WorldWideScience

Sample records for yb-fiber laser stabilized

  1. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  2. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  3. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  4. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  5. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  6. Environmentally stable picosecond Yb fiber laser with low repetition rate

    Science.gov (United States)

    Baumgartl, M.; Abreu-Afonso, J.; Díez, A.; Rothhardt, M.; Limpert, J.; Tünnermann, A.

    2013-04-01

    A SESAM-mode-locked, all-polarization-maintaining Ytterbium fiber laser producing picosecond pulses with narrow spectral bandwidth is presented. A simple linear all-fiber cavity without dispersion compensation is realized using a uniform fiber Bragg grating (FBG). Different cavity lengths are investigated and repetition rates down to 0.7 MHz are obtained. Bandwidth and pulse duration of the output pulses are mainly determined by the choice of FBG. Pulses between 30 and 200 ps are generated employing different FBGs with bandwidths between 17 and 96 pm. The experimental results are in good agreement with numerical simulations. The laser holds great potential for simple amplification setups without pulse picking.

  7. Sub?40?fs, 1060?nm Yb?fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    OpenAIRE

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-01-01

    © 2015 The Authors. Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a > 100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key perform...

  8. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    Science.gov (United States)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  9. Monolithic Yb-fiber femtosecond laser with intracavity all-solid PBG fiber and ex-cavity HC-PCF

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2010-01-01

    (PM) photonic bandgap fiber (PBG) is used in the cavity of the master oscillator for dispersion compensation and stabilization of modelocking. The final compression of an chirped-pulse-amplified laser signal is performed in a hollow PM PCF, yielding final fiber-delivered pulse energy of around 7 n......J, and pulse duration of around 297 fs. The self-stabilization mechanism of the oscillator, based on the optical nonlinearities in an AS PCF, results in excellent environmental and operational stability of our laser. Stable self-starting fundamental modelocking is maintained for at least 4 days of operation......We demonstrate an all-fiber femtosecond master oscillator / power amplifier operating at the central wavelength of 1033 nm, based on Yb-doped fiber as gain medium, and two different kinds of photonic crystal fibers for dispersion control and stabilization. An all-solid (AS) polarization maintaining...

  10. All-PM monolithic fs Yb-fiber laser, dispersion-managed with all-solid photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration.......All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration....

  11. Single-pass, efficient type-I phase-matched frequency doubling of high-power ultrashort-pulse Yb-fiber laser using LiB_3O_5

    Science.gov (United States)

    Shukla, Mukesh Kumar; Kumar, Samir; Das, Ritwick

    2016-05-01

    We report 48 % efficient single-pass second harmonic generation of high-power ultrashort-pulse ({≈ }250 fs) Yb-fiber laser by utilizing type-I phase matching in LiB_3O_5 (LBO) crystal. The choice of LBO among other borate crystals for high-power frequency doubling is essentially motivated by large thermal conductivity, low birefringence and weak group velocity dispersion. By optimally focussing the beam in a 4-mm-long LBO crystal, we have generated about 2.3 W of average power at 532 nm using 4.8 W of available pump power at 1064 nm. The ultrashort green pulses were found out to be near-transform limited sech^2 pulses with a pulse width of Δ τ ≈ 150 fs and being delivered at 78 MHz repetition rate. Due to appreciably low spatial walk-off angle for LBO ({≈ }0.4°), we obtain M^2beam which signifies marginal distortion in comparison with the pump beam (M^2<1.15). We also discuss the impact of third-order optical nonlinearity of the LBO crystal on the generated ultrashort SH pulses.

  12. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    Science.gov (United States)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  13. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  14. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  15. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    Science.gov (United States)

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  16. Highly Efficient Fiber Lasers for Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  17. Temperature stabilization of injection lasers

    International Nuclear Information System (INIS)

    Albanese, A.

    1987-01-01

    Apparatus which stabilizes the temperature, and thereby the output wavelength, of an injection laser. Means monitor the laser terminal voltage across a laser and derive a voltage therefrom which is proportional to the junction voltage of the laser. Means compares the voltage to a reference value from source and a temperature controller adjusts the laser temperature in response to the results of the comparison. Further embodiments of the present invention vary the output wavelength of the laser by varying the reference value from source against which the laser junction voltage is compared. (author)

  18. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  19. Laser frequency stabilization using a transfer interferometer

    Science.gov (United States)

    Jackson, Shira; Sawaoka, Hiromitsu; Bhatt, Nishant; Potnis, Shreyas; Vutha, Amar C.

    2018-03-01

    We present a laser frequency stabilization system that uses a transfer interferometer to stabilize slave lasers to a reference laser. Our implementation uses off-the-shelf optical components along with microcontroller-based digital feedback, and offers a simple, flexible, and robust way to stabilize multiple laser frequencies to better than 1 MHz.

  20. Molecular laser stabilization for LISA

    Science.gov (United States)

    Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar

    2017-11-01

    The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.

  1. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarizationmaintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  2. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A.J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  3. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  4. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy.......Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...

  5. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2013-01-01

    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  6. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji

    2008-01-01

    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  7. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  8. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  9. Increasing Laser Stability with Improved Electronic Instruments

    Science.gov (United States)

    Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.

    2010-03-01

    We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.

  10. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr

    2008-01-01

    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  11. SBS management in Yb-fiber-amplifiers using multimode seeds and pulse-shaping

    International Nuclear Information System (INIS)

    Jolly, Alain; Fikri Serdar Gokhan; Bello, Ramatou; Dupriez, Pascal

    2014-01-01

    We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic Master-Oscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10 μm-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of μJ. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics. (authors)

  12. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  13. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  14. Atomic stabilization in superintense laser fields

    International Nuclear Information System (INIS)

    Gavrila, Mihai

    2002-01-01

    Atomic stabilization is a highlight of superintense laser-atom physics. A wealth of information has been gathered on it; established physical concepts have been revised in the process; points of contention have been debated. Recent technological breakthroughs are opening exciting perspectives of experimental study. With this in mind, we present a comprehensive overview of the phenomenon. We discuss the two forms of atomic stabilization identified theoretically. The first one, 'quasistationary (adiabatic) stabilization' (QS), refers to the limiting case of plane-wave monochromatic radiation. QS characterizes the fact that ionization rates, as calculated from single-state Floquet theory, decrease with intensity (possibly in an oscillatory manner) at high values of the field. We present predictions for QS from various forms of Floquet theory: high frequency (that has led to its discovery and offers the best physical insight), complex scaling, Sturmian, radiative close coupling and R-matrix. These predictions all agree quantitatively, and high-accuracy numerical results have been obtained for hydrogen. Predictions from non-Floquet theories are also discussed. Thereafter, we analyse the physical origin of QS. The alternative form of stabilization, 'dynamic stabilization' (DS), is presented next. This expresses the fact that the ionization probability at the end of a laser pulse of fixed shape and duration does not approach unity as the peak intensity is increased, but either starts decreasing with the intensity (possibly in an oscillatory manner), or flattens out at a value smaller than unity. We review the extensive research done on one-dimensional models, that has provided valuable insights into the phenomenon; two- and three-dimensional models are also considered. Full three-dimensional Coulomb calculations have encountered severe numerical handicaps in the past, and it is only recently that a comprehensive mapping of DS could be made for hydrogen. An adiabatic

  15. A transportable methane stabilized He-Ne laser

    Science.gov (United States)

    Akimoto, Yoshiaki

    1987-06-01

    The performance of a transportable methane stabilized He-Ne laser system, developed for a wavelength-optical frequency standard according to the 1983 Comite Consultatif pour la Definition du Metier, is discussed. An offset-locked laser system using a phase comparison technique is described which is used to evaluate the stabilized laser system. A frequency stability of 2.5 x 10 to the -12th tau exp -1/2, and a resettability of 1 x 10 to the -11th, are estimated for the stabilized laser system.

  16. International Comparison of Methane-Stabilized He-Ne Lasers

    Science.gov (United States)

    Koshelyaevskii, N. B.; Oboukhov, A.; Tatarenkov, V. M.; Titov, A. N.; Chartier, J.-M.; Felder, R.

    1981-01-01

    Two portable methane-stabilized lasers designed at BIPM have been compared with a type a stationary Soviet device developed in VNIIFTRI1. This comparison is one of a series aimed at establishing the coherence of laser wavelength and frequency measurements throughout the world and took place in June 1979. The VNIIFTRI and BIPM lasers using different methods of stabilization, have different optical and mechanical designs and laser tubes. The results of previous measurements, made in VNIIFTRI, of the most important frequency shifts for Soviet lasers together with a method of reproducing their frequency which leads to a precision of 1.10-12 are also presented.

  17. Laser frequency stabilization using bichromatic crossover spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Taek; Seb Moon, Han, E-mail: hsmoon@pusan.ac.kr [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2015-03-07

    We propose a Doppler-free spectroscopic method named bichromatic crossover spectroscopy (BCS), which we then use for the frequency stabilization of an off-resonant frequency that does not correspond to an atomic transition. The observed BCS in the 5S{sub 1/2} → 5P{sub 1/2} transition of {sup 87}Rb is related to the hyperfine structure of the conventional saturated absorption spectrum of this transition. Furthermore, the Doppler-free BCS is numerically calculated by considering all of the degenerate magnetic sublevels of the 5S{sub 1/2} → 5P{sub 1/2} transition in an atomic vapor cell, and is found to be in good agreement with the experimental results. Finally, we successfully achieve modulation-free off-resonant locking at the center frequency between the two 5S{sub 1/2}(F = 1 and 2) → 5P{sub 1/2}(F′ = 1) transitions using a polarization rotation of the BCS. The laser frequency stability was estimated to be the Allan variance of 2.1 × 10{sup −10} at 1 s.

  18. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  19. Tilt-tuned etalon locking for tunable laser stabilization.

    Science.gov (United States)

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  20. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Active stabilization of a diode laser injection lock.

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  3. Stability design considerations for mirror support systems in ICF lasers

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Sommer, S.C.

    1996-10-01

    Some of the major components of laser systems used for Inertial Confinement Fusion (ICF) are the large aperture mirrors which direct the path of the laser. These mirrors are typically supported by systems which consist of mirror mounts, mirror enclosures, superstructures, and foundations. Stability design considerations for the support systems of large aperture mirrors have been developed based on the experience of designing and evaluating similar systems at the Lawrence Livermore National Laboratory (LLNL). Examples of the systems developed at LLNL include Nova, the Petawatt laser, Beamlet, and the National Ignition Facility (NIF). The structural design of support systems of large aperture mirrors has typically been controlled by stability considerations in order for the large laser system to meet its performance requirements for alignment and positioning. This paper will discuss the influence of stability considerations and will provide guidance on the structural design and evaluation of mirror support systems in ICF lasers so that this information can be used on similar systems

  4. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  5. Laser frequency stabilization using a commercial wavelength meter

    Science.gov (United States)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  6. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J

    2005-01-01

    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  7. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  8. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  9. Mathematical modelling and linear stability analysis of laser fusion cutting

    International Nuclear Information System (INIS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-01-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  10. Mathematical modelling and linear stability analysis of laser fusion cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

    2016-06-08

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  11. Active stabilization of a diode laser injection lock

    Energy Technology Data Exchange (ETDEWEB)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2016-06-15

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  12. Active stabilization of a diode laser injection lock

    International Nuclear Information System (INIS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  13. Laser frequency stabilization and shifting by using modulation transfer spectroscopy

    Science.gov (United States)

    Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang

    2014-10-01

    The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.

  14. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  15. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation......A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser...

  16. Frequency stabilization of a He-Ne gas laser by controlling refractive index of laser plasma

    International Nuclear Information System (INIS)

    Xie Yi; Wu Yizun

    1991-01-01

    A new way to stabilize the frequency of a Zeeman He-Ne gas laser is described. The laser frequency is stabilized by controlling the refractive index of the laser plasma. It does not need a gas laser tube with a piezoelectric ceramic (PZT) made by special technology. As the phase-locking technology is used in the laser servo system, the self-beat frequency is a constant and the frequency stability is better than 2.2 x 10 -11 (averaging time = 10 sec.). The long term frequency fluctuation never exceeded 2 x 10 -8 during two months. The frequency of the locked point can be adjusted continuously in the range of over 200 MHz

  17. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  18. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  19. Optimization of the geometrical stability in square ring laser gyroscopes

    International Nuclear Information System (INIS)

    Santagata, R; Beghi, A; Cuccato, D; Belfi, J; Beverini, N; Virgilio, A Di; Ortolan, A; Porzio, A; Solimeno, S

    2015-01-01

    Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of 10 −14 rad s −1 . Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring. (paper)

  20. High-power frequency-stabilized laser for laser cooling of metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Hogervorst, W.; Vassen, W.

    2005-01-01

    A high-power, frequency-stabilized laser for cooling of metastable helium atoms using the 2 S13 →3 P23 transition at 389 nm has been developed. The 389 nm light is generated by frequency doubling of a titanium:sapphire laser in an external enhancement cavity containing a lithium-triborate nonlinear

  1. Absolute frequency shifts of iodine cells for laser stabilization

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Hrabina, Jan; Jedlička, Petr; Číp, Ondřej

    2009-01-01

    Roč. 46, č. 5 (2009), s. 450-456 ISSN 0026-1394 R&D Projects: GA AV ČR IAA200650504; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA AV ČR KAN311610701; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser stabilization * Nd :YAG laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.634, year: 2009

  2. High stability space frame for a large fusion laser

    International Nuclear Information System (INIS)

    Hurley, C.A.; Myall, J.O.

    1975-01-01

    The Shiva laser system is a large neodymium glass laser target irradiation facility being constructed at LLL to perform laser fusion experiments. A frame is being constructed to support the large number of laser components that make up the Shiva system. Twenty laser chains composed of amplifiers, spatial filters, polarizers, rotators, and mirrors will be arranged in an optimum geometry so that each beam arrives at the target simultaneously and within alignment tolerances. This frame is capable of supporting approximately 600 individual component assemblies and maintaining a tolerance of +-4-μrad rotation between any two points over a period of 100 s. Consideration has been given to the positional stability and support of the components, the geometrical array of stacked beams with respect to the oscillator and target, the flow of utilities (e.g., power cables and cooling gas pipes), good accessibility for operation and maintenance, and adaptability for change and growth

  3. New method to estimate the frequency stability of laser signals

    International Nuclear Information System (INIS)

    McFerran, J.J.; Maric, M.; Luiten, A.N.

    2004-01-01

    A frequent challenge in the scientific and commercial use of lasers is the need to determine the frequency stability of the output optical signal. In this article we present a new method to estimate this quantity while avoiding the complexity of the usual technique. The new technique displays the result in terms of the usual time domain measure of frequency stability: the square root Allan variance

  4. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  5. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification

    Science.gov (United States)

    Luo, Daping; Liu, Yang; Gu, Chenglin; Wang, Chao; Zhu, Zhiwei; Zhang, Wenchao; Deng, Zejiang; Zhou, Lian; Li, Wenxue; Zeng, Heping

    2018-02-01

    We report a fiber self-similar-amplification (SSA) comb system that delivers a 250-MHz, 109-W, 42-fs pulse train with a 10-dB spectral width of 85 nm at 1056 nm. A pair of grisms is employed to compensate the group velocity dispersion and third-order dispersion of pre-amplified pulses for facilitating a self-similar evolution and a self-phase modulation (SPM). Moreover, we analyze the stabilities and noise characteristics of both the locked carrier envelope phase and the repetition rate, verifying the stability of the generated high-power comb. The demonstration of the SSA comb at such high power proves the feasibility of the SPM-based low-noise ultrashort comb.

  6. A compact frequency stabilized telecom laser diode for space applications

    Science.gov (United States)

    Philippe, C.; Holleville, D.; Le Targat, R.; Wolf, P.; Leveque, T.; Le Goff, R.; Martaud, E.; Acef, O.

    2017-09-01

    We report on a Telecom laser diode (LD) frequency stabilization to a narrow iodine hyperfine line in the green range, after frequency tripling process using fibered nonlinear waveguide PPLN crystals. We have generated up to 300 mW optical power in the green range ( 514 nm) from 800 mW of infrared power ( 1542 nm), corresponding to a nonlinear conversion efficiency h = P3?/P? 36%. Less than 10 mW of the generated green power are used for Doppler-free spectroscopy of 127I2 molecular iodine, and -therefore- for the frequency stabilization purpose. The frequency tripling optical setup is very compact (test the potential of this new frequency standard based on the couple "1.5 ?m laser / iodine molecule". We have already demonstrated a preliminary frequency stability of 4.8 x 10-14 ? -1/2 with a minimum value of 6 x 10-15 reached after 50 s of integration time, conferred to a laser diode operating at 1542.1 nm. We focus now our efforts to expand the frequency stability to a longer integration time in order to meet requirements of many space experiments, such earth gravity missions, inters satellites links or space to ground communications. Furthermore, we investigate the potential of a new approach based on frequency modulation technique (FM), associated to a 3rd harmonic detection of iodine lines to increase the compactness of the optical setup.

  7. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    Science.gov (United States)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  8. Noise induced stabilization of chaotic free-running laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Virte, Martin, E-mail: mvirte@b-phot.org [Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium)

    2016-05-15

    In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematically pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.

  9. Stability of a Light Sail Riding on a Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Manchester, Zachary [John A. Paulson School of Engineering and Applied Science, Harvard University, 60 Oxford St., Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: zmanchester@seas.harvard.edu [Astronomy Department, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)

    2017-03-10

    The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.

  10. Stability of a Light Sail Riding on a Laser Beam

    International Nuclear Information System (INIS)

    Manchester, Zachary; Loeb, Abraham

    2017-01-01

    The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.

  11. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  12. Heat transfer modelling and stability analysis of selective laser melting

    International Nuclear Information System (INIS)

    Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate

  13. Frequency stabilization of multiple lasers on a single medium-finesse cavity

    Science.gov (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye

    2018-04-01

    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  14. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    International Nuclear Information System (INIS)

    Lawrence, J.

    2002-01-01

    Differences in the beam interaction characteristics of a CO 2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55x10 -3 cm for the CO 2 laser, 18.22x10 -3 cm for the Nd : YAG laser, 17.17x10 -3 cm for the HPDL and 8.41x10 -6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO 2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J cm -2 , 97 J cm -2 , 115 J cm -2 and 0.48 J cm -2 , respectively. The thermal loading value for the CO 2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm -3 , 5.32 kJ cm 3 , 6.69 kJ cm -3 and 57.04 kJ cm -3 , respectively. (author)

  15. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  16. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1995-01-01

    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  17. Amplitude and frequency stabilized solid-state lasers in the near infrared

    International Nuclear Information System (INIS)

    Laporta, P.; Taccheo, S.; Marano, M.; Svelto, O.; Bava, E.; Galzerano, G.; Svelto, C.

    2001-01-01

    In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd:YAG (1064 nm), Er-Yb:glass (1530-1560 nm), and Tm-Ho:YAG (2097 nm) lasers, end-pumped by semiconductor laser diodes. Amplitude stabilization is achieved by means of optoelectronic control loops sensing the laser intensity fluctuations and feeding back the error signal to the current of the pump diodes. Frequency stabilization is pursued using rovibrational molecular lines as absolute frequency references by means of various frequency locking techniques. The most interesting stability results are described in some detail whereas the wide literature cited through the paper provides for a useful reference list of related topics and experiments. (author)

  18. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  19. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  20. Stability of optically injected two-state quantum-dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-12-15

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Stability of optically injected two-state quantum-dot lasers

    International Nuclear Information System (INIS)

    Meinecke, Stefan; Lingnau, Benjamin; Roehm, Andre; Luedge, Kathy

    2017-01-01

    Simultaneous two-state lasing is a unique property of semiconductor quantum-dot (QD) lasers. This not only changes steady-state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single-state laser devices, we find a strong suppression of dynamical instabilities in two-state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all-optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.

    2012-01-01

    We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

  3. Stability of a 1-kW excimer laser with long optical pulses

    NARCIS (Netherlands)

    Timmermans, J.C.M.; Hofmann, T.; Hofmann, Th.; van Goor, F.A.; Witteman, W.J.

    1996-01-01

    For high repetition operation of excimer-lasers care has to be taken of the changing performance of the electrical circuit, gas dynamic effects and contamination of the gas mixture to avoid deterioration of the laser performance. The parameters that influence the stability of the discharge are

  4. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    Science.gov (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  5. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  6. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  7. Stabilization of the Absolute Frequency and Phase of a Compact, Low Jitter Modelocked Semiconductor Diode Laser

    National Research Council Canada - National Science Library

    Delfyett, Peter J., Jr

    2005-01-01

    .... This work represents, to our knowledge, the first stabilized modelocked diode laser using PDH that achieves both supermode elimination and optical frequency comb stabilization. The resulting optical comb source may be useful for advanced RF imaging radar for optical sampling in ADC or in novel waveform generation (DAC's).

  8. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    DEFF Research Database (Denmark)

    Schäffer, Stefan Alaric; Christensen, Bjarke Takashi Røjle; Rathmann, Stefan Mossor

    2017-01-01

    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently...... experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow...... atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2]....

  9. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  10. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    We demonstrate a self-stabilization mechanism of a semiconductor saturable absorber mode-locked linearcavity Yb-doped fiber laser using an intracavity photonic bandgap fiber. This mechanism relies on the spectral shift of the laser pulses to a spectral range of higher anomalous dispersion...... and higher loss of the photonic bandgap fiber, as a reaction to the intracavity power buildup. This, in particular, results in a smaller cavity loss for the stably mode-locked laser, as opposed to the Q-switched mode-locking scenario. The laser provides stable 39–49 pJ pulses of around 230 fs duration at 29...

  11. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  12. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  13. Stability of the mode-locking regime in tapered quantum-dot lasers

    Science.gov (United States)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.

    2018-02-01

    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  14. Frequency stabilized HeNe gas laser with 3.5 mW from a single mode

    NARCIS (Netherlands)

    Ellis, J.D.; Voigt, D.; Spronck, J.W.; Verlaan, A.L.; Munnig Schmidt, R.H.

    2012-01-01

    This paper describes an optical frequency stabilization technique using a three-mode Helium Neon laser at 632.8 nm. Using this configuration, a maximum frequency stability relative to an iodine stabilized laser of 6×10 -12 (71 s integration time) was achieved. Two long term measurements of 62 h and

  15. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  16. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  17. Classical origins of stabilization in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Chism, Will; Choi, Dae-Il; Reichl, L. E.

    2000-01-01

    We investigate the interaction of a two-dimensional model atom with an intense, high-frequency circularly polarized laser pulse. As the laser intensity is increased, the ionization rate initially increases, then decreases dramatically, with the electron wave function developing an asymmetric ring form which rotates with the electric field. We provide evidence that this wave form is due to localization of the electron onto nonlinear classical structures. (c) 2000 The American Physical Society

  18. Photo-preionization stabilized high-pressure glow-discharge lasers

    International Nuclear Information System (INIS)

    Von Bergmann, H.M.

    1980-07-01

    Simple nanosecond stabilization and pulsing techniques were developed to excite high-pressure gas-discharge lasers at high overvoltages and high specific power loadings. The techniques were applied to a variety of ultraviolet and visible laser systems employing fast transmission line pulsers and conventional LC generators. The stabilization procedures are evaluated and the parameters which control the geometry and uniformity of the high-pressure glow discharges are investigated. A detailed study of the formation, distribution and spectral characteristics of the fast surface corona discharges is provided. The stabilization and pulsing techniques were used for the corona and glow discharge excitation of high-pressure ultraviolet N 2 lasers. A detailed spectrally- and temporally-resolved study of the gain, fluorescence and energy extraction characteristics of the atmospheric pressure N 2 plasmas is provided

  19. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    Science.gov (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  20. Enhanced Lamb dip for absolute laser frequency stabilization

    Science.gov (United States)

    Siegman, A. E.; Byer, R. L.; Wang, S. C.

    1972-01-01

    Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.

  1. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach....... We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity...

  2. In situ optoacoustic measurement of the pointing stability of femtosecond laser beams

    Science.gov (United States)

    Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.

    2018-02-01

    A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.

  3. The stability of free-electron lasers against filamentation

    International Nuclear Information System (INIS)

    Barnard, J.J.; Scharlemann, E.T.; Yu, S.S.

    1987-01-01

    In inertial confinement fusion (ICF) experiments, the high electromagnetic fields propagating through a relatively dense plasma can result in a transverse instability, causing the matter and light to form filaments oriented parallel to the light beam. We examine whether a similar instability exists in the electron beam of a free-electron laser, where such an instability could interfere with the transfer of beam kinetic energy into optical wave energy. We heuristically examine the instability in a relativistic beam through which an intense laser beam is propagating. We ignore the FEL effects. We estimate how the altered index of refraction in an FEL affects the dispersion relation. Finally, we estimate the effect that the instability could have on the phase coherence of a particle as it transits an FEL. 10 refs., 2 tabs

  4. Stabilization of the quasi-periodic motion of a Q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Kim, Jeong-Moog; Lee, Kang-Soo

    2004-01-01

    We have developed a stabilization method of quasi-periodicity based on a return map. The method is explained in the forced Van der Pol oscillator, and applied experimentally to a quasi-periodic output of a Q-switched Nd:YAG laser. Even though the attractors have no unstable periodic orbit, we were able to stabilize them to an arbitrarily chosen orbit by targeting the trajectory into it

  5. All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bohling, Christian [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); SECOPTA GmbH, Ostendstr. 25, 12459 Berlin (Germany)], E-mail: c.bohling@pe.tu-clausthal.de; Hohmann, Konrad [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: k.hohmann@pe.tu-clausthal.de; Scheel, Dirk [Systektum GmbH, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: d.scheel@systektum.de; Bauer, Christoph [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: c.bauer@pe.tu-clausthal.de; Schippers, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schippers@pe.tu-clausthal.de; Burgmeier, Joerg [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: j.burgmeier@pe.tu-clausthal.de; Willer, Ulrike [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: u.willer@pe.tu-clausthal.de; Holl, Gerhard [Wehrwissenschaftliches Institut fuer Werk-, Explosiv- und Betriebsstoffe (WIWEB), Grosses Cent, 53913, Swisttal (Germany)], E-mail: gerhardholl@bwb.orgd; Schade, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schade@pe.tu-clausthal.de

    2007-12-15

    An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr{sup 4+}Nd{sup 3+}:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy E{sub p} = 0.8 mJ, wavelength {lambda} = 1064 nm, repetition rate f{sub rep.} = 5 kHz, pulse duration t{sub p} = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg. The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs)

  6. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals

    DEFF Research Database (Denmark)

    Gobron, Olivier; Jung, K.; Galland, N.

    2017-01-01

    Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011......)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from...

  7. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  8. The theory of stability, bistability, and instability in three-mode class-A lasers

    International Nuclear Information System (INIS)

    Jahanpanah, J; Rahdar, A A

    2014-01-01

    Instability is an inevitable and common problem in all different kinds of lasers when they are oscillating in both single-and multi-mode states. Here, the stability conditions are investigated for a three-mode class-A laser. A set of linear equations is derived for the stable oscillation of the cavity central mode together with its left and right adjacent longitudinal modes. The coefficient determinant of stability equations is Hermitian and equal to zero for the roots of two diagonal arrays. In other words, the novelty of our work is to expand the stability coefficient determinant in terms of main diagonal arrays rather than for one row or one column. These diagonal roots lead to two lower and upper boundary curves in the form of a bifurcation. The lower boundary curve mimics the single-mode laser and delimits the instability region (with no above-threshold oscillating mode) from the bistability region (with two above-threshold oscillating modes). The upper boundary curve mimics the two-mode laser and delimits the bistability region from the stability region, in which all three-longitudinal modes are simultaneously oscillating in the above-threshold state. (paper)

  9. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  10. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  11. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    Science.gov (United States)

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  12. Laser frequency stabilization by combining modulation transfer and frequency modulation spectroscopy.

    Science.gov (United States)

    Zi, Fei; Wu, Xuejian; Zhong, Weicheng; Parker, Richard H; Yu, Chenghui; Budker, Simon; Lu, Xuanhui; Müller, Holger

    2017-04-01

    We present a hybrid laser frequency stabilization method combining modulation transfer spectroscopy (MTS) and frequency modulation spectroscopy (FMS) for the cesium D2 transition. In a typical pump-probe setup, the error signal is a combination of the DC-coupled MTS error signal and the AC-coupled FMS error signal. This combines the long-term stability of the former with the high signal-to-noise ratio of the latter. In addition, we enhance the long-term frequency stability with laser intensity stabilization. By measuring the frequency difference between two independent hybrid spectroscopies, we investigate the short-and long-term stability. We find a long-term stability of 7.8 kHz characterized by a standard deviation of the beating frequency drift over the course of 10 h and a short-term stability of 1.9 kHz characterized by an Allan deviation of that at 2 s of integration time.

  13. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  14. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Junges, Leandro; Gallas, Jason A C

    2015-01-01

    The dynamics of two mutually delay-coupled semiconductor lasers has been frequently studied experimentally, numerically, and analytically either for weak or strong detuning between the lasers. Here, we present a systematic numerical investigation spanning all detuning ranges. We report high-resolution stability diagrams for wide ranges of the main control parameters of the laser, as described by the Lang–Kobayashi model. In particular, we detail the parameter influence on dynamical performance and map the distribution of chaotic pulsations and self-generated periodic spiking with arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both symmetric and non-symmetric configurations with respect to detuning. The influence of the delay –time on the self-organization of periodic and chaotic laser phases as a function of the coupling and detuning is also described in detail. (paper)

  15. Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd:YAG laser

    Science.gov (United States)

    Darroudi, Majid; Ahmad, M. B.; Zamiri, Reza; Abdullah, A. H.; Ibrahim, N. A.; Sadrolhosseini, A. R.

    2011-03-01

    Colloidal silver nanoparticles (Ag-NPs) were successfully prepared using a nanosecond pulsed Nd:YAG laser, λ = 1064 nm, with laser fluence of approximately about 360 mJ/pulse, in an aqueous gelatin solution. In this work, gelatin was used as a stabilizer, and the size and optical absorption properties of samples were studied as a function of the laser ablation times. The results from the UV-vis spectroscopy demonstrated that the mean diameter of Ag-NPs decrease as the laser ablation time increases. The Ag-NPs have mean diameters ranging from approximately 10 nm to 16 nm. Compared with other preparation methods, this work is clean, rapid, and simple to use.

  16. Stability of a short Rayleigh length laser resonator

    Directory of Open Access Journals (Sweden)

    P. P. Crooker

    2005-04-01

    Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.

  17. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  18. Quantitative description of the saturated absorption signal in iodine stabilized He-Ne lasers

    International Nuclear Information System (INIS)

    Brillet, A.; Cerez, P.

    1977-01-01

    He-Ne lasers stabilized by saturated absorption 127 I 2 have been studied in many laboratories and are now widely used as optical frequency standards. But, although their frequency stability and reproducibility have been extensively measured and reported, the size and the width of the saturated absorption signals used for the stabilization are not yet well understood. Particularly, the extrapolation of the linewidth to zero pressure results in an apparent discrepancy with the lifetime of the upper level of the transition. By measuring or evaluating all the important parameters which affect the operation of these lasers we are now able to describe with a good accuracy the properties of the saturated absorption signal and their variations with the iodine pressure, using Greenstein's theory of a laser with an internal absorption cell. At low iodine pressures (typically below 100 m Torr), we observe a divergence between experimental and theoretical results, which is interpreted as an effect of the laser beam geometry, when the saturation parameter becomes much larger than 1. (orig.) [de

  19. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    International Nuclear Information System (INIS)

    Bauer, D.; Ceccherini, F.

    2002-01-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies ω 1 and ω 2 =nω 1 , n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results

  20. Frequency stabilization of quantum cascade laser for spectroscopic CO2 isotope analysis

    Science.gov (United States)

    Han, Luo; Xia, Hua; Pang, Tao; Zhang, Zhirong; Wu, Bian; Liu, Shuo; Sun, Pengshuai; Cui, Xiaojuan; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2018-06-01

    Using off-axis integrated cavity output spectroscopy, named OA-ICOS, the absorption spectrum of CO2 at 4.32 μm is recorded by using a quantum cascade laser (QCL). The concentration of the three isotopologues 16O12C16O, 16O13C16O and 16O12C18O is detected simultaneously. The isotope abundance ratio of 13C and 18O in CO2 gas can be obtained, which is most useful for ecological research. Since the ambient temperature has a serious influence on the output wavelength of the laser, even small temperature variations seriously affect the stability and sensitivity of the system. In this paper, a wavelength locking technique for QCL is proposed. The output of a digital potentiometer integrated in the laser current driver control is modified by software, resulting in a correction of the driving current of the laser and thus of its wavelength. This method strongly reduces the influence of external factors on the wavelength drift of lasers and thus substantially improves the stability and performance of OA-ICOS as is demonstrated with long-time measurements on CO2 in laboratory air.

  1. Plasma measurement by feedback-stabilized dual-beam laser interferometer

    International Nuclear Information System (INIS)

    Yasuda, Akio; Kawahata, Kazuo; Kanai, Yasubumi.

    1982-03-01

    The plasma density in a dynamic magneto arcjet is measured by a stabilized dual-beam laser interferometer proposed by the authors. The fringe shift for a 0.63 μm beam of He-Ne laser is used to stabilize the interferometer against the effect of mechanical vibration by means of a feedback controlled speaker coil, while the other beam of 3.39 μm, for which the effect of mechanical vibrations is excluded, is used to measure plasma density. Stability of --1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hertz. Stability for higher frequencies, which determines the accuracy of the present measurement, is limited to --1/30 of one fringe for 0.63 μm, which corresponds to --1/200 of one fringe and a line electron density of --1.5 x 10 14 cm - 2 for 3.39 μm, by acoustic noise picked up by the speaker coil. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. Since the effect of the neutral gas background is practically reduced to zero, the present interferometer is to be applied advantageously to the diagnostics of the plasma produced in high pressure gases. (author)

  2. Electron localization in fragmentation of H2 with CEP stabilized laser pulses

    International Nuclear Information System (INIS)

    Kremer, Manuel; Fischer, Bettina; Schroeter, Claus Dieter; Feuerstein, Bernold; Moshammer, Robert; Ullrich, Joachim; Rudenko, Artem; Jesus, Vitor L B de

    2009-01-01

    Fully differential data on ionization and dissociation of H 2 in ultra-short (∼ 6 fs), linearly polarized, intense (∼ 4 . 10 14 W/cm 2 ) laser pulses with stabilized carrier-envelope-phase (CEP) have been measured using a reaction microscope. Depending on the CEP of the laser pulses we see a clear asymmetry in the emission direction of the created protons. Contrary to earlier measurements by Kling et al. we observe the highest asymmetry for kinetic energy releases (proton energy) between 0-2 eV. This excludes the electron re-collision mechanism suggested in [1] as dominant excitation channel and requires another explanation.

  3. Operational stability of a compact 600-W KrF laser

    International Nuclear Information System (INIS)

    Borisov, V M; Vinokhodov, A Yu; Vodchits, V A; El'tsov, A V; Basting, D; Stamm, U; Voss, F

    1998-01-01

    The problem of the operational stability of a KrF laser with an average output power of at least 600 W was investigated. An experimental study was made of the dependences of the rms deviation σ of the output energy on the charging voltage, on the pulse repetition rate, and on the operating time. The value of σ varied from 1.2% to 6.0%, depending on the experimental conditions. For an average power of ∼ 600 W, the deviation σ did not exceed 3.2%. (lasers and amplifiers)

  4. Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm

    Czech Academy of Sciences Publication Activity Database

    Jambunathan, Venkatesan; Horáčková, Lucie; Navrátil, Petr; Lucianetti, Antonio; Mocek, Tomáš

    2016-01-01

    Roč. 128, č. 12 (2016), s. 1328-1331 ISSN 1041-1135 R&D Projects: GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : Diode-pumped * cryogenic * volume Bragg grating * Yb doped * solid state lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  5. Ultrasonic inspection of AA6013 laser welded joints

    Directory of Open Access Journals (Sweden)

    Adriano Passini

    2011-09-01

    Full Text Available Interest in laser beam welding for aerospace applications is continuously growing, mainly for aluminum alloys. The joints quality is usually assessed by non-destructive inspection (NDI. In this work, bead on plate laser welds on 1.6 mm thick AA6013 alloy sheets, using a 2 kW Yb-fiber laser were obtained and inspected by pulse/echo ultrasonic phased-array technique. Good and poor quality welds were inspected in order to verify the limits of inspection, comparing also to X-ray radiography and metallographic inspections. The results showed that ultrasonic phased array technique was able to identify the presence of grouped porosity, through the attenuation of the amplitude of the echo signal. This attenuation is attributed to the scattering of the waves caused by micro pores, with individual size below the resolution limit of the equipment, but when grouped, can cause a perceptive effect on the reflection spectra.

  6. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej

    2017-01-01

    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  7. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Science.gov (United States)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  8. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes

    Science.gov (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining

    2016-10-01

    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  9. Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser

    Science.gov (United States)

    Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas

    2018-02-01

    We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.

  10. Low-level laser therapy with 940 nm diode laser on stability of dental implants: a randomized controlled clinical trial.

    Science.gov (United States)

    Torkzaban, Parviz; Kasraei, Shahin; Torabi, Sara; Farhadian, Maryam

    2018-02-01

    Low-level laser therapy (LLLT) is a non-invasive modality to promote osteoblastic activity and tissue healing. The aim of this study was to evaluate the efficacy of LLLT for improvement of dental implant stability. This randomized controlled clinical trial was performed on 80 dental implants placed in 19 patients. Implants were randomly divided into two groups (n = 40). Seven sessions of LLLT (940 nm diode laser) were scheduled for the test group implants during 2 weeks. Laser was irradiated to the buccal and palatal sides. The same procedure was performed for the control group implants with laser hand piece in "off" mode. Implant stability was measured by Osstell Mentor device in implant stability quotient (ISQ) value immediately after surgery and 10 days and 3, 6, and 12 weeks later. Repeated measures ANOVA was used to compare the mean ISQ values (implant stability) in the test and control groups. Statistical test revealed no significant difference in the mean values of implant stability between the test and control groups over time (P = 0.557). Although the mean values of implant stability changed significantly in both groups over time (P laser group in the first weeks and increased from the 6th to 12th week, LLLT had no significant effect on dental implant stability.

  11. Michelson mode selector for spectral range stabilization in a self-sweeping fiber laser.

    Science.gov (United States)

    Tkachenko, A Yu; Vladimirskaya, A D; Lobach, I A; Kablukov, S I

    2018-04-01

    We report on spectral range stabilization in a self-sweeping laser by adding a narrowband fiber Bragg grating (FBG) to the output mirror in the Michelson configuration. The effects of FBG reflectivity and optical path difference in the Michelson interferometer on the laser spectral dynamics are investigated. Optimization of the interferometer allows us to demonstrate broadband (over 16 nm) self-sweeping operation and reduction of the start and stop wavelength fluctuations by two orders and one order of magnitude (∼100 and 15 times) for start and stop bounds, respectively (down to several picometers). The proposed approaches significantly improve quality of the spectral dynamics and facilitate application of the self-sweeping lasers.

  12. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    Science.gov (United States)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  13. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  14. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    International Nuclear Information System (INIS)

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Darroudi, Majid; Zak, Ali Khorsand; Drummen, Gregor P.C.

    2012-01-01

    Highlights: ► Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. ► Nanoparticles of ±15 nm are produced with a narrow size distribution. ► Starch can be used as a template to control nanoparticle size. ► Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength (λ = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or flocculation, which was reflected in no significant change in the ZnO nanoparticle size and size distribution. Overall

  15. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    Science.gov (United States)

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  16. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  17. Evaluation of the tear film stability after laser in situ keratomileusis using the tear film stability analysis system.

    Science.gov (United States)

    Goto, Tomoko; Zheng, Xiaodong; Klyce, Stephen D; Kataoka, Hisashi; Uno, Toshihiko; Yamaguchi, Masahiko; Karon, Mike; Hirano, Sumie; Okamoto, Shigeki; Ohashi, Yuichi

    2004-01-01

    To evaluate the tear film stability of patients before and after laser in situ keratomileusis (LASIK) using the tear film stability analysis system (TSAS). Prospective observational case series. New videokeratography software for a topographic modeling system (TMS-2N) was developed that can automatically capture consecutive corneal surface images every second for 10 seconds. Thirty-four subjects (64 eyes) who underwent myopia LASIK were enrolled in this study. All subjects were examined with the new system before LASIK and at 1 week, 1 month, 3 months, and 6 months after the surgery. Corneal topographs were analyzed for tear breakup time (TMS breakup time) and breakup area (TMS breakup area). Based on pre-LASIK TSAS analysis, subjects were separated into normal and abnormal TSAS value groups. The criteria for the normal group were either TMS breakup time more than 5 seconds or TMS breakup area less than 0.2. The percentage of the occurrence of superficial punctuate keratitis was compared between the two groups with regard to subject's dry eye signs and symptoms. Tear film stability decreased significantly during the early period after LASIK, as indexed by decreased TMS breakup time and increased TMS breakup area. Tear film instability resolved at 6 months after surgery. Before LASIK, 22 subjects (43 eyes) had normal TSAS evaluation and 12 subjects (21 eyes) were abnormal. After LASIK, among normal TSAS value eyes, 8 of 43 (18.6%) eyes developed superficial punctuate keratitis. In sharp contrast, 14 of 21 (66.7%) eyes in the abnormal group displayed superficial punctuate keratitis, correlating well with the patients' dry eye symptoms. The difference in the presence of superficial punctuate keratitis after LASIK between normal and abnormal TSAS value groups was statistically significant (P <.001). Subjects with abnormal TSAS evaluation also displayed resistance to dry eye treatment and had extended period of recovery. Tear film stability analysis can be a useful

  18. High-temperature stability of laser-joined silicon carbide components

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Marion, E-mail: marion.herrmann@tu-dresden.de; Lippmann, Wolfgang; Hurtado, Antonio

    2013-11-15

    Silicon carbide is recommended for applications in energy technology due to its good high-temperature corrosion resistance, mechanical durability, and abrasion resistance. The prerequisite for use is often the availability of suitable technologies for joining or sealing the components. A laser-induced process using fillers and local heating of the components represents a possible low-cost option. Investigations in which yttrium aluminosilicate glass was used for laser-induced brazing of SiC components of varying geometry are presented. A four-point bending strength of 112 MPa was found for these joints. In burst tests, laser-joined components were found to withstand internal pressures of up to 54 MPa. Helium leak tests yielded leak rates of less than 10{sup –8} mbar l s{sup −1}, even after 300 h at 900 °C. In contrast, the assemblies showed an increased leak rate after annealing at 1050 °C. The short process time of the laser technique – in the range of a few seconds to a few minutes – results in high temperature gradients and transients. SEM analysis showed that the filler in the seam predominantly solidifies in a glassy state. Crystallization occurred during later thermal loading of the joined components, with chemical equilibrium being established. Differences in seam structures yielded from different cooling rates in the laser process could not be equalized by annealing. The results demonstrated the long-term stability of laser-brazed SiC assemblies to temperatures in the range of glass transformation (900 °C) of the yttrium aluminosilicate filler. In technological investigations, the suitability of the laser joining technique for sealing of SiC components with a geometry approximating that of a fuel element sleeve pin (pin) in a gas-cooled fast reactor was proven.

  19. The Simulation of the stabilizing process of glass nanoparticle in optical tweezer using series of laser pulses

    International Nuclear Information System (INIS)

    Ho Quang Quy; Hoang Dinh Hai

    2012-01-01

    In this article the stable region and stabilizing process of dielectric particle in fluid by the optical tweezer using the series of laser pulses are investigated. The influence of the repetition period and number of laser pulses on the radial variance of particle and the so-called stable space-time pillar is simulated and discussed. (author)

  20. Simulation of beam pointing stability on targeting plane of high power excimer laser system

    International Nuclear Information System (INIS)

    Wang Dahui; Zhao Xueqing; Zhang Yongsheng; Zheng Guoxin; Hu Yun; Zhao Jun

    2011-01-01

    Based on characteristics of image-relaying structure in high power excimer MOPA laser system, simulation and analysis software of targeting beam's barycenter stability was designed by using LABVIEW and MATLAB. Simulation was made to measured results of every optical component in laboratory environment. Simulation and validation of budget values for optical components was and optimization of error budget of system was accomplished via post-allocation for several times. It is shown that targeting beam's barycenter stability in the condition of current laboratory environment can't satisfy needs and index of high demand optical components can be allotted to 1.7 μrad when index of low demand optical components have some stability margin. These results can provide a guide to construction of system and design and machining of optical components and optimization of system. Optical components of laboratory on work can satisfy optimized distributed index, which reduce the demand of structure to some extent. (authors)

  1. Spatial hole burning and spectral stability of a quantum-dot laser

    International Nuclear Information System (INIS)

    Savelyev, A. V.; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E.

    2015-01-01

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum

  2. Spatial hole burning and spectral stability of a quantum-dot laser

    Energy Technology Data Exchange (ETDEWEB)

    Savelyev, A. V., E-mail: savelev@mail.ioffe.ru; Korenev, V. V.; Maximov, M. V.; Zhukov, A. E. [Russian Academy of Sciences, Nanotechnology Center, St. Petersburg Academic University (Russian Federation)

    2015-11-15

    The inhomogeneous intensity distribution of the optical model along the axis of a semiconductor quantum-dot laser results in spatial hole burning. The influence of this phenomenon on the stability of the multifrequency emission spectrum is studied when the optical transition of the quantum dots is characterized by considerable homogeneous broadening. The results of two models—in which inhomogeneous broadening is disregarded and taken into account—regarding the stability of the radiation spectrum under the influence of slight variation of the spectral loss dependence in the resonator are compared. Inhomogeneous distribution of the charge carriers (spatial hole burning) is found to be a critical factor in determining the form and stability of the spectrum.

  3. Structure stability index allocation theory and measurement of laser prototype facility

    International Nuclear Information System (INIS)

    Zhang Junwei; China Academy of Engineering Physics, Mianyang; Zhou Hai; Feng Bin; Lin Donghui; Jing Feng; Zhou Yi; Wang Shilong

    2008-01-01

    Structure stability is an important design index of ICF driver. Based on laser prototype facility(TIL) design characteristic of multi-pass amplifier and frame structure, the optical matrix is used to analyze the single optical element influence on the beam drift and get the mathematic model. Considering all the optical elements influence on the beam drift, the mathematic model of the optical element stability index allocation is built, the parameter relation of the mathematic model is defined according to the structure characteristic of TIL, the stability index of each optical element is got as the support structure design index. Charge-coupled device(CCD) detect technology is used to measure the general beam stability of TIL. The root mean square beam drift in x and y direction are 2.78 μm, the difference between peak and valley values are 14.4 μm and 15.60 μm, respectively. The result indicates that the stability drift of the prototype facility can satisfy the design requirement, the way of the stability allocation is reasonable. (authors)

  4. Feedback-stabilized dual-beam laser interferometer for plasma measurements

    International Nuclear Information System (INIS)

    Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.

    1980-01-01

    A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases

  5. All-fiber femtosecond Cherenkov laser at visible wavelengths

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe Visbech

    2013-01-01

    -matching condition [1]. The resonant ultrafast wave conversion via the fiber-optic CR mechanism is instrumental for applications in biophotonics such as bio-imaging and microscopy [2]. In this work, we demonstrate a highly-stable all-fiber, fully monolithic CR system based on an Yb-fiber femtosecond laser, producing...... to be as low as -103 dBc/Hz. This is 2 orders of magnitudes lower noise as compared to spectrally-sliced supercontinuum, which is the current standard of ultrafast fiber-optic generation at visible wavelength. The layout of the laser system is shown in Fig. 1(a). The system consists of two parts: an all-fiber......Fiber-optic Cherenkov radiation (CR), also known as dispersive wave generation or non-solitonic radiation, is produced in small-core photonic crystal fibers (PCF) when a soliton perturbed by fiber higher-order dispersion co-propagates with a dispersive wave fulfilling a certain phase...

  6. Reliable Operation for 14500 h of a Wavelength-Stabilized Diode Laser System on a Microoptical Bench at 671 nm

    DEFF Research Database (Denmark)

    Sumpf, Bernd; Maiwald, Martin; Müller, André

    2012-01-01

    Reliability tests for wavelength-stabilized compact diode laser systems emitting at 671 nm are presented. The devices were mounted on microoptical benches with the dimensions of 13 mm $\\times\\,$4 mm. Reflecting Bragg gratings were used for wavelength stabilization and emission width narrowing...

  7. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    Science.gov (United States)

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  8. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS).

    Science.gov (United States)

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem

    2011-02-14

    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  9. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  10. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  11. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  12. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    International Nuclear Information System (INIS)

    Dinda, G.P.; Dasgupta, A.K.; Mazumder, J.

    2009-01-01

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO 2 laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  13. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, G.P., E-mail: dindag@focushope.edu [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States); Dasgupta, A.K. [Center for Advanced Technologies, Focus: HOPE, Detroit, MI 48238 (United States); Mazumder, J. [Center for Laser Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-05-25

    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO{sub 2} laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  14. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan

    2017-10-24

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  15. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan; Guo, Xingang; Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  16. Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding

    Science.gov (United States)

    Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin

    2018-05-01

    An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.

  17. A molecular low power CO/sub 2/ laser with a stabilized output frequency

    Energy Technology Data Exchange (ETDEWEB)

    Plinski, E.F.; Abramski, K.M.; Nowicki, R.; Pienkowski, J.; Rzepka, J.

    1983-01-01

    This laser has a resonator consisting of a spherical mirror with a slope radius of 10 meters and a reflecting diffraction grating (120 lines per millimeter). The use of this grating makes it possible to isolate one of the lines in the 10.4 or 9.4 micrometer bands. A mirror with a central hole 2.5 millimeters in diameter is mounted on a piezoceramic holder designed for tuning the resonator. Frequency stabilization is based on synchronous detection. An auxillary modulating signal injected to a specific section of the piezoceramic holder modulates the level of the laser. The change in the output power may be detected using an uncooled detector (Cd, Hg) Te. The error signal, injected to the holder, tunes the resonator so that it operates in the center of the output power curve.

  18. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  19. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  20. On the way to stabilized laser-driven GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shao-wei; Weineisen, Tobias; Fuchs, Matthias; Popp, Antonia; Major, Zsuzsanna; Weingartner, Raphael; Ahmad, Izhar; Schmid, Karl; Marx, Benjamin; Krausz, Ferenc; Gruener, Florian; Karsch, Stefan [Max-Planck Institute of Quantum Optics, Munich (Germany); Ludwig-Maximilians University, Munich (Germany); Osterhoff, Jens [LOASIS Program, Lawrence Livermore National Laboratory, Livermore (United States); Schroeder, Hartmut; Haas, Harald [Max-Planck Institute of Quantum Optics, Munich (Germany); Rowlands-Rees, Tom; Hooker, Simon [University of Oxford, Oxford (United Kingdom)

    2010-07-01

    Laser-driven-wakefield electron accelerators have shown electron beams with energies of up to 1 GeV from a centimeter-scale plasma accelerator. In order to achieve higher electron energies, these acceleration distances need to be increased. This can be realized with a discharge capillary. However, a discharge typically introduces instabilities on both pointing and energy of the generated electrons. In order to improve the stability, we demonstrate a preliminary test of a modified discharge which includes a pre-pulse circuit before the firing of the main pulse. We also show gas density shaping by a laser- machined nozzle which should be able to make a more precise injection in the capillary accelerator thus reducing the energy instability.

  1. Safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser.

    Science.gov (United States)

    Khoramnia, Ramin; Salgado, Josefina P; Wuellner, Christian; Donitzky, Christof; Lohmann, Chris P; Winkler von Mohrenfels, Christoph

    2012-09-01

    To evaluate the safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser (Concept System 1000; WaveLight GmbH, Erlangen, Germany). LASIK was performed on twenty eyes with myopia or myopic astigmatism (mean spherical equivalent refraction: -3.97±1.72 dioptres (D); mean cylinder: -0.84±0.77 D) using a microkeratome for flap creation and the Concept System 1000 for photoablation. Patients were examined preoperatively as well as 1, 3 and 6 months after the treatment. Manifest sphere and cylinder, uncorrected (UCDVA) and best corrected (BCDVA) distance visual acuity, corneal topography and pachymetry were analysed. We observed no adverse events that might have been associated with the use of a repetition rate of 1000 Hz. All eyes maintained or had improved BCDVA at 6 months after treatment when compared to preoperative values. Six months after LASIK, UCDVA was 20/20 or better in 85% and 20/25 or better in 100% of the eyes. The spherical equivalent refraction was within ±0.50 D in 95% of the eyes at 6 months after surgery. The refraction stayed stable over time; 95% of the eyes changedLASIK with the prototype 1000-Hz excimer laser was safe, efficient and predictable. The postoperative refraction was stable over time. There were no specific clinical side-effects that might be associated with the use of such a high repetition rate. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  2. Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharyash, V F; Kashirsky, A V; Klementyev, V M [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-10-31

    We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)

  3. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  4. Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry

    International Nuclear Information System (INIS)

    Grayson, K; De Silva, C M; Hutchins, N; Marusic, I

    2017-01-01

    The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)

  5. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    Science.gov (United States)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  6. Feedback-stabilized fractional fringe laser interferometer for plasma density measurements

    International Nuclear Information System (INIS)

    Schneider, J.; Robertson, S.

    1979-01-01

    A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system

  7. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    Science.gov (United States)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  8. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    Energy Technology Data Exchange (ETDEWEB)

    Temporal, M., E-mail: mauro.temporal@hotmail.com [Centre de Mathématiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B. [CEA, DIF, F-91297 Arpajon Cedex (France); Garbett, W. J. [AWE plc, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Ramis, R. [ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-10-15

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  9. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  10. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    Science.gov (United States)

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  11. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  12. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  13. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  14. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  15. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  16. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability

    Science.gov (United States)

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2018-03-01

    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  17. Self-focusing, self modulation and stability properties of laser beam propagating in plasma: A variational approach

    International Nuclear Information System (INIS)

    Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju

    2010-01-01

    Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.

  18. Analysis of feature stability for laser-based determination of tissue thickness

    Science.gov (United States)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias

    2015-03-01

    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  19. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    Science.gov (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  20. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Science.gov (United States)

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  1. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er3+:LiYF4

    International Nuclear Information System (INIS)

    Boettger, Thomas; Pryde, G.J.; Thiel, C.W.; Cone, R.L.

    2007-01-01

    Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er 3+ : 4 I 15/2 →4 I 13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF 4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7 Li and by the very similar radii of Er 3+ and the Y 3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er 3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection

  2. ARTICLES: Stabilization of the composition of the gaseous medium in a pulse-periodic CO2 laser by hopcalite

    Science.gov (United States)

    Baranov, V. Yu; Drokov, G. F.; Kuz'menko, V. A.; Mezhevov, V. S.; Pigul'skaya, V. V.

    1986-05-01

    The results of experiments on using hopcalite to stabilize the gas mixture composition in pulse-periodic and single-pulse CO2 lasers are reported. A study was made of the reasons for a fall in the activity of the catalyst with time under typical CO2 laser conditions and a catalyst regeneration regime was selected. The use of hopcalite ensured prolonged operation of a high-power pulse-periodic CO2 laser without replenishment of the gas mixture in a closed loop. Certain characteristic features concerning the use of hopcalite are described.

  3. Iodine-frequency-stabilized laser diode and displacement-measuring interferometer based on sinusoidal phase modulation

    Science.gov (United States)

    Duong, Quang Anh; Vu, Thanh Tung; Higuchi, Masato; Wei, Dong; Aketagawa, Masato

    2018-06-01

    We propose a sinusoidal phase modulation method to achieve both the frequency stabilization of an external-cavity laser diode (ECLD) to an 127I2 saturated absorption transition near 633 nm and displacement measurement using a Mach–Zehnder interferometer. First, the frequency of the ECLD is stabilized to the b 21 hyperfine component of the P(33) 6-3 transition of 127I2 by combining sinusoidal phase modulation by an electro-optic modulator and frequency modulation spectroscopy by chopping the pump beam using an acousto-optic modulator. Even though a small modulation index of m  =  3.768 rad is utilized, a relative frequency stability of 10‑11 order is obtained over a sampling time of 400 s. Secondly, the frequency-stabilized ECLD is applied as a light source to a Mach–Zehnder interferometer. From the two consecutive modulation harmonics (second and third orders) involved in the interferometer signal, the displacement of the moving mirror is determined for four optical path differences (L 0  =  100, 200, 500, and 1000 mm). The measured modulation indexes for the four optical path differences coincide with the designated value (3.768 rad) within 0.5%. Compared with the sinusoidal frequency modulation Michelson interferometer (Vu et al 2016 Meas. Sci. Technol. 27 105201) which was demonstrated by some of the same authors of this paper, the phase modulation Mach–Zhender interferometer could fix the modulation index to a constant value for the four optical path differences. In this report, we discuss the measurement principle, experimental system, and results.

  4. Stabilization of the Rayleigh - Taylor instability with convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.

    1992-01-01

    In the framework of WKB approximation the problem is studied of stabilizing the Rayleigh - Taylor instability with unhomogeneous convective flow, developing in the ablation zone during the ablative acceleration of the laser target plasma. The eigenvalue (instability growth rates) problem is reduced to solving an algebraic equation with the coefficients depending on the unperturbed profile structure of hydrodynamic variables. For the important case of the incompressible plasma subsonic flow, the instability growth rates is shown to vanish at k=k 0 =max(2(g|∇ ln p|) 1/2 /ν). The consistency condition of the model consists in the smallness of the local Froude number in the region of instability development. However, as seen from the comparison with the numerical calculations, the model is well appicable also for the case of the sufficiently abrupt density gradient provided the Froude number is of order of unity

  5. arXiv Mechanical stability of the CMS strip tracker measured with a laser alignment system

    CERN Document Server

    Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-04-21

    The CMS tracker consists of 206 m$^2$ of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from $-25$ to $+25^\\circ$C. The mechanical stability of tracker components during physics operation was monitored with a few $\\mu$m resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011-2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30$ \\mu$m. In addition, temperature variations were found to cause displacements of tracker structures of about 2$\\mu$m/$^\\circ$C, which largely revert to their initial positions when the temperature is restored to its original value.

  6. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    Science.gov (United States)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  7. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.

    1981-08-01

    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  8. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  9. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    Science.gov (United States)

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  10. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  11. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  12. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  13. Stabilization of the composition of the gas medium of a repetitively pulsed CO2 laser by means of hopcalite

    Science.gov (United States)

    Baranov, V. Iu.; Drokov, G. F.; Kuzmenko, V. A.; Mezhevov, V. S.; Pigulskaia, V. V.

    1986-05-01

    Results of experiments in which hopcalite was used to stabilize the composition of the gas medium of repetitively pulsed and monopulse CO2 lasers are reported. In particular, the mechanisms of the decrease in the catalyst activity with time under conditions for catalyst regeneration are determined. It is shown that the use of hopcalite has made it possible to achieve long-term operation of a high-power repetitively pulsed CO2 laser without changing the gas mixture in a closed circuit. Some details related to the use of hopcalite are discussed.

  14. A novel method for soil aggregate stability measurement by laser granulometry with sonication

    Science.gov (United States)

    Rawlins, B. G.; Lark, R. M.; Wragg, J.

    2012-04-01

    Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the

  15. Stabilization of the Rayleigh-Taylor instability by convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bul'ko, A.B.; Liberman, M.A.

    1992-01-01

    The authors use the WKB-approximation to treat the problem of the stabilization by an inhomogeneous convective current of the Rayleigh-Taylor instability developing in the ablation zone when the plasma of laser targets is accelerated by ablation. The problem of the eigenvalues - the instability growth rates - is reduced to the solution of an algebraic equation with coefficients which depend on the structure of the unperturbed profiles of the hydrodynamic variables. They show for the practically important case of subsonic flow of an incompressible plasma that the instability growth rate vanishes for k = k o = max[2(g|∇lnρ|) 1/2 /v]. The condition for the self-consistency of the model is that the local Froude number be small in the region where the instability develops; however, comparison with numerical calculations shows that the model is also applicable in the case of rather steep density gradients when the Froude number is of order unity. 32 refs., 2 figs

  16. Stabilization of stoichiometric LaTiO{sub 3} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Matthias; Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Like in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. In contrast to LAO, the stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen-rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of oxidizing and reducing background atmospheres and the influence of the substrate on LaTi{sup 3+}O{sub 3} thin film growth by pulsed laser deposition. In situ x-ray photoelectron spectroscopy of the films prepared on STO exhibit overoxidation probably due to oxygen out-diffusion from the STO substrate, which is reduced for growth on DyScO{sub 3} due to the lower oxygen mobility. In addition, we found that a LAO capping layer of a few unit cells thickness acting like a diffusion barrier for oxygen prevents the LTO film from overoxidation during storage in air.

  17. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    Science.gov (United States)

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  18. Long term carrier envelope phase stabilization of a grating based high power femtosecond laser using the direct locking method

    International Nuclear Information System (INIS)

    Lee, Jae Hwan; Lee, Youg Soo; Park, Juyun; Nam, Chang Hee; Yu, Tae Jun

    2008-01-01

    The carrier envelope phase (CEP)stabilization of femtosecond laser pulses has been intensively investigated for ultrafast science as well as for frequency metrology. In the case of few cycle pulses stabilization and control of the CEP is an important issue, since the electric field profile changes with CEP variation. We have developed the direct locking method to stabilize the CEP for the investigation of attosecond physics. The direct locking method uses the beating signal itself, measured using an f to 2f interferometer, as an error signal to a feedback loop. The direct locking method quenches the beating signal so that the CEP variation between successive pulses become zero and every pulses from the oscillator ts identical. Due to the direct use of the beating signal, the signal processing is simple and complex equipment, used in the case of the phase locked loop (PLL)method operating in the frequency domain, are not required. For long term stability, we have proposed and implemented a double feedback technique, and achieved CEP stabilization of the oscillator for 24 hours, as shown in Fig. 1. This long term CEP stabilization was achieved without realignment of any optical components. The CEP stabilization for a whole day is a clear demonstration of the robustness of the direct locking method. The amplification of CEP stabilized laser pulses induces additional CEP variation. Even though the CEP of an oscillator is stabilized, the CEP drift is generated again during amplification due to external perturbations, such as pumping power fluctuation and beam pointing fluctuation. To measure the CEP drift of the amplified pulses, a spectral interferometer (SI)was employed. The CEP drift obtained from SI was used as the error signal of another feedback loop installed in the amplifier chain. To compensate for the large CEP drift induced during amplification, the grating separation of the pulse compressor was adjusted. Figure 2 shows the result of CEP stabilization of

  19. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    Science.gov (United States)

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  20. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    Directory of Open Access Journals (Sweden)

    Tobias Gabriel

    2017-03-01

    Full Text Available Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM and scanning electron microscopy (SEM, combined with electron backscatter diffraction (EBSD and energy dispersive X-ray spectroscopy (EDX. Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  1. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  2. Laser frequency stabilization and control of optical cavities with suspended mirrors for the VIRGO interferometric detector of gravitational waves

    International Nuclear Information System (INIS)

    Barsuglia, Matteo

    1999-01-01

    The VIRGO detector is an interferometer with 3 km Fabry-Perot cavities in the arms. It is aimed at the detection of gravitational radiation emitted by astrophysical sources. This thesis comprises two independent parts. The first part is devoted to the laser frequency stabilization. In the second one we present a study of a suspended cavity. We determine the impact of laser frequency fluctuations on the overall VIRGO sensitivity. We study the frequency stabilization of the interferometer considered as an ultra-stable standard and we evaluate the noise pertaining to different signals taken into consideration. A strategy of control is discussed. We then study the VIRGO mode-cleaner prototype, a 30 m suspended triangular cavity, for which we have developed a control in order to keep it locked. Finally, we characterize this cavity in terms of mode spectra, finesse and mechanical transfer functions. (author)

  3. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer

    International Nuclear Information System (INIS)

    Pan, Z Q; Zhou, J; Yang, F; Ye, Q; Cai, H W; Qu, R H; Fang, Z J

    2013-01-01

    We have designed a power stabilizer based on a round-trip erbium-doped fiber amplifier (EDFA) structure to suppress the low-frequency relative intensity noise (RIN) for a narrow linewidth fiber laser. The noise suppressor is analyzed theoretically and its feasibility is verified experimentally. For a short-cavity single-frequency fiber laser with this device, about 20 dB low-frequency RIN improvement is achieved (down to −120 dB Hz −1 at 10 Hz). The corresponding frequency noise is also reduced by a factor of 1.6. The proposed method is an effective solution to achieve a low-frequency low RIN laser source for highly coherent detection applications. (paper)

  4. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  5. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback.

    Science.gov (United States)

    Lin, Lyu-Chih; Liu, Ssu-Hsin; Lin, Fan-Yi

    2017-10-16

    We study the stability of period-one (P1) oscillations experimentally generated by semiconductor lasers subject to optical injection (OI) and by those subject to optical feedback (OF). With unique advantages of broad frequency tuning range and large sideband rejection ratio, P1 oscillations can be useful in applications such as photonic microwave generation, radio-over-fiber communication, and laser Doppler velocimeter. The stability of the P1 oscillations is critical for these applications, which can be affected by spontaneous emission and fluctuations in both temperature and injection current. Although linewidths of P1 oscillations generated by various schemes have been reported, the mechanisms and roles which each of the OI and the OF play have however not been investigated in detail. To characterize the stability of the P1 oscillations generated by the OI and the OF schemes, we measure the linewidths and linewidth reduction ratios (LRRs) of the P1 oscillations. The OF scheme has a narrowest linewidth of 0.21 ± 0.03 MHz compared to 4.7 ± 0.6 MHz in the OI scheme. In the OF scheme, a much larger region of LRRs higher than 90% is also found. The superior stability of the OF scheme is benefited by the fact that the P1 oscillations in the OF scheme are originated from the undamped relaxation oscillation of a single laser and can be phase-locked to one of its external cavity modes, whereas those in the OI scheme come from two independent lasers which bear no phase relation. Moreover, excess P1 linewidth broadening in the OI scheme caused by fluctuation in injection parameters associated with frequency jitter and relative intensity noise (RIN) is also minimized in the OF scheme.

  6. A phase stabilized and pulse shaped Ti:Sapphire oscillator-amplifier laser system for the LCLS rf photoinjector

    International Nuclear Information System (INIS)

    Kotseroglou, T.; Alley, R.; Clendenin, J.; Fisher, A.; Frisch, J.

    1998-04-01

    The authors have designed a laser system for the Linac Coherent Light Source rf photoinjector consisting of a Ti:Sapphire oscillator and 2 amplifiers using Chirped Pulse Amplification. The output after tripling will be 0.5 mJ tunable UV pulses at 120 Hz, with wavelength around 260 nm, pulsewidth of 10 ps FWHM and 200 fs rise and fall times. Amplitude stability is expected to be 1% rms in the UV and timing jitter better than 500 fs rms

  7. Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Villanueva Ibáñez, Guillermo Eduardo; Lægsgaard, Jesper

    2013-01-01

    We investigate the noise properties of a femtosecond all-fiber Cherenkov radiation source with emission wavelength around 600 nm, based on an Yb-fiber laser and a highly-nonlinear photonic crystal fiber. A relative intensity noise as low as - 103 dBc/Hz, corresponding to 2.48 % pulse-to-pulse...... fluctuation in energy, was observed at the Cherenkov radiation output power of 4.3 mW, or 150 pJ pulse energy. This pulse-to-pulse fluctuation is at least 10.6 dB lower compared to spectrally-sliced supercontinuum sources traditionally used for ultrafast fiberbased generation at visible wavelengths. Low noise...... makes allfiber Cherenkov sources promising for biophotonics applications such as multi-photon microscopy, where minimum pulse-to-pulse energy fluctuation is required. We present the dependency of the noise figure on both the Cherenkov radiation output power and its spectrum....

  8. Extremely high-brightness kW-class fiber coupled diode lasers with wavelength stabilization

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-06-01

    TeraDiode has produced ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Higher brightness fiber-coupled diode lasers, including a module with 418 W of power coupled to a 100 μm, 0.15 NA fiber, have also been demonstrated.

  9. 1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

    DEFF Research Database (Denmark)

    Zubov, F. I.; Gladii, S. P.; Shernyakov, Yu M.

    2016-01-01

    Temperature characteristics of InAs/InGaAsP quantum dot (QD) lasers synthesized on InP (001) substrate are presented. The lasers demonstrate high temperature stability: a threshold current characteristic temperature as high as 205 K in the temperature range between 20 to 50°C was measured. Lasing...

  10. Ultra-high brightness wavelength-stabilized kW-class fiber coupled diode laser

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Glenn, John D.

    2011-03-01

    TeraDiode has produced a fiber-coupled direct diode laser with a power level of 1,040 W from a 200 μm core diameter, 0.18 numerical aperture (NA) output fiber at a single center wavelength. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 18 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. The laser has been used to demonstrate laser cutting and welding of steel sheet metal up to 6.65 mm thick. Further advances of these ultra-bright lasers are also projected.

  11. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Thorsten

    2017-05-15

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  12. Laser-to-RF phase detection with femtosecond precision for remote reference phase stabilization in particle accelerators

    International Nuclear Information System (INIS)

    Lamb, Thorsten

    2017-05-01

    The operation of modern free-electron lasers (FELs) requires the synchronization of different accelerator subsystems with femtosecond precision. A pulsed optical synchronization system is for this reason operated at the Free-Electron Laser in Hamburg (FLASH) and it is under construction for the upcoming European X-ray Free-Electron Laser (XFEL). Laser pulses from the optical master oscillator are transmitted by timing stabilized optical fiberlinks to dedicated end stations along the accelerator. Devices which cannot operate with optical synchronization signals are instead conventionally synchronized with radio frequency (RF) reference signals. These signals are distributed in the accelerator by coaxial cables. Especially the low -level radio frequency (LLRF) system requires RF reference signals with femtosecond stability in order to meet nowadays femtosecond demands. Due to cable drifts and the length of the accelerators, this level of stability cannot be provided by conventional RF transport. A laser-to-RF (L2RF) phase detector has been invented, which allows to measure with femtosecond precision the relative phase between a phase stable optical pulse train from an optical fiberlink and an RF signal. The L2RF phase detector is based on an integrated MACH-ZEHNDER modulator (MZM) in which the phase error between both signals is encoded in an amplitude modulation of the optical pulse train. Different configurations, based on single output and dual output MZMs have been evaluated for different operation scenarios. A full mathematical representation of the chosen configuration has been derived. The impact of multiple error sources has been investigated. It has been proven that most error sources have only second or higher order influence on the detection principle which is a significant advantage over existing schemes. The invented L2RF phase detector is for example balanced and in its working point insensitive to power variations of the optical reference pulse train

  13. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    International Nuclear Information System (INIS)

    Kido, H; Takahashi, M; Tani, J; Abe, N; Tsukamoto, M

    2011-01-01

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 μm in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10 5 Ωcm to 3.2x10 -1 Ωcm at 56 W, 2.8x10 -1 Ωcm at 91 W, and 2.0x10 -1 Ωcm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10 17 cm -3 at 56 W, 7.2x10 17 cm -3 at 91 W, and 1.9x10 18 cm -3 at 126 W.

  14. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H; Takahashi, M; Tani, J [Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Abe, N; Tsukamoto, M, E-mail: kido@omtri.or.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-05-15

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 {mu}m in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10{sup 5} {Omega}cm to 3.2x10{sup -1} {Omega}cm at 56 W, 2.8x10{sup -1} {Omega}cm at 91 W, and 2.0x10{sup -1} {Omega}cm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10{sup 17} cm{sup -3} at 56 W, 7.2x10{sup 17} cm{sup -3} at 91 W, and 1.9x10{sup 18} cm{sup -3} at 126 W.

  15. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  16. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    International Nuclear Information System (INIS)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-01-01

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A -1 . Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  17. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  18. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel

    2008-07-21

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10{sup -4} in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  19. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    International Nuclear Information System (INIS)

    Neumann, Axel

    2008-01-01

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10 -4 in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  20. Optical power calibrator based on a stabilized green He-Ne laser and a cryogenic absolute radiometer

    International Nuclear Information System (INIS)

    Varpula, T.; Seppa, H.; Saari, J.M.

    1989-01-01

    This paper describes an optical power calibrator whose overall calibration uncertainty is less than 10 -4 for an optical power of 0.13 mW. The laser light source of the system operates at a wavelength of 543.5 nm, being close to the wavelength at which the candela is defined, 555 nm. A stable optical power is achieved by stabilizing the intensity and the frequency of a green He-Ne laser. The optical power is detected by a cryogenic absolute radiometer based on the principle of electrical substitution radiometry. It can be employed to measure optical power up to 0.5 mW in the visible and near infrared region

  1. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  2. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  3. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  4. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  5. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  6. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  7. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    Science.gov (United States)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  8. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  9. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  10. Efficiency and stability of a phosphor-conversion white light source using a blue laser diode

    Directory of Open Access Journals (Sweden)

    G. Ledru

    2014-10-01

    Full Text Available A white light source using direct phosphor-conversion excited by a blue laser diode is presented. In this preliminary study we have investigated the influence of phosphor’s thickness and operating current of the laser diode over the (x, y chromaticity coordinates, Correlated Color Temperature (CCT and Color Rendering Index (CRI. The best values found were 4000 K and 94. A 40 lm/W luminous efficacy was achieved together with a CRI close to 90 for an operating current of 0.8 A. Those values, to the best of our knowledge, were not previously reported in the literature.

  11. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  12. Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization

    Science.gov (United States)

    Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.; hide

    2011-01-01

    We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.

  13. Gas laser spectrometer for nuclear investigation at nucleonic stability limit. (project)

    International Nuclear Information System (INIS)

    Myshinskij, G.V.

    1989-01-01

    It is proposed to obtain the atomic beam of the proton-rich and neutron-rich nuclides with half-lives of up to 1 ms, by using the gas-jet technique. Subsequently their properties are investigated using the methods of laser resonance ionization and nuclear spectroscopy. 8 refs.; 4 figs

  14. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  15. Stability of iodinated contrast media in UV-laser irradiation and toxicity of photoproducts

    International Nuclear Information System (INIS)

    Groenewaeller, E.F.; Kehlbach, R.; Claussen, C.D.; Duda, S.H.; Wahl, H.G.; Rodemann, H.P.

    1998-01-01

    Purpose: In XeCl-Excimer laser angioplasty, unintended and possibly harmful interaction of the UV-laser light and the contrast media may occur due to the high concentration of contrast medium proximal to the occlusion or subtotal stenosis. Methods: One ml of three nonionic monomeric contrast agents (iopromide, iomeprol, iopamidol), one nonionic dimetric (jotrolane), and one ionic monomeric (amidotrizoate) X-ray contrast agent were irradiated with a XeCl excimer laser (λ=308 nm, pulse duration 120 ns, 50 Hz) using a 9 French multifiber catheter (12 sectors). Up to 20 000 pulses (106 J) were applied. Using high performance liquid chromatography the amount of liberated iodide as well as the fraction of unchanged contrast media were measured. Cytotoxicity of the photoproducts was tested in a colony formation assay of human skin fibroblasts. The contrast agents were irradiated with 2000 pulses/ml (5.3 mJ/pulse; 10.6 J) and then added to the cell cultures for a period of three hours in a concentration of 10%. Results: Excimer laser irradiation induced iodide liberation of up to 3.3 mg iodide/ml. Up to 19% of the contrast agents changed their original molecular structure. Incubation of irradiated contrast agents resulted in a significantly decreased potential for colony formation (p values ranging from 0.0044 to 0.0102) with significantly higher toxicity of amidotrizoate and iomeprol in comparison to iopromide, iotrolan, and iopamidol. Discussion: Due to the cytotoxic photoproducts and the high level of liberated iodide, it is recommended to flush the artery with physiological saline solution before applying a pulsed excimer laser in human arterial obstructions in order to reduce the contrast agent concentration at the site of irradiation. (orig.) [de

  16. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  17. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  18. Role of diagnostic testing in identifying and resolving dimensional-stability problems in electroplated laser mirrors

    International Nuclear Information System (INIS)

    Cutler, R.L.; Hogan, B.

    1982-01-01

    The metal mirrors which are the subject of this discussion are to be used in the Antares inertial fusion laser system. Antares is a high-power (40 TW), high-energy (35 to 40 kJ), pulsed CO 2 laser system for the investigation of inertial confinement fusion. The system contains more than four hundred small and large diamond-turned and conventionally polished mirrors. The largest mirrors are trapezoidal in shape with the longest dimension being 16 to 18 inches. The substrates are type 2124 aluminum for most large mirrors, and aluminum bronze, oxygen-free copper or a copper-zirconium alloy for most of the smaller mirrors. The optical surface is electro-deposited copper 20 to 40 mils thick. After nondestructive testing and rough machining, the electroplated surface is single-point diamond machined or conventionally polished

  19. Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load

    Science.gov (United States)

    Gouman, J.; Beck, T.; Affolter, M.; Thomas, N.; Geissbühler, U.; Péteut, A.; Bandy, T.; Servonet, A.; Piazza, D.; Seiferlin, K.

    2014-04-01

    The first European laser altimeter, designed for interplanetary flight, BELA, (on BepiColombo mission to Mercury) will be launched in July 2016. This abstract describes the setup used to characterize the angular movements of BELA during the simulation of the environment that the instrument will encounter when orbiting Mercury. Tests performed using the Engineering Qualification Model (EQM) show that the setup is accurate enough to characterize angular movements of the instrument components with an accuracy of ≈ 10 μrad.

  20. Structure, stability properties, and nonlinear dynamics of lateral modes of a broad area semiconductor laser

    DEFF Research Database (Denmark)

    Blaaberg, Søren

    2007-01-01

    Bred-areal halvlederlasere er kompakte lasere designet til at levere høj udgangseffekt (>1 Watt). Den høje effekt opnås ved at gøre laserens aktive område bredt (>100 mikrometer) samt laserspejlene endnu bredere. I det aktive område pumpes laseren elektrisk. Langs laserens ene tværstillede akse l...

  1. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  2. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    Science.gov (United States)

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  3. Influence of energy and duration of laser pulses on stability of dielectric nanoparticles in optical trap

    International Nuclear Information System (INIS)

    Ho Quang Quy; Mai Van Luu; Hoang Dinh Hai

    2010-01-01

    In this article the gradient force of optical trap using two counter- propagating pulsed Gaussian beam and the Brownian motion in optical force field are investigated. The influence of the energy and duration time of optical pulsed Gaussian beams on stability of nano-particle in trap is simulated and discussed. (author)

  4. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  5. On the stability of a space vehicle riding on an intense laser beam

    OpenAIRE

    Popova, H.; Efendiev, M.; Gabitov, I.

    2016-01-01

    The Breakthrough Starshot Initiative is suggested to develop the concept of propelling a nano-scale spacecraft by the radiation pressure of an intense laser beam. If such a nanocraft could be accelerated to 20 percent of light speed, it could reach the vicinity of our nearest potentially habitable exoplanet within our life time and capture its images and obtain other scientific data. In this project the nanocraft is a gram-scale robotic spacecraft comprising two main parts: StarChip and Light...

  6. Centroid stabilization for laser alignment to corner cubes: designing a matched filter

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon; Kamm, Victoria Miller; Leach, Richard R.; Lowe-Webb, Roger; Roberts, Randy; Wilhelmsen, Karl

    2016-11-08

    Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable position estimation.

  7. Influence of laser surface treated on the characterization and corrosion behavior of Al–Fe aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, Moisés Meza, E-mail: mmpariona@uepg.br [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Teleginski, Viviane; Santos, Kelly dos; Lima, Angela A.O.C. de; Zara, Alfredo J.; Micene, Katieli Tives [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Riva, Rudimar [Department of Aerospace Science and Technology, Institute for Advanced Studies (IEAv), São José dos Campos 12227-000, SP (Brazil)

    2013-07-01

    In this research laser surface remelting without protective coating with a 2 kW Yb-fiber laser (IPG YLR-2000S) was applied in the Al–1.5 wt.%Fe alloy in order to investigate the layer treated with different techniques of superficial characterization, thereby, the technique of optical microscopy, atomic force microscopy and low-angle X-ray diffraction were used. The present work mainly focuses on the corrosion study by diverse techniques in aggressive environment of the laser-treated area and the substrate material was carried out, thereby, at open circuit potential testing, the results have shown a displacement to more anodic values in the corrosion potential for the laser-treated specimen when compared to the untreated specimen; in potentiodynamic polarization tests have shown that as a result of the laser treatment, the corrosion current can be reduced by as much as ten times, and a passive region was obtained, which served as an effective barrier for reducing anodic dissolution and finally, the result in cyclic polarization curves of the untreated sample there was a greater area of the hysteresis loop, implying that it is more susceptible to corrosion. This study was complemented by other techniques mentioned above in order to elucidate this study. Laser surface remelting process has definitely modified the surface film, which results in higher corrosion resistance, a large range of passivation and a lower area of the hysteresis loop.

  8. Influence of laser surface treated on the characterization and corrosion behavior of Al–Fe aerospace alloys

    International Nuclear Information System (INIS)

    Pariona, Moisés Meza; Teleginski, Viviane; Santos, Kelly dos; Lima, Angela A.O.C. de; Zara, Alfredo J.; Micene, Katieli Tives; Riva, Rudimar

    2013-01-01

    In this research laser surface remelting without protective coating with a 2 kW Yb-fiber laser (IPG YLR-2000S) was applied in the Al–1.5 wt.%Fe alloy in order to investigate the layer treated with different techniques of superficial characterization, thereby, the technique of optical microscopy, atomic force microscopy and low-angle X-ray diffraction were used. The present work mainly focuses on the corrosion study by diverse techniques in aggressive environment of the laser-treated area and the substrate material was carried out, thereby, at open circuit potential testing, the results have shown a displacement to more anodic values in the corrosion potential for the laser-treated specimen when compared to the untreated specimen; in potentiodynamic polarization tests have shown that as a result of the laser treatment, the corrosion current can be reduced by as much as ten times, and a passive region was obtained, which served as an effective barrier for reducing anodic dissolution and finally, the result in cyclic polarization curves of the untreated sample there was a greater area of the hysteresis loop, implying that it is more susceptible to corrosion. This study was complemented by other techniques mentioned above in order to elucidate this study. Laser surface remelting process has definitely modified the surface film, which results in higher corrosion resistance, a large range of passivation and a lower area of the hysteresis loop.

  9. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    International Nuclear Information System (INIS)

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping; Yang, Kangwen; Hao, Qiang

    2015-01-01

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively

  10. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    International Nuclear Information System (INIS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-01-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target

  11. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  12. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  13. Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration

    Science.gov (United States)

    Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.

    2017-11-01

    Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4

  14. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  15. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  16. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin; Alfano, Marco; Lubineau, Gilles; Buttner, Ulrich

    2015-01-01

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  17. Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam

    Science.gov (United States)

    Mel'nikov, I. V.; Haus, J. W.; Kazansky, P. G.

    2003-05-01

    We use a Fokker-Planck equation to study the phenomenon of accelerating a neutral atom bunch by a chirped optical beam. This method enables us to obtain a semi-analytical solution to the problem in which a wide range of parameters can be studied. In addition it provides a simple physical interpretation where the problem is reduced to an analogous problem of charged particles accelerators, that is, the Vecksler-Macmillan principle of phase stability. A possible experimental scenario is suggested, which uses a photonic crystal fiber as the guiding medium.

  18. Influence of the Overlapping Factor and Welding Speed on T-Joint Welding of Ti6Al4V and Inconel 600 Using Low-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Shamini Janasekaran

    2016-06-01

    Full Text Available Double-sided laser beam welding of skin-stringer joints is an established method for many applications. However, in certain cases with limited accessibility, single-sided laser beam joining is considered. In the present study, single-sided welding of titanium alloy Ti6Al4V and nickel-based alloy Inconel 600 in a T-joint configuration was carried out using continuous-wave (CW, low-power Ytterbium (Yb-fiber laser. The influence of the overlapping factor and welding speed of the laser beam on weld morphology and properties was investigated using scanning electron microscopy (SEM and X-ray diffraction (XRD, respectively. XRD analysis revealed the presence of intermetallic layers containing NiTi and NiTi2 at the skin-stringer joint. The strength of the joints was evaluated using pull testing, while the hardness of the joints was analyzed using Vickers hardness measurement at the base metal (BM, fusion zone (FZ and heat-affected zone (HAZ. The results showed that the highest force needed to break the samples apart was approximately 150 N at a laser welding power of 250 W, welding speed of 40 mm/s and overlapping factor of 50%. During low-power single-sided laser welding, the properties of the T-joints were affected by the overlapping factor and laser welding speed.

  19. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  20. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure

    International Nuclear Information System (INIS)

    Feng, Ting; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Tan, Siyu; Liang, Xiao; Wen, Xiaodong

    2014-01-01

    A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure is proposed and demonstrated experimentally. The compound-cavity is composed of a main-linear-cavity and a subring-cavity. Using a pump power of 150 mW, the optical signal to noise ratio of the laser output is as high as ∼67 dB; the wavelength and output power fluctuation are 0.7 pm and 0.07 dBm respectively in an experimental period of 1 h; the linewidth of the laser output is as narrow as 650 Hz; the degree of polarization of the laser output is stable at a value of 100.8% in 15 min and the polarization extinction ratio is as high as 30.57 dB; the wavelength-tunable range is as wide as ∼8.1 nm. The proposed fiber laser can be used in areas where high stability, narrow-linewidth, single-polarization and wide wavelength-tunable range are needed. (letter)

  1. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  2. A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating

    International Nuclear Information System (INIS)

    Spirin, V V; López-Mercado, C A; Kinet, D; Mégret, P; Fotiadi, A A; Zolotovskiy, I O

    2013-01-01

    We demonstrate a single-longitudinal-mode Brillouin ring fiber laser passively stabilized at the resonance frequency with a 1.7 m section that is an unpumped polarization-maintaining erbium-doped fiber. The two coupled all-fiber Fabry–Perot interferometers that comprise the cavity, in combination with the dynamical population inversion gratings self-induced in the active fiber, provide adaptive pump-mode selection and Stokes wave generation at the same time. The laser is shown to emit a single-frequency Stokes wave with a linewidth narrower than 100 Hz. (letter)

  3. Stabilization of the composition of the gas medium of a repetitively pulsed CO/sub 2/ laser by means of hopcalite

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, V.IU.; Drokov, G.F.; Kuzmenko, V.A.; Mezhevov, V.S.; Pigulskaia, V.V.

    1986-05-01

    Results of experiments in which hopcalite was used to stabilize the composition of the gas medium of repetitively pulsed and monopulse CO/sub 2/ lasers are reported. In particular, the mechanisms of the decrease in the catalyst activity with time under conditions for catalyst regeneration are determined. It is shown that the use of hopcalite has made it possible to achieve long-term operation of a high-power repetitively pulsed CO/sub 2/ laser without changing the gas mixture in a closed circuit. Some details related to the use of hopcalite are discussed. 11 references.

  4. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, N. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)]. E-mail: nini.pryds@risoe.dk; Toftmann, B. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Bilde-Sorensen, J.B. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark); Schou, J. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Linderoth, S. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)

    2006-04-30

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.

  5. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Pryds, N.; Toftmann, B.; Bilde-Sorensen, J.B.; Schou, J.; Linderoth, S.

    2006-01-01

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced

  6. Structure of a swirl-stabilized spray flame by imaging, laser Doppler velocimetry, and phase Doppler anemometry

    Science.gov (United States)

    Edwards, C. F.; Rudoff, R. C.

    1991-01-01

    Data are presented which describe the mean structure of a steady, swirl-stabilized, kerosene spray flame in the near-injector region of a research furnace. The data presented include ensemble-averaged results of schlieren, luminosity, and extinction imaging, measurement of the gas phase velocity field by laser Doppler velocimetry, and characterization of the condensed phase velocity by phase Doppler anemometry. The results of these studies define six key regions in the flame: the dense spray region; the rich, two-phase, fuel jet; the main air jet; the internal product recirculation zone; the external product recirculation zone; and the gaseous diffusion flame zone. The first five of these regions form a conical mixing layer which prepares the air and fuel for combustion. The air and fuel jets comprise the central portion of this mixing layer and are bounded on either side by the hot product gases of the internal and external recirculation zones. Entrainment of these product gases into the air/fuel streams provides the energy required to evaporate the fuel spray and initiate combustion. Intermittency of the internal recirculation and spray jet flows accounts for unexpected behavior observed in the aerodynamics of the two phases. The data reported herein are part of the database being accumulated on this spray flame for the purpose of detailed comparison with numerical modeling.

  7. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms.

    Science.gov (United States)

    Lara, Humberto H; Guisbiers, Gregory; Mendoza, Jonathan; Mimun, Lawrence C; Vincent, Brandy A; Lopez-Ribot, Jose L; Nash, Kelly L

    2018-01-01

    Candida albicans is a major opportunistic fungal pathogen. One of the most important virulence factors that contribute to the pathogenesis of candidiasis is its ability to form biofilms. A key characteristic of Candida biofilms is their resistance to antifungal agents. Due to significant morbidity and mortality rates related to biofilm-associated drug resistance, there is an urgency to develop novel nanotechnology-based approaches preventing biofilm-related infections. In this study, we report, for the first time, the synthesis of selenium nanoparticles by irradiating selenium pellets by nanosecond pulsed laser ablation in liquid chitosan as a capping agent. Synergy of the fungicidal effect of selenium nanoparticles and chitosan was quantified by the combination index theorem of Chou-Talalay. This drug combination resulted in a potent fungicidal effect against a preformed C. albicans biofilm in a dose-response manner. By advanced electron microscopy techniques, we documented the adhesive and permeabilizing properties of chitosan, therefore allowing selenium nanoparticles to enter as the cell wall of the yeast became disrupted and distorted. Most importantly, we demonstrated a potent quantitative synergistic effect when compounds such as selenium and chitosan are combined. These chitosan-stabilized selenium nanoparticles could be used for ex vivo applications such as sterilizers for surfaces and biomedical devices.

  8. Laser frequency stabilization and stray light issues for LISA and other future multi-spacecraft missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project which will use laser interferometry between drag-free proof masses to measure...

  9. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2016-09-01

    Full Text Available A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS instrumentation, based on a distributed feedback (DFB diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN. The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz, followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS can be swiftly performed down to a limit of detection (LOD (1σ of 4 × 10−6, which opens up a number of new applications.

  10. Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment

    Science.gov (United States)

    Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion

    2018-01-01

    Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.

  11. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.

    Science.gov (United States)

    Ohmae, Noriaki; Moriwaki, Shigenori; Mio, Norikatsu

    2010-07-01

    Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

  12. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine

    OpenAIRE

    Ahn, Henry; Mousavi, Payam; Chin, Lee; Roth, Sandra; Finkelstein, Joel; Vitken, Alex; Whyne, Cari

    2007-01-01

    A biomechanical study comparing simulated lytic vertebral metastases treated with laser-induced thermotherapy (LITT) and vertebroplasty versus vertebroplasty alone. To investigate the effect of tumor ablation using LITT prior to vertebroplasty on biomechanical stability and cement fill patterns in a standardized model of spinal metastatic disease. Vertebroplasty in the metastatic spine is aimed at reducing pain, but is associated with risk of cement extravasation in up to 10%. Six pairs of fr...

  13. Fabrication and stability of fiber bragg gratings for WDM applications using a 266 nm cw-laser

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Sørensen, Henrik Rokkjær; Jensen, Jesper Bo Damm

    2003-01-01

    Diode pumped continuous wave all solid state UV-lasers operating at 266 nm offer an interesting alternative to frequency doubled argon ion lasers. We compare photosensitivity, UV-writing of Bragg gratings and thermal decay at 244, 257 and 266 nm.......Diode pumped continuous wave all solid state UV-lasers operating at 266 nm offer an interesting alternative to frequency doubled argon ion lasers. We compare photosensitivity, UV-writing of Bragg gratings and thermal decay at 244, 257 and 266 nm....

  14. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mariño, Mariana [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Rieu, Mathilde, E-mail: rieu@emse.fr [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Viricelle, Jean-Paul [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Garrelie, Florence [Université Jean Monnet, Laboratoire Hubert Curien, CNRS: UMR 5516, 42000 Saint-Etienne (France)

    2016-06-30

    Graphical abstract: - Highlights: • CGO surface densifications were induced by UV and IR laser irradiations. • Grain growth or densified cracked surfaces were observed by SEM. • UV laser treatments allow a decrease of gas permeation through electrolyte layer. • Electrical conductivity of the electrolyte was modified by laser treatments. • Grain growth of electrolyte induced by UV laser improved cell performances. - Abstract: In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  15. Relation between size-distribution of Si nanoparticles and oscillation-stabilization time of the mixed region produced during laser ablation

    International Nuclear Information System (INIS)

    Wang Yinglong; Li Yanli; Fu Guangsheng

    2006-01-01

    Assuming Si particles and ambient atoms are elastic hard-spheres, the transportation in ambient gas of Si particles obtained by single-pulsed laser ablation is numerically simulated via Monte Carlo method to investigate the influence of the ambient species and the target-to-substrate distance on the oscillation-stabilization time (OST) of the mixed region. It is found that the ambient gas whose atomic weight is close to that of Si atom can induce the shortest OST; with increasing of the target-to-substrate distance, the OST at first decreases to its minimum, and then begins to increase. Incorporating with some experimental results on size-consistency of Si nanoparticles in pulsed laser ablation, it may be concluded that the shorter the OST of the mixed region, the more uniform the as-formed Si nanoparticles in size

  16. Programming of the Wavelength Stabilization for a Titanium:Sapphire Laser using LabVIEW and Implementation into the CERN ISOLDE RILIS Measurement System

    CERN Document Server

    Rossel, Ralf Erik; Wendt, K; Rothe, S

    In the context of this work the foundation for the commissioning of a comprehensive environmental and operational data acquisition system was established. This development was performed for the Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE radioactive ion beam facility within the European Organization for Nuclear Research CERN. As an essential step towards long-term automated operation, a remote control and wavelength stabilization system for the RILIS titanium:sapphire lasers was put into operation. This required the installation of a data recording infrastructure to work with a distributed sensor network. After operational data within the CERN technical computing network was collected and analyzed, the required wavelength adjustment was automatically performed by a stepper motor-driven correction system. The configuration of the hardware for acquisition and control and the integration of the dedicated system modules was performed using the graphical and data flow oriented programming language ...

  17. Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser

    Science.gov (United States)

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-05-01

    We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.

  18. Investigation of the Stability of a Two-Span Bridge with the use of a High-Precision Laser Displacement Sensors

    Science.gov (United States)

    Poddaeva, O.; Churin, P.; Fedosova, A.; Truhanov, S.

    2018-03-01

    Studies of aerodynamics of bridge structures are an actual problem. Such attention is paid to the study of wind influence on bridge structures not at all by chance; a large number of cases of loss of stability of such structures are known under the influence of wind up to their complete destruction. The development of non-contact systems of measuring equipment allows solving this problem with a high level of accuracy and reliability. This article presents the results of experimental studies of wind impact on a two-span bridge using specialized measuring system based on high-precision laser displacement sensors.

  19. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  20. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    Science.gov (United States)

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  1. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  2. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    Science.gov (United States)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  3. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  4. The development of novel Ytterbium fiber lasers and their applications

    Science.gov (United States)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  5. Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region between Injection and the Reaction Chamber with Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mitori, T. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2013-12-01

    A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed with a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At low angles of attack (less than 15°), the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.

  6. The effect of pre-vertebroplasty tumor ablation using laser-induced thermotherapy on biomechanical stability and cement fill in the metastatic spine.

    Science.gov (United States)

    Ahn, Henry; Mousavi, Payam; Chin, Lee; Roth, Sandra; Finkelstein, Joel; Vitken, Alex; Whyne, Cari

    2007-08-01

    A biomechanical study comparing simulated lytic vertebral metastases treated with laser-induced thermotherapy (LITT) and vertebroplasty versus vertebroplasty alone. To investigate the effect of tumor ablation using LITT prior to vertebroplasty on biomechanical stability and cement fill patterns in a standardized model of spinal metastatic disease. Vertebroplasty in the metastatic spine is aimed at reducing pain, but is associated with risk of cement extravasation in up to 10%. Six pairs of fresh-frozen cadaveric thoracolumbar spinal motion segments were tested in axial compression intact, with simulated metastases and following percutaneous vertebroplasty with or without LITT. Canal narrowing under load, pattern of cement fill, load to failure, and LITT temperature and pressure generation were collected. In all LITT specimens, cement filled the defect without extravasation. The canal extravasation rate was 33% in specimens treated without LITT. LITT and vertebroplasty yielded a trend toward improved posterior wall stability (P = 0.095) as compared to vertebroplasty alone. Moderate rises in temperature and minimal pressure generation was seen during LITT. In this model, elimination of tumor by LITT, facilitates cement fill, enhances biomechanical stability and reduces the risk of cement extravasation.

  7. Stability of phase transformation models for Ti-6Al-4V under cyclic thermal loading imposed during laser metal deposition

    Science.gov (United States)

    Klusemann, Benjamin; Bambach, Markus

    2018-05-01

    Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.

  8. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    Science.gov (United States)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  9. Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis-an animal study.

    Science.gov (United States)

    Matys, Jacek; Flieger, Rafał; Tenore, Gianluca; Grzech-Leśniak, Kinga; Romeo, Umberto; Dominiak, Marzena

    2018-04-01

    It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between - 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.

  10. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    Science.gov (United States)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  11. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  12. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    International Nuclear Information System (INIS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-01-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)

  13. Performances of OsO(4) stabilized CO(2) lasers as optical frequency standards near 29 THz.

    Science.gov (United States)

    Daussy, C; Ducos, F; Rovera, G D; Acef, O

    2000-01-01

    In this paper, we report on the metrological capabilities of CO (2)/OsO(4) optical frequency standards operating around 29 THz. Those frequency standards are currently involved in various fields, such as frequency metrology, high resolution spectroscopy, and Rydberg constant measurements. The most impressive features of the standards lies in the 10(-15) level frequency stability allied to a long-term reproducibility (1 yr) of 1.3x10 (-13).

  14. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    Science.gov (United States)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  15. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  16. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  17. Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    Science.gov (United States)

    Connolly, J. C.; Alphonse, G. A.; Carlin, D. B.; Ettenberg, M.

    1991-01-01

    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power.

  18. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics

    Science.gov (United States)

    Boxx, Isaac; Carter, Campbell D.; Stöhr, Michael; Meier, Wolfgang

    2013-05-01

    An image-processing routine was developed to autonomously identify and statistically characterize flame-kernel events, wherein OH (from a planar laser-induced fluorescence, PLIF, measurement) appears in the probe region away from the contiguous OH layer. This routine was applied to datasets from two gas turbine model combustors that consist of thousands of joint OH-velocity images from kHz framerate OH-PLIF and particle image velocimetry (PIV). Phase sorting of the kernel centroids with respect to the dominant fluid-dynamic structure of the combustors (a helical precessing vortex core, PVC) indicates through-plane transport of reacting fluid best explains their sudden appearance in the PLIF images. The concentration of flame-kernel events around the periphery of the mean location of the PVC indicates they are likely the result of wrinkling and/or breakup of the primary flame sheet associated with the passage of the PVC as it circumscribes the burner centerline. The prevailing through-plane velocity of the swirling flow-field transports these fragments into the imaging plane of the OH-PLIF system. The lack of flame-kernel events near the center of the PVC (in which there is lower strain and longer fluid-dynamic residence times) indicates that auto-ignition is not a likely explanation for these flame kernels in a majority of cases. The lack of flame-kernel centroid variation in one flame in which there is no PVC further supports this explanation.

  19. Models of electron conductivity which lead to ablation stabilization of fluid instabilities in laser-driven implosions

    International Nuclear Information System (INIS)

    Lindl, J.D.; Mead, W.C.

    1975-01-01

    LASNEX calculations with a modified electron conductivity show the existence of a firepolishing stabilization effect. By modifying the thermal conductivity so that K α T/sup n//rho/sup m/, one is able to construct a situation in which the electrons deposit their energy in a thin layer at the ablation surface and closely match the zero order solutions assumed earlier. The firepolishing effect appears to require that a significant fraction of the total pressure be due to the ablation process itself rather than the thermal pressure in the corona gas. It also requires KL approximately 1 where L is the scale height for decay of thermal perturbations generated at the ablation surface. For classical electron conductivity, because the thermal flux depends linearly on the grams/cm 2 necessary to stop the electrons, (1/rho) nabla rho approximately (1/T) nabla T near the ablation surface so that the pressure is nearly constant across the ablation surface. Hence there is no ablation pressure as such and no firepolishing effect for electron-driven implosions

  20. Progress in semiconductor laser diodes: SPIE volume 723

    International Nuclear Information System (INIS)

    Eichen, E.

    1987-01-01

    This book contains proceedings arranged under the following session headings: High power diode lasers; single emitters and arrays; Ultrahigh speed modulation of semiconductor diode lasers; Coherence and linewidth stabilized semiconductor lasers; and Growth, fabrication, and evaluation of laser diodes

  1. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  2. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  3. Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration

    Science.gov (United States)

    Bayrakli, Ismail; Erdogan, Yasar Kemal

    2018-06-01

    The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.

  4. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  5. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  6. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  7. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  8. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain

    Czech Academy of Sciences Publication Activity Database

    Král, Lukáš

    2007-01-01

    Roč. 78, č. 5 (2007), 053104/1-053104/5 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/06/0814 Grant - others:LASERLAB-EUROPE(XE) RII3-CT-2003-506350 Program:FP6 Institutional research plan: CEZ:AV0Z10100523 Keywords : gas lasers * optical parametric oscillators * nonlinear optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.384, year: 2007

  9. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  10. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  11. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  12. Thermal effects on cavity stability of chromium- and neodymium-doped gadolinium scandium gallium garnet laser under solar-simulator pumping

    Science.gov (United States)

    Kim, Kyong H.; Venable, Demetrius D.; Brown, Lamarr A.; Lee, Ja H.

    1991-01-01

    Results are presented on testing a Cr- and Nd-codoped Gd-Sc-Ga-garnet (Cr:Nd:GSGG) crystal and a Nd:YAG crystal (both of 3.2 mm diam and 76-mm long) for pulsed and CW laser operations using a flashlamp and solar simulator as pumping sources. Results from experiments with the flashlamp show that, at pulse lengths of 0.11, 0.28, and 0.90 ms, the slope efficiency of the Cd:Nd:GSGG crystal was higher than that of the Nd:YAG crystal and increased with pulse width. With the solar simulator, however, the CW laser operation of the Cr:Nd:GSGG crystal was limited to intensities not greater than 1500 solar constants, while the Nd:YAG laser successfully performed for all pump beam intensities available. It was found that the exposure for several minutes of the Cr:Nd:GSGG crystal to pump beam intensity of 3000 solar constants led to its damage by thermal cracking, indicating that a better solar-pumped CW laser performance may be difficult to realize with rod geometry.

  13. The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths.

    Science.gov (United States)

    Karadas, Muhammet; Çağlar, İpek

    2017-07-01

    The aim of this study was to evaluate the effect of Er:YAG laser irradiation on the micro-shear bond strength of self-etch adhesives to the superficial dentin and the deep dentin before and after thermocycling. Superficial dentin and deep dentin surfaces were prepared by flattening of the occlusal surfaces of extracted human third molars. The deep or superficial dentin specimens were randomized into three groups according to the following surface treatments: group I (control group), group II (Er:YAG laser; 1.2 W), and group III (Er:YAG laser; 0.5 W). Clearfil SE Bond or Clearfil S 3 Bond was applied to each group's dentin surfaces. After construction of the composite blocks on the dentin surface, the micro-shear bond testing of each adhesive was performed at 24 h or after 15,000 thermal cycles. The data were analyzed using a univariate analysis of variance and Tukey's test (p  0.05). However, deep-dentin specimens irradiated with laser showed significantly higher bond strengths than did control specimens after thermocycling (p adhesives may be altered by the dentin depth. Regardless of the applied surface treatment, deep dentin showed significant bond degradation.

  14. International comparisons of He-Ne lasers stabilized with (sup. 127) I (sub 2) at [lambda] approximately equals 633 nm (July 1993 to September 1995). Part IV: Comparison of Western European lasers at [lambda] approximately equals 633 nm

    NARCIS (Netherlands)

    Darnedde, H.; Rowley, W.R.C.; Bertinetto, F.; Millerioux, Y.; Haitjema, H.; Wetzels, S.F.C.L.; Piree, H.; Prieto, E.; Perez, M.Mar; Vaucher, B.; Chartier, A.; Chartier, J.M.

    1999-01-01

    This paper reports the fourth set of results of a series of grouped laser comparisons from national laboratories undertaken by the Bureau International des Poids et Mesures (BIPM) at the request of the Comite Consultatif pour la Definition du Metre (CCDM; now the Consultative Committee for Length,

  15. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  16. Luminescence process, refractory stabilities, and new novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, December 1, 1975--July 15, 1976

    International Nuclear Information System (INIS)

    Gole, J.L.

    1976-08-01

    The formulation, development, and use of versatile oven systems for high temperature metal vaporization at temperatures in excess of 2000 0 C are discussed. Refinements of an apparatus appropriate for the production and study of small metal aggregates M/sub n/(2 less than or equal to n less than or equal to 6) are discussed at length. Improvements in the argon ion and nitrogen pumped dye laser systems, and necessary additions for effective interfacing of these dye lasers to the aggregates apparatus are described. Internal calibration standards are discussed. Progress on the production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. Metal sulfide chemistry is discussed. Several specific studies of the luminescence process are outlined. Included in these studies are completed work on aluminum oxidation. Studies of germanium and silicon oxidation are outlined, and new investigations of inorganic hydride oxidation are presented. The status of our efforts to form new and novel surfaces via aggregate deposition is outlined. Quantum chemical calculations on small metal aggregates are discussed. The first applications of dynamic laser induced fluorescence to the AlO molecule are presented

  17. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  18. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    Science.gov (United States)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  19. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  20. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  1. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

    Science.gov (United States)

    Zmuidzinas, J. S. (Inventor)

    1978-01-01

    A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

  2. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  3. Superradiant properties of 4,4'-bis(1¤H¤-phenanthro[9,10-¤d¤]imidazol-2-yl)biphenyl and how a laser dye with exceptional stability can be obtained in only one synthetic step

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Lindvold, Lars René; Jørgensen, M.

    2001-01-01

    The extremely facile synthesis of a very stable laser dye with superradiant properties is reported. The laser action of the dye is demonstrated through a transverse pumping scheme with the advantage that no elaborate laser resonator is required due to the very high gain of the laser medium...

  4. Cable Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bottura, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  5. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  6. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  7. 5. Laser plasma interaction

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  8. Laser microirradiation of cells

    International Nuclear Information System (INIS)

    Berns, M.W.; Kitzes, M.; Rattner, J.B.; Burt, J.; Meredith, S.

    1979-01-01

    The brief review outlines the technique of laser microbeam irradiation (260 - 700 nm) of cells to study ultrastructural changes. In combination with other techniques such as optical microscopy, electron microscopy and autoradiography structure and organization of chromosomes and nucleoli, chromosome stability, mechanisms of mitosis, gene mapping, cytoplasmic functions, and structure of nucleic acids are investigated

  9. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.

    2015-04-29

    A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.

  10. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  11. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10-14-level frequency instability and 1-fs-level jitter over 1  s.

    Science.gov (United States)

    Kwon, Dohyeon; Kim, Jungwon

    2017-12-15

    We report on all-fiber Michelson interferometer-based repetition-rate stabilization of femtosecond mode-locked lasers down to 1.3×10 -14 frequency instability and 1.4 fs integrated jitter in a 1 s time scale. The use of a compactly packaged 10 km long single-mode fiber (SMF)-28 fiber link as a timing reference allows the scaling of phase noise at a 10 GHz carrier down to -80  dBc/Hz at 1 Hz Fourier frequency. We also tested a 500 m long low-thermal-sensitivity fiber as a reference and found that, compared to standard SMF-28 fiber, it can mitigate the phase noise divergence by ∼10  dB/dec in the 0.1-1 Hz Fourier frequency range. These results suggest that the use of a longer low-thermal-sensitivity fiber may achieve sub-femtosecond integrated timing jitter with sub-10 -14 -level frequency instability in repetition rate by a simple and robust all-fiber-photonic method.

  12. Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm

    International Nuclear Information System (INIS)

    Sternkopf, C; Diethold, C; Gerhardt, U; Manske, E; Wurmus, J

    2012-01-01

    Two He–Ne lasers are frequency and phase coupled by phase locking loop technique for a heterodyne laser interferometer. The heterodyne He–Ne laser is built of stabilized commercially used laser tubes. The two lasers create a high frequency stable heterodyne laser source with an output power of 2 mW. The laser source is coupled by two fibers (one fiber per laser) to the heterodyne laser head. This paper describes the configuration and the control theory basics of the laser system. The experimental setup and the equipment used are also described. First, experimental results with different parameters are represented. Then we discuss a novel heterodyne laser source which has achieved a master laser frequency stability of Δf 1 /f 1 = 1 · 10 −8 and a beat frequency stability of approximately Δf beat /f beat ≈ 4.5 · 10 −5 . (paper)

  13. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  14. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  15. Laser modulator for LISA pathfinder

    Science.gov (United States)

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  16. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  17. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng; Djie, Hery Susanto; Hwang, James C. M.; Koch, Thomas L.; Lester, Luke F.; Ooi, Boon S.; Wang, Yang

    2011-01-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  18. Intrinsic Dynamics of Quantum-Dash Lasers

    KAUST Repository

    Chen, Cheng

    2011-10-01

    Temperature-dependent intrinsic modulation response of InAs/InAlGaAs quantum-dash lasers was investigated by using pulse optical injection modulation to minimize the effects of parasitics and self-heating. Compared to typical quantum-well lasers, the quantum-dash lasers were found to have comparable differential gain but approximately twice the gain compression factor, probably due to carrier heating by free-carrier absorption, as opposed to stimulated transition. Therefore, the narrower modulation bandwidth of the quantum-dash lasers than that of quantum-well lasers was attributed to their higher gain compression factor. In addition, as expected, quantum-dash lasers with relatively long and uniform dashes exhibit higher temperature stability than quantum-well lasers. However, the lasers with relatively short and nonuniform dashes exhibit stronger temperature dependence, probably due to their higher surface-to-volume ratio and nonuniform dash sizes. © 2011 IEEE.

  19. Development of Cr,Nd:GSGG laser as a pumping source of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Arisawa, Takashi

    1999-08-01

    Since efficiency of Cr,Nd doped gadolinium scandium gallium garnet (GSGG) laser is in principle higher than that of Nd:YAG laser, it can be a highly efficient pumping source for Ti:sapphire laser. We have made GSGG laser, and measured its oscillation properties. It was two times more efficient than Nd:YAG laser at free running mode operation. At Q-switched mode operation, fundamental output of 50 mJ and second harmonics output of 8 mJ were obtained. The developed laser had appropriate spatial profile, temporal duration, long time stability for solid laser pumping. Ti:sapphire laser oscillation was achieved by the second harmonics of GSGG laser. (author)

  20. Laser heterodyne spectrometer for helioseismology

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Espenak, F.; Kostiuk, T.; Mumma, M. J.

    1986-01-01

    The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.

  1. Superthin resonator dye laser with THz intermode frequency separation

    International Nuclear Information System (INIS)

    Rudych, P D; Surovtsev, N V

    2014-01-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)

  2. Laser Therapy

    Science.gov (United States)

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  3. Laser applications in nuclear physics

    International Nuclear Information System (INIS)

    Murnick, D.E.

    1985-01-01

    A large fraction of the International Workshop on Hyperfine Interactions was devoted to various aspects of 'laser applications in nuclear physics'. This panel discussion took place before all of the relevant formal presentations on the subject were complete. Nevertheless, there had been sufficient discussions for the significance of this emerging area of hyperfine interaction research to be made clear. An attempt was made to identify critical and controversial aspects of the subject in order to critically evaluate past successes and indicate important future directions of research. Each of the panelists made a short statement on one phase of laser-nuclear physics research, which was followed by general discussions with the other panelists and the audience. In this report, a few areas which were not covered in the formal presentations are summarized: extensions of laser spectroscopy to shorter lifetimes; extension of laser techniques to nuclei far off stability; interpretation of laser spectroscopic data; sensitivity and spectral resolution; polarized beams and targets. (Auth.)

  4. Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters

    Science.gov (United States)

    Birkett, Martin; Penlington, Roger

    2012-08-01

    This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.

  5. Lasers technology

    International Nuclear Information System (INIS)

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  6. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  7. Laser sampling

    International Nuclear Information System (INIS)

    Gorbatenko, A A; Revina, E I

    2015-01-01

    The review is devoted to the major advances in laser sampling. The advantages and drawbacks of the technique are considered. Specific features of combinations of laser sampling with various instrumental analytical methods, primarily inductively coupled plasma mass spectrometry, are discussed. Examples of practical implementation of hybrid methods involving laser sampling as well as corresponding analytical characteristics are presented. The bibliography includes 78 references

  8. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  9. Stabilizing Niger

    DEFF Research Database (Denmark)

    Hahonou, Eric Komlavi

    international intervention in Niger. Their main objective is to secure their own strategic, economic and political interests by strengthening the Nigerien authorities through direct intervention and capacity building activities. For western states reinforcing state security institutions and stabilizing elite...

  10. Factors influencing laser cutting of wood

    Science.gov (United States)

    V.G. Barnekov; C.W. McMillin; H.A. Huber

    1986-01-01

    Factors influencing the ability of lasers to cut wood may be generally classified into these three areas: 1) characteristics of the laser beam; 2) equipment and processing variables; and 3) properties of the workpiece. Effects of beam power, mode, polarization, and stability are discussed as are aspects of optics, location of focal point, feed speed, gas-jet assist...

  11. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  12. New-laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Two new-laser research efforts were initiated during the reporting period; the chemically pumped iodine laser and HgXe exciplex excitation by electric discharge. The chemically pumped iodine laser was recently discovered by personnel at the Air Force Weapons Laboratory. The laser offers exciting possibilities as an ICF driver because it does not require a capital-intensive pulse power source to drive it, and up to 10% efficiency may be possible. Modeling studies of the laser are in progress and its potential as a high-average power laser seems to be very favorable at this time. The HgXe exciplex radiates in a band centered at 265 nm. This system is being studied because it could be used to pump an iodine laser. Its potential as a high-power laser candidate will be assessed. An advanced oscillator system based upon a microprocessor-controlled Nd:YAG-pumped pulsed dye laser is being developed so that it can be used as the front end of new laser-fusion lasers and utilized in testing and making germane laser amplifier measurements of candidate laser systems for the wavelength region of 4000 A to 8000 A and extended range with frequency doubling and mixing. The operating requirements of the oscillator system include long-term stability, high reliability, absolute wavelength calibration and control, tunability, hands-off operation, and variable pulse width generation in the nanosecond regime

  13. Synthesis and stabilization of oxide-based colloidal suspensions in organic media: application in the preparation of hybrids organic-inorganic materials for very high laser damage threshold coatings

    International Nuclear Information System (INIS)

    Marchet, N.

    2008-02-01

    Multilayer coatings are widely used in optic and particular in the field of high power laser on the components of laser chains. The development of a highly reflective coating with a laser damage resistance requires the fine-tuning of a multilayer stack constituted by a succession alternated by materials with low and high refractive index. In order to limit the number of layers in the stack, refractive indexes must be optimized. To do it, an original approach consists in synthesizing new organic-inorganic hybrid materials satisfying the criteria of laser damage resistance and optimized refractive index. These hybrid materials are constituted by nano-particles of metal oxides synthesized by sol-gel process and dispersed in an organic polymer with high laser damage threshold. Nevertheless, this composite system requires returning both compatible phases between them by chemical grafting of alc-oxy-silanes or carboxylic acids. We showed that it was so possible to disperse in a homogeneous way these functionalized nano-particles in non-polar, aprotic solvent containing solubilized organic polymers, to obtain time-stable nano-composite solutions. From these organic-inorganic hybrid solutions, thin films with optical quality and high laser damage threshold were obtained. These promising results have permitted to realize highly reflective stacks, constituted by 7 pairs with optical properties in agreement with the theoretical models and high laser damage threshold. (author)

  14. Precision operation of the Nova laser for fusion experiments

    International Nuclear Information System (INIS)

    Caird, J.A.; Ehrlich, R.B.; Hermes, G.L.; Landen, O.L.; Laumann, C.W.; Lerche, R.A.; Miller, J.L.; Murray, J.E.; Nielsen, N.D.; Powell, H.T.; Rushford, M.C.; Saunders, R.L.; Thompson, C.E.; VanArsdall, P.J.; Vann, C.S.; Weiland, T.L.

    1994-01-01

    The operation of a Neodymium glass laser of a special design for fusion experiments is improved by a better pulse synchronization, the gain stabilization, and the laser diagnostics. We used sensor upgrading and antifriction coating of focusing lenses. The pointing accuracy of the Nova laser meets now our goal for precision operation. (AIP) copyright 1994 American Institute of Physics

  15. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    Science.gov (United States)

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  16. Jet stability in the lithium fall reactor

    International Nuclear Information System (INIS)

    Kang, S.W.

    1978-01-01

    A preliminary analysis has been made of the various hydrodynamic aspects involved in the stability of a liquid-lithium jet in a laser-fusion reactor, which comprises a part of LLL's laser fusion power-generation concept. Various physical factors that may affect the jet breakup are delineated, and some approximate calculations are performed to determine their relative influences. Areas of uncertainty are pointed out, along with plans for experimental verification or further theoretical analysis

  17. Laser welding and collagen crosslinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, K.M.; Last, J.A. [California Univ., Davis, CA (United States). Dept. of Medicine; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Lab., CA (United States)

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  18. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  19. Large laser system facility design

    International Nuclear Information System (INIS)

    Gilmartin, T.J.

    1983-01-01

    Optical stability of foundations and support structures, environmental control, close-in subsystem integration, spatial organization, materiel flow and access to remote subsystems is discussed and compared for four laser facilities: The Special Isotope Separation Laboratory, Argus, Shiva/Nova, and Firepond

  20. FIR laser-development program. Final report

    International Nuclear Information System (INIS)

    Danielwicz, E.J.; Hodges, D.T.

    1980-01-01

    The important features for a source intended for use as a local oscillator in a low noise receiver have been tested on a developmental model of a cw FIR laser package. High output power (45 mW), good long term amplitude stability (+- 3%), high spectral purity and excellent frequency stability have all been demonstrated in the laboratory environment

  1. Macroeconomic stability

    DEFF Research Database (Denmark)

    Jespersen, Jesper

    2004-01-01

    It is demonstrated that full employment and sustainable development not necessarily are conflicting goals. On the other hand macroeconomic stability cannot be obtained without a deliberate labour sharing policy and a shift in the composition of private consumption away from traditional material...

  2. Stabilized superconductors

    International Nuclear Information System (INIS)

    Wong, J.

    1975-01-01

    The stable, high field, high current composite wire comprises multiple filaments in a depleted bronze matrix, each filament comprising a type II superconducting, beta-tungsten structure, intermetallic compound layer jacketing and metallurgically bonded to a stabilizing copper core, directly or via an intermediate layer of refractory metal

  3. Laser fusion

    International Nuclear Information System (INIS)

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  4. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  5. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  6. Numerical simulation of the shape of laser cut for fiber and CO2 lasers

    Science.gov (United States)

    Zaitsev, A. V.; Ermolaev, G. V.; Polyanskiy, T. A.; Gurin, A. M.

    2017-10-01

    The results of numerical modeling of steel plate laser cutting with nitrogen as assist gas with consideration of heat transfer into a bulk material are presented. In this work we studied a distribution of absorbed radiation energy inside cut kerf and the difference between CO2 and fiber laser radiation propagation and absorption. The influence of secondary absorption of reflected from the cut front radiation on stability of melt hydrodynamics is discussed for different laser types.

  7. Device for frequency modulation of a laser output spectrum

    Science.gov (United States)

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  8. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  9. High power lasers & systems

    OpenAIRE

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  10. Laser targets: introduction

    International Nuclear Information System (INIS)

    Rosen, M.D.

    1985-01-01

    The laser target design group was engaged in three main tasks in 1984: (1) analyzing Novette implosion and hohlraum-scaling data, (2) planning for the first experiments on Nova, and (3) designing laboratory x-ray laser targets and experiments. The Novette implosion and hohlraum scaling data are mostly classified and are therefore not discussed in detail here. The authors achieved average final/initial pusher pr ratios of about 50, some 3 times higher than the value achieved in the best Shiva shots. These pr values imply a fuel compression to 100 times liquid density, although this figure and other aspects of the experiments are subject to further interpretation because of detailed questions of target symmetry and stability. Their main long-term goal for Nova is to produce a so-called hydrodynamically equivalent target (HET) - that is, a target whose hydrodynamic behavior (implosion velocity, convergence ratio, symmetry and stability requirements, etc.) is very much like that of a high-gain target, but one that is scaled down in size to match the energy available from Nova and is too small to achieve enough hot-spot pr to ignite the cold, near-Fermi-degenerate fuel around it. Their goal for Nova's first year is to do experiments that will teach them how to achieve the symmetry and stability conditions required by an HET

  11. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  12. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  13. Quantifying Stability in Complex Networks: From Linear to Basin Stability

    Science.gov (United States)

    Kurths, Jürgen

    The human brain, power grids, arrays of coupled lasers and the Amazon rainforest are all characterized by multistability. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is in several cases too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies of neural networks and power grids, which have eluded theoretical description based solely on linear stability. Specifically, we employ a component-wise version of basin stability, a nonlinear inspection scheme, to investigate how a grid's degree of stability is influenced by certain patterns in the wiring topology. Various statistics from our ensemble simulations all support one main finding: The widespread and cheapest of all connection schemes, namely dead ends and dead trees, strongly diminish stability. For the Northern European power system we demonstrate that the inverse is also true: `Healing' dead ends by addition of transmission lines substantially enhances stability. This indicates a crucial smart-design principle for tomorrow's sustainable power grids: add just a few more lines to avoid dead ends. Further, we analyse the particular function of certain network motifs to promote the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design. Moreover, it will be shown that basin stability enables uncovering the mechanism for explosive synchronization and

  14. Research on solar pumped liquid lasers

    Science.gov (United States)

    Schneider, R. T.; Kurzweg, U. H.; Cox, J. D.; Weinstein, N. H.

    1983-01-01

    A solar pumped liquid laser that can be scaled up to high power (10Mw CW) for space applications was developed. Liquid lasers have the inherent advantage over gases in that they provide much higher lasant densities and thus high power densities. Liquids also have inherent advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13:Nd(3+):ZrC14 liquid was chosen for its high intrinsic efficiency as well as its relatively good stability against decomposition due to protic contamination. The development and testing of the laser liquid and the development of a large solar concentrator to pump the laser was emphasized. The procedure to manufacture the laser liquid must include diagnostic tests of the solvent purity (from protic contamination) at various stages in the production process.

  15. Before Stabilization

    DEFF Research Database (Denmark)

    Plesner, Ursula; Horst, Maja

    2013-01-01

    of the communication about innovations in information and communication technology (ICT), and to contribute to an understanding of how different visions promise particular future configurations of workflows, communication processes, politics, economic models and social relations. Hereby, the paper adds...... to the literature on the relationship between ICTs and organizing, but with a distinct focus on innovation communication and distributed innovation processes taking place before ICTs are stabilized, issues which cannot be captured by studies of diffusion and adaptation of new ICTs within single organizations....

  16. Transient Thermal Stability of Polymer Nanocomposites

    Science.gov (United States)

    2012-08-01

    modified Montmorillonite, Nanocor masterbatch ) 1 wt % carbon black (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O Multiwalled Carbon Nanotubes (Nanocyl... masterbatch ) Twin screw extrusion (190C) Slow Heating Regime Thermogravimetric Analysis Nanospecies improve thermal stability as expected Laser

  17. The role of defects in laser damage of multilayer coatings

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Chow, R.

    1993-01-01

    Laser induced damage to optical coatings is generally a localized phenomenon associated with coating defects. The most common of the defect types are the well-known nodule defect. This paper reviews the use of experiments and modeling to understand the formation of these defects and their interaction with laser light. Of particular interest are efforts to identify which defects are most susceptible to laser damage. Also discussed are possible methods for stabilizing these defects (laser conditioning) or preventing their initiation (source stabilization, spatter particle trapping)

  18. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  19. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  20. Robust Frequency Combs and Lasers for Optical Clocks and Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical frequency combs are the key enabling technology that enabled the immense fractional stability of highly-stabilized lasers in the optical regime to be...

  1. Note: Digital laser frequency auto-locking for inter-satellite laser ranging.

    Science.gov (United States)

    Luo, Yingxin; Li, Hongyin; Yeh, Hsien-Chi

    2016-05-01

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  2. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    International Nuclear Information System (INIS)

    Luo, Yingxin; Yeh, Hsien-Chi; Li, Hongyin

    2016-01-01

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  3. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn [MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Hongyin [MOE Key Laboratory of Fundamental Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  4. Il laser

    CERN Document Server

    Smith, William V

    1974-01-01

    Verso il 1960, il laser era ancora "una soluzione alla ricerca di un problema", ma fin dagli anni immediatamente successivi si è rivelato uno strumento insostituibile per le applicazioni più svariate.

  5. Laser Refractography

    CERN Document Server

    Rinkevichyus, B.S; Raskovskaya, I.L

    2010-01-01

    This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest t...

  6. Laser fusion

    International Nuclear Information System (INIS)

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  7. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  8. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  9. Laser Resurfacing

    OpenAIRE

    Janik, Joseph P.; Markus, Jodi L.; Al-Dujaili, Zeena; Markus, Ramsey F.

    2007-01-01

    In a society desiring images of beauty and youthfulness, the world of cutaneous surgery offers the gifts of facial rejuvenation for those determined to combat the signs of aging. With the development of novel laser and plasma technology, pigmentary changes, scarring, and wrinkles can be conquered providing smoother, healthier, younger-looking skin. This review highlights five of the most popular resurfacing technologies in practice today including the carbon dioxide (CO2) laser, the erbium:yt...

  10. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  11. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  12. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  13. D2O laser pumped by an injection-locked CO2 laser for ion-temperature measurements

    International Nuclear Information System (INIS)

    Okada, Tatsuo; Ohga, Tetsuaki; Yokoo, Masakazu; Muraoka, Katsunori; Akazaki, Masanori.

    1986-01-01

    The cooperative Thomson scattering method is one of the various new techniques proposed for measuring the temperature of ions in nuclear fusion critical plasma, for which a high-performance FIR laser pumped by an injection-locked CO 2 laser is required. This report deals with D 2 O laser with a wavelength of 385 μm which is pumped by injection-locked single-mole TEA CO 2 laser composed of a driver laser and an output-stage laser. A small-sized automatic pre-ionization type laser is employed for the driver. The resonator of the driver laser consists of a plane grating of littrow arrangement and ZnSe plane output mirrors with reflection factor of 50 %. An aperture and ZnSe etalon are inserted in the resonator to produce single transverse- and longitudinal-mode oscillation, respectively. The output-stage laser is also of the automatic pre-ionization type. Theoretically, an injection power of 0.1 pW/mm 3 is required for a CO 2 laser. Single-mode oscillation of several hundred nW/mm 3 can be produced by the CO 2 laser used in this study. Tuning of the output-stage laser is easily controlled by the driver laser. High stability of the injection-locked operation is demonstrated. CO 2 laser beam is introduced into the D 2 O laser through a KCl window to excite D 2 O laser beam in the axial direction. Input and output characteristics of the D 2 O laser are shown. Also presented are typical pulse shapes from the D 2 O laser pumped by a free-running CO 2 laser pulse or by an injection-locked single-mode CO 2 laser pulse. (Nogami, K.)

  14. Argus Laser Fusion Facility

    International Nuclear Information System (INIS)

    Speck, D.R.; Simmons, W.W.

    1976-01-01

    ARGUS is a two-beam Nd: glass laser system built for laser fusion irradiation experiments. It is the first glass laser system planned and built with the understanding that small-scale beam break-up is the dominant performance limiting factor in obtaining high output power. Accordingly, five vacuum spatial filters are located at strategic intervals along each chain to eliminate the accumulated small-scale filamentation. This strategy permits cascading of amplifiers to obtain a focusable output of more than one terawatt per arm in a spatially clean beam of 20 centimeter diameter. Beam diagnostics which characterize each shot include the time-integrated spatial profile and the time resolved intensity/power at the target. Demonstrated performance to date includes: (1) Peak power in excess of 2 TW at the target is achieved with regularity. (2) Maximum system brightness is in excess of 10 17 watts/cm 2 ster. (3) Shot-to-shot pointing stability within 50 μ radians is achieved over periods of days. (4) Successful target experiments have been performed with pulses of from 30 to 500 ps duration

  15. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Krishnamachari, v v; Potma, E O

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  16. Turbulent Non-Premixed Flames Stabilized on Double-Slit Curved Wall-Jet Burner with Simultaneous OH-Planar Laser-Induced Fluorescence and Particle Image Velocimetry Measurements

    KAUST Repository

    Mansour, Morkous S.; Chung, Suk-Ho

    2015-01-01

    , followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity

  17. Femtosecond laser additive manufacturing of YSZ

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bai, Shuang [PolarOnyx, Inc., San Jose, CA (United States)

    2017-04-15

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa. (orig.)

  18. Factors influencing laser cutting of wood

    Energy Technology Data Exchange (ETDEWEB)

    Barnekov, V. G.; McMillin, C. W.; Huber, H. A.

    1986-07-01

    Factors influencing the ability of lasers to cut wood may be generally classified into these three areas: 1) characteristics of the laser beam; 2) equipment and processing variables; and 3) properties of the work piece. Effects of beam power, mode, polarization, and stability are discussed as are aspects of optics, location of focal point, feed speed, gas-jet assist system and work piece thickness, density, and moisture content. (author)

  19. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  20. Laser material processing

    CERN Document Server

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  1. Laser therapy for cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  2. Lasers in Cancer Treatment

    Science.gov (United States)

    ... the advantages of laser therapy? What are the disadvantages of laser therapy? What does the future hold ... therapy is appropriate for them. What are the disadvantages of laser therapy? Laser therapy also has several ...

  3. Practical laser safety

    International Nuclear Information System (INIS)

    Winburn, D.C.

    1985-01-01

    This book includes discussions of the following topics: characteristics of lasers; eye components; skin damage thresholds; classification of lasers by ANSI Z136.1; selecting laser-protective eyewear; hazards associated with lasers; and, an index

  4. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  5. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  6. 8. High power laser and ignition facilities

    International Nuclear Information System (INIS)

    Bayramian, A.J.; Beach, R.J.; Bibeau, C.

    2002-01-01

    This document gives a review of the various high power laser projects and ignition facilities in the world: the Mercury laser system and Electra (Usa), the krypton fluoride (KrF) laser and the HALNA (high average power laser for nuclear-fusion application) project (Japan), the Shenguang series, the Xingguang facility and the TIL (technical integration line) facility (China), the Vulcan peta-watt interaction facility (UK), the Megajoule project and its feasibility phase: the LIL (laser integration line) facility (France), the Asterix IV/PALS high power laser facility (Czech Republic), and the Phelix project (Germany). In Japan the 100 TW Petawatt Module Laser, constructed in 1997, is being upgraded to the world biggest peta-watt laser. Experiments have been performed with single-pulse large aperture e-beam-pumped Garpun (Russia) and with high-current-density El-1 KrF laser installation (Russia) to investigate Al-Be foil transmittance and stability to multiple e-beam irradiations. An article is dedicated to a comparison of debris shield impacts for 2 experiments at NIF (national ignition facility). (A.C.)

  7. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  8. Laser beam diagnostics for metalworking applications

    International Nuclear Information System (INIS)

    Ramos, T.J.; Lingenfelter, A.C.

    1984-01-01

    The Materials Fabrication Division of Lawrence Livermore National Laboratory (LLNL) has three pulsed Nd-YAG lasers dedicated to metalworking. The units are used in a job shop primarily for welding. They also have a number of applications requiring cutting and drilling capability. Each of these metalworking operations requires somewhat different laser beam characteristics. As most investigators have found, the mode of the laser beam and the mode stability are the key variables which must be controlled if optimum results are to be achieved. The authors use several techniques to observe and measure these variables, i.e. Charge Couple Device (CCD) Camera, Thermal Image Plate and thermal-sensitive paper

  9. Dynamic testing of NOVA laser switchyard tower

    International Nuclear Information System (INIS)

    Weaver, H.J.; Pastrnak, J.W.; Fields, D.E.

    1984-01-01

    NOVA is the latest in a series of powerful laser systems designed to study the feasibility of initiating a controlled fusion reaction by concentrating several laser beams on a small fuel target. The laser components, turning mirrors and target chamber are all mounted on large steel frame structures. These structures were first analyzed via finite element models to access their seismic integrity as well as their overall vibrational stability. When construction was completed, a modal analysis was performed on the structures to verify and improve the finite element models. This report discusses the linking of the analytical and experimental studies for the NOVA switchyard tower structure

  10. Multi-terawatt fusion laser systems

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1993-01-01

    The evolution of laser fusion systems started with a description of the basic principles of the laser in 1959, then a physical demonstration showing 1000 Watts of peak optical power in 1961 to the present systems that deliver 10 14 watts of peak optical power, are presented. Physical limits to large systems are reviewed: thermal limits, material stress limits, structural limits and stability, parasitic coupling, measurement precision and diagnostics. The various steps of the fusion laser-system development process are then discussed through an historical presentation. 3 figs., 8 refs

  11. Anisotropic instability in a laser heated plasma

    International Nuclear Information System (INIS)

    Sangam, A.; Morreeuw, J.-P.; Tikhonchuk, V. T.

    2007-01-01

    The theory of the Weibel instability induced by the inverse Bremsstrahlung absorption of a laser light in an underdense plasma is revisited. It is shown that previous analyses have strongly overestimated the effect by neglecting the stabilizing term related to the interaction of the generated quasistatic magnetic field with the laser-heated electrons. The revised model leads to a reduction of the growth rate by more than a factor of 10, to strong reduction of the domain of unstable modes and to inversion of the direction of the unstable wave vectors in the long wavelength limit. The consequences of this instability on the laser plasma interaction are also discussed

  12. Research on solar pumped liquid lasers

    Science.gov (United States)

    Cox, J. D.; Kurzweg, U. H.; Weinstein, N. H.; Schneider, R. T.

    1985-01-01

    A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.

  13. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  14. Monolithic solid-state lasers for spaceflight

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Stephen, Mark A.; Merritt, Scott; Glebov, Leonid; Glebova, Larissa; Ryasnyanskiy, Aleksandr; Smirnov, Vadim; Mu, Xiaodong; Meissner, Stephanie; Meissner, Helmuth

    2015-02-01

    A new solution for building high power, solid state lasers for space flight is to fabricate the whole laser resonator in a single (monolithic) structure or alternatively to build a contiguous diffusion bonded or welded structure. Monolithic lasers provide numerous advantages for space flight solid-state lasers by minimizing misalignment concerns. The closed cavity is immune to contamination. The number of components is minimized thus increasing reliability. Bragg mirrors serve as the high reflector and output coupler thus minimizing optical coatings and coating damage. The Bragg mirrors also provide spectral and spatial mode selection for high fidelity. The monolithic structure allows short cavities resulting in short pulses. Passive saturable absorber Q-switches provide a soft aperture for spatial mode filtering and improved pointing stability. We will review our recent commercial and in-house developments toward fully monolithic solid-state lasers.

  15. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  16. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  17. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  18. Laser polarimetry

    International Nuclear Information System (INIS)

    Goldstein, D.H.

    1989-01-01

    Polarimetry, or transmission ellipsometry, is an important experimental technique for the determination of polarization properties of bulk materials. In this technique, source radiation of known polarization is passed through bulk samples to determine, for example, natural or induced birefringence and dichroism. The laser is a particularly appropriate source for this technique because of its monochromaticity, collimation, and radiant intensity. Lasers of many different wavelengths in different spectral regions are now available. Laser polarimetry can be done in any of these wavelength regions where polarizing elements are available. In this paper, polarimetry is reviewed with respect to applications, sources used, and polarization state generator and analyzer configurations. Scattering ellipsometry is also discussed insofar as the forward scattering measurement is related to polarimetry. The authors then describe an infrared laser polarimeter which we have designed and constructed. This instrument can operate over large wavelength regions with only a change in source. Polarization elements of the polarimeter are in a dual rotating retarder configuration. Computer controlled rotary stages and computer monitored detectors automate the data collection. The Mueller formulation is used to process the polarization information. Issues and recent progress with this instrument are discussed

  19. excimer laser

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... is necessary to deposit one order higher input electric power into gas medium than ... cross-sectional view of the laser system is shown in figure 2A. The system mainly consists ... Considering the simplicity and reliability of the.

  20. Laser device

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material...

  1. A 50 Mw Pulse-Forming Network with a Voltage Stability within 0.03-Percent

    NARCIS (Netherlands)

    Meddens, B. J. H.; Delmee, P. F. M.; van Amersfoort, P. W.

    1993-01-01

    Requirements on electron energy stability are extremely tight for operation of a free-electron laser. In case a radio-frequency field is used to accelerate the electrons, this leads to stringent requirements on the stability of the klystron output power and, hence, on the stability of the source

  2. Luminescence process, refractory stabilities, and new and novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, March 1, 1975--November 20, 1975

    International Nuclear Information System (INIS)

    Gole, J.L.

    1975-11-01

    The formulation and development of versatile oven systems for high temperature metal vaporation at temperatures greater than 2000 0 C are discussed. The construction of an apparatus appropriate to the production and study of small metal aggregates M/sub n/ (2 less than or equal to n less than or equal to 6) is discussed at length. This includes a consideration of the construction and operation of an argon ion pumped dye laser system. The dye laser system will be used to induce fluorescence from the small metal aggregates, and thereby will lead to the study of their molecular electronic structure. The production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. A thorough study of the luminescence process leading to a new understanding of those chemiluminescent phenomena occurring as a result of the ''single collision'' bimolecular reaction of metal atoms and metal dimers with select oxidants is outlined. Methods for the determination of upper bounds to the heats of sublimation and vaporization of those metals which can be strongly oxidized in a ''single collision'' bimolecular reaction are presented. Extremely simple methods by which one can infer the radiative lifetimes of metastable product chemiluminescing molecules are also discussed. Beginning efforts toward the formulation of new and novel catalytic surfaces via aggregate deposition are outlined. Current studies of the titanium oxide system are presented. These chemiluminescence studies allow the determination of a lower bound to the TiO dissociation energy and a determination of the heat of vaporization of titanium metal

  3. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  4. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  5. Laser ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  6. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  7. Interface stability during rapid directional solidification

    International Nuclear Information System (INIS)

    Hoglund, D.E.; Aziz, M.J.

    1992-01-01

    This paper reports that at the solidification velocities observed during pulsed laser annealing, the planar interface between solid and liquid is stabilized by capillarity and nonequilibrium effects such as solute trapping. The authors used Rutherford backscattering and electron microscopy to determine the nonequilibrium partition coefficient and critical concentration for breakdown of the planar interface as a function of interface velocity for Sn-implanted silicon. This allows the authors to test the applicability of the Mulliins-Sekerka stability theory to interfaces not in local equilibrium and to test the Coriell-Sekerka and other theories for oscillatory instabilities

  8. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  9. Laser Division report 1986-89

    International Nuclear Information System (INIS)

    Monga, J.C.

    1995-01-01

    This report is a technical account of the scientific R and D activities pursued by the Laser Division of the Bhabha Atomic Research Centre during 1986-89. It covers in considerable detail, progress made in all the activities undertaken during that period in laser development and their application. The most important among them was the development of the 1 kJ glass laser. Studies of laser produced plasmas were pursued using a smaller 50 J chain and at different stages of development of the 1 kJ chain. Significant results of plasma instabilities and x-ray spectroscopic studies are reported. Several plasma diagnostic tools developed are also described which studied plasmas, radiation transport, and ablation induced shocks. Studies were also conducted on the performance of dye lasers during their development. Development of several CO 2 lasers, cw, pulsed, hybrid and wavelength turned/stabilized, have been described and their performance evaluated. Development and performance of a 16μ CF 4 laser is also given. An electron beam controlled CO 2 laser design is reported. (author). refs., figs., tabs

  10. Recent developments in CO2 lasers

    Science.gov (United States)

    Du, Keming

    1993-05-01

    CO2 lasers have been used in industry mainly for such things as cutting, welding, and surface processing. To conduct a broad spectrum of high-speed and high-quality applications, most of the developments in industrial CO2 lasers at the ILT are aimed at increasing the output power, optimizing the beam quality, and reducing the production costs. Most of the commercial CO2 lasers above 5 kW are transverse-flow systems using dc excitation. The applications of these lasers are limited due to the lower beam quality, the poor point stability, and the lower modulation frequency. To overcome the problems we developed a fast axial- flow CO2 laser using rf excitation with an output of 13 kW. In section 2 some of the results are discussed concerning the gas flow, the discharge, the resonator design, optical effects of active medium, the aerodynamic window, and the modulation of the output power. The first CO2 lasers ever built are diffusion-cooled systems with conventional dc excited cylindrical discharge tubes surrounded by cooling jackets. The output power per unit length is limited to 50 W/m by those lasers with cylindrical tubes. In the past few years considerable increases in the output power were achieved, using new mechanical geometries, excitation- techniques, and resonator designs. This progress in diffusion-cooled CO2 lasers is presented in section 3.

  11. Dermatological laser treatment

    International Nuclear Information System (INIS)

    Moerk, N.J.; Austad, J.; Helland, S.; Thune, P.; Volden, G.; Falk, E.

    1991-01-01

    The article reviews the different lasers used in dermatology. Special emphasis is placed on the treatment of naevus flammeus (''portwine stain'') where lasers are the treatment of choice. Argon laser and pulsed dye laser are the main lasers used in vascular skin diseases, and the article focuses on these two types. Copper-vapour laser, neodymium-YAG laser and CO 2 laser are also presented. Information is provided about the availability of laser technology in the different health regions in Norway. 5 refs., 2 figs

  12. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  13. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  14. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  15. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  16. Trapped particle stability for the kinetic stabilizer

    Science.gov (United States)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  17. Investigation of dye laser excitation of atomic systems

    International Nuclear Information System (INIS)

    Abate, J.A.

    1977-01-01

    A stabilized cw dye laser system and an optical pumping scheme for a sodium atomic beam were developed, and the improvements over previously existing systems are discussed. A method to stabilize both the output intensity and the frequency of the cw dye laser for periods of several hours is described. The fluctuation properties of this laser are investigated by photon counting and two-time correlation measurements. The results show significant departures from the usual single-mode laser theory in the region of threshold and below. The implications of the deviation from accepted theory are discussed. The atomic beam system that was constructed and tested is described. A method of preparing atomic sodium so that it behaves as a simple two-level atom is outlined, and the results of some experiments to study the resonant interaction between the atoms and the dye laser beam are presented

  18. Interaction of Intense Lasers with Plasmas

    Science.gov (United States)

    Shvets, Gennady

    1995-01-01

    This thesis addresses two important topics in nonlinear laser plasma physics: the interaction of intense lasers with a non thermal homogeneous plasma, the excitation of laser wakefields in hollow plasma channels, and the stability of channel guided propagation of laser pulses. In the first half of this thesis a new theoretical approach to the nonlinear interaction of intense laser pulses with underdense plasmas is developed. Unlike previous treatments, this theory is three-dimensional, relativistically covariant, and does not assume that astudied. An experimental check of this calculation is suggested, based on the predicted non-linear polarization rotation (the second harmonic is emitted polarized perpendicularly to polarization of the incident signal). The concept of renormalization is applied to the plasma and electromagnetic radiation (photons and plasmons). To the lowest order, this corresponds to relativistically correcting the electron mass for its oscillation in an intense EM field and to replacing the vacuum dispersion relation by the usual relativistic plasma dispersion relation. This renormalization procedure is then carried to higher order in epsilon=omega_sp{p} {2}a^2/[(1+a^2/2)^ {3/2}omega^2]. This yields the nonlinear modification of the index of refraction of a strong electromagnetic wave and the dispersion of a weak probe in the presence of the wave. In the second part of this thesis the stability of short laser pulses propagating through parabolic channels and the wake excitation of hollow plasma channels are studied. The stability of a channel guided short laser pulse propagation is analyzed for the first time. Perturbations to the laser pulse are shown to modify the ponderomotive pressure, which distorts the dielectric properties of the plasma channel. The channel perturbation then further distorts the laser pulse. A set of coupled mode equations is derived, and a matrix dispersion relation is obtained analytically. The ponderomotive excitation

  19. Laser spectroscopy and laser ion source development at UNISOR

    International Nuclear Information System (INIS)

    Bingham, C.

    1991-01-01

    The development of the laser spectroscopy facility at UNISOR will be described. The method of collinear laser-atomic beams interaction is utilized to achieve atomic spectra essentially free of Doppler spreading. Measurement of resonance fluorescence via an efficient fiber-optic light collector is used to observe the atomic excitation by the laser beam. The system has been utilized to measure the atomic lifetime of the 6p 4 Ps/2 0 level in Xe II. In other experiment the relativistic Doppler effect was measured as a test of time dilation. Hyperfine structure and isotope shift measurements have been made for a series of Tl atoms ranging in mass from 187 to 205. Magnetic dipole and electric quadrupole moments were deduced for several of these isotopes; these quantities and the isotope shifts added greatly to our understanding of nuclear shapes in this transition region. Future directions will focus around more sensitive detection techniques and the development of purer beams in order to enable the study of nuclei farther from stability. The development of a laser ion source which operates in a completely cold mode and utilizes resonant absorption in the ionization process world facilitate the production of ultra-pure atomic beams

  20. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  1. Laser therapy (image)

    Science.gov (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  2. Laser fusion: an overview

    International Nuclear Information System (INIS)

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  3. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  4. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  5. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  6. Multi-longitudinal-mode micro-laser model

    Science.gov (United States)

    Staliunas, Kestutis

    2017-10-01

    We derive a convenient model for broad aperture micro-lasers, such as microchip lasers, broad area semiconductor lasers, or VCSELs, taking into account several longitudinal mode families. We provide linear stability analysis, and show characteristic spatio-temporal dynamics in such multi-longitudinal mode laser models. Moreover, we derive the coupled mode model in the presence of intracavity refraction index modulation (intracavity photonic crystal). Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  7. Laser thermonuclear fusion with force confinement of hot plasma

    International Nuclear Information System (INIS)

    Korobkin, V.V.; Romanovsky, M.Y.

    1994-01-01

    The possibility of the utilization of laser radiation for plasma heating up to thermonuclear temperatures with its simultaneous confinement by ponderomotive force is investigated. The plasma is located inside a powerful laser beam with a tubelike section or inside a cavity of duct section, formed by several intersecting beams focused by cylindrical lenses. The impact of various physical processes upon plasma confinement is studied and the criteria of plasma confinement and maintaining of plasma temperature are derived. Plasma and laser beam stability is considered. Estimates of laser radiation energy necessary for thermonuclear fusion are presented

  8. Fast gas spectroscopy using pulsed quantum cascade lasers

    Science.gov (United States)

    Beyer, T.; Braun, M.; Lambrecht, A.

    2003-03-01

    Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.

  9. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  10. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  11. Bleaching Dengan Teknologi Laser

    OpenAIRE

    Eliwaty

    2008-01-01

    Penulisan tentang bleaching dengan laser dimaksudkan untuk menambah wawasan serta pengetahuan dari pembaca di bidang kedokteran gigi. Macam-macam laser yang dipergunakan dalam bleaching yaitu argon, CO2 serta dioda laser. Contoh merek produk laser yaitu Blulaze, Dentcure untuk argonlaser, Novapulse untuk C02 serta Opus 5 untuk dioda laser. Laser bleaching hasilnya dapat dicapai dalam satu kunjungan saja, cepat, efisien namun biayanya relatif mahal, dapat menimbulkan burn, sensitivitas se...

  12. Optical double-locked semiconductor lasers

    Science.gov (United States)

    AlMulla, Mohammad

    2018-06-01

    Self-sustained period-one (P1) nonlinear dynamics of a semiconductor laser are investigated when both optical injection and modulation are applied for stable microwave frequency generation. Locking the P1 oscillation through modulation on the bias current, injection strength, or detuning frequency stabilizes the P1 oscillation. Through the phase noise variance, the different modulation types are compared. It is demonstrated that locking the P1 oscillation through optical modulation on the output of the master laser outperforms bias-current modulation of the slave laser. Master laser modulation shows wider P1-oscillation locking range and lower phase noise variance. The locking characteristics of the P1 oscillation also depend on the operating conditions of the optical injection system

  13. Research of time fiducial and imaging VISAR laser for Shenguang-III laser facility

    Science.gov (United States)

    Zhang, Rui; Wang, Zhenguo; Tian, Xiaocheng; Zhou, Dandan; Zhu, Na; Wang, Jianjun; Li, Mingzhong; Xu, Dangpeng; Dang, Zhao; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Wang, Feng

    2015-10-01

    Time fiducial laser is an important tool for the precise measurement in high energy density physics experiments. The VISAR probe laser is also vital for shock wave diagnostics in ICF experiments. Here, time fiducial laser and VISAR light were generated from one source on SG-III laser facility. After generated from a 1064-nm DFB laser, the laser is modulated by an amplitude modulator driven by 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20-ns VISAR pulse were split by a 1×2 multiplexer and then chosen by two acoustic optic modulators. Using the technique, cost of the system was reduced. The technologies adopted in the system also include pulse polarization stabilization, high precision fiber coupling and energy transmission. The time fiducial laser generated synchronized 12-beam 2ω and 4-beam 3ω laser, providing important reference marks for different detectors and making it convenient for the analysis of diagnostic data. After being amplified by fiber amplifiers and Nd:YAG rod amplifiers, the VISAR laser pulse was frequency-converted to 532-nm pulse by a thermally controlled LBO crystal with final output energy larger than 20 mJ. Finally, the green light was coupled into a 1-mm core diameter, multimode fused silica optical fiber and propagated to the imaging VISAR. The VISAR laser has been used in the VISAR diagnostic physics experiments. Shock wave loading and slowdown processes were measured. Function to measure velocity history of shock wave front movement in different kinds of materials was added to the SG-III laser facility.

  14. Laser calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile calorimeter is achieved with a set of calibration procedures. One step of the calibrtion procedure is based on measurements of the response stability to laser excitation of the photomultipliers (PMTs) that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the test in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the resonse drifts seen with the PMT mounted on the Tile calorimeter in its normal operation during LHC run I and run II. A new statistical approach was developed to measure the drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to the data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  15. Laser Calibration of the ATLAS Tile Calorimeter

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2017-01-01

    High performance stability of the ATLAS Tile Calorimeter is achieved with a set of calibration procedures. One step of the calibration procedure is based on measurements of the response stability to laser excitation of the PMTs that are used to readout the calorimeter cells. A facility to study in lab the PMT stability response is operating in the PISA-INFN laboratories since 2015. Goals of the tests in lab are to study the time evolution of the PMT response to reproduce and to understand the origin of the response drifts seen with the PMT mounted on the Tile calorimeter in its normal operating during LHC run I and run II. A new statistical approach was developed to measure drift of the absolute gain. This approach was applied to both the ATLAS laser calibration data and to data collected in the Pisa local laboratory. The preliminary results from these two studies are shown.

  16. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  17. Laser safety at high profile laser facilities

    International Nuclear Information System (INIS)

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  18. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  19. Laser Protection TIL

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  20. Laser Photochemistry.

    Science.gov (United States)

    1981-07-01

    inverted by the first, i.e., at the moment of time t = T, such that i = (2n+)lT, where 0 is the Rabi frequency (Oraevski et al., 1976). . classical... anisotropic molecule present. CW HeNe, Ar+ and Kr+ lasers are used, and the filter method is necessary because of time-scales lo8 - 10ll Hz. Some general...e.g., truncated harmonic oscillator, square well, spherically symmetric Morse or Lennard-Jones, anisotropic (angle-dependent) Morse or Lennard-Jones

  1. Pulsed UV laser technologies for ophthalmic surgery

    International Nuclear Information System (INIS)

    Razhev, A M; Bagayev, S N; Churkin, D S; Kargapol’tsev, E S; Chernykh, V V; Iskakov, I A; Ermakova, O V

    2017-01-01

    The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers. (paper)

  2. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  3. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  4. Target life time of laser ion source for low charge state ion production

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  5. Laser-based coatings removal

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings

  6. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  7. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  8. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    Science.gov (United States)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  9. Laser safety and practice

    International Nuclear Information System (INIS)

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  10. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  11. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  12. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  13. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  14. Stability of Dolos Slopes

    DEFF Research Database (Denmark)

    Brorsen, Michael; Burcharth, Hans F.; Larsen, Torben

    The stability of dolos armour blocks against wave attack has been investigated in wave model studies.......The stability of dolos armour blocks against wave attack has been investigated in wave model studies....

  15. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  16. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  17. Stability of parallel flows

    CERN Document Server

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  18. Laser Microdissection.

    Science.gov (United States)

    Frost, Andra R; Eltoum, Isam-Eldin; Siegal, Gene P; Emmert-Buck, Michael R; Tangrea, Michael A

    2015-10-01

    Laser microdissection (LM) offers a relatively rapid and precise method of isolating and removing specified cells from complex tissues for subsequent analysis of their RNA, DNA, protein or metabolite content, thereby allowing assessment of the role of different cell types in the normal physiological or disease processes being studied. In this unit, protocols for the preparation of mammalian frozen tissues, fixed tissues, and cytologic specimens for LM, including tissue freezing, tissue processing and paraffin embedding, histologic sectioning, cell processing, hematoxylin and eosin staining, immunohistochemistry, and image-guided cell targeting are presented. Also provided are recipes for generating lysis buffers for the recovery of nucleic acids and proteins. The Commentary section addresses the types of specimens that can be utilized for LM and approaches to staining of specimens for cell visualization. Emphasis is placed on the preparation of tissue or cytologic specimens as this is critical to effective LM. Copyright © 2015 John Wiley & Sons, Inc.

  19. Laser EXAFS

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Schwenzel, R.E.; Campbell, B.E.

    1983-01-01

    Apparatus for obtaining EXAFS data of a material, comprising means for directing radiant energy from a laser onto a target in such manner as to produce X-rays at the target of a selected spectrum and intensity, suitable for obtaining the EXAFS spectrum of the material, means for directing X-rays from the target onto spectral dispersive means so located as to direct the spectrally resolved X-rays therefrom onto recording means, and means for positioning a sample of material in the optical path of the X-rays, the recording means providing a reference spectrum of X-rays not affected by the sample and absorption spectrum of X-rays modified by transmission through the sample

  20. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  1. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  2. History and principle of lasers

    International Nuclear Information System (INIS)

    Townes, Ch.H.; Schwob, C.; Julien, J.; Forget, S.; Robert-Philip, I.; Balcou, Ph.

    2010-01-01

    In the first article C.H. Townes, the inventor of the maser, describes the work and ideas that led to the invention of the laser. The second article explains how a laser operate and the third article reviews the main different types of laser: solid lasers, gas lasers, diode lasers and dye lasers

  3. The BWR Stability Issue

    International Nuclear Information System (INIS)

    D'Auria, F.

    2008-01-01

    The purpose of this paper is to supply general information about Boiling Water Reactor (BWR) stability. The main concerned topics are: phenomenological aspects, experimental database, modelling features and capabilities, numerical models, three-dimensional modelling, BWR system performance during stability, stability monitoring and licensing aspects.

  4. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  5. Technological laser application

    International Nuclear Information System (INIS)

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  6. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  7. New power lasers

    International Nuclear Information System (INIS)

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  8. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  9. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  10. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  11. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  12. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  13. Laser fusion research with GEKKO XII and PW laser system at Osaka

    International Nuclear Information System (INIS)

    Izawa, Y.; Mima, K.; Azechi, H.; Fujioka, S.; Fujita, H.; Fujimoto, Y.; Jitsuno, T.; Johzaki, Y.; Kitagawa, Y.; Kodama, R.; Kondo, K.; Miyanaga, N.; Nagai, K.; Nagatomo, H.; Nakai, M.; Nishihara, K.; Nishimura, H.; Norimatsu, T.; Shiraga, H.; Shigemori, K.; Sunahara, A.; Tanaka, K.A.; Tsubakimoto, K.; Nakao, Y.; Norreys, P.; Sakagami, H.

    2005-01-01

    Fast heating of the compressed core plasma up to 500eV has been successfully demonstrated by injecting a 400J/0.6ps PW laser into a compressed CD shell through a hollow gold cone. According to this result, we started the FIREX (Fast Ignition Realization Experiment) project toward demonstrating the ignition of the highly compressed DT fuel by the high energy PW laser heating. A new heating laser LFEX (Laser for Fast Ignition Experiment) is under construction. In this paper the progresses in the experimental studies on scientific issues related to fast ignition and the integrated code development toward the FIREX will be reported. Research results on implosion hydrodynamics, Rayleigh-Taylor instability growth and a new stabilization mechanism are also reported. (author)

  14. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  15. Advance in physics of laser thermonuclear fusion

    International Nuclear Information System (INIS)

    Afanasev, J.; Basov, N.; Gamalij, J.; Krokhin, O.; Rozanov, V.

    1977-01-01

    A survey is given of current advance in the physics of laser thermonuclear fusion (LTF). The LTF physical model is discussed with regard to the optimal laser-target systems not only for attaining the physical limit but also for future thermonuclear reactors. The basic physical principles of LTF are formulated which make use of the fact that in focusing laser radiation on the surface of a substance a high density may be attained of the energy flux (10 5 to 10 6 J) and thereby also a high velocity of energy release in the substance. A detailed description is given of the processes which take place in laser irradiation of a spherical target. The problem is discussed of hydrodynamic stability in the compression of matter in laser thermonuclear targets, the concept is explained of the physical threshold of a thermonuclear reaction in laser excitation as are the conditions for attaining this threshold. The quantitative criterion is examined of the attainment of the physical threshold of LTF for pulsed systems. (B.S.)

  16. Association of Stability Parameters and Yield Stability of Sesame ...

    African Journals Online (AJOL)

    Association of Stability Parameters and Yield Stability of Sesame ( Sesamum ... Information on phenotypic stability is useful for the selection of crop varieties as well as for ... as an alternative to parametric stability measurements is important.

  17. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  18. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  19. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  20. Infrared laser system

    International Nuclear Information System (INIS)

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture