WorldWideScience

Sample records for yeast mediated reduction

  1. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  2. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    Science.gov (United States)

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  3. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jinsheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Wang Min [School of Medicine, Ehime University, Toon 791-0295 (Japan); Yang Zhenyu [Department of Chemistry, Nanchang University, Jiangxi 330047 (China); Wang Zhong [School of Medicine, Ehime University, Toon 791-0295 (Japan); Wang Huaisheng [Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Yang Zhengyu [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-07-30

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay.

  4. The different behaviors of three oxidative mediators in probing the redox activities of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zhao Jinsheng; Wang Min; Yang Zhenyu; Wang Zhong; Wang Huaisheng; Yang Zhengyu

    2007-01-01

    The different behaviors of three lipophilic mediators including 2-methyl-1,4-naphthalenedione(menadione), 2,6-dichlorophenolindophenol (DCPIP) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in probing the redox activity of the yeast Saccharomyces cerevisiae were studied by several comparative factor-influencing experiments. Hydrophilic ferricyanide was employed as an extracellular electron acceptor, and constituted dual mediator system with each of three lipophilic mediators. Limiting-current microelectrode voltammetry was used to measure the quantity of ferrocyanide accumulations, giving a direct measure of the redox activity. It was found that under anaerobic condition, menadione interacts with anaerobic respiration pathway, whereas DCPIP and TMPD interact with fermentation pathway in the yeast. Based on the understanding of the interaction between the yeast and each of three mediators, three mediators were respectively employed in evaluating the toxicity of acetic acid on S. cerevisiae and, the results for the first showed that the mediators are complementary to each other when used as electron carriers in biotoxicity assay

  5. Analysis of Schizosaccharomyces pombe mediator reveals a set of essential subunits conserved between yeast and metazoan cells

    DEFF Research Database (Denmark)

    Spåhr, H; Samuelsen, C O; Baraznenok, V

    2001-01-01

    . cerevisiae share an essential protein module, which associates with nonessential speciesspecific subunits. In support of this view, sequence analysis of the conserved yeast Mediator components Med4 and Med8 reveals sequence homology to the metazoan Mediator components Trap36 and Arc32. Therefore, 8 of 10...... essential genes conserved between S. pombe and S. cerevisiae also have a metazoan homolog, indicating that an evolutionary conserved Mediator core is present in all eukaryotic cells. Our data suggest a closer functional relationship between yeast and metazoan Mediator than previously anticipated....

  6. Molecular architecture of the yeast Mediator complex

    Science.gov (United States)

    Robinson, Philip J; Trnka, Michael J; Pellarin, Riccardo; Greenberg, Charles H; Bushnell, David A; Davis, Ralph; Burlingame, Alma L; Sali, Andrej; Kornberg, Roger D

    2015-01-01

    The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20–40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex. DOI: http://dx.doi.org/10.7554/eLife.08719.001 PMID:26402457

  7. Toxicity of Aromatic Ketone to Yeast Cell and Improvement of the Asymmetric Reduction of Aromatic Ketone Catalyzed by Yeast Cell with the Introduction of Resin Adsorption

    Directory of Open Access Journals (Sweden)

    Zhong-Hua Yang

    2008-01-01

    Full Text Available Asymmetric reduction of the prochiral aromatic ketone catalyzed by yeast cells is one of the most promising routes to produce its corresponding enantiopure aromatic alcohol, but the space-time yield does not meet people’s expectations. Therefore, the toxicity of aromatic ketone and aromatic alcohol to the yeast cell is investigated in this work. It has been found that the aromatic compounds are poisonous to the yeast cell. The activity of yeast cell decreases steeply when the concentration of acetophenone (ACP is higher than 30.0 mmol/L. Asymmetric reduction of acetophenone to chiral S-α-phenylethyl alcohol (PEA catalyzed by the yeast cell was chosen as the model reaction to study in detail the promotion effect of the introduction of the resin adsorption on the asymmetric reduction reaction. The resin acts as the substrate reservoir and product extraction agent in situ. It has been shown that this reaction could be remarkably improved with this technique when the appropriate kind of resin is applied. The enantioselectivity and yield are acceptable even though the initial ACP concentration reaches 72.2 mmol/L.

  8. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    Directory of Open Access Journals (Sweden)

    Sishuo Cao

    Full Text Available Grapefruit seed extract (GSE, which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL and 4,6'-diaminidino-2-phenylindole (DAPI staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential and ROS (reactive oxygen species indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA. The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS. We found that the changes of the metabolites and the protein changes had relevant consistency.

  9. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast.

    Science.gov (United States)

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) indicated that the mitochondria took part in the apoptotic process. Changes in this process detected by metabonomics and proteomics revealed that the yeast cells tenaciously resisted adversity. Proteins related to redox, cellular structure, membrane, energy and DNA repair were significantly increased. In this study, the relative changes in the levels of proteins and metabolites showed the tenacious resistance of yeast cells. However, GSE induced apoptosis in the yeast cells by destruction of the mitochondrial 60 S ribosomal protein, L14-A, and prevented the conversion of pantothenic acid to coenzyme A (CoA). The relationship between the proteins and metabolites was analyzed by orthogonal projections to latent structures (OPLS). We found that the changes of the metabolites and the protein changes had relevant consistency.

  10. Transparent mediation-based access to multiple yeast data sources using an ontology driven interface.

    Science.gov (United States)

    Briache, Abdelaali; Marrakchi, Kamar; Kerzazi, Amine; Navas-Delgado, Ismael; Rossi Hassani, Badr D; Lairini, Khalid; Aldana-Montes, José F

    2012-01-25

    Saccharomyces cerevisiae is recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Information solicited by scientists on its biological entities (Proteins, Genes, RNAs...) is scattered within several data sources like SGD, Yeastract, CYGD-MIPS, BioGrid, PhosphoGrid, etc. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned results is a complex and time-consuming task for biologists most of whom are not bioinformatics expert. It also reduces and limits the use that can be made on the available data. To provide transparent and simultaneous access to yeast sources, we have developed YeastMed: an XML and mediator-based system. In this paper, we present our approach in developing this system which takes advantage of SB-KOM to perform the query transformation needed and a set of Data Services to reach the integrated data sources. The system is composed of a set of modules that depend heavily on XML and Semantic Web technologies. User queries are expressed in terms of a domain ontology through a simple form-based web interface. YeastMed is the first mediation-based system specific for integrating yeast data sources. It was conceived mainly to help biologists to find simultaneously relevant data from multiple data sources. It has a biologist-friendly interface easy to use. The system is available at http://www.khaos.uma.es/yeastmed/.

  11. A Mitochondria-Dependent Pathway Mediates the Apoptosis of GSE-Induced Yeast

    OpenAIRE

    Cao, Sishuo; Xu, Wentao; Zhang, Nan; Wang, Yan; Luo, YunBo; He, Xiaoyun; Huang, Kunlun

    2012-01-01

    Grapefruit seed extract (GSE), which has powerful anti-fungal activity, can induce apoptosis in S. cerevisiae. The yeast cells underwent apoptosis as determined by testing for apoptotic markers of DNA cleavage and typical chromatin condensation by Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling (TUNEL) and 4,6'-diaminidino-2-phenylindole (DAPI) staining and electron microscopy. The changes of ΔΨmt (mitochondrial transmembrane potential) and ROS (reactive oxygen species) ...

  12. Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast.

    Science.gov (United States)

    Paul, Emily; Zhu, Z Iris; Landsman, David; Morse, Randall H

    2015-01-01

    Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that in Saccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised in med17 temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complex in vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Use of one- and two-mediator systems for developing a BOD biosensor based on the yeast Debaryomyces hansenii.

    Science.gov (United States)

    Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N

    2017-03-01

    We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  15. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  16. Dimensional reduction in anomaly mediation

    International Nuclear Information System (INIS)

    Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-01-01

    We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ε arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ε dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity

  17. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Ralf J., E-mail: ralf.braun@uni-bayreuth.de [Institut für Zellbiologie, Universität Bayreuth, Bayreuth (Germany)

    2012-11-28

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  19. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    International Nuclear Information System (INIS)

    Braun, Ralf J.

    2012-01-01

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  20. ADA1 and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho- mutagenesis

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Gerasimova, A.S.; Chekhuta, I.A.; Devin, A.B.

    2002-01-01

    An increase in the mitochondrial (mt) rho - mutagenesis is a well-known response of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho - mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho - mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well on cell sensitivity to ionizing radiation are also described. (author)

  1. Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast ( Saccharomyces cerevisiae )-mediated degradation.

    Science.gov (United States)

    Verspreet, Joran; Hemdane, Sami; Dornez, Emmie; Cuyvers, Sven; Delcour, Jan A; Courtin, Christophe M

    2013-02-13

    The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.

  2. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  3. Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer

    NARCIS (Netherlands)

    Iersel, van M.F.M.; Brouwer-Post, E.; Rombouts, F.M.; Abee, T.

    2000-01-01

    Production of alcohol-free beer by limited fermentation is optimally performed in a packed-bed reactor. This highly controllable system combines short contact times between yeast and wort with the reduction of off-flavors to concentrations below threshold values. In the present study, the influence

  4. Quantitative Estimation of Yeast on Maxillary Denture in Patients with Denture Stomatitis and the Effect of Chlorhexidine Gluconate in Reduction of Yeast

    Directory of Open Access Journals (Sweden)

    Jaykumar R Gade

    2011-01-01

    Full Text Available Denture stomatitis is a condition associated with wearing of a denture. The predisposing factor leading to denture stomatitis could be poor oral hygiene, ill-fitting denture and relief areas. Around 30 patients with denture stomatitis were advised to rinse with chlorhexidine gluconate mouthwash for 14 days and were directed to immerse the upper denture in the chlorhexidine solution for 8 hours. The samples were collected by scraping maxillary denture in saline at three intervals, prior to, at the end of 24 hours and after 14 days of treatment, then were inoculated and quantitative estimation of the yeast growth on Sabouraud′s dextrose agar plate was done. It was observed that after a period of 14 days, there was a reduction in the growth of yeast and also improvement in the clinical picture of the oral mucosa

  5. Evidence for Multiple Mediator Complexes in Yeast Independently Recruited by Activated Heat Shock Factor.

    Science.gov (United States)

    Anandhakumar, Jayamani; Moustafa, Yara W; Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S

    2016-07-15

    Mediator is an evolutionarily conserved coactivator complex essential for RNA polymerase II transcription. Although it has been generally assumed that in Saccharomyces cerevisiae, Mediator is a stable trimodular complex, its structural state in vivo remains unclear. Using the "anchor away" (AA) technique to conditionally deplete select subunits within Mediator and its reversibly associated Cdk8 kinase module (CKM), we provide evidence that Mediator's tail module is highly dynamic and that a subcomplex consisting of Med2, Med3, and Med15 can be independently recruited to the regulatory regions of heat shock factor 1 (Hsf1)-activated genes. Fluorescence microscopy of a scaffold subunit (Med14)-anchored strain confirmed parallel cytoplasmic sequestration of core subunits located outside the tail triad. In addition, and contrary to current models, we provide evidence that Hsf1 can recruit the CKM independently of core Mediator and that core Mediator has a role in regulating postinitiation events. Collectively, our results suggest that yeast Mediator is not monolithic but potentially has a dynamic complexity heretofore unappreciated. Multiple species, including CKM-Mediator, the 21-subunit core complex, the Med2-Med3-Med15 tail triad, and the four-subunit CKM, can be independently recruited by activated Hsf1 to its target genes in AA strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  7. Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant.

    Science.gov (United States)

    Ando, Akira; Nakamura, Toshihide

    2016-10-01

    γ-Aminobutyric acid (GABA) is consumed by yeasts during fermentation. To prevent GABA reduction in bread dough, a baker's yeast mutant AY77 deficient in GABA assimilation was characterized and utilized for wheat dough fermentation. An amber mutation in the DAL81 gene, which codes for a positive regulator of multiple nitrogen degradation pathways, was found in the AY77 strain. The qPCR analyses of genes involved in nitrogen utilization showed that transcriptional levels of the UGA1 and DUR3 genes encoding GABA transaminase and urea transporter, respectively, are severely decreased in the AY77 cells. The AY77 strain cultivated by fed-batch culture using cane molasses exhibited inferior gas production during dough fermentation compared to that of wild-type strain AY13. However, when fed with molasses containing 0.5% ammonium sulfate, the mutant strain exhibited gas production comparable to that of the AY13 strain. In contrast to the AY13 strain, which completely consumed GABA in dough within 5 h, the AY77 strain consumed no GABA under either culture condition. Dough fermentation with the dal81 mutant strain should be useful for suppression of GABA reduction in breads. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    Science.gov (United States)

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces

  9. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Deng, Shuang; Culley, David E.; Bruno, Kenneth S.; Magnuson, Jon K.

    2017-06-19

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance or auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  10. Reduções enantiosseletivas de cetonas utilizando-se fermento de pão Enantioselective reductions of ketones using baker's yeast

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2001-12-01

    Full Text Available Baker's yeast has been successful employed to reduce carbonyl compounds carrying appropriated substituents at distances under the electronic influence of the keto group. High yields and enantiomeric excess (ee were obtained with 1,2-alkanedione, 1,2-alkanedione (2-O-methyloxime and 1,3-alkanedione. Potential chiral building blocks were obtained and applied for stereoselective synthesis of valuable compounds. Evidence for a free radical chain process was obtained with baker's yeast reduction of a-iodoacetophenone using radical inhibitors.

  11. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    Science.gov (United States)

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  12. Sequential fermentation using non-Saccharomyces yeasts for the reduction of alcohol content in wine

    Directory of Open Access Journals (Sweden)

    Ciani Maurizio

    2014-01-01

    Full Text Available Over the last few decades there has been a progressive increase in wine ethanol content due to global climate change and modified wine styles that involved viticulture and oenology practices. Among the different approaches and strategies to reduce alcohol content in wine we propose a sequential fermentation using immobilized non-Saccharomyces wine yeasts. Preliminary results showed that sequential fermentations with Hanseniaspora osmophila, Hanseniaspora uvarum, Metschnikowia pulcherrima, Starmerella bombicola and Saccharomyces cerevisiae strains showed an ethanol reduction when compared with pure S. cerevisiae fermentation trials.

  13. Extracellular Electron Transfer Mediated by Flavins in Gram-positive Bacillus sp. WS-XY1 and Yeast Pichia stipitis

    International Nuclear Information System (INIS)

    Wu, Song; Xiao, Yong; Wang, Lu; Zheng, Yue; Chang, Kenlin; Zheng, Zhiyong; Yang, Zhaohui; Varcoe, John R.; Zhao, Feng

    2014-01-01

    Extracellular electron transfer (EET) of microorganisms represents a communicative bridge between the interior and exterior of the cells. Most prior EET studies have focused on Gram-negative bacteria. However, fungi and Gram-positive bacteria, that contain dense cellular walls, have rarely been reported. Herein, two model dense cell wall microorganisms (Bacillus sp. WS-XY1 and the yeast Pichia stipitis) were identified to be electrochemically active. Further analysis indicated that the two microorganisms were able to secrete flavins to mediate their EET. The discovery, that dense cell wall containing microorganisms can undertake mediated EET, adds to the body of knowledge towards building a comprehensive understanding of biogeochemical and bioelectrical processes

  14. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    Science.gov (United States)

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-11-01

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  15. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Science.gov (United States)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  16. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  17. History of genome editing in yeast.

    Science.gov (United States)

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  18. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  19. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  20. Chemical signaling and insect attraction is a conserved trait in yeasts.

    Science.gov (United States)

    Becher, Paul G; Hagman, Arne; Verschut, Vasiliki; Chakraborty, Amrita; Rozpędowska, Elżbieta; Lebreton, Sébastien; Bengtsson, Marie; Flick, Gerhard; Witzgall, Peter; Piškur, Jure

    2018-03-01

    Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae , the insect-associated species Candida californica , Pichia kluyveri and Metschnikowia andauensis , wine yeast Dekkera bruxellensis , milk yeast Kluyveromyces lactis , the vertebrate pathogens Candida albicans and Candida glabrata , and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila , we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts

  1. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification

    Directory of Open Access Journals (Sweden)

    Lin Shuangjun

    2011-06-01

    Full Text Available Abstract Background L-arabinose is an important intermediate for anti-virus drug synthesis and has also been used in food additives for diets-controlling in recent years. Commercial production of L-arabinose is a complex progress consisting of acid hydrolysis of gum arabic, followed by multiple procedures of purification, thus making high production cost. Therefore, there is a biotechnological and commercial interest in the development of new cost-effective and high-performance methods for obtaining high purity grade L-arabinose. Results An alternative, economical method for purifying L-arabinose from xylose mother liquor was developed in this study. After screening 306 yeast strains, a strain of Pichia anomala Y161 was selected as it could effectively metabolize other sugars but not L-arabinose. Fermentation in a medium containing xylose mother liquor permitted enrichment of L-arabinose by a significant depletion of other sugars. Biochemical analysis of this yeast strain confirmed that its poor capacity for utilizing L-arabinose was due to low activities of the enzymes required for the metabolism of this sugar. Response surface methodology was employed for optimization the fermentation conditions in shake flask cultures. The optimum conditions were: 75 h fermentation time, at 32.5°C, in a medium containing 21% (v/v xylose mother liquor. Under these conditions, the highest purity of L-arabinose reached was 86.1% of total sugar, facilitating recovery of white crystalline L-arabinose from the fermentation medium by simple methods. Conclusion Yeast-mediated biopurification provides a dynamic method to prepare high purity of L-arabinose from the feedstock solution xylose mother liqour, with cost-effective and high-performance properties.

  2. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  3. Bakers yeast-mediated transformations of alpha-keto epoxides

    CSIR Research Space (South Africa)

    Meth-Cohn, O

    1994-06-07

    Full Text Available Alpha beta-Epoxy ketones on treatment with baker's yeast yield different types of products depending on their substitution. Small groups such as H or Me attached at the epoxy end protect that end from attack. Thus, 1-acyl epoxides with H, methyl...

  4. The complexity and implications of yeast prion domains

    Science.gov (United States)

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  5. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.

    Science.gov (United States)

    Nasiri Esfahani, Behnaz; Kadivar, Mahdi; Shahedi, Mohammad; Soleimanian-Zad, Sabihe

    2017-11-01

    This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p bread (r = 0.925, p breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.

  6. Deoxynucleoside salvage in fission yeast allows rescue of ribonucleotide reductase deficiency but not Spd1-mediated inhibition of replication

    DEFF Research Database (Denmark)

    Fleck, Oliver; Fahnøe, Ulrik; Løvschal, Katrine Vyff

    2017-01-01

    In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1) blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4(Cdt2) E3 ubiquitin...... ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4(Cdt2), by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide...... triphosphate (dNTP) pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside...

  7. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon. In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  8. Mediation of an efficacious HIV risk reduction intervention for South African men.

    Science.gov (United States)

    O'Leary, Ann; Jemmott, John B; Jemmott, Loretta S; Bellamy, Scarlett; Icard, Larry D; Ngwane, Zolani

    2015-10-01

    "Men, Together Making a Difference!" is an HIV/STD risk-reduction intervention that significantly increased self-reported consistent condom use during vaginal intercourse compared with a health-promotion attention-control intervention among men (N = 1181) in Eastern Cape Province, South Africa. The present analyses were designed to identify mediators of the intervention's efficacy. The potential mediators were Social Cognitive Theory (SCT) constructs that the intervention targeted, including several aspects of condom-use self-efficacy, outcome expectancies, and knowledge. Mediation was assessed using a product-of-coefficients approach where an α path (the intervention's effect on the potential mediator) and a β path (the potential mediator's effect on the outcome of interest, adjusting for intervention) were estimated independently in a generalized estimating equations framework. Condom-use negotiation self-efficacy, technical-skill self-efficacy, and impulse-control self-efficacy were significant mediators. Although not mediators, descriptive norm and expected friends' approval of condom use predicted subsequent self-reported condom use, whereas the expected approval of sexual partner did not. The present results suggest that HIV/STD risk-reduction interventions that draw upon SCT and that address self-efficacy to negotiate condom use, to apply condoms correctly, and to exercise sufficient control when sexually aroused to use condoms may contribute to efforts to reduce sexual risk behavior among South African men. Future research must examine whether approaches that build normative support for condom use among men's friends are also efficacious.

  9. Determination of Proteinaceous Selenocysteine in Selenized Yeast

    Directory of Open Access Journals (Sweden)

    Katarzyna Bierla

    2018-02-01

    Full Text Available A method for the quantitation of proteinaceous selenocysteine (SeCys in Se-rich yeast was developed. The method is based on the reduction of the Se-Se and S-Se bridges with dithiotretiol, derivatization with iodoacetamide (carbamidomethylation, followed by HPLC-ICP MS. The chromatographic conditions were optimized for the total recovery of the proteinaceous selenocysteine, the minimum number of peaks in the chromatogram (reduction of derivatization products of other Se-species present and the baseline separation. A typical chromatogram of a proteolytic digest of selenized yeast protein consisted of up to five peaks (including SeMet, carbamidomethylated (CAM-SeCys, and Se(CAM2 identified by retention time matching with available standards and electrospray MS. Inorganic selenium non-specifically attached to proteins and selenomethionine could be quantified (in the form of Se(CAM2 along with SeCys. Selenocysteine, selenomethionine, inorganic selenium, and the water soluble-metabolite fraction accounted for the totality of selenium species in Se-rich yeast.

  10. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated

  11. Actin and Endocytosis in Budding Yeast

    Science.gov (United States)

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  12. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    Science.gov (United States)

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  13. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  14. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...... and/or antimicrobial peptides on the early death of Lachancea thermotolerans during mixed culture fermentations with Saccharomyces cerevisiae. Using a specially designed double compartment fermentation system, we established that both cell-to-cell contact and antimicrobial peptides contribute...

  15. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  16. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  17. Interactive uncertainty reduction strategies and verbal affection in computer-mediated communication

    NARCIS (Netherlands)

    Antheunis, M.L.; Schouten, A.P.; Valkenburg, P.M.; Peter, J.

    2012-01-01

    The goal of this study was to investigate the language-based strategies that computer-mediated communication (CMC) users employ to reduce uncertainty in the absence of nonverbal cues. Specifically, this study investigated the prevalence of three interactive uncertainty reduction strategies (i.e.,

  18. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry

    International Nuclear Information System (INIS)

    Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz

    2005-01-01

    The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP

  19. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

    Science.gov (United States)

    Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H

    2014-05-23

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  1. Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth

    OpenAIRE

    SANCHO FORNER, MARTA; Alicia Gutiérrez; BELTRAN CASELLAS, GEMMA; José Manuel Guillamon; Jonas Warringer

    2016-01-01

    Wine yeast capacity to take up nitrogen from the environment and catabolize it to support population growth, fermentation, and aroma production is critical to wine production. Under nitrogen restriction, yeast nitrogen uptake is believed to be intimately coupled to reproduction with nitrogen catabolite repression (NCR) suggested mediating this link. We provide a time- and strain-resolved view of nitrogen uptake, population growth, and NCR activity in wine yeasts. Nitrogen uptake was found to ...

  2. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  3. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  4. Different characteristics between menadione and menadione sodium bisulfite as redox mediator in yeast cell suspension

    OpenAIRE

    Yamashoji, Shiro

    2016-01-01

    Menadione promoted the production of active oxygen species (AOS) in both yeast cell suspension and the crude enzymes from the cells, but menadione sodium bisulfite (MSB) had little effect on the production of AOS in the cell suspension. MSB kept the stable increase in the electron transfer from intact yeast cells to anode compared to menadione, but the electron transfer promoted by MSB was inhibited in permeabilized yeast cell suspension. Menadione promoted oxidation of NAD(P)H much faster th...

  5. Stable current outputs and phytate degradation by yeast-based biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-09-01

    In this paper, we report for the first time that Candida melibiosica 2491 yeast strain expresses enhanced phytase activity when used as a biocatalyst in biofuel cells. The polarization also results in an increase of the yeast biomass. Higher steady-state electrical outputs, assigned to earlier production of an endogenous mediator, were achieved at continuous polarization under constant load. The obtained results prove that the C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation. In addition, the higher phytase activity obtained by interruptive polarization suggests a new method for increasing the phytase yield from microorganisms. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Emerging functions of multi-protein complex Mediator with special emphasis on plants.

    Science.gov (United States)

    Malik, Naveen; Agarwal, Pinky; Tyagi, Akhilesh

    2017-10-01

    Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.

  7. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...

  8. Heat-treated mineral-yeast as a potent post-irradiation radioprotector

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Megumi; Nyui, Minako; Ikota, Nobuo; Kagiya, Tsutomu V.

    2008-01-01

    In vivo radioprotection of C3H mice by i.p. administration of Zn-, Mn-, Cu-, or Se-containing heat-treated Saccharomyces serevisiae yeast sample was examined. The 30-day survival of the group treated 30 min before 7.5 Gy whole-body X-irradiation with mineral-containing yeast powders suspended in 0.5% methylcellulose was significantly higher than that of control group. When mineral-yeast was administered immediately after irradiation, the survival rate was even higher and Zn- or Cu-yeast showed the highest rate (more than 90%). Although treatment with simple yeast showed a high survival rate (73%), it was significantly lower than that obtained by the Zn-yeast treatment. The effects of Zn-yeast were studied further. When the interval between irradiation and administration was varied, the protective activity of Zn-yeast decreased gradually by increasing the interval but was still significantly high for the administration at 10 h post-irradiation. The dose reduction factor of Zn-yeast (100 mg/kg, i.p. administration immediately after irradiation) was about 1.2. When the suspension of Zn-yeast was fractionated by centrifugation, the insoluble fraction showed a potent effect, while the soluble fraction had only a moderate effect. In conclusion, mineral-yeast, especially Zn-yeast, provides remarkable post-irradiation protection against lethal whole body X-irradiation. The activity is mainly attributable to the insoluble fraction, whereas some soluble components might contribute to the additional protective activity. (author)

  9. Isonicotinamide Enhances Sir2 Protein-mediated Silencing and Longevity in Yeast by Raising Intracellular NAD+ Concentration*

    Science.gov (United States)

    McClure, Julie M.; Wierman, Margaret B.; Maqani, Nazif; Smith, Jeffrey S.

    2012-01-01

    Sirtuins are an evolutionarily conserved family of NAD+-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD+ concentration through the combined action of NAD+ biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD+ precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD+ salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD+ concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD+. The INAM-induced increase in NAD+ was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD+ salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD+. We also provide evidence suggesting that INAM influences the expression of multiple NAD+ biosynthesis and salvage pathways to promote homeostasis during stationary phase. PMID:22539348

  10. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.

    Science.gov (United States)

    McClure, Julie M; Wierman, Margaret B; Maqani, Nazif; Smith, Jeffrey S

    2012-06-15

    Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.

  11. Sporangiospore-yeast transformation of Mucor circinelloides : Ionic ...

    African Journals Online (AJOL)

    Measurement of intracellular ion concentration during sporangiospores-yeast transformation of Mucor circinelloides Tieghem in K+- mediated (0.90 to 1.10 g/l) and Na+-modulated (0.05 to 0.20 g/l) multiionic broths, pH 4.5, temperature 20°C, showed that (a), transmembrane ion flux was continuous during the growth period ...

  12. Moderation and Mediation of an Efficacious Sexual Risk-Reduction Intervention for South African Adolescents

    Science.gov (United States)

    O’Leary, Ann; Jemmott, John B.; Jemmott, Loretta Sweet; Bellamy, Scarlett; Ngwane, Zolani; Icard, Larry

    2015-01-01

    Background “Let Us Protect Our Future” is a sexual risk-reduction intervention for sixth-grade adolescents in South Africa. Tested in a cluster-randomized controlled trial, the intervention significantly reduced self-reported intercourse and unprotected intercourse during a 12-month follow-up period. Purpose The present analyses were conducted to identify moderators of the intervention’s efficacy as well as which theory-based variables mediated the intervention’s effects. Methods: Intervention efficacy over the 3-, 6-, and 12-month follow-ups was tested using generalized estimating equation (GEE) models. Results Living with their father in the home, parental strictness, and religiosity moderated the efficacy of the intervention in reducing unprotected intercourse. Self-efficacy to avoid risky situations and expected parental disapproval of their having intercourse, derived from Social Cognitive Theory, significantly mediated the intervention’s effect on abstinence. Conclusions This is the first study to demonstrate that Social Cognitive variables mediate the efficacy of a sexual risk-reduction intervention among South African adolescents. PMID:22618963

  13. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K+ uptake and Na+ transport in yeast

    International Nuclear Information System (INIS)

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo; Liu, Shenkui

    2011-01-01

    Highlights: → The AtCCX5 protein coding a putative cation calcium exchanger was characterized. → AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. → AtCCX5 protein did not show the same transport properties as the CAXs. → AtCCX5 protein involves in mediating high-affinity K + uptake in yeast. → AtCCX5 protein also involves in Na + transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K + , Na + , Ca 2+ , Mg 2+ , Fe 2+ , Cu 2+ , Co 2+ , Cd 2+ , Mn 2+ , Ba 2+ , Ni 2+ , Zn 2+ , and Li + ) were analyzed. AtCCX5 expression was found to affect the response to K + and Na + in yeast. The AtCCX5 transformant also showed a little better growth to Zn 2+ . The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K + (0.5 mM), and also suppressed its Na + sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K + uptake and was also involved in Na + transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K + uptake and Na + transport in yeast.

  14. Cyclic-AMP mediated drugs: differential or global reduction of eicosanoid synthesis in the isolated rat lung?

    Directory of Open Access Journals (Sweden)

    Mark J. Post

    1992-01-01

    Full Text Available In this study the question was addressed whether cAMP mediated drugs induce a differential reduction of branches of the arachidonic acid metabolism rather than a global reduction of eicosanoid synthesis. The isolated lungs of actively sensitized rats were employed to study prostaglandin and leukotriene release in the presence and absence of the cAMP mediated drugs theophylline, milrinone, sulmazole, isobutyl-methylxanthine and salbutamol. The release of eicosanoids as measured by RIA was predominantly basal and continuous, with a mild antigen induced stimulation only for TXB2 and the leukotrienes. All drugs reduced eicosanoid release globally. It is concluded that cAMP mediated drugs interfere with arachidonic acid metabolism at a site proximal to the branching into lipoxygenase and cyclo-oxygenase pathways.

  15. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.

    Science.gov (United States)

    Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele

    2017-07-03

    The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.

  16. Climate change and WTO : boundary mediation on certified emission reductions

    International Nuclear Information System (INIS)

    Kim, Ho Cheol

    2011-07-01

    This book mentions climate change and WTO with is climate change true? International effort for reduce of greenhouse gas with UNFCCC, Kyoto protocol, Copenhagen Accord and Cancun Agreement, WTO norm, discussion on introduction of boundary mediation on certified emission reductions, analysis on regulation related WTO norm, violation of regulation on border measure of prohibition, violation of principle on GATT, justification, except through Article 20 of GATT, assessment of policy and supplementation on the law.

  17. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.

    Science.gov (United States)

    Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D

    2013-12-01

    During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

  18. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  19. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Cyclin C influences the timing of mitosis in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Szilagyi, Zsolt; Baraznenok, Vera; Khorosjutina, Olga; Gustafsson, Claes M

    2017-07-01

    The multiprotein Mediator complex is required for the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator contains the Cdk8 regulatory subcomplex, which directs periodic transcription and influences cell cycle progression in fission yeast. Here we investigate the role of CycC, the cognate cyclin partner of Cdk8, in cell cycle control. Previous reports suggested that CycC interacts with other cellular Cdks, but a fusion of CycC to Cdk8 reported here did not cause any obvious cell cycle phenotypes. We find that Cdk8 and CycC interactions are stabilized within the Mediator complex and the activity of Cdk8-CycC is regulated by other Mediator components. Analysis of a mutant yeast strain reveals that CycC, together with Cdk8, primarily affects M-phase progression but mutations that release Cdk8 from CycC control also affect timing of entry into S phase. © 2017 Banyai et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Effect of extracellular calcium chloride on sporangiospore-yeast ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Dimorphism is the conversion of a microorganism from one growth habit to .... formation in media designated for yeast production, while it led to a reduction of ..... on morphological development and biopolymer synthesis in the.

  2. Mediation Analysis of the Efficacy of the Eban HIV/STD Risk-Reduction Intervention for African American HIV Serodiscordant Couples.

    Science.gov (United States)

    El-Bassel, Nabila; Jemmott, John B; Bellamy, Scarlett L; Pequegnat, Willo; Wingood, Gina M; Wyatt, Gail E; Landis, J Richard; Remien, Robert H

    2016-06-01

    Targeting couples is a promising behavioral HIV risk-reduction strategy, but the mechanisms underlying the effects of such interventions are unknown. We report secondary analyses testing whether Social-Cognitive-Theory variables mediated the Eban HIV-risk-reduction intervention's effects on condom-use outcomes. In a multisite randomized controlled trial conducted in four US cities, 535 African American HIV-serodiscordant couples were randomized to the Eban HIV risk-reduction intervention or attention-matched control intervention. Outcomes were proportion condom-protected sex, consistent condom use, and frequency of unprotected sex measured pre-, immediately post-, and 6 and 12 months post-intervention. Potential mediators included Social-Cognitive-Theory variables: outcome expectancies and self-efficacy. Mediation analyses using the product-of-coefficients approach in a generalized-estimating-equations framework revealed that condom-use outcome expectancy, partner-reaction outcome expectancy, intention, self-efficacy, and safer-sex communication improved post-intervention and mediated intervention-induced improvements in condom-use outcomes. These findings underscore the importance of targeting outcome expectancies, self-efficacy, and safer-sex communication in couples-level HIV risk-reduction interventions.

  3. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast

    Science.gov (United States)

    Yadav, Akhilesh K.; Shankar, Alka; Jha, Saroj K.; Kanwar, Poonam; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil. PMID:26607171

  4. A high-throughput method for quantifying metabolically active yeast cells

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved....... The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.......g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts....

  5. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  6. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine

    Science.gov (United States)

    Contreras, A.; Hidalgo, C.; Henschke, P. A.; Chambers, P. J.; Curtin, C.

    2014-01-01

    Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in

  7. Menadione-mediated WST1 reduction assay for the determination of metabolic activity of cultured neural cells.

    Science.gov (United States)

    Stapelfeldt, Karsten; Ehrke, Eric; Steinmeier, Johann; Rastedt, Wiebke; Dringen, Ralf

    2017-12-01

    Cellular reduction of tetrazolium salts to their respective formazans is frequently used to determine the metabolic activity of cultured cells as an indicator of cell viability. For membrane-impermeable tetrazolium salts such as WST1 the application of a membrane-permeable electron cycler is usually required to mediate the transfer of intracellular electrons for extracellular WST1 reduction. Here we demonstrate that in addition to the commonly used electron cycler M-PMS, menadione can also serve as an efficient electron cycler for extracellular WST1 reduction in cultured neural cells. The increase in formazan absorbance in glial cell cultures for the WST1 reduction by menadione involves enzymatic menadione reduction and was twice that recorded for the cytosolic enzyme-independent WST1 reduction in the presence of M-PMS. The optimized WST1 reduction assay allowed within 30 min of incubation a highly reliable detection of compromised cell metabolism caused by 3-bromopyruvate and impaired membrane integrity caused by Triton X-100, with a sensitivity as good as that of spectrophotometric assays which determine cellular MTT reduction or lactate dehydrogenase release. The short incubation period of 30 min and the observed good sensitivity make this optimized menadione-mediated WST1 reduction assay a quick and reliable alternative to other viability and toxicity assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. VDAC electronics: 4. Novel electrical mechanism and thermodynamic estimations of glucose repression of yeast respiration.

    Science.gov (United States)

    Lemeshko, Victor V

    2017-11-01

    Inhibition of cell respiration by high concentrations of glucose (glucose repression), known as "Crabtree effect", has been demonstrated for various cancerous strains, highly proliferating cells and yeast lines. Although significant progress in understanding metabolic events associated with the glucose repression of cell respiration has been achieved, it is not yet clear whether the Crabtree effect is the result of a limited activity of the respiratory chain, or of some glucose-mediated regulation of mitochondrial metabolic state. In this work we propose an electrical mechanism of glucose repression of the yeast S. cerevisiae, resulting from generation of the mitochondrial outer membrane potential (OMP) coupled to the direct oxidation of cytosolic NADH in mitochondria. This yeast-type mechanism of OMP generation is different from the earlier proposed VDAC-hexokinase-mediated voltage generation of cancer-type, associated with the mitochondrial outer membrane. The model was developed assuming that VDAC is more permeable to NADH than to NAD + . Thermodynamic estimations of OMP, generated as a result of NADH(2-)/NAD + (1-) turnover through the outer membrane, demonstrated that the values of calculated negative OMP match the known range of VDAC voltage sensitivity, thus suggesting a possibility of OMP-dependent VDAC-mediated regulation of cell energy metabolism. According to the proposed mechanism, we suggest that the yeast-type Crabtree effect is the result of a fast VDAC-mediated electrical repression of mitochondria due to a decrease in the outer membrane permeability to charged metabolites and owing their redistribution between the mitochondrial intermembrane space and the cytosol, both controlled by metabolically-derived OMP. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    Science.gov (United States)

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin β-d-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity. PMID:19286778

  10. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction...

  11. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Huang, Liping, E-mail: lipinghuang@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Pan, Yuzhen [College of Chemistry, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2017-01-05

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO{sub 4}{sup −}) and dichromate (Cr{sub 2}O{sub 7}{sup 2−}) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  12. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    International Nuclear Information System (INIS)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-01

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO_4"−) and dichromate (Cr_2O_7"2"−) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  13. Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis.

    Science.gov (United States)

    Lo, Hsiao-Chi; Wan, Lihong; Rosebrock, Adam; Futcher, Bruce; Hollingsworth, Nancy M

    2008-11-01

    In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis.

  14. Cdc7-Dbf4 Regulates NDT80 Transcription as Well as Reductional Segregation during Budding Yeast Meiosis

    Science.gov (United States)

    Lo, Hsiao-Chi; Wan, Lihong; Rosebrock, Adam; Futcher, Bruce

    2008-01-01

    In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis. PMID:18768747

  15. Agrobacterium-mediated transformation of lipomyces

    Science.gov (United States)

    Dai, Ziyu; Magnuson, Jon K.; Deng, Shuang; Bruno, Kenneth S.; Culley, David E.

    2018-03-13

    This disclosure provides Agrobacterium-mediated transformation methods for the oil-producing (oleaginous) yeast Lipomyces sp., as well as yeast produced by the method. Such methods utilize Agrobacterium sp. cells that have a T-DNA binary plasmid, wherein the T-DNA binary plasmid comprises a first nucleic acid molecule encoding a first protein and a second nucleic acid molecule encoding a selective marker that permits growth of transformed Lipomyces sp. cells in selective culture media comprising an antibiotic.

  16. Heterologous transporter expression for improved fatty alcohol secretion in yeast

    DEFF Research Database (Denmark)

    Hu, Yating; Zhu, Zhiwei; Nielsen, Jens

    2017-01-01

    The yeast Saccharomyces cerevisiae is an attractive host for industrial scale production of biofuels including fatty alcohols due to its robustness and tolerance towards harsh fermentation conditions. Many metabolic engineering strategies have been applied to generate high fatty alcohol production...... transporters tested, human FATP1 was shown to mediate fatty alcohol export in a high fatty alcohol production yeast strain. An approximately five-fold increase of fatty alcohol secretion was achieved. The results indicate that the overall cell fitness benefited from fatty alcohol secretion and that the acyl......-CoA synthase activity of FATP1 contributed to increased cell growth as well. This is the first study that enabled an increased cell fitness for fatty alcohol production by heterologous transporter expression in yeast, and this investigation indicates a new potential function of FATP1, which has been known...

  17. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    Science.gov (United States)

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Insuk Lee

    2007-10-01

    Full Text Available Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations.We report a significantly improved version (v. 2 of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis.YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome. YeastNet is available from http://www.yeastnet.org.

  19. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  20. Novel baker's yeast catalysed hydride reduction of an epoxide moiety

    CSIR Research Space (South Africa)

    Horak, RM

    1995-02-27

    Full Text Available 8. This was successfully prepared by the coupling 4 of valeric acid chloride to Meldrum' s acid to yield the C-acyl derivative 6. Compound 6 was treated with SO2Ci 2 yielding the chloro acyl derivative of Meldrum...) O D (8) (v) + O2 N/~/CHO Reagents: (i) SOCI2, 70%, (ii) Meldrum's acid, pyridine, 80%, (iii) SO2C12, 65%, (iv) D20, Ac20, 20%, (v) K-t-butoxide, 20%, (vi) Baker's yeast, 12%. Scheme 3 The deuterium labelled...

  1. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  2. Produção de biossurfactante por levedura Biosurfactants production by yeasts

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2008-01-01

    Full Text Available Biosurfactants are molecules extracellularly produced by bacteria, yeast and fungi that have significant interfacial activity properties. This review focuses on relevant parameters that influence biosurfactant production by yeasts. Many works have investigated the optimization of yeast biosurfactant production, mainly within the last decade, revealing that the potential of such microorganisms is not well explored in the industrial field. The main points to increase the process viability lays on the reduction of the production costs and enhancement of biosynthesis efficiency through optimization the culture conditions (carbon and nitrogen source, pH, aeration, speed agitation and the selection of inexpensive medium components.

  3. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  5. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Ida M Smith

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications

  6. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    Science.gov (United States)

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  7. Crystal structure of the yeast nicotinamidase Pnc1p.

    Science.gov (United States)

    Hu, Gang; Taylor, Alexander B; McAlister-Henn, Lee; Hart, P John

    2007-05-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.

  8. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina; Kaiser, Christoph J. O.; Drazic, Adrian; Grö tzinger, Stefan W.; Haeß ner, Carmen; Eisenreich, Wolfgang; Richter, Klaus

    2015-01-01

    formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth

  9. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  10. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast.

    Science.gov (United States)

    Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M; Thorner, Jeremy; McMurray, Michael A

    2015-04-01

    Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. © 2015 Johnson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    International Nuclear Information System (INIS)

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  12. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure.

    Science.gov (United States)

    Marcus, Noah J; Pügge, Carolin; Mediratta, Jai; Schiller, Alicia M; Del Rio, Rodrigo; Zucker, Irving H; Schultz, Harold D

    2015-07-15

    In chronic heart failure (CHF), carotid body chemoreceptor (CBC) activity is increased and contributes to increased tonic and hypoxia-evoked elevation in renal sympathetic nerve activity (RSNA). Elevated RSNA and reduced renal perfusion may contribute to development of the cardio-renal syndrome in CHF. Exercise training (EXT) has been shown to abrogate CBC-mediated increases in RSNA in experimental heart failure; however, the effect of EXT on CBC control of renal blood flow (RBF) is undetermined. We hypothesized that CBCs contribute to tonic reductions in RBF in CHF, that stimulation of the CBC with hypoxia would result in exaggerated reductions in RBF, and that these responses would be attenuated with EXT. RBF was measured in CHF-sedentary (SED), CHF-EXT, CHF-carotid body denervation (CBD), and CHF-renal denervation (RDNX) groups. We measured RBF at rest and in response to hypoxia (FiO2 10%). All animals exhibited similar reductions in ejection fraction and fractional shortening as well as increases in ventricular systolic and diastolic volumes. Resting RBF was lower in CHF-SED (29 ± 2 ml/min) than in CHF-EXT animals (46 ± 2 ml/min, P < 0.05) or in CHF-CBD animals (42 ± 6 ml/min, P < 0.05). In CHF-SED, RBF decreased during hypoxia, and this was prevented in CHF-EXT animals. Both CBD and RDNX abolished the RBF response to hypoxia in CHF. Mean arterial pressure increased in response to hypoxia in CHF-SED, but was prevented by EXT, CBD, and RDNX. EXT is effective in attenuating chemoreflex-mediated tonic and hypoxia-evoked reductions in RBF in CHF. Copyright © 2015 the American Physiological Society.

  13. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  14. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing

    Directory of Open Access Journals (Sweden)

    Björn Becker

    2017-10-01

    Full Text Available The initial discovery of killer toxin-secreting brewery strains of Saccharomyces cerevisiae (S. cerevisiae in the mid-sixties of the last century marked the beginning of intensive research in the yeast virology field. So far, four different S. cerevisiae killer toxins (K28, K1, K2, and Klus, encoded by cytoplasmic inherited double-stranded RNA viruses (dsRNA of the Totiviridae family, have been identified. Among these, K28 represents the unique example of a yeast viral killer toxin that enters a sensitive cell by receptor-mediated endocytosis to reach its intracellular target(s. This review summarizes and discusses the most recent advances and current knowledge on yeast killer toxin K28, with special emphasis on its endocytosis and intracellular trafficking, pointing towards future directions and open questions in this still timely and fascinating field of killer yeast research.

  15. Physical Interactions between Yeast Pichia guilliermondii and Post-Harvest Fruit Pathogen Penicillium expansum

    Directory of Open Access Journals (Sweden)

    SRI WIDYASTUTI

    2008-03-01

    Full Text Available Attachment of yeast cells or bacteria on fungal hyphae have been observed in various antagonisms between microorganisms. Physical interactions between yeast Pichia guilliermondii and postharvest fruit pathogen Penicillium expansum in culture were studied in detail using light and transmission electron microscope to give better understanding on their mode of antagonism. Both organisms were co-cultured for 24-hr on potato dextrose agar. Light microscopy observations on the co-culture showed that the yeast cells attached firmly on the fungal hyphae. This attachment was inhibited by several substances such as enzymes degrading protein (protease or trypsin, a respiration inhibitor (sodium azide, an acid (hydrochloric acid or an alkali (sodium hydroxide. Although autoclaved hyphae did not affect the attachment, but boiled enzymes and autoclaved yeast cells totally abolished the attachment. These evidences suggested that the attachment might be an active process mediated by certain protein from live yeast cells. Transmission electron micrographs on the ultrastructure of the co-culture revealed that the hyphae showed abnormalities in their structure and organelles, and a degree of obvious damage. Physical interactions observed in this study could be contributed to the mechanism of antagonism between P. guilliermondii and P. expansum.

  16. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal.

    Science.gov (United States)

    Karki, Tika B; Timilsina, Parash Mani; Yadav, Archana; Pandey, Gyanu Raj; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree "Dar" were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast.

  17. Nectar yeasts in the tall Larkspur Delphinium barbeyi (Ranunculaceae and effects on components of pollinator foraging behavior.

    Directory of Open Access Journals (Sweden)

    Robert N Schaeffer

    Full Text Available Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54-77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness.

  18. Nectar Yeasts in the Tall Larkspur Delphinium barbeyi (Ranunculaceae) and Effects on Components of Pollinator Foraging Behavior

    Science.gov (United States)

    Schaeffer, Robert N.; Phillips, Cody R.; Duryea, M. Catherine; Andicoechea, Jonathan; Irwin, Rebecca E.

    2014-01-01

    Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54–77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness. PMID:25272164

  19. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP

    Science.gov (United States)

    Siegenthaler, Kevin D; Pareja, Kristeen A; Wang, Jie; Sevier, Carolyn S

    2017-01-01

    Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor – Sil1 – can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology. DOI: http://dx.doi.org/10.7554/eLife.24141.001 PMID:28257000

  20. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  1. FUNCTIONAL PROPERTIES OF YEASTS ISOLATED FROM SOME NIGERIAN TRADITIONAL FERMENTED FOODS

    Directory of Open Access Journals (Sweden)

    Tolulope P. Alakeji

    2015-04-01

    Full Text Available Yeasts play important roles in confering some desirable qualities such as nutritional value in traditional fermented foods. This study was carried out to investigate the potentials of yeasts isolated from some Nigerian traditional fermented foods for functional characteristics such as growth at pH 2.5 and 2% bile salts concentration and ability to lower cholesterol in culture medium. A total of 40 yeast strains were isolated from burukutu, ogi and pito. They were characterized phenotypically. Fifteen strains were selected based on the ability to tolerate pH 2.5 and 2% bile salts and they were further identified using API 20C AUX (Biomerieux, France to be Debaryomyces hansenii (5, Candida krusei (4, Candida glabrata (2, Candida colliculosa (1, Pichia anomala (1, Pichia farinosa (1 and Pichia membranefaciens (1. At pH 2.5, C. glabrata SA2 showed the highest increase in viable cells count after 24h (6.31 log10 cfu ml-1 while the most sensitive strain was P. membranefaciens BA2 (0.70 log10 cfu ml-1. P. membranefaciens BA2 survived in 2% bile salts than other yeast strains, with viable cell increase of 0.84 log10 cfu ml-1 after 24 h while the least tolerance was observed for D. hansenii OA1 with an increase in viable cells of 7.76 log10 cfu ml-1. C. krusei OB1 exhibited the greatest reduction of cholesterol of 91.34% while the least reduction of 24.28% was observed for D. hansenii OA1 after 48h incubation. The yeast strains in this study demonstrated functional attributes which can be employed as dietary adjuncts for the development of non-dairy beverages with hypocholesterolemic attributes.

  2. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity.

    Science.gov (United States)

    Herrera, Carlos M; Pozo, María I; Medrano, Mónica

    2013-02-01

    Through their effects on physicochemical features of floral nectar, nectar-dwelling yeasts can alter pollinator behavior, but the effect of such changes on pollination success and plant reproduction is unknown. We present results of experiments testing the effects of nectar yeasts on foraging patterns of captive and free-ranging bumble bees, and also on pollination success and fecundity of the early-blooming, bumble bee-pollinated Helleborus foetidus (Ranunculaceae). Under controlled experimental conditions, inexperienced Bombus terrestris workers responded positively to the presence of yeasts in artificial sugar solutions mimicking floral nectar by visiting proportionally more yeast-containing artificial flowers. Free-ranging bumble bees also preferred yeast-containing nectar in the field. Experiments conducted in two different years consistently showed that natural and artificial nectars containing yeasts were more thoroughly removed than nectars without yeasts. Experimental yeast inoculation of the nectar of H. foetidus flowers was significantly associated with reductions in number of pollen tubes in the style, fruit set, seed set, and mass of individual seeds produced. These results provide the first direct evidence to date that nectar yeasts can modify pollinator foraging patterns, pollination success, and the quantity and quality of seeds produced by insect-pollinated plants.

  3. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  4. Yeast mediates lactic acidosis suppression after antibiotic cocktail treatment in short small bowel?

    NARCIS (Netherlands)

    Bongaerts, G.P.A.; Severijnen, R.S.V.M.; Skladal, D.; Bakkeren, J.A.J.; Sperl, W.

    2005-01-01

    During acidotic periods in a girl with a short small bowel, very high D-lactic acid concentrations were measured in blood and urine; the patient's characteristic faecal flora contained mainly lactobacilli, and during antibiotic cocktail treatment also many yeasts. In this case report we sought to

  5. Deoxynucleoside Salvage in Fission Yeast Allows Rescue of Ribonucleotide Reductase Deficiency but Not Spd1-Mediated Inhibition of Replication

    Directory of Open Access Journals (Sweden)

    Oliver Fleck

    2017-04-01

    Full Text Available In fission yeast, the small, intrinsically disordered protein S-phase delaying protein 1 (Spd1 blocks DNA replication and causes checkpoint activation at least in part, by inhibiting the enzyme ribonucleotide reductase, which is responsible for the synthesis of DNA. The CRL4Cdt2 E3 ubiquitin ligase mediates degradation of Spd1 and the related protein Spd2 at S phase of the cell cycle. We have generated a conditional allele of CRL4Cdt2, by expressing the highly unstable substrate-recruiting protein Cdt2 from a repressible promoter. Unlike Spd1, Spd2 does not regulate deoxynucleotide triphosphate (dNTP pools; yet we find that Spd1 and Spd2 together inhibit DNA replication upon Cdt2 depletion. To directly test whether this block of replication was solely due to insufficient dNTP levels, we established a deoxy-nucleotide salvage pathway in fission yeast by expressing the human nucleoside transporter human equilibrative nucleoside transporter 1 (hENT1 and the Drosophila deoxynucleoside kinase. We present evidence that this salvage pathway is functional, as 2 µM of deoxynucleosides in the culture medium is able to rescue the growth of two different temperature-sensitive alleles controlling ribonucleotide reductase. However, salvage completely failed to rescue S phase delay, checkpoint activation, and damage sensitivity, which was caused by CRL4Cdt2 inactivation, suggesting that Spd1—in addition to repressing dNTP synthesis—together with Spd2, can inhibit other replication functions. We propose that this inhibition works at the point of the replication clamp proliferating cell nuclear antigen, a co-factor for DNA replication.

  6. Observations of surface-mediated reduction of Pu(VI) to Pu(IV) on hematite nanoparticles by ATR FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Hilary P. [Florida International Univ., Applied Research Center, Miami, FL (United States); Powell, Brian A. [Clemson Univ., Dept. of Enviromental Engineering and Earth Sciences, Anderson, SC (United States)

    2015-07-01

    Previous studies have shown that mineral surfaces may facilitate the reduction of plutonium though the mechanisms of the reduction are still unknown. The objective of this study is to use batch sorption and attenuated total reflectance Fourier transform infrared spectroscopy experiments to observe the surface-mediated reduction of plutonium on hematite nanoparticles. These techniques allow for in situ measurement of reduction of plutonium with time and may lead to a better understanding of the mechanisms of surface mediated reduction of plutonium. For the first time, ATR FT-IR peaks for Pu(VI) sorbed to hematite are measured at ∝ 916 cm{sup -1}, respectively. The decrease in peak intensity with time provides a real-time, direct measurement of Pu(VI) reduction on the hematite surface. In this work pseudo first order rate constants estimated at the high loadings (22 mg{sub Pu}/g{sub hematite}, 1.34 x 10{sup -6} M{sub Pu}/m{sup 2}) for ATR FT-IR are approximately 10 x slower than at trace concentrations based on previous work. It is proposed that the reduced rate constant at higher Pu loadings occurs after the reduction capacity due to trace Fe(II) has been exhausted and is dependent on the oxidation of water and possibly electron shuttling based on the semiconducting nature of hematite. Therefore, the reduction rate at higher loadings is possibly due to the thermodynamic favorability of Pu(IV)-hydroxide complexes.

  7. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory.

    Science.gov (United States)

    D'Urso, Agustina; Takahashi, Yoh-Hei; Xiong, Bin; Marone, Jessica; Coukos, Robert; Randise-Hinchliff, Carlo; Wang, Ji-Ping; Shilatifard, Ali; Brickner, Jason H

    2016-06-23

    In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.

  8. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  9. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation.

    Science.gov (United States)

    Song, Young-Ran; Jeong, Do-Youn; Baik, Sang-Ho

    2015-10-01

    This study deals with understanding the effects of salt reduction on both the physicochemical and microbiological properties of soy sauce fermentation and also the application of indigenous yeast starters to compensate for undesirable changes occurring in salt-reduced processes. Fermentation was tested in situ at a Korean commercial soy sauce processing unit. Salt reduction resulted in higher acidity as well as lower pH and contents of residual sugar and ethanol. Moreover, undesired flavor characteristics, due to a lack of distinctive compounds, was observed. In addition, putrefactive Staphylococcus and Enterococcus spp. were present only during salt-reduced fermentation. To control these adverse effects, a single or mixed culture of two indigenous yeasts, Torulaspora delbrueckii and Pichia guilliermondii, producing high ethanol and 3-methyl-1-butanol, respectively, were tested. Overall, all types of yeast applications inhibited undesirable bacterial growth despite salt reduction. Of the starter cultures tested, the mixed culture resulted in a balance of more complex and richer flavors with an identical flavor profile pattern to that obtained from high salt soy sauce. Hence, this strategy using functional yeast cultures offers a technological option to manufacture salt-reduced soy sauce while preserving its typical sensory characteristics without affecting safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  12. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  13. Implementation of communication-mediating domains for non-ribosomal peptide production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; San-Bento, Rita; Nielsen, Jens

    2010-01-01

    Saccharomyces cerevisiae has in several cases been proven to be a suitable host for the production of natural products and was recently exploited for the production of non-ribosomal peptides. Synthesis of non-ribosomal peptides (NRPs) is mediated by NRP synthetases (NRPSs), modular enzymes, which...... are often organized in enzyme complexes. In these complexes, partner NRPSs interact via communication-mediating domains (COM domains). In order to test whether functional interaction between separate NRPS modules is possible in yeast we constructed a yeast strain expressing two modules with compatible COM...

  14. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  15. Filtration, haze and foam characteristics of fermented wort mediated by yeast strain.

    Science.gov (United States)

    Douglas, P; Meneses, F J; Jiranek, V

    2006-01-01

    To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.

  16. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases

    Science.gov (United States)

    Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G.; Zhang, Nianshu

    2016-01-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding ‘signaling’ proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast. PMID:27923067

  17. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  18. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins.

    Directory of Open Access Journals (Sweden)

    Raffi Tonikian

    2009-10-01

    Full Text Available SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes.

  19. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  20. Effects of gamma radiation on Sporothrix schenckii yeast cells

    International Nuclear Information System (INIS)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R.; Resende, Maria Aparecida de

    2009-01-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log 10 cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  1. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  3. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  4. Research of the influencing factors of the immobilized redox mediators accelerating Cr(Ⅵ reduction by Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Jiapeng PING

    2017-10-01

    Full Text Available In order to study the influencing factors of non-dissolved redox mediators on Cr (Ⅵ bioreduction, the accelerating effect of non-dissolved redox mediators immobilized by cellulose acetate (CA on the reduction of Cr(Ⅵ by Escherichia coli BL21 is investigated. The results show that the accelerating order is 1-chloroanthraquinone>1,5-dichloroanthraquinone>2-chloroanthraquinone>1,8-dichloroanthraquinone>anthraquinone>1,4,5,8-tetrachloroanthtaquinone; the optimal concentration of 1-chloroanthraquinone pH and initial Cr(Ⅵ concentration are 0.048 mol/L, 7.00 and 30 mg/L, respectively; the removal rate increases with the increasing temperature when it is in the range of 20~60 ℃; after 6 times of recycling experiments, and the Cr(Ⅵ bioreduction rate with the immobilized 1-chloroanthraquinone maintains above 5 times of margin bacterium's. It indicates that non-dissolved redox mediators immobilized by CA can effectively accelerate the reduction rate of Cr(Ⅵ by Escherichia coli BL21, which has favourable application value.

  5. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    OpenAIRE

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast densit...

  6. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  7. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    Science.gov (United States)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  8. Fungal Meiosis and Parasexual Reproduction – Lessons from Pathogenic Yeast

    OpenAIRE

    Sherwood, Racquel K.; Bennett, Richard J.

    2009-01-01

    Meiosis is an integral part of sexual reproduction in eukaryotic species. It performs the dual functions of halving the genetic content in the cell, as well as increasing genetic diversity by promoting recombination between chromosome homologs. Despite extensive studies of meiosis in model yeast, it is now apparent that both the regulation of meiosis and the machinery mediating recombination has significantly diverged, even between closely related species. To highlight this, we discuss new st...

  9. Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

    Science.gov (United States)

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  10. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  11. Supplementary Material for: Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina; Kaiser, Christoph; Drazic, Adrian; Grö tzinger, Stefan W.; Haeß ner, Carmen; Eisenreich, Wolfgang; Richter, Klaus

    2015-01-01

    -S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative

  12. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  14. Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Kamitaka, Y.; Kano, K. [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto (Japan)

    2007-12-15

    Bioelectrocatalytic reduction of O{sub 2} into water was archived at diffusion-controlled rate by using enzymes (laccase from Trametes sp. and bilirubin oxidase from Myrothecium verrucaria, which belong to the family of multi-copper oxidase) adsorbed on mesoporous carbon aerogel particle without a mediator. The current density was predominantly controlled by the diffusion of dissolved O{sub 2} in rotating-disk electrode experiments, and reached a value as large as 10 mA cm{sup -2} at 1 atm O{sub 2}, 25 C, and 8,000 rpm on the laccase-adsorbed electrode. The overpotential of the bioelectrocatalytic reduction of O{sub 2} was 0.4-0.55 V smaller than that observed on a Pt disk electrode. Without any optimization, the laccase-adsorbed biocathode showed stable current intensity of the O{sub 2} reduction in an air-saturated buffer at least for 10 days under continuous flow system. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo.

    Science.gov (United States)

    Eyboulet, Fanny; Wydau-Dematteis, Sandra; Eychenne, Thomas; Alibert, Olivier; Neil, Helen; Boschiero, Claire; Nevers, Marie-Claire; Volland, Hervé; Cornu, David; Redeker, Virginie; Werner, Michel; Soutourina, Julie

    2015-10-30

    Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  17. Evaluation of Yeast Biomass (Candida utilis in a Practical Diet for Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    J.S. Goddard

    1999-01-01

    Full Text Available A yeast, Candida utilis, cultured on a substrate derived from a mixture of peat moss and fish processing waste, was substituted for fish meal in a practical diet for rainbow trout, Oncorhynchus mykiss. The formulated diets were isonitrogenous (40% crude protein and isoealoric (gross energy 20 kJ per g dry matter. During a 50-day feeding trial fish tripled in weight, and there were no significant differences in the mean final weights of groups of fish fed diets in which 0%, 25% and 35% of fishmeal had been replaced by yeast biomass. Diets containing yeast were palatable, as determined by food intake, and were highly digestible for protein. Carcass analysis revealed that the fish fed with yeast biomass had slightly higher crude protein and ash contents, and lower lipid levels than those of the control group. Significant reductions were recorded in food conversion efficiency as the yeast content of the diets increased. The results indicate the potential for partial replacement of fish meal (between 25-35% by Candida utilis biomass in feeds formulated for rainbow trout.

  18. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    Science.gov (United States)

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  19. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  20. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste.

    Science.gov (United States)

    Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar

    2018-02-08

    Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

  1. Growth of Nile tilapia Oreochromis niloticus fed with different levels of alcohol yeast.

    Science.gov (United States)

    Medri, V; Pereira, G V; Leonhardt, J H

    2000-02-01

    Two hundred and forty 45-day-old fingerlings of Nile tilapia (Oreochromis niloticus), sexually reverted with an initial average weight of 1.25 +/- 0.14 g, distributed in a totally casualized delineation, during 330 days. The effect of the substitution of 10%, 20% and 30% of the ration by distillery yeast (Saccharomiyces cerevisae) in balanced experimental rations on the development in the breeding of tilapias did not show a harmful effect up to the maximum tested level of 30%, showing that the choice of the yeast in the ration for these fishes depends on the availability and occasional cost. The yeast provides fish with good resistance to unfavorable environmental conditions, which could be verified since there were no statistical differences among the treatments with different levels of yeast and the witness. The long growth rate in terms of length and weight can be attributed to the little available space for each specimen, not obeying the limit of populational density, as well as reduction of food ingestion, which coincide with the winter season, above of the absence of natural feeding.

  2. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  3. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  4. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  5. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.

    Science.gov (United States)

    Masuda, Masaki; Freguia, Stefano; Wang, Yung-Fu; Tsujimura, Seiya; Kano, Kenji

    2010-06-01

    Cyclic voltammograms of yeast extract-containing medium exhibit a clear redox peak around -0.4V vs. Ag|AgCl. Fermentative bacterium Lactococcus lactis was hereby shown to exploit this redox compound for extracellular electron transfer towards a graphite anode using glucose as an electron donor. High performance liquid chromatography revealed that this may be a flavin-type compound. The ability of L. lactis to exploit exogenous flavins for anodic glucose oxidation was confirmed by tests where flavin-type compounds were supplied to the bacterium in well defined media. Based on its mid-point potential, riboflavin can be regarded as a near-optimal mediator for microbially catalyzed anodic electron transfer. Riboflavin derivative flavin mononucleotide (FMN) was also exploited by L. lactis as a redox shuttle, unlike flavin adenine dinucleotide (FAD), possibly due to the absence of a specific transporter for the latter. The use of yeast extract in microbial fuel cell media is herein discouraged based on the related unwanted artificial addition of redox mediators which may distort experimental results. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  7. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  8. The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast.

    Science.gov (United States)

    Nishimura, Akira; Nasuno, Ryo; Takagi, Hiroshi

    2012-07-30

    The proline metabolism intermediate Δ(1)-pyrroline-5-carboxylate (P5C) induces cell death in animals, plants and yeasts. To elucidate how P5C triggers cell death, we analyzed P5C metabolism, mitochondrial respiration and superoxide anion generation in the yeast Saccharomyces cerevisiae. Gene disruption analysis revealed that P5C-mediated cell death was not due to P5C metabolism. Interestingly, deficiency in mitochondrial respiration suppressed the sensitivity of yeast cells to P5C. In addition, we found that P5C inhibits the mitochondrial respiration and induces a burst of superoxide anions from the mitochondria. We propose that P5C regulates cell death via the inhibition of mitochondrial respiration. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  10. A quantitative characterization of the yeast heterotrimeric G protein cycle

    Science.gov (United States)

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  11. Regulation of metabolism by the Mediator complex.

    Science.gov (United States)

    Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun

    2016-01-01

    The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

  12. Superoxide dismutase 1-mediated production of ethanol- and DNA-derived radicals in yeasts challenged with hydrogen peroxide: molecular insights into the genome instability of peroxiredoxin-null strains.

    Science.gov (United States)

    Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara

    2009-02-27

    Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

  13. Functional toxicogenomic profiling expands insight into modulators of formaldehyde toxicity in yeast

    Directory of Open Access Journals (Sweden)

    Matthew North

    2016-11-01

    Full Text Available Formaldehyde (FA is a commercially important chemical with numerous and diverse uses. Accordingly, occupational and environmental exposure to FA is prevalent worldwide. Various adverse effects, including nasopharyngeal, sinonasal, and lymphohematopoietic cancers, have been linked to FA exposure, prompting designation of FA as a human carcinogen by U.S. and international scientific entities. Although the mechanism(s of FA toxicity have been well studied, additional insight is needed in regard to the genetic requirements for FA tolerance. In this study, a functional toxicogenomics approach was utilized in the model eukaryotic yeast Saccharomyces cerevisiae to identify genes and cellular processes modulating the cellular toxicity of FA. Our results demonstrate mutant strains deficient in multiple DNA repair pathways–including homologous recombination, single strand annealing, and postreplication repair–were sensitive to FA, indicating FA may cause various forms of DNA damage in yeast. The SKI complex and its associated factors, which regulate mRNA degradation by the exosome, were also required for FA tolerance, suggesting FA may have unappreciated effects on RNA stability. Furthermore, various strains involved in osmoregulation and stress response were sensitive to FA. Together, our results are generally consistent with FA-mediated damage to both DNA and RNA. Considering DNA repair and RNA degradation pathways are evolutionarily conserved from yeast to humans, mechanisms of FA toxicity identified in yeast may be relevant to human disease and genetic susceptibility.

  14. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    Science.gov (United States)

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  15. PENGARUH BERBAGAI MERK DRIED YEAST (Saccharomyces sp. DAN pH AWAL FERMENTASI TERHADAP KARAKTERISTIK WINE SALAK

    Directory of Open Access Journals (Sweden)

    Ida Bagus Wayan Gunam

    2017-09-01

    Full Text Available The purpose of this research were to find out the effect of different of dried yeast and initial pH of fermentation on the characteristic of salacca wine, and to determine the appropriate of kind of dried yeast and initial pH of fermentation to produce salacca wine with the best characteristic. This research used Randomized Block Design with factorial pattern. The first factor was the kind of dried yeast brand that consisted of 3 kinds namely Lalvin, Levure and Alcotec. The second factor consisted of 5 levels of initial pH, namely 3.5; 4; 4.5; 5; and 5.5. Each treatment was done 2 times, in order to obtain 30 trial units. The data obtained was analyzed using ANOVA followed by Duncans test. Interactions between treatments had very significant effect on the ethanol content, reduction sugar content, and pH, but had significant effect on acid total content. The best treatment was to use the Alcotec brand dried yeast with a treatment of initial pH as 4, with the following characteristics: ethanol content 12.40%, negative content of methanol, reduction sugar content 5.87%, acid total content 0.20%, pH 3.5 after the fermentation, the color was enough pure yellow, the flavor was strong enough, the taste was strong enough, and rather liked over all acceptance.

  16. A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast.

    Directory of Open Access Journals (Sweden)

    Ashkan Emadi

    Full Text Available BACKGROUND: Dimeric naphthoquinones (BiQ were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50. Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS. Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(PH dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(PH:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.

  17. A cytosolic cytochrome b 5-like protein in yeast cell accelerating the electron transfer from NADPH to cytochrome c catalyzed by Old Yellow Enzyme

    International Nuclear Information System (INIS)

    Nakagawa, Manabu; Yamano, Toshio; Kuroda, Kiyo; Nonaka, Yasuki; Tojo, Hiromasa; Fujii, Shigeru

    2005-01-01

    A 410-nm absorbing species which enhanced the reduction rate of cytochrome c by Old Yellow Enzyme (OYE) with NADPH was found in Saccharomyces cerevisiae. It was solubilized together with OYE by the treatment of yeast cells with 10% ethyl acetate. The purified species showed visible absorption spectra in both oxidized and reduced forms, which were the same as those of the yeast microsomal cytochrome b 5 . At least 14 amino acid residues of the N-terminal region coincided with those of yeast microsomal b 5 , but the protein had a lower molecular weight determined to be 12,600 by SDS-PAGE and 9775 by mass spectrometry. The cytochrome b 5 -like protein enhanced the reduction rate of cytochrome c by OYE, and a plot of the reduction rates against its concentration showed a sigmoidal curve with an inflexion point at 6 x 10 -8 M of the protein

  18. Significant Improvement Selected Mediators of Inflammation in Phenotypes of Women with PCOS after Reduction and Low GI Diet

    Directory of Open Access Journals (Sweden)

    Małgorzata Szczuko

    2017-01-01

    Full Text Available Many researchers suggest an increased risk of atherosclerosis in women with polycystic ovary syndrome. In the available literature, there are no studies on the mediators of inflammation in women with PCOS, especially after dietary intervention. Eicosanoids (HETE and HODE were compared between the biochemical phenotypes of women with PCOS (normal and high androgens and after the 3-month reduction diet. Eicosanoid profiles (9(S-HODE, 13(S-HODE, 5(S-HETE, 12(S-HETE, 15(S-HETE, 5(S-oxoETE, 16(R-HETE, 16(S-HETE and 5(S, 6(R-lipoxin A4, 5(S, 6(R, 15(R-lipoxin A4 were extracted from 0.5 ml of plasma using solid-phase extraction RP-18 SPE columns. The HPLC separations were performed on a 1260 liquid chromatograph. No significant differences were found in the concentration of analysed eicosanoids in phenotypes of women with PCOS. These women, however, have significantly lower concentration of inflammatory mediators than potentially healthy women from the control group. Dietary intervention leads to a significant (p<0.01 increase in the synthesis of proinflammatory mediators, reaching similar levels as in the control group. The development of inflammatory reaction in both phenotypes of women with PCOS is similar. The pathways for synthesis of proinflammatory mediators in women with PCOS are dormant, but can be stimulated through a reduction diet. Three-month period of lifestyle change may be too short to stimulate the pathways inhibiting inflammatory process.

  19. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Coman, Vasile; Kostesha, Natalie

    2013-01-01

    utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring” of S. cerevisiae cells using PVI-Os shows...... that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. FigureMicrofluidic platform for bioelectrochemical assays using osmium redox polymer “wired” living yeast cells...

  20. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  1. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model.

    Science.gov (United States)

    Michel, Maximilian; Kopecká, Jana; Meier-Dörnberg, Tim; Zarnkow, Martin; Jacob, Fritz; Hutzler, Mathias

    2016-04-01

    This study describes a screening system for future brewing yeasts focusing on non-Saccharomyces yeasts. The aim was to find new yeast strains that can ferment beer wort into a respectable beer. Ten Torulaspora delbrueckii strains were put through the screening system, which included sugar utilization tests, hop resistance tests, ethanol resistance tests, polymerase chain reaction fingerprinting, propagation tests, amino acid catabolism and anabolism, phenolic off-flavour tests and trial fermentations. Trial fermentations were analysed for extract reduction, pH drop, yeast concentration in bulk fluid and fermentation by-products. All investigated strains were able to partly ferment wort sugars and showed high tolerance to hop compounds and ethanol. One of the investigated yeast strains fermented all the wort sugars and produced a respectable fruity flavour and a beer of average ethanol content with a high volatile flavour compound concentration. Two other strains could possibly be used for pre-fermentation as a bio-flavouring agent for beers that have been post-fermented by Saccharomyces strains as a consequence of their low sugar utilization but good flavour-forming properties. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  3. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    Science.gov (United States)

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  4. Implication of Ca2+ in the regulation of replicative life span of budding yeast.

    Science.gov (United States)

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-08-19

    In eukaryotic cells, Ca(2+)-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca(2+)/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca(2+) sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, we investigated a relationship between Ca(2+) signaling and life span in yeast. Here we show that Ca(2+) affected the replicative life span (RLS) of yeast. Increased external and intracellular Ca(2+) levels caused a reduction in their RLS. Consistently, the increase in calcineurin activity by either the zds1 deletion or the constitutively activated calcineurin reduced RLS. Indeed, the shortened RLS of zds1Δ cells was suppressed by the calcineurin deletion. Further, the calcineurin deletion per se promoted aging without impairing the gene silencing typically observed in short-lived sir mutants, indicating that calcineurin plays an important role in a regulation of RLS even under normal growth condition. Thus, our results indicate that Ca(2+) homeostasis/Ca(2+) signaling are required to regulate longevity in budding yeast.

  5. Entropy analysis in yeast DNA

    International Nuclear Information System (INIS)

    Kim, Jongkwang; Kim, Sowun; Lee, Kunsang; Kwon, Younghun

    2009-01-01

    In this article, we investigate the language structure in yeast 16 chromosomes. In order to find it, we use the entropy analysis for codons (or amino acids) of yeast 16 chromosomes, developed in analysis of natural language by Montemurro et al. From the analysis, we can see that there exists a language structure in codons (or amino acids) of yeast 16 chromosomes. Also we find that the grammar structure of amino acids of yeast 16 chromosomes has a deep relationship with secondary structure of protein.

  6. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  7. Cleavage of the SUN-domain protein Mps3 at its N-terminus regulates centrosome disjunction in budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery.

  8. Cleavage of the SUN-domain protein Mps3 at its N-terminus regulates centrosome disjunction in budding yeast meiosis

    Science.gov (United States)

    Koch, Bailey A.; Han, Xuemei

    2017-01-01

    Centrosomes organize microtubules and are essential for spindle formation and chromosome segregation during cell division. Duplicated centrosomes are physically linked, but how this linkage is dissolved remains unclear. Yeast centrosomes are tethered by a nuclear-envelope-attached structure called the half-bridge, whose components have mammalian homologues. We report here that cleavage of the half-bridge protein Mps3 promotes accurate centrosome disjunction in budding yeast. Mps3 is a single-pass SUN-domain protein anchored at the inner nuclear membrane and concentrated at the nuclear side of the half-bridge. Using the unique feature in yeast meiosis that centrosomes are linked for hours before their separation, we have revealed that Mps3 is cleaved at its nucleus-localized N-terminal domain, the process of which is regulated by its phosphorylation at serine 70. Cleavage of Mps3 takes place at the yeast centrosome and requires proteasome activity. We show that noncleavable Mps3 (Mps3-nc) inhibits centrosome separation during yeast meiosis. In addition, overexpression of mps3-nc in vegetative yeast cells also inhibits centrosome separation and is lethal. Our findings provide a genetic mechanism for the regulation of SUN-domain protein-mediated activities, including centrosome separation, by irreversible protein cleavage at the nuclear periphery. PMID:28609436

  9. Looking for immunotolerance: a case of allergy to baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Pajno, G B; Passalacqua, G; Salpietro, C; Vita, D; Caminiti, L; Barberio, G

    2005-09-01

    We describe one case of baker's yeast true allergy in a boy with previously diagnosed mite-allergy and atopic dermatitis. At the age of 6, being atopic dermatitis and rhinitis well controlled by drugs, he began to experience generalized urticaria and asthma after eating pizza and bread, but only fresh from the oven. The diagnostic workup revealed single sensitization to baker's yeast (Saccharomyces cerevisiae), and a severe systemic reaction also occurred during the prick-by-prick procedure. After discussing with parents, no special dietary restriction was suggested but the use of autoinjectable adrenaline and on demand salbutamol. A diary of symptoms was recorded by means of a visual-analog scale. During the subsequent 2 years, the severity of symptoms was progressively reduced, and presently urticaria has disappeared. Only cough persists, invariantly after eating just-baked and yeast-containing foods. If bread, pizza and cakes are ate more than one hour after preparation, no symptom occur at all. Baker's yeast is a common component of everyday diet and it usually acts as an allergen only by the inhalatory route. We speculate that the continuous exposure to saccharomyces in foods may have lead to an immunotolerance with a progressive reduction of symptoms, whereas why the allergens is active only in ready-baked foods remains unexplained.

  10. Brewing characteristics of piezosensitive sake yeasts

    Science.gov (United States)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  13. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  14. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Science.gov (United States)

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  15. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    Directory of Open Access Journals (Sweden)

    Tommy Kaplan

    2008-11-01

    Full Text Available Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  16. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Science.gov (United States)

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  18. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  19. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  20. Aeration Controls the Reduction and Methylation of Tellurium by the Aerobic, Tellurite-Resistant Marine Yeast Rhodotorula mucilaginosa▿

    Science.gov (United States)

    Ollivier, Patrick R. L.; Bahrou, Andrew S.; Church, Thomas M.; Hanson, Thomas E.

    2011-01-01

    We previously described a marine, tellurite-resistant strain of the yeast Rhodotorula mucilaginosa that both precipitates intracellular Te(0) and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a “green” route for the production of Te(0)-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed by R. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te(0) precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te(0) was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te(0) precipitates produced by R. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te(0) is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te(0) nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated. PMID:21602387

  1. Alteration of yeast activity by gamma radiation

    International Nuclear Information System (INIS)

    Chacharkar, M.P.; Tak, B.B.; Bhati, J.

    1996-01-01

    Yeast is an important component in microbe based industrial technologies. Due to the techno-economic reasons, the fermentation technique has acquired renewed interest. The effect of γ-radiation on the fermentation reaction has been investigated. The studies show that exposure of the fermentation mixture to γ-radiation at 5 kGy enhance alcohol production, whereas irradiation at higher doses, viz., 10 kGy and 25 kGy caused a considerable reduction in the alcohol yield. Therefore, low dose irradiation of fermentation mixtures can be applied for increasing the alcohol production by about 25%. (author). 13 refs., 1 fig

  2. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  3. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  4. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  5. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  6. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  7. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies

    DEFF Research Database (Denmark)

    Damgaard Jensen, Emil; Ferreira, Raphael; Jakociunas, Tadas

    2017-01-01

    on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene...... transcription start site. In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101...... production and increases in TAG. Taken together, we show similar performance for a constitutive and an inducible dCas9 approach, and identify multiplex gRNA designs that can significantly perturb isoprenoid production and TAG profiles in yeast without editing the genomic context of the target genes. We also...

  8. Yeast Cells-Derived Hollow Core/Shell Heteroatom-Doped Carbon Microparticles for Sustainable Electrocatalysis

    Czech Academy of Sciences Publication Activity Database

    Huang, X.; Zou, X.; Meng, Y.; Mikmeková, Eliška; Chen, H.; Voiry, D.; Goswami, A.; Chhowalla, M.; Asefa, T.

    2015-01-01

    Roč. 7, č. 3 (2015), s. 1978-1986 ISSN 1944-8244 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : yeast * heteroatom-doped carbon * oxygen reduction * ORR * hydrazine electrooxidation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 7.145, year: 2015

  9. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  10. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  11. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  12. Subsurface bio-mediated reduction of higher-valent uranium and plutonium

    International Nuclear Information System (INIS)

    Reed, Donald T.; Pepper, Sarah E.; Richmann, Michael K.; Smith, Geof; Deo, Randhir; Rittmann, Bruce E.

    2007-01-01

    Bio-mediated reduction of multivalent actinide contaminants plays an important role in their fate and transport in the subsurface. To initiate the process of extending recent progress in uranium biogeochemistry to plutonium, a side-by-side comparison of the bioreduction of uranyl and plutonyl species was conducted with Shewanella alga BrY, a facultative metal-reducing bacterium that is known to enzymatically reduce uranyl. Uranyl was reduced in our system, consistent with literature reports, but we have noted a strong coupling between abiotic and biotic processes and observe that non-reductive pathways to precipitation typically exist. Additionally, a key role of biogenic Fe 2+ , which is known to reduce uranyl at low pH, is suggested. In contrast, residual organics, present in biologically active systems, reduce Pu(VI) species to Pu(V) species at near-neutral pH. The predominance of relatively weak complexes of PuO 2 + is an important difference in how the uranyl and plutonyl species interacted with S. alga. Pu(V) also led to increased toxicity towards S. alga and is also more easily reduced by microbial activity. Biogenic Fe 2+ , produced by S. alga when Fe(III) is present as an electron acceptor, also played a key role in understanding redox controls and pathways in this system. Overall, the bioreduction of plutonyl is observed under anaerobic conditions, which favors its immobilization in the subsurface. Understanding the mechanism by which redox control is established in biologically active systems is a key aspect of remediation and immobilization strategies for actinides when they are present as subsurface contaminants

  13. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  14. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    Science.gov (United States)

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  15. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation.

    Science.gov (United States)

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-06-01

    Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G 2 /M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.

  16. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  17. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  18. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  20. Malleable machines in transcription regulation: the mediator complex.

    Directory of Open Access Journals (Sweden)

    Agnes Tóth-Petróczy

    2008-12-01

    Full Text Available The Mediator complex provides an interface between gene-specific regulatory proteins and the general transcription machinery including RNA polymerase II (RNAP II. The complex has a modular architecture (Head, Middle, and Tail and cryoelectron microscopy analysis suggested that it undergoes dramatic conformational changes upon interactions with activators and RNAP II. These rearrangements have been proposed to play a role in the assembly of the preinitiation complex and also to contribute to the regulatory mechanism of Mediator. In analogy to many regulatory and transcriptional proteins, we reasoned that Mediator might also utilize intrinsically disordered regions (IDRs to facilitate structural transitions and transmit transcriptional signals. Indeed, a high prevalence of IDRs was found in various subunits of Mediator from both Saccharomyces cerevisiae and Homo sapiens, especially in the Tail and the Middle modules. The level of disorder increases from yeast to man, although in both organisms it significantly exceeds that of multiprotein complexes of a similar size. IDRs can contribute to Mediator's function in three different ways: they can individually serve as target sites for multiple partners having distinctive structures; they can act as malleable linkers connecting globular domains that impart modular functionality on the complex; and they can also facilitate assembly and disassembly of complexes in response to regulatory signals. Short segments of IDRs, termed molecular recognition features (MoRFs distinguished by a high protein-protein interaction propensity, were identified in 16 and 19 subunits of the yeast and human Mediator, respectively. In Saccharomyces cerevisiae, the functional roles of 11 MoRFs have been experimentally verified, and those in the Med8/Med18/Med20 and Med7/Med21 complexes were structurally confirmed. Although the Saccharomyces cerevisiae and Homo sapiens Mediator sequences are only weakly conserved, the

  1. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  2. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  3. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  4. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  5. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  6. Biological Demalication and Deacetification of Musts and Wines: Can Wine Yeasts Make the Wine Taste Better?

    Directory of Open Access Journals (Sweden)

    Alice Vilela

    2017-10-01

    Full Text Available Grape musts sometimes reveal excess acidity. An excessive amount of organic acids negatively affect wine yeasts and yeast fermentation, and the obtained wines are characterized by an inappropriate balance between sweetness, acidity or sourness, and flavor/aroma components. An appropriate acidity, pleasant to the palate is more difficult to achieve in wines that have high acidity due to an excess of malic acid, because the Saccharomyces species in general, cannot effectively degrade malic acid during alcoholic fermentation. One approach to solving this problem is biological deacidification by lactic acid bacteria or non-Saccharomyces yeasts, like Schizosaccharomyces pombe that show the ability to degrade L-malic acid. Excessive volatile acidity in wine is also a problem in the wine industry. The use of free or immobilized Saccharomyces cells has been studied to solve both these problems since these yeasts are wine yeasts that show a good balance between taste/flavor and aromatic compounds during alcoholic fermentation. The aim of this review is to give some insights into the use of Saccharomyces cerevisiae strains to perform biological demalication (malic acid degradation and deacetification (reduction of volatile acidity of wine in an attempt to better understand their biochemistry and enological features.

  7. Between science and industry-applied yeast research.

    Science.gov (United States)

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  8. Bacterial vaginosis and vaginal yeast, but not vaginal cleansing, increase HIV-1 acquisition in African women.

    Science.gov (United States)

    van de Wijgert, Janneke H H M; Morrison, Charles S; Cornelisse, Peter G A; Munjoma, Marshall; Moncada, Jeanne; Awio, Peter; Wang, Jing; Van der Pol, Barbara; Chipato, Tsungai; Salata, Robert A; Padian, Nancy S

    2008-06-01

    To evaluate interrelationships between bacterial vaginosis (BV), vaginal yeast, vaginal practices (cleansing and drying/tightening), mucosal inflammation, and HIV acquisition. A multicenter, prospective, observational cohort study was conducted, enrolling 4531 HIV-negative women aged 18 to 35 years attending family planning clinics in Zimbabwe and Uganda. Participants were tested for HIV and reproductive tract infections and were interviewed about vaginal practices every 3 months for 15 to 24 months. BV was measured by Gram stain Nugent scoring, vaginal yeast by wet mount, and mucosal inflammation by white blood cells on Gram stain. HIV incidence was 4.12 and 1.53 per 100 woman-years of follow-up in Zimbabwe and Uganda, respectively (a total of 213 incident infections). Women with BV or vaginal yeast were more likely to acquire HIV, especially if the condition was present at the same visit as the new HIV infection and the visit preceding it (hazard ratio [HR] = 2.50, 95% confidence interval [CI]: 1.68 to 3.72 and HR = 2.97, 95% CI: 1.67 to 5.28 for BV and yeast, respectively). These relationships did not seem to be mediated by mucosal inflammation. Vaginal drying/tightening was associated with HIV acquisition in univariate (HR = 1.49, 95% CI: 1.03 to 2.15) but not multivariate models. Vaginal cleansing was not associated with HIV acquisition. BV and yeast may contribute more to the HIV epidemic than previously thought.

  9. Reduction of date microbial load with ozone

    Science.gov (United States)

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  10. Crystallization and preliminary X-ray analysis of beta-alanine synthase from the yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Dobritzsch, D.; Gojkovic, Zoran; Andersen, Birgit

    2003-01-01

    In eukaryotes and some bacteria, the third step of reductive pyrimidine catabolism is catalyzed by beta-alanine synthase (EC 3.5.1.6). Crystals of the recombinant enzyme from the yeast Saccharomyces kluyveri were obtained using sodium citrate as a precipitant. The crystals belong to space group P2...

  11. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads.

    Science.gov (United States)

    Farbo, Maria Grazia; Urgeghe, Pietro Paolo; Fiori, Stefano; Marceddu, Salvatore; Jaoua, Samir; Migheli, Quirico

    2016-01-18

    Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 μg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...

  13. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast.

    Science.gov (United States)

    Rolloos, Martijn; Hooykaas, Paul J J; van der Zaal, Bert J

    2015-02-09

    Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of interest. In this study, we used the model organism Saccharomyces cerevisiae to investigate whether the Agrobacterium mediated translocation of site-specific endonucleases via the type IV secretion system (T4SS), concomitantly with T-DNA transfer is possible and whether this can improve the gene targeting efficiency. In addition to that, the effect of different chromatin states on targeted integration, was investigated. It was found that Agrobacterium mediated translocation of the homing endonuclease I-SceI has a positive effect on the integration of T-DNA via the homologous repair (HR) pathway. Furthermore, we obtained evidence that nucleosome removal has a positive effect on I-SceI facilitated T-DNA integration by HR. Reversely; inducing nucleosome formation at the site of integration removes the positive effect of translocated I-SceI on T-DNA integration.

  15. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mediator: A key regulator of plant development.

    Science.gov (United States)

    Buendía-Monreal, Manuel; Gillmor, C Stewart

    2016-11-01

    Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Prevalence of candida and non-candida yeasts isolated from patients with yeast fungal infections in Tehran labs

    Directory of Open Access Journals (Sweden)

    Hashemi SJ

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Infections caused by opportunistic yeasts such as Candida species, Trichosporon, Rhodotorula and Saccharomyces have increased in immunocompromis-ed patients and their identification is crucial as intrinsic and acquired resistance of some yeast species to antifungal agents are on the rise. The aim of this study was to identify the organisms to the species level in order to suggest accurate and effective antifungal therapies."n"nMethods: In this study that carried out in Tehran, Iran in 2009, 200 patients with yeast infection were medically examined and clinical specimens were prepared for direct examination and culture on Sabouraud dextrose agar. Subsequently, the isolated yeast colonies were identified using various tests including culture on Corn Meal agar with Tween 80, CHROMagar Candida and casein agar. For the definite identification of organisms some biochemical tests were done based on carbohydrate assimilation by RapID Yeast Plus System kit, and, finally, a molecular method, PCR-RFLP, using Hpa II enzyme, was performed for the remaining unknown yeast species."n"nResults: A total of 211 yeast isolates were identified in 200 patients with yeast infections. The most frequent isolated yeasts were Candida albicans, 124 (58.77%, followed by Candida parapsilosis, 36 (17.06%, Candida tropicalis, 17 (8.06%, Candida glabrata, 13 (6.16%, Candida krusei, 8 (3.79%, Candida guilliermondii, 2 (0.96%, Trichosporon, 3 (1.14%, Rhodotorula, 1 (0.47%, Saccaromyces cerevisiae, 1 (0.47% and other

  18. Oral yeast colonization throughout pregnancy.

    Science.gov (United States)

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  19. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  20. Electron transport chain in a thermotolerant yeast.

    Science.gov (United States)

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  1. Characterization of a salt-induced DhAHP, a gene coding for alkyl hydroperoxide reductase, from the extremely halophilic yeast Debaryomyces hansenii

    Directory of Open Access Journals (Sweden)

    Ku Maurice SB

    2009-08-01

    Full Text Available Abstract Background Debaryomyces hansenii is one of the most salt tolerant species of yeast and has become a model organism for the study of tolerance mechanisms against salinity. The goal of this study was to identify key upregulated genes that are involved in its adaptation to high salinity. Results By using forward subtractive hybridization we have cloned and sequenced DhAHP from D. hansenii that is significantly upregulated during salinity stress. DhAHP is orthologous to the alkly hydroperoxide reductase of the peroxiredoxin gene family, which catalyzes the reduction of peroxides at the expense of thiol compounds. The full-lengthed cDNA of DhAHP has 674 bp of nucleotide and contains a 516 bp open reading frame (ORF encoding a deduced protein of 172 amino acid residues (18.3 kDa. D. hansenii Ahp is a cytosolic protein that belongs to the Ahp of the 1-Cys type peroxiredoxins. Phylogentically, the DhAhp and Candida albicans Ahp11 (Swiss-Prot: Q5AF44 share a common ancestry but show divergent evolution. Silence of its expression in D. hansenii by RNAi resulted in decreased tolerance to salt whereas overexpression of DhAHP in D. hansenii and the salt-sensitive yeasts Saccharomyces cereviasiae and Pichia methanolica conferred a higher tolerance with a reduced level of reactive oxygen species. Conclusion In conclusion, for the first time our study has identified alkly hydroperoxide reductase as a key protein involved in the salt tolerance of the extremely halophilic D. hansenii. Apparently, this enzyme plays a multi-functional role in the yeast's adaptation to salinity; it serves as a peroxidase in scavenging reactive oxygen species, as a molecular chaperone in protecting essential proteins from denaturation, and as a redox sensor in regulating H2O2-mediated cell defense signaling.

  2. Mediator phosphorylation prevents stress response transcription during non-stress conditions.

    Science.gov (United States)

    Miller, Christian; Matic, Ivan; Maier, Kerstin C; Schwalb, Björn; Roether, Susanne; Strässer, Katja; Tresch, Achim; Mann, Matthias; Cramer, Patrick

    2012-12-28

    The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.

  3. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    Science.gov (United States)

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  4. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  5. Responses of phylloplane yeasts to UV-B (290-320 nm) radiation: interspecific differences in sensitivity

    International Nuclear Information System (INIS)

    Gunasekera, T.S.; Paul, N.D.; Ayres, P.G.

    1997-01-01

    The sensitivity to UV-B (290–320 nm) radiation of common phylloplane yeasts from two contrasting UV-B environments was compared in the laboratory using mixtures of white light (PAR: 400–700 nm) and UV-B radiation from artificial lamp sources. Sporidiobolus salmonicolor, Rhodotorula mucilaginosa and Cryptococcus sp., the dominant yeasts on leaves of tea (Camellia sinensis), were isolated in Sri Lanka (SL), while Sporidiobolus sp. and Bullera alba, dominant on faba bean (Vicia faba), were isolated in the U.K. Dose responses were determined separately for each yeast. UV-B reduced colony forming units (due to cell mortality or inactivation) and colony size (due to reduced multiplication) of all yeasts. The LD 50 values and doses causing 50% reduction of cells per colony were higher for SL isolates than U.K. isolates. Results indicated that each yeast is somewhat vulnerable to UV-B doses representative of its natural habitat. The relative insensitivity of SL isolates was shown when SL and U.K. isolates were irradiated simultaneously with the same dose of UV-B. Of the two U.K. yeasts, B. alba was significantly more sensitive than Sporidiobolus sp. to UV-B. Except for R. mucilaginosa from SL, all yeasts demonstrated some photorepair in the presence of white light. White light provided relatively little protection for the U.K. isolate of Sporidiobolus sp. although it allowed increased colony size. The spectral responses of Sporidiobolus sp. (U.K.) and of B. alba (U.K.) were broadly similar. Wavelengths longer than 320 nm had no measurable effect on colony forming units. However, colony survival was significantly reduced at 310 nm and all shorter wavebands. No colonies were counted at 290 nm or below. (author)

  6. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  9. Genomics and the making of yeast biodiversity

    NARCIS (Netherlands)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-01-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces

  10. Yeasts preservation: alternatives for lyophilisation

    OpenAIRE

    Nyanga, Loveness K.; Nout, Martinus J. R.; Smid, Eddy J.; Boekhout, Teun; Zwietering, Marcel H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cak...

  11. Integrated control of Penicillium digitatum by the predacious yeast Saccharomycopsis crataegensis and sodium bicarbonate on oranges

    Directory of Open Access Journals (Sweden)

    R. S. Pimenta

    2010-06-01

    Full Text Available Our investigation of integrated biological control (IBC started with an assay testing activity of the predacious yeast Saccharomycopsis crataegensis UFMG-DC19.2 against Penicillium digitatum LCP 4354, a very aggressive fungus that causes postharvest decay in oranges. Under unfavourable environmental conditions, the yeast showed a high potential for control (39.9% disease severity reduction of this fungus. This result was decisive for the next step, in which S. crataegensis was tested in association with sodium bicarbonate salt, a generally regarded as safe (GRAS substance. The yeast was able to survive at different concentrations of the salt (1%, 2% and 5%, and continued to grow for a week at the wound site, remaining viable at high population for 14 days on the fruit surface. The yeast alone reduced the severity of decay by 41.7% and sodium bicarbonate alone reduced severity of decay by 19.8%, whereas the application of both led to a delay in the development of symptoms from 2 to 10 days. Ingredients of the formulations were not aggressive to fruits since no lesions were produced in control experiments.

  12. Cooperative Electrocatalytic O 2 Reduction Involving Co(salophen) with p- Hydroquinone as an Electron–Proton Transfer Mediator

    Energy Technology Data Exchange (ETDEWEB)

    Anson, Colin W. [Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States; Stahl, Shannon S. [Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States

    2017-12-01

    The molecular cobalt complex, Co(salophen), and para-hydroquinone (H2Q) serve as effective cocatalysts for the electrochemical reduction of O2 to water. Mechanistic studies reveal redox cooperativity between Co(salophen) and H2Q. H2Q serves as an electron-proton transfer mediator (EPTM) that enables electrochemical O2 reduction at higher potentials and with faster rates than is observed with Co(salophen) alone. Replacement of H2Q with the higher potential EPTM, 2-chloro-H2Q, allows for faster O2 reduction rates at higher applied potential. These results demonstrate a unique strategy to achieve improved performance with molecular electrocatalyst systems.

  13. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  14. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  15. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing.

    Directory of Open Access Journals (Sweden)

    Nilesh V Khade

    Full Text Available Yeast Rad52 (yRad52 has two important functions at homologous DNA recombination (HR; annealing complementary single-strand DNA (ssDNA molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity. Its human homolog (hRAD52 has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51 onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.

  16. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  17. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  18. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    Science.gov (United States)

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  20. The Catalytic Bias of 2-Oxoacid:ferredoxin Oxidoreductase in CO_2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay

    International Nuclear Information System (INIS)

    Li, Bin; Elliott, Sean J.

    2016-01-01

    Enzymes from the 2-oxoacid: ferredoxin oxidoreductase (OFOR) family engage in both CO_2 evolution and reduction in nature, depending on their physiological roles. Two enzymes and their redox partner ferredoxins (Fds) from Hydrogenobacter thermophilus and Desulfovibrio africanus were examined to investigate the basis of the catalytic bias. The Fd1 from H. thermophilus demonstrated a potential of ∼ −485 mV at room temperature, the lowest for known single [4Fe-4S] cluster Fds. It suggests a low potential electron donor may be the key factor in overcoming the large thermodynamic barrier of CO_2 reduction. The Fd-mediated electrocatalytic experiments further demonstrated the impact of Fd’s potential on the direction of the OFOR reaction: as OFOR enzymes could essentially catalyze both CO_2 evolution and reduction in vitro, the difference in their physiological roles is associated with the reduction potential of the redox partner Fd. The electrocatalytic assay could study both CO_2 evolution and reduction in one setup and is a good tool to probe Fds’ reactivity that arise from their reduction potentials.

  1. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  2. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  3. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X

    2012-01-15

    in furfural and 5-hydroxymethylfurfural (HMF) reductions by this yeast have both cofactor preferences for NADH. Due to the low inhibitor tolerance, the growth of S. passalidarum was completely inhibited in the liquid fraction of pretreated corn stover and wheat straw. The inhibitor tolerance of S. passalidarum was improved by the method of genome shuffling including UV mutagenesis and protoplast fusion. The protoplast of a UV-induced furfural-resistant mutant of S. passalidarum (S. passalidarum M7) was fused with the protoplast of a robust yeast S. cerevisiae ATCC 96581. The finally selected hybrid strain (FS22) has desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581. Phenotypic and molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. Rearrangement of DNA segments from the other parental strain S. cerevisiae ATCC 96581 possibly occurred in FS22. The inhibitor tolerance of the robust yeast S. cerevisiae ATCC 96581 was further improved by sequentially adapting this strain into media with increasing amounts of the liquid fraction of pretreated corn stover (CSLQ). The adapted strain completely fermented glucose in 100% CSLQ and the ethanol yield was 0.48 g/g glucose, while the parental strain was unable to ferment under this condition. Co-fermentation of this adapted strain with the selected protoplast fused hybrids (FS2 or FS22) in the pretreated wheat straw hydrolysate improved the final ethanol yield by 11% and 26%, respectively, due to partial conversion of xylose in the hydrolysate by the xylose-fermenting hybrids. Co-fermentation with one robust C6 fermenting yeast for detoxification and one C5 fermenting yeast for converting xylose into ethanol could be a viable strategy for lignocellulosic bioethanol production. (Author)

  4. Development of industrial yeast for second generation bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X.

    2012-01-15

    involved in furfural and 5-hydroxymethylfurfural (HMF) reductions by this yeast have both cofactor preferences for NADH. Due to the low inhibitor tolerance, the growth of S. passalidarum was completely inhibited in the liquid fraction of pretreated corn stover and wheat straw. The inhibitor tolerance of S. passalidarum was improved by the method of genome shuffling including UV mutagenesis and protoplast fusion. The protoplast of a UV-induced furfural-resistant mutant of S. passalidarum (S. passalidarum M7) was fused with the protoplast of a robust yeast S. cerevisiae ATCC 96581. The finally selected hybrid strain (FS22) has desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581. Phenotypic and molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. Rearrangement of DNA segments from the other parental strain S. cerevisiae ATCC 96581 possibly occurred in FS22. The inhibitor tolerance of the robust yeast S. cerevisiae ATCC 96581 was further improved by sequentially adapting this strain into media with increasing amounts of the liquid fraction of pretreated corn stover (CSLQ). The adapted strain completely fermented glucose in 100% CSLQ and the ethanol yield was 0.48 g/g glucose, while the parental strain was unable to ferment under this condition. Co-fermentation of this adapted strain with the selected protoplast fused hybrids (FS2 or FS22) in the pretreated wheat straw hydrolysate improved the final ethanol yield by 11% and 26%, respectively, due to partial conversion of xylose in the hydrolysate by the xylose-fermenting hybrids. Co-fermentation with one robust C6 fermenting yeast for detoxification and one C5 fermenting yeast for converting xylose into ethanol could be a viable strategy for lignocellulosic bioethanol production. (Author)

  5. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  6. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  7. The growth of solar radiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  8. The growth of solar radiated yeast

    Science.gov (United States)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  9. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  10. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    Science.gov (United States)

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade.

  11. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  12. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  13. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  14. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    Directory of Open Access Journals (Sweden)

    Cheng-Siang Wong

    2013-09-01

    Full Text Available Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  15. Mechanisms of uv mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.; Schwartz, A.

    1982-01-01

    The uv mutagenesis in yeast depends on the function of the RAD6 locus, a gene that is also responsible for a substantial fraction of wild-type resistance, suggesting that this eukaryote may possess a misrepair mechanism analogous to that proposed for Escherichia coli. The molecular mechanism responsible for RAD6 repair or recovery is not yet known, but it is different from either excision or recombination-dependent repair, processes carried out by the other two main repair pathways in yeast. RAD6-dependent mutagenesis has been found to have the following characteristics. It is associated at best with only a small fraction of RAD6-dependent repair, the majority of the sensitivity of rad6 mutants being due to their lack of nonmutagenic repair. SRS2 metabolic suppressors restore a substantial fraction of uv resistance to rad6 mutants but do not restore their uv mutability. Strains containing mutations at loci (rev, umr) that are probably more directly involved in mutagenesis are only mildly sensitive, and there is a poor correlation between their sensitivity and mutational deficiency. The uv mutagenesis appears to require a large number of gene functions, perhaps ten or more. Where examined in detail, these genes have been found to be concerned in the production of only a specific range of mutational events, not all of them. Mating experiments have shown that a substantial fraction, probably 40% or more, of uv-induced mutations are untargeted, that is, occur in lesion-free regions of DNA. The uv irradiation, therefore, produces a general reduction in the normally high fidelity with which DNA is replicated on undamaged templates. It does not appear to be necessary for the causal lesion to be present in the same chromosome as the mutation it induces. The reduction in fidelity may be the consequence of the production of a diffusible factor in uv-irradiated cells, but definite evidence supporting this proposal has not yet been obtained

  16. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  17. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  18. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  19. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  20. Evaluation of different co-inoculation time of non-Saccharomyces/Saccharomyces yeasts in order to obtain reduced ethanol wines

    Directory of Open Access Journals (Sweden)

    Mestre María Victoria

    2016-01-01

    Full Text Available Decreasing ethanol content in wines has become one of the main objectives of winemakers in different areas of the world. The use of selected wine yeasts can be considered one of the most effective and simple tools. The aim of this study was to evaluate the effect of co-inoculation times of selected non-Saccharomyces/Saccharomyces yeasts on the reduction of ethanol levels in wines. Hanseniaspora uvarum BHu9, Starmerella bacillaris BSb55 and Candida membranaefasciens BCm71 were co-inoculate with Saccharomyces cerevisiae under fermentative conditions. Treatments assayed were: pure fermentations of S. cerevisiae BSc203 and non-Saccharomyces yeasts BHu9, BSb55 and BCm71; -co-fermentations: A-BHu9/BSc203; B-BSb55/BSc203 and C-BCm71/BSc203. These co-inoculations were carried out under mixed (simultaneous inoculation, and sequential conditions (non-Saccharomyces yeasts inoculated at initial time and S. cerevisiae at 48, 96 and 144 h. Lower fermentative efficiencies were registered when BHu9 and BSb55 remained pure more time. Conversely, the conversion efficiency was reduced in co-inocula of BCm71/BSc203, when both yeasts interact more time. Metabolites produced during all vinification processes were within acceptable concentration ranges according to the current legislations. Conclusion Time interaction during fermentation processes of non-Saccharomyces and Saccharomyces yeasts showed influence on ethanol production, and this effect would be dependent on the co-inoculated species.

  1. Radiodiagnosis of yeast alveolits (a clinicoexperimental study)

    International Nuclear Information System (INIS)

    Amosov, I.S.; Smirnov, V.A.

    1984-01-01

    A clinicoroetgenological study was made of 115 workers engaged in the yeast production for different periods of time. Disorders of the respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, notnceable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with the rupture of the interalveolar septa. In the course of the study, it has been shown that yeast dust is little agreessive, yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis

  2. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  3. Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Evans, W.E.; Parry, J.M.

    1975-01-01

    The treatment of diploid cultures of yeast with ultraviolet light (uv), γ-rays, nitrous acid (na) and ethyl methane sulphonate (ems) results in increases in cell death, mitotic gene conversion and crossing-over. Acridine orange (ao) treatment, in contrast, was effective only in increasing the frequency of gene conversion. The individual mutagens were effective in the order uv>na>γ-rays>ao>ems. Prior treatment of yeast cultures in starvation medium produced a significant reduction in the yield of induced gene conversion. The results have been interpreted on the basis of a general model of mitotic gene conversion which involves the post-replication repair of induced lesions involving de novo DNA synthesis without genetic exchange. In contrast mitotic crossing-over appears to involve the action of a repair system independent from excision or post-replication repair which involves genetic exchange between homologous chromosomes

  4. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  6. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis.

    Directory of Open Access Journals (Sweden)

    Karen Voelkel-Meiman

    2015-06-01

    Full Text Available Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3 facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC. SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast

  7. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    Science.gov (United States)

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  9. Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis

    Directory of Open Access Journals (Sweden)

    Das Lalita

    2012-08-01

    Full Text Available Abstract Background The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among β-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin, within a common theoretical framework, we have performed structural principal component analyses of β-tubulin sequences across eukaryotes. Results The paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin uniquely mapped on to the lowest two principal components, defining the paclitaxel-binding site residues of β-tubulin. The molecular mechanisms behind paclitaxel-resistance, mediated through key residues, were identified from structural consequences of characteristic mutations that confer paclitaxel-resistance. Specifically, Ala277 in βIII isotype was shown to be crucial for paclitaxel-resistance. Conclusions The present analysis captures the origin of two apparently unrelated events, paclitaxel-insensitivity of yeast tubulin and human βIII tubulin isotype, through two common collective sequence vectors.

  10. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Directory of Open Access Journals (Sweden)

    Mayinger Peter

    2008-01-01

    Full Text Available Abstract Background Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. Results Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4P concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR of SAC1 that is responsible for PI(4P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. Conclusion Regulation of Sac1p expression via the concentration of its major substrate PI(4P ensures proper maintenance of compartment-specific pools of PI(4P.

  11. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  12. Specialist nectar-yeasts decline with urbanization in Berlin

    Science.gov (United States)

    Wehner, Jeannine; Mittelbach, Moritz; Rillig, Matthias C.; Verbruggen, Erik

    2017-03-01

    Nectar yeasts are common inhabitants of insect-pollinated flowers but factors determining their distribution are not well understood. We studied the influence of host identity, environmental factors related to pollution/urbanization, and the distance to a target beehive on local distribution of nectar yeasts within Robinia pseudoacacia L. and Tilia tomentosa Moench in Berlin, Germany. Nectar samples of six individuals per species were collected at seven sites in a 2 km radius from each target beehive and plated on YM-Agar to visualise the different morphotypes, which were then identified by sequencing a section of the 26S rDNA gene. Multivariate linear models were used to analyze the effects of all investigated factors on yeast occurrence per tree. Yeast distribution was mainly driven by host identity. The influence of the environmental factors (NO2, height of construction, soil sealing) strongly depended on the radius around the tree, similar to the distance of the sampled beehive. Incidence of specialist nectar-borne yeast species decreased with increasing pollution/urbanization index. Given that specialist yeast species gave way to generalist yeasts that have a reduced dependency on pollinators for between-flower dispersal, our results indicate that increased urbanization may restrict the movement of nectar-specialized yeasts, via limitations of pollinator foraging behavior.

  13. Reduction of Aflatoxin M1 in Milk Using Kefir Starter

    Directory of Open Access Journals (Sweden)

    Siavash Kamyar

    2017-11-01

    Full Text Available Background: Mycotoxins naturally occur in foods. Aflatoxins can cause serious health problems in consumers. Nowadays, biological detoxification method is considered to decrease the aflatoxins level in foods. The aim of this study was to evaluate the effect of kefir starter microorganisms to decrease the aflatoxin M1 (AFM1 levels in milk. Methods: The study was carried out at Shabestar branch, Islamic Azad University in 2016. AFM1 at three levels 150, 200 and 250 ng/L was added to milk samples. Then a pool of lactic acid bacteria (LAB, yeasts and full kefir starter culture was added to milk samples. After cool storage of samples in 4 °C for 7 d, all samples were collected and the level of AFM1 determined by HPLC method. All samples were prepared in triplicate. Results: The highest reduction percentage of AFM1 was observed in yeast (65.33%-68.89% and LAB pool (65%. Samples with full kefir starter showed the reduction percent range of 11.67-34.66% that was lower in compare with other treatment groups. Conclusion: These findings support the ability of LAB and yeasts to bind to aflatoxins in foods. Kefir drink in countries with high contamination by AFM1 in milk can be a safe dairy product choice for consumers.

  14. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...

  15. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  16. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Science.gov (United States)

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  17. Effect of fungicides on epiphytic yeasts associated with strawberry

    Science.gov (United States)

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  18. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.

    Science.gov (United States)

    Jeeves, Rose E; Mason, Robert P; Woodacre, Alexandra; Cashmore, Annette M

    2011-09-01

    The pathogenic yeast Candida albicans possesses a reductive iron uptake system which is active in iron-restricted conditions. The sequestration of iron by this mechanism initially requires the reduction of free iron to the soluble ferrous form, which is catalysed by ferric reductase proteins. Reduced iron is then taken up into the cell by a complex of a multicopper oxidase protein and an iron transport protein. Multicopper oxidase proteins require copper to function and so reductive iron and copper uptake are inextricably linked. It has previously been established that Fre10 is the major cell surface ferric reductase in C. albicans and that transcription of FRE10 is regulated in response to iron levels. We demonstrate here that Fre10 is also a cupric reductase and that Fre7 also makes a significant contribution to cell surface ferric and cupric reductase activity. It is also shown, for the first time, that transcription of FRE10 and FRE7 is lower in hyphae compared to yeast and that this leads to a corresponding decrease in cell surface ferric, but not cupric, reductase activity. This demonstrates that the regulation of two virulence determinants, the reductive iron uptake system and the morphological form of C. albicans, are linked. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Flor Yeast: New Perspectives Beyond Wine Aging

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  20. Construction of gateway-compatible yeast two-hybrid vectors for ...

    African Journals Online (AJOL)

    Yeast two-hybrid system combined with the gateway technology will greatly facilitate the cloning of interested DNA fragment into yeast two-hybrid vectors and therefore increase the efficiency of yeast two-hybrid analysis. In this study, we constructed a pair of Gateway-compatible yeast two-hybrid vectors pBTM116GW and ...

  1. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  2. Yeast species associated with wine grapes in China.

    Science.gov (United States)

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  3. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    Science.gov (United States)

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  4. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  5. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has also...... been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used...

  6. Selection of oleaginous yeasts for fatty acid production

    NARCIS (Netherlands)

    Lamers, Dennis; Biezen, van Nick; Martens, Dirk; Peters, Linda; Zilver, van de Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H.; Lokman, Christien

    2016-01-01

    Background: Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts

  7. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  8. The Use Of Local Product Yeast For Substitution Torula Yeast In The Formulation Of Artificial Diet Fruit Fly Larvae Bactrocera Carambolae Drew and Hancock

    International Nuclear Information System (INIS)

    Sikumbang, I.; Nasution, A.I.; Indarwatmi, M.; Kuswandi, A.N.

    2000-01-01

    The use of local product yeast I.e brewer yeast, yeast of tapai (fermented cassava), yeast of tempe (fermented soy beam), and brem(intoxicating beverage made of fermented rice) after cooked and uncooked were used to substitute torula yeast to reduce cost production for mass-rearing of fruit fly had been carried out. Artificial diet formulation consisted of torula yeast, wheat bran, nipagin, sodium benzoate, cane sugar, water and HCI ti make pH of 4. One kilogram of diet was inoculated with 1 ml of fruit fly eggs. Parameters of the experiment were, the number of pupae, weight of pupae, percentage of pupae and the percentage of viable fly. The results showed that the number of pupae were 6356 for brewers yeast with cooked and 0.942 gram/100 pupae for brem. Percentage viable emergence fly were 70%, 18.25% and 15.25% for brewers yeast with cooked and uncooked respectively. Cost production for 1.000.000 using cooked brewer yeast was reduced about Rp.179,200 or cost efficiency were 55.56%

  9. Guidelines and recommendations on yeast cell death nomenclature

    OpenAIRE

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andres; Austriaco, Nicanor; Sigrist, Stephan J.

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of mor...

  10. Guidelines and recommendations on yeast cell death nomenclature

    NARCIS (Netherlands)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely

  11. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    Science.gov (United States)

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  12. Posttraumatic stress symptoms and tobacco abstinence effects in a non-clinical sample: evaluating the mediating role of negative affect reduction smoking expectancies.

    Science.gov (United States)

    Langdon, Kirsten J; Leventhal, Adam M

    2014-11-01

    The relation between posttraumatic stress symptoms and smoking is well documented but poorly understood. The present investigation sought to evaluate the impact of posttraumatic stress symptoms on subjective and behavioral tobacco abstinence effects both directly and indirectly through negative affect reduction smoking outcome expectancies. Participants included 275 (68.7% male; Mage =43.9, 10+ cig/day) adult non-treatment seeking smokers, who attended two counterbalanced laboratory sessions (16 h of smoking deprivation vs ad libitum smoking), during which they completed self-report measures of withdrawal symptoms and mood followed by a smoking lapse task in which they could earn money for delaying smoking and purchase cigarettes to smoke. Results supported a mediational pathway whereby higher baseline symptoms of posttraumatic stress predicted greater endorsement of expectancies that smoking will effectively reduce negative affect, which in turn predicted greater abstinence-provoked exacerbations in nicotine withdrawal symptoms and negative affect. Posttraumatic stress symptoms also predicted number of cigarettes purchased independent of negative affect reduction expectancies, but did not predict delaying smoking for money. Findings highlight tobacco abstinence effects as a putative mechanism underlying posttraumatic stress disorder (PTSD)-smoking comorbidity, indicate an important mediating role of beliefs for smoking-induced negative affect reduction, and shed light on integrated treatment approaches for these two conditions. © The Author(s) 2014.

  13. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oral yeast carriage in patients with advanced cancer.

    Science.gov (United States)

    Davies, A N; Brailsford, S; Broadley, K; Beighton, D

    2002-04-01

    The aim of this study was to investigate oral yeast carriage amongst patients with advanced cancer. Oral rinse samples were obtained from 120 subjects. Yeasts were isolated using Sabouraud's dextrose agar and CHROMagar Candida, and were identified using a combination of the API 20 C AUX yeast identification system, species-specific PCR and 26S rDNA gene sequencing. Oral yeast carriage was present in 66% of subjects. The frequency of isolation of individual species was: Candida albicans, 46%; Candida glabrata, 18%; Candida dubliniensis, 5%; others, yeast carriage was associated with denture wearing (P = 0.006), and low stimulated whole salivary flow rate (P = 0.009). Identification of these risk factors offers new strategies for the prevention of oral candidosis in this group of patients.

  15. THE ROLE FUNGI AND YEAST IN MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Abe, M.; Johnson, B.; Simpson, W.; Mckinsey, P.

    2010-01-26

    Fungi and yeast have been characterized as important components in the bioremediation of organic contaminants in soil and water including polyaromatic hydrocarbons (PAHs); however, research into their ability to metabolize these compounds in extreme environments has been limited. In this work forty-three fungi and yeasts were isolated from a PAH-contaminated sludge waste lagoon in Poland. The lagoon was part of a monitored natural attenuation (MNA) study where natural reduction of PAHs and associated toxicity over time in non-disturbed areas of the sludge lagoon indicated MNA activity. The microorganisms were initially isolated on minimal medium containing naphthalene as the sole carbon and energy source. Fungal isolates were then maintained on MEA and identified based on microscopic examination and BIOLOG{reg_sign}. The analysis identified several of the fungal isolates as belonging to the genera Penicillium, Paecilomyces, Aspergillus, and Eupenicillium. Yeasts included Candida parapsilosis and C. fluvialitis. Further microbial characterization revealed that several isolates were capable of rowing on acidified media of pH 4, 3, and 2.5. Over twenty percent of the fungi demonstrated growth as low as pH 2.5. Of the 43 isolates examined, 24 isolates exhibited growth at 5 C. Nine of the fungal isolates exhibiting growth at 5 C were then examined for metabolic activity using a respirometer testing metabolic activity at pH 3. Microcosm studies confirmed the growth of the fungi on PAH contaminated sediment as the sole carbon and energy source with elevated metabolic rates indicating evidence of MNA. Our findings suggest that many of the Poland fungal isolates may be of value in the bioremediation processes in acidic waste sites in northern climates typical of Northern Europe.

  16. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

    Science.gov (United States)

    Li, Yang; Roberts, Julie; AkhavanAghdam, Zohreh; Hao, Nan

    2017-12-15

    In the yeast Saccharomyces cerevisiae , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  18. Making Sense of the Yeast Sphingolipid Pathway.

    Science.gov (United States)

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  20. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  1. Cdc7-Dbf4 Regulates NDT80 Transcription as Well as Reductional Segregation during Budding Yeast Meiosis

    OpenAIRE

    Lo, Hsiao-Chi; Wan, Lihong; Rosebrock, Adam; Futcher, Bruce; Hollingsworth, Nancy M.

    2008-01-01

    In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induct...

  2. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  3. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    Science.gov (United States)

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier

  4. Qualitative and quantitative multiplexed proteomic analysis of complex yeast protein fractions that modulate the assembly of the yeast prion Sup35p.

    Directory of Open Access Journals (Sweden)

    Virginie Redeker

    Full Text Available BACKGROUND: The aggregation of the baker's yeast prion Sup35p is at the origin of the transmissible [PSI(+] trait. We and others have shown that molecular chaperones modulate Sup35p aggregation. However, other protein classes might be involved in [PSI(+] formation. RESULTS: We designed a functional proteomic study that combines two techniques to identify modulators of Sup35p aggregation and describe the changes associated to [PSI(+] formation. The first allows measuring the effect of fractionated Saccharomyces cerevisiae cytosolic extracts from [PSI(+] and [psi(-] yeast cells on Sup35p assembly. The second is a multiplex qualitative and quantitative comparison of protein composition of active and inactive fractions using a gel-free and label-free LC-MS approach. We identify changes in proteins involved in translation, folding, degradation, oxido-reduction and metabolic processes. CONCLUSION: Our functional proteomic study provides the first inventory list of over 300 proteins that directly or indirectly affect Sup35p aggregation and [PSI(+] formation. Our results highlight the complexity of the cellular changes accompanying [PSI(+] formation and pave the way for in vitro studies aimed to document the effect of individual and/or combinations of proteins identified here, susceptible of affecting Sup35p assembly.

  5. Yeast cell wall chitin reduces wine haze formation.

    Science.gov (United States)

    Ndlovu, Thulile; Divol, Benoit; Bauer, Florian F

    2018-04-27

    Protein haze formation in bottled wines is a significant concern for the global wine industry and wine clarification before bottling is therefore a common but expensive practice. Previous studies have shown that wine yeast strains can reduce haze formation through the secretion of certain mannoproteins, but it has been suggested that other yeast-dependent haze protective mechanisms exist. On the other hand, addition of chitin has been shown to reduce haze formation, likely because grape chitinases have been shown to be the major contributors to haze. In this study, Chardonnay grape must fermented by various yeast strains resulted in wines with different protein haze levels indicating differences in haze protective capacities of the strains. The cell wall chitin levels of these strains were determined, and a strong correlation between cell wall chitin levels and haze protection capability was observed. To further evaluate the mechanism of haze protection, Escherichia coli -produced GFP-tagged grape chitinase was shown to bind efficiently to yeast cell walls in a cell wall chitin concentration-dependent manner, while commercial chitinase was removed from synthetic wine in quantities also correlated with the cell wall chitin levels of the strains. Our findings suggest a new mechanism of reducing wine haze, and propose a strategy for optimizing wine yeast strains to improve wine clarification. Importance In this study, we establish a new mechanism by which wine yeast strains can impact on the protein haze formation of wines, and demonstrate that yeast cell wall chitin binds grape chitinase in a chitin-concentration dependent manner. We also show that yeast can remove this haze-forming protein from wine. Chitin has in the past been shown to efficiently reduce wine haze formation when added to the wine in high concentration as a clarifying agent. Our data suggest that the selection of yeast strains with high levels of cell wall chitin can reduce protein haze. We also

  6. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  7. Inter-Kingdom Modification of Metabolic Behavior: [GAR+] Prion Induction in Saccharomyces cerevisiae Mediated by Wine Ecosystem Bacteria

    Directory of Open Access Journals (Sweden)

    Linda F Bisson

    2016-11-01

    Full Text Available The yeast Saccharomyces cerevisiae has evolved to dominate grape juice fermentation. A suite of cellular properties, rapid nutrient depletion, production of inhibitory compounds and the metabolic narrowing of the niche, all enable a minor resident of the initial population to dramatically increase its relative biomass in the ecosystem. This dominance of the grape juice environment is fueled by a rapid launch of glycolysis and energy generation mediated by transport of hexoses and an efficient coupling of transport and catabolism. Fermentation occurs in the presence of molecular oxygen as the choice between respiratory or fermentative growth is regulated by the availability of sugar a phenomenon known as glucose or catabolite repression. Induction of the GAR+ prion alters the expression of the major hexose transporter active under these conditions, Hxt3, reducing glycolytic capacity. Bacteria present in the grape juice ecosystem were able to induce the GAR+ prion in wine strains of S. cerevisiae. This induction reduced fermentation capacity but did not block it entirely. However, dominance factors such as the rapid depletion of amino acids and other nitrogen sources from the environment were impeded enabling greater access to these substrates for the bacteria. Bacteria associated with arrested commercial wine fermentations were able to induce the prion state, and yeast cells isolated from arrested commercial fermentations were found to be GAR+ thus confirming the ecological relevance of prion induction. Subsequent analyses demonstrated that the presence of environmental acetic acid could lead to GAR+ induction in yeast strains under certain conditions. The induction of the prion enabled yeast growth on non-preferred substrates, oxidation and reduction products of glucose and fructose, present as a consequence of bacterial energy production. In native ecosystems prion induction never exceeded roughly 50-60% of the population of yeast cells

  8. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    Science.gov (United States)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by

  9. The yeast spectrum of the 'tea fungus Kombucha'.

    Science.gov (United States)

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  10. Stability of the pyrethroid pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage.

    Science.gov (United States)

    Dorđević, Tijana M; Šiler-Marinković, Slavica S; Ðurović, Rada D; Dimitrijević-Branković, Suzana I; Gajić Umiljendić, Jelena S

    2013-10-01

    Pesticide residues have become an unavoidable part of food commodities. In the context of increased interest for food processing techniques as a tool for reducing pesticide residues, it is interesting to study the potential loss of pesticides during lactic acid and yeast fermentation. In the present paper the effect of fermentation by Lactobacillus plantarum and Saccharomyces cerevisiae and storage on 23 °C on bifenthrin in wheat was investigated. In addition, the effect of sterilisation (applied in order to avoid contamination with wild microorganism strains, i.e. to determine the individual effects of used strains) on bifenthrin degradation was tested as well. No significant loss of bifenthrin was observed during storage, or after the sterilisation. During the lactic acid fermentation, reduction within wheat fortified with 0.5 mg kg(-1) was 42%, while quite lower within samples fortified with 2.5 mg kg(-1) , maximum 18%. In contrast, bifenthrin concentration was not reduced during yeast fermentation, as the reduction in fortified samples was in the range of spontaneous chemical degradation during incubation period. Possible bifenthrin contamination in wheat, in amounts over the maximum residue limits, could not be reduced by sterilisation or by yeast fermentation, but lactic acid fermentation could be an effective tool for minimising residual contamination. © 2013 Society of Chemical Industry.

  11. Increased skills usage statistically mediates symptom reduction in self-guided internet-delivered cognitive-behavioural therapy for depression and anxiety: a randomised controlled trial.

    Science.gov (United States)

    Terides, Matthew D; Dear, Blake F; Fogliati, Vincent J; Gandy, Milena; Karin, Eyal; Jones, Michael P; Titov, Nickolai

    2018-01-01

    Cognitive-behavioural therapy (CBT) is an effective treatment for clinical and subclinical symptoms of depression and general anxiety, and increases life satisfaction. Patients' usage of CBT skills is a core aspect of treatment but there is insufficient empirical evidence suggesting that skills usage behaviours are a mechanism of clinical change. This study investigated if an internet-delivered CBT (iCBT) intervention increased the frequency of CBT skills usage behaviours and if this statistically mediated reductions in symptoms and increased life satisfaction. A two-group randomised controlled trial was conducted comparing internet-delivered CBT (n = 65) with a waitlist control group (n = 75). Participants were individuals experiencing clinically significant symptoms of depression or general anxiety. Mixed-linear models analyses revealed that the treatment group reported a significantly higher frequency of skills usage, lower symptoms, and higher life satisfaction by the end of treatment compared with the control group. Results from bootstrapping mediation analyses revealed that the increased skills usage behaviours statistically mediated symptom reductions and increased life satisfaction. Although skills usage and symptom outcomes were assessed concurrently, these findings support the notion that iCBT increases the frequency of skills usage behaviours and suggest that this may be an important mechanism of change.

  12. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to...

  13. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  14. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  15. [Yeast species in vulvovaginitis candidosa].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  16. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eSasvari

    2014-08-01

    Full Text Available To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae, which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5’-3’ exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as guardians of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones.

  17. Kinetics of growth and sugar consumption in yeasts.

    Science.gov (United States)

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  18. Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae.

    Science.gov (United States)

    Uthe, Henriette; Vanselow, Jens T; Schlosser, Andreas

    2017-02-27

    Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15 N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis.

  19. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production

    NARCIS (Netherlands)

    Rijswijck, van Irma M.H.; Wolkers - Rooijackers, Judith C.M.; Abee, Tjakko; Smid, Eddy J.

    2017-01-01

    Increasing interest in new beer types has stimulated the search for approaches to extend the metabolic variation of brewers’ yeast. Therefore, we tested two approaches using non-conventional yeast to create a beer with lower ethanol content and a complex aroma bouquet. First, the mono-culture

  20. Improving industrial yeast strains: exploiting natural and artificial diversity.

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  1. Reductions in Corpus Callosum Volume Partially Mediate Effects of Prenatal Alcohol Exposure on IQ

    Directory of Open Access Journals (Sweden)

    Stevie C. Biffen

    2018-01-01

    Full Text Available Disproportionate volume reductions in the basal ganglia, corpus callosum (CC and hippocampus have been reported in children with prenatal alcohol exposure (PAE. However, few studies have investigated these reductions in high prevalence communities, such as the Western Cape Province of South Africa, and only one study made use of manual tracing, the gold standard of volumetric analysis. The present study examined the effects of PAE on subcortical neuroanatomy using manual tracing and the relation of volumetric reductions in these regions to IQ and performance on the California Verbal Learning Test-Children's Version (CVLT-C, a list learning task sensitive to PAE. High-resolution T1-weighted images were acquired, using a sequence optimized for morphometric neuroanatomical analysis, on a Siemens 3T Allegra MRI scanner from 71 right-handed, 9- to 11-year-old children [9 fetal alcohol syndrome (FAS, 19 partial FAS (PFAS, 24 non-syndromal heavily exposed (HE and 19 non-exposed controls]. Frequency of maternal drinking was ascertained prospectively during pregnancy using timeline follow-back interviews. PAE was examined in relation to volumes of the CC and left and right caudate nuclei, nucleus accumbens and hippocampi. All structures were manually traced using Multitracer. Higher levels of PAE were associated with reductions in CC volume after adjustment for TIV. Although the effect of PAE on CC was confounded with smoking and lead exposure, additional analyses showed that it was not accounted for by these exposures. Amongst dysmorphic children, smaller CC was associated with poorer IQ and CVLT-C scores and statistically mediated the effect of PAE on IQ. In addition, higher levels of PAE were associated with bilateral volume reductions in caudate nuclei and hippocampi, effects that remained significant after control for TIV, child sex and age, socioeconomic status, maternal smoking during pregnancy, and childhood lead exposure. These data confirm

  2. Structural investigations of yeast mannans

    International Nuclear Information System (INIS)

    Rademacher, K.H.

    1983-01-01

    Cell wall mannans were isolated from 8 different Candida species and separated in oligosaccharides by partial acetolysis. After gel chromatography specific acetolysis patterns were obtained. The 13 C NMR spectra of mannans and oligosaccharides were recorded. Signals at delta = 93.1 - 105.4 were assigned to certain chemical structures. Both the spectral patterns and the acetolysis patterns of the yeast mannans can be used for the discrimination of related yeasts. (author)

  3. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  4. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.

    Science.gov (United States)

    Belew, Ashton T; Advani, Vivek M; Dinman, Jonathan D

    2011-04-01

    Although first discovered in viruses, previous studies have identified operational -1 ribosomal frameshifting (-1 RF) signals in eukaryotic genomic sequences, and suggested a role in mRNA stability. Here, four yeast -1 RF signals are shown to promote significant mRNA destabilization through the nonsense mediated mRNA decay pathway (NMD), and genetic evidence is presented suggesting that they may also operate through the no-go decay pathway (NGD) as well. Yeast EST2 mRNA is highly unstable and contains up to five -1 RF signals. Ablation of the -1 RF signals or of NMD stabilizes this mRNA, and changes in -1 RF efficiency have opposing effects on the steady-state abundance of the EST2 mRNA. These results demonstrate that endogenous -1 RF signals function as mRNA destabilizing elements through at least two molecular pathways in yeast. Consistent with current evolutionary theory, phylogenetic analyses suggest that -1 RF signals are rapidly evolving cis-acting regulatory elements. Identification of high confidence -1 RF signals in ∼10% of genes in all eukaryotic genomes surveyed suggests that -1 RF is a broadly used post-transcriptional regulator of gene expression.

  5. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    International Nuclear Information System (INIS)

    Baldikova, Eva; Prochazkova, Jitka; Stepanek, Miroslav; Hajduova, Jana; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-01-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles. - Highlights: • New types of magnetically responsive yeast biocomposites were prepared. • Recently developed PMAA-stabilized magnetic fluid was used. • Three yeast species were entrapped into magnetic chitosan gel during its formation. • All biocatalysts were efficiently employed for invert sugar formation.

  6. PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Branisovska 1457, 370 05 Ceske Budejovice (Czech Republic); Prochazkova, Jitka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Stepanek, Miroslav; Hajduova, Jana [Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2 (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, CAS, ISB, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-04-01

    A simple, one-pot process for the preparation of magnetically responsive yeast-based biocatalysts was developed. Saccharomyces cerevisiae, Candida utilis and Kluyveromyces lactis cells were successfully incorporated into chitosan gel magnetically modified with poly(methacrylic acid)-stabilized magnetic fluid (PMAA-FF) during its formation. Magnetic PMAA-FF/chitosan/yeast composites were efficiently employed for invert sugar production. The dependence of invertase activity on used yeast, amount of magnetic biocatalyst, agitation time and after reuse was studied in detail. The tested magnetic biocatalysts retained at least 69% of their initial activity after 8 reuse cycles. - Highlights: • New types of magnetically responsive yeast biocomposites were prepared. • Recently developed PMAA-stabilized magnetic fluid was used. • Three yeast species were entrapped into magnetic chitosan gel during its formation. • All biocatalysts were efficiently employed for invert sugar formation.

  7. Determination of the autolysis of champagne yeast by using 14C-labelled yeast

    International Nuclear Information System (INIS)

    Molnar, I.; Oura, E.; Suomalainen, H.

    1980-01-01

    The degree of autolysis of 14 C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%. (author)

  8. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... additive mixtures for coloring foods. (b) Specifications. Phaffia yeast shall conform to the following... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed...

  9. Toxicity of isoproturon on Saccharomyces cerevisiae growing in mineral medium depends on glutathione-mediated antioxidant capacity.

    OpenAIRE

    Candeias, M; Alves-Pereira, I; Ferreira, Rui

    2011-01-01

    The results revealed an increase of viable cells, after 72 h of culture and an increase of antioxidant power mediated by GSH and GR activity in S. cerevisiae UE-ME3. The adaptive response of UE-ME3 strain to isoproturon, determined in MB, was clearly higher than observed in IGC-3507 strain. So, we presume that the extent of the toxic effect of isoproturon in both yeast strains depends on glutathione-mediated antioxidant capacity.

  10. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  11. Conventional and Non-Conventional Yeasts in Beer Production

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-06-01

    Full Text Available The quality of beer relies on the activity of fermenting yeasts, not only for their good fermentation yield-efficiency, but also for their influence on beer aroma, since most of the aromatic compounds are intermediate metabolites and by-products of yeast metabolism. Beer production is a traditional process, in which Saccharomyces is the sole microbial component, and any deviation is considered a flaw. However, nowadays the brewing sector is faced with an increasing demand for innovative products, and it is diffusing the use of uncharacterized autochthonous starter cultures, spontaneous fermentation, or non-Saccharomyces starters, which leads to the production of distinctive and unusual products. Attempts to obtain products with more complex sensory characteristics have led one to prospect for non-conventional yeasts, i.e., non-Saccharomyces yeasts. These generally are characterized by low fermentation yields and are more sensitive to ethanol stress, but they provide a distinctive aroma and flavor. Furthermore, non-conventional yeasts can be used for the production of low-alcohol/non-alcoholic and light beers. This review aims to present the main findings about the role of traditional and non-conventional yeasts in brewing, demonstrating the wide choice of available yeasts, which represents a new biotechnological approach with which to target the characteristics of beer and to produce different or even totally new beer styles.

  12. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  13. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  14. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Interplays between Sumoylation, SUMO-Targeted Ubiquitin Ligases, and the Ubiquitin-Adaptor Protein Ufd1 in Fission Yeast

    DEFF Research Database (Denmark)

    Køhler, Julie Bonne

    and the specific molecular interactions and sequence of events linking sumoylation, ubiquitylation and substrate degradation, has been largely uncovered. Using the fission yeast model organism I here present evidence for a role of the Ufd1 (ubiquitinfusion degradation 1) protein, and by extension of the Cdc48-Ufd1...... proteasome mediates direct cross-talk between the two modification systems. By contributing to the dynamic turnover of SUMO conjugated species these SUMO-targeted ubiquitin ligases (STUbLs) fulfills essential roles in both yeast and man. However, the specific sumoylated proteins affected by STUbL activity...... either in STUbL or Ufd1 function. In addition to identifying more than 900 unique sumoylated sites, these efforts revealed a number of proteins with upregulated sumoylation either in STUbL and/or Ufd1 mutant cells. These findings propose specific candidate substrates through which STUbL and Cdc48-Ufd1...

  16. Spectrophotometric evaluation of selenium binding by Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 yeast.

    Science.gov (United States)

    Kieliszek, Marek; Błażejak, Stanisław; Płaczek, Maciej

    2016-05-01

    In this study, the ability of selenium binding the biomas of Saccharomyces cerevisiae ATCC MYA-2200 and Candida utilis ATCC 9950 was investigated. Sodium selenite(IV) salts were added to the experimental media at concentrations of 10, 20, 40, and 60 mg Se(4+) L(-1). In the tested concentration range, one concentration reported a significant reduction in the biomass yield of both yeast strains. Intense growth was observed for C. utilis yeast, which reached the highest biomass yield of 15 gd.w.L(-1) after 24h cultivation in the presence of 10mg Se(4+) L(-1). Based on the use of spectrophotometric method for the determination of selenium content by using Variamine Blue as a chromogenic agent, efficient accumulation of this element in the biomass of the investigated yeast was observed. The highest amount of selenium, that is, 5.64 mg Se(4+)gd.w.(-1), was bound from the environment by S. cerevisiae ATCC MYA-2200 cultured in the presence of 60 mg Se(4+) L(-1) medium 72h Slightly less amount, 5.47 mg Se(4+) gd.w.(-1), was absorbed by C. utilis ATCC 9950 during similar cultural conditions. Based on the results of the biomass yield and the use of selenium from the medium, it can be observed that yeasts of the genus Candida are more efficient in binding this element, and this property finds practical application in the production of selenium-enriched yeast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Guidelines and recommendations on yeast cell death nomenclature

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2018-01-01

    Full Text Available Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

  18. Guidelines and recommendations on yeast cell death nomenclature

    Science.gov (United States)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  19. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  20. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    Science.gov (United States)

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  1. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast.

    Science.gov (United States)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine; Mankouri, Hocine W; Hickson, Ian D

    2014-04-07

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus, to specific DNA sequences called Ter. Here, we demonstrate that Tus-Ter modules also induce polar RF pausing when engineered into the Saccharomyces cerevisiae genome. This heterologous RF barrier is distinct from a number of previously characterized, protein-mediated, RF pause sites in yeast, as it is neither Tof1-dependent nor counteracted by the Rrm3 helicase. Although the yeast replisome can overcome RF pausing at Tus-Ter modules, this event triggers site-specific homologous recombination that requires the RecQ helicase, Sgs1, for its timely resolution. We propose that Tus-Ter can be utilized as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications.

  2. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    Science.gov (United States)

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  3. Increasing the yeast yield in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pelc, A; Vamos, E; Varga, L; Gavalya, S; Dolanszky, F

    1964-02-01

    The yeast and ethanol yields (the latter being based on the substrate) are enhanced by adding the substrate (molasses) gradually to the suspension of inoculating yeast during the main fermentation period, passing air through the mash, ceasing both substrate addition and aeration at the end of the main period, and allowing the process to come to an end. This way 12 to 14 kg yeast (dry weight)/100 l ethanol could be obtained within 16 to 24 hours and the yeast obtained could be used as the inoculum for the next charge. For example: 11 to 16 kg yeast (or 18 to 25 l yeast suspension from the preceding charge, containing 18 to 20% dry matter) is kept in 30 to 35 l H/sub 2/SO/sub 4/ (0.74 g/100 ml) for 1 hour, diluted with H/sub 2/O and 30 kg sterile molasses to 300 l, kept at 30 to 32/sup 0/ with mild aeration for 2 hours, 1900 l 30/sup 0/ H/sub 2/O added, then 1 m/sup 3/ air/m/sup 2//hour is passed through the mixture, with the addition of 270 kg sterile molasses, and a solution of 8 kg superphosphate and 5 kg (NH/sub 4/)/sub 2/SO/sub 4/ in 100 l H/sub 2/O, the latter being added in 5 portions over 2 hours. Molasses (600 kg) is added during the main period, maintaining the pH at 5 (H/sub 2/SO/sub 4/), and the temperature at 30/sup 0/, then aeration is ceased and the mixture kept until fermentation proceeds. The 3000 l medium contains 9.6% ethanol and 1.38% yeast, respectively.

  4. Ethanol fermentation with a flocculating yeast

    Energy Technology Data Exchange (ETDEWEB)

    Admassu, W; Korus, R A; Heimsch, R C

    1985-08-01

    A 100 cm x 5.7 cm internal diameter tower fermentor was fabricated and operated continuously for 11 months using the floc-forming yeast, Saccharomyces cerevisiae (American Type Culture Collection 4097). Steady state operation of the system was characterized at 32/sup 0/C and pH 4.0 for glucose concentrations ranging from 105 to 215 g l/sup -1/. The height of the yeast bed in the tower was maintained at 80 cm. The high yeast density, ethanol concentration and low pH prevented bacterial contamination in the reactor. The concentration profiles of glucose and ethanol within the bed were described by a dispersion model. Modeling parameters were determined for the yeast by batch kinetics and tracer experiments. The kinetic model included ethanol inhibition and substrate limitation. A tracer study with step input of D-xylose (a non-metabolizable sugar for S. cerevisiae) determined the dispersion number (D/uL=0.16) and liquid voidage (epsilonsub(L)=0.25). Measurements taken after 6 months of continuous operation indicated that there was no significant change in fermentor performance.

  5. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    Science.gov (United States)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  7. Humic substances-mediated microbial reductive dehalogenation of triclosan

    Science.gov (United States)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  8. Cognitive mediators of treatment outcomes in pediatric functional abdominal pain.

    Science.gov (United States)

    Levy, Rona L; Langer, Shelby L; Romano, Joan M; Labus, Jennifer; Walker, Lynn S; Murphy, Tasha B; Tilburg, Miranda A L van; Feld, Lauren D; Christie, Dennis L; Whitehead, William E

    2014-12-01

    Cognitive-behavioral (CB) interventions improve outcomes for many pediatric health conditions, but little is known about which mechanisms mediate these outcomes. The goal of this study was to identify whether changes in targeted process variables from baseline to 1 week posttreatment mediate improvement in outcomes in a randomized controlled trial of a brief CB intervention for idiopathic childhood abdominal pain. Two hundred children with persistent functional abdominal pain and their parents were randomly assigned to 1 of 2 conditions: a 3-session social learning and CB treatment (N=100), or a 3-session educational intervention controlling for time and attention (N=100). Outcomes were assessed at 3-, 6-, and 12-month follow-ups. The intervention focused on altering parental responses to pain and on increasing adaptive cognitions and coping strategies related to pain in both parents and children. Multiple mediation analyses were applied to examine the extent to which the effects of the social learning and CB treatment condition on child gastrointestinal (GI) symptom severity and pain as reported by children and their parents were mediated by changes in targeted cognitive process variables and parents' solicitous responses to their child's pain symptoms. Reductions in parents' perceived threat regarding their child's pain mediated reductions in both parent-reported and child-reported GI symptom severity and pain. Reductions in children's catastrophic cognitions mediated reductions in child-reported GI symptom severity but no other outcomes. Reductions in parental solicitousness did not mediate outcomes. Results suggest that reductions in reports of children's pain and GI symptoms after a social learning and CB intervention were mediated at least in part by decreasing maladaptive parent and child cognitions.

  9. Effect of flavin compounds on uranium(VI) reduction- kinetic study using electrochemical methods with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Yamasaki, Shinya; Tanaka, Kazuya; Kozai, Naofumi; Ohnuki, Toshihiko

    2017-01-01

    The reduction of uranium hexavalent (U(VI)) to tetravalent (U(IV)) is an important reaction because of the change in its mobility in the natural environment. Although the flavin mononucleotide (FMN) has acted as an electron shuttle for the U(VI) reduction in vivo system, which is called an electron mediator, only the rate constant for the electron transfer from FMN to U(VI) has been determined. This study examined the rate constant for the U(VI) reduction process by three flavin analogues (riboflavin, flavin mononucleotide, flavin adenine dinucleotide) to elucidate their substituent group effect on the U(VI) reduction rate by electrochemical methods. The formation of the U(IV) was monitored by UV-vis spectrometry at 660 nm during the constant potential electrolysis of the U(VI) solution in the presence of the mediator. The cyclic voltammograms indicated that the three flavin analogues behaved as electron mediator to reduce U(VI). The logarithmic rate constant for the U(VI) reduction was related to the standard redox potential of the mediators. This linear relationship indicated that the redox-active group of the mediator and the substituent group of the mediator dominate capability of the U(VI) reduction and its rate, respectively. The apparent reduction potential of U(VI) increased about 0.2 V in the presence of the mediators, which strongly suggests that the biological electron mediator makes the U(VI) reduction possible even under more oxidative conditions. - Highlights: • The rate constant for the U(VI) reduction by flavin analogues was determined. • The flavins showed a mediator effect on the U(VI) reduction. • The logarithmic rate constants for the U(VI) reduction was proportional to redox potential of the mediator. • The presence of the mediator increased about 0.2 V apparent redox potential of U(VI) to U(IV).

  10. Yeast hulls: effect on spontaneous fermentation in different vinification conditions

    Directory of Open Access Journals (Sweden)

    Rosa López

    2000-09-01

    Full Text Available The effect of the addition of yeast hulls in vinification was investigated during three consecutive years. The study was carried out in the experimental winery of C.I.D.A in La Rioja (Spain with free running white grape juice of the Viura variety. Four different vinifications were studied. In two of these vinifications, stuck fermentations were detected. In all the studies, the addition of yeast hulls (yeast ghosts improved the fermentation kinetics, increasing the number of viable yeasts at the end of the exponential stage and decreasing the final content of reducing sugars. This work revealed a new effect of yeast hull addition which had not been identified previously; their selection effect on the wild yeast strain in spontaneous fermentation.

  11. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Directory of Open Access Journals (Sweden)

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  12. Performance of baker's yeast produced using date syrup substrate ...

    African Journals Online (AJOL)

    Baker's yeast was produced from three selected baker's yeast strains using date syrup as a substrate at low and high flow rate compared to those produced using molasses substrates. Performance of the produced baker's yeasts on Arabic bread quality was investigated. Baking tests showed a positive relationship between ...

  13. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  14. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  15. New lager yeast strains generated by interspecific hybridization.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  16. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  17. Biosynthesis of vitamin C by yeast leads to increased stress resistance.

    Directory of Open Access Journals (Sweden)

    Paola Branduardi

    Full Text Available BACKGROUND: In industrial large scale bio-reactions micro-organisms are generally exposed to a variety of environmental stresses, which might be detrimental for growth and productivity. Reactive oxygen species (ROS play a key role among the common stress factors--directly--through incomplete reduction of O(2 during respiration, or indirectly--caused by other stressing factors. Vitamin C or L-ascorbic acid acts as a scavenger of ROS, thereby potentially protecting cells from harmful oxidative products. While most eukaryotes synthesize ascorbic acid, yeast cells produce erythro-ascorbic acid instead. The actual importance of this antioxidant substance for the yeast is still a subject of scientific debate. METHODOLOGY/PRINCIPAL FINDINGS: We set out to enable Saccharomyces cerevisiae cells to produce ascorbic acid intracellularly to protect the cells from detrimental effects of environmental stresses. We report for the first time the biosynthesis of L-ascorbic acid from D-glucose by metabolically engineered yeast cells. The amount of L-ascorbic acid produced leads to an improved robustness of the recombinant cells when they are subjected to stress conditions as often met during industrial fermentations. Not only resistance against oxidative agents as H(2O(2 is increased, but also the tolerance to low pH and weak organic acids at low pH is increased. CONCLUSIONS/SIGNIFICANCE: This platform provides a new tool whose commercial applications may have a substantial impact on bio-industrial production of Vitamin C. Furthermore, we propose S. cerevisiae cells endogenously producing vitamin C as a cellular model to study the genesis/protection of ROS as well as genotoxicity.

  18. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  19. Cryptococcus neoformans Is Internalized by Receptor-Mediated or ‘Triggered’ Phagocytosis, Dependent on Actin Recruitment

    Science.gov (United States)

    Guerra, Caroline Rezende; Seabra, Sergio Henrique; de Souza, Wanderley; Rozental, Sonia

    2014-01-01

    Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both ‘zipper’ (receptor-mediated) and ‘trigger’ (membrane ruffle-dependent) phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells. PMID:24586631

  20. Identification of an evolutionary conserved SURF-6 domain in a family of nucleolar proteins extending from human to yeast

    International Nuclear Information System (INIS)

    Polzikov, Mikhail; Zatsepina, Olga; Magoulas, Charalambos

    2005-01-01

    The mammalian SURF-6 protein is localized in the nucleolus, yet its function remains elusive in the recently characterized nucleolar proteome. We discovered by searching the Protein families database that a unique evolutionary conserved SURF-6 domain is present in the carboxy-terminal of a novel family of eukaryotic proteins extending from human to yeast. By using the enhanced green fluorescent protein as a fusion protein marker in mammalian cells, we show that proteins from distantly related taxonomic groups containing the SURF-6 domain are localized in the nucleolus. Deletion sequence analysis shows that multiple regions of the SURF-6 protein are capable of nucleolar targeting independently of the evolutionary conserved domain. We identified that the Saccharomyces cerevisiae member of the SURF-6 family, named rrp14 or ykl082c, has been categorized in yeast databases to interact with proteins involved in ribosomal biogenesis and cell polarity. These results classify SURF-6 as a new family of nucleolar proteins in the eukaryotic kingdom and point out that SURF-6 has a distinct domain within the known nucleolar proteome that may mediate complex protein-protein interactions for analogous processes between yeast and mammalian cells

  1. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass

    Directory of Open Access Journals (Sweden)

    Ros Joaquim

    2010-02-01

    Full Text Available Abstract Background Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.

  2. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  3. [Yeast microbiota in artisanal cheeses from Corrientes, Argentina].

    Science.gov (United States)

    Cardozo, Marina C; Fusco, Ángel J V; Carrasco, Marta S

    The artisanal cheese from Corrientes (from the Spanish acronym QAC-Queso Artesanal de Corrientes/Artisanal Cheese from Corrientes) is a soft cheese elaborated with raw cow milk and an artisanal coagulant agent. Lactic bacteria contitute the main flora of this cheese although yeasts are also present in high quantities as secondary microbiota and might play a relevant role in cheese ripening. The aim of this work was to evaluate yeast occurrence during QAC elaboration and ripening, and the effect of seasonal variation. Yeasts were isolated and purified from raw materials and cheese at different ripening stagesl elaborated during the different seasons. Yeast sample counts were in the order of 10 3 - 10 7 UFC/ml o UFC/g. Ninety yeast strains were classified: 9 from milk, 28 from the coagulant agent, 10 from curd and 43 from cheese. Candida predominated in milk samples while other yeast genera had low incidence. Candida also predominated in the coagulant agent samples, followed by genera Myxozyma and Debaryomyces. The isolates obtained from cheese belonged to the same genera predominating in the coagulant agent, and showed the same order of prevalence. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction

    Science.gov (United States)

    Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu

    2013-01-01

    Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998

  5. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Trotsenko, Y.A.; Bystrykh, L.V.; Ubiyvovk, V.M.

    1984-01-01

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [ 14 C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  6. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  7. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  8. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  9. The impact of yeast fermentation on dough matrix properties.

    Science.gov (United States)

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M

    2016-08-01

    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Determination of the autolysis of champagne yeast by using /sup 14/C-labelled yeast

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, I [Orszagos Szoeleszeti es Boraszati Kutatointezet, Budapest (Hungary); Oura, E; Suomalainen, H [Research Laboratories of the State Alcohol Monopoly, Helsinki (Finland)

    1980-01-01

    The degree of autolysis of /sup 14/C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%.

  11. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Science.gov (United States)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  12. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    Science.gov (United States)

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  13. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhengui Zheng

    Full Text Available Mediator is a conserved multi-protein complex that plays an important role in regulating transcription by mediating interactions between transcriptional activator proteins and RNA polymerase II. Much evidence exists that Mediator plays a constitutive role in the transcription of all genes transcribed by RNA polymerase II. However, evidence is mounting that specific Mediator subunits may control the developmental regulation of specific subsets of RNA polymerase II-dependent genes. Although the Mediator complex has been extensively studied in yeast and mammals, only a few reports on Mediator function in flowering time control of plants, little is known about Mediator function in floral organ identity. Here we show that in Arabidopsis thaliana, MEDIATOR SUBUNIT 18 (MED18 affects flowering time and floral organ formation through FLOWERING LOCUS C (FLC and AGAMOUS (AG. A MED18 loss-of-function mutant showed a remarkable syndrome of later flowering and altered floral organ number. We show that FLC and AG mRNA levels and AG expression patterns are altered in the mutant. Our results support parallels between the regulation of FLC and AG and demonstrate a developmental role for Mediator in plants.

  14. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  15. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be...

  16. X-ray irradiation of yeast cells

    Science.gov (United States)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  17. The Influence of Heating Mains on Yeast Communities in Urban Soils

    Science.gov (United States)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  18. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  19. Participation of SRM5/CDC28, SRM8/NET1 and SRM12/HF11 genes in activation of checkpoints of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Kadyshevskaya, E.Yu.; Koltovaya, N.A.

    2007-01-01

    It is known that there are about twenty checkpoint genes in yeast Saccharomyces cerevisiae. We study participation of SRM genes selected as genes affecting genetic stability and radiosensitivity. It has been shown that srm5/cdc28-srm, srm8/net1-srm, srm12/hfil-srm mutations prevent checkpoint activation by DNA damage, particularly G0/S-checkpoint (srm5, srm8), G1/S-checkpoint (srm5, srm8, srm12), S-checkpoint (srm5, srm12) and G2-checkpoint (srm5). These data indicate, at least in budding yeast, CDC28/SRM5, HF11/ADA1/SRM12 and NET1/SRM8 genes mediate cellular response induced by DNA damage including checkpoint control

  20. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  1. Some Metabolites Act as Second Messengers in Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-03-01

    Full Text Available The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH, glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

  2. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    Directory of Open Access Journals (Sweden)

    Jannatul Ferdouse

    2018-05-01

    Full Text Available In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  3. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    Science.gov (United States)

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  4. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    Science.gov (United States)

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators.

    Directory of Open Access Journals (Sweden)

    Yumiko Kurokawa

    2008-04-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog-mediated homologous recombination (HR and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA, which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1-mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA.

  6. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  7. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  8. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mediator Recruitment to Heat Shock Genes Requires Dual Hsf1 Activation Domains and Mediator Tail Subunits Med15 and Med16*

    Science.gov (United States)

    Kim, Sunyoung; Gross, David S.

    2013-01-01

    The evolutionarily conserved Mediator complex is central to the regulation of gene transcription in eukaryotes because it serves as a physical and functional interface between upstream regulators and the Pol II transcriptional machinery. Nonetheless, its role appears to be context-dependent, and the detailed mechanism by which it governs the expression of most genes remains unknown. Here we investigate Mediator involvement in HSP (heat shock protein) gene regulation in the yeast Saccharomyces cerevisiae. We find that in response to thermal upshift, subunits representative of each of the four Mediator modules (Head, Middle, Tail, and Kinase) are rapidly, robustly, and selectively recruited to the promoter regions of HSP genes. Their residence is transient, returning to near-background levels within 90 min. Hsf1 (heat shock factor 1) plays a central role in recruiting Mediator, as indicated by the fact that truncation of either its N- or C-terminal activation domain significantly reduces Mediator occupancy, whereas removal of both activation domains abolishes it. Likewise, ablation of either of two Mediator Tail subunits, Med15 or Med16, reduces Mediator recruitment to HSP promoters, whereas deletion of both abolishes it. Accompanying the loss of Mediator, recruitment of RNA polymerase II is substantially diminished. Interestingly, Mediator antagonizes Hsf1 occupancy of non-induced promoters yet facilitates enhanced Hsf1 association with activated ones. Collectively, our observations indicate that Hsf1, via its dual activation domains, recruits holo-Mediator to HSP promoters in response to acute heat stress through cooperative physical and/or functional interactions with the Tail module. PMID:23447536

  10. Yeast glycolipid biosurfactants.

    Science.gov (United States)

    Jezierska, Sylwia; Claus, Silke; Van Bogaert, Inge

    2017-10-25

    Various yeasts, both conventional and exotic ones, are known to produce compounds useful to mankind. Ethanol is the most known of these compounds, but more complex molecules such as amphiphilic biosurfactants can also be derived from eukaryotic microorganisms at an industrially and commercially relevant scale. Among them, glycolipids are the most promising, due to their attractive properties and high product titers. Many of these compounds can be considered as secondary metabolites with a specific function for the host. Hence, a dedicated biosynthetic process enables regulation and combines pathways delivering the lipidic moiety and the hydrophilic carbohydrate part of the glycolipid. In this Review, we will discuss the biosynthetic and regulatory aspects of the yeast-derived sophorolipids, mannosylerythritol lipids, and cellobiose lipids, with special emphasis on the relation between glycolipid synthesis and the general lipid metabolism. © 2017 Federation of European Biochemical Societies.

  11. Reduction of saliva-promoted adhesion of Streptococcus mutans MT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan.

    Science.gov (United States)

    Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2006-01-01

    The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.

  12. The influence of sucrose and maltose on Saccharomyces cerevisiae yeast multiplication

    Directory of Open Access Journals (Sweden)

    O. I. Ponomareva

    2016-01-01

    Full Text Available The data on the influence of fermentable carbohydrates concentration on yeast multiplication are widely represented in the literature. This study presents the results of experiments showing an influence of sucrose and maltose concentration on Saccharomyces cerevisiae yeast multiplication. The objects of this research are bakery, beer, wine and alcohol yeast that are widely used in fermentation industry. Beet molasses and malt wort were chosen as nutrient medium for yeast breeding. Their basic sugars are mainly represented by sucrose and maltose. The concentration of sugars was 9, 12, 16 and 20%. The intensity of yeast multiplication was evaluated based on yeast cells concentration during their cultivation and the specific growth rate. Sugar concentrations causing an intensive accumulation of examined yeast strains were determined. This paper presents the experimental data that were received describing the influence of sucrose and maltose concentration on the duration of a lag phase period for different yeast strains. Specific growth rates of researched strains were determined for nutrient mediums with different glucose and maltose concentrations. It was found that the Crabtree effect, that is caused by high carbohydrates concentration in culture medium, is most pronounced when yeast cells grow on a sucrose medium. Brewer’s and baker's yeast are more adapted to high concentrations of carbohydrates. The obtained experimental data could be utilized to develop flow charts of growing a pure culture of Saccharomyces cerevisiae yeast to use at fermentation plants, including low power ones.

  13. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Directory of Open Access Journals (Sweden)

    Edward D. Kerr

    2016-08-01

    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  14. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  15. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  16. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic......Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...

  17. Yeast genetics. A manual of methods

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.F.T.; Spencer, D.M.; Bruce, I.J.

    1989-01-01

    This is a bench-top manual of methods needed both for classical genetics as related to yeasts, such as mating, sporulation, isolation of hybrids, microdissection of asci for the isolation of single-spore clones, as well as for mapping of genes and the construction of new strains by protoplast fusion. Special emphasis is on mutations in general, and on methods of isolating a number of important classes of mutants in particular. Basic techniques for the separation of chromosomes by electrophoresis, such as OFAGE, FIGE, and CHEF, are discussed, with detailed protocols for the first two. Furthermore, new methods, e.g. for the isolation of high molecular weight DNA from yeast, isolation of RNA, and techniques for transformation of yeasts, are also described in detail. (orig.) With 10 figs.

  18. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  19. Using Microsatellites to Identify Yeast Strains in Beer

    OpenAIRE

    Bruke, Alexandria; Van Brocklin, Jennifer; Rivest, Jason; Prenni, Jessica E.; Ibrahim, Hend

    2012-01-01

    Yeast is an integral part of the brewing process and is responsible for much of the taste and characteristics of beer. During the brewing process, yeast is subject to ageing and stress factors that can result in growth inhibition, decreased genetic stability, and changes in cell membrane stability. Characterization of yeast species used in industrial fermentation (e.g. S. cerevisiae) is of great importance to the brewing industry. The objective of this study was to develop an assay to identif...

  20. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

    Science.gov (United States)

    Trindade, Rita C; Resende, Maria Aparecida; Silva, Claudia M; Rosa, Carlos A

    2002-08-01

    The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of

  1. Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression.

    Science.gov (United States)

    Reineke, Lucas C; Merrick, William C

    2009-12-01

    Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using DeltaeIF2A yeast. We found that the stability of the stem-loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.

  2. Animal vaccines based on orally presented yeast recombinants.

    Science.gov (United States)

    Shin, Min-Kyoung; Yoo, Han Sang

    2013-09-13

    In veterinary vaccinology, the oral route of administration is an attractive alternative compared to the commonly used parenteral route. Yeasts have a number of properties that make them potential live delivery systems for oral vaccination purposes such as their high expression levels, their GRAS status, adjuvant properties, and post-translational modification possibilities. Consequently, yeasts have been employed for the expression of heterologous genes and for the production of therapeutic proteins. Yeast-based vaccines are reviewed with regard to their ability to express and produce antigens from pathogens for veterinary use. Many of these vaccines have been shown to elicit protective immune responses following oral immunization in animals. Ultimately, yeast-based oral vaccines may offer a potential opportunity for the development of novel ideal vaccines in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Apple Can Act as Anti-Aging on Yeast Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Palermo

    2012-01-01

    Full Text Available In recent years, epidemiological and biochemical studies have shown that eating apples is associated with reduction of occurrence of cancer, degenerative, and cardiovascular diseases. This association is often attributed to the presence of antioxidants such as ascorbic acid (vitamin C and polyphenols. The substances that hinder the presence of free radicals are also able to protect cells from aging. In our laboratory we used yeast, a unicellular eukaryotic organism, to determine in vivo efficacy of entire apples and their components, such as flesh, skin and polyphenolic fraction, to influence aging and oxidative stress. Our results indicate that all the apple components increase lifespan, with the best result given by the whole fruit, indicating a cooperative role of all apple components.

  5. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  6. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Guo

    Full Text Available Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya. However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage.

  7. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  8. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    Science.gov (United States)

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  9. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  10. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  11. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis.

    Science.gov (United States)

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-09-01

    To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time.

  12. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture.

    Science.gov (United States)

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-09-15

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. © 2016 Eychenne et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Supplementary Material for: Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-01-01

    Abstract Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntingtonâ s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  14. Biochemical composition of the biomass of some yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Filippova, T.V.; Tyurina, Z.P.

    1981-01-01

    The biochemical composition of Rhodotorula gracilis was dependent on the culture medium. Cultivation of the yeast on molasses, starch, and plant hydrolyzates gave a high biomass yield with high protein and carbohydrate contents and relatively low nucleic acid contents. Similar results were obtained with fodder yeasts: Candida tropicalis, C. scotti, and Sporobolomyces pararoseus. There were 17 amino acids in yeast biomass. The amino acid content of R. gracilis and C. scotti was 29-30 percent and 39 percent respectively. Both species were deficient in methionine.

  15. Yeasts: providing questions and answers for modern biology.

    Science.gov (United States)

    Dickinson, J R

    2000-01-01

    Yeasts are to be found in virtually every conceivable niche on this planet and are amazingly varied in their shapes ('morphologies'), life cycles, metabolic capabilities, potentials for use in industrial processes, abilities to spoil food and drink or to act as dangerous human pathogens. This review describes four very different species of yeast to illustrate some of the diversity which exists and, in the case of one of them, Saccharomyces cerevisiae (the familiar baker's or brewer's yeast), the extent of both our knowledge and ignorance.

  16. Study on ionizing radiosensitivity of respiratory deficiency yeast mutants

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei

    2006-01-01

    The radiosensitivity of respiratory deficiency yeast mutants has been studied in this work. The mutants which were screened from the yeasts after ionizing irradiation were irradiated with 12 C 6+ at different doses. Because of the great change in its mitochondria and mitochondrial DNA, the respiratory deficiency yeast mutants show radio-sensitivity at dose less than 1 Gy and radioresistance at doses higher than 1 Gy. (authors)

  17. Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters.

    Science.gov (United States)

    Grünberg, Sebastian; Henikoff, Steven; Hahn, Steven; Zentner, Gabriel E

    2016-11-15

    Mediator is a conserved, essential transcriptional coactivator complex, but its in vivo functions have remained unclear due to conflicting data regarding its genome-wide binding pattern obtained by genome-wide ChIP Here, we used ChEC-seq, a method orthogonal to ChIP, to generate a high-resolution map of Mediator binding to the yeast genome. We find that Mediator associates with upstream activating sequences (UASs) rather than the core promoter or gene body under all conditions tested. Mediator occupancy is surprisingly correlated with transcription levels at only a small fraction of genes. Using the same approach to map TFIID, we find that TFIID is associated with both TFIID- and SAGA-dependent genes and that TFIID and Mediator occupancy is cooperative. Our results clarify Mediator recruitment and binding to the genome, showing that Mediator binding to UASs is widespread, partially uncoupled from transcription, and mediated in part by TFIID. © 2016 The Authors.

  18. The relationship between salivary histatin levels and oral yeast carriage.

    Science.gov (United States)

    Jainkittivong, A; Johnson, D A; Yeh, C K

    1998-06-01

    Candida species are common commensal inhabitants of the oral cavity. Human saliva contains antifungal proteins called histatins. We tested the hypothesis that oral yeast status is related to salivary histatin levels. Thirty subjects were divided into two groups based on the presence (n = 15) or absence (n = 15) of yeast on oral mucosa surfaces. Unstimulated and stimulated submandibular and sublingual and parotid saliva was collected from each subject. Salivary flow rates were measured and histatin concentrations were determined in the stimulated saliva samples. The yeast colony positive group showed lower median unstimulated parotid saliva flow rates as well as lower median concentrations of total histatins in submandibular and sublingual saliva. There was a negative correlation between yeast colony-forming units and unstimulated parotid saliva flow rates and between yeast colony-forming units and submandibular and sublingual saliva histatin concentration and secretion. The results suggest that oral yeast status may be influenced by unstimulated parotid saliva flow rates and by submandibular and sublingual histatin concentration and secretion.

  19. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract.

    Science.gov (United States)

    Silva, S Q; Silva, D C; Lanna, M C S; Baeta, B E L; Aquino, S F

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal.

  20. Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast

    DEFF Research Database (Denmark)

    Hou, Jin; Tang, Hongting; Liu, Zihe

    2014-01-01

    In yeast Saccharomyces cerevisiae, accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR), which is mediated by Hac1p. The heat shock response (HSR) mediated by Hsf1p, mainly regulates cytosolic processes and protects...... the cell from stresses. Here, we find that a constitutive activation of the HSR could increase ER stress resistance in both wild-type and UPR-deficient cells. Activation of HSR decreased UPR activation in the WT (as shown by the decreased HAC1 mRNA splicing). We analyzed the genome-wide transcriptional...... response in order to propose regulatory mechanisms that govern the interplay between UPR and HSR and followed up for the hypotheses by experiments in vivo and in vitro. Interestingly, we found that the regulation of ER stress response via HSR is (1) only partially dependent on over-expression of Kar2p (ER...

  1. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    Science.gov (United States)

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  2. The ecology of insect-yeast relationships and its relevance to human industry.

    Science.gov (United States)

    Madden, Anne A; Epps, Mary Jane; Fukami, Tadashi; Irwin, Rebecca E; Sheppard, John; Sorger, D Magdalena; Dunn, Robert R

    2018-03-28

    Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry. © 2018 The Author(s).

  3. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains.

    Science.gov (United States)

    Carrau, Francisco M; Medina, Karina; Farina, Laura; Boido, Eduardo; Henschke, Paul A; Dellacassa, Eduardo

    2008-11-01

    The contribution of yeast fermentation metabolites to the aromatic profile of wine is well documented; however, the biotechnological application of this knowledge, apart from strain selection, is still rather limited and often contradictory. Understanding and modeling the relationship between nutrient availability and the production of desirable aroma compounds by different strains must be one of the main objectives in the selection of industrial yeasts for the beverage and food industry. In order to overcome the variability in the composition of grape juices, we have used a chemically defined model medium for studying yeast physiological behavior and metabolite production in response to nitrogen supplementation so as to identify an appropriate yeast assimilable nitrogen level for strain differentiation. At low initial nitrogen concentrations, strain KU1 produced higher quantities of esters and fatty acids whereas M522 produced higher concentrations of isoacids, gamma-butyrolactone, higher alcohols and 3-methylthio-1-propanol. We propose that although strains KU1 and M522 have a similar nitrogen consumption profile, they represent useful models for the chemical characterization of wine strains in relation to wine quality. The differential production of aroma compounds by the two strains is discussed in relation to their capacity for nitrogen usage and their impact on winemaking. The results obtained here will help to develop targeted metabolic footprinting methods for the discrimination of industrial yeasts.

  4. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    Science.gov (United States)

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a

  5. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  6. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    Science.gov (United States)

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species

    DEFF Research Database (Denmark)

    Gori, Klaus; Mortensen, Henrik Dam; Arneborg, Nils

    2007-01-01

    lipolytica, and Geotrichum candidum was determined on glycerol medium (GM) agar and cheese agar. The ammonia production was found to vary, especially among yeast species, but also within strains of D. hansenii. In addition, variations in ammonia production were found between GM agar and cheese agar. Ammonia...... yeasts. On GM agar and cheese agar, D. hansenii showed ammonia production oriented toward neighboring colonies when colonies were grown close to other colonies of the same species; however, the time to oriented ammonia production differed among strains and media. In addition, an increase of ammonia...... production was determined for double colonies compared with single colonies of D. hansenii on GM agar. In general, similar levels of ammonia production were determined for both single and double colonies of D. hansenii on cheese agar....

  8. Yeast Infection Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... cheese-like discharge Painful urination Redness in the vagina Yeast infection of the penis may cause: Redness Scaling Rash ... on the location of your symptoms: If a vaginal yeast infection is suspected , your health care provider will perform ...

  9. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  10. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    Science.gov (United States)

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  12. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  13. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  14. Yeast biotechnology: teaching the old dog new tricks.

    Science.gov (United States)

    Mattanovich, Diethard; Sauer, Michael; Gasser, Brigitte

    2014-03-06

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.

  15. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    role in baking-associated stress tolerance. In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  16. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.

  17. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Science.gov (United States)

    2012-01-01

    plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains. PMID:22462683

  18. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd-Cu nanostructures.

    Science.gov (United States)

    Kunz, Meredith R; McClain, Sophia M; Chen, Dennis P; Koczkur, Kallum M; Weiner, Rebecca G; Skrabalak, Sara E

    2017-06-08

    Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.

  19. Yeasts in foods and beverages: impact on product quality and safety.

    Science.gov (United States)

    Fleet, Graham H

    2007-04-01

    The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.

  20. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  1. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  2. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  3. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  4. Determination of tritium in wine and wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu, Niculina; Galeriu, D.; Mocanu, N.; Margineanu, R.; Marin, G.

    1997-01-01

    A sensitive method for evaluating the tritium content in wine and wine yeast was applied to estimate tritium impact on the environment in the surrounding area of nuclear power plant Cernavoda, where the vineyards are part of representative agricultural ecosystem. Analytical procedures were developed to determine HTO in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractionating distillation for wine samples and azeotropic distillation followed by fractional distillation for wine yeast samples. Finally, the water samples obtained after fractional distillation were normally distilled with KMO 4 . The established procedures were successfully applied for wine and wine yeast samples from Mulfatlar harvests of the years 1995 and 1996. (authors)

  5. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    Science.gov (United States)

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.

  6. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    Science.gov (United States)

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  7. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Science.gov (United States)

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  8. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  9. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review †,‡

    Directory of Open Access Journals (Sweden)

    Paul R. Broadway

    2015-08-01

    Full Text Available More livestock producers are seeking natural alternatives to antibiotics and antimicrobials, and searching for supplements to enhance growth performance, and general animal health and well-being. Some of the compounds currently being utilized and studied are live yeast and yeast-based products derived from the strain Saccharomyces cerevisiae. These products have been reported to have positive effects both directly and indirectly on the immune system and its subsequent biomarkers, thereby mitigating negative effects associated with stress and disease. These yeast-based products have also been reported to simultaneously enhance growth and performance by enhancing dry matter intake (DMI and average daily gain (ADG perhaps through the establishment of a healthy gastrointestinal tract. These products may be especially useful in times of potential stress such as during birth, weaning, early lactation, and during the receiving period at the feedlot. Overall, yeast supplements appear to possess the ability to improve animal health and metabolism while decreasing morbidity, thereby enhancing profitability of these animals.

  10. Development of Yeast Populations during Processing and Ripening of Blue Veined Cheese

    Directory of Open Access Journals (Sweden)

    Alison M. Knox

    2003-01-01

    Full Text Available Varieties of blue veined cheese were analyzed regularly during different stages of manufacturing and ripening to determine the origin of contaminating the yeasts present in them, their population diversity and development until the end of the storage. Yeast diversity and development in the inner and outer core of the cheeses during ripening were also compared. Air samples revealed few if any yeasts whereas the samples in contact with the equipment and the surroundings revealed high number of yeasts, implicating it as the possible main source of post-pasteurization contamination, as very few yeasts were isolated from the milk and cheese making process itself. Samples from the inner and outer core of the maturing cheeses had typical survival curves. The number of yeasts on the outer core was about a 100-fold more than of those in the inner core. The most abundant yeasts isolated from the environment and ripening cheeses were identified as Debaryomyces hansenii, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon beigelii, Candida versatilis and Cryptococcus albidus, while the yeasts Candida zeylanoides and Dekkera anomala were additionally isolated from the environment. Yeasts were present in high number, making their occurrence in blue-veined cheeses meaningful.

  11. The yeast stands alone: the future of protein biologic production.

    Science.gov (United States)

    Love, Kerry R; Dalvie, Neil C; Love, J Christopher

    2017-12-22

    Yeasts are promising alternative hosts for the manufacturing of recombinant protein therapeutics because they simply and efficiently meet needs for both platform and small-market drugs. Fast accumulation of biomass and low-cost media reduce the cost-of-goods when using yeast, which in turn can enable agile, small-volume manufacturing facilities. Small, tractable yeast genomes are amenable to rapid process development, facilitating strain and product quality by design. Specifically, Pichia pastoris is becoming a widely accepted yeast for biopharmaceutical manufacturing in much of the world owing to a clean secreted product and the rapidly expanding understanding of its cell biology as a host organism. We advocate for a near term partnership spanning industry and academia to promote open source, timely development of yeast hosts. Copyright © 2017. Published by Elsevier Ltd.

  12. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

    Directory of Open Access Journals (Sweden)

    Sheena D Singh

    2009-07-01

    Full Text Available Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely

  13. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination.

    Directory of Open Access Journals (Sweden)

    Alison E Ringel

    Full Text Available Sir2 is an NAD(+-dependent histone deacetylase required to mediate transcriptional silencing and suppress rDNA recombination in budding yeast. We previously identified Tdh3, a glyceraldehyde 3-phosphate dehydrogenase (GAPDH, as a high expression suppressor of the lethality caused by Sir2 overexpression in yeast cells. Here we show that Tdh3 interacts with Sir2, localizes to silent chromatin in a Sir2-dependent manner, and promotes normal silencing at the telomere and rDNA. Characterization of specific TDH3 alleles suggests that Tdh3's influence on silencing requires nuclear localization but does not correlate with its catalytic activity. Interestingly, a genetic assay suggests that Tdh3, an NAD(+-binding protein, influences nuclear NAD(+ levels; we speculate that Tdh3 links nuclear Sir2 with NAD(+ from the cytoplasm.

  14. Interactions between yeasts, fungicides and apple fruit russeting

    NARCIS (Netherlands)

    Gildemacher, P.R.; Heijne, B.; Silvestri, M.; Houbraken, J.; Hoekstra, E.; Theelen, B.; Boekhout, T.

    2006-01-01

    The effect of inoculations with yeasts occurring on apple surfaces and fungicide treatments on the russeting of Elstar apples was studied. Captan, dithianon and a water treatment were implemented to study the interaction between the fungicides, the inoculated yeast species and Aureobasidium

  15. Reduction of Sodium Arsenite-Mediated Adverse Effects in Mice using Dietary Supplementation of Water Hyacinth (Eichornia crassipes) Root Powder.

    Science.gov (United States)

    Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim

    2012-07-01

    In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.

  16. Effect of heat treatment on brewer's yeast fermentation activity

    OpenAIRE

    Kharandiuk, Tetiana; Kosiv, Ruslana; Palianytsia, Liubov; Berezovska, Natalia

    2015-01-01

    The influence of temperature treatment of brewer's yeast strain Saflager W-34/70 at temperatures of -17, 20, 25, 30, 35, 40 °C on their fermentative activity was studied. It was established that the freezing of yeast leads to a decrease of fermentation activity in directly proportional to the duration way. Fermentative activity of yeast samples can be increased by 20-24% by heat treatment at 35 °C during 15-30 minutes.

  17. Yeast species associated with the spontaneous fermentation of cider.

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; Querol, Amparo; Rodríguez, Roberto

    2018-01-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by ...

  18. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  19. The yeast metacaspase is implicated in oxidative stress response in frataxin-deficient cells.

    Science.gov (United States)

    Lefevre, Sophie; Sliwa, Dominika; Auchère, Françoise; Brossas, Caroline; Ruckenstuhl, Christoph; Boggetto, Nicole; Lesuisse, Emmanuel; Madeo, Frank; Camadro, Jean-Michel; Santos, Renata

    2012-01-20

    Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  1. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada.

    Science.gov (United States)

    Maganti, Harinad; Bartfai, David; Xu, Jianping

    2012-02-01

    This study seeks to determine the distribution and diversity of yeasts in and around the Hamilton area in Canada. In light of the increasing number of fungal infections along with rising morbidity and mortality rates, especially among the immunocompromised, understanding the diversity and distribution of yeasts in natural environments close to human habitations has become an increasingly relevant topic. In this study, we analyzed 1110 samples obtained from the hollows of trees, shrubs and avian droppings at 8 geographical sites in and around Hamilton, Ontario, Canada. A total of 88 positive yeast strains were isolated and identified belonging to 20 yeast species. Despite the relative proximity of the sampling sites, our DNA fingerprinting results showed that the yeast populations were highly heterogenous. Among the 14 tree species sampled, cedar, cottonwood and basswood hollows had relatively high yeast colonization rates. Interestingly, Candida parapsilosis was isolated almost exclusively from Pine trees only. Our results are consistent with microgeographic and ecological differentiation of yeast species in and around an urban environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Tapping into yeast diversity.

    Science.gov (United States)

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  3. 5'-end sequences of budding yeast full-length cDNA clones and quality scores - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available east_seq_qual.zip File URL: ftp://ftp.biosciencedbc.jp/archive/yeast_cdna/LATEST/...yeast_seq_qual.zip File size: 59.9MB Simple search URL http://togodb.biosciencedbc.jp/togodb/view/budding_yeast_cdna

  4. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  5. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    Science.gov (United States)

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  6. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  7. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...... describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies...

  8. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  9. Downsides and benefits of unicellularity in budding yeast

    Science.gov (United States)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  10. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  11. Genetic and phenotypic characteristics of baker's yeast: relevance to baking.

    Science.gov (United States)

    Randez-Gil, Francisca; Córcoles-Sáez, Isaac; Prieto, José A

    2013-01-01

    Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to rapidly transform carbohydrates into CO2 rather than its unusual resistance to environmental stresses. Moreover, baker's yeast must exhibit efficient respiratory metabolism during yeast manufacturing, which determines biomass yield. However, optimal growth conditions often have negative consequences in other commercially important aspects, such as fermentative power or stress tolerance. This article reviews the genetic and physiological characteristics of baking yeast strains, emphasizing the activation of regulatory mechanisms in response to carbon source and stress signaling and their importance in defining targets for strain selection and improvement.

  12. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  13. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    Science.gov (United States)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  14. The making of biodiversity across the yeast subphyllum

    Science.gov (United States)

    Goals for this research project are to determine how the functional diversity of the yeast subphylum is encoded, and to reconstruct the history of yeasts to elucidate the tempo and mode of functional diversification. The impact of this work will be to integrate discoveries within broadly disseminate...

  15. Yeast identification in routine clinical microbiology laboratory and its clinical relevance

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2011-01-01

    Full Text Available Rapid identification of yeast infections is helpful in prompt appropriate antifungal therapy. In the present study, the usefulness of chromogenic medium, slide culture technique and Vitek2 Compact (V2C has been analysed. A total of 173 clinical isolates of yeast species were included in the study. An algorithm to identify such isolates in routine clinical microbiology laboratory was prepared and followed. Chromogenic medium was able to identify Candida albicans, C. tropicalis, C. krusei, C. parapsilosis and Trichosporon asahii. Chromogenic medium was also helpful in identifying "multi-species" yeast infections. The medium was unable to provide presumptive identification of C. pelliculosa, C. utilis, C. rugosa, C. glabrata and C. hemulonii. Vitek 2 compact (V2C differentiated all pseudohypae non-producing yeast species. The algorithm followed was helpful in timely presumptive identification and final diagnosis of yeast infections, including multi-species yeast infections.

  16. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    Science.gov (United States)

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  17. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  18. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  19. Selection of oleaginous yeasts for fatty acid production.

    Science.gov (United States)

    Lamers, Dennis; van Biezen, Nick; Martens, Dirk; Peters, Linda; van de Zilver, Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H; Lokman, Christien

    2016-05-27

    Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts can be used as the so-called second generation biofuels, which are based on non-food competing "waste carbon sources". In this study the selection of potentially new interesting oleaginous yeast strains is described. Important selection criteria were: a broad maximum temperature and pH range for growth (robustness of the strain), a broad spectrum of carbon sources that can be metabolized (preferably including C-5 sugars), a high total fatty acid content in combination with a low glycogen content and genetic accessibility. Based on these selection criteria, among 24 screened species, Schwanniomyces occidentalis (Debaromyces occidentalis) CBS2864 was selected as a promising strain for the production of high amounts of lipids.

  20. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.