    ... MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.761 Conversion graphs. The following graphs must be employed where conversion from one to the other of the indicated types of units is... 47 Telecommunication 5 2010-10-01 2010-10-01 false Conversion graphs. 80.761 Section 80.761...

  1. Ortho-para conversion in the solid hydrogens at high pressures

    International Nuclear Information System (INIS)

    Strzhemechny; Hemley, R.J.

    2003-01-01

    At low pressures the ortho-para conversion in H 2 and D 2 is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H 2 after an initial slowdown predicted by theory increases immensely. As for solid D 2 , conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H 2 , we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D 2 taking into account the differences between H 2 and D 2 in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D 2 in conversion rates under pressure that are by an order of magnitude larger than at P = 0

  2. Conversion Disorder, Functional Neurological Symptom Disorder, and Chronic Pain: Comorbidity, Assessment, and Treatment.

    Science.gov (United States)

    Tsui, Patricia; Deptula, Andrew; Yuan, Derek Y

    2017-06-01

    This paper examines the overlap of conversion disorder with chronic pain conditions, describes ways to assess for conversion disorder, and provides an overview of evidence-based treatments for conversion disorder and chronic pain, with a focus on conversion symptoms. Conversion disorder is a significant problem that warrants further study, given that there are not many well-established guidelines. Accurate and timely assessment should help move treatment in a more fruitful direction and avoid unnecessary medical interventions. Advances in neuroimaging may also help further our understanding of conversion disorder. Creating a supportive environment and a collaborative treatment relationship and improving understanding of conversion symptoms appear to help individuals diagnosed with conversion disorder engage in appropriate treatments. Novel uses of earlier treatments, such as hypnosis and psychodynamic approaches, could potentially be beneficial and require a more vigorous and systematic study. There are treatments that produce significant improvements in functioning and reduction of physical symptoms from conversion disorder even for very severe cases. Hypnotherapy, cognitive behavioral therapy, and inpatient multidisciplinary treatment with intensive physiotherapy for severe cases have the most evidence to support reduction of symptoms. Components of treatment for conversion disorder overlap with treatments for chronic pain and can be used together to produce therapeutic effects for both conditions. Treatment needs to be tailored for each individual's specific symptoms.

  3. A single step methane conversion into synthetic fuels using microplasma reactor

    NARCIS (Netherlands)

    Nozaki, Tomohiro; Agiral, A.; Gardeniers, Johannes G.E.; Yuzawa, Shuhei; Okazaki, Ken

    2011-01-01

    Direct conversion of natural gas into synthetic fuels such as methanol attracts keen attention because direct process can reduce capital and operating costs of high temperature, energy intensive, multi-step processes. We report a direct and selective synthesis of organic oxygenates such as methanol,

  4. Dissecting engineered cell types and enhancing cell fate conversion via CellNet

    Science.gov (United States)

    Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.

    2014-01-01

    SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792

  5. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation.

    Science.gov (United States)

    Vitale, Alessandra; Cabral, João T

    2016-09-07

    We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile ( z f ) to the sequential displacement of the object stage ( ∆z ). After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which z f is smaller, commensurate with, or larger than ∆z . While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z -direction (i.e., along the illuminated axis). Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z -stage displacement and frontal polymerisation kinetics.

  6. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation

    Directory of Open Access Journals (Sweden)

    Alessandra Vitale

    2016-09-01

    Full Text Available We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile (zf to the sequential displacement of the object stage (∆z. After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which zf is smaller, commensurate with, or larger than ∆z. While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z-direction (i.e., along the illuminated axis. Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z-stage displacement and frontal polymerisation kinetics.

  7. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  8. Conversion disorder: a problematic diagnosis.

    Science.gov (United States)

    Nicholson, Timothy R J; Stone, Jon; Kanaan, Richard A A

    2011-11-01

    The diagnosis of conversion disorder is problematic. Since doctors have conceptually and practically differentiated the symptoms from neurological ('organic') disease it has been presumed to be a psychological disorder, but the psychological mechanism, and how this differs from feigning (conscious simulation), has remained elusive. Although misdiagnosis of neurological disease as conversion disorder is uncommon, it remains a concern for clinicians, particularly for psychiatrists who may be unaware of the positive ways in which neurologists can exclude organic disease. The diagnosis is anomalous in psychiatry in that current diagnostic systems require that feigning is excluded and that the symptoms can be explained psychologically. In practice, feigning is very difficult to either disprove or prove, and a psychological explanation cannot always be found. Studies of childhood and adult psychological precipitants have tended to support the relevance of stressful life events prior to symptom onset at the group level but they are not found in a substantial proportion of cases. These problems highlight serious theoretical and practical issues not just for the current diagnostic systems but for the concept of the disorder itself. Psychology, physiology and functional imaging techniques have been used in attempts to elucidate the neurobiology of conversion disorder and to differentiate it from feigning, but while intriguing results are emerging they can only be considered preliminary. Such work looks to a future that could refine our understanding of the disorder. However, until that time, the formal diagnostic requirement for associated psychological stressors and the exclusion of feigning are of limited clinical value. Simplified criteria are suggested which will also encourage cooperation between neurology and psychiatry in the management of these patients.

  9. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  10. Responsive turns in Indonesian informal conversation

    Directory of Open Access Journals (Sweden)

    M.J. van Naerssen

    2015-04-01

    Full Text Available People have all sorts of expectations about how interlocutors will and should behave linguistically when engaged in a conversation. These conversational norms are usually implicit and are sometimes difficult to master in a language that is new to you. This paper presents a model of different types of responses in informal conversation, illustrated with Indonesian examples. It builds upon the conversation analytic notion of preference; distinguishing preferred – or constructive – responses and dispreferred – or competitive – responses. The model is meant as a tool to cross-linguistically compare response behaviour to gain insight in language specific expectations about interaction in informal conversation.

  11. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  12. Overview of biomass conversion technologies

    International Nuclear Information System (INIS)

    Noor, S.; Latif, A.; Jan, M.

    2011-01-01

    A large part of the biomass is used for non-commercial purposes and mostly for cooking and heating, but the use is not sustainable, because it destroys soil-nutrients, causes indoor and outdoor pollution, adds to greenhouse gases, and results in health problems. Commercial use of biomass includes household fuelwood in industrialized countries and bio-char (charcoal) and firewood in urban and industrial areas in developing countries. The most efficient way of biomass utilization is through gasification, in which the gas produced by biomass gasification can either be used to generate power in an ordinary steam-cycle or be converted into motor fuel. In the latter case, there are two alternatives, namely, the synthesis of methanol and methanol-based motor fuels, or Fischer-Tropsch hydrocarbon synthesis. This paper deals with the technological overview of the state-of-the-art key biomass-conversion technologies that can play an important role in the future. The conversion routes for production of Heat, power and transportation fuel have been summarized in this paper, viz. combustion, gasification, pyrolysis, digestion, fermentation and extraction. (author)

  13. Bilingualism accentuates children's conversational understanding.

    Directory of Open Access Journals (Sweden)

    Michael Siegal

    Full Text Available BACKGROUND: Although bilingualism is prevalent throughout the world, little is known about the extent to which it influences children's conversational understanding. Our investigation involved children aged 3-6 years exposed to one or more of four major languages: English, German, Italian, and Japanese. In two experiments, we examined the children's ability to identify responses to questions as violations of conversational maxims (to be informative and avoid redundancy, to speak the truth, be relevant, and be polite. PRINCIPAL FINDINGS: In Experiment 1, with increasing age, children showed greater sensitivity to maxim violations. Children in Italy who were bilingual in German and Italian (with German as the dominant language L1 significantly outperformed Italian monolinguals. In Experiment 2, children in England who were bilingual in English and Japanese (with English as L1 significantly outperformed Japanese monolinguals in Japan with vocabulary age partialled out. CONCLUSIONS: As the monolingual and bilingual groups had a similar family SES background (Experiment 1 and similar family cultural identity (Experiment 2, these results point to a specific role for early bilingualism in accentuating children's developing ability to appreciate effective communicative responses.

  14. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  15. Astrophysicists' conversational connections on Twitter.

    Directory of Open Access Journals (Sweden)

    Kim Holmberg

    Full Text Available Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists' activities (i.e., publishing and tweeting frequency and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets. The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.

  16. Analog-to-digital conversion

    CERN Document Server

    Pelgrom, Marcel J. M

    2013-01-01

    This textbook is appropriate for use in graduate-level curricula in analog to digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters.  It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation.  This book presents an overview of the state-of-the-art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, second edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 45-nm technology and the need for a more statistical approach to accuracy.  Pedagogical enhancements to this edition include more than twice the exercises available in the first edition, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner’s perspective, wherever appropriate.  Considerable background information and pr...

  17. [Neurology of hysteria (conversion disorder)].

    Science.gov (United States)

    Sonoo, Masahiro

    2014-07-01

    Hysteria has served as an important driving force in the development of both neurology and psychiatry. Jean Martin Charcot's devotion to mesmerism for treating hysterical patients evoked the invention of psychoanalysis by Sigmund Freud. Meanwhile, Joseph Babinski took over the challenge to discriminate between organic and hysterical patients from Charcot and found Babinski's sign, the greatest milestone in modern neurological symptomatology. Nowadays, the usage of the term hysteria is avoided. However, new terms and new classifications are complicated and inconsistent between the two representative taxonomies, the DSM-IV and ICD-10. In the ICD-10, even the alternative term conversion disorder, which was becoming familiar to neurologists, has also disappeared as a group name. The diagnosis of hysteria remains important in clinical neurology. Extensive exclusive diagnoses and over investigation, including various imaging studies, should be avoided because they may prolong the disease course and fix their symptoms. Psychological reasons that seem to explain the conversion are not considered reliable. Positive neurological signs suggesting nonorganic etiologies are the most reliable measures for diagnosing hysteria, as Babinski first argued. Hysterical paresis has several characteristics, such as giving-way weakness or peculiar distributions of weakness. Signs to uncover nonorganic paresis utilizing synergy include Hoover's test and the Sonoo abductor test.

  18. Light-voltage conversion apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Yoshiki

    1987-09-19

    In a light-voltage conversion unit, when input signal is applied, the output signal to the control circuit has quick rise-up time and slow breaking time. In order to improve this, a short-circuit transistor is placed at the diode, and this transistor is forced ON, when an output signal to the control circuit is lowered down to a constant voltage, to short-circuit between the output terminals. This, however, has a demerit of high power consumption by a transistor. In this invention, by connecting a light-emitting element which gets ON at the first transition and a light-emitting element which gets ON at the last transition, placing a light receiving element in front of each light-emitting element, when an input signal is applied; thus a load is driven only with ON signal of each light-emitting element, eliminating the delay in the last transition. All of these give a quick responsive light-voltage conversion without unnecessary power consumption. (5 figs)

  19. Biomass Thermochemical Conversion Program: 1986 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  20. 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    International Nuclear Information System (INIS)

    Sun Yu; Mei Niansong; Lu Bo; Huang Yumei; Hong Zhiliang

    2010-01-01

    A fully integrated VCO and divider implemented in SMIC 0.13-μm RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of-113 dBc - 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOM T ) of the VCO is -192.6 dBc/Hz. (semiconductor integrated circuits)

  1. 8.64-11.62 GHz CMOS VCO and divider in a zero-IF 802.11a/b/g WLAN and Bluetooth application

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yu; Mei Niansong; Lu Bo; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [ASIC and System State Key Laboratory, Fudan University, Shanghai 201203 (China)

    2010-10-15

    A fully integrated VCO and divider implemented in SMIC 0.13-{mu}m RFCMOS 1P8M technology with a 1.2 V supply voltage is presented. The frequency of the VCO is tuning from 8.64 to 11.62 GHz while the quadrature LO signals for 802.11a WLAN in 5.8 GHz band or for 802.11b/g WLAN and Bluetooth in 2.4 GHz band can be obtained by a frequency division by 2 or 4, respectively. A 6 bit switched capacitor array is applied for precise tuning of all necessary frequency bands. The testing results show that the VCO has a phase noise of-113 dBc - 1 MHz offset from the carrier of 5.5 GHz by dividing VCO output by two and the VCO core consumes 3.72 mW. The figure-of-merit for the tuning-range (FOM{sub T}) of the VCO is -192.6 dBc/Hz. (semiconductor integrated circuits)

  2. Burnup calculation in microcells of high conversion reactors

    International Nuclear Information System (INIS)

    Gomez, S.E.; Salvatore, M.; Patino, N.E.; Abbate, M.J.

    1991-01-01

    The development of high converter reactors (HCR) requires careful burnup calculations because their main goals are reach high discharge burnup levels (Up to 50 GWd/T) and a close to one conversion ratio. Then, it is necessary a revision of design elements used for this type of calculation. In this work, a burnup module (BUM) developed in order to use nuclear data directly from evaluated data files is presented; these was included in the AMPX system. (author)

  3. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  4. Conversation therapy with people with aphasia and conversation partners using video feedback: a group and case series investigation of changes in interaction.

    Directory of Open Access Journals (Sweden)

    Wendy Best

    2016-11-01

    Full Text Available Conversation therapies employing video for feedback and to facilitate outcome measurement are increasingly used with people with post-stroke aphasia and their conversation partners; however the evidence base for change in everyday interaction remains limited. We investigated the effect of Better Conversations with Aphasia, an intervention that is freely available online (https:// extend.ucl.ac.uk/. Eight people with chronic agrammatic aphasia, and their regular conversation partners participated in the tailored 8 week program involving significant video feedback. We explored changes in (i conversation facilitators (such as multi-modal turns by people with aphasia and (ii conversation barriers (such as use of test questions by conversation partners. The outcome of intervention was evaluated directly by measuring change in video-recorded everyday conversations. The study employed a pre-post design with multiple 5 minute samples of conversation before and after intervention, scored by trained raters blind to the point of data collection. Group level analysis showed no significant increase in conversation facilitators. There was, however, a significant reduction in the number of conversation barriers. The case series data revealed variability in conversation behaviors across occasions for the same dyad and between different dyads. Specifically, post-intervention there was a significant increase in facilitator behaviors for two dyads, a decrease for one and no significant change for five dyads. There was a significant decrease in barrier behaviors for five dyads and no significant change for three dyads. The reduction in barrier behaviors was considerable; on average change from over 8 to fewer than 3 barrier behaviors in 5 minutes conversation. The pre-post design has the limitation of no comparison group. However, change occurs in targeted conversational behaviors and in people with chronic aphasia and their partners. The findings suggest change

  5. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... learned. In addition, the uniquely comprehensive world survey outlines direct democracy provisions in 214 countries and territories and indicates which, if any, of these provisions are used by each country or territory at both the national and sub-national levels. Furthermore, the world survey includes...

  6. Conversation Simulation and Sensible Surprises

    Science.gov (United States)

    Hutchens, Jason L.

    I have entered the Loebner Prize five times, winning the "most humanlike program" category in 1996 with a surly ELIZA-clone named HeX, but failed to repeat the performance in subsequent years with more sophisticated techniques. Whether this is indicative of an unanticipated improvement in "conversation simulation" technology, or whether it highlights the strengths of ELIZA-style trickery, is as an exercise for the reader. In 2000, I was invited to assume the role of Chief Scientist at Artificial Intelligence Ltd. (Ai) on a project inspired by the advice given by Alan Turing in the final section of his classic paper - our quest was to build a "child machine" that could learn and use language from scratch. In this chapter, I will discuss both of these experiences, presenting my thoughts regarding the Chinese Room argument and Artificial Intelligence (AI) in between.

  7. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  8. Supported Conversation for hospital staff

    DEFF Research Database (Denmark)

    Forchhammer, Hysse B; Løvholt, Annelise P.; Mathiesen, Lone Lundbak

    in communication and interaction, Supported Conversation for Adults with Aphasia (SCA) was adapted and implemented in a large neurological department at Rigshospitalet-Glostrup in Copenhagen. Method 152 staff members representing different health professionals were assigned to one of eleven courses during a six...... month period. Each course had 10-12 participants and lasted 6 hours, including instruction in the SCA principles, video analysis, interdisciplinary group work, and practice sessions with PWAs. Self-assessed learning outcomes were evaluated with a brief questionnaire filled out by staff members...... in communication, also showed significant improvements across all staff groups. After the course, more time to spend with patients was perceived as the most important factor to further increase communication success with PWA. Conclusion The results show that interdisciplinary SCA-courses successfully increase...

  9. Tacit to explicit knowledge conversion.

    Science.gov (United States)

    Cairó Battistutti, Osvaldo; Bork, Dominik

    2017-11-01

    The ability to create, use and transfer knowledge may allow the creation or improvement of new products or services. But knowledge is often tacit: It lives in the minds of individuals, and therefore, it is difficult to transfer it to another person by means of the written word or verbal expression. This paper addresses this important problem by introducing a methodology, consisting of a four-step process that facilitates tacit to explicit knowledge conversion. The methodology utilizes conceptual modeling, thus enabling understanding and reasoning through visual knowledge representation. This implies the possibility of understanding concepts and ideas, visualized through conceptual models, without using linguistic or algebraic means. The proposed methodology is conducted in a metamodel-based tool environment whose aim is efficient application and ease of use.

  10. Conversion of Ulba Metallurgy Plant

    International Nuclear Information System (INIS)

    Onoprienko, O.

    1996-01-01

    General Information 'Ulba Metallurgical plant' Joint Stock Company successfully operates for more than 46 years. The plant was established by MINSREDMASH, USSR and at the present moment has finished complexes for production of nuclear fuel for atomic power stations, tantalum and superconducting materials production, beryllium, hydrofluoric acid manufacture and engineering production. Problem Essence In spite of the monopoly possession of tantalum manufacture, beryllium and uranium fuel, superconducting materials in Commonwealth of Independent States countries, company has serious financial problems due to the critical situation in Commonwealth of Independent States countries, production ties collapse and fast market demand decrease for the Ulba Metallurgical Plant Joint Stock Company products. The alternative decision is to create substitute productions, conversion integrating and introducing new products to the world market

  11. A Map Enters the Conversation

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    Over the past decade STS scholars have been engaged in a continuous dialogue about the performativity of their methods and the interventions of their research practices. A frequently posed question is how STS can make a difference to its fields of study, what John Law has called its different...... 'modes of mattering'. In this paper I explore what difference digital cartography can make to STS practice. I draw on three examples from my own work where digitally mediated maps have entered the conversation and made critical, often surprising, differences to the research process. In my first example...... the map is brought along as an ethnographic device on a piece of fieldwork, in my second example it serves as the central collaborative object in a participatory design project, and in my third example the map becomes the object of contestation as it finds itself centre stage in the controversy...

  12. Directing 101.

    Science.gov (United States)

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  13. Conversion of non-nuclear grade feedstock to UF4

    International Nuclear Information System (INIS)

    Ponelis, A.A.; Slabber, M.N.; Zimmer, C.H.E.

    1987-01-01

    The South African Conversion route is based on the direct feed of ammonium di-uranate produced by any one of a number of different mines. The physical and chemical characteristics of the feedstock can thus vary considerably and influence the conversion rate as well as the final UF 6 product purity. The UF 4 conversion reactor is a Moving Bed Reactor (MBR) with countercurrent flow of the reacting gas phases. Initial problems to continuously operate the MBR were mostly concerned with the physical nature of the UO 3 feed particles. Different approaches to eventually obtain a successful MBR are discussed. Besides obtaining UO 3 feed particles with certain physical attributes, the chemical impurities also have an effect on the operability of the MBR. The influence of the feedstock variables on the reduction and hydrofluorination rates after calcining has largely been determined from laboratory and pilot studies. The effect of chemical impurities such as sodium and potassium on the sinterability of the reacting particles and therefore the optimum temperature range in the MBR is also discussed. Confirmation of the effect of sodium and potassium impurities on the conversion rate has been obtained from large scale reactor operation. (author)

  14. Neutron scattering and proton spin conversion in solid CH4

    International Nuclear Information System (INIS)

    Lushington, K.J.; Morrison, J.A.

    1977-01-01

    The total neutron cross section of pure and O 2 -doped condensed CH 4 has been measured in the temperature range 0.75< T<100 K. The neutron wave length was sufficiently long (4.7 A) so that changes in cross section could be directly related to changes in γI(I + 1)μ, the mean squared proton nuclear angular momentum per molecule, to a sensitivity of about 1%. The temperature dependences of γI(I + 1)μ for the pure and doped specimens differ considerably in solid phase II(T<20.4 K). For the former specimen, the change in cross section is consistent with conversion occurring between the nuclear spin symmetry species on the orientationally disordered sublattices only. The addition of oxygen enhances the rate of conversion such that the value of γI(I + 1)μ corresponds to conversion on both the disordered and ordered sublattices. The characteristic lifetimes of the catalyzed and uncatalyzed conversion processes have been estimated. (author)

  15. Conversion of autoimmune hypothyroidism to hyperthyroidism

    OpenAIRE

    Furqan, Saira; Haque, Naeem-ul; Islam, Najmul

    2014-01-01

    Background Graves’ disease and Hashimoto’s thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. Case presentation We are reporting three cases of middle aged Asian female...

  16. U.S. Domestic Reactor Conversion Programs

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric

    2008-01-01

    The Conversion Projects Include: the revision of the facilities safety basis documents and supporting analysis, the fabrication of new LEU fuel, the change-out of the reactor core, and the removal of the used HEU fuel (by INL University Fuels Program or DOE-NE). The major entities involved are: the U.S. Nuclear Regulatory Commission, the University reactor department, the fuel and hardware fabricators, the Spent fuel receipt facilities, the Spent fuel shipping services, and the U.S. Department of Energy and their subcontractors. Three major Reactor Conversion Program milestones have been accomplished since 2006: the conversion of the TRIGA reactor at Texas A and M University Nuclear Science Center, the conversion of the University of Florida Training Reactor, and the conversion of the Purdue University Reactor. Four Reactor Conversion Program milestones yet to be accomplished in 2008 and 2009: the Washington State University Nuclear Radiation Center reactor, the Oregon State University TRIGA Reactor, the University of Wisconsin Nuclear Reactor, and the Neutron Radiography Reactor Facility. NNSA is committed to doing things cheaper, better, smarter, safer through a 'Lessons Learned' process. The conversion team assessed each major activity grouping: Project Initiation, Conversion Proposal Development, Fuel Fabrication and Hardware, Core Conversion, and Spent Nuclear Fuel Removal. Issues were identified and recommendations were given

  17. Neurologists' understanding and management of conversion disorder.

    Science.gov (United States)

    Kanaan, Richard A; Armstrong, David; Wessely, Simon Charles

    2011-09-01

    Conversion disorder is largely managed by neurologists, for whom it presents great challenges to understanding and management. This study aimed to quantify these challenges, examining how neurologists understand conversion disorder, and what they tell their patients. A postal survey of all consultant neurologists in the UK registered with the Association of British Neurologists. 349 of 591 practising consultant neurologists completed the survey. They saw conversion disorder commonly. While they endorsed psychological models for conversion, they diagnosed it according to features of the clinical presentation, most importantly inconsistency and abnormal illness behaviour. Most of the respondents saw feigning as entangled with conversion disorder, with a minority seeing one as a variant of the other. They were quite willing to discuss psychological factors as long as the patient was receptive but were generally unwilling to discuss feigning even though they saw it as their responsibility. Those who favoured models in terms of feigning were older, while younger, female neurologists preferred psychological models, believed conversion would one day be understood neurologically and found communicating with their conversion patients easier than it had been in the past. Neurologists accept psychological models for conversion disorder but do not employ them in their diagnosis; they do not see conversion as clearly different from feigning. This may be changing as younger, female neurologists endorse psychological views more clearly and find it easier to discuss with their patients.

  18. Conversational Agents in E-Learning

    Science.gov (United States)

    Kerry, Alice; Ellis, Richard; Bull, Susan

    This paper discusses the use of natural language or 'conversational' agents in e-learning environments. We describe and contrast the various applications of conversational agent technology represented in the e-learning literature, including tutors, learning companions, language practice and systems to encourage reflection. We offer two more detailed examples of conversational agents, one which provides learning support, and the other support for self-assessment. Issues and challenges for developers of conversational agent systems for e-learning are identified and discussed.

  19. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  20. Devices and optics for photovoltaic conversion

    International Nuclear Information System (INIS)

    Arujo, G.L.

    1991-01-01

    Photovoltaic energy is one of the most promising renewable energies. The contents of this article deals firstly with the physics of the devices and the optics employed to convert directly sunlight into electricity. Secondly the state of the art of the high efficiency solar cells and concentration systems will be addressed. Finally, there will be some concluding comments about the future prospects of the photovoltaic energy. PV energy conversion is at present a viable technology to produce electricity. But unfortunately its cost is still too high to be competitive with grid connected applications. Roughly speaking there are two main strategies for reducing costs in PV: One of them relies on thin-film, low cost solar cells and modules and the other relies on high efficiency solar cells and modules used, in many cases, in combination with optical concentration. This work will focus in high efficiency solar cells, what means that good quality crystalline semiconductor materials are involved, and in the optics used in concentration systems. 25 figs, 2 tabs