Sample records for yb-172 ta-182 w-184

  1. Study of superdeformed state of nuclei in $Z=70-80$ drip-line region

    Mahapatro, S; Kumar, Bharat; Patra, S K


    We study binding energy, root- mean square radius, quadrapole deformation parameter, two-neutron separation energy and single particle energy levels for various isotopes of Ytterbium (Yb), Hafnium(Hf), Tungsten(W), Osmium(Os), Platinum(Pt) and Mercury(Hg) in $Z = 70 - 80$ drip-line region starting from $N =80$ to $N=170$ within the formalism of relativistic mean field (RMF) theory. We compared our results with Finite Range Droplet Model(FRDM) and experimental data and found that the calculated results are in good agreement. The nuclei $^{168}$Yb,$^{172}$Hf, $^{176}$W, $^{184}$Os, $^{188}$Pt, $^{196}$Hg are found to be most stable isotope in the respective series in the neutron-deficient region. We also observe that there is a shape transition at about $A=190$ in $Z=70-80$ region. The shape changes from oblate to highly prolate shape in their intrinsic ground state. We have also studied probable decay mechanisms of these elements.

  2. 10 CFR Appendix L to Part 110 - Illustrative List of Byproduct Materials Under NRC Export/Import Licensing Authority a


    ...) Manganese 52 (Mn 52) Manganese 54 (Mn 54) Manganese 56 (Mn 56) Mendelevium 258 (Md 258) Mercury 197m (Hg... 182 (Ta 182) Technetium 96 (Tc 96) Technetium 97m (Tc 97m) Technetium 97 (Tc 97) Technetium 99m (Tc 99m) Technetium 99 (Tc 99) Tellurium 125m (Te 125m) Tellurium 127m (Te 127m) Tellurium 127 (Te 127...

  3. Tungsten isotopic compositions in stardust SiC grains from the Murchison meteorite: Constraints on the s-process in the Hf-Ta-W-Re-Os region

    Ávila, J N; Ireland, T R; Gyngard, F; Zinner, E; Cristallo, S; Holden, P; Buntain, J; Amari, S; Karakas, A


    We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes 182W, 183W, 184W, 186W and 179Hf, 180Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (=solar) composition in the 182W/184W and 183W/184W ratios, with deficits in 182W and 183W with respect to 184W. The 186W/184W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar 182W/184W, 183W/184W, and 186W/184W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match...

  4. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J


    Determination of the (182)W/(184)W ratio to a precision of ± 5 ppm (2σ) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2σ, 1-3 μg loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2σm) for loads between 3000 and 50 ng.

  5. Photoassociative production of ultracold heteronuclear YbLi* molecules

    Roy, Richard; Shrestha, Rajendra; Green, Alaina; Gupta, Subhadeep; Li, Ming; Kotochigova, Svetlana; Petrov, Alexander; Yuen, Chi Hong


    We report on the production of ultracold heteronuclear YbLi* molecules in a dual-species magneto-optical trap by photoassociation (PA). The formation of the electronically excited molecules close to dissociation was observed by trap loss spectroscopy. We find 4 rovibrational states within a range of 250 GHz below the Yb (S10) +Li (1/2 2P) asymptote and observe isotopic PA line shifts in mixtures of 6Li with 174Yb, 172Yb, and 176Yb. We also describe our theoretical ab initio calculation for the relevant electronic potentials and utilize it to analyze and identify the lines in the experimentally observed spectrum.

  6. Photoassociative production of ultracold heteronuclear YbLi* molecules

    Roy, Richard; Green, Alaina; Gupta, Subhadeep; Li, Ming; Kotochigova, Svetlana; Petrov, Alexander; Yuen, Chi Hong


    We report on the production of ultracold heteronuclear YbLi* molecules in a dual-species magneto-optical trap by photoassociation (PA). The formation of the electronically excited molecules close to dissociation was observed by trap loss spectroscopy. We find 4 rovibrational states within a range of $250\\,$GHz below the Yb($^1S_0$) + Li($^2P_{1/2}$) asymptote and observe isotopic PA line shifts in mixtures of $^6$Li with $^{174}$Yb, $^{172}$Yb, and $^{176}$Yb. We also describe our theoretical ab-initio calculation for the relevant electronic potentials and utilize it to analyze and identify the lines in the experimentally observed spectrum.

  7. Laser spectroscopy and cooling of Yb+ ions on a deep-UV transition

    Meyer, Hendrik M; Ratschbacher, Lothar; Zipkes, Christoph; Köhl, Michael


    We perform laser spectroscopy of Yb+ ions on the 4f14 6s 2S_{1/2} - 4f13 5d 6s 3D[3/2]_{1/2} transition at 297 nm. The frequency measurements for 170Yb+, 172Yb+, 174Yb+, and 176Yb+ reveal the specific mass shift as well as the field shifts. In addition, we demonstrate laser cooling of Yb+ ions using this transition and show that light at 297 nm can be used as the second step in the photoionization of neutral Yb atoms.

  8. 10 CFR 30.70 - Schedule A-Exempt concentrations.


    ...) Pb 203 4×10−3 Lutetium (71) Lu 177 1×10−3 Manganese (25) Mn 52 3×10−4 Mn 54 1×10−3 Mn 56 1×10−3... 35 9×10−8 6×10−4 Tantalum (73) Ta 182 4×10−4 Technetium (43) Tc 96m 1×10−1 Tc 96 1×10−3 Tellurium (52...

  9. 10 CFR 30.71 - Schedule B.


    ...) 100 Manganese 52 (Mn 52) 10 Manganese 54 (Mn 54) 10 Manganese 56 (Mn 56) 10 Mercury 197m (Hg 197m) 100... (S 35) 100 Tantalum 182 (Ta 182) 10 Technetium 96 (Tc 96) 10 Technetium 97m (Tc 97m) 100 Technetium 97 (Tc 97) 100 Technetium 99m (Tc 99m) 100 Technetium 99 (Tc 99) 10 Tellurium 125m (Te 125m) 10...

  10. Theoretical study of different features of the fission process of excited nuclei in the framework of the modified statistical model and four-dimensional dynamical model

    Eslamizadeh, H.


    Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.

  11. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.

    Touboul, M; Kleine, T; Bourdon, B; Palme, H; Wieler, R


    The Moon is thought to have formed from debris ejected by a giant impact with the early 'proto'-Earth and, as a result of the high energies involved, the Moon would have melted to form a magma ocean. The timescales for formation and solidification of the Moon can be quantified by using 182Hf-182W and 146Sm-142Nd chronometry, but these methods have yielded contradicting results. In earlier studies, 182W anomalies in lunar rocks were attributed to decay of 182Hf within the lunar mantle and were used to infer that the Moon solidified within the first approximately 60 million years of the Solar System. However, the dominant 182W component in most lunar rocks reflects cosmogenic production mainly by neutron capture of 181Ta during cosmic-ray exposure of the lunar surface, compromising a reliable interpretation in terms of 182Hf-182W chronometry. Here we present tungsten isotope data for lunar metals that do not contain any measurable Ta-derived 182W. All metals have identical 182W/184W ratios, indicating that the lunar magma ocean did not crystallize within the first approximately 60 Myr of the Solar System, which is no longer inconsistent with Sm-Nd chronometry. Our new data reveal that the lunar and terrestrial mantles have identical 182W/184W. This, in conjunction with 147Sm-143Nd ages for the oldest lunar rocks, constrains the age of the Moon and Earth to Myr after formation of the Solar System. The identical 182W/184W ratios of the lunar and terrestrial mantles require either that the Moon is derived mainly from terrestrial material or that tungsten isotopes in the Moon and Earth's mantle equilibrated in the aftermath of the giant impact, as has been proposed to account for identical oxygen isotope compositions of the Earth and Moon.

  12. Dynamics of the Globular Cluster NGC 665 with WFPC2

    CHEN Ding; CHEN Li; WANG Jia-Ji


    @@ We have used the Hubble Space Telescope observations to measure proper motion of the globular cluster NGC6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. Based on the proper motion of the cluster, its space velocity (II, (-) , W) = (184 ± 3, 209 ±14, 132 ± 15) km s- 1 and galactic orbit are also obtained. The central velocity dispersion in radial and tangential components of the internal motion of cluster stars is 16.99 km s-1. We derive the mass-to-light ratio M/ LV ~ 3.3 ± 0.2, which is relatively higher than the previous results.

  13. Determination of 16 Rare Earth Elements in Banana by Microwave Digestion and ICP-MS%微波消解ICP-MS法结合同时测定香蕉中的16种稀土元素含量

    范稚莉; 范稚莲; 闫飞燕; 莫磊兴; 王天顺; 廖洁; 牙禹; 范业赓


    [Objective] This study aimed to investigate the residues of rare earth ele-ments in Guangxi banana from banana-producing area with application of rare earth fertilizers and evaluate the safety of using rare earth fertilizers in banana production. [Method] HNO3+H2O2 mixed acid system with high pressure airtight microwave di-gestion sample pretreatment method and ICP-MS technology were used, to establish a determination method of 16 rare earth elements in banana samples, including Sc45, Y89, La139, Ce140, Pr141, Sm147, Eu153, Gb157, Tb159, Nd144, Dy163, Ho165, Er166, Tm169, Yb172 and Lu175. [Result] Different standard curves present-ed good linearity. Detection limit of the instrument was 0.002-0.01 μg/L; detection limit of the method was 0.1-0.6 μg/kg; recovery rate of standard addition was 94.5%-116%; relative standard deviation was 2.02%-14.21%. [Conclusion] This method has many advantages, such as simple mass spectrogram, high sensitivity and high selectivity, accurate quantification, high precision and accuracy, simple operation, high reproducibility and high recovery rate, which is suitable for the detection of rare earth elements in banana and other fruits, with certain theoretical and applicable val-ue for guiding banana production and high-efficient planting.%[目的]旨在了解广西香蕉产区施用稀土农用肥的稀土元素残留情况,指导香蕉生产,评价稀土农用肥的安全性。[方法]采用ICP-MS等离子体质谱法和使用HNO3+H2O2混酸体系高压密闭微波前处理样品联合技术,建立测定香蕉样品中16种稀土元素(Sc45,Y89,La139,Ce140, Pr141,Sm147,Eu153,Gb157,Tb159,Nd144, Dy163,Ho165,Er166,Tm169,Yb172,Lu175)含量的方法。[结果]各曲线呈良好线性关系,仪器检出限为0.002~0.01μg/L,方法检出限为0.1~0.6μg/kg,加标回收率为94.5%~116%,相对标准偏差为2.02%~14.21%。[结论]该方法质谱图简单,选择性和灵敏度好,定量准确,

  14. Early Earth differentiation investigated through 142Nd, 182W, and highly siderophile element abundances in samples from Isua, Greenland

    Rizo, H.; Walker, R. J.; Carlson, R. W.; Touboul, M.; Horan, M. F.; Puchtel, I. S.; Boyet, M.; Rosing, M. T.


    We report new data for W concentrations, stable W isotopic compositions, high-precision 182W/184W ratios, highly siderophile element (HSE) abundances and 187Re-187Os systematics in a suite of 3.8-3.3 Ga mafic and ultramafic rocks from the Isua supracrustal belt, and the Paleoarchean terrane in the northwestern part of the belt. These data are compared with published data for 146Sm-142Nd systematics in the same samples. The samples from the Isua supracrustal belt show well resolved excesses of 182W/184W of up to ∼21 ppm, consistent with previous W isotopic data reported by Willbold et al. (2011). While there is abundant evidence that W was mobilized in the crust accessed by the Isua supracrustal suite, the isotopic anomalies are interpreted to primarily reflect processes that affected the mantle precursors to these rocks. The origin of the 182W excesses in these rocks remains uncertain. The Isua mantle source could represent a portion of the post-core-formation mantle that was isolated from late accretionary additions (e.g., Willbold et al., 2011). However, the combined 182W, Re-Os isotopic systematics and HSE abundances estimated for the source of the Isua basalts are difficult to reconcile with this interpretation. The W isotope variations were more likely produced as a result of fractionation of the Hf/W ratio in the mantle during the lifetime of 182Hf, i.e., during the first 50 Ma of Solar System history. This could have occurred as a result of differentiation in an early magma ocean. The Isua suite examined is also characterized by variable 142Nd/144Nd, but the variations do not correlate with the variations in 182W/184W. Further, samples with ages between 3.8 and 3.3 Ga show gradual diminution of 142Nd anomalies until these are no longer resolved from the modern mantle isotopic composition. By contrast, there is no diminishment of 182W variability with time, suggesting different mechanisms of origin and retention of isotopic variations for these two extinct

  15. Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors

    Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.


    Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.

  16. Q value and half-life of double-electron capture in Os-184

    Smorra, C; Beyer, T; Blaum, K; Block, M; Düllmann, Ch E; Eberhardt, K; Eibach, M; Eliseev, S; Langanke, K; Martinez-Pinedo, G; Nagy, Sz; Nörtershäuser, W; Renisch, D; Shabaev, V M; Tupitsyn, I I; Zubova, N A


    Os-184 has been excluded as a promising candidate for the search of neutrinoless double-electron capture. High-precision mass measurements with the Penning-trap mass spectrometer TRIGA-TRAP resulted in a marginal resonant enhancement with = -8.89(58) keV excess energy to the 1322.152(22) keV 0+ excited state in W-184. State-of-the-art energy density functional calculations are applied for the evaluation of the nuclear matrix elements to the excited states predicting a strong suppression due to the large deformation of mother and daughter states. The half-life of the transition in Os-184 exceeds T_{1/2} > 1.3 10^{29} years for an effective neutrino mass of 1 eV.

  17. Mutational Analysis and Allosteric Effects in the HIV-1 Capsid Protein Carboxyl-Terminal Dimerization Domain


    The carboxyl-terminal domain (CTD, residues 146−231) of the HIV-1 capsid (CA) protein plays an important role in the CA−CA dimerization and viral assembly of the human immunodeficiency virus type 1. Disrupting the native conformation of the CA is essential for blocking viral capsid formation and viral replication. Thus, it is important to identify the exact nature of the structural changes and driving forces of the CTD dimerization that take place in mutant forms. Here, we compare the structural stability, conformational dynamics, and association force of the CTD dimers for both wild-type and mutated sequences using all-atom explicit-solvent molecular dynamics (MD). The simulations show that Q155N and E159D at the major homology region (MHR) and W184A and M185A at the helix 2 region are energetically less favorable than the wild-type, imposing profound negative effects on intermolecular CA−CA dimerization. Detailed structural analysis shows that three mutants (Q155N, E159D, and W184A) display much more flexible local structures and weaker CA−CA association than the wild-type, primarily due to the loss of interactions (hydrogen bonds, side chain hydrophobic contacts, and π-stacking) with their neighboring residues. Most interestingly, the MHR that is far from the interacting dimeric interface is more sensitive to the mutations than the helix 2 region that is located at the CA−CA dimeric interface, indicating that structural changes in the distinct motif of the CA could similarly allosterically prevent the CA capsid formation. In addition, the structural and free energy comparison of the five residues shorter CA (151−231) dimer with the CA (146−231) dimer further indicates that hydrophobic interactions, side chain packing, and hydrogen bonds are the major, dominant driving forces in stabilizing the CA interface. PMID:19199580

  18. Fractionation of Oxygen Isotopes by Thermal Ionization Mass Spectrometry Inferred from Simultaneous Measurement of (17)O/(16)O and (18)O/(16)O Ratios and Implications for the (182)Hf-(182)W Systematics.

    Trinquier, Anne


    isotope composition based on the simultaneous analysis of the (18)O/(16)O and (17)O/(16)O ratios could prevent tens of ppm bias or more on the (182)W/(184)W and (183)W/(184)W ratios.

  19. The tungsten isotopic composition of Eoarchean rocks: Implications for early silicate differentiation and core-mantle interaction on Earth

    Iizuka, Tsuyoshi; Nakai, Shun'ichi; Sahoo, Yu Vin; Takamasa, Asako; Hirata, Takafumi; Maruyama, Shigenori


    We have measured 182W/ 184W for Eoarchean rocks from the Itsaq Gneiss Complex (3.8-3.7 Ga pillow meta-basalts, a meta-tonalite, and meta-sediments) and Acasta Gneiss Complex (4.0-3.6 Ga felsic orthogneisses) to assess possible W isotopic heterogeneity within the silicate Earth and to constrain W isotopic evolution of the mantle. The data reveal that 182W/ 184W values in the Eoarchean samples are uniform within the analytical error and indistinguishable from the modern accessible mantle signature, suggesting that the W isotopic composition of the upper mantle has not changed significantly since the Eoarchean era. The results imply either that chemical communication between the mantle and core has been insignificant in post-Hadean times, or that a lowermost mantle with a distinctive W isotope signature has been isolated from mantle convective cycling. Most terrestrial rock samples have a 0.2 ɛ142Nd/ 144Nd higher than the chondrite average. This requires either the presence of a hidden enriched reservoir formed within the first 30 Ma of the Solar System, or the bulk Earth having a ˜ 5% higher Sm/Nd than the chondrite average. We explored the relevance of the 182Hf- 182W isotope system to the 146Sm- 142Nd isotope system during early silicate differentiation events on Earth. In this context, we demonstrate that the lack of resolvable 182W excesses in the Itsaq rocks, despite 142Nd excesses compared to the modern accessible mantle, is more consistent with the view that the bulk Earth has a non-chondritic Sm/Nd. In the non-chondritic Sm/Nd Earth model, the 182W- 142Nd chronometry constrains the age of the source mantle depletion for the Itsaq samples to more than ˜ 40 Ma after the Solar System origin. Our results cannot confirm the previous report of 182W anomalies in the Eoarchean Itsaq meta-sediments, which were interpreted as reflecting an impact-derived meteoritic component.

  20. Virulence potential of Enterococcus gallinarum strains isolated from selected Nigerian traditional fermented foods



    Full Text Available Five Enterococcus isolates from some Nigerian traditional fermented foods were identified as Enterococcus gallinarum by using phenotypic and genotypic tests. Safety properties such as antibiotic susceptibility, virulence gene detection, haemolysin, gelatinase and bacteriocin production were determined using standard methods. There was no resistance to clinically relevant antibiotics. Virulence gene for collagen binding antigen and aggregation substance were detected in 60% of the E. gallinarum strains; while surface adhesin was detected in 20%, but none of the strains had cytolysin activator and gelatinase. Phenotype characterizations of the E. gallinarum isolates indicated that none of the isolates produced haemolysin and gelatinase. Enterococcus gallinarum C103 and U82 had no antimicrobial activity against all the selected bacteria pathogens while E. gallinarum W184, T71 and W21 were active against some of the indicator bacteria pathogens. Only E. gallinarum T71 and W21 showed broad spectra of antimicrobial activity. Combination of virulence factors did not appear in these food isolates. Therefore, these strains particularly the two strains with high spectra of antimicrobial activity could be exploited as functional starters in foods.

  1. Thermal Neutron Capture onto the Stable Tungsten Isotopes

    Nichols A.


    Full Text Available Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.

  2. Nucleon-induced fission cross-sections of tantalum and separated tungsten isotopes and "compound nucleus" effect in intermediate energy region

    Smirnov, A N; Eismont, V P; Filatov, N P; Blomgren, J; Conde, H; Prokofiev, A V; Mashnik, S G


    Neutron- and proton-induced fission cross-sections of separated isotopes of tungsten (182W, 183W, 184W, and 186W) and 181Ta relative to 209Bi have been measured in the incident nucleon energy region 50 - 200 MeV using fission chambers based on thin-film breakdown counters (TFBC) using quasi-monoenergetic neutrons from the 7Li(p,n) reaction and at the proton beams of The Svedberg Laboratory (TSL), Uppsala University (Uppsala, Sweden). The results are compared with predictions by the CEM03.01 event generator, as well as with the recent data for nuclei in the lead-bismuth region. The effect of "compound nucleus" in the intermediate energy region is discussed, displaying in exponential dependence of nucleon-induced fission cross-sections on the parameter Z^2/A of the composite system (projectile+target nucleus), and in other characteristics of the fission process for which parameter Z^2/A plays a role similar to the one of the usual liquid-drop parameter Z^2/A of compound nuclei.

  3. in silico identification of genetic variants in glucocerebrosidase (GBA gene involved in Gaucher’s disease using multiple software tools.

    Madhumathi eManickam


    Full Text Available Gaucher’s disease is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalysis the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in Gaucher's disease. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN and SNPs&GO were used to predict the harmful polymorphisms. Among the 7 programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W and T43R.

  4. Distribution of p-process 174Hf in early solar system materials and the origin of nucleosynthetic Hf and W isotope anomalies in Ca-Al rich inclusions

    Peters, Stefan T. M.; Münker, Carsten; Pfeifer, Markus; Elfers, Bo-Magnus; Sprung, Peter


    heterogeneities between the first refractory condensates may have been eradicated partially during CAI formation, because W isotope anomalies in CAIs appear to decrease with increasing W concentrations as inferred from time-integrated 182W/184W. Importantly, the 176Lu-176Hf and 182Hf-182W chronometers are not significantly affected by nucleosynthetic heterogeneity of Hf isotopes in bulk meteorites, but may be affected in CAIs.

  5. Early Differentiation Processes Recorded By 142Nd and 182W in Eoarchean Rocks from Isua

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R. W.; Touboul, M.; Horan, M. F.; Puchtel, I. S.; Boyet, M.; Rosing, M. T.


    The earliest phases of Earth's evolution can be investigated using the short-lived 182Hf-182W and 146Sm-142Nd isotopic systems. Tungsten is siderophile while Hf is lithophile, so metal-silicate segregation greatly fractionates the Hf/W ratio of both planetary mantles and cores. Both daughter nuclides, W and Nd, are more incompatible than the parent nuclides Hf and Sm, so modification to Hf/W and Sm/Nd ratios in the silicate Earth can also be caused by crystal-liquid fractionation. However, because of the short half-lives of 182Hf and 146Sm (8.9 Ma and 103 Ma, respectively), variations in 182W and 142Nd can only be produced, respectively, during the first ~ 50 Ma and ~ 500 Ma of Earth's history. We will present data from Eoarchean mantle-derived samples from the Isua supracrustal belt. The mantle source(s) of these rocks was characterized by 182W and 142Nd excesses, relative to terrestrial standards and modern rocks, of up to 15 ppm and 13 ppm, respectively. The 182W/184W and 142Nd/144Nd ratios in the Isua rocks are not correlated, suggesting that, because of the different time scales for 142Nd and 182W growth, two or more events are required to account for the isotopic enrichments. The enrichments in 182W can be explained by Hf/W fractionation after a mean core formation age of ~30 Ma followed by mantle differentiation between 45-67 Ma. The 142Nd excesses, coupled with 147Sm-143Nd systematics, suggest that the mantle source of these rocks differentiated ~100 Ma after Solar system formation. Samples from the Isua Supracrustal belt, with ages between 3.8 Ga and 3.3 Ga, show gradual diminution of 142Nd anomalies until they are no longer resolved by ~ 3.3 Ga. By contrast, there is no diminishment of the 182W variability with time in the Isua suite. Tungsten concentrations of the samples studied range between 0.1 ppm and 3 ppm. The high W concentrations in some of these samples likely reflect the mobility of W in hydrous fluids and the modification of the original W of

  6. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages.

    Matthews, J C; Huang, J; Rentfrow, G


    Skeletal muscle and adipose tissues play important roles in maintaining whole-body Glu and N homeostasis by the uptake of Glu and release of Gln. To test the hypothesis that expression of high-affinity Glu transporters (GLAST1, EAAT4, EAAC1, GLT-1) and glutamine synthetase (GS) would increase in longissimus dorsi and adipose tissue of newborn Angus steers randomly assigned ( = 6) to develop through suckling (S; 32 d) and/or weanling (W; 184 d), backgrounding (B; 248 d), and finishing (F; 423 d) production stages. Carcass quality was determined at slaughter to verify shifts in adipose and lean deposition with development. Expression of mRNA (RT-PCR/Southern) and relative protein abundance (Western analysis) were determined in tissue homogenates isolated from longissimus dorsi, and kidney and subcutaneous adipose. The effect of production stage or tissue type on carcass and protein abundance was assessed by 1-way ANOVA using the GLM procedure of SAS, and Fisher's protected LSD procedure was used to separate data means. Neither GLAST1 nor EAAT4 mRNA or protein was detected. EAAC1, GLT-1, and GS mRNA were identified in all tissues, but GLT-1 and GS protein were not detected in kidney or subcutaneous adipose, and GS protein was not detected in longissimus dorsi. The EAAC1 content of subcutaneous ( = 0.06) and kidney ( = 0.02) adipose was 2 times greater in B and F than W steers, whereas GS was 5 times greater ( F). For longissimus dorsi, EAAC1 ( W > B = F, S = W > B = F, respectively). Within F steers, EAAC1 and GLT-1 mRNA was expressed by subcutaneous, kidney, omental, mesenchymal, and intramuscular adipose tissues, whereas GS mRNA was expressed by all except for intramuscular. Only EAAC1 protein was detected in any adipose tissue, with EAAC1 content being 104% and 112% greater ( adipose, respectively, and not differing ( > 0.45) from omental or mesenchymal adipose. These data demonstrate (1) longissimus dorsi and adipose tissues of steers developing through typical

  7. Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: Evidence from 2.4 Ga komatiites

    Puchtel, I. S.; Touboul, M.; Blichert-Toft, J.; Walker, R. J.; Brandon, A. D.; Nicklas, R. W.; Kulikov, V. S.; Samsonov, A. V.


    likely ancient mafic crust. The large positive 182W anomaly present in the tonalites requires that the precursor crust incorporated a primordial component with Hf/W that became fractionated, relative to the bulk mantle, within the first 50 Ma of Solar System history. The absolute HSE abundances in the mantle source of the Vetreny komatiite system are estimated to be 66 ± 7% of those in the present-day Bulk Silicate Earth. This observation, coupled with the normal 182W/184W composition of the komatiitic basalts, when corrected for crustal contamination (μ182W = -0.5 ± 4.5 ppm), indicates that the W-HSE systematics of the Vetreny komatiite system most likely were established as a result of late accretion of chondritic material to Earth. Our present results, combined with isotopic and chemical data available for other early and late Archean komatiite systems, are inconsistent with the model of increasing HSE abundances in komatiitic sources as a result of slow downward mixing into the mantle of chondritic material accreted to Earth throughout the Archean. The observed HSE concentration variations rather reflect sluggish mixing of diverse post-magma ocean domains characterized by variably-fractionated lithophile and siderophile element abundances.


    M. I. Kuz’min


    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was