WorldWideScience

Sample records for zbdd algorithm features

  1. SIFT based algorithm for point feature tracking

    Directory of Open Access Journals (Sweden)

    Adrian BURLACU

    2007-12-01

    Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.

  2. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    Science.gov (United States)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  3. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Ahmed Majid Taha

    2013-01-01

    Full Text Available When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.

  4. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Science.gov (United States)

    Taha, Ahmed Majid; Mustapha, Aida; Chen, Soong-Der

    2013-01-01

    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets. PMID:24396295

  5. Effective traffic features selection algorithm for cyber-attacks samples

    Science.gov (United States)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  6. Face recognition algorithm using extended vector quantization histogram features.

    Science.gov (United States)

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  7. A comparative study of image low level feature extraction algorithms

    Directory of Open Access Journals (Sweden)

    M.M. El-gayar

    2013-07-01

    Full Text Available Feature extraction and matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods for assessing the performance of popular image matching algorithms are presented and rely on costly descriptors for detection and matching. Specifically, the method assesses the type of images under which each of the algorithms reviewed herein perform to its maximum or highest efficiency. The efficiency is measured in terms of the number of matches founds by the algorithm and the number of type I and type II errors encountered when the algorithm is tested against a specific pair of images. Current comparative studies asses the performance of the algorithms based on the results obtained in different criteria such as speed, sensitivity, occlusion, and others. This study addresses the limitations of the existing comparative tools and delivers a generalized criterion to determine beforehand the level of efficiency expected from a matching algorithm given the type of images evaluated. The algorithms and the respective images used within this work are divided into two groups: feature-based and texture-based. And from this broad classification only three of the most widely used algorithms are assessed: color histogram, FAST (Features from Accelerated Segment Test, SIFT (Scale Invariant Feature Transform, PCA-SIFT (Principal Component Analysis-SIFT, F-SIFT (fast-SIFT and SURF (speeded up robust features. The performance of the Fast-SIFT (F-SIFT feature detection methods are compared for scale changes, rotation, blur, illumination changes and affine transformations. All the experiments use repeatability measurement and the number of correct matches for the evaluation measurements. SIFT presents its stability in most situations although its slow. F-SIFT is the fastest one with good performance as the same as SURF, SIFT, PCA-SIFT show its advantages in rotation and illumination changes.

  8. Feature Selection Criteria for Real Time EKF-SLAM Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein

    2010-02-01

    Full Text Available This paper presents a seletion procedure for environmet features for the correction stage of a SLAM (Simultaneous Localization and Mapping algorithm based on an Extended Kalman Filter (EKF. This approach decreases the computational time of the correction stage which allows for real and constant-time implementations of the SLAM. The selection procedure consists in chosing the features the SLAM system state covariance is more sensible to. The entire system is implemented on a mobile robot equipped with a range sensor laser. The features extracted from the environment correspond to lines and corners. Experimental results of the real time SLAM algorithm and an analysis of the processing-time consumed by the SLAM with the feature selection procedure proposed are shown. A comparison between the feature selection approach proposed and the classical sequential EKF-SLAM along with an entropy feature selection approach is also performed.

  9. A redundancy-removing feature selection algorithm for nominal data

    Directory of Open Access Journals (Sweden)

    Zhihua Li

    2015-10-01

    Full Text Available No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.

  10. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    OpenAIRE

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history si...

  11. A novel automated spike sorting algorithm with adaptable feature extraction.

    Science.gov (United States)

    Bestel, Robert; Daus, Andreas W; Thielemann, Christiane

    2012-10-15

    To study the electrophysiological properties of neuronal networks, in vitro studies based on microelectrode arrays have become a viable tool for analysis. Although in constant progress, a challenging task still remains in this area: the development of an efficient spike sorting algorithm that allows an accurate signal analysis at the single-cell level. Most sorting algorithms currently available only extract a specific feature type, such as the principal components or Wavelet coefficients of the measured spike signals in order to separate different spike shapes generated by different neurons. However, due to the great variety in the obtained spike shapes, the derivation of an optimal feature set is still a very complex issue that current algorithms struggle with. To address this problem, we propose a novel algorithm that (i) extracts a variety of geometric, Wavelet and principal component-based features and (ii) automatically derives a feature subset, most suitable for sorting an individual set of spike signals. Thus, there is a new approach that evaluates the probability distribution of the obtained spike features and consequently determines the candidates most suitable for the actual spike sorting. These candidates can be formed into an individually adjusted set of spike features, allowing a separation of the various shapes present in the obtained neuronal signal by a subsequent expectation maximisation clustering algorithm. Test results with simulated data files and data obtained from chick embryonic neurons cultured on microelectrode arrays showed an excellent classification result, indicating the superior performance of the described algorithm approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Document localization algorithms based on feature points and straight lines

    Science.gov (United States)

    Skoryukina, Natalya; Shemiakina, Julia; Arlazarov, Vladimir L.; Faradjev, Igor

    2018-04-01

    The important part of the system of a planar rectangular object analysis is the localization: the estimation of projective transform from template image of an object to its photograph. The system also includes such subsystems as the selection and recognition of text fields, the usage of contexts etc. In this paper three localization algorithms are described. All algorithms use feature points and two of them also analyze near-horizontal and near- vertical lines on the photograph. The algorithms and their combinations are tested on a dataset of real document photographs. Also the method of localization quality estimation is proposed that allows configuring the localization subsystem independently of the other subsystems quality.

  13. Feature-extraction algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Loehner, H.; Poelman, T. P.; Tambave, G.; Yu, B

    2009-01-01

    The feature-extraction algorithms are discussed which have been developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility. Performance parameters have been derived in test measurements with cosmic rays, particle and photon

  14. A linear-time algorithm for Euclidean feature transform sets

    NARCIS (Netherlands)

    Hesselink, Wim H.

    2007-01-01

    The Euclidean distance transform of a binary image is the function that assigns to every pixel the Euclidean distance to the background. The Euclidean feature transform is the function that assigns to every pixel the set of background pixels with this distance. We present an algorithm to compute the

  15. RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2017-09-01

    Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  16. Dentate Gyrus circuitry features improve performance of sparse approximation algorithms.

    Directory of Open Access Journals (Sweden)

    Panagiotis C Petrantonakis

    Full Text Available Memory-related activity in the Dentate Gyrus (DG is characterized by sparsity. Memory representations are seen as activated neuronal populations of granule cells, the main encoding cells in DG, which are estimated to engage 2-4% of the total population. This sparsity is assumed to enhance the ability of DG to perform pattern separation, one of the most valuable contributions of DG during memory formation. In this work, we investigate how features of the DG such as its excitatory and inhibitory connectivity diagram can be used to develop theoretical algorithms performing Sparse Approximation, a widely used strategy in the Signal Processing field. Sparse approximation stands for the algorithmic identification of few components from a dictionary that approximate a certain signal. The ability of DG to achieve pattern separation by sparsifing its representations is exploited here to improve the performance of the state of the art sparse approximation algorithm "Iterative Soft Thresholding" (IST by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition of granule cells, either direct or indirect, via mossy cells, is shown to enhance the performance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms, this work presents new insights regarding the function of particular cell types in the pattern separation task of the DG.

  17. Improving permafrost distribution modelling using feature selection algorithms

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its

  18. Feature selection using genetic algorithms for fetal heart rate analysis

    International Nuclear Information System (INIS)

    Xu, Liang; Redman, Christopher W G; Georgieva, Antoniya; Payne, Stephen J

    2014-01-01

    The fetal heart rate (FHR) is monitored on a paper strip (cardiotocogram) during labour to assess fetal health. If necessary, clinicians can intervene and assist with a prompt delivery of the baby. Data-driven computerized FHR analysis could help clinicians in the decision-making process. However, selecting the best computerized FHR features that relate to labour outcome is a pressing research problem. The objective of this study is to apply genetic algorithms (GA) as a feature selection method to select the best feature subset from 64 FHR features and to integrate these best features to recognize unfavourable FHR patterns. The GA was trained on 404 cases and tested on 106 cases (both balanced datasets) using three classifiers, respectively. Regularization methods and backward selection were used to optimize the GA. Reasonable classification performance is shown on the testing set for the best feature subset (Cohen's kappa values of 0.45 to 0.49 using different classifiers). This is, to our knowledge, the first time that a feature selection method for FHR analysis has been developed on a database of this size. This study indicates that different FHR features, when integrated, can show good performance in predicting labour outcome. It also gives the importance of each feature, which will be a valuable reference point for further studies. (paper)

  19. The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fang Hu

    2014-04-01

    Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.

  20. Toward optimal feature selection using ranking methods and classification algorithms

    Directory of Open Access Journals (Sweden)

    Novaković Jasmina

    2011-01-01

    Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.

  1. Oscillating feature subset search algorithm for text categorization

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Somol, Petr; Pudil, Pavel

    2006-01-01

    Roč. 44, č. 4225 (2006), s. 578-587 ISSN 0302-9743 R&D Projects: GA AV ČR IAA2075302; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : text classification * feature selection * oscillating search algorithm * Bhattacharyya distance Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.402, year: 2005

  2. The optimal extraction of feature algorithm based on KAZE

    Science.gov (United States)

    Yao, Zheyi; Gu, Guohua; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    As a novel method of 2D features extraction algorithm over the nonlinear scale space, KAZE provide a special method. However, the computation of nonlinear scale space and the construction of KAZE feature vectors are more expensive than the SIFT and SURF significantly. In this paper, the given image is used to build the nonlinear space up to a maximum evolution time through the efficient Additive Operator Splitting (AOS) techniques and the variable conductance diffusion. Changing the parameter can improve the construction of nonlinear scale space and simplify the image conductivities for each dimension space, with the predigest computation. Then, the detection for points of interest can exhibit a maxima of the scale-normalized determinant with the Hessian response in the nonlinear scale space. At the same time, the detection of feature vectors is optimized by the Wavelet Transform method, which can avoid the second Gaussian smoothing in the KAZE Features and cut down the complexity of the algorithm distinctly in the building and describing vectors steps. In this way, the dominant orientation is obtained, similar to SURF, by summing the responses within a sliding circle segment covering an angle of π/3 in the circular area of radius 6σ with a sampling step of size σ one by one. Finally, the extraction in the multidimensional patch at the given scale, centered over the points of interest and rotated to align its dominant orientation to a canonical direction, is able to simplify the description of feature by reducing the description dimensions, just as the PCA-SIFT method. Even though the features are somewhat more expensive to compute than SIFT due to the construction of nonlinear scale space, but compared to SURF, the result revels a step forward in performance in detection, description and application against the previous ways by the following contrast experiments.

  3. Historical feature pattern extraction based network attack situation sensing algorithm.

    Science.gov (United States)

    Zeng, Yong; Liu, Dacheng; Lei, Zhou

    2014-01-01

    The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

  4. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

    Directory of Open Access Journals (Sweden)

    Yong Zeng

    2014-01-01

    Full Text Available The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE. First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

  5. Feature extraction algorithm for space targets based on fractal theory

    Science.gov (United States)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  6. Fractal Complexity-Based Feature Extraction Algorithm of Communication Signals

    Science.gov (United States)

    Wang, Hui; Li, Jingchao; Guo, Lili; Dou, Zheng; Lin, Yun; Zhou, Ruolin

    How to analyze and identify the characteristics of radiation sources and estimate the threat level by means of detecting, intercepting and locating has been the central issue of electronic support in the electronic warfare, and communication signal recognition is one of the key points to solve this issue. Aiming at accurately extracting the individual characteristics of the radiation source for the increasingly complex communication electromagnetic environment, a novel feature extraction algorithm for individual characteristics of the communication radiation source based on the fractal complexity of the signal is proposed. According to the complexity of the received signal and the situation of environmental noise, use the fractal dimension characteristics of different complexity to depict the subtle characteristics of the signal to establish the characteristic database, and then identify different broadcasting station by gray relation theory system. The simulation results demonstrate that the algorithm can achieve recognition rate of 94% even in the environment with SNR of -10dB, and this provides an important theoretical basis for the accurate identification of the subtle features of the signal at low SNR in the field of information confrontation.

  7. A feature extraction algorithm based on corner and spots in self-driving vehicles

    Directory of Open Access Journals (Sweden)

    Yupeng FENG

    2017-06-01

    Full Text Available To solve the poor real-time performance problem of the visual odometry based on embedded system with limited computing resources, an image matching method based on Harris and SIFT is proposed, namely the Harris-SIFT algorithm. On the basis of the review of SIFT algorithm, the principle of Harris-SIFT algorithm is provided. First, Harris algorithm is used to extract the corners of the image as candidate feature points, and scale invariant feature transform (SIFT features are extracted from those candidate feature points. At last, through an example, the algorithm is simulated by Matlab, then the complexity and other performance of the algorithm are analyzed. The experimental results show that the proposed method reduces the computational complexity and improves the speed of feature extraction. Harris-SIFT algorithm can be used in the real-time vision odometer system, and will bring about a wide application of visual odometry in embedded navigation system.

  8. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  9. A Local Asynchronous Distributed Privacy Preserving Feature Selection Algorithm for Large Peer-to-Peer Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper we develop a local distributed privacy preserving algorithm for feature selection in a large peer-to-peer environment. Feature selection is often used...

  10. Degree of contribution (DoC) feature selection algorithm for structural brain MRI volumetric features in depression detection.

    Science.gov (United States)

    Kipli, Kuryati; Kouzani, Abbas Z

    2015-07-01

    Accurate detection of depression at an individual level using structural magnetic resonance imaging (sMRI) remains a challenge. Brain volumetric changes at a structural level appear to have importance in depression biomarkers studies. An automated algorithm is developed to select brain sMRI volumetric features for the detection of depression. A feature selection (FS) algorithm called degree of contribution (DoC) is developed for selection of sMRI volumetric features. This algorithm uses an ensemble approach to determine the degree of contribution in detection of major depressive disorder. The DoC is the score of feature importance used for feature ranking. The algorithm involves four stages: feature ranking, subset generation, subset evaluation, and DoC analysis. The performance of DoC is evaluated on the Duke University Multi-site Imaging Research in the Analysis of Depression sMRI dataset. The dataset consists of 115 brain sMRI scans of 88 healthy controls and 27 depressed subjects. Forty-four sMRI volumetric features are used in the evaluation. The DoC score of forty-four features was determined as the accuracy threshold (Acc_Thresh) was varied. The DoC performance was compared with that of four existing FS algorithms. At all defined Acc_Threshs, DoC outperformed the four examined FS algorithms for the average classification score and the maximum classification score. DoC has a good ability to generate reduced-size subsets of important features that could yield high classification accuracy. Based on the DoC score, the most discriminant volumetric features are those from the left-brain region.

  11. Relevant test set using feature selection algorithm for early detection ...

    African Journals Online (AJOL)

    The objective of feature selection is to find the most relevant features for classification. Thus, the dimensionality of the information will be reduced and may improve classification's accuracy. This paper proposed a minimum set of relevant questions that can be used for early detection of dyslexia. In this research, we ...

  12. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    International Nuclear Information System (INIS)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    2008-01-01

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction

  13. RSA Algorithm. Features of the C # Object Programming Implementation

    Directory of Open Access Journals (Sweden)

    Elena V. Staver

    2012-08-01

    Full Text Available Public-key algorithms depend on the encryption key and the decoding key, connected with the first one. For data public key encryption, the text is divided into blocks, each of which is represented as a number. To decrypt the message a secret key is used.

  14. Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm

    Science.gov (United States)

    Auat Cheein, Fernando A.; Carelli, Ricardo

    2011-01-01

    This paper introduces several non-arbitrary feature selection techniques for a Simultaneous Localization and Mapping (SLAM) algorithm. The feature selection criteria are based on the determination of the most significant features from a SLAM convergence perspective. The SLAM algorithm implemented in this work is a sequential EKF (Extended Kalman filter) SLAM. The feature selection criteria are applied on the correction stage of the SLAM algorithm, restricting it to correct the SLAM algorithm with the most significant features. This restriction also causes a decrement in the processing time of the SLAM. Several experiments with a mobile robot are shown in this work. The experiments concern the map reconstruction and a comparison between the different proposed techniques performance. The experiments were carried out at an outdoor environment composed by trees, although the results shown herein are not restricted to a special type of features. PMID:22346568

  15. A Modified Image Comparison Algorithm Using Histogram Features

    OpenAIRE

    Al-Oraiqat, Anas M.; Kostyukova, Natalya S.

    2018-01-01

    This article discuss the problem of color image content comparison. Particularly, methods of image content comparison are analyzed, restrictions of color histogram are described and a modified method of images content comparison is proposed. This method uses the color histograms and considers color locations. Testing and analyzing of based and modified algorithms are performed. The modified method shows 97% average precision for a collection containing about 700 images without loss of the adv...

  16. Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    Science.gov (United States)

    Kim, Deok-Hwan

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  17. Evaluation of feature detection algorithms for structure from motion

    CSIR Research Space (South Africa)

    Govender, N

    2009-11-01

    Full Text Available technique with an application to stereo vision,” in International Joint Conference on Artificial Intelligence, April 1981. [17] C.Tomasi and T.Kanade, “Detection and tracking of point fetaures,” Carnegie Mellon, Tech. Rep., April 1991. [18] P. Torr... Algorithms for Structure from Motion Natasha Govender Mobile Intelligent Autonomous Systems CSIR Pretoria Email: ngovender@csir.co.za Abstract—Structure from motion is a widely-used technique in computer vision to perform 3D reconstruction. The 3D...

  18. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fast Branch & Bound algorithms for optimal feature selection

    Czech Academy of Sciences Publication Activity Database

    Somol, Petr; Pudil, Pavel; Kittler, J.

    2004-01-01

    Roč. 26, č. 7 (2004), s. 900-912 ISSN 0162-8828 R&D Projects: GA ČR GA402/02/1271; GA ČR GA402/03/1310; GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : subset search * feature selection * search tree Subject RIV: BD - Theory of Information Impact factor: 4.352, year: 2004

  20. Genetic algorithms for thyroid gland ultrasound image feature reduction

    Czech Academy of Sciences Publication Activity Database

    Tesař, Ludvík; Smutek, D.; Jiskra, J.

    2005-01-01

    Roč. 3612, č. - (2005), s. 841-844 ISSN 0302-9743. [International Conference ICNC 2005 /1./. Changsha, 27.08.2005-29.08.2005] R&D Projects: GA AV ČR 1ET101050403 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging * classification * Bayes classifier * Huzzolini feature * pattern recognition Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/prace/20050229.pdf

  1. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  2. A triangle voting algorithm based on double feature constraints for star sensors

    Science.gov (United States)

    Fan, Qiaoyun; Zhong, Xuyang

    2018-02-01

    A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.

  3. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.

    Science.gov (United States)

    Foroughi Pour, Ali; Dalton, Lori A

    2018-03-21

    Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.

  4. An algorithm for 3D target scatterer feature estimation from sparse SAR apertures

    Science.gov (United States)

    Jackson, Julie Ann; Moses, Randolph L.

    2009-05-01

    We present an algorithm for extracting 3D canonical scattering features from complex targets observed over sparse 3D SAR apertures. The algorithm begins with complex phase history data and ends with a set of geometrical features describing the scene. The algorithm provides a pragmatic approach to initialization of a nonlinear feature estimation scheme, using regularization methods to deconvolve the point spread function and obtain sparse 3D images. Regions of high energy are detected in the sparse images, providing location initializations for scattering center estimates. A single canonical scattering feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the regularized data and parametric canonical scattering models. Results of the algorithm are presented using 3D scattering prediction data of a simple scene for both a densely-sampled and a sparsely-sampled SAR measurement aperture.

  5. An Efficient Cost-Sensitive Feature Selection Using Chaos Genetic Algorithm for Class Imbalance Problem

    Directory of Open Access Journals (Sweden)

    Jing Bian

    2016-01-01

    Full Text Available In the era of big data, feature selection is an essential process in machine learning. Although the class imbalance problem has recently attracted a great deal of attention, little effort has been undertaken to develop feature selection techniques. In addition, most applications involving feature selection focus on classification accuracy but not cost, although costs are important. To cope with imbalance problems, we developed a cost-sensitive feature selection algorithm that adds the cost-based evaluation function of a filter feature selection using a chaos genetic algorithm, referred to as CSFSG. The evaluation function considers both feature-acquiring costs (test costs and misclassification costs in the field of network security, thereby weakening the influence of many instances from the majority of classes in large-scale datasets. The CSFSG algorithm reduces the total cost of feature selection and trades off both factors. The behavior of the CSFSG algorithm is tested on a large-scale dataset of network security, using two kinds of classifiers: C4.5 and k-nearest neighbor (KNN. The results of the experimental research show that the approach is efficient and able to effectively improve classification accuracy and to decrease classification time. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  6. BLINCK?A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings

    OpenAIRE

    Bourne, Peter; Rosendahl, Cliff; Keir, Jeff; Cameron, Alan

    2012-01-01

    Background: Deciding whether a skin lesion requires biopsy to exclude skin cancer is often challenging for primary care clinicians in Australia. There are several published algorithms designed to assist with the diagnosis of skin cancer but apart from the clinical ABCD rule, these algorithms only evaluate the dermatoscopic features of a lesion. Objectives: The BLINCK algorithm explores the effect of combining clinical history and examination with fundamental dermatoscopic assessment in primar...

  7. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    OpenAIRE

    Marcelo S. Reis; Gustavo Estrela; Carlos Eduardo Ferreira; Junior Barrera

    2017-01-01

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and co...

  8. Speed Bump Detection Using Accelerometric Features: A Genetic Algorithm Approach.

    Science.gov (United States)

    Celaya-Padilla, Jose M; Galván-Tejada, Carlos E; López-Monteagudo, F E; Alonso-González, O; Moreno-Báez, Arturo; Martínez-Torteya, Antonio; Galván-Tejada, Jorge I; Arceo-Olague, Jose G; Luna-García, Huizilopoztli; Gamboa-Rosales, Hamurabi

    2018-02-03

    Among the current challenges of the Smart City, traffic management and maintenance are of utmost importance. Road surface monitoring is currently performed by humans, but the road surface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. In addition, while said obstacles ought to be signalized according to specific road regulation, they are not always correctly labeled. Therefore, we developed a novel method for the detection of road abnormalities (i.e., speed bumps). This method makes use of a gyro, an accelerometer, and a GPS sensor mounted in a car. After having the vehicle cruise through several streets, data is retrieved from the sensors. Then, using a cross-validation strategy, a genetic algorithm is used to find a logistic model that accurately detects road abnormalities. The proposed model had an accuracy of 0.9714 in a blind evaluation, with a false positive rate smaller than 0.018, and an area under the receiver operating characteristic curve of 0.9784. This methodology has the potential to detect speed bumps in quasi real-time conditions, and can be used to construct a real-time surface monitoring system.

  9. Speed Bump Detection Using Accelerometric Features: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Jose M. Celaya-Padilla

    2018-02-01

    Full Text Available Among the current challenges of the Smart City, traffic management and maintenance are of utmost importance. Road surface monitoring is currently performed by humans, but the road surface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers. Furthermore, human-induced abnormalities, such as speed bumps, could also cause accidents. In addition, while said obstacles ought to be signalized according to specific road regulation, they are not always correctly labeled. Therefore, we developed a novel method for the detection of road abnormalities (i.e., speed bumps. This method makes use of a gyro, an accelerometer, and a GPS sensor mounted in a car. After having the vehicle cruise through several streets, data is retrieved from the sensors. Then, using a cross-validation strategy, a genetic algorithm is used to find a logistic model that accurately detects road abnormalities. The proposed model had an accuracy of 0.9714 in a blind evaluation, with a false positive rate smaller than 0.018, and an area under the receiver operating characteristic curve of 0.9784. This methodology has the potential to detect speed bumps in quasi real-time conditions, and can be used to construct a real-time surface monitoring system.

  10. A Signature Comparing Android Mobile Application Utilizing Feature Extracting Algorithms

    Directory of Open Access Journals (Sweden)

    Paul Grafilon

    2017-08-01

    Full Text Available The paper presented one of the application that can be done using smartphones camera. Nowadays forgery is one of the most undetected crimes. With the forensic technology used today it is still difficult for authorities to compare and define what a real signature is and what a forged signature is. A signature is a legal representation of a person. All transactions are based on a signature. Forgers may use a signature to sign illegal contracts and withdraw from bank accounts undetected. A signature can also be forged during election periods for repeated voting. Addressing the issues a signature should always be secure. Signature verification is a reduced problem that still poses a real challenge for researchers. The literature on signature verification is quite extensive and shows two main areas of research off-line and on-line systems. Off-line systems deal with a static image of the signature i.e. the result of the action of signing while on-line systems work on the dynamic process of generating the signature i.e. the action of signing itself. The researchers have found a way to resolve the concerns. A mobile application that integrates the camera to take a picture of a signature analyzes it and compares it to other signatures for verification. It will exist to help citizens to be more cautious and aware with issues regarding the signatures. This might also be relevant to help organizations and institutions such as banks and insurance companies in verifying signatures that may avoid unwanted transactions and identity theft. Furthermore this might help the authorities in the never ending battle against crime especially against forgers and thieves. The project aimed to design and develop a mobile application that integrates the smartphone camera for verifying and comparing signatures for security using the best algorithm possible. As the result of the development the said smartphone camera application is functional and reliable.

  11. A New Feature Selection Algorithm Based on the Mean Impact Variance

    Directory of Open Access Journals (Sweden)

    Weidong Cheng

    2014-01-01

    Full Text Available The selection of fewer or more representative features from multidimensional features is important when the artificial neural network (ANN algorithm is used as a classifier. In this paper, a new feature selection method called the mean impact variance (MIVAR method is proposed to determine the feature that is more suitable for classification. Moreover, this method is constructed on the basis of the training process of the ANN algorithm. To verify the effectiveness of the proposed method, the MIVAR value is used to rank the multidimensional features of the bearing fault diagnosis. In detail, (1 70-dimensional all waveform features are extracted from a rolling bearing vibration signal with four different operating states, (2 the corresponding MIVAR values of all 70-dimensional features are calculated to rank all features, (3 14 groups of 10-dimensional features are separately generated according to the ranking results and the principal component analysis (PCA algorithm and a back propagation (BP network is constructed, and (4 the validity of the ranking result is proven by training this BP network with these seven groups of 10-dimensional features and by comparing the corresponding recognition rates. The results prove that the features with larger MIVAR value can lead to higher recognition rates.

  12. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    Science.gov (United States)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  13. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    Science.gov (United States)

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    Science.gov (United States)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  15. Selection of individual features of a speech signal using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Kamil Kamiński

    2016-03-01

    Full Text Available The paper presents an automatic speaker’s recognition system, implemented in the Matlab environment, and demonstrates how to achieve and optimize various elements of the system. The main emphasis was put on features selection of a speech signal using a genetic algorithm which takes into account synergy of features. The results of optimization of selected elements of a classifier have been also shown, including the number of Gaussian distributions used to model each of the voices. In addition, for creating voice models, a universal voice model has been used.[b]Keywords[/b]: biometrics, automatic speaker recognition, genetic algorithms, feature selection

  16. An improved feature extraction algorithm based on KAZE for multi-spectral image

    Science.gov (United States)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  17. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    Science.gov (United States)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  18. A review of feature detection and match algorithms for localization and mapping

    Science.gov (United States)

    Li, Shimiao

    2017-09-01

    Localization and mapping is an essential ability of a robot to keep track of its own location in an unknown environment. Among existing methods for this purpose, vision-based methods are more effective solutions for being accurate, inexpensive and versatile. Vision-based methods can generally be categorized as feature-based approaches and appearance-based approaches. The feature-based approaches prove higher performance in textured scenarios. However, their performance depend highly on the applied feature-detection algorithms. In this paper, we surveyed algorithms for feature detection, which is an essential step in achieving vision-based localization and mapping. In this pater, we present mathematical models of the algorithms one after another. To compare the performances of the algorithms, we conducted a series of experiments on their accuracy, speed, scale invariance and rotation invariance. The results of the experiments showed that ORB is the fastest algorithm in detecting and matching features, the speed of which is more than 10 times that of SURF and approximately 40 times that of SIFT. And SIFT, although with no advantage in terms of speed, shows the most correct matching pairs and proves its accuracy.

  19. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    Science.gov (United States)

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  20. Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

    Science.gov (United States)

    Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad

    2016-04-01

    Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.

  1. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

    Directory of Open Access Journals (Sweden)

    Aiming Liu

    2017-11-01

    Full Text Available Motor Imagery (MI electroencephalography (EEG is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP and local characteristic-scale decomposition (LCD algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems.

  2. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

    Science.gov (United States)

    Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-11-08

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.

  3. A fully automated algorithm of baseline correction based on wavelet feature points and segment interpolation

    Science.gov (United States)

    Qian, Fang; Wu, Yihui; Hao, Peng

    2017-11-01

    Baseline correction is a very important part of pre-processing. Baseline in the spectrum signal can induce uneven amplitude shifts across different wavenumbers and lead to bad results. Therefore, these amplitude shifts should be compensated before further analysis. Many algorithms are used to remove baseline, however fully automated baseline correction is convenient in practical application. A fully automated algorithm based on wavelet feature points and segment interpolation (AWFPSI) is proposed. This algorithm finds feature points through continuous wavelet transformation and estimates baseline through segment interpolation. AWFPSI is compared with three commonly introduced fully automated and semi-automated algorithms, using simulated spectrum signal, visible spectrum signal and Raman spectrum signal. The results show that AWFPSI gives better accuracy and has the advantage of easy use.

  4. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    Science.gov (United States)

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  5. An Algorithm Based on the Self-Organized Maps for the Classification of Facial Features

    Directory of Open Access Journals (Sweden)

    Gheorghe Gîlcă

    2015-12-01

    Full Text Available This paper deals with an algorithm based on Self Organized Maps networks which classifies facial features. The proposed algorithm can categorize the facial features defined by the input variables: eyebrow, mouth, eyelids into a map of their grouping. The groups map is based on calculating the distance between each input vector and each output neuron layer , the neuron with the minimum distance being declared winner neuron. The network structure consists of two levels: the first level contains three input vectors, each having forty-one values, while the second level contains the SOM competitive network which consists of 100 neurons. The proposed system can classify facial features quickly and easily using the proposed algorithm based on SOMs.

  6. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

    Directory of Open Access Journals (Sweden)

    Joeri Ruyssinck

    Full Text Available One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made

  7. An improved algorithm for information hiding based on features of Arabic text: A Unicode approach

    Directory of Open Access Journals (Sweden)

    A.A. Mohamed

    2014-07-01

    Full Text Available Steganography means how to hide secret information in a cover media, so that other individuals fail to realize their existence. Due to the lack of data redundancy in the text file in comparison with other carrier files, text steganography is a difficult problem to solve. In this paper, we proposed a new promised steganographic algorithm for Arabic text based on features of Arabic text. The focus is on more secure algorithm and high capacity of the carrier. Our extensive experiments using the proposed algorithm resulted in a high capacity of the carrier media. The embedding capacity rate ratio of the proposed algorithm is high. In addition, our algorithm can resist traditional attacking methods since it makes the changes in carrier text as minimum as possible.

  8. A Novel Algorithm for Feature Level Fusion Using SVM Classifier for Multibiometrics-Based Person Identification

    Directory of Open Access Journals (Sweden)

    Ujwalla Gawande

    2013-01-01

    Full Text Available Recent times witnessed many advancements in the field of biometric and ultimodal biometric fields. This is typically observed in the area, of security, privacy, and forensics. Even for the best of unimodal biometric systems, it is often not possible to achieve a higher recognition rate. Multimodal biometric systems overcome various limitations of unimodal biometric systems, such as nonuniversality, lower false acceptance, and higher genuine acceptance rates. More reliable recognition performance is achievable as multiple pieces of evidence of the same identity are available. The work presented in this paper is focused on multimodal biometric system using fingerprint and iris. Distinct textual features of the iris and fingerprint are extracted using the Haar wavelet-based technique. A novel feature level fusion algorithm is developed to combine these unimodal features using the Mahalanobis distance technique. A support-vector-machine-based learning algorithm is used to train the system using the feature extracted. The performance of the proposed algorithms is validated and compared with other algorithms using the CASIA iris database and real fingerprint database. From the simulation results, it is evident that our algorithm has higher recognition rate and very less false rejection rate compared to existing approaches.

  9. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability.

    Science.gov (United States)

    Kim, Hyungjin; Park, Chang Min; Lee, Myunghee; Park, Sang Joon; Song, Yong Sub; Lee, Jong Hyuk; Hwang, Eui Jin; Goo, Jin Mo

    2016-01-01

    To identify the impact of reconstruction algorithms on CT radiomic features of pulmonary tumors and to reveal and compare the intra- and inter-reader and inter-reconstruction algorithm variability of each feature. Forty-two patients (M:F = 19:23; mean age, 60.43±10.56 years) with 42 pulmonary tumors (22.56±8.51mm) underwent contrast-enhanced CT scans, which were reconstructed with filtered back projection and commercial iterative reconstruction algorithm (level 3 and 5). Two readers independently segmented the whole tumor volume. Fifteen radiomic features were extracted and compared among reconstruction algorithms. Intra- and inter-reader variability and inter-reconstruction algorithm variability were calculated using coefficients of variation (CVs) and then compared. Among the 15 features, 5 first-order tumor intensity features and 4 gray level co-occurrence matrix (GLCM)-based features showed significant differences (palgorithms. As for the variability, effective diameter, sphericity, entropy, and GLCM entropy were the most robust features (CV≤5%). Inter-reader variability was larger than intra-reader or inter-reconstruction algorithm variability in 9 features. However, for entropy, homogeneity, and 4 GLCM-based features, inter-reconstruction algorithm variability was significantly greater than inter-reader variability (palgorithms. Inter-reconstruction algorithm variability was greater than inter-reader variability for entropy, homogeneity, and GLCM-based features.

  10. Medical Image Fusion Algorithm Based on Nonlinear Approximation of Contourlet Transform and Regional Features

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-01-01

    Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.

  11. A novel feature ranking algorithm for biometric recognition with PPG signals.

    Science.gov (United States)

    Reşit Kavsaoğlu, A; Polat, Kemal; Recep Bozkurt, M

    2014-06-01

    This study is intended for describing the application of the Photoplethysmography (PPG) signal and the time domain features acquired from its first and second derivatives for biometric identification. For this purpose, a sum of 40 features has been extracted and a feature-ranking algorithm is proposed. This proposed algorithm calculates the contribution of each feature to biometric recognition and collocates the features, the contribution of which is from great to small. While identifying the contribution of the features, the Euclidean distance and absolute distance formulas are used. The efficiency of the proposed algorithms is demonstrated by the results of the k-NN (k-nearest neighbor) classifier applications of the features. During application, each 15-period-PPG signal belonging to two different durations from each of the thirty healthy subjects were used with a PPG data acquisition card. The first PPG signals recorded from the subjects were evaluated as the 1st configuration; the PPG signals recorded later at a different time as the 2nd configuration and the combination of both were evaluated as the 3rd configuration. When the results were evaluated for the k-NN classifier model created along with the proposed algorithm, an identification of 90.44% for the 1st configuration, 94.44% for the 2nd configuration, and 87.22% for the 3rd configuration has successfully been attained. The obtained results showed that both the proposed algorithm and the biometric identification model based on this developed PPG signal are very promising for contactless recognizing the people with the proposed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A 3D Printing Model Watermarking Algorithm Based on 3D Slicing and Feature Points

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the increase of three-dimensional (3D printing applications in many areas of life, a large amount of 3D printing data is copied, shared, and used several times without any permission from the original providers. Therefore, copyright protection and ownership identification for 3D printing data in communications or commercial transactions are practical issues. This paper presents a novel watermarking algorithm for 3D printing models based on embedding watermark data into the feature points of a 3D printing model. Feature points are determined and computed by the 3D slicing process along the Z axis of a 3D printing model. The watermark data is embedded into a feature point of a 3D printing model by changing the vector length of the feature point in OXY space based on the reference length. The x and y coordinates of the feature point will be then changed according to the changed vector length that has been embedded with a watermark. Experimental results verified that the proposed algorithm is invisible and robust to geometric attacks, such as rotation, scaling, and translation. The proposed algorithm provides a better method than the conventional works, and the accuracy of the proposed algorithm is much higher than previous methods.

  13. Cancer microarray data feature selection using multi-objective binary particle swarm optimization algorithm

    Science.gov (United States)

    Annavarapu, Chandra Sekhara Rao; Dara, Suresh; Banka, Haider

    2016-01-01

    Cancer investigations in microarray data play a major role in cancer analysis and the treatment. Cancer microarray data consists of complex gene expressed patterns of cancer. In this article, a Multi-Objective Binary Particle Swarm Optimization (MOBPSO) algorithm is proposed for analyzing cancer gene expression data. Due to its high dimensionality, a fast heuristic based pre-processing technique is employed to reduce some of the crude domain features from the initial feature set. Since these pre-processed and reduced features are still high dimensional, the proposed MOBPSO algorithm is used for finding further feature subsets. The objective functions are suitably modeled by optimizing two conflicting objectives i.e., cardinality of feature subsets and distinctive capability of those selected subsets. As these two objective functions are conflicting in nature, they are more suitable for multi-objective modeling. The experiments are carried out on benchmark gene expression datasets, i.e., Colon, Lymphoma and Leukaemia available in literature. The performance of the selected feature subsets with their classification accuracy and validated using 10 fold cross validation techniques. A detailed comparative study is also made to show the betterment or competitiveness of the proposed algorithm. PMID:27822174

  14. An adaptive clustering algorithm for image matching based on corner feature

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  15. An efficient fractal image coding algorithm using unified feature and DCT

    International Nuclear Information System (INIS)

    Zhou Yiming; Zhang Chao; Zhang Zengke

    2009-01-01

    Fractal image compression is a promising technique to improve the efficiency of image storage and image transmission with high compression ratio, however, the huge time consumption for the fractal image coding is a great obstacle to the practical applications. In order to improve the fractal image coding, efficient fractal image coding algorithms using a special unified feature and a DCT coder are proposed in this paper. Firstly, based on a necessary condition to the best matching search rule during fractal image coding, the fast algorithm using a special unified feature (UFC) is addressed, and it can reduce the search space obviously and exclude most inappropriate matching subblocks before the best matching search. Secondly, on the basis of UFC algorithm, in order to improve the quality of the reconstructed image, a DCT coder is combined to construct a hybrid fractal image algorithm (DUFC). Experimental results show that the proposed algorithms can obtain good quality of the reconstructed images and need much less time than the baseline fractal coding algorithm.

  16. Object tracking system using a VSW algorithm based on color and point features

    Directory of Open Access Journals (Sweden)

    Lim Hye-Youn

    2011-01-01

    Full Text Available Abstract An object tracking system using a variable search window (VSW algorithm based on color and feature points is proposed. A meanshift algorithm is an object tracking technique that works according to color probability distributions. An advantage of this algorithm based on color is that it is robust to specific color objects; however, a disadvantage is that it is sensitive to non-specific color objects due to illumination and noise. Therefore, to offset this weakness, it presents the VSW algorithm based on robust feature points for the accurate tracking of moving objects. The proposed method extracts the feature points of a detected object which is the region of interest (ROI, and generates a VSW using the given information which is the positions of extracted feature points. The goal of this paper is to achieve an efficient and effective object tracking system that meets the accurate tracking of moving objects. Through experiments, the object tracking system is implemented that it performs more precisely than existing techniques.

  17. VHDL Implementation of Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Löhner, H.; Tambave, G.

    2010-01-01

    The feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The use of modified firmware with the running on-line

  18. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.

    2012-01-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an

  19. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    Science.gov (United States)

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  20. Automatic Correction Algorithm of Hyfrology Feature Attribute in National Geographic Census

    Science.gov (United States)

    Li, C.; Guo, P.; Liu, X.

    2017-09-01

    A subset of the attributes of hydrologic features data in national geographic census are not clear, the current solution to this problem was through manual filling which is inefficient and liable to mistakes. So this paper proposes an automatic correction algorithm of hydrologic features attribute. Based on the analysis of the structure characteristics and topological relation, we put forward three basic principles of correction which include network proximity, structure robustness and topology ductility. Based on the WJ-III map workstation, we realize the automatic correction of hydrologic features. Finally, practical data is used to validate the method. The results show that our method is highly reasonable and efficient.

  1. Comparisons of feature extraction algorithm based on unmanned aerial vehicle image

    Directory of Open Access Journals (Sweden)

    Xi Wenfei

    2017-07-01

    Full Text Available Feature point extraction technology has become a research hotspot in the photogrammetry and computer vision. The commonly used point feature extraction operators are SIFT operator, Forstner operator, Harris operator and Moravec operator, etc. With the high spatial resolution characteristics, UAV image is different from the traditional aviation image. Based on these characteristics of the unmanned aerial vehicle (UAV, this paper uses several operators referred above to extract feature points from the building images, grassland images, shrubbery images, and vegetable greenhouses images. Through the practical case analysis, the performance, advantages, disadvantages and adaptability of each algorithm are compared and analyzed by considering their speed and accuracy. Finally, the suggestions of how to adapt different algorithms in diverse environment are proposed.

  2. The algorithm of fast image stitching based on multi-feature extraction

    Science.gov (United States)

    Yang, Chunde; Wu, Ge; Shi, Jing

    2018-05-01

    This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.

  3. A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2017-03-01

    Full Text Available Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1 A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2 A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3 Based on the proposed mathematical model, a feature matching and fusion (FMAF-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

  4. An Empirical Study of Wrappers for Feature Subset Selection based on a Parallel Genetic Algorithm: The Multi-Wrapper Model

    KAUST Repository

    Soufan, Othman

    2012-01-01

    proper criterion seeks to find the best subset of features describing data (relevance) and achieving better performance (optimality). Wrapper approaches are feature selection methods which are wrapped around a classification algorithm and use a

  5. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering.

    Science.gov (United States)

    Luo, Junhai; Fu, Liang

    2017-06-09

    With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  6. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2017-06-01

    Full Text Available With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS, which is collected from Access Points (APs. The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  7. Feature Selection of Network Intrusion Data using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Iwan Syarif

    2016-12-01

    Full Text Available This paper describes the advantages of using Evolutionary Algorithms (EA for feature selection on network intrusion dataset. Most current Network Intrusion Detection Systems (NIDS are unable to detect intrusions in real time because of high dimensional data produced during daily operation. Extracting knowledge from huge data such as intrusion data requires new approach. The more complex the datasets, the higher computation time and the harder they are to be interpreted and analyzed. This paper investigates the performance of feature selection algoritms in network intrusiona data. We used Genetic Algorithms (GA and Particle Swarm Optimizations (PSO as feature selection algorithms. When applied to network intrusion datasets, both GA and PSO have significantly reduces the number of features. Our experiments show that GA successfully reduces the number of attributes from 41 to 15 while PSO reduces the number of attributes from 41 to 9. Using k Nearest Neighbour (k-NN as a classifier,the GA-reduced dataset which consists of 37% of original attributes, has accuracy improvement from 99.28% to 99.70% and its execution time is also 4.8 faster than the execution time of original dataset. Using the same classifier, PSO-reduced dataset which consists of 22% of original attributes, has the fastest execution time (7.2 times faster than the execution time of original datasets. However, its accuracy is slightly reduced 0.02% from 99.28% to 99.26%. Overall, both GA and PSO are good solution as feature selection techniques because theyhave shown very good performance in reducing the number of features significantly while still maintaining and sometimes improving the classification accuracy as well as reducing the computation time.

  8. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm

    KAUST Repository

    Soufan, Othman

    2015-02-26

    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem\\'s dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filteringmethods thatmay be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.

  9. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm

    KAUST Repository

    Soufan, Othman; Kleftogiannis, Dimitrios A.; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem's dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filteringmethods thatmay be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.

  10. Optimal Feature Space Selection in Detecting Epileptic Seizure based on Recurrent Quantification Analysis and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saleh LAshkari

    2016-06-01

    Full Text Available Selecting optimal features based on nature of the phenomenon and high discriminant ability is very important in the data classification problems. Since it doesn't require any assumption about stationary condition and size of the signal and the noise in Recurrent Quantification Analysis (RQA, it may be useful for epileptic seizure Detection. In this study, RQA was used to discriminate ictal EEG from the normal EEG where optimal features selected by combination of algorithm genetic and Bayesian Classifier. Recurrence plots of hundred samples in each two categories were obtained with five distance norms in this study: Euclidean, Maximum, Minimum, Normalized and Fixed Norm. In order to choose optimal threshold for each norm, ten threshold of ε was generated and then the best feature space was selected by genetic algorithm in combination with a bayesian classifier. The results shown that proposed method is capable of discriminating the ictal EEG from the normal EEG where for Minimum norm and 0.1˂ε˂1, accuracy was 100%. In addition, the sensitivity of proposed framework to the ε and the distance norm parameters was low. The optimal feature presented in this study is Trans which it was selected in most feature spaces with high accuracy.

  11. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    Science.gov (United States)

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  12. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    Directory of Open Access Journals (Sweden)

    Xu Yu

    2018-01-01

    Full Text Available Cross-domain collaborative filtering (CDCF solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR. We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  13. Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms

    Directory of Open Access Journals (Sweden)

    Kuan-Cheng Lin

    2015-01-01

    Full Text Available Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.

  14. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    Science.gov (United States)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  15. An Extended HITS Algorithm on Bipartite Network for Features Extraction of Online Customer Reviews

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2018-05-01

    Full Text Available How to acquire useful information intelligently in the age of information explosion has become an important issue. In this context, sentiment analysis emerges with the growth of the need of information extraction. One of the most important tasks of sentiment analysis is feature extraction of entities in consumer reviews. This paper first constitutes a directed bipartite feature-sentiment relation network with a set of candidate features-sentiment pairs that is extracted by dependency syntax analysis from consumer reviews. Then, a novel method called MHITS which combines PMI with weighted HITS algorithm is proposed to rank these candidate product features to find out real product features. Empirical experiments indicate the effectiveness of our approach across different kinds and various data sizes of product. In addition, the effect of the proposed algorithm is not the same for the corpus with different proportions of the word pair that includes the “bad”, “good”, “poor”, “pretty good”, “not bad” these general collocation words.

  16. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    Science.gov (United States)

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm

  17. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2014-09-01

    Full Text Available This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and

  18. A Hybrid Feature Subset Selection Algorithm for Analysis of High Correlation Proteomic Data

    Science.gov (United States)

    Kordy, Hussain Montazery; Baygi, Mohammad Hossein Miran; Moradi, Mohammad Hassan

    2012-01-01

    Pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. The surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) has been used to generate proteomic profiles from biological fluids. Mass spectrometry yields redundant noisy data that the most data points are irrelevant features for differentiating between cancer and normal cases. In this paper, we have proposed a hybrid feature subset selection algorithm based on maximum-discrimination and minimum-correlation coupled with peak scoring criteria. Our algorithm has been applied to two independent SELDI-TOF MS datasets of ovarian cancer obtained from the NCI-FDA clinical proteomics databank. The proposed algorithm has used to extract a set of proteins as potential biomarkers in each dataset. We applied the linear discriminate analysis to identify the important biomarkers. The selected biomarkers have been able to successfully diagnose the ovarian cancer patients from the noncancer control group with an accuracy of 100%, a sensitivity of 100%, and a specificity of 100% in the two datasets. The hybrid algorithm has the advantage that increases reproducibility of selected biomarkers and able to find a small set of proteins with high discrimination power. PMID:23717808

  19. Multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement

    Science.gov (United States)

    Yan, Dan; Bai, Lianfa; Zhang, Yi; Han, Jing

    2018-02-01

    For the problems of missing details and performance of the colorization based on sparse representation, we propose a conceptual model framework for colorizing gray-scale images, and then a multi-sparse dictionary colorization algorithm based on the feature classification and detail enhancement (CEMDC) is proposed based on this framework. The algorithm can achieve a natural colorized effect for a gray-scale image, and it is consistent with the human vision. First, the algorithm establishes a multi-sparse dictionary classification colorization model. Then, to improve the accuracy rate of the classification, the corresponding local constraint algorithm is proposed. Finally, we propose a detail enhancement based on Laplacian Pyramid, which is effective in solving the problem of missing details and improving the speed of image colorization. In addition, the algorithm not only realizes the colorization of the visual gray-scale image, but also can be applied to the other areas, such as color transfer between color images, colorizing gray fusion images, and infrared images.

  20. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Science.gov (United States)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  1. An Incremental Classification Algorithm for Mining Data with Feature Space Heterogeneity

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Feature space heterogeneity often exists in many real world data sets so that some features are of different importance for classification over different subsets. Moreover, the pattern of feature space heterogeneity might dynamically change over time as more and more data are accumulated. In this paper, we develop an incremental classification algorithm, Supervised Clustering for Classification with Feature Space Heterogeneity (SCCFSH, to address this problem. In our approach, supervised clustering is implemented to obtain a number of clusters such that samples in each cluster are from the same class. After the removal of outliers, relevance of features in each cluster is calculated based on their variations in this cluster. The feature relevance is incorporated into distance calculation for classification. The main advantage of SCCFSH lies in the fact that it is capable of solving a classification problem with feature space heterogeneity in an incremental way, which is favorable for online classification tasks with continuously changing data. Experimental results on a series of data sets and application to a database marketing problem show the efficiency and effectiveness of the proposed approach.

  2. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  3. Feature Fusion Algorithm for Multimodal Emotion Recognition from Speech and Facial Expression Signal

    Directory of Open Access Journals (Sweden)

    Han Zhiyan

    2016-01-01

    Full Text Available In order to overcome the limitation of single mode emotion recognition. This paper describes a novel multimodal emotion recognition algorithm, and takes speech signal and facial expression signal as the research subjects. First, fuse the speech signal feature and facial expression signal feature, get sample sets by putting back sampling, and then get classifiers by BP neural network (BPNN. Second, measure the difference between two classifiers by double error difference selection strategy. Finally, get the final recognition result by the majority voting rule. Experiments show the method improves the accuracy of emotion recognition by giving full play to the advantages of decision level fusion and feature level fusion, and makes the whole fusion process close to human emotion recognition more, with a recognition rate 90.4%.

  4. Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining

    Directory of Open Access Journals (Sweden)

    P. Kalaivani

    2015-01-01

    Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.

  5. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    Directory of Open Access Journals (Sweden)

    P. Amudha

    2015-01-01

    Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  6. Feature selection for disruption prediction from scratch in JET by using genetic algorithms and probabilistic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Augusto, E-mail: augusto.pereira@ciemat.es [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Vega, Jesús; Moreno, Raúl [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Dormido-Canto, Sebastián [Dpto. Informática y Automática – UNED, Madrid (Spain); Rattá, Giuseppe A. [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); Pavón, Fernando [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2015-10-15

    Recently, a probabilistic classifier has been developed at JET to be used as predictor from scratch. It has been applied to a database of 1237 JET ITER-like wall (ILW) discharges (of which 201 disrupted) with good results: success rate of 94% and false alarm rate of 4.21%. A combinatorial analysis between 14 features to ensure the selection of the best ones to achieve good enough results in terms of success rate and false alarm rate was performed. All possible combinations with a number of features between 2 and 7 were tested and 9893 different predictors were analyzed. An important drawback in this analysis was the time required to compute the results that can be estimated in 1731 h (∼2.4 months). Genetic algorithms (GA) are searching algorithms that simulate the process of natural selection. In this article, the GA and the Venn predictors are combined with the objective not only of finding good enough features within the 14 available ones but also of reducing the computational time requirements. Five different performance metrics as measures of the GA fitness function have been evaluated. The best metric was the measurement called Informedness, with just 6 generations (168 predictors at 29.4 h).

  7. A computational environment for long-term multi-feature and multi-algorithm seizure prediction.

    Science.gov (United States)

    Teixeira, C A; Direito, B; Costa, R P; Valderrama, M; Feldwisch-Drentrup, H; Nikolopoulos, S; Le Van Quyen, M; Schelter, B; Dourado, A

    2010-01-01

    The daily life of epilepsy patients is constrained by the possibility of occurrence of seizures. Until now, seizures cannot be predicted with sufficient sensitivity and specificity. Most of the seizure prediction studies have been focused on a small number of patients, and frequently assuming unrealistic hypothesis. This paper adopts the view that for an appropriate development of reliable predictors one should consider long-term recordings and several features and algorithms integrated in one software tool. A computational environment, based on Matlab (®), is presented, aiming to be an innovative tool for seizure prediction. It results from the need of a powerful and flexible tool for long-term EEG/ECG analysis by multiple features and algorithms. After being extracted, features can be subjected to several reduction and selection methods, and then used for prediction. The predictions can be conducted based on optimized thresholds or by applying computational intelligence methods. One important aspect is the integrated evaluation of the seizure prediction characteristic of the developed predictors.

  8. Feature selection for disruption prediction from scratch in JET by using genetic algorithms and probabilistic predictors

    International Nuclear Information System (INIS)

    Pereira, Augusto; Vega, Jesús; Moreno, Raúl; Dormido-Canto, Sebastián; Rattá, Giuseppe A.; Pavón, Fernando

    2015-01-01

    Recently, a probabilistic classifier has been developed at JET to be used as predictor from scratch. It has been applied to a database of 1237 JET ITER-like wall (ILW) discharges (of which 201 disrupted) with good results: success rate of 94% and false alarm rate of 4.21%. A combinatorial analysis between 14 features to ensure the selection of the best ones to achieve good enough results in terms of success rate and false alarm rate was performed. All possible combinations with a number of features between 2 and 7 were tested and 9893 different predictors were analyzed. An important drawback in this analysis was the time required to compute the results that can be estimated in 1731 h (∼2.4 months). Genetic algorithms (GA) are searching algorithms that simulate the process of natural selection. In this article, the GA and the Venn predictors are combined with the objective not only of finding good enough features within the 14 available ones but also of reducing the computational time requirements. Five different performance metrics as measures of the GA fitness function have been evaluated. The best metric was the measurement called Informedness, with just 6 generations (168 predictors at 29.4 h).

  9. An application of locally linear model tree algorithm with combination of feature selection in credit scoring

    Science.gov (United States)

    Siami, Mohammad; Gholamian, Mohammad Reza; Basiri, Javad

    2014-10-01

    Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets - Australian and German - from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.

  10. Solving multi-objective job shop problem using nature-based algorithms: new Pareto approximation features

    Directory of Open Access Journals (Sweden)

    Jarosław Rudy

    2015-01-01

    Full Text Available In this paper the job shop scheduling problem (JSP with minimizing two criteria simultaneously is considered. JSP is frequently used model in real world applications of combinatorial optimization. Multi-objective job shop problems (MOJSP were rarely studied. We implement and compare two multi-agent nature-based methods, namely ant colony optimization (ACO and genetic algorithm (GA for MOJSP. Both of those methods employ certain technique, taken from the multi-criteria decision analysis in order to establish ranking of solutions. ACO and GA differ in a method of keeping information about previously found solutions and their quality, which affects the course of the search. In result, new features of Pareto approximations provided by said algorithms are observed: aside from the slight superiority of the ACO method the Pareto frontier approximations provided by both methods are disjoint sets. Thus, both methods can be used to search mutually exclusive areas of the Pareto frontier.

  11. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Guliyev, E. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Kavatsyuk, M., E-mail: m.kavatsyuk@rug.nl [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Lemmens, P.J.J.; Tambave, G.; Loehner, H. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands)

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  12. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P.J.J.; Tambave, G.; Löhner, H.

    2012-01-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  13. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques

    Directory of Open Access Journals (Sweden)

    M. Flach

    2017-08-01

    Full Text Available Today, many processes at the Earth's surface are constantly monitored by multiple data streams. These observations have become central to advancing our understanding of vegetation dynamics in response to climate or land use change. Another set of important applications is monitoring effects of extreme climatic events, other disturbances such as fires, or abrupt land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algorithms have been proposed for detecting anomalies in multivariate data, only a few have been investigated in the context of Earth system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in multivariate spatiotemporal Earth observations like sudden changes in basic characteristics of time series such as the sample mean, the variance, changes in the cycle amplitude, and trends. This artificial experiment is needed as there is no gold standard for the identification of anomalies in real Earth observations. Our results show that a well-chosen feature extraction step (e.g., subtracting seasonal cycles, or dimensionality reduction is more important than the choice of a particular anomaly detection algorithm. Nevertheless, we identify three detection algorithms (k-nearest neighbors mean distance, kernel density estimation, a recurrence approach and their combinations (ensembles that outperform other multivariate approaches as well as univariate extreme-event detection methods. Our results therefore provide an effective workflow to

  14. A New Curve Tracing Algorithm Based on Local Feature in the Vectorization of Paper Seismograms

    Directory of Open Access Journals (Sweden)

    Maofa Wang

    2014-02-01

    Full Text Available History paper seismograms are very important information for earthquake monitoring and prediction. The vectorization of paper seismograms is an import problem to be resolved. Auto tracing of waveform curves is a key technology for the vectorization of paper seismograms. It can transform an original scanning image into digital waveform data. Accurately tracing out all the key points of each curve in seismograms is the foundation for vectorization of paper seismograms. In the paper, we present a new curve tracing algorithm based on local feature, applying to auto extraction of earthquake waveform in paper seismograms.

  15. Specific features of NDT data and processing algorithms: new remedies to old ills

    International Nuclear Information System (INIS)

    Georgel, B.

    1994-01-01

    Non destructive testing data from in-service inspections have specific features that require the most sophisticated techniques of signal and image processing. Each step in the overall information extraction process must be optimized by using recent approaches such like data decomposition and modelization, compression, sensor fusion and knowledge based systems. This can be achieved by means of wavelet transform, inverse problems formulation, standard compression algorithms, combined detection and estimation, neural networks and expert systems. These techniques are briefly presented through a number of Electricite de France applications or through recent literature results. (author). 1 fig., 20 refs

  16. Behavioral features recognition and oestrus detection based on fast approximate clustering algorithm in dairy cows

    Science.gov (United States)

    Tian, Fuyang; Cao, Dong; Dong, Xiaoning; Zhao, Xinqiang; Li, Fade; Wang, Zhonghua

    2017-06-01

    Behavioral features recognition was an important effect to detect oestrus and sickness in dairy herds and there is a need for heat detection aid. The detection method was based on the measure of the individual behavioural activity, standing time, and temperature of dairy using vibrational sensor and temperature sensor in this paper. The data of behavioural activity index, standing time, lying time and walking time were sent to computer by lower power consumption wireless communication system. The fast approximate K-means algorithm (FAKM) was proposed to deal the data of the sensor for behavioral features recognition. As a result of technical progress in monitoring cows using computers, automatic oestrus detection has become possible.

  17. Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal

    Directory of Open Access Journals (Sweden)

    C.K. Madhusudana

    2016-09-01

    Full Text Available This paper deals with the fault diagnosis of the face milling tool based on machine learning approach using histogram features and K-star algorithm technique. Vibration signals of the milling tool under healthy and different fault conditions are acquired during machining of steel alloy 42CrMo4. Histogram features are extracted from the acquired signals. The decision tree is used to select the salient features out of all the extracted features and these selected features are used as an input to the classifier. K-star algorithm is used as a classifier and the output of the model is utilised to study and classify the different conditions of the face milling tool. Based on the experimental results, K-star algorithm is provided a better classification accuracy in the range from 94% to 96% with histogram features and is acceptable for fault diagnosis.

  18. An Empirical Study of Wrappers for Feature Subset Selection based on a Parallel Genetic Algorithm: The Multi-Wrapper Model

    KAUST Repository

    Soufan, Othman

    2012-09-01

    Feature selection is the first task of any learning approach that is applied in major fields of biomedical, bioinformatics, robotics, natural language processing and social networking. In feature subset selection problem, a search methodology with a proper criterion seeks to find the best subset of features describing data (relevance) and achieving better performance (optimality). Wrapper approaches are feature selection methods which are wrapped around a classification algorithm and use a performance measure to select the best subset of features. We analyze the proper design of the objective function for the wrapper approach and highlight an objective based on several classification algorithms. We compare the wrapper approaches to different feature selection methods based on distance and information based criteria. Significant improvement in performance, computational time, and selection of minimally sized feature subsets is achieved by combining different objectives for the wrapper model. In addition, considering various classification methods in the feature selection process could lead to a global solution of desirable characteristics.

  19. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features.

    Science.gov (United States)

    Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot

    2015-05-01

    Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (αtexture features.

  20. A Comprehensive Study of Features and Algorithms for URL-Based Topic Classification

    CERN Document Server

    Weber, I; Henzinger, M; Baykan, E

    2011-01-01

    Given only the URL of a Web page, can we identify its topic? We study this problem in detail by exploring a large number of different feature sets and algorithms on several datasets. We also show that the inherent overlap between topics and the sparsity of the information in URLs makes this a very challenging problem. Web page classification without a page's content is desirable when the content is not available at all, when a classification is needed before obtaining the content, or when classification speed is of utmost importance. For our experiments we used five different corpora comprising a total of about 3 million (URL, classification) pairs. We evaluated several techniques for feature generation and classification algorithms. The individual binary classifiers were then combined via boosting into metabinary classifiers. We achieve typical F-measure values between 80 and 85, and a typical precision of around 86. The precision can be pushed further over 90 while maintaining a typical level of recall betw...

  1. GANN: Genetic algorithm neural networks for the detection of conserved combinations of features in DNA

    Directory of Open Access Journals (Sweden)

    Beiko Robert G

    2005-02-01

    Full Text Available Abstract Background The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence- and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results GANN (available at http://bioinformatics.org.au/gann is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.

  2. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    Science.gov (United States)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  3. Study of Image Analysis Algorithms for Segmentation, Feature Extraction and Classification of Cells

    Directory of Open Access Journals (Sweden)

    Margarita Gamarra

    2017-08-01

    Full Text Available Recent advances in microcopy and improvements in image processing algorithms have allowed the development of computer-assisted analytical approaches in cell identification. Several applications could be mentioned in this field: Cellular phenotype identification, disease detection and treatment, identifying virus entry in cells and virus classification; these applications could help to complement the opinion of medical experts. Although many surveys have been presented in medical image analysis, they focus mainly in tissues and organs and none of the surveys about image cells consider an analysis following the stages in the typical image processing: Segmentation, feature extraction and classification. The goal of this study is to provide comprehensive and critical analyses about the trends in each stage of cell image processing. In this paper, we present a literature survey about cell identification using different image processing techniques.

  4. A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm.

    Science.gov (United States)

    Wang, Yun-Ting; Peng, Chao-Chung; Ravankar, Ankit A; Ravankar, Abhijeet

    2018-04-23

    In past years, there has been significant progress in the field of indoor robot localization. To precisely recover the position, the robots usually relies on multiple on-board sensors. Nevertheless, this affects the overall system cost and increases computation. In this research work, we considered a light detection and ranging (LiDAR) device as the only sensor for detecting surroundings and propose an efficient indoor localization algorithm. To attenuate the computation effort and preserve localization robustness, a weighted parallel iterative closed point (WP-ICP) with interpolation is presented. As compared to the traditional ICP, the point cloud is first processed to extract corners and line features before applying point registration. Later, points labeled as corners are only matched with the corner candidates. Similarly, points labeled as lines are only matched with the lines candidates. Moreover, their ICP confidence levels are also fused in the algorithm, which make the pose estimation less sensitive to environment uncertainties. The proposed WP-ICP architecture reduces the probability of mismatch and thereby reduces the ICP iterations. Finally, based on given well-constructed indoor layouts, experiment comparisons are carried out under both clean and perturbed environments. It is shown that the proposed method is effective in significantly reducing computation effort and is simultaneously able to preserve localization precision.

  5. Improved algorithms and advanced features of the CAD to MC conversion tool McCad

    International Nuclear Information System (INIS)

    Lu, L.; Fischer, U.; Pereslavtsev, P.

    2014-01-01

    Highlights: •The latest improvements of the McCad conversion approach including decomposition and void filling algorithms is presented. •An advanced interface for the materials editing and assignment has been developed and added to the McCAD GUI. •These improvements have been tested and successfully applied to DEMO and ITER NBI (Neutral Beam Injector) applications. •The performance of the CAD model conversion process is shown to be significantly improved. -- Abstract: McCad is a geometry conversion tool developed at KIT to enable the automatic bi-directional conversions of CAD models into the Monte Carlo (MC) geometries utilized for neutronics calculations (CAD to MC) and, reversed (MC to CAD), for visualization purposes. The paper presents the latest improvements of the conversion algorithms including improved decomposition, void filling and an advanced interface for the materials editing and assignment. The new implementations and features were tested on fusion neutronics applications to the DEMO and ITER NBI (Neutral Beam Injector) models. The results demonstrate greater stability and enhanced efficiency of McCad conversion process

  6. A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Yun-Ting Wang

    2018-04-01

    Full Text Available In past years, there has been significant progress in the field of indoor robot localization. To precisely recover the position, the robots usually relies on multiple on-board sensors. Nevertheless, this affects the overall system cost and increases computation. In this research work, we considered a light detection and ranging (LiDAR device as the only sensor for detecting surroundings and propose an efficient indoor localization algorithm. To attenuate the computation effort and preserve localization robustness, a weighted parallel iterative closed point (WP-ICP with interpolation is presented. As compared to the traditional ICP, the point cloud is first processed to extract corners and line features before applying point registration. Later, points labeled as corners are only matched with the corner candidates. Similarly, points labeled as lines are only matched with the lines candidates. Moreover, their ICP confidence levels are also fused in the algorithm, which make the pose estimation less sensitive to environment uncertainties. The proposed WP-ICP architecture reduces the probability of mismatch and thereby reduces the ICP iterations. Finally, based on given well-constructed indoor layouts, experiment comparisons are carried out under both clean and perturbed environments. It is shown that the proposed method is effective in significantly reducing computation effort and is simultaneously able to preserve localization precision.

  7. A method of evolving novel feature extraction algorithms for detecting buried objects in FLIR imagery using genetic programming

    Science.gov (United States)

    Paino, A.; Keller, J.; Popescu, M.; Stone, K.

    2014-06-01

    In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.

  8. The Nonlocal Sparse Reconstruction Algorithm by Similarity Measurement with Shearlet Feature Vector

    Directory of Open Access Journals (Sweden)

    Wu Qidi

    2014-01-01

    Full Text Available Due to the limited accuracy of conventional methods with image restoration, the paper supplied a nonlocal sparsity reconstruction algorithm with similarity measurement. To improve the performance of restoration results, we proposed two schemes to dictionary learning and sparse coding, respectively. In the part of the dictionary learning, we measured the similarity between patches from degraded image by constructing the Shearlet feature vector. Besides, we classified the patches into different classes with similarity and trained the cluster dictionary for each class, by cascading which we could gain the universal dictionary. In the part of sparse coding, we proposed a novel optimal objective function with the coding residual item, which can suppress the residual between the estimate coding and true sparse coding. Additionally, we show the derivation of self-adaptive regularization parameter in optimization under the Bayesian framework, which can make the performance better. It can be indicated from the experimental results that by taking full advantage of similar local geometric structure feature existing in the nonlocal patches and the coding residual suppression, the proposed method shows advantage both on visual perception and PSNR compared to the conventional methods.

  9. Feature Selection and Predictors of Falls with Foot Force Sensors Using KNN-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Shengyun Liang

    2015-11-01

    Full Text Available The aging process may lead to the degradation of lower extremity function in the elderly population, which can restrict their daily quality of life and gradually increase the fall risk. We aimed to determine whether objective measures of physical function could predict subsequent falls. Ground reaction force (GRF data, which was quantified by sample entropy, was collected by foot force sensors. Thirty eight subjects (23 fallers and 15 non-fallers participated in functional movement tests, including walking and sit-to-stand (STS. A feature selection algorithm was used to select relevant features to classify the elderly into two groups: at risk and not at risk of falling down, for three KNN-based classifiers: local mean-based k-nearest neighbor (LMKNN, pseudo nearest neighbor (PNN, local mean pseudo nearest neighbor (LMPNN classification. We compared classification performances, and achieved the best results with LMPNN, with sensitivity, specificity and accuracy all 100%. Moreover, a subset of GRFs was significantly different between the two groups via Wilcoxon rank sum test, which is compatible with the classification results. This method could potentially be used by non-experts to monitor balance and the risk of falling down in the elderly population.

  10. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  11. Improved feature selection based on genetic algorithms for real time disruption prediction on JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A., E-mail: garatta@gateme.unsj.edu.ar [GATEME, Facultad de Ingenieria, Universidad Nacional de San Juan, Avda. San Martin 1109 (O), 5400 San Juan (Argentina); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Avda. Complutense, 40, 28040 Madrid (Spain); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); JET EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer A new signal selection methodology to improve disruption prediction is reported. Black-Right-Pointing-Pointer The approach is based on Genetic Algorithms. Black-Right-Pointing-Pointer An advanced predictor has been created with the new set of signals. Black-Right-Pointing-Pointer The new system obtains considerably higher prediction rates. - Abstract: The early prediction of disruptions is an important aspect of the research in the field of Tokamak control. A very recent predictor, called 'Advanced Predictor Of Disruptions' (APODIS), developed for the 'Joint European Torus' (JET), implements the real time recognition of incoming disruptions with the best success rate achieved ever and an outstanding stability for long periods following training. In this article, a new methodology to select the set of the signals' parameters in order to maximize the performance of the predictor is reported. The approach is based on 'Genetic Algorithms' (GAs). With the feature selection derived from GAs, a new version of APODIS has been developed. The results are significantly better than the previous version not only in terms of success rates but also in extending the interval before the disruption in which reliable predictions are achieved. Correct disruption predictions with a success rate in excess of 90% have been achieved 200 ms before the time of the disruption. The predictor response is compared with that of JET's Protection System (JPS) and the ADODIS predictor is shown to be far superior. Both systems have been carefully tested with a wide number of discharges to understand their relative merits and the most profitable directions of further improvements.

  12. Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors.

    Science.gov (United States)

    Saha, Ashirbani; Harowicz, Michael R; Mazurowski, Maciej A

    2018-04-16

    To review features used in MRI radiomics of breast cancer and study the inter-reader stability of the features METHODS: We implemented 529 algorithmic features that can be extracted from tumor and fibroglandular tissue (FGT) in breast MRIs. The features were identified based on a review of the existing literature with consideration of their usage, prognostic ability, and uniqueness. The set was then extended so that it comprehensively describes breast cancer imaging characteristics. The features were classified into 10 groups based on the type of data used to extract them and the type of calculation being performed. For the assessment of inter-reader variability, 4 fellowship-trained readers annotated tumors on pre-operative dynamic contrast enhanced MRIs for 50 breast cancer patients. Based on the annotations, an algorithm automatically segmented the image and extracted all features resulting in one set of features for each reader. For a given feature, the inter-reader stability was defined as the intra-class correlation coefficient (ICC) computed using the feature values obtained through all readers for all cases. The average inter-reader stability for all features was 0.8474 (95% CI: 0.8068-0.8858). The mean inter-reader stability was lower for tumor-based features (0.6348, 95% CI: 0.5391-0.7257) than FGT-based features (0.9984, 95% CI: 0.9970-0.9992). The feature group with the highest inter-reader stability quantifies breast and FGT volume. The feature group with the lowest inter-reader stability quantifies variations in tumor enhancement. Breast MRI radiomics features widely vary in terms of their stability in the presence of inter-reader variability. Appropriate measures need to be taken for reducing this variability in tumor-based radiomics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Quality-aware features-based noise level estimator for block matching and three-dimensional filtering algorithm

    Science.gov (United States)

    Xu, Shaoping; Hu, Lingyan; Yang, Xiaohui

    2016-01-01

    The performance of conventional denoising algorithms is usually controlled by one or several parameters whose optimal settings depend on the contents of the processed images and the characteristics of the noises. Among these parameters, noise level is a fundamental parameter that is always assumed to be known by most of the existing denoising algorithms (so-called nonblind denoising algorithms), which largely limits the applicability of these nonblind denoising algorithms in many applications. Moreover, these nonblind algorithms do not always achieve the best denoised images in visual quality even when fed with the actual noise level parameter. To address these shortcomings, in this paper we propose a new quality-aware features-based noise level estimator (NLE), which consists of quality-aware features extraction and optimal noise level parameter prediction. First, considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we utilize the marginal statistics of two local contrast operators, i.e., the gradient magnitude and the Laplacian of Gaussian (LOG), to extract quality-aware features. The proposed quality-aware features have very low computational complexity, making them well suited for time-constrained applications. Then we propose a learning-based framework where the noise level parameter is estimated based on the quality-aware features. Based on the proposed NLE, we develop a blind block matching and three-dimensional filtering (BBM3D) denoising algorithm which is capable of effectively removing additive white Gaussian noise, even coupled with impulse noise. The noise level parameter of the BBM3D algorithm is automatically tuned according to the quality-aware features, guaranteeing the best performance. As such, the classical block matching and three-dimensional algorithm can be transformed into a blind one in an unsupervised manner. Experimental results demonstrate that the

  14. An algorithm for finding biologically significant features in microarray data based on a priori manifold learning.

    Directory of Open Access Journals (Sweden)

    Zena M Hira

    Full Text Available Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process--it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap.

  15. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    Science.gov (United States)

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  16. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  17. Improved feature selection based on genetic algorithms for real time disruption prediction on JET

    International Nuclear Information System (INIS)

    Rattá, G.A.; Vega, J.; Murari, A.

    2012-01-01

    Highlights: ► A new signal selection methodology to improve disruption prediction is reported. ► The approach is based on Genetic Algorithms. ► An advanced predictor has been created with the new set of signals. ► The new system obtains considerably higher prediction rates. - Abstract: The early prediction of disruptions is an important aspect of the research in the field of Tokamak control. A very recent predictor, called “Advanced Predictor Of Disruptions” (APODIS), developed for the “Joint European Torus” (JET), implements the real time recognition of incoming disruptions with the best success rate achieved ever and an outstanding stability for long periods following training. In this article, a new methodology to select the set of the signals’ parameters in order to maximize the performance of the predictor is reported. The approach is based on “Genetic Algorithms” (GAs). With the feature selection derived from GAs, a new version of APODIS has been developed. The results are significantly better than the previous version not only in terms of success rates but also in extending the interval before the disruption in which reliable predictions are achieved. Correct disruption predictions with a success rate in excess of 90% have been achieved 200 ms before the time of the disruption. The predictor response is compared with that of JET's Protection System (JPS) and the ADODIS predictor is shown to be far superior. Both systems have been carefully tested with a wide number of discharges to understand their relative merits and the most profitable directions of further improvements.

  18. Applying a machine learning model using a locally preserving projection based feature regeneration algorithm to predict breast cancer risk

    Science.gov (United States)

    Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin

    2018-03-01

    Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p breast cancer detected in the next subsequent mammography screening.

  19. Autonomous Time-Frequency Cropping and Feature-Extraction Algorithms for Classification of LPI Radar Modulations

    National Research Council Canada - National Science Library

    Zilberman, Eric R

    2006-01-01

    ...), uses the marginal frequency distribution and the adaptive threshold binarization algorithm to determine the start and stop frequencies of the modulation energy to locate and adapt the size of the cropping window...

  20. A threshold auto-adjustment algorithm of feature points extraction based on grid

    Science.gov (United States)

    Yao, Zili; Li, Jun; Dong, Gaojie

    2018-02-01

    When dealing with high-resolution digital images, detection of feature points is usually the very first important step. Valid feature points depend on the threshold. If the threshold is too low, plenty of feature points will be detected, and they may be aggregated in the rich texture regions, which consequently not only affects the speed of feature description, but also aggravates the burden of following processing; if the threshold is set high, the feature points in poor texture area will lack. To solve these problems, this paper proposes a threshold auto-adjustment method of feature extraction based on grid. By dividing the image into numbers of grid, threshold is set in every local grid for extracting the feature points. When the number of feature points does not meet the threshold requirement, the threshold will be adjusted automatically to change the final number of feature points The experimental results show that feature points produced by our method is more uniform and representative, which avoids the aggregation of feature points and greatly reduces the complexity of following work.

  1. Development of an algorithm for heartbeats detection and classification in Holter records based on temporal and morphological features

    International Nuclear Information System (INIS)

    García, A; Romano, H; Laciar, E; Correa, R

    2011-01-01

    In this work a detection and classification algorithm for heartbeats analysis in Holter records was developed. First, a QRS complexes detector was implemented and their temporal and morphological characteristics were extracted. A vector was built with these features; this vector is the input of the classification module, based on discriminant analysis. The beats were classified in three groups: Premature Ventricular Contraction beat (PVC), Atrial Premature Contraction beat (APC) and Normal Beat (NB). These beat categories represent the most important groups of commercial Holter systems. The developed algorithms were evaluated in 76 ECG records of two validated open-access databases 'arrhythmias MIT BIH database' and M IT BIH supraventricular arrhythmias database . A total of 166343 beats were detected and analyzed, where the QRS detection algorithm provides a sensitivity of 99.69 % and a positive predictive value of 99.84 %. The classification stage gives sensitivities of 97.17% for NB, 97.67% for PCV and 92.78% for APC.

  2. Icing Forecasting of High Voltage Transmission Line Using Weighted Least Square Support Vector Machine with Fireworks Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-12-01

    Full Text Available Accurate forecasting of icing thickness has great significance for ensuring the security and stability of the power grid. In order to improve the forecasting accuracy, this paper proposes an icing forecasting system based on the fireworks algorithm and weighted least square support vector machine (W-LSSVM. The method of the fireworks algorithm is employed to select the proper input features with the purpose of eliminating redundant influence. In addition, the aim of the W-LSSVM model is to train and test the historical data-set with the selected features. The capability of this proposed icing forecasting model and framework is tested through simulation experiments using real-world icing data from the monitoring center of the key laboratory of anti-ice disaster, Hunan, South China. The results show that the proposed W-LSSVM-FA method has a higher prediction accuracy and it may be a promising alternative for icing thickness forecasting.

  3. A High-Performance FPGA-Based Image Feature Detector and Matcher Based on the FAST and BRIEF Algorithms

    Directory of Open Access Journals (Sweden)

    Michał Fularz

    2015-10-01

    Full Text Available Image feature detection and matching is a fundamental operation in image processing. As the detected and matched features are used as input data for high-level computer vision algorithms, the matching accuracy directly influences the quality of the results of the whole computer vision system. Moreover, as the algorithms are frequently used as a part of a real-time processing pipeline, the speed at which the input image data are handled is also a concern. The paper proposes an embedded system architecture for feature detection and matching. The architecture implements the FAST feature detector and the BRIEF feature descriptor and is capable of establishing key point correspondences in the input image data stream coming from either an external sensor or memory at a speed of hundreds of frames per second, so that it can cope with most demanding applications. Moreover, the proposed design is highly flexible and configurable, and facilitates the trade-off between the processing speed and programmable logic resource utilization. All the designed hardware blocks are designed to use standard, widely adopted hardware interfaces based on the AMBA AXI4 interface protocol and are connected using an underlying direct memory access (DMA architecture, enabling bottleneck-free inter-component data transfers.

  4. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  5. A sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image

    Science.gov (United States)

    Li, Jing; Xie, Weixin; Pei, Jihong

    2018-03-01

    Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.

  6. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  7. The global kernel k-means algorithm for clustering in feature space.

    Science.gov (United States)

    Tzortzis, Grigorios F; Likas, Aristidis C

    2009-07-01

    Kernel k-means is an extension of the standard k -means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k -means with random restarts.

  8. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    Science.gov (United States)

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Building an intrusion detection system using a filter-based feature selection algorithm

    NARCIS (Netherlands)

    Ambusaidi, Mohammed A.; He, Xiangjian; Nanda, Priyadarsi; Tan, Zhiyuan

    2016-01-01

    Redundant and irrelevant features in data have caused a long-term problem in network traffic classification. These features not only slow down the process of classification but also prevent a classifier from making accurate decisions, especially when coping with big data. In this paper, we propose a

  10. Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

    NARCIS (Netherlands)

    Aalaei, Shokoufeh; Shahraki, Hadi; Rowhanimanesh, Alireza; Eslami, Saeid

    2016-01-01

    This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. To

  11. Discovery and analysis of topographic features using learning algorithms: A seamount case study

    NARCIS (Netherlands)

    Valentine, A.P.; Kalnins, L.M.; Trampert, J.

    2013-01-01

    Identifying and cataloging occurrences of particular topographic features are important but time-consuming tasks. Typically, automation is challenging, as simple models do not fully describe the complexities of natural features. We propose a new approach, where a particular class of neural network

  12. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    Science.gov (United States)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at

  13. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.

    Science.gov (United States)

    Hariharan, M; Sindhu, R; Vijean, Vikneswaran; Yazid, Haniza; Nadarajaw, Thiyagar; Yaacob, Sazali; Polat, Kemal

    2018-03-01

    Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals. Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well. Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%. The experimental

  14. Positioning performance analysis of the time sum of arrival algorithm with error features

    Science.gov (United States)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  15. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique

    International Nuclear Information System (INIS)

    Amjady, Nima; Keynia, Farshid

    2009-01-01

    With the introduction of restructuring into the electric power industry, the price of electricity has become the focus of all activities in the power market. Electricity price forecast is key information for electricity market managers and participants. However, electricity price is a complex signal due to its non-linear, non-stationary, and time variant behavior. In spite of performed research in this area, more accurate and robust price forecast methods are still required. In this paper, a new forecast strategy is proposed for day-ahead price forecasting of electricity markets. Our forecast strategy is composed of a new two stage feature selection technique and cascaded neural networks. The proposed feature selection technique comprises modified Relief algorithm for the first stage and correlation analysis for the second stage. The modified Relief algorithm selects candidate inputs with maximum relevancy with the target variable. Then among the selected candidates, the correlation analysis eliminates redundant inputs. Selected features by the two stage feature selection technique are used for the forecast engine, which is composed of 24 consecutive forecasters. Each of these 24 forecasters is a neural network allocated to predict the price of 1 h of the next day. The whole proposed forecast strategy is examined on the Spanish and Australia's National Electricity Markets Management Company (NEMMCO) and compared with some of the most recent price forecast methods.

  16. An Improved Semisupervised Outlier Detection Algorithm Based on Adaptive Feature Weighted Clustering

    Directory of Open Access Journals (Sweden)

    Tingquan Deng

    2016-01-01

    Full Text Available There exist already various approaches to outlier detection, in which semisupervised methods achieve encouraging superiority due to the introduction of prior knowledge. In this paper, an adaptive feature weighted clustering-based semisupervised outlier detection strategy is proposed. This method maximizes the membership degree of a labeled normal object to the cluster it belongs to and minimizes the membership degrees of a labeled outlier to all clusters. In consideration of distinct significance of features or components in a dataset in determining an object being an inlier or outlier, each feature is adaptively assigned different weights according to the deviation degrees between this feature of all objects and that of a certain cluster prototype. A series of experiments on a synthetic dataset and several real-world datasets are implemented to verify the effectiveness and efficiency of the proposal.

  17. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    Science.gov (United States)

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  19. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  20. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  1. A Systematic Evaluation of Feature Selection and Classification Algorithms Using Simulated and Real miRNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Sheng Yang

    2015-01-01

    Full Text Available Sequencing is widely used to discover associations between microRNAs (miRNAs and diseases. However, the negative binomial distribution (NB and high dimensionality of data obtained using sequencing can lead to low-power results and low reproducibility. Several statistical learning algorithms have been proposed to address sequencing data, and although evaluation of these methods is essential, such studies are relatively rare. The performance of seven feature selection (FS algorithms, including baySeq, DESeq, edgeR, the rank sum test, lasso, particle swarm optimistic decision tree, and random forest (RF, was compared by simulation under different conditions based on the difference of the mean, the dispersion parameter of the NB, and the signal to noise ratio. Real data were used to evaluate the performance of RF, logistic regression, and support vector machine. Based on the simulation and real data, we discuss the behaviour of the FS and classification algorithms. The Apriori algorithm identified frequent item sets (mir-133a, mir-133b, mir-183, mir-937, and mir-96 from among the deregulated miRNAs of six datasets from The Cancer Genomics Atlas. Taking these findings altogether and considering computational memory requirements, we propose a strategy that combines edgeR and DESeq for large sample sizes.

  2. Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images

    Science.gov (United States)

    Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai

    2017-02-01

    It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.

  3. Feature Selection and Fault Classification of Reciprocating Compressors using a Genetic Algorithm and a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Ahmed, M; Gu, F; Ball, A

    2011-01-01

    Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade their performance, consume additional energy and even cause severe damage to the machine. Vibration monitoring techniques are often used for early fault detection and diagnosis, but it is difficult to prescribe a given set of effective diagnostic features because of the wide variety of operating conditions and the complexity of the vibration signals which originate from the many different vibrating and impact sources. This paper studies the use of genetic algorithms (GAs) and neural networks (NNs) to select effective diagnostic features for the fault diagnosis of a reciprocating compressor. A large number of common features are calculated from the time and frequency domains and envelope analysis. Applying GAs and NNs to these features found that envelope analysis has the most potential for differentiating three common faults: valve leakage, inter-cooler leakage and a loose drive belt. Simultaneously, the spread parameter of the probabilistic NN was also optimised. The selected subsets of features were examined based on vibration source characteristics. The approach developed and the trained NN are confirmed as possessing general characteristics for fault detection and diagnosis.

  4. Feature Selection and Fault Classification of Reciprocating Compressors using a Genetic Algorithm and a Probabilistic Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M; Gu, F; Ball, A, E-mail: M.Ahmed@hud.ac.uk [Diagnostic Engineering Research Group, University of Huddersfield, HD1 3DH (United Kingdom)

    2011-07-19

    Reciprocating compressors are widely used in industry for various purposes and faults occurring in them can degrade their performance, consume additional energy and even cause severe damage to the machine. Vibration monitoring techniques are often used for early fault detection and diagnosis, but it is difficult to prescribe a given set of effective diagnostic features because of the wide variety of operating conditions and the complexity of the vibration signals which originate from the many different vibrating and impact sources. This paper studies the use of genetic algorithms (GAs) and neural networks (NNs) to select effective diagnostic features for the fault diagnosis of a reciprocating compressor. A large number of common features are calculated from the time and frequency domains and envelope analysis. Applying GAs and NNs to these features found that envelope analysis has the most potential for differentiating three common faults: valve leakage, inter-cooler leakage and a loose drive belt. Simultaneously, the spread parameter of the probabilistic NN was also optimised. The selected subsets of features were examined based on vibration source characteristics. The approach developed and the trained NN are confirmed as possessing general characteristics for fault detection and diagnosis.

  5. Efficient algorithms for finding optimal binary features in numeric and nominal labeled data

    NARCIS (Netherlands)

    Mampaey, Michael; Nijssen, Siegfried; Feelders, Adrianus; Konijn, Rob; Knobbe, Arno

    2013-01-01

    An important subproblem in supervised tasks such as decision tree induction and subgroup discovery is finding an interesting binary feature (such as a node split or a subgroup refinement) based on a numeric or nominal attribute, with respect to some discrete or continuous target variable. Often one

  6. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  7. A new model of flavonoids affinity towards P-glycoprotein: genetic algorithm-support vector machine with features selected by a modified particle swarm optimization algorithm.

    Science.gov (United States)

    Cui, Ying; Chen, Qinggang; Li, Yaxiao; Tang, Ling

    2017-02-01

    Flavonoids exhibit a high affinity for the purified cytosolic NBD (C-terminal nucleotide-binding domain) of P-glycoprotein (P-gp). To explore the affinity of flavonoids for P-gp, quantitative structure-activity relationship (QSAR) models were developed using support vector machines (SVMs). A novel method coupling a modified particle swarm optimization algorithm with random mutation strategy and a genetic algorithm coupled with SVM was proposed to simultaneously optimize the kernel parameters of SVM and determine the subset of optimized features for the first time. Using DRAGON descriptors to represent compounds for QSAR, three subsets (training, prediction and external validation set) derived from the dataset were employed to investigate QSAR. With excluding of the outlier, the correlation coefficient (R 2 ) of the whole training set (training and prediction) was 0.924, and the R 2 of the external validation set was 0.941. The root-mean-square error (RMSE) of the whole training set was 0.0588; the RMSE of the cross-validation of the external validation set was 0.0443. The mean Q 2 value of leave-many-out cross-validation was 0.824. With more informations from results of randomization analysis and applicability domain, the proposed model is of good predictive ability, stability.

  8. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    Science.gov (United States)

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in

  9. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    Science.gov (United States)

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature

  10. Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification

    Directory of Open Access Journals (Sweden)

    Mustafa Serter Uzer

    2013-01-01

    Full Text Available This paper offers a hybrid approach that uses the artificial bee colony (ABC algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.

  11. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  12. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.

    Science.gov (United States)

    Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini

    2011-01-01

    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.

  13. Rating Algorithm for Pronunciation of English Based on Audio Feature Pattern Matching

    Directory of Open Access Journals (Sweden)

    Li Kun

    2015-01-01

    Full Text Available With the increasing internationalization of China, language communication has become an important channel for us to adapt to the political and economic environment. How to improve English learners’ language learning efficiency in limited conditions has turned into a problem demanding prompt solution at present. This paper applies two pronunciation patterns according to the actual needs of English pronunciation rating: to-be-evaluated pronunciation pattern and standard pronunciation pattern. It will translate the patterns into English pronunciation rating results through European distance. Besides, this paper will introduce the design philosophy of the whole algorithm in combination with CHMM matching pattern. Each link of the CHMM pattern will be given selective analysis while a contrast experiment between the CHMM matching pattern and the other two patterns will be conducted. From the experiment results, it can be concluded that CHMM pattern is the best option.

  14. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Science.gov (United States)

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  15. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Directory of Open Access Journals (Sweden)

    Zhiling Hong

    Full Text Available Based on the traditional Fast Retina Keypoint (FREAK feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  16. Gesture Recognition from Data Streams of Human Motion Sensor Using Accelerated PSO Swarm Search Feature Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2015-01-01

    Full Text Available Human motion sensing technology gains tremendous popularity nowadays with practical applications such as video surveillance for security, hand signing, and smart-home and gaming. These applications capture human motions in real-time from video sensors, the data patterns are nonstationary and ever changing. While the hardware technology of such motion sensing devices as well as their data collection process become relatively mature, the computational challenge lies in the real-time analysis of these live feeds. In this paper we argue that traditional data mining methods run short of accurately analyzing the human activity patterns from the sensor data stream. The shortcoming is due to the algorithmic design which is not adaptive to the dynamic changes in the dynamic gesture motions. The successor of these algorithms which is known as data stream mining is evaluated versus traditional data mining, through a case of gesture recognition over motion data by using Microsoft Kinect sensors. Three different subjects were asked to read three comic strips and to tell the stories in front of the sensor. The data stream contains coordinates of articulation points and various positions of the parts of the human body corresponding to the actions that the user performs. In particular, a novel technique of feature selection using swarm search and accelerated PSO is proposed for enabling fast preprocessing for inducing an improved classification model in real-time. Superior result is shown in the experiment that runs on this empirical data stream. The contribution of this paper is on a comparative study between using traditional and data stream mining algorithms and incorporation of the novel improved feature selection technique with a scenario where different gesture patterns are to be recognized from streaming sensor data.

  17. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Directory of Open Access Journals (Sweden)

    N. C. Wright

    2018-04-01

    Full Text Available Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  18. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Science.gov (United States)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  19. Morphologically occult systemic mastocytosis in bone marrow: clinicopathologic features and an algorithmic approach to diagnosis.

    Science.gov (United States)

    Reichard, Kaaren K; Chen, Dong; Pardanani, Animesh; McClure, Rebecca F; Howard, Matthew T; Kurtin, Paul J; Wood, Adam J; Ketterling, Rhett P; King, Rebecca L; He, Rong; Morice, William G; Hanson, Curtis A

    2015-09-01

    Bone marrow (BM) biopsy specimens involved by systemic mastocytosis (SM) typically show multifocal, compact, dense aggregates of spindled mast cells (MCs). However, some cases lack aggregate formation and fulfill the World Health Organization 2008 criteria for SM, based on minor criteria. We identified 26 BM cases of KIT D816V-mutated, morphologically occult SM in the BM. All patients had some combination of allergic/MC activating symptoms. Peripheral blood counts were generally normal. BM aspirates showed 5% or less MCs, which were only occasionally spindled. BM biopsy specimens showed no morphologic classic MC lesions. Tryptase immunohistochemistry (IHC) demonstrated interstitial, individually distributed MCs (up to 5%) with prominent spindling, lacking aggregate formation. MCs coexpressed CD25 by IHC and/or flow cytometry. Spindled MCs constituted more than 25% of total MCs in all cases and more than 50% in 20 of 26 cases. Morphologically occult involvement of normal-appearing BM by SM will be missed without appropriate clinical suspicion and pathologic evaluation by tryptase and CD25 IHC and KIT D816V mutation analysis. On the basis of these findings, we propose a cost-effective, data-driven, evidence-based algorithmic approach to the workup of these cases. Copyright© by the American Society for Clinical Pathology.

  20. Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features

    Directory of Open Access Journals (Sweden)

    Miguel Ángel García-Cabezas

    2016-11-01

    Full Text Available The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic, and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease.

  1. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features

    Science.gov (United States)

    García-Cabezas, Miguel Á.; John, Yohan J.; Barbas, Helen; Zikopoulos, Basilis

    2016-01-01

    The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following an extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease. PMID:27847469

  2. An algorithm for generation of DEMs from contour lines considering geomorphic features

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rui

    2016-04-01

    Full Text Available Geomorphic information is omitted from many existing methods of generating gridded digital elevation models (DEMs from contour lines, resulting in significant errors during interpolation. Here, we present an advanced schema for improvement of the comprehensive regionalized method of linear interpolation. This approach uses a moving fitting method for an interpolated point and selects elevation points that are representative of geomorphic features as a whole to improve interpolation quality. A total of 16 points are selected, according to certain criteria, in eight directions surrounding the interpolated point; thus, there are two points in each direction, which is sufficient to provide an accurate representation of the geomorphic features of the DEM. Our method introduces virtual control points to prevent sudden changes in the interpolation results, which helps to overcome problems related to the distortion of the local geospatial distribution in areas where feature geomorphic information is inadequate. We construct the spline interpolation function using intersection points and virtual control points, all of which are applied to compute the point elevation. Moreover, we index all elevation values and spatial points of linear features using the R-tree method to ensure that points related to an interpolated position can be retrieved as quickly as possible. Finally, we test our method using a coal mine elevation dataset. The results confirm that our proposed method can generate DEMs smoothly and, in particular, avoid problems related to local distortion.    Resumen La información geomórfica se omite en muchos de los métodos de generación de Modelos Digitales de Elevación (DEM, en inglés que se elaboran a partir de líneas de contorno, lo que resulta en errores significativos durante la interpolación. En este trabajo se presenta un esquema avanzado para el mejoramiento del método comprensivo regionalizado de interpolación lineal. Esta

  3. An intelligent algorithm for identification of optimum mix of demographic features for trust in medical centers in Iran.

    Science.gov (United States)

    Yazdanparast, R; Zadeh, S Abdolhossein; Dadras, D; Azadeh, A

    2018-06-01

    Healthcare quality is affected by various factors including trust. Patients' trust to healthcare providers is one of the most important factors for treatment outcomes. The presented study identifies optimum mixture of patient demographic features with respect to trust in three large and busy medical centers in Tehran, Iran. The presented algorithm is composed of adaptive neuro-fuzzy inference system and statistical methods. It is used to deal with data and environmental uncertainty. The required data are collected from three large hospitals using standard questionnaires. The reliability and validity of the collected data is evaluated using Cronbach's Alpha, factor analysis and statistical tests. The results of this study indicate that middle age patients with low level of education and moderate illness severity and young patients with high level of education, moderate illness severity and moderate to weak financial status have the highest trust to the considered medical centers. To the best of our knowledge this the first study that investigates patient demographic features using adaptive neuro-fuzzy inference system in healthcare sector. Second, it is a practical approach for continuous improvement of trust features in medical centers. Third, it deals with the existing uncertainty through the unique neuro-fuzzy approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Linear feature detection algorithm for astronomical surveys - II. Defocusing effects on meteor tracks

    Science.gov (United States)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko

    2018-03-01

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.

  5. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    Science.gov (United States)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  6. Planimetric Features Generalization for the Production of Small-Scale Map by Using Base Maps and the Existing Algorithms

    Directory of Open Access Journals (Sweden)

    M. Modiri

    2014-10-01

    Full Text Available Cartographic maps are representations of the Earth upon a flat surface in the smaller scale than it’s true. Large scale maps cover relatively small regions in great detail and small scale maps cover large regions such as nations, continents and the whole globe. Logical connection between the features and scale map must be maintained by changing the scale and it is important to recognize that even the most accurate maps sacrifice a certain amount of accuracy in scale to deliver a greater visual usefulness to its user. Cartographic generalization, or map generalization, is the method whereby information is selected and represented on a map in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic details. Due to the problems facing small-scale map production process and the need to spend time and money for surveying, today’s generalization is used as executive approach. The software is proposed in this paper that converted various data and information to certain Data Model. This software can produce generalization map according to base map using the existing algorithm. Planimetric generalization algorithms and roles are described in this article. Finally small-scale maps with 1:100,000, 1:250,000 and 1:500,000 scale are produced automatically and they are shown at the end.

  7. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    Science.gov (United States)

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel

  8. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    Science.gov (United States)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  9. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    Science.gov (United States)

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.

    Science.gov (United States)

    Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G

    2017-11-01

    Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV

  11. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    Science.gov (United States)

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-sheng Wang

    2014-01-01

    Full Text Available For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy.

  13. Normed kernel function-based fuzzy possibilistic C-means (NKFPCM) algorithm for high-dimensional breast cancer database classification with feature selection is based on Laplacian Score

    Science.gov (United States)

    Lestari, A. W.; Rustam, Z.

    2017-07-01

    In the last decade, breast cancer has become the focus of world attention as this disease is one of the primary leading cause of death for women. Therefore, it is necessary to have the correct precautions and treatment. In previous studies, Fuzzy Kennel K-Medoid algorithm has been used for multi-class data. This paper proposes an algorithm to classify the high dimensional data of breast cancer using Fuzzy Possibilistic C-means (FPCM) and a new method based on clustering analysis using Normed Kernel Function-Based Fuzzy Possibilistic C-Means (NKFPCM). The objective of this paper is to obtain the best accuracy in classification of breast cancer data. In order to improve the accuracy of the two methods, the features candidates are evaluated using feature selection, where Laplacian Score is used. The results show the comparison accuracy and running time of FPCM and NKFPCM with and without feature selection.

  14. Leukemia and colon tumor detection based on microarray data classification using momentum backpropagation and genetic algorithm as a feature selection method

    Science.gov (United States)

    Wisesty, Untari N.; Warastri, Riris S.; Puspitasari, Shinta Y.

    2018-03-01

    Cancer is one of the major causes of mordibility and mortality problems in the worldwide. Therefore, the need of a system that can analyze and identify a person suffering from a cancer by using microarray data derived from the patient’s Deoxyribonucleic Acid (DNA). But on microarray data has thousands of attributes, thus making the challenges in data processing. This is often referred to as the curse of dimensionality. Therefore, in this study built a system capable of detecting a patient whether contracted cancer or not. The algorithm used is Genetic Algorithm as feature selection and Momentum Backpropagation Neural Network as a classification method, with data used from the Kent Ridge Bio-medical Dataset. Based on system testing that has been done, the system can detect Leukemia and Colon Tumor with best accuracy equal to 98.33% for colon tumor data and 100% for leukimia data. Genetic Algorithm as feature selection algorithm can improve system accuracy, which is from 64.52% to 98.33% for colon tumor data and 65.28% to 100% for leukemia data, and the use of momentum parameters can accelerate the convergence of the system in the training process of Neural Network.

  15. Pap Smear Diagnosis Using a Hybrid Intelligent Scheme Focusing on Genetic Algorithm Based Feature Selection and Nearest Neighbor Classification

    DEFF Research Database (Denmark)

    Marinakis, Yannis; Dounias, Georgios; Jantzen, Jan

    2009-01-01

    The term pap-smear refers to samples of human cells stained by the so-called Papanicolaou method. The purpose of the Papanicolaou method is to diagnose pre-cancerous cell changes before they progress to invasive carcinoma. In this paper a metaheuristic algorithm is proposed in order to classify t...... other previously applied intelligent approaches....

  16. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal

    NARCIS (Netherlands)

    Radha, M.; Garcia Molina, G.; Poel, M.; Tononi, G.

    2014-01-01

    Automatic sleep staging on an online basis has recently emerged as a research topic motivated by fundamental sleep research. The aim of this paper is to find optimal signal processing methods and machine learning algorithms to achieve online sleep staging on the basis of a single EEG signal. The

  17. Comparison of Different Machine Learning Algorithms for Lithological Mapping Using Remote Sensing Data and Morphological Features: A Case Study in Kurdistan Region, NE Iraq

    Science.gov (United States)

    Othman, Arsalan; Gloaguen, Richard

    2015-04-01

    Topographic effects and complex vegetation cover hinder lithology classification in mountain regions based not only in field, but also in reflectance remote sensing data. The area of interest "Bardi-Zard" is located in the NE of Iraq. It is part of the Zagros orogenic belt, where seven lithological units outcrop and is known for its chromite deposit. The aim of this study is to compare three machine learning algorithms (MLAs): Maximum Likelihood (ML), Support Vector Machines (SVM), and Random Forest (RF) in the context of a supervised lithology classification task using Advanced Space-borne Thermal Emission and Reflection radiometer (ASTER) satellite, its derived, spatial information (spatial coordinates) and geomorphic data. We emphasize the enhancement in remote sensing lithological mapping accuracy that arises from the integration of geomorphic features and spatial information (spatial coordinates) in classifications. This study identifies that RF is better than ML and SVM algorithms in almost the sixteen combination datasets, which were tested. The overall accuracy of the best dataset combination with the RF map for the all seven classes reach ~80% and the producer and user's accuracies are ~73.91% and 76.09% respectively while the kappa coefficient is ~0.76. TPI is more effective with SVM algorithm than an RF algorithm. This paper demonstrates that adding geomorphic indices such as TPI and spatial information in the dataset increases the lithological classification accuracy.

  18. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.

    Science.gov (United States)

    McAllister, Patrick; Zheng, Huiru; Bond, Raymond; Moorhead, Anne

    2018-04-01

    Obesity is increasing worldwide and can cause many chronic conditions such as type-2 diabetes, heart disease, sleep apnea, and some cancers. Monitoring dietary intake through food logging is a key method to maintain a healthy lifestyle to prevent and manage obesity. Computer vision methods have been applied to food logging to automate image classification for monitoring dietary intake. In this work we applied pretrained ResNet-152 and GoogleNet convolutional neural networks (CNNs), initially trained using ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset with MatConvNet package, to extract features from food image datasets; Food 5K, Food-11, RawFooT-DB, and Food-101. Deep features were extracted from CNNs and used to train machine learning classifiers including artificial neural network (ANN), support vector machine (SVM), Random Forest, and Naive Bayes. Results show that using ResNet-152 deep features with SVM with RBF kernel can accurately detect food items with 99.4% accuracy using Food-5K validation food image dataset and 98.8% with Food-5K evaluation dataset using ANN, SVM-RBF, and Random Forest classifiers. Trained with ResNet-152 features, ANN can achieve 91.34%, 99.28% when applied to Food-11 and RawFooT-DB food image datasets respectively and SVM with RBF kernel can achieve 64.98% with Food-101 image dataset. From this research it is clear that using deep CNN features can be used efficiently for diverse food item image classification. The work presented in this research shows that pretrained ResNet-152 features provide sufficient generalisation power when applied to a range of food image classification tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Specific features of NDT data and processing algorithms: new remedies to old ills; Caracteristiques specifiques des donnees de controle non destructif et algorithmes de traitement: nouveaux remedes aux vielles douleurs

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, B

    1994-12-31

    Non destructive testing data from in-service inspections have specific features that require the most sophisticated techniques of signal and image processing. Each step in the overall information extraction process must be optimized by using recent approaches such like data decomposition and modelization, compression, sensor fusion and knowledge based systems. This can be achieved by means of wavelet transform, inverse problems formulation, standard compression algorithms, combined detection and estimation, neural networks and expert systems. These techniques are briefly presented through a number of Electricite de France applications or through recent literature results. (author). 1 fig., 20 refs.

  20. An Analysis of Audio Features to Develop a Human Activity Recognition Model Using Genetic Algorithms, Random Forests, and Neural Networks

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2016-01-01

    Full Text Available This work presents a human activity recognition (HAR model based on audio features. The use of sound as an information source for HAR models represents a challenge because sound wave analyses generate very large amounts of data. However, feature selection techniques may reduce the amount of data required to represent an audio signal sample. Some of the audio features that were analyzed include Mel-frequency cepstral coefficients (MFCC. Although MFCC are commonly used in voice and instrument recognition, their utility within HAR models is yet to be confirmed, and this work validates their usefulness. Additionally, statistical features were extracted from the audio samples to generate the proposed HAR model. The size of the information is necessary to conform a HAR model impact directly on the accuracy of the model. This problem also was tackled in the present work; our results indicate that we are capable of recognizing a human activity with an accuracy of 85% using the HAR model proposed. This means that minimum computational costs are needed, thus allowing portable devices to identify human activities using audio as an information source.

  1. An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, J.-D.; Huang, C.-H.; Weng, Y.-H.; Lin, K.-J.; Chen, C.-T.

    2007-01-01

    Single-photon emission computed tomography (SPECT) of dopamine transporters with 99m Tc-TRODAT-1 has recently been proposed to offer valuable information in assessing the functionality of dopaminergic systems. Magnetic resonance imaging (MRI) and SPECT imaging are important in the noninvasive examination of dopamine concentration in vivo. Therefore, this investigation presents an automated MRI/SPECT image registration algorithm based on a new similarity metric. This similarity metric combines anatomical features that are characterized by specific binding, the mean count per voxel in putamens and caudate nuclei, and the distribution of image intensity that is characterized by normalized mutual information (NMI). A preprocess, a novel two-cluster SPECT normalization algorithm, is also presented for MRI/SPECT registration. Clinical MRI/SPECT data from 18 healthy subjects and 13 Parkinson's disease (PD) patients are involved to validate the performance of the proposed algorithms. An appropriate color map, such as 'rainbow,' for image display enables the two-cluster SPECT normalization algorithm to provide clinically meaningful visual contrast. The proposed registration scheme reduces target registration error from >7 mm for conventional registration algorithm based on NMI to approximately 4 mm. The error in the specific/nonspecific 99m Tc-TRODAT-1 binding ratio, which is employed as a quantitative measure of TRODAT receptor binding, is also reduced from 0.45±0.22 to 0.08±0.06 among healthy subjects and from 0.28±0.18 to 0.12±0.09 among PD patients

  2. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images.

    Science.gov (United States)

    Acharya, U Rajendra; Bhat, Shreya; Koh, Joel E W; Bhandary, Sulatha V; Adeli, Hojjat

    2017-09-01

    Glaucoma is an optic neuropathy defined by characteristic damage to the optic nerve and accompanying visual field deficits. Early diagnosis and treatment are critical to prevent irreversible vision loss and ultimate blindness. Current techniques for computer-aided analysis of the optic nerve and retinal nerve fiber layer (RNFL) are expensive and require keen interpretation by trained specialists. Hence, an automated system is highly desirable for a cost-effective and accurate screening for the diagnosis of glaucoma. This paper presents a new methodology and a computerized diagnostic system. Adaptive histogram equalization is used to convert color images to grayscale images followed by convolution of these images with Leung-Malik (LM), Schmid (S), and maximum response (MR4 and MR8) filter banks. The basic microstructures in typical images are called textons. The convolution process produces textons. Local configuration pattern (LCP) features are extracted from these textons. The significant features are selected using a sequential floating forward search (SFFS) method and ranked using the statistical t-test. Finally, various classifiers are used for classification of images into normal and glaucomatous classes. A high classification accuracy of 95.8% is achieved using six features obtained from the LM filter bank and the k-nearest neighbor (kNN) classifier. A glaucoma integrative index (GRI) is also formulated to obtain a reliable and effective system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA and tabu search (TS is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy.

  4. Feature Selection for Object-Based Classification of High-Resolution Remote Sensing Images Based on the Combination of a Genetic Algorithm and Tabu Search

    Science.gov (United States)

    Shi, Lei; Wan, Youchuan; Gao, Xianjun

    2018-01-01

    In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm (GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values. As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the other methods in terms of the final classification accuracy. PMID:29581721

  5. Identification of Subtype-Specific Prognostic Genes for Early-Stage Lung Adenocarcinoma and Squamous Cell Carcinoma Patients Using an Embedded Feature Selection Algorithm.

    Directory of Open Access Journals (Sweden)

    Suyan Tian

    Full Text Available The existence of fundamental differences between lung adenocarcinoma (AC and squamous cell carcinoma (SCC in their underlying mechanisms motivated us to postulate that specific genes might exist relevant to prognosis of each histology subtype. To test on this research hypothesis, we previously proposed a simple Cox-regression model based feature selection algorithm and identified successfully some subtype-specific prognostic genes when applying this method to real-world data. In this article, we continue our effort on identification of subtype-specific prognostic genes for AC and SCC, and propose a novel embedded feature selection method by extending Threshold Gradient Descent Regularization (TGDR algorithm and minimizing on a corresponding negative partial likelihood function. Using real-world datasets and simulated ones, we show these two proposed methods have comparable performance whereas the new proposal is superior in terms of model parsimony. Our analysis provides some evidence on the existence of such subtype-specific prognostic genes, more investigation is warranted.

  6. Machine Learning Algorithms Utilizing Quantitative CT Features May Predict Eventual Onset of Bronchiolitis Obliterans Syndrome After Lung Transplantation.

    Science.gov (United States)

    Barbosa, Eduardo J Mortani; Lanclus, Maarten; Vos, Wim; Van Holsbeke, Cedric; De Backer, William; De Backer, Jan; Lee, James

    2018-02-19

    Long-term survival after lung transplantation (LTx) is limited by bronchiolitis obliterans syndrome (BOS), defined as a sustained decline in forced expiratory volume in the first second (FEV 1 ) not explained by other causes. We assessed whether machine learning (ML) utilizing quantitative computed tomography (qCT) metrics can predict eventual development of BOS. Paired inspiratory-expiratory CT scans of 71 patients who underwent LTx were analyzed retrospectively (BOS [n = 41] versus non-BOS [n = 30]), using at least two different time points. The BOS cohort experienced a reduction in FEV 1 of >10% compared to baseline FEV 1 post LTx. Multifactor analysis correlated declining FEV 1 with qCT features linked to acute inflammation or BOS onset. Student t test and ML were applied on baseline qCT features to identify lung transplant patients at baseline that eventually developed BOS. The FEV 1 decline in the BOS cohort correlated with an increase in the lung volume (P = .027) and in the central airway volume at functional residual capacity (P = .018), not observed in non-BOS patients, whereas the non-BOS cohort experienced a decrease in the central airway volume at total lung capacity with declining FEV 1 (P = .039). Twenty-three baseline qCT parameters could significantly distinguish between non-BOS patients and eventual BOS developers (P machine), we could identify BOS developers at baseline with an accuracy of 85%, using only three qCT parameters. ML utilizing qCT could discern distinct mechanisms driving FEV 1 decline in BOS and non-BOS LTx patients and predict eventual onset of BOS. This approach may become useful to optimize management of LTx patients. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.

    Science.gov (United States)

    Dao, Duy; Salehizadeh, S M A; Noh, Yeonsik; Chong, Jo Woon; Cho, Chae Ho; McManus, Dave; Darling, Chad E; Mendelson, Yitzhak; Chon, Ki H

    2017-09-01

    Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach

  8. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  9. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  10. The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection

    Directory of Open Access Journals (Sweden)

    Jin-peng Liu

    2017-07-01

    Full Text Available Short-term power load forecasting is an important basis for the operation of integrated energy system, and the accuracy of load forecasting directly affects the economy of system operation. To improve the forecasting accuracy, this paper proposes a load forecasting system based on wavelet least square support vector machine and sperm whale algorithm. Firstly, the methods of discrete wavelet transform and inconsistency rate model (DWT-IR are used to select the optimal features, which aims to reduce the redundancy of input vectors. Secondly, the kernel function of least square support vector machine LSSVM is replaced by wavelet kernel function for improving the nonlinear mapping ability of LSSVM. Lastly, the parameters of W-LSSVM are optimized by sperm whale algorithm, and the short-term load forecasting method of W-LSSVM-SWA is established. Additionally, the example verification results show that the proposed model outperforms other alternative methods and has a strong effectiveness and feasibility in short-term power load forecasting.

  11. A feature-based approach for best arm identification in the case of the Monte Carlo search algorithm discovery for one-player games

    OpenAIRE

    Taralla, David

    2013-01-01

    The field of reinforcement learning recently received the contribution by Ernst et al. (2013) "Monte carlo search algorithm discovery for one player games" who introduced a new way to conceive completely new algorithms. Moreover, it brought an automatic method to find the best algorithm to use in a particular situation using a multi-arm bandit approach. We address here the problem of best arm identification. The main problem is that the generated algorithm space (ie. the arm space) can be qui...

  12. A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting

    International Nuclear Information System (INIS)

    Zhang, Chu; Zhou, Jianzhong; Li, Chaoshun; Fu, Wenlong; Peng, Tian

    2017-01-01

    Highlights: • A novel hybrid approach is proposed for wind speed forecasting. • The variational mode decomposition (VMD) is optimized to decompose the original wind speed series. • The input matrix and parameters of ELM are optimized simultaneously by using a hybrid BSA. • Results show that OVMD-HBSA-ELM achieves better performance in terms of prediction accuracy. - Abstract: Reliable wind speed forecasting is essential for wind power integration in wind power generation system. The purpose of paper is to develop a novel hybrid model for short-term wind speed forecasting and demonstrates its efficiency. In the proposed model, a compound structure of extreme learning machine (ELM) based on feature selection and parameter optimization using hybrid backtracking search algorithm (HBSA) is employed as the predictor. The real-valued BSA (RBSA) is exploited to search for the optimal combination of weights and bias of ELM while the binary-valued BSA (BBSA) is exploited as a feature selection method applying on the candidate inputs predefined by partial autocorrelation function (PACF) values to reconstruct the input-matrix. Due to the volatility and randomness of wind speed signal, an optimized variational mode decomposition (OVMD) is employed to eliminate the redundant noises. The parameters of the proposed OVMD are determined according to the center frequencies of the decomposed modes and the residual evaluation index (REI). The wind speed signal is decomposed into a few modes via OVMD. The aggregation of the forecasting results of these modes constructs the final forecasting result of the proposed model. The proposed hybrid model has been applied on the mean half-hour wind speed observation data from two wind farms in Inner Mongolia, China and 10-min wind speed data from the Sotavento Galicia wind farm are studied as an additional case. Parallel experiments have been designed to compare with the proposed model. Results obtained from this study indicate that the

  13. [Application of support vector machine-recursive feature elimination algorithm in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases].

    Science.gov (United States)

    Zhang, Haipeng; Fu, Tong; Zhang, Zhiru; Fan, Zhimin; Zheng, Chao; Han, Bing

    2014-08-01

    To explore the value of application of support vector machine-recursive feature elimination (SVM-RFE) method in Raman spectroscopy for differential diagnosis of benign and malignant breast diseases. Fresh breast tissue samples of 168 patients (all female; ages 22-75) were obtained by routine surgical resection from May 2011 to May 2012 at the Department of Breast Surgery, the First Hospital of Jilin University. Among them, there were 51 normal tissues, 66 benign and 51 malignant breast lesions. All the specimens were assessed by Raman spectroscopy, and the SVM-RFE algorithm was used to process the data and build the mathematical model. Mahalanobis distance and spectral residuals were used as discriminating criteria to evaluate this data-processing method. 1 800 Raman spectra were acquired from the fresh samples of human breast tissues. Based on spectral profiles, the presence of 1 078, 1 267, 1 301, 1 437, 1 653, and 1 743 cm(-1) peaks were identified in the normal tissues; and 1 281, 1 341, 1 381, 1 417, 1 465, 1 530, and 1 637 cm(-1) peaks were found in the benign and malignant tissues. The main characteristic peaks differentiating benign and malignant lesions were 1 340 and 1 480 cm(-1). The accuracy of SVM-RFE in discriminating normal and malignant lesions was 100.0%, while that in the assessment of benign lesions was 93.0%. There are distinct differences among the Raman spectra of normal, benign and malignant breast tissues, and SVM-RFE method can be used to build differentiation model of breast lesions.

  14. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  15. Study on Magneto-Hydro-Dynamics Disturbance Signal Feature Classification Using Improved S-Transform Algorithm and Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Nan YU

    2014-09-01

    Full Text Available The interference signal in magneto-hydro-dynamics (MHD may be the disturbance from the power supply, the equipment itself, or the electromagnetic radiation. Interference signal mixed in normal signal, brings difficulties for signal analysis and processing. Recently proposed S-Transform algorithm combines advantages of short time Fourier transform and wavelet transform. It uses Fourier kernel and wavelet like Gauss window whose width is inversely proportional to the frequency. Therefore, S-Transform algorithm not only preserves the phase information of the signals but also has variable resolution like wavelet transform. This paper proposes a new method to establish a MHD signal classifier using S-transform algorithm and radial basis function neural network (RBFNN. Because RBFNN centers ascertained by k-means clustering algorithm probably are the local optimum, this paper analyzes the characteristics of k-means clustering algorithm and proposes an improved k-means clustering algorithm called GCW (Group-cluster-weight k-means clustering algorithm to improve the centers distribution. The experiment results show that the improvement greatly enhances the RBFNN performance.

  16. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.

    Science.gov (United States)

    Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane

    2015-01-01

    We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.

  17. A Novel Algorithm for Determining the Contextual Characteristics of Movement Behaviors by Combining Accelerometer Features and Wireless Beacons: Development and Implementation.

    Science.gov (United States)

    Magistro, Daniele; Sessa, Salvatore; Kingsnorth, Andrew P; Loveday, Adam; Simeone, Alessandro; Zecca, Massimiliano; Esliger, Dale W

    2018-04-20

    Unfortunately, global efforts to promote "how much" physical activity people should be undertaking have been largely unsuccessful. Given the difficulty of achieving a sustained lifestyle behavior change, many scientists are reexamining their approaches. One such approach is to focus on understanding the context of the lifestyle behavior (ie, where, when, and with whom) with a view to identifying promising intervention targets. The aim of this study was to develop and implement an innovative algorithm to determine "where" physical activity occurs using proximity sensors coupled with a widely used physical activity monitor. A total of 19 Bluetooth beacons were placed in fixed locations within a multilevel, mixed-use building. In addition, 4 receiver-mode sensors were fitted to the wrists of a roving technician who moved throughout the building. The experiment was divided into 4 trials with different walking speeds and dwelling times. The data were analyzed using an original and innovative algorithm based on graph generation and Bayesian filters. Linear regression models revealed significant correlations between beacon-derived location and ground-truth tracking time, with intraclass correlations suggesting a high goodness of fit (R 2 =.9780). The algorithm reliably predicted indoor location, and the robustness of the algorithm improved with a longer dwelling time (>100 s; error location of an individual within an indoor environment. This novel implementation of "context sensing" will facilitate a wealth of new research questions on promoting healthy behavior change, the optimization of patient care, and efficient health care planning (eg, patient-clinician flow, patient-clinician interaction). ©Daniele Magistro, Salvatore Sessa, Andrew P Kingsnorth, Adam Loveday, Alessandro Simeone, Massimiliano Zecca, Dale W Esliger. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 20.04.2018.

  18. Improvement of algorithm using Kohonen`s self-organizing feature map for the traveling salesman problem; Kohonen jiko soshikika tokucho mappu wo mochiita ukai serusuman mondai kaiho no kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, K.; Tokutaka, H.; Tanaka, H.; Kishida, S. [Tottori Univ., Tottori (Japan); Oshima, Y. [Mita Industrial Co. Ltd., Osaka (Japan)

    1996-02-20

    Traveling salesman problem (TSP) is one of the combinatorial optimization problems. The solution of this problem is to seek the way of how to visit every city only once within the shortest traveling distance. The solutions of this problem are studied a lot hitherto since they are the index for observing the basic properties of optimization algorithm. The method of Angeniol using the elf-organizing feature map is greatly forceful from the viewpoint of its short calculating time. In this study, regarding the algorithm of Angeniol, the conditions of obtaining the shortest tour length within shorter time are examined. Namely, a half of calculating time is reduced by changing Angeniol method into the method of making the node create after the searches of M cities. Additionally, the calculating time for unchanged tour length is reduced to one fourth by adding an inertia item in accordance with the variation of the number of total nodes. 14 refs., 8 figs.

  19. Studying a denition for a boosted W/Z/H jet tagger at the FCChh, employing modern Machine Learning algorithms and customised features (beyond the usual substructure variables)

    CERN Document Server

    Brzhechko, Danyyl

    2016-01-01

    A jet is a spray of particles, usually produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. Reconstructed particles are clustered into jets using one of the available jet clustering algorithms (kT, anti-kT etc.), which adopt dierent metrics to decide if two given particles belong to the same jet or not. Jets can also originate from the decay of high-momenta heavy particles, such as boosted vector boson. When these particles decay to quarks, the overlap of the hadronization products of each quark result into a single massive jet, dierent than the ordinary jets from quarks and gluons. These special jets can be identied using substructure algorithms. In this study, we consider the performances of a commonly used substructure variable, N-subjettiness, with two variants of an alternative approach, based on the momentum ow around the jet axis. I focused on high-energy collision in a hypothetical future circular collider (FCC) colliding protons at a center-of-mass energy 1...

  20. Features of the Diagnosis of Intraductal Breast Diseases in Adolescent Girls Through the Example of Clinical Cases. The Algorithm of Examination And Treatment of Pathologies in Adolescence

    Directory of Open Access Journals (Sweden)

    M. L. Travina

    2016-01-01

    Full Text Available Intraductal breast diseases are characterized by a high risk of transformation in breast cancer. Difficulties of diagnosing intraductal lesions are associated with the only symptom — the appearance of pathologic discharge from the breast nipple. In adolescent girls, taking into account the immaturity of the nipple and it flatness, there are difficulties with removing it correctly. On physical examination, as well as with the high density of the surrounding tissue and areola, the control over the presence of pathologic discharge from the mammary ducts is difficult. The intraductal pathology requires ultrasound examination, mammography, and only after a full examination — ductographic research. The article presents its own clinical observations of the intraductal pathology in adolescent girls aged 14 and 15 years. The algorithms of examination and patient surveillance with intraductal pathology are described.

  1. 一种基于局部特征的交通标志检测算法的研究%Study on traffic signs detection algorithm based on local feature

    Institute of Scientific and Technical Information of China (English)

    宋婀娜; 房俊杰; 李娜; 张妍

    2015-01-01

    Since traffic signs detection is an important link in system, block diagram of general traffic signs recognition sys⁃tem is given. According to traffic signs’color stipulation in China, the threshold value of color segmentation space HSV is deter⁃mined. Taking the circle as an example, the feature detection template of unified symmetry local is proposed to extract target re⁃gion feature in natural scene. A set of fuzzy rules determination form was designed. The traffic signs detection algorithm based on local feature formation is formed.%给出一般交通标志识别系统的框图,交通标志的检测是系统中的重要环节。根据我国交通标志颜色的规定,确定了彩色分割空间HSV的阈值,并以圆形为例,提出一种统一对称局部特征检测模板,用来提取自然场景下获得的目标区域的特征,设计一组模糊规则判定形状,形成一种基于局部特征的交通标志检测算法。

  2. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...

  3. Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis.

    Directory of Open Access Journals (Sweden)

    Walter Georgescu

    Full Text Available Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when

  4. Feature Selection with the Boruta Package

    OpenAIRE

    Kursa, Miron B.; Rudnicki, Witold R.

    2010-01-01

    This article describes a R package Boruta, implementing a novel feature selection algorithm for finding emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.

  5. Feature Selection with the Boruta Package

    Directory of Open Access Journals (Sweden)

    Miron B. Kursa

    2010-10-01

    Full Text Available This article describes a R package Boruta, implementing a novel feature selection algorithm for finding emph{all relevant variables}. The algorithm is designed as a wrapper around a Random Forest classification algorithm. It iteratively removes the features which are proved by a statistical test to be less relevant than random probes. The Boruta package provides a convenient interface to the algorithm. The short description of the algorithm and examples of its application are presented.

  6. Characters Feature Extraction Based on Neat Oracle Bone Rubbings

    OpenAIRE

    Lei Guo

    2013-01-01

    In order to recognize characters on the neat oracle bone rubbings, a new mesh point feature extraction algorithm was put forward in this paper by researching and improving of the existing coarse mesh feature extraction algorithm and the point feature extraction algorithm. Some improvements of this algorithm were as followings: point feature was introduced into the coarse mesh feature, the absolute address was converted to relative address, and point features have been changed grid and positio...

  7. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  8. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  9. A Novel Approach for Automatic Machining Feature Recognition with Edge Blend Feature

    OpenAIRE

    Keong Chen Wong; Yusof Yusri

    2017-01-01

    This paper presents an algorithm for efficiently recognizing and determining the convexity of an edge blend feature. The algorithm first recognizes all of the edge blend features from the Boundary Representation of a part; then a series of convexity test have been run on the recognized edge blend features. The novelty of the presented algorithm lies in, instead of each recognized blend feature is suppressed as most of researchers did, the recognized blend features of this research are gone th...

  10. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  11. Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10A.

    Science.gov (United States)

    Goodarzi, Mohammad; Saeys, Wouter; Deeb, Omar; Pieters, Sigrid; Vander Heyden, Yvan

    2013-12-01

    Quantitative structure-activity relationship (QSAR) modeling was performed for imidazo[1,5-a]pyrido[3,2-e]pyrazines, which constitute a class of phosphodiesterase 10A inhibitors. Particle swarm optimization (PSO) and genetic algorithm (GA) were used as feature selection techniques to find the most reliable molecular descriptors from a large pool. Modeling of the relationship between the selected descriptors and the pIC50 activity data was achieved by linear [multiple linear regression (MLR)] and non-linear [locally weighted regression (LWR) based on both Euclidean (E) and Mahalanobis (M) distances] methods. In addition, a stepwise MLR model was built using only a limited number of quantum chemical descriptors, selected because of their correlation with the pIC50 . The model was not found interesting. It was concluded that the LWR model, based on the Euclidean distance, applied on the descriptors selected by PSO has the best prediction ability. However, some other models behaved similarly. The root-mean-squared errors of prediction (RMSEP) for the test sets obtained by PSO/MLR, GA/MLR, PSO/LWRE, PSO/LWRM, GA/LWRE, and GA/LWRM models were 0.333, 0.394, 0.313, 0.333, 0.421, and 0.424, respectively. The PSO-selected descriptors resulted in the best prediction models, both linear and non-linear. © 2013 John Wiley & Sons A/S.

  12. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M [Kyoto University, Graduate School of Medicine, Kyoto (Japan); Nakao, M [Kyoto University, Graduate School of Informatics, Kyoto (Japan)

    2016-06-15

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  13. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    International Nuclear Information System (INIS)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M; Nakao, M

    2016-01-01

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  14. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  15. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  16. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  17. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Java programs called Featureous that addresses this issue. Featureous allows a programmer to easily establish feature-code traceability links and to analyze their characteristics using a number of visualizations. Featureous is an extension to the NetBeans IDE, and can itself be extended by third...

  18. Dependency Parsing with Transformed Feature

    Directory of Open Access Journals (Sweden)

    Fuxiang Wu

    2017-01-01

    Full Text Available Dependency parsing is an important subtask of natural language processing. In this paper, we propose an embedding feature transforming method for graph-based parsing, transform-based parsing, which directly utilizes the inner similarity of the features to extract information from all feature strings including the un-indexed strings and alleviate the feature sparse problem. The model transforms the extracted features to transformed features via applying a feature weight matrix, which consists of similarities between the feature strings. Since the matrix is usually rank-deficient because of similar feature strings, it would influence the strength of constraints. However, it is proven that the duplicate transformed features do not degrade the optimization algorithm: the margin infused relaxed algorithm. Moreover, this problem can be alleviated by reducing the number of the nearest transformed features of a feature. In addition, to further improve the parsing accuracy, a fusion parser is introduced to integrate transformed and original features. Our experiments verify that both transform-based and fusion parser improve the parsing accuracy compared to the corresponding feature-based parser.

  19. Feature Article

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Feature Article. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 80-85 Feature Article. What's New in Computers Windows 95 · Vijnan Shastri · More Details Fulltext PDF. Volume 1 Issue 1 January 1996 pp 86-89 Feature ...

  20. Comprehensive eye evaluation algorithm

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  1. Chinese handwriting recognition an algorithmic perspective

    CERN Document Server

    Su, Tonghua

    2013-01-01

    This book provides an algorithmic perspective on the recent development of Chinese handwriting recognition. Two technically sound strategies, the segmentation-free and integrated segmentation-recognition strategy, are investigated and algorithms that have worked well in practice are primarily focused on. Baseline systems are initially presented for these strategies and are subsequently expanded on and incrementally improved. The sophisticated algorithms covered include: 1) string sample expansion algorithms which synthesize string samples from isolated characters or distort realistic string samples; 2) enhanced feature representation algorithms, e.g. enhanced four-plane features and Delta features; 3) novel learning algorithms, such as Perceptron learning with dynamic margin, MPE training and distributed training; and lastly 4) ensemble algorithms, that is, combining the two strategies using both parallel structure and serial structure. All the while, the book moves from basic to advanced algorithms, helping ...

  2. Solving jigsaw puzzles using image features

    DEFF Research Database (Denmark)

    Nielsen, Ture R.; Drewsen, Peter; Hansen, Klaus

    2008-01-01

    In this article, we describe a method for automatic solving of the jigsaw puzzle problem based on using image features instead of the shape of the pieces. The image features are used for obtaining an accurate measure for edge similarity to be used in a new edge matching algorithm. The algorithm i...

  3. An efficient macro-cell placement algorithm

    NARCIS (Netherlands)

    Aarts, E.H.L.; Bont, de F.M.J.; Korst, J.H.M.; Rongen, J.M.J.

    1991-01-01

    A new approximation algorithm is presented for the efficient handling of large macro-cell placement problems. The algorithm combines simulated annealing with new features based on a hierarchical approach and a divide-and-conquer technique. Numerical results show that these features can lead to a

  4. Improved autonomous star identification algorithm

    International Nuclear Information System (INIS)

    Luo Li-Yan; Xu Lu-Ping; Zhang Hua; Sun Jing-Rong

    2015-01-01

    The log–polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. (paper)

  5. Feature Extraction

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  6. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  7. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  8. Algorithmic alternatives

    International Nuclear Information System (INIS)

    Creutz, M.

    1987-11-01

    A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/

  9. Combinatorial algorithms

    CERN Document Server

    Hu, T C

    2002-01-01

    Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9

  10. Automatic Algorithm Selection for Complex Simulation Problems

    CERN Document Server

    Ewald, Roland

    2012-01-01

    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. An automated selection of simulation algorithms supports users in setting up simulation experiments without demanding expert knowledge on simulation. Roland Ewald analyzes and discusses existing approaches to solve the algorithm selection problem in the context of simulation. He introduces a framework for automatic simulation algorithm selection and

  11. Autodriver algorithm

    Directory of Open Access Journals (Sweden)

    Anna Bourmistrova

    2011-02-01

    Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.

  12. Feature coding for image representation and recognition

    CERN Document Server

    Huang, Yongzhen

    2015-01-01

    This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review the state-of-the-art, analyzing the motivations and mathematical representations of various feature coding methods; (2) Explore how various feature coding algorithms evolve along years; (3) Summarize the main characteristics of typical feature coding algorithms and categorize them accordingly; (4) D

  13. FRAMEWORK FOR COMPARING SEGMENTATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    G. Sithole

    2015-05-01

    Full Text Available The notion of a ‘Best’ segmentation does not exist. A segmentation algorithm is chosen based on the features it yields, the properties of the segments (point sets it generates, and the complexity of its algorithm. The segmentation is then assessed based on a variety of metrics such as homogeneity, heterogeneity, fragmentation, etc. Even after an algorithm is chosen its performance is still uncertain because the landscape/scenarios represented in a point cloud have a strong influence on the eventual segmentation. Thus selecting an appropriate segmentation algorithm is a process of trial and error. Automating the selection of segmentation algorithms and their parameters first requires methods to evaluate segmentations. Three common approaches for evaluating segmentation algorithms are ‘goodness methods’, ‘discrepancy methods’ and ‘benchmarks’. Benchmarks are considered the most comprehensive method of evaluation. This paper shortcomings in current benchmark methods are identified and a framework is proposed that permits both a visual and numerical evaluation of segmentations for different algorithms, algorithm parameters and evaluation metrics. The concept of the framework is demonstrated on a real point cloud. Current results are promising and suggest that it can be used to predict the performance of segmentation algorithms.

  14. Instance-specific algorithm configuration

    CERN Document Server

    Malitsky, Yuri

    2014-01-01

    This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization.    The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014,

  15. Algorithmic Self

    DEFF Research Database (Denmark)

    Markham, Annette

    This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....

  16. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    Science.gov (United States)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  17. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  18. Feature selection toolbox software package

    Czech Academy of Sciences Publication Activity Database

    Pudil, Pavel; Novovičová, Jana; Somol, Petr

    2002-01-01

    Roč. 23, č. 4 (2002), s. 487-492 ISSN 0167-8655 R&D Projects: GA ČR GA402/01/0981 Institutional research plan: CEZ:AV0Z1075907 Keywords : pattern recognition * feature selection * loating search algorithms Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.409, year: 2002

  19. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  20. Algorithm 865

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy

    2007-01-01

    We present subroutines for the Cholesky factorization of a positive-definite symmetric matrix and for solving corresponding sets of linear equations. They exploit cache memory by using the block hybrid format proposed by the authors in a companion article. The matrix is packed into n(n + 1)/2 real...... variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...

  1. Honing process optimization algorithms

    Science.gov (United States)

    Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.

    2018-03-01

    This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.

  2. Cascaded face alignment via intimacy definition feature

    Science.gov (United States)

    Li, Hailiang; Lam, Kin-Man; Chiu, Man-Yau; Wu, Kangheng; Lei, Zhibin

    2017-09-01

    Recent years have witnessed the emerging popularity of regression-based face aligners, which directly learn mappings between facial appearance and shape-increment manifolds. We propose a random-forest based, cascaded regression model for face alignment by using a locally lightweight feature, namely intimacy definition feature. This feature is more discriminative than the pose-indexed feature, more efficient than the histogram of oriented gradients feature and the scale-invariant feature transform feature, and more compact than the local binary feature (LBF). Experimental validation of our algorithm shows that our approach achieves state-of-the-art performance when testing on some challenging datasets. Compared with the LBF-based algorithm, our method achieves about twice the speed, 20% improvement in terms of alignment accuracy and saves an order of magnitude on memory requirement.

  3. Featuring animacy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ritter

    2015-01-01

    Full Text Available Algonquian languages are famous for their animacy-based grammatical properties—an animacy based noun classification system and direct/inverse system which gives rise to animacy hierarchy effects in the determination of verb agreement. In this paper I provide new evidence for the proposal that the distinctive properties of these languages is due to the use of participant-based features, rather than spatio-temporal ones, for both nominal and verbal functional categories (Ritter & Wiltschko 2009, 2014. Building on Wiltschko (2012, I develop a formal treatment of the Blackfoot aspectual system that assumes a category Inner Aspect (cf. MacDonald 2008, Travis 1991, 2010. Focusing on lexical aspect in Blackfoot, I demonstrate that the classification of both nouns (Seinsarten and verbs (Aktionsarten is based on animacy, rather than boundedness, resulting in a strikingly different aspectual system for both categories. 

  4. Wavefront-ray grid FDTD algorithm

    OpenAIRE

    ÇİYDEM, MEHMET

    2016-01-01

    A finite difference time domain algorithm on a wavefront-ray grid (WRG-FDTD) is proposed in this study to reduce numerical dispersion of conventional FDTD methods. A FDTD algorithm conforming to a wavefront-ray grid can be useful to take into account anisotropy effects of numerical grids since it features directional energy flow along the rays. An explicit and second-order accurate WRG-FDTD algorithm is provided in generalized curvilinear coordinates for an inhomogeneous isotropic medium. Num...

  5. Research on Palmprint Identification Method Based on Quantum Algorithms

    Directory of Open Access Journals (Sweden)

    Hui Li

    2014-01-01

    Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.

  6. Lyapunov Function Synthesis - Algorithm and Software

    DEFF Research Database (Denmark)

    Leth, Tobias; Sloth, Christoffer; Wisniewski, Rafal

    2016-01-01

    In this paper we introduce an algorithm for the synthesis of polynomial Lyapunov functions for polynomial vector fields. The Lyapunov function is a continuous piecewisepolynomial defined on simplices, which compose a collection of simplices. The algorithm is elaborated and crucial features are ex...

  7. The Porter Stemming Algorithm: Then and Now

    Science.gov (United States)

    Willett, Peter

    2006-01-01

    Purpose: In 1980, Porter presented a simple algorithm for stemming English language words. This paper summarises the main features of the algorithm, and highlights its role not just in modern information retrieval research, but also in a range of related subject domains. Design/methodology/approach: Review of literature and research involving use…

  8. Fitting PAC spectra with a hybrid algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Alves, M. A., E-mail: mauro@sepn.org [Instituto de Aeronautica e Espaco (Brazil); Carbonari, A. W., E-mail: carbonar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (Brazil)

    2008-01-15

    A hybrid algorithm (HA) that blends features of genetic algorithms (GA) and simulated annealing (SA) was implemented for simultaneous fits of perturbed angular correlation (PAC) spectra. The main characteristic of the HA is the incorporation of a selection criterion based on SA into the basic structure of GA. The results obtained with the HA compare favorably with fits performed with conventional methods.

  9. Multiple feature fusion via covariance matrix for visual tracking

    Science.gov (United States)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  10. Algorithmic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  11. Quantum algorithm for support matrix machines

    Science.gov (United States)

    Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan

    2017-09-01

    We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.

  12. Hardware Acceleration of Adaptive Neural Algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - world conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.

  13. Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Directory of Open Access Journals (Sweden)

    Rouzé Pierre

    2004-05-01

    Full Text Available Abstract Background The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. Results In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. Conclusion We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features.

  14. Firefly Mating Algorithm for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  15. Iris recognition based on key image feature extraction.

    Science.gov (United States)

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  16. Image fusion using sparse overcomplete feature dictionaries

    Science.gov (United States)

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  17. Efficient RNA structure comparison algorithms.

    Science.gov (United States)

    Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason

    2017-12-01

    Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.

  18. The Top Ten Algorithms in Data Mining

    CERN Document Server

    Wu, Xindong

    2009-01-01

    From classification and clustering to statistical learning, association analysis, and link mining, this book covers the most important topics in data mining research. It presents the ten most influential algorithms used in the data mining community today. Each chapter provides a detailed description of the algorithm, a discussion of available software implementation, advanced topics, and exercises. With a simple data set, examples illustrate how each algorithm works and highlight the overall performance of each algorithm in a real-world application. Featuring contributions from leading researc

  19. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  20. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  1. Pseudo-deterministic Algorithms

    OpenAIRE

    Goldwasser , Shafi

    2012-01-01

    International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...

  2. FEATURE SELECTION METHODS BASED ON MUTUAL INFORMATION FOR CLASSIFYING HETEROGENEOUS FEATURES

    Directory of Open Access Journals (Sweden)

    Ratri Enggar Pawening

    2016-06-01

    Full Text Available Datasets with heterogeneous features can affect feature selection results that are not appropriate because it is difficult to evaluate heterogeneous features concurrently. Feature transformation (FT is another way to handle heterogeneous features subset selection. The results of transformation from non-numerical into numerical features may produce redundancy to the original numerical features. In this paper, we propose a method to select feature subset based on mutual information (MI for classifying heterogeneous features. We use unsupervised feature transformation (UFT methods and joint mutual information maximation (JMIM methods. UFT methods is used to transform non-numerical features into numerical features. JMIM methods is used to select feature subset with a consideration of the class label. The transformed and the original features are combined entirely, then determine features subset by using JMIM methods, and classify them using support vector machine (SVM algorithm. The classification accuracy are measured for any number of selected feature subset and compared between UFT-JMIM methods and Dummy-JMIM methods. The average classification accuracy for all experiments in this study that can be achieved by UFT-JMIM methods is about 84.47% and Dummy-JMIM methods is about 84.24%. This result shows that UFT-JMIM methods can minimize information loss between transformed and original features, and select feature subset to avoid redundant and irrelevant features.

  3. RESEARCH ON FEATURE POINTS EXTRACTION METHOD FOR BINARY MULTISCALE AND ROTATION INVARIANT LOCAL FEATURE DESCRIPTOR

    Directory of Open Access Journals (Sweden)

    Hongwei Ying

    2014-08-01

    Full Text Available An extreme point of scale space extraction method for binary multiscale and rotation invariant local feature descriptor is studied in this paper in order to obtain a robust and fast method for local image feature descriptor. Classic local feature description algorithms often select neighborhood information of feature points which are extremes of image scale space, obtained by constructing the image pyramid using certain signal transform method. But build the image pyramid always consumes a large amount of computing and storage resources, is not conducive to the actual applications development. This paper presents a dual multiscale FAST algorithm, it does not need to build the image pyramid, but can extract feature points of scale extreme quickly. Feature points extracted by proposed method have the characteristic of multiscale and rotation Invariant and are fit to construct the local feature descriptor.

  4. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  5. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  6. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.

    2015-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  7. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.

    2014-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  8. The Algorithmic Imaginary

    DEFF Research Database (Denmark)

    Bucher, Taina

    2017-01-01

    the notion of the algorithmic imaginary. It is argued that the algorithmic imaginary – ways of thinking about what algorithms are, what they should be and how they function – is not just productive of different moods and sensations but plays a generative role in moulding the Facebook algorithm itself...... of algorithms affect people's use of these platforms, if at all? To help answer these questions, this article examines people's personal stories about the Facebook algorithm through tweets and interviews with 25 ordinary users. To understand the spaces where people and algorithms meet, this article develops...

  9. The BR eigenvalue algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  10. Towards Feature Selection in Actor-Critic Algorithms

    National Research Council Canada - National Science Library

    Rohanimanesh, Khashayar; Roy, Nicholas; Tedrake, Russ

    2007-01-01

    .... They demonstrate that two popular representations for value methods -- the barycentric interpolators and the graph Laplacian proto-value functions -- can be used to represent the actor so as to satisfy these conditions...

  11. A harmony search algorithm for clustering with feature selection

    Directory of Open Access Journals (Sweden)

    Carlos Cobos

    2010-01-01

    Full Text Available En este artículo se presenta un nuevo algoritmo de clustering denominado IHSK, con la capacidad de seleccionar características en un orden de complejidad lineal. El algoritmo es inspirado en la combinación de los algoritmos de búsqueda armónica y K-means. Para la selección de las características se usó el concepto de variabilidad y un método heurístico que penaliza la presencia de dimensiones con baja probabilidad de aportar en la solución actual. El algoritmo fue probado con conjuntos de datos sintéticos y reales, obteniendo resultados prometedores.

  12. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  13. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...

  14. Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation

    Directory of Open Access Journals (Sweden)

    R. V. V. Krishna

    2016-10-01

    Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.

  15. Identifying significant environmental features using feature recognition.

    Science.gov (United States)

    2015-10-01

    The Department of Environmental Analysis at the Kentucky Transportation Cabinet has expressed an interest in feature-recognition capability because it may help analysts identify environmentally sensitive features in the landscape, : including those r...

  16. An implementation of the Heaviside algorithm

    International Nuclear Information System (INIS)

    Dimovski, I.H.; Spiridonova, M.N.

    2011-01-01

    The so-called Heaviside algorithm based on the operational calculus approach is intended for solving initial value problems for linear ordinary differential equations with constant coefficients. We use it in the framework of Mikusinski's operational calculus. A description and implementation of the Heaviside algorithm using a computer algebra system are considered. Special attention is paid to the features making this implementation efficient. Illustrative examples are included

  17. Adaptive sensor fusion using genetic algorithms

    International Nuclear Information System (INIS)

    Fitzgerald, D.S.; Adams, D.G.

    1994-01-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ''fuzzy'' sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion

  18. Algorithms for orbit control on SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.; Keeley, D.; Hettel, R.; Linscott, I.; Sebek, J.

    1994-06-01

    A global orbit feedback system has been installed on SPEAR to help stabilize the position of the photon beams. The orbit control algorithms depend on either harmonic reconstruction of the orbit or eigenvector decomposition. The orbit motion is corrected by dipole corrector kicks determined from the inverse corrector-to-bpm response matrix. This paper outlines features of these control algorithms as applied to SPEAR

  19. Privacy Preservation in Distributed Subgradient Optimization Algorithms

    OpenAIRE

    Lou, Youcheng; Yu, Lean; Wang, Shouyang

    2015-01-01

    Privacy preservation is becoming an increasingly important issue in data mining and machine learning. In this paper, we consider the privacy preserving features of distributed subgradient optimization algorithms. We first show that a well-known distributed subgradient synchronous optimization algorithm, in which all agents make their optimization updates simultaneously at all times, is not privacy preserving in the sense that the malicious agent can learn other agents' subgradients asymptotic...

  20. Game theory-based visual tracking approach focusing on color and texture features.

    Science.gov (United States)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Chen, Chuanhua; Wang, Xin

    2017-07-20

    It is difficult for a single-feature tracking algorithm to achieve strong robustness under a complex environment. To solve this problem, we proposed a multifeature fusion tracking algorithm that is based on game theory. By focusing on color and texture features as two gamers, this algorithm accomplishes tracking by using a mean shift iterative formula to search for the Nash equilibrium of the game. The contribution of different features is always keeping the state of optical balance, so that the algorithm can fully take advantage of feature fusion. According to the experiment results, this algorithm proves to possess good performance, especially under the condition of scene variation, target occlusion, and similar interference.

  1. Prominent feature extraction for review analysis: an empirical study

    Science.gov (United States)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  2. An efficient quantum algorithm for spectral estimation

    Science.gov (United States)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  3. A Direct Search Algorithm for Global Optimization

    Directory of Open Access Journals (Sweden)

    Enrique Baeyens

    2016-06-01

    Full Text Available A direct search algorithm is proposed for minimizing an arbitrary real valued function. The algorithm uses a new function transformation and three simplex-based operations. The function transformation provides global exploration features, while the simplex-based operations guarantees the termination of the algorithm and provides global convergence to a stationary point if the cost function is differentiable and its gradient is Lipschitz continuous. The algorithm’s performance has been extensively tested using benchmark functions and compared to some well-known global optimization algorithms. The results of the computational study show that the algorithm combines both simplicity and efficiency and is competitive with the heuristics-based strategies presently used for global optimization.

  4. Quantum Computation and Algorithms

    International Nuclear Information System (INIS)

    Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.

    1999-01-01

    It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution

  5. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  6. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  7. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  8. A verified LLL algorithm

    NARCIS (Netherlands)

    Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa

    2018-01-01

    The Lenstra-Lenstra-Lovász basis reduction algorithm, also known as LLL algorithm, is an algorithm to find a basis with short, nearly orthogonal vectors of an integer lattice. Thereby, it can also be seen as an approximation to solve the shortest vector problem (SVP), which is an NP-hard problem,

  9. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  10. Feature extraction for dynamic integration of classifiers

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.; Patterson, D.W.

    2007-01-01

    Recent research has shown the integration of multiple classifiers to be one of the most important directions in machine learning and data mining. In this paper, we present an algorithm for the dynamic integration of classifiers in the space of extracted features (FEDIC). It is based on the technique

  11. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  12. An empirical study on SAJQ (Sorting Algorithm for Join Queries

    Directory of Open Access Journals (Sweden)

    Hassan I. Mathkour

    2010-06-01

    Full Text Available Most queries that applied on database management systems (DBMS depend heavily on the performance of the used sorting algorithm. In addition to have an efficient sorting algorithm, as a primary feature, stability of such algorithms is a major feature that is needed in performing DBMS queries. In this paper, we study a new Sorting Algorithm for Join Queries (SAJQ that has both advantages of being efficient and stable. The proposed algorithm takes the advantage of using the m-way-merge algorithm in enhancing its time complexity. SAJQ performs the sorting operation in a time complexity of O(nlogm, where n is the length of the input array and m is number of sub-arrays used in sorting. An unsorted input array of length n is arranged into m sorted sub-arrays. The m-way-merge algorithm merges the sorted m sub-arrays into the final output sorted array. The proposed algorithm keeps the stability of the keys intact. An analytical proof has been conducted to prove that, in the worst case, the proposed algorithm has a complexity of O(nlogm. Also, a set of experiments has been performed to investigate the performance of the proposed algorithm. The experimental results have shown that the proposed algorithm outperforms other Stable–Sorting algorithms that are designed for join-based queries.

  13. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  14. VISUALIZATION OF PAGERANK ALGORITHM

    OpenAIRE

    Perhaj, Ervin

    2013-01-01

    The goal of the thesis is to develop a web application that help users understand the functioning of the PageRank algorithm. The thesis consists of two parts. First we develop an algorithm to calculate PageRank values of web pages. The input of algorithm is a list of web pages and links between them. The user enters the list through the web interface. From the data the algorithm calculates PageRank value for each page. The algorithm repeats the process, until the difference of PageRank va...

  15. Parallel sorting algorithms

    CERN Document Server

    Akl, Selim G

    1985-01-01

    Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the

  16. Modified Clipped LMS Algorithm

    Directory of Open Access Journals (Sweden)

    Lotfizad Mojtaba

    2005-01-01

    Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.

  17. Feature Detector and Descriptor for Medical Images

    Science.gov (United States)

    Sargent, Dusty; Chen, Chao-I.; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Daniel

    2009-02-01

    The ability to detect and match features across multiple views of a scene is a crucial first step in many computer vision algorithms for dynamic scene analysis. State-of-the-art methods such as SIFT and SURF perform successfully when applied to typical images taken by a digital camera or camcorder. However, these methods often fail to generate an acceptable number of features when applied to medical images, because such images usually contain large homogeneous regions with little color and intensity variation. As a result, tasks like image registration and 3D structure recovery become difficult or impossible in the medical domain. This paper presents a scale, rotation and color/illumination invariant feature detector and descriptor for medical applications. The method incorporates elements of SIFT and SURF while optimizing their performance on medical data. Based on experiments with various types of medical images, we combined, adjusted, and built on methods and parameter settings employed in both algorithms. An approximate Hessian based detector is used to locate scale invariant keypoints and a dominant orientation is assigned to each keypoint using a gradient orientation histogram, providing rotation invariance. Finally, keypoints are described with an orientation-normalized distribution of gradient responses at the assigned scale, and the feature vector is normalized for contrast invariance. Experiments show that the algorithm detects and matches far more features than SIFT and SURF on medical images, with similar error levels.

  18. Optimized feature subsets for epileptic seizure prediction studies.

    Science.gov (United States)

    Direito, Bruno; Ventura, Francisco; Teixeira, César; Dourado, António

    2011-01-01

    The reduction of the number of EEG features to give as inputs to epilepsy seizure predictors is a needed step towards the development of a transportable device for real-time warning. This paper presents a comparative study of three feature selection methods, based on Support Vector Machines. Minimum-Redundancy Maximum-Relevance, Recursive Feature Elimination, Genetic Algorithms, show that, for three patients of the European Database on Epilepsy, the most important univariate features are related to spectral information and statistical moments.

  19. Hierarchical feature selection for erythema severity estimation

    Science.gov (United States)

    Wang, Li; Shi, Chenbo; Shu, Chang

    2014-10-01

    At present PASI system of scoring is used for evaluating erythema severity, which can help doctors to diagnose psoriasis [1-3]. The system relies on the subjective judge of doctors, where the accuracy and stability cannot be guaranteed [4]. This paper proposes a stable and precise algorithm for erythema severity estimation. Our contributions are twofold. On one hand, in order to extract the multi-scale redness of erythema, we design the hierarchical feature. Different from traditional methods, we not only utilize the color statistical features, but also divide the detect window into small window and extract hierarchical features. Further, a feature re-ranking step is introduced, which can guarantee that extracted features are irrelevant to each other. On the other hand, an adaptive boosting classifier is applied for further feature selection. During the step of training, the classifier will seek out the most valuable feature for evaluating erythema severity, due to its strong learning ability. Experimental results demonstrate the high precision and robustness of our algorithm. The accuracy is 80.1% on the dataset which comprise 116 patients' images with various kinds of erythema. Now our system has been applied for erythema medical efficacy evaluation in Union Hosp, China.

  20. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  1. Unsupervised Feature Subset Selection

    DEFF Research Database (Denmark)

    Søndberg-Madsen, Nicolaj; Thomsen, C.; Pena, Jose

    2003-01-01

    This paper studies filter and hybrid filter-wrapper feature subset selection for unsupervised learning (data clustering). We constrain the search for the best feature subset by scoring the dependence of every feature on the rest of the features, conjecturing that these scores discriminate some ir...... irrelevant features. We report experimental results on artificial and real data for unsupervised learning of naive Bayes models. Both the filter and hybrid approaches perform satisfactorily....

  2. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  3. Quantitative Comparison of Tolerance-Based Feature Transforms

    OpenAIRE

    Reniers, Dennie; Telea, Alexandru

    2006-01-01

    Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary images. Of these, two are novel methods and two extend existing distance transform algorithms. We quantitatively and qualitatively compare all algorithms on speed and accuracy of both distance and...

  4. VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER

    Directory of Open Access Journals (Sweden)

    P. N. Filippenko

    2013-03-01

    Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.

  5. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    DEFF Research Database (Denmark)

    Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka

    2016-01-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detec...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....

  6. A new LMS algorithm for analysis of atrial fibrillation signals

    OpenAIRE

    Ciaccio Edward J; Biviano Angelo B; Whang William; Garan Hasan

    2012-01-01

    Abstract Background A biomedical signal can be defined by its extrinsic features (x-axis and y-axis shift and scale) and intrinsic features (shape after normalization of extrinsic features). In this study, an LMS algorithm utilizing the method of differential steepest descent is developed, and is tested by normalization of extrinsic features in complex fractionated atrial electrograms (CFAE). Method Equations for normalization of x-axis and y-axis shift and scale are first derived. The algori...

  7. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  8. Recursive forgetting algorithms

    DEFF Research Database (Denmark)

    Parkum, Jens; Poulsen, Niels Kjølstad; Holst, Jan

    1992-01-01

    In the first part of the paper, a general forgetting algorithm is formulated and analysed. It contains most existing forgetting schemes as special cases. Conditions are given ensuring that the basic convergence properties will hold. In the second part of the paper, the results are applied...... to a specific algorithm with selective forgetting. Here, the forgetting is non-uniform in time and space. The theoretical analysis is supported by a simulation example demonstrating the practical performance of this algorithm...

  9. GSM Channel Equalization Algorithm - Modern DSP Coprocessor Approach

    Directory of Open Access Journals (Sweden)

    M. Drutarovsky

    1999-12-01

    Full Text Available The paper presents basic equations of efficient GSM Viterbi equalizer algorithm based on approximation of GMSK modulation by linear superposition of amplitude modulated pulses. This approximation allows to use Ungerboeck form of channel equalizer with significantly reduced arithmetic complexity. Proposed algorithm can be effectively implemented on the Viterbi and Filter coprocessors of new Motorola DSP56305 digital signal processor. Short overview of coprocessor features related to the proposed algorithm is included.

  10. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  11. Performance of Jet Algorithms in CMS

    CERN Document Server

    CMS Collaboration

    The CMS Combined Software and Analysis Challenge 2007 (CSA07) is well underway and expected to produce a wealth of physics analyses to be applied to the first incoming detector data in 2008. The JetMET group of CMS supports four different jet clustering algorithms for the CSA07 Monte Carlo samples, with two different parameterizations each: \\fastkt, \\siscone, \\midpoint, and \\itcone. We present several studies comparing the performance of these algorithms using QCD dijet and \\ttbar Monte Carlo samples. We specifically observe that the \\siscone algorithm performs equal to or better than the \\midpoint algorithm in all presented studies and propose that \\siscone be adopted as the preferred cone-based jet clustering algorithm in future CMS physics analyses, as it is preferred by theorists for its infrared- and collinear-safety to all orders of perturbative QCD. We furthermore encourage the use of the \\fastkt algorithm which is found to perform as good as any other algorithm under study, features dramatically reduc...

  12. Explaining algorithms using metaphors

    CERN Document Server

    Forišek, Michal

    2013-01-01

    There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by using suitable metaphors. This work provides a set of novel metaphors identified and developed as suitable tools for teaching many of the 'classic textbook' algorithms taught in undergraduate courses worldwide. Each chapter provides exercises and didactic notes fo

  13. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  14. Shadow algorithms data miner

    CERN Document Server

    Woo, Andrew

    2012-01-01

    Digital shadow generation continues to be an important aspect of visualization and visual effects in film, games, simulations, and scientific applications. This resource offers a thorough picture of the motivations, complexities, and categorized algorithms available to generate digital shadows. From general fundamentals to specific applications, it addresses shadow algorithms and how to manage huge data sets from a shadow perspective. The book also examines the use of shadow algorithms in industrial applications, in terms of what algorithms are used and what software is applicable.

  15. Quick fuzzy backpropagation algorithm.

    Science.gov (United States)

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  16. Portfolios of quantum algorithms.

    Science.gov (United States)

    Maurer, S M; Hogg, T; Huberman, B A

    2001-12-17

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.

  17. A Chinese text classification system based on Naive Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Cui Wei

    2016-01-01

    Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.

  18. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  19. Algorithm 426 : Merge sort algorithm [M1

    NARCIS (Netherlands)

    Bron, C.

    1972-01-01

    Sorting by means of a two-way merge has a reputation of requiring a clerically complicated and cumbersome program. This ALGOL 60 procedure demonstrates that, using recursion, an elegant and efficient algorithm can be designed, the correctness of which is easily proved [2]. Sorting n objects gives

  20. Feature extraction & image processing for computer vision

    CERN Document Server

    Nixon, Mark

    2012-01-01

    This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, ""The main strength of the proposed book is the exemplar code of the algorithms."" Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filt

  1. Interactive music composition driven by feature evolution.

    Science.gov (United States)

    Kaliakatsos-Papakostas, Maximos A; Floros, Andreas; Vrahatis, Michael N

    2016-01-01

    Evolutionary music composition is a prominent technique for automatic music generation. The immense adaptation potential of evolutionary algorithms has allowed the realisation of systems that automatically produce music through feature and interactive-based composition approaches. Feature-based composition employs qualitatively descriptive music features as fitness landmarks. Interactive composition systems on the other hand, derive fitness directly from human ratings and/or selection. The paper at hand introduces a methodological framework that combines the merits of both evolutionary composition methodologies. To this end, a system is presented that is organised in two levels: the higher level of interaction and the lower level of composition. The higher level incorporates the particle swarm optimisation algorithm, along with a proposed variant and evolves musical features according to user ratings. The lower level realizes feature-based music composition with a genetic algorithm, according to the top level features. The aim of this work is not to validate the efficiency of the currently utilised setup in each level, but to examine the convergence behaviour of such a two-level technique in an objective manner. Therefore, an additional novelty in this work concerns the utilisation of artificial raters that guide the system through the space of musical features, allowing the exploration of its convergence characteristics: does the system converge to optimal melodies, is this convergence fast enough for potential human listeners and is the trajectory to convergence "interesting' and "creative" enough? The experimental results reveal that the proposed methodological framework represents a fruitful and robust, novel approach to interactive music composition.

  2. Feature Selection by Reordering

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2005-01-01

    Roč. 2, č. 1 (2005), s. 155-161 ISSN 1738-6438 Institutional research plan: CEZ:AV0Z10300504 Keywords : feature selection * data reduction * ordering of features Subject RIV: BA - General Mathematics

  3. Feature Recognition of Froth Images Based on Energy Distribution Characteristics

    Directory of Open Access Journals (Sweden)

    WU Yanpeng

    2014-09-01

    Full Text Available This paper proposes a determining algorithm for froth image features based on the amplitude spectrum energy statistics by applying Fast Fourier Transformation to analyze the energy distribution of various-sized froth. The proposed algorithm has been used to do a froth feature analysis of the froth images from the alumina flotation processing site, and the results show that the consistency rate reaches 98.1 % and the usability rate 94.2 %; with its good robustness and high efficiency, the algorithm is quite suitable for flotation processing state recognition.

  4. Feature selection for anomaly–based network intrusion detection using cluster validity indices

    CSIR Research Space (South Africa)

    Naidoo, Tyrone

    2015-09-01

    Full Text Available data, which is rarely available in operational networks. It uses normalized cluster validity indices as an objective function that is optimized over the search space of candidate feature subsets via a genetic algorithm. Feature sets produced...

  5. Screening for Plant Features

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Polder, G.

    2015-01-01

    In this chapter, an overview of different plant features is given, from (sub)cellular to canopy level. A myriad of methods is available to measure these features using image analysis, and often, multiple methods can be used to measure the same feature. Several criteria are listed for choosing a

  6. Composite Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2014-01-01

    Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.

  7. Algorithms and Their Explanations

    NARCIS (Netherlands)

    Benini, M.; Gobbo, F.; Beckmann, A.; Csuhaj-Varjú, E.; Meer, K.

    2014-01-01

    By analysing the explanation of the classical heapsort algorithm via the method of levels of abstraction mainly due to Floridi, we give a concrete and precise example of how to deal with algorithmic knowledge. To do so, we introduce a concept already implicit in the method, the ‘gradient of

  8. Finite lattice extrapolation algorithms

    International Nuclear Information System (INIS)

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  9. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  10. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...

  11. 8. Algorithm Design Techniques

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Algorithms - Algorithm Design Techniques. R K Shyamasundar. Series Article Volume 2 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  12. Cuckoo search and firefly algorithm theory and applications

    CERN Document Server

    2014-01-01

    Nature-inspired algorithms such as cuckoo search and firefly algorithm have become popular and widely used in recent years in many applications. These algorithms are flexible, efficient and easy to implement. New progress has been made in the last few years, and it is timely to summarize the latest developments of cuckoo search and firefly algorithm and their diverse applications. This book will review both theoretical studies and applications with detailed algorithm analysis, implementation and case studies so that readers can benefit most from this book.  Application topics are contributed by many leading experts in the field. Topics include cuckoo search, firefly algorithm, algorithm analysis, feature selection, image processing, travelling salesman problem, neural network, GPU optimization, scheduling, queuing, multi-objective manufacturing optimization, semantic web service, shape optimization, and others.   This book can serve as an ideal reference for both graduates and researchers in computer scienc...

  13. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.

    Science.gov (United States)

    Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P

    2010-10-30

    Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  15. Group leaders optimization algorithm

    Science.gov (United States)

    Daskin, Anmer; Kais, Sabre

    2011-03-01

    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.

  16. Fast geometric algorithms

    International Nuclear Information System (INIS)

    Noga, M.T.

    1984-01-01

    This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry

  17. Totally parallel multilevel algorithms

    Science.gov (United States)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  18. Governance by algorithms

    Directory of Open Access Journals (Sweden)

    Francesca Musiani

    2013-08-01

    Full Text Available Algorithms are increasingly often cited as one of the fundamental shaping devices of our daily, immersed-in-information existence. Their importance is acknowledged, their performance scrutinised in numerous contexts. Yet, a lot of what constitutes 'algorithms' beyond their broad definition as “encoded procedures for transforming input data into a desired output, based on specified calculations” (Gillespie, 2013 is often taken for granted. This article seeks to contribute to the discussion about 'what algorithms do' and in which ways they are artefacts of governance, providing two examples drawing from the internet and ICT realm: search engine queries and e-commerce websites’ recommendations to customers. The question of the relationship between algorithms and rules is likely to occupy an increasingly central role in the study and the practice of internet governance, in terms of both institutions’ regulation of algorithms, and algorithms’ regulation of our society.

  19. Where genetic algorithms excel.

    Science.gov (United States)

    Baum, E B; Boneh, D; Garrett, C

    2001-01-01

    We analyze the performance of a genetic algorithm (GA) we call Culling, and a variety of other algorithms, on a problem we refer to as the Additive Search Problem (ASP). We show that the problem of learning the Ising perceptron is reducible to a noisy version of ASP. Noisy ASP is the first problem we are aware of where a genetic-type algorithm bests all known competitors. We generalize ASP to k-ASP to study whether GAs will achieve "implicit parallelism" in a problem with many more schemata. GAs fail to achieve this implicit parallelism, but we describe an algorithm we call Explicitly Parallel Search that succeeds. We also compute the optimal culling point for selective breeding, which turns out to be independent of the fitness function or the population distribution. We also analyze a mean field theoretic algorithm performing similarly to Culling on many problems. These results provide insight into when and how GAs can beat competing methods.

  20. Network-Oblivious Algorithms

    DEFF Research Database (Denmark)

    Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino

    2016-01-01

    A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....

  1. A Hybrid Feature Selection Approach for Arabic Documents Classification

    NARCIS (Netherlands)

    Habib, Mena Badieh; Sarhan, Ahmed A. E.; Salem, Abdel-Badeeh M.; Fayed, Zaki T.; Gharib, Tarek F.

    Text Categorization (classification) is the process of classifying documents into a predefined set of categories based on their content. Text categorization algorithms usually represent documents as bags of words and consequently have to deal with huge number of features. Feature selection tries to

  2. Evolutionary Algorithms Application Analysis in Biometric Systems

    Directory of Open Access Journals (Sweden)

    N. Goranin

    2010-01-01

    Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.

  3. Quantum algorithms for topological and geometric analysis of data

    Science.gov (United States)

    Lloyd, Seth; Garnerone, Silvano; Zanardi, Paolo

    2016-01-01

    Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis. PMID:26806491

  4. Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang

    2015-01-01

    Full Text Available Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs. Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.

  5. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  6. Structural health monitoring feature design by genetic programming

    International Nuclear Information System (INIS)

    Harvey, Dustin Y; Todd, Michael D

    2014-01-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems. (paper)

  7. A New Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Medha Gupta

    2016-07-01

    Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.

  8. Feature-based Ontology Mapping from an Information Receivers’ Viewpoint

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Mørup, Morten

    2012-01-01

    This paper compares four algorithms for computing feature-based similarities between concepts respectively possessing a distinctive set of features. The eventual purpose of comparing these feature-based similarity algorithms is to identify a candidate term in a Target Language (TL) that can...... optimally convey the original meaning of a culturally-specific Source Language (SL) concept to a TL audience by aligning two culturally-dependent domain-specific ontologies. The results indicate that the Bayesian Model of Generalization [1] performs best, not only for identifying candidate translation terms...

  9. Parametric classification of handvein patterns based on texture features

    Science.gov (United States)

    Al Mahafzah, Harbi; Imran, Mohammad; Supreetha Gowda H., D.

    2018-04-01

    In this paper, we have developed Biometric recognition system adopting hand based modality Handvein,which has the unique pattern for each individual and it is impossible to counterfeit and fabricate as it is an internal feature. We have opted in choosing feature extraction algorithms such as LBP-visual descriptor, LPQ-blur insensitive texture operator, Log-Gabor-Texture descriptor. We have chosen well known classifiers such as KNN and SVM for classification. We have experimented and tabulated results of single algorithm recognition rate for Handvein under different distance measures and kernel options. The feature level fusion is carried out which increased the performance level.

  10. Improved core protection calculator system algorithm

    International Nuclear Information System (INIS)

    Yoon, Tae Young; Park, Young Ho; In, Wang Kee; Bae, Jong Sik; Baeg, Seung Yeob

    2009-01-01

    Core Protection Calculator System (CPCS) is a digitized core protection system which provides core protection functions based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels which adapted a two out of four trip logic. CPCS algorithm improvement for the newly designed core protection calculator system, RCOPS (Reactor COre Protection System), is described in this paper. New features include the improvement of DNBR algorithm for thermal margin, the addition of pre trip alarm generation for auxiliary trip function, VOPT (Variable Over Power Trip) prevention during RPCS (Reactor Power Cutback System) actuation and the improvement of CEA (Control Element Assembly) signal checking algorithm. To verify the improved CPCS algorithm, CPCS algorithm verification tests, 'Module Test' and 'Unit Test', would be performed on RCOPS single channel facility. It is expected that the improved CPCS algorithm will increase DNBR margin and enhance the plant availability by reducing unnecessary reactor trips

  11. The Applications of Genetic Algorithms in Medicine

    Directory of Open Access Journals (Sweden)

    Ali Ghaheri

    2015-11-01

    Full Text Available A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.

  12. The Applications of Genetic Algorithms in Medicine.

    Science.gov (United States)

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].

  13. Distribution agnostic structured sparsity recovery algorithms

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2013-05-01

    We present an algorithm and its variants for sparse signal recovery from a small number of its measurements in a distribution agnostic manner. The proposed algorithm finds Bayesian estimate of a sparse signal to be recovered and at the same time is indifferent to the actual distribution of its non-zero elements. Termed Support Agnostic Bayesian Matching Pursuit (SABMP), the algorithm also has the capability of refining the estimates of signal and required parameters in the absence of the exact parameter values. The inherent feature of the algorithm of being agnostic to the distribution of the data grants it the flexibility to adapt itself to several related problems. Specifically, we present two important extensions to this algorithm. One extension handles the problem of recovering sparse signals having block structures while the other handles multiple measurement vectors to jointly estimate the related unknown signals. We conduct extensive experiments to show that SABMP and its variants have superior performance to most of the state-of-the-art algorithms and that too at low-computational expense. © 2013 IEEE.

  14. Magnet sorting algorithms

    International Nuclear Information System (INIS)

    Dinev, D.

    1996-01-01

    Several new algorithms for sorting of dipole and/or quadrupole magnets in synchrotrons and storage rings are described. The algorithms make use of a combinatorial approach to the problem and belong to the class of random search algorithms. They use an appropriate metrization of the state space. The phase-space distortion (smear) is used as a goal function. Computational experiments for the case of the JINR-Dubna superconducting heavy ion synchrotron NUCLOTRON have shown a significant reduction of the phase-space distortion after the magnet sorting. (orig.)

  15. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  16. Image processing algorithm for robot tracking in reactor vessel

    International Nuclear Information System (INIS)

    Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun

    2011-01-01

    In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking

  17. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Shih

    2010-01-01

    Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  18. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    Science.gov (United States)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  19. Rotation invariant fast features for large-scale recognition

    Science.gov (United States)

    Takacs, Gabriel; Chandrasekhar, Vijay; Tsai, Sam; Chen, David; Grzeszczuk, Radek; Girod, Bernd

    2012-10-01

    We present an end-to-end feature description pipeline which uses a novel interest point detector and Rotation- Invariant Fast Feature (RIFF) descriptors. The proposed RIFF algorithm is 15× faster than SURF1 while producing large-scale retrieval results that are comparable to SIFT.2 Such high-speed features benefit a range of applications from Mobile Augmented Reality (MAR) to web-scale image retrieval and analysis.

  20. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  1. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  2. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  3. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  4. Inclusive Flavour Tagging Algorithm

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex

    2016-01-01

    Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)

  5. Unsupervised learning algorithms

    CERN Document Server

    Aydin, Kemal

    2016-01-01

    This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...

  6. Image feature detectors and descriptors foundations and applications

    CERN Document Server

    Hassaballah, Mahmoud

    2016-01-01

    This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition. .

  7. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  8. Optimization algorithms and applications

    CERN Document Server

    Arora, Rajesh Kumar

    2015-01-01

    Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc

  9. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    Science.gov (United States)

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  10. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.

  11. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  12. RFID Location Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Zi Min

    2016-01-01

    Full Text Available With the development of social services, people’s living standards improve further requirements, there is an urgent need for a way to adapt to the complex situation of the new positioning technology. In recent years, RFID technology have a wide range of applications in all aspects of life and production, such as logistics tracking, car alarm, security and other items. The use of RFID technology to locate, it is a new direction in the eyes of the various research institutions and scholars. RFID positioning technology system stability, the error is small and low-cost advantages of its location algorithm is the focus of this study.This article analyzes the layers of RFID technology targeting methods and algorithms. First, RFID common several basic methods are introduced; Secondly, higher accuracy to political network location method; Finally, LANDMARC algorithm will be described. Through this it can be seen that advanced and efficient algorithms play an important role in increasing RFID positioning accuracy aspects.Finally, the algorithm of RFID location technology are summarized, pointing out the deficiencies in the algorithm, and put forward a follow-up study of the requirements, the vision of a better future RFID positioning technology.

  13. Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-01-01

    Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.

  14. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  15. Filtering algorithm for dotted interferences

    International Nuclear Information System (INIS)

    Osterloh, K.; Buecherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-01-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  16. A Semisupervised Cascade Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Stamatis Karlos

    2016-01-01

    Full Text Available Classification is one of the most important tasks of data mining techniques, which have been adopted by several modern applications. The shortage of enough labeled data in the majority of these applications has shifted the interest towards using semisupervised methods. Under such schemes, the use of collected unlabeled data combined with a clearly smaller set of labeled examples leads to similar or even better classification accuracy against supervised algorithms, which use labeled examples exclusively during the training phase. A novel approach for increasing semisupervised classification using Cascade Classifier technique is presented in this paper. The main characteristic of Cascade Classifier strategy is the use of a base classifier for increasing the feature space by adding either the predicted class or the probability class distribution of the initial data. The classifier of the second level is supplied with the new dataset and extracts the decision for each instance. In this work, a self-trained NB∇C4.5 classifier algorithm is presented, which combines the characteristics of Naive Bayes as a base classifier and the speed of C4.5 for final classification. We performed an in-depth comparison with other well-known semisupervised classification methods on standard benchmark datasets and we finally reached to the point that the presented technique has better accuracy in most cases.

  17. A Fast Algorithm of Cartographic Sounding Selection

    Institute of Scientific and Technical Information of China (English)

    SUI Haigang; HUA Li; ZHAO Haitao; ZHANG Yongli

    2005-01-01

    An effective strategy and framework that adequately integrate the automated and manual processes for fast cartographic sounding selection is presented. The important submarine topographic features are extracted for important soundings selection, and an improved "influence circle" algorithm is introduced for sounding selection. For automatic configuration of soundings distribution pattern, a special algorithm considering multi-factors is employed. A semi-automatic method for solving the ambiguous conflicts is described. On the basis of the algorithms and strategies a system named HGIS for fast cartographic sounding selection is developed and applied in Chinese Marine Safety Administration Bureau (CMSAB). The application experiments show that the system is effective and reliable. At last some conclusions and the future work are given.

  18. Linear programming mathematics, theory and algorithms

    CERN Document Server

    1996-01-01

    Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

  19. Genetic algorithm optimization of atomic clusters

    International Nuclear Information System (INIS)

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA

    1996-01-01

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process

  20. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  1. Improved SURF Algorithm and Its Application in Seabed Relief Image Matching

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Mei

    2017-01-01

    Full Text Available The matching based on seabed relief image is widely used in underwater relief matching navigation and target recognition, etc. However, being influenced by various factors, some conventional matching algorithms are difficult to obtain an ideal result in the matching of seabed relief image. SURF(Speeded Up Robust Features algorithm is based on feature points pair to achieve matching, and can get good results in the seabed relief image matching. However, in practical applications, the traditional SURF algorithm is easy to get false matching, especially when the area’s features are similar or not obvious, the problem is more seriously. In order to improve the robustness of the algorithm, this paper proposes an improved matching algorithm, which combines the SURF, and RANSAC (Random Sample Consensus algorithms. The new algorithm integrates the two algorithms advantages, firstly, the SURF algorithm is applied to detect and extract the feature points then to pre-match. Secondly, RANSAC algorithm is utilized to eliminate mismatching points, and then the accurate matching is accomplished with the correct matching points. The experimental results show that the improved algorithm overcomes the mismatching problem effectively and have better precision and faster speed than the traditional SURF algorithm.

  2. Using internal evaluation measures to validate the quality of diverse stream clustering algorithms

    NARCIS (Netherlands)

    Hassani, M.; Seidl, T.

    2017-01-01

    Measuring the quality of a clustering algorithm has shown to be as important as the algorithm itself. It is a crucial part of choosing the clustering algorithm that performs best for an input data. Streaming input data have many features that make them much more challenging than static ones. They

  3. Volcanic features of Io

    International Nuclear Information System (INIS)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    The volcanic features of Io as detected during the Voyager mission are discussed. The volcanic activity is apparently higher than on any other body in the Solar System. Its volcanic landforms are compared with features on Earth to indicate the type of volcanism present on Io. (U.K.)

  4. Improved multivariate polynomial factoring algorithm

    International Nuclear Information System (INIS)

    Wang, P.S.

    1978-01-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included

  5. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  6. Human resource recommendation algorithm based on ensemble learning and Spark

    Science.gov (United States)

    Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie

    2017-08-01

    Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.

  7. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  8. Individual discriminative face recognition models based on subsets of features

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Gomez, David Delgado; Ersbøll, Bjarne Kjær

    2007-01-01

    The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one...... person from another using only subsets of features will both decrease the computational cost and increase the generalization capacity of the face recognition algorithm. Moreover, identifying which are the features that better discriminate between persons will also provide a deeper understanding...... of the face recognition problem. The elastic net model is able to select a subset of features with low computational effort compared to other state-of-the-art feature selection methods. Furthermore, the fact that the number of features usually is larger than the number of images in the data base makes feature...

  9. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing

    2014-01-01

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  10. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack

    2014-02-04

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  11. Agency and Algorithms

    Directory of Open Access Journals (Sweden)

    Hanns Holger Rutz

    2016-11-01

    Full Text Available Although the concept of algorithms has been established a long time ago, their current topicality indicates a shift in the discourse. Classical definitions based on logic seem to be inadequate to describe their aesthetic capabilities. New approaches stress their involvement in material practices as well as their incompleteness. Algorithmic aesthetics can no longer be tied to the static analysis of programs, but must take into account the dynamic and experimental nature of coding practices. It is suggested that the aesthetic objects thus produced articulate something that could be called algorithmicity or the space of algorithmic agency. This is the space or the medium – following Luhmann’s form/medium distinction – where human and machine undergo mutual incursions. In the resulting coupled “extimate” writing process, human initiative and algorithmic speculation cannot be clearly divided out any longer. An observation is attempted of defining aspects of such a medium by drawing a trajectory across a number of sound pieces. The operation of exchange between form and medium I call reconfiguration and it is indicated by this trajectory. 

  12. DYNAMIC FEATURE SELECTION FOR WEB USER IDENTIFICATION ON LINGUISTIC AND STYLISTIC FEATURES OF ONLINE TEXTS

    Directory of Open Access Journals (Sweden)

    A. A. Vorobeva

    2017-01-01

    Full Text Available The paper deals with identification and authentication of web users participating in the Internet information processes (based on features of online texts.In digital forensics web user identification based on various linguistic features can be used to discover identity of individuals, criminals or terrorists using the Internet to commit cybercrimes. Internet could be used as a tool in different types of cybercrimes (fraud and identity theft, harassment and anonymous threats, terrorist or extremist statements, distribution of illegal content and information warfare. Linguistic identification of web users is a kind of biometric identification, it can be used to narrow down the suspects, identify a criminal and prosecute him. Feature set includes various linguistic and stylistic features extracted from online texts. We propose dynamic feature selection for each web user identification task. Selection is based on calculating Manhattan distance to k-nearest neighbors (Relief-f algorithm. This approach improves the identification accuracy and minimizes the number of features. Experiments were carried out on several datasets with different level of class imbalance. Experiment results showed that features relevance varies in different set of web users (probable authors of some text; features selection for each set of web users improves identification accuracy by 4% at the average that is approximately 1% higher than with the use of static set of features. The proposed approach is most effective for a small number of training samples (messages per user.

  13. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  14. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  15. A fast algorithm for identifying friends-of-friends halos

    Science.gov (United States)

    Feng, Y.; Modi, C.

    2017-07-01

    We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.

  16. Advanced algorithms for information science

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression.

  17. Advanced algorithms for information science

    International Nuclear Information System (INIS)

    Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression

  18. Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

    Directory of Open Access Journals (Sweden)

    Qingsong Zhu

    2012-01-01

    Full Text Available A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT applications.

  19. Feature Selection for Audio Surveillance in Urban Environment

    Directory of Open Access Journals (Sweden)

    KIKTOVA Eva

    2014-05-01

    Full Text Available This paper presents the work leading to the acoustic event detection system, which is designed to recognize two types of acoustic events (shot and breaking glass in urban environment. For this purpose, a huge front-end processing was performed for the effective parametric representation of an input sound. MFCC features and features computed during their extraction (MELSPEC and FBANK, then MPEG-7 audio descriptors and other temporal and spectral characteristics were extracted. High dimensional feature sets were created and in the next phase reduced by the mutual information based selection algorithms. Hidden Markov Model based classifier was applied and evaluated by the Viterbi decoding algorithm. Thus very effective feature sets were identified and also the less important features were found.

  20. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    Science.gov (United States)

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  1. New features in MEDM

    International Nuclear Information System (INIS)

    Evans, K. Jr.

    1999-01-01

    MEDM, which is derived from Motif Editor and Display Manager, is the primary graphical interface to the EPICS control system. This paper describes new features that have been added to MEDM in the last two years. These features include new editing capabilities, a PV Info dialog box, a means of specifying limits and precision, a new implementation of the Cartesian Plot, new features for several objects, new capability for the Related Display, help, a user-configurable Execute Menu, reconfigured start-up options, and availability for Windows 95/98/NT. Over one hundred bugs have been fixed, and the program is quite stable and in extensive use

  2. Flocking algorithm for autonomous flying robots.

    Science.gov (United States)

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  3. Detection of algorithmic trading

    Science.gov (United States)

    Bogoev, Dimitar; Karam, Arzé

    2017-10-01

    We develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes. We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.

  4. Handbook of Memetic Algorithms

    CERN Document Server

    Cotta, Carlos; Moscato, Pablo

    2012-01-01

    Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems.  The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes.   “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now.  A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem,  memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, ...

  5. Algorithms in invariant theory

    CERN Document Server

    Sturmfels, Bernd

    2008-01-01

    J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.

  6. The Retina Algorithm

    CERN Multimedia

    CERN. Geneva; PUNZI, Giovanni

    2015-01-01

    Charge particle reconstruction is one of the most demanding computational tasks found in HEP, and it becomes increasingly important to perform it in real time. We envision that HEP would greatly benefit from achieving a long-term goal of making track reconstruction happen transparently as part of the detector readout ("detector-embedded tracking"). We describe here a track-reconstruction approach based on a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature ('RETINA algorithm'). It turns out that high-quality tracking in large HEP detectors is possible with very small latencies, when this algorithm is implemented in specialized processors, based on current state-of-the-art, high-speed/high-bandwidth digital devices.

  7. Handwriting: Feature Correlation Analysis for Biometric Hashes

    Science.gov (United States)

    Vielhauer, Claus; Steinmetz, Ralf

    2004-12-01

    In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of handwriting, the biometric hash. Our interest is to investigate to which degree each of the underlying feature parameters contributes to the overall intrapersonal stability and interpersonal value space. We will briefly discuss related work in feature evaluation and introduce a new methodology based on three components: the intrapersonal scatter (deviation), the interpersonal entropy, and the correlation between both measures. Evaluation of the technique is presented based on two data sets of different size. The method presented will allow determination of effects of parameterization of the biometric system, estimation of value space boundaries, and comparison with other feature selection approaches.

  8. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang

    2014-12-04

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis quality can be affected adversely if the texture elements in an example display spatially varied patterns, such as perspective distortion, the composition of different sub-textures, and variations in global color pattern as a result of complex illumination. This issue is common in natural textures and is a fundamental challenge for previously developed methods. Thus, we address it from a feature point of view and propose a feature-aware approach to synthesize natural textures. The synthesis process is guided by a feature map that represents the visual characteristics of the input texture. Moreover, we present a novel adaptive initialization algorithm that can effectively avoid the repeat and verbatim copying artifacts. Our approach improves texture synthesis in many images that cannot be handled effectively with traditional technologies.

  9. Handwriting: Feature Correlation Analysis for Biometric Hashes

    Directory of Open Access Journals (Sweden)

    Ralf Steinmetz

    2004-04-01

    Full Text Available In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of handwriting, the biometric hash. Our interest is to investigate to which degree each of the underlying feature parameters contributes to the overall intrapersonal stability and interpersonal value space. We will briefly discuss related work in feature evaluation and introduce a new methodology based on three components: the intrapersonal scatter (deviation, the interpersonal entropy, and the correlation between both measures. Evaluation of the technique is presented based on two data sets of different size. The method presented will allow determination of effects of parameterization of the biometric system, estimation of value space boundaries, and comparison with other feature selection approaches.

  10. Named Entity Linking Algorithm

    Directory of Open Access Journals (Sweden)

    M. F. Panteleev

    2017-01-01

    Full Text Available In the tasks of processing text in natural language, Named Entity Linking (NEL represents the task to define and link some entity, which is found in the text, with some entity in the knowledge base (for example, Dbpedia. Currently, there is a diversity of approaches to solve this problem, but two main classes can be identified: graph-based approaches and machine learning-based ones. Graph and Machine Learning approaches-based algorithm is proposed accordingly to the stated assumptions about the interrelations of named entities in a sentence and in general.In the case of graph-based approaches, it is necessary to solve the problem of identifying an optimal set of the related entities according to some metric that characterizes the distance between these entities in a graph built on some knowledge base. Due to limitations in processing power, to solve this task directly is impossible. Therefore, its modification is proposed. Based on the algorithms of machine learning, an independent solution cannot be built due to small volumes of training datasets relevant to NEL task. However, their use can contribute to improving the quality of the algorithm. The adaptation of the Latent Dirichlet Allocation model is proposed in order to obtain a measure of the compatibility of attributes of various entities encountered in one context.The efficiency of the proposed algorithm was experimentally tested. A test dataset was independently generated. On its basis the performance of the model was compared using the proposed algorithm with the open source product DBpedia Spotlight, which solves the NEL problem.The mockup, based on the proposed algorithm, showed a low speed as compared to DBpedia Spotlight. However, the fact that it has shown higher accuracy, stipulates the prospects for work in this direction.The main directions of development were proposed in order to increase the accuracy of the system and its productivity.

  11. Abdominal cocoon: sonographic features.

    Science.gov (United States)

    Vijayaraghavan, S Boopathy; Palanivelu, Chinnusamy; Sendhilkumar, Karuppusamy; Parthasarathi, Ramakrishnan

    2003-07-01

    An abdominal cocoon is a rare condition in which the small bowel is encased in a membrane. The diagnosis is usually established at surgery. Here we describe the sonographic features of this condition.

  12. Mesoblastic nephroma: Pathological features

    African Journals Online (AJOL)

    N.M. El-Badawy

    determined mainly by its histologic type, we found it worthwhile to elaborate more on the gross and microscopic features of ... behavior of mesoblastic nephroma is determined mainly by its his- .... However, it exhibits a nodular growth pattern at.

  13. Law and Order in Algorithmics

    NARCIS (Netherlands)

    Fokkinga, M.M.

    1992-01-01

    An algorithm is the input-output effect of a computer program; mathematically, the notion of algorithm comes close to the notion of function. Just as arithmetic is the theory and practice of calculating with numbers, so is ALGORITHMICS the theory and practice of calculating with algorithms. Just as

  14. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  15. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  16. Animation of planning algorithms

    OpenAIRE

    Sun, Fan

    2014-01-01

    Planning is the process of creating a sequence of steps/actions that will satisfy a goal of a problem. The partial order planning (POP) algorithm is one of Artificial Intelligence approach for problem planning. By learning G52PAS module, I find that it is difficult for students to understand this planning algorithm by just reading its pseudo code and doing some exercise in writing. Students cannot know how each actual step works clearly and might miss some steps because of their confusion. ...

  17. Secondary Vertex Finder Algorithm

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    If a jet originates from a b-quark, a b-hadron is formed during the fragmentation process. In its dominant decay modes, the b-hadron decays into a c-hadron via the electroweak interaction. Both b- and c-hadrons have lifetimes long enough, to travel a few millimetres before decaying. Thus displaced vertices from b- and subsequent c-hadron decays provide a strong signature for a b-jet. Reconstructing these secondary vertices (SV) and their properties is the aim of this algorithm. The performance of this algorithm is studied with tt̄ events, requiring at least one lepton, simulated at 13 TeV.

  18. Parallel Algorithms and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  19. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  20. Feature Binding in Zebrafish

    Directory of Open Access Journals (Sweden)

    P Neri

    2012-07-01

    Full Text Available Binding operations are primarily ascribed to cortex or similarly complex avian structures. My experiments show that the zebrafish, a lower vertebrate lacking cortex, supports visual feature binding of form and motion for the purpose of social behavior. These results challenge the notion that feature binding may require highly evolved neural structures and demonstrate that the nervous system of lower vertebrates can afford unexpectedly complex computations.

  1. Feature Selection via Chaotic Antlion Optimization.

    Directory of Open Access Journals (Sweden)

    Hossam M Zawbaa

    Full Text Available Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting while minimizing the number of features used.We propose an optimization approach for the feature selection problem that considers a "chaotic" version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.

  2. An Ordering Linear Unification Algorithm

    Institute of Scientific and Technical Information of China (English)

    胡运发

    1989-01-01

    In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.

  3. Minimum Mean-Square Error Estimation of Mel-Frequency Cepstral Features

    DEFF Research Database (Denmark)

    Jensen, Jesper; Tan, Zheng-Hua

    2015-01-01

    In this work we consider the problem of feature enhancement for noise-robust automatic speech recognition (ASR). We propose a method for minimum mean-square error (MMSE) estimation of mel-frequency cepstral features, which is based on a minimum number of well-established, theoretically consistent......-of-the-art MFCC feature enhancement algorithms within this class of algorithms, while theoretically suboptimal or based on theoretically inconsistent assumptions, perform close to optimally in the MMSE sense....

  4. New Optimization Algorithms in Physics

    CERN Document Server

    Hartmann, Alexander K

    2004-01-01

    Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.

  5. A propositional CONEstrip algorithm

    NARCIS (Netherlands)

    E. Quaeghebeur (Erik); A. Laurent; O. Strauss; B. Bouchon-Meunier; R.R. Yager (Ronald)

    2014-01-01

    textabstractWe present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations

  6. Modular Regularization Algorithms

    DEFF Research Database (Denmark)

    Jacobsen, Michael

    2004-01-01

    The class of linear ill-posed problems is introduced along with a range of standard numerical tools and basic concepts from linear algebra, statistics and optimization. Known algorithms for solving linear inverse ill-posed problems are analyzed to determine how they can be decomposed into indepen...

  7. Efficient graph algorithms

    Indian Academy of Sciences (India)

    Shortest path problems. Road network on cities and we want to navigate between cities. . – p.8/30 ..... The rest of the talk... Computing connectivities between all pairs of vertices good algorithm wrt both space and time to compute the exact solution. . – p.15/30 ...

  8. The Copenhagen Triage Algorithm

    DEFF Research Database (Denmark)

    Hasselbalch, Rasmus Bo; Plesner, Louis Lind; Pries-Heje, Mia

    2016-01-01

    is non-inferior to an existing triage model in a prospective randomized trial. METHODS: The Copenhagen Triage Algorithm (CTA) study is a prospective two-center, cluster-randomized, cross-over, non-inferiority trial comparing CTA to the Danish Emergency Process Triage (DEPT). We include patients ≥16 years...

  9. de Casteljau's Algorithm Revisited

    DEFF Research Database (Denmark)

    Gravesen, Jens

    1998-01-01

    It is demonstrated how all the basic properties of Bezier curves can be derived swiftly and efficiently without any reference to the Bernstein polynomials and essentially with only geometric arguments. This is achieved by viewing one step in de Casteljau's algorithm as an operator (the de Casteljau...

  10. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  11. General Algorithm (High level)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...

  12. Enhanced sampling algorithms.

    Science.gov (United States)

    Mitsutake, Ayori; Mori, Yoshiharu; Okamoto, Yuko

    2013-01-01

    In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present various extensions of these three generalized-ensemble algorithms. The effectiveness of the methods is tested with short peptide and protein systems.

  13. Algorithm Theory - SWAT 2006

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...

  14. Optimal Quadratic Programming Algorithms

    CERN Document Server

    Dostal, Zdenek

    2009-01-01

    Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

  15. The fuzzy Hough Transform-feature extraction in medical images

    International Nuclear Information System (INIS)

    Philip, K.P.; Dove, E.L.; Stanford, W.; Chandran, K.B.; McPherson, D.D.; Gotteiner, N.L.

    1994-01-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final estimate of the true borders with other image processing techniques. The authors present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough Transform algorithm as part of a larger procedures to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications

  16. Automatic identification of otological drilling faults: an intelligent recognition algorithm.

    Science.gov (United States)

    Cao, Tianyang; Li, Xisheng; Gao, Zhiqiang; Feng, Guodong; Shen, Peng

    2010-06-01

    This article presents an intelligent recognition algorithm that can recognize milling states of the otological drill by fusing multi-sensor information. An otological drill was modified by the addition of sensors. The algorithm was designed according to features of the milling process and is composed of a characteristic curve, an adaptive filter and a rule base. The characteristic curve can weaken the impact of the unstable normal milling process and reserve the features of drilling faults. The adaptive filter is capable of suppressing interference in the characteristic curve by fusing multi-sensor information. The rule base can identify drilling faults through the filtering result data. The experiments were repeated on fresh porcine scapulas, including normal milling and two drilling faults. The algorithm has high rates of identification. This study shows that the intelligent recognition algorithm can identify drilling faults under interference conditions. (c) 2010 John Wiley & Sons, Ltd.

  17. Face detection and facial feature localization using notch based templates

    International Nuclear Information System (INIS)

    Qayyum, U.

    2007-01-01

    We present a real time detection off aces from the video with facial feature localization as well as the algorithm capable of differentiating between the face/non-face patterns. The need of face detection and facial feature localization arises in various application of computer vision, so a lot of research is dedicated to come up with a real time solution. The algorithm should remain simple to perform real time whereas it should not compromise on the challenges encountered during the detection and localization phase, keeping simplicity and all challenges i.e. algorithm invariant to scale, translation, and (+-45) rotation transformations. The proposed system contains two parts. Visual guidance and face/non-face classification. The visual guidance phase uses the fusion of motion and color cues to classify skin color. Morphological operation with union-structure component labeling algorithm extracts contiguous regions. Scale normalization is applied by nearest neighbor interpolation method to avoid the effect of different scales. Using the aspect ratio of width and height size. Region of Interest (ROI) is obtained and then passed to face/non-face classifier. Notch (Gaussian) based templates/ filters are used to find circular darker regions in ROI. The classified face region is handed over to facial feature localization phase, which uses YCbCr eyes/lips mask for face feature localization. The empirical results show an accuracy of 90% for five different videos with 1000 face/non-face patterns and processing rate of proposed algorithm is 15 frames/sec. (author)

  18. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  19. Python algorithms mastering basic algorithms in the Python language

    CERN Document Server

    Hetland, Magnus Lie

    2014-01-01

    Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data struc

  20. Feature selection and nearest centroid classification for protein mass spectrometry

    Directory of Open Access Journals (Sweden)

    Levner Ilya

    2005-03-01

    Full Text Available Abstract Background The use of mass spectrometry as a proteomics tool is poised to revolutionize early disease diagnosis and biomarker identification. Unfortunately, before standard supervised classification algorithms can be employed, the "curse of dimensionality" needs to be solved. Due to the sheer amount of information contained within the mass spectra, most standard machine learning techniques cannot be directly applied. Instead, feature selection techniques are used to first reduce the dimensionality of the input space and thus enable the subsequent use of classification algorithms. This paper examines feature selection techniques for proteomic mass spectrometry. Results This study examines the performance of the nearest centroid classifier coupled with the following feature selection algorithms. Student-t test, Kolmogorov-Smirnov test, and the P-test are univariate statistics used for filter-based feature ranking. From the wrapper approaches we tested sequential forward selection and a modified version of sequential backward selection. Embedded approaches included shrunken nearest centroid and a novel version of boosting based feature selection we developed. In addition, we tested several dimensionality reduction approaches, namely principal component analysis and principal component analysis coupled with linear discriminant analysis. To fairly assess each algorithm, evaluation was done using stratified cross validation with an internal leave-one-out cross-validation loop for automated feature selection. Comprehensive experiments, conducted on five popular cancer data sets, revealed that the less advocated sequential forward selection and boosted feature selection algorithms produce the most consistent results across all data sets. In contrast, the state-of-the-art performance reported on isolated data sets for several of the studied algorithms, does not hold across all data sets. Conclusion This study tested a number of popular feature

  1. Collaborative Filtering Fusing Label Features Based on SDAE

    DEFF Research Database (Denmark)

    Huo, Huan; Liu, Xiufeng; Zheng, Deyuan

    2017-01-01

    problem, auxiliary information such as labels are utilized. Another approach of recommendation system is content-based model which can’t be directly integrated with CF-based model due to its inherent characteristics. Considering that deep learning algorithms are capable of extracting deep latent features......, this paper applies Stack Denoising Auto Encoder (SDAE) to content-based model and proposes LCF(Deep Learning for Collaborative Filtering) algorithm by combing CF-based model which fuses label features. Experiments on real-world data sets show that DLCF can largely overcome the sparsity problem...... and significantly improves the state of art approaches....

  2. Designing machines for lattice physics and algorithm investigation

    International Nuclear Information System (INIS)

    Fischler, M.; Atac, R.; Cook, A.

    1989-10-01

    Special-purpose computers are appropriate tools for the study of lattice gauge theory. While these machines deliver considerable processing power, it is also important to be able to program complex physics ideas and investigate algorithms on them. We examine features that facilitate coding of physics problems, and flexibility in algorithms. Appropriate balances among power, memory, communications and I/O capabilities are presented. 10 refs

  3. The algorithm of individualization in physical education students

    Directory of Open Access Journals (Sweden)

    Barybina L.N.

    2012-11-01

    Full Text Available The algorithm of individualization of process of physical education is offered in higher educational establishment. Basis of algorithm is made by the physical, functional and psychophysiological features of students. In research took part 413 students (177 girls and 236 youths. The stages of algorithm of the author system of individualization of physical education of students are presented. It is set that youths (a type of sport is basketball and volleyball have a similar structure of indexes of psycho-physiological possibilities, physical preparedness and progress. High meaningfulness of the computer programs which are instrumental in perfection of the system of physical education is set. Also the programs allow quickly and effectively to determine the psycho-physiological features of students. It is recommended to distribute students on sporting specializations in obedience to their individual features.

  4. Personality Features of Motorists

    Directory of Open Access Journals (Sweden)

    Andrej Justinek

    1997-12-01

    Full Text Available Justinek tries to answer the question whether or not motorists have specific personality features which predispose them for safe and well-mannered driving. A good driver should have sensory abilities which enable psycho-motor coordiation of a vehicle, intellectual and cognitive features that are important for solving problems in new, unknown situations, and emotional and motivational trails defining a driver's maturity. Justmek advocates the belief that in training future drivers greater attention should be paid to developing these features which are vital for safe driving and appropriate behaviour of drivers in traffic. He also suggests certain learning methods leading to development of the above­ mentioned personality traits. Justinek introduces the notion of the 'philosophy of driving' as an essential educational category in training future drivers.

  5. Feature displacement interpolation

    DEFF Research Database (Denmark)

    Nielsen, Mads; Andresen, Per Rønsholt

    1998-01-01

    Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....

  6. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  7. PHISICS: New Features and Advancements

    Energy Technology Data Exchange (ETDEWEB)

    C. Rabiti; Y. Wang; G. Palmiotti; H. Hiruta; J. Cogliati; A. Alfonsi; A. EPiney; T. Grimmett

    2011-06-01

    The PHISICS (Parallel and Highly Innovative Simulation for INL Code System) software is under an intensive development at INL. In the last months new features have been added and improvements of the previously existing one performed. The modular approach has created a friendly development environment that allows a quick expansion of the capabilities. In the last months a little amount of work has been dedicated to the improvement of the spherical harmonics based nodal transport solver while the implementation of a solver based on the self adjoint formulation of the discrete ordinate is in the test phase on structured mesh. PHISICS now include a depletion solver with the option to use two different algorithms for the solution of the Bateman equation: the Taylor development of the exponential matrix and the Chebyshev Rational Approximation Method. The coupling with RELAP5 is also available at least in the steady state search mode. The coupling between RELAP5 and PHISICS can also take advantage of the new cross section interpolation module so that the coupling could be performed using an arbitrary number of energy groups.

  8. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  9. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  10. GPU accelerated population annealing algorithm

    Science.gov (United States)

    Barash, Lev Yu.; Weigel, Martin; Borovský, Michal; Janke, Wolfhard; Shchur, Lev N.

    2017-11-01

    Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing. Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for simulations of other spin models, including disordered systems. Our code includes implementations of some advanced algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and a multi-histogram analysis of the data at different temperatures. Program Files doi:http://dx.doi.org/10.17632/sgzt4b7b3m.1 Licensing provisions: Creative Commons Attribution license (CC BY 4.0) Programming language: C, CUDA External routines/libraries: NVIDIA CUDA Toolkit 6.5 or newer Nature of problem: The program calculates the internal energy, specific heat, several magnetization moments, entropy and free energy of the 2D Ising model on square lattices of edge length L with periodic boundary conditions as a function of inverse temperature β. Solution method: The code uses population annealing, a hybrid method combining Markov chain updates with population control. The code is implemented for NVIDIA GPUs using the CUDA language and employs advanced techniques such as multi-spin coding, adaptive temperature

  11. Novel Automatic Filter-Class Feature Selection for Machine Learning Regression

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Hallam, John; Jørgensen, Bo Nørregaard

    2017-01-01

    With the increased focus on application of Big Data in all sectors of society, the performance of machine learning becomes essential. Efficient machine learning depends on efficient feature selection algorithms. Filter feature selection algorithms are model-free and therefore very fast, but require...... model in the feature selection process. PCA is often used in machine learning litterature and can be considered the default feature selection method. RDESF outperformed PCA in both experiments in both prediction error and computational speed. RDESF is a new step into filter-based automatic feature...

  12. An improved ASIFT algorithm for indoor panorama image matching

    Science.gov (United States)

    Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong

    2017-07-01

    The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.

  13. Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life

  14. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  15. A robust firearm identification algorithm of forensic ballistics specimens

    Science.gov (United States)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  16. Improvement and implementation for Canny edge detection algorithm

    Science.gov (United States)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  17. Android Malware Classification Using K-Means Clustering Algorithm

    Science.gov (United States)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  18. Accelerating the XGBoost algorithm using GPU computing

    Directory of Open Access Journals (Sweden)

    Rory Mitchell

    2017-07-01

    Full Text Available We present a CUDA-based implementation of a decision tree construction algorithm within the gradient boosting library XGBoost. The tree construction algorithm is executed entirely on the graphics processing unit (GPU and shows high performance with a variety of datasets and settings, including sparse input matrices. Individual boosting iterations are parallelised, combining two approaches. An interleaved approach is used for shallow trees, switching to a more conventional radix sort-based approach for larger depths. We show speedups of between 3× and 6× using a Titan X compared to a 4 core i7 CPU, and 1.2× using a Titan X compared to 2× Xeon CPUs (24 cores. We show that it is possible to process the Higgs dataset (10 million instances, 28 features entirely within GPU memory. The algorithm is made available as a plug-in within the XGBoost library and fully supports all XGBoost features including classification, regression and ranking tasks.

  19. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    Science.gov (United States)

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  20. Nodal algorithm derived from a new variational principle

    International Nuclear Information System (INIS)

    Watson, Fernando V.

    1995-01-01

    As a by-product of the research being carried on by the author on methods of recovering pin power distribution of PWR cores, a nodal algorithm based on a modified variational principle for the two group diffusion equations has been obtained. The main feature of the new algorithm is the low dimensionality achieved by the reduction of the original diffusion equations to a system of algebraic Eigen equations involving the average sources only, instead of sources and interface group currents used in conventional nodal methods. The advantage of this procedure is discussed and results generated by the new algorithm and by a finite difference code are compared. (author). 2 refs, 7 tabs

  1. An algorithm for link restoration of wavelength routing optical networks

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian

    1999-01-01

    We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii......) prevents the search for unacceptable routing paths by pointing out channels required for restoration, (iii) offers a high utilization of the capacity resources and (iv) allows a trivial search for the restoration paths. The algorithm is for link restoration of networks without wavelength translation. Its...

  2. Application of colony complex algorithm to nuclear component optimization design

    International Nuclear Information System (INIS)

    Yan Changqi; Li Guijing; Wang Jianjun

    2014-01-01

    Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)

  3. Insertion algorithms for network model database management systems

    Science.gov (United States)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  4. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    Science.gov (United States)

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  5. Video Segmentation Using Fast Marching and Region Growing Algorithms

    Directory of Open Access Journals (Sweden)

    Eftychis Sifakis

    2002-04-01

    Full Text Available The algorithm presented in this paper is comprised of three main stages: (1 classification of the image sequence and, in the case of a moving camera, parametric motion estimation, (2 change detection having as reference a fixed frame, an appropriately selected frame or a displaced frame, and (3 object localization using local colour features. The image sequence classification is based on statistical tests on the frame difference. The change detection module uses a two-label fast marching algorithm. Finally, the object localization uses a region growing algorithm based on the colour similarity. Video object segmentation results are shown using the COST 211 data set.

  6. A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising

    Science.gov (United States)

    Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua

    2018-04-01

    In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.

  7. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  8. Treatment Algorithm for Ameloblastoma

    Directory of Open Access Journals (Sweden)

    Madhumati Singh

    2014-01-01

    Full Text Available Ameloblastoma is the second most common benign odontogenic tumour (Shafer et al. 2006 which constitutes 1–3% of all cysts and tumours of jaw, with locally aggressive behaviour, high recurrence rate, and a malignant potential (Chaine et al. 2009. Various treatment algorithms for ameloblastoma have been reported; however, a universally accepted approach remains unsettled and controversial (Chaine et al. 2009. The treatment algorithm to be chosen depends on size (Escande et al. 2009 and Sampson and Pogrel 1999, anatomical location (Feinberg and Steinberg 1996, histologic variant (Philipsen and Reichart 1998, and anatomical involvement (Jackson et al. 1996. In this paper various such treatment modalities which include enucleation and peripheral osteotomy, partial maxillectomy, segmental resection and reconstruction done with fibula graft, and radical resection and reconstruction done with rib graft and their recurrence rate are reviewed with study of five cases.

  9. An Algorithmic Diversity Diet?

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk; Schmidt, Jan-Hinrik

    2016-01-01

    With the growing influence of personalized algorithmic recommender systems on the exposure of media content to users, the relevance of discussing the diversity of recommendations increases, particularly as far as public service media (PSM) is concerned. An imagined implementation of a diversity...... diet system however triggers not only the classic discussion of the reach – distinctiveness balance for PSM, but also shows that ‘diversity’ is understood very differently in algorithmic recommender system communities than it is editorially and politically in the context of PSM. The design...... of a diversity diet system generates questions not just about editorial power, personal freedom and techno-paternalism, but also about the embedded politics of recommender systems as well as the human skills affiliated with PSM editorial work and the nature of PSM content....

  10. DAL Algorithms and Python

    CERN Document Server

    Aydemir, Bahar

    2017-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider (LHC) at CERN is composed of a large number of distributed hardware and software components. TDAQ system consists of about 3000 computers and more than 25000 applications which, in a coordinated manner, provide the data-taking functionality of the overall system. There is a number of online services required to configure, monitor and control the ATLAS data taking. In particular, the configuration service is used to provide configuration of above components. The configuration of the ATLAS data acquisition system is stored in XML-based object database named OKS. DAL (Data Access Library) allowing to access it's information by C++, Java and Python clients in a distributed environment. Some information has quite complicated structure, so it's extraction requires writing special algorithms. Algorithms available on C++ programming language and partially reimplemented on Java programming language. The goal of the projec...

  11. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  12. Engineering features of ISX

    International Nuclear Information System (INIS)

    Lousteau, D.C.; Jernigan, T.C.; Schaffer, M.J.; Hussung, R.O.

    1975-01-01

    ISX, an Impurity Study Experiment, is presently being designed at Oak Ridge National Laboratory as a joint scientific effort between ORNL and General Atomic Company. ISX is a moderate size tokamak dedicated to the study of impurity production, diffusion, and control. The significant engineering features of this device are discussed

  13. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  14. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  15. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  16. KAM Tori Construction Algorithms

    Science.gov (United States)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  17. Irregular Applications: Architectures & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    2012-02-06

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  18. Pose estimation for augmented reality applications using genetic algorithm.

    Science.gov (United States)

    Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen

    2005-12-01

    This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.

  19. Online algorithms for optimal energy distribution in microgrids

    CERN Document Server

    Wang, Yu; Nelms, R Mark

    2015-01-01

    Presenting an optimal energy distribution strategy for microgrids in a smart grid environment, and featuring a detailed analysis of the mathematical techniques of convex optimization and online algorithms, this book provides readers with essential content on how to achieve multi-objective optimization that takes into consideration power subscribers, energy providers and grid smoothing in microgrids. Featuring detailed theoretical proofs and simulation results that demonstrate and evaluate the correctness and effectiveness of the algorithm, this text explains step-by-step how the problem can b

  20. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.