WorldWideScience

Sample records for yalina booster subcritical

  1. YALINA Booster subcritical assembly modeling and analyses

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: Accurate simulation models of the YALINA Booster assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus have been developed by Argonne National Laboratory (ANL) of the USA. YALINA-Booster has coupled zones operating with fast and thermal neutron spectra, which requires a special attention in the modelling process. Three different uranium enrichments of 90%, 36% or 21% were used in the fast zone and 10% uranium enrichment was used in the thermal zone. Two of the most advanced Monte Carlo computer programs have been utilized for the ANL analyses: MCNP of the Los Alamos National Laboratory and MONK of the British Nuclear Fuel Limited and SERCO Assurance. The developed geometrical models for both computer programs modelled all the details of the YALINA Booster facility as described in the technical specifications defined in the International Atomic Energy Agency (IAEA) report without any geometrical approximation or material homogenization. Materials impurities and the measured material densities have been used in the models. The obtained results for the neutron multiplication factors calculated in criticality mode (keff) and in source mode (ksrc) with an external neutron source from the two Monte Carlo programs are very similar. Different external neutron sources have been investigated including californium, deuterium-deuterium (D-D), and deuterium-tritium (D-T) neutron sources. The spatial neutron flux profiles and the neutron spectra in the experimental channels were calculated. In addition, the kinetic parameters were defined including the effective delayed neutron fraction, the prompt neutron lifetime, and the neutron generation time. A new calculation methodology has been developed at ANL to simulate the pulsed neutron source experiments. In this methodology, the MCNP code is used to simulate the detector response from a single pulse of the external neutron source and a C code is used to superimpose the pulse until the

  2. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  3. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  4. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 99 Acad. Krasin Str., Minsk 220109 (Belarus)

    2011-05-15

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.

  5. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2011-01-01

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the 3 He(n,p) reaction rates obtained with the californium neutron source.

  6. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II: pulsed neutron source

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M.Y.A.; Rabiti, C.

    2008-01-01

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a 3 He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment

  7. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-01-01

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1

  8. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  9. Evaluation of the criticality constant from Pulsed Neutron Source measurements in the Yalina-Booster subcritical assembly

    International Nuclear Information System (INIS)

    Bécares, V.; Villamarín, D.; Fernández-Ordóñez, M.; González-Romero, E.M.; Berglöf, C.; Bournos, V.; Fokov, Y.; Mazanik, S.; Serafimovich, I.

    2013-01-01

    Highlights: ► New methodology proposed to determine the reactivity of subcritical systems. ► Methodology tested in PNS experiments at the Yalina-Booster subcritical assembly. ► The area-ratio and the prompt decay constant methods have been used for validation. ► The absolute reactivity of the system is determined in spite of large spatial effects. - Abstract: The prompt decay constant method and the area-ratio (Sjöstrand) method constitute the reference techniques for measuring the reactivity of a subcritical system using Pulsed Neutron Source experiments (PNS). However, different experiments have shown that in many cases it is necessary to apply corrections to the experimental results in order to take into account spectral and spatial effects. In these cases, the approach usually followed is to develop different specific correction procedures for each method. In this work we discuss the validity of prompt decay constant method and the area-ratio method in the Yalina-Booster subcritical assembly and propose a general correction procedure based on Monte Carlo simulations

  10. Analytical and experimental analysis of YALINA-Booster and YALINA-Thermal assemblies

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Mazanik, S.; Khilmanovich, A.; Martsinkevich, B.; Routkovskaya, Ch.; Edchik, I.; Fokov, Y.; Sadovich, S.; Fedorenko, A.; Gohar, Y.; Talamo, A.

    2010-01-01

    Full text: Accelerator Driven Systems (ADS) may play an important role in future nuclear fuel cycles to reduce the longterm radiotoxicity and volume of spent nuclear fuel. It is proposed that ADS will produce energy and incinerate radioactive waste. This technology was called Accelerator Driven Transmutation Technology (ADTT). The most important problems of this technology are monitoring of a reactivity level in on-line regime, a choice of neutron spectrum appropriate for incineration of Minor Actinides (MA) and transmutation of Long Lived Fission Products (LLFP) and etc. Before the designing and construction of an installation it is necessary to carry out R and D to validate codes, nuclear data libraries and other instrumentations. The YALINA facility is designed to study the ADS physics and to investigate the transmutation reaction rates of MA and LLFP. The main objective of the YALINA benchmark is to compare the results from different calculation methods with each other and experimental data. The benchmark is based on the current YALINA facility configuration, which provides the opportunity to verify the prediction capability of the different methods. The experimental data have been obtained in the frame of the ISTC Projects B1341 'Analytical and experimental evaluation of the possibility to create a universal volume source of neutrons in the sub-critical booster assembly with low enrichment uranium fuel driven by a neutron generator' and B1732P 'Analytical and experimental evaluating the possibility of creation of universal volume source of neutrons in the sub-critical booster assembly with low enriched uranium fuel driven by the neutron generator'. In this paper a comparison of the experimental and calculated data obtained for YALINA-Booster subcritical assembly with a fuel of different enrichment and for YALINA-Thermal with a different number of control rods (216, 245 and 280) will be done.

  11. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.

    2012-01-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  12. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

    2012-07-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  13. Subcriticality determination in ADS: Valina-Booster experiments

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.

    2007-01-01

    A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented

  14. Monte Carlo analyses of the source multiplication factor of the YALINA booster facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Y.; Kondev, F.; Aliberti, Gerardo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Bolshinsky, I. [Idaho National Laboratory, P. O. Box 2528, Idaho Falls, Idaho 83403 (United States); Kiyavitskaya, Hanna; Bournos, Victor; Fokov, Yury; Routkovskaya, Christina; Serafimovich, Ivan [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences, Minsk, acad. Krasin, 99, 220109 (Belarus)

    2008-07-01

    The multiplication factor of a subcritical assembly is affected by the energy spectrum and spatial distribution of the neutron source. In a critical assembly, neutrons emerge from the fission reactions with an average energy of approx2 MeV; in a deuteron accelerator driven subcritical assembly, neutrons emerge from the fusion target with a fixed energy of 2.45 or 14.1 MeV, from the Deuterium-Deuterium (D-D) and Deuterium-Tritium (D-T) reactions respectively. This study aims at generating accurate neutronics models for the YALINA Booster facility, based on the use of different Monte Carlo neutron transport codes, at defining the facility key physical parameters, and at comparing the neutron multiplication factor for three different neutron sources: fission, D-D and D-T. The calculated values are compared with the experimental results. (authors)

  15. Monte Carlo analyses of the source multiplication factor of the YALINA booster facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Kondev, F.; Aliberti, Gerardo; Bolshinsky, I.; Kiyavitskaya, Hanna; Bournos, Victor; Fokov, Yury; Routkovskaya, Christina; Serafimovich, Ivan

    2008-01-01

    The multiplication factor of a subcritical assembly is affected by the energy spectrum and spatial distribution of the neutron source. In a critical assembly, neutrons emerge from the fission reactions with an average energy of ∼2 MeV; in a deuteron accelerator driven subcritical assembly, neutrons emerge from the fusion target with a fixed energy of 2.45 or 14.1 MeV, from the Deuterium-Deuterium (D-D) and Deuterium-Tritium (D-T) reactions respectively. This study aims at generating accurate neutronics models for the YALINA Booster facility, based on the use of different Monte Carlo neutron transport codes, at defining the facility key physical parameters, and at comparing the neutron multiplication factor for three different neutron sources: fission, D-D and D-T. The calculated values are compared with the experimental results. (authors)

  16. Modeling of the YALINA booster facility by the Monte Carlo code MONK

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Kondev, F.; Kiyavitskaya, H.; Serafimovich, I.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2007-01-01

    The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics arameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  17. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  18. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  19. PNS and statistical experiments simulation in subcritical systems using Monte-Carlo method on example of Yalina-Thermal assembly

    International Nuclear Information System (INIS)

    Sadovich, S.; Burnos, V.; Kiyavitskaya, H.; Fokov, Y.; Talamo, A.

    2013-01-01

    In subcritical systems driven by an external neutron source, the experimental methods based on pulsed neutron source (PNS) and statistical techniques play an important role for reactivity measurement. Simulation of these methods is very time-consumed procedure. For simulations in Monte-Carlo programs several improvements for neutronic calculations have been made. This paper introduces a new method for simulating PNS and statistical measurements. In this method all events occurred in the detector during simulation are stored in a file using PTRAC feature in the MCNP. After that with a special code (or post-processing) PNS and statistical methods can be simulated. Additionally different shapes of neutron pulses and its lengths as well as dead time of detectors can be included into the simulation. The methods described above have been tested on the sub-critical assembly Yalina-Thermal, located in the Joint Institute for Power and Nuclear Research SOSNY in Minsk (Belarus). A good agreement between experiment and simulation was shown. (authors)

  20. Processing and analyses of the pulsed-neutron experimental data of the YALINA facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Smith, D.; Talamo, A.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: The YALINA subcritical assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus has been utilized to study the physics parameters of accelerator driven systems (ADS) with high intensity Deuterium-Tritium and Deuterium-Deuterium pulsed neutron sources. In particular, with the fast and thermal neutron zones of the YALINA-Booster subcritical assembly, the pulsed neutron experiments have been utilized to evaluate the pulsed neutron methods for determining the reactivity of the subcritical system. In this paper, the pulsed-neutron experiments performed in the YALINA-Booster 1141 configuration with 90% U 235 fuel and 1185 configuration with 36% and 21% U fuel are examined and analized. The Sjo:strand area-ratio method is utilized to determine the reactivities of the subcritical assembly configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from experimental data are shown to be dependent on the detector locations and also on the detector types. The large discrepancies between the reactivity values given by the detectors in the fast neutron zone was reduced by spatial correction methods, and the estimated reactivity after the spatial corrections are almost spatially independent.

  1. YALINA-Thermal Facility Experiments

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.; Cintas, A.; Márquez Damián, J.I.; Lopasso, E.M.; Maiorino, J.R.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F.L. de; Lee, S.M.; Xia, P.; Shi, Y.; Xia, H.; Zhu, Q.; Yu, T.; Wu, X.; Zhang, W.; Cao, J.; Luo, H.; Quan, Y.; Kulkarni, K.; Yadav, R.D.S.; Bajpai, A.; Degweker, S.B.; Modak, R.S.; Park, H.J.; Shim, H.J.; Kim, C.H.; Wojciechowski, A.; Zuta, M.; Pešić, M.; Avramović, I.; Beličev, P.; Gohar, Y.; Talamo, A.; Aliberti, G.

    2017-01-01

    This Section discussed the results obtained by the Member States participating in the IAEA coordinated research project on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems, and Low Enriched Uranium Fuel Utilization in Accelerator Driven Subcritical Assembly Systems for the YALINA Thermal facility. Member States used both Monte Carlo and deterministic computational tools to analyse the YALINA Thermal subcritical assembly, including: MCNP5, MCNPX, McCARD, PARTISN, and ERANOS computer programs. All calculations have been performed using the ENDF/B-VI (different modes) nuclear data libraries with the exception of Republic of Korea which used the ENDF/B-VII.0 nuclear data library. Generally, there is a good agreement between the results obtained by all the Member States. Deterministic codes perform space, energy, and angle discretization and materials homogenizations, which introduce approximations affecting the obtained results. In subcritical assemblies, the neutron multiplication and the detector counting rate depend strongly on the external neutron source. Cf and D-D sources provide similar results since they emit neutrons with similar average energy. D-T neutrons trigger (n,xn) reactions and have a longer mean free path, which increases the neutron leakage if the geometry dimensions of the assembly are small, as in the case of the YALINA-Thermal subcritical assembly. Close to criticality, the effect of the external neutron source diminishes since fission neutrons dominate the neutron population.

  2. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  3. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  4. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)

    2012-03-11

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  5. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-01-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  6. Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2009-01-01

    One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.

  7. Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: atalamo@anl.gov; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Rabiti, C. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences (Belarus)

    2009-07-21

    One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.

  8. MONTE CARLO ANALYSES OF THE YALINA THERMAL FACILITY WITH SERPENT STEREOLITHOGRAPHY GEOMETRY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.

    2015-01-01

    This paper analyzes the YALINA Thermal subcritical assembly of Belarus using two different Monte Carlo transport programs, SERPENT and MCNP. The MCNP model is based on combinatorial geometry and universes hierarchy, while the SERPENT model is based on Stereolithography geometry. The latter consists of unstructured triangulated surfaces defined by the normal and vertices. This geometry format is used by 3D printers and it has been created by: the CUBIT software, MATLAB scripts, and C coding. All the Monte Carlo simulations have been performed using the ENDF/B-VII.0 nuclear data library. Both MCNP and SERPENT share the same geometry specifications, which describe the facility details without using any material homogenization. Three different configurations have been studied with different number of fuel rods. The three fuel configurations use 216, 245, or 280 fuel rods, respectively. The numerical simulations show that the agreement between SERPENT and MCNP results is within few tens of pcms.

  9. The Booster

    CERN Multimedia

    1972-01-01

    Where the beams from the Booster's four rings begin to recombine, before transfer to the PS. On the left are dipoles for vertical steering, and on the right is the tank containing two septum magnets which form the first combining element.

  10. Thermoeconomic model of a commercial transcritical booster refrigeration system

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Elmegaard, Brian

    2011-01-01

    For cooling applications in supermarkets, booster refrigeration systems operating in both transcritical and subcritical conditions are increasingly used. A thermodynamic model of a transcritical booster refrigeration plant is tailored to match the new generation of commercial refrigeration plants...... of exergy for cooling. Second law analysis is needed to illustrate the characteristics of the plant at different load rates, according to the alternating load profile and corresponding to outdoor conditions. With the detailed model, different uses of the analysis are possible, including thermoeconomic...

  11. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  12. Ram booster

    Science.gov (United States)

    Brand, Vance D. (Inventor); Morgan, Walter Ray (Inventor)

    2011-01-01

    The present invention is a space launch system and method to propel a payload bearing craft into earth orbit. The invention has two, or preferably, three stages. The upper stage has rocket engines capable of carrying a payload to orbit and provides the capability of releasably attaching to the lower, or preferably, middle stage. Similar to the lower stage, the middle stage is a reusable booster stage that employs all air breathing engines, is recoverable, and can be turned-around in a short time between missions.

  13. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  14. Subcritical nuclear assembly

    International Nuclear Information System (INIS)

    Vega C, H. R.

    2014-08-01

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a 239 PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  15. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  16. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States); Dulla, Sandra; Ravetto, Piero [Politecnico di Torino (Italy)

    2011-07-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  17. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2011-01-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  18. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  19. The PS booster

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    The PS booster which accelerates protons from the linac at an energy of 50 MeV to an energy of 800 MeV before injecting them into the main magnet ring of the synchrotron. The booster consists of four superposed rings. In the photograph can be seen the input beam line from the linac and the output beam lines, where beams from the four booster levels have been combined into two beams before final recombination.

  20. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  1. PS Booster - Festive colloquium

    CERN Multimedia

    2012-01-01

    A festive colloquium will be held to celebrate the 40th anniversary of the PS Booster on Friday, 28 September at 2 p.m. in the CERN council chamber. The meeting will be open to everybody. Read more on the PS Booster in the CERN Bulletin and in the CERN Courier.

  2. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  3. AGS booster prototype magnets

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-01-01

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10 0 . The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz

  4. BROOKHAVEN: Booster boost

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    After three months of intensive dedicated machine studies, Brookhaven's new Booster accelerated 5 x 10 13 protons over four cycles, about 85% of the design intensity. This was made possible by careful matching of Linac beam into the Booster and by extensive resonance stop band corrections implemented during Booster acceleration. The best single cycle injection into the AGS Alternating Gradient Synchrotron was 1.14 x 10 13 protons from the Booster. 1.05 x 10 13 protons were kept in the AGS, a 92% combined efficiency of extraction, transfer, and injection. The maximum injected 1994 shutdown period, enabling the 1994 physics run to make use of the full Booster intensity and go for the stated AGS objective of 4x10 13 protons per pulse

  5. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  6. Accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Salvatores, M.

    2001-01-01

    ADS concepts have been proposed in the last decade for a variety of applications. However, there is a convergence of interest of several countries and laboratories on the application of ADS to transmutation. This applies to plutonium, and/or minor actinides (MA) and long-lived fission products (LLFP). As far as the so-called partitioning and transmutation (PIT) strategies, it was indicated that they can be clarified according to the option taken with respect to Pu and MA, i.e., a) keep Pu and MA together, b) separate Pu from MA. At present several programs are going on ADS: in Japan, USA Europe, where activities in 9 countries are coordinated by a European Technical Working Group (ETWG), and in Russia. As far as the implications for the definition of nuclear data needs, dedicated subcritical cores should have new type of fuels (Pu+MA in different proportions). Proposals are being worked out. For example, composite (such as ceramic-metallic or ceramic-ceramic) fuels are presently under study. The actinide oxide is dispersed in a metallic matrix (Zr, or W or Mo) or in an oxide matrix (e.g., MgO). In these cases, reliable data are required for the matrix materials. As far as coolants, Pb/Bi, Pb, and gas are considered, besides Na. Hard (or very hard) fast neutron spectrum is required. As far as LLFP, transmutation strategies in ADS are proposed. Candidates are 129 I, 99 Tc, 135 Cs, but also 79 Se, 107 Pd, 93 Zr etc. At present, there is no clear option for their transmutation (one needs a high level of thermalized neutrons, support matrixes for target irradiation, isotopic separations, reprocessing techniques, etc.). Finally, ADS transmutation will give rise to fuel cycles, where very active materials will be present. Cm and higher mass isotopes (up to 252 Cf) will be contributors to dose and neutron source strength. This area will deserve attention in future, in order to define the relevant data needs. It is recommended to coordinate work on MA data as a priority

  7. BROOKHAVEN: Booster commissioned

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Ed

    1992-03-15

    The construction and first commissioning phase of the Booster synchrotron to inject into Brookhaven's veteran Alternating Gradient Synchrotron (AGS) were completed last year. Scheduled to come into operation this year, the new Booster will extend the research capabilities AGS, and with its ability to accelerate partially stripped heavy ions will play an essential role in the chain of accelerators serving the Relativistic Heavy Ion Collider (RHIC)

  8. Subcritical assemblies, use and their feasibility assessment

    International Nuclear Information System (INIS)

    Haroon, M.R.

    1982-03-01

    In developing countries, subcritical assemblies can be a useful tool for training and research in the field of nuclear technology with minimum cost. The historical development of subcritical assemblies and the reactor physics experiments which can be carried out using this facility are outlined. The different types of subcritical assemblies have been described and material requirements for each assembly have been pointed out. (author)

  9. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  10. Booster parameter list

    International Nuclear Information System (INIS)

    Parsa, Z.

    1986-10-01

    The AGS Booster is designed to be an intermediate synchrotron injector for the AGS, capable of accelerating protons from 200 MeV to 1.5 GeV. The parameters listed include beam and operational parameters and lattice parameters, as well as parameters pertaining to the accelerator's magnets, vacuum system, radio frequency acceleration system, and the tunnel. 60 refs., 41 figs

  11. Workshop on Subcritical Neutron Production

    International Nuclear Information System (INIS)

    Walter Sadowski; Roald Sagdeev

    2006-01-01

    Executive Summary of the Workshop on Subcritical Neutron Production A workshop on Subcritical Neutron Production was sponsored by the East-West Center of the University of Maryland on October 11-13, 2004. The subject of the workshop was the application of subcritical neutrons to transmutation of actinides. The workshop was attended by members of the fission, accelerator and fusion communities. Papers on the state of development of neutron production by accelerators, fusion devices, and fission reactors were presented. Discussions were held on the potential of these technologies to solve the problems of spent nuclear waste storage and nuclear non-proliferation presented by current and future nuclear power reactors. A list of participants including their affiliation and their E-Mail addresses is attached. The workshop concluded that the technologies, presently available or under development, hold out the exciting possibility of improving the environmental quality and long term energy resources of nuclear power while strengthening proliferation resistance. The workshop participants agreed on the following statements. The workshop considered a number of technologies to deal with spent nuclear fuels and current actinide inventories. The conclusion was reached that substantial increase in nuclear power production will require that the issue of spent nuclear fuel be resolved. The Workshop concluded that 14 MeV fusion neutrons can be used to destroy nuclear reactor by-products, some of which would otherwise have to be stored for geologic periods of time. The production of 14 MeV neutrons is based on existing fusion technologies at different research institutions in several countries around the world. At the present time this technology is used to produce 14 MeV neutrons in JET. More development work will be required, however, to bring fusion technology to the level where it can be used for actinide burning on an industrial scale. The workshop concluded that the potential

  12. Benchmarking criticality safety calculations with subcritical experiments

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments

  13. Measurement of subcriticality by a pulsing α-method

    International Nuclear Information System (INIS)

    Jitarev, V.E.; Kachanov, V.M.; Kuzmin, A.N.

    1999-01-01

    The report presents results of a pulsing α-method [1] for determination of the WWER system subcriticality. The pulsing α-method permits to conduct measurements of system subcriticality in conditions of subcritical state and large neutron background. Therefore this method can be used for the control of a subcriticality of storehouses of a burn up nuclear fuel and stopped reactor. (Authors)

  14. Fox-7 for Insensitive Boosters

    Science.gov (United States)

    2010-08-01

    cavitation , and therefore nucleation, to occur at each frequency. As well as producing ultrasound at different frequencies, the method of delivery of...processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology to improve booster formulations, and results from these...7 booster formulations. Also included are particle processing techniques using ultrasound , designed to optimise FOX-7 crystal size and morphology

  15. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  16. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  17. PS Booster Orbit Correction

    CERN Document Server

    Chanel, M; Rumolo, G; Tomás, R; CERN. Geneva. AB Department

    2008-01-01

    At the end of the 2007 run, orbit measurements were carried out in the 4 rings of the PS Booster (PSB) for different working points and beam energies. The aim of these measurements was to provide the necessary input data for a PSB realignment campaign during the 2007/2008 shutdown. Currently, only very few corrector magnets can be operated reliably in the PSB; therefore the orbit correction has to be achieved by displacing (horizontally and vertically) and/or tilting some of the defocusing quadrupoles (QDs). In this report we first describe the orbit measurements, followed by a detailed explanation of the orbit correction strategy. Results and conclusions are presented in the last section.

  18. Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G

    2000-01-01

    Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.

  19. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  20. Booster LINAC project: introduction

    International Nuclear Information System (INIS)

    Storm, D.W.

    1984-01-01

    During the past year the DOE awarded a contract to build the superconducting booster proposed in 1982. Although the majority of the funds ($8M) of the project are construction funds included in the DOE contract, part of the project is to be done with state funds ($1.03M) and part with the operating funds (3 FTE personnel as well as costs of prototyping the resonators). Therefore it is appropriate to outline the progress in this report. The overall design was changed somewhat from that described in last year's Annual Report. Instead of 12 split ring resonators optimized for beta = 0.10 and 12 for beta = 0.16, the author has chosen to use 16 quarter wave resonators optimized for beta = 0.09 and 16 for beta = 0.18. The quarter wave resonators, which have two accelerating gaps instead of the three of the split rings, have a wider transit time factor, which is favorable for accelerating a broader range of particle masses. The quarter wave resonators are to be built of lead plated copper, following the design of Ben-Zvi and Brennan

  1. Cygnus Performance in Subcritical Experiments

    International Nuclear Information System (INIS)

    G Corrow; M Hansen; D Henderson; S Lutz; C Mitton

    2008-01-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented

  2. Cygnus Performance in Subcritical Experiments

    Energy Technology Data Exchange (ETDEWEB)

    G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.

  3. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  4. Ensuring the validity of calculated subcritical limits

    International Nuclear Information System (INIS)

    Clark, H.K.

    1977-01-01

    The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionally subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin

  5. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  6. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  7. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  8. Subcritical calculation of the nuclear material warehouse

    International Nuclear Information System (INIS)

    Garcia M, T.; Mazon R, R.

    2009-01-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  9. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  10. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    DEFF Research Database (Denmark)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs.With a high amount of operating systems, faulty operation becomes an economic......, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable...

  11. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  12. Monte-Carlo modeling of parameters of a subcritical cascade reactor based on MSBR and LMFBR technologies

    International Nuclear Information System (INIS)

    Bznuni, S.A.; Zhamkochyan, V.M.; Khudaverdyan, A.G.; Barashenkov, V.S.; Sosnin, A.N.; Polanski, A.

    2001-01-01

    Parameters are investigated of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k eff = 0.94 - 0.98), is capable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10 14 cm 12 · s -1 , in the fast booster zone is 5.12 · 10 15 cm 12 · s -1 at k eff = 0.98 and proton beam current I = 2.1 mA. (author)

  13. The AGS Booster control system

    International Nuclear Information System (INIS)

    Frankel, R.; Auerbach, E.; Culwick, B.; Clifford, T.; Mandell, S.; Mariotti, R.; Salwen, C.; Schumburg, N.

    1988-01-01

    Although moderate in size, the Booster construction project requires a comprehensive control system. There are three operational modes: as a high intensity proton injector for the AGS, as a heavy ion accelerator and injector supporting a wide range of ions and as a polarized proton storage injector. These requirements are met using a workstation based extension of the existing AGS control system. Since the Booster is joining a complex of existing accelerators, the new system will be capable of supporting multiuser operational scenarios. A short discussion of this system is discussed in this paper

  14. The PS Booster hits 40

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    Many accelerators’ "round" birthdays are being celebrated at CERN these days – the PS turned 50 in 2009, the SPS was 35 in 2011, and this year it's the turn of the PS Booster to mark its 40th anniversary. Originally designed to accelerate 1013 protons to 800 MeV, it has far exceeded its initial design performance over the years.   The PS Booster in the 1970s. Imagine the scene: a group of accelerator physicists staring expectantly at a monitor, when suddenly a shout of joy goes up as a signal flickers across the screen. Does that sound familiar? Well, turn the clock back 40 years (longer hair, wider trouser legs) and you have the situation at the PS Booster on 26 May 1972. On that day, beam was injected into the Booster for the first time. “It was a real buzz,” says Heribert Koziol, then Chairman of the Running-in Committee. “We were very happy – and also a little relieved – when the beam finally...

  15. Linac boosters for electrostatic machines

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brookhaven National Lab., Upton, NY

    1990-01-01

    A survey of linacs which are used as boosters to electrostatic accelerators is presented. Machines both operating and under construction, copper and superconducting, are reviewed. The review includes data on the accelerating structures, performance, rf and control, beam optics, budget, vacuum and cryogenics. (orig.)

  16. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  17. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  18. Rapid cycling superconducting booster synchrotron

    International Nuclear Information System (INIS)

    Dinev, D.; Agapov, N.; Butenko, A.

    2001-01-01

    The existing set of Nuclotron heavy ion sources, such as duoplasmatron, polarized deuteron, laser and electron beam ion sources permits to have ion beams over a wide range of masses. The main problem for us now is to gain high intensity of accelerator particles. It can be solved by means of multiturn injection of the low current beams into the booster, acceleration up to the intermediate energies, stripping and transferring into the main ring. A design study of this accelerator - the 250 MeV/Amu Nuclotron booster synchrotron at 1 Hz repetition rate and circumference of 84 m, has been completed. The lattice dipole and quadrupole magnets have an iron yoke coils, made of hollow superconductor, are cooled by two-phase Helium flow, as well as the Nuclotron magnets. (authors)

  19. AHF Booster Tracking with SIMPSONS.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D. E. (David E.); Neri, F. (Filippo)

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 {approx} 1 0a' {approx}t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  20. AHF Booster Tracking with SIMPSONS

    International Nuclear Information System (INIS)

    Johnson, D.E.; Neri, F.

    2002-01-01

    The booster lattice for the Advanced Hydrotest Facility at Los Alamos was tracked in 3-D with the program SIMPSONS, using the full, symplectic lattice from TEAPOT, using the full set of magnet and misalignment errors, as well as full space-charge effects. The only corrections included were a rough closed-orbit correction and chromaticity correction. The lattice was tracked for an entire booster cycle, from multi-turn injection through acceleration to the top energy of 4 GeV, approximately 99,000 turns. An initial injection intensity of 4x1Ol2, injected in 25 turns, resulted in a final intensity of 3 . 2 ∼ 1 0a' ∼t 4 GeV. Results of the tracking, including emittance growth, particle loss, and particle tune distributions are presented.

  1. Integral Ramjet Booster Demonstration Program

    Science.gov (United States)

    1975-02-01

    vibration loads before motor firing at -65, +70, and +1650F, (2) The chambers are fabricated from roll and welded ( TIG ) L-605 sheet that is cold...Typical Integral Booster Internal Configuration Keyhole Grain Pressure and Thrust Versus Time (+700F, Sea Level) Keyhole Grain Pressure and...Thrust Versus Time (+1650F, Sea Level) Keyhole Grain Pressure and Thrust Versus Time (-65^, Sea Level) Radial-Slot Grain Design Radial-Slot Grain

  2. Design project of fast subcritical system 'Mala Lasta'

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Popovic, D.; Pesic, M.; Zavaljevski, N.; Nikolic, D.; Arsenovic, M.

    1988-10-01

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters

  3. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  4. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  5. Hydrolysis of corn oil using subcritical water

    Directory of Open Access Journals (Sweden)

    Pinto Jair Sebastião S.

    2006-01-01

    Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.

  6. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  7. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  8. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  9. Control of Fermilab Booster tunes

    International Nuclear Information System (INIS)

    Johnson, R.P; Meisner, K.; Sandberg, B.

    1977-01-01

    Control of the radial and vertical tunes of the booster is implemented using ramped correction quadrupoles. Minor modifications to the power supply cards for the 48 (previously) dc correction quadrupoles allow ''the tunes'' to be continuously programmed or held constant throughout the 33 ms acceleration cycle. This capability is in addition to the usual use of these quadrupoles to be independently varied to correct for harmonic distortions in the lattice. An automatic computer program measures and displays the tunes vs. time in the cycle to monitor performance and to allow the ramps to be adjusted by the machine operator

  10. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  11. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables

  12. Criticality Analysis of SAMOP Subcritical Assembly

    International Nuclear Information System (INIS)

    Tegas-Sutondo; Syarip; Triwulan-Tjiptono

    2005-01-01

    A critically analysis has been performed for homogenous system of uranyl nitrate solution, as part of a preliminary design assessment on neutronic aspect of SAMOP sub-critical assembly. The analysis is intended to determine some critical parameters such as the minimum of critical dimension and critical mass for the desired concentration. As the basis of this analysis, it has been defined a fuel system with an enrichment of 20% for cylindrical geometry of both bare and graphite reflected of 30 cm thickness. The MCNP code has been utilized for this purpose, for variation of concentrations ranging from 150 g/l to 500 g/l. It is found that the best concentration giving the minimum geometrical dimension is around 400 g/l, for both the bare and reflected systems. Whilst the best one, of minimum critical mass is corresponding to the concentration of around 200 g/l with critical mass around 14.1 kg and 4.2 kg for the bare and reflected systems respectively. Based on the result of calculations, it is concluded that by taking into consideration of the critical limit, the SAMOP subcritical assembly is neutronically can be made. (author)

  13. Booster Long 13 irradiation studies

    Energy Technology Data Exchange (ETDEWEB)

    Leveling, A.; Mokhov, N.; Moore, C.D.; /Fermilab

    1998-06-01

    Extraction from the Booster to the Main Ring occurred at Long Straight 13. The nature of the extraction process was such that 1% to 2% of the beam was lost in this region. There was an appreciable amount of beam extracted as shown in Table 1, which gives the yearly integrated intensities from 1973 to 1997. A simple model of the extraction losses was set up by Chandra Bhat utilizing the program CASIM. A sample output I shown in figure 1 which gives contours of stars/cm3 in the dirt, also schematically depicted are the three six feet deep sampling holes which were drilled to map out this cascade. One aspect of this study has been the study of the production of non-migrating nuclides and further study may in fact yield better values for the K parameter, the probability per star that an atom of the particular nuclide will be produced. Also the results of this study can give experimental numbers for the production of other nuclides when the amount of Na22 has been calculated. However, the most important part of this study has been the determination of the amount of tritium produced by extraction from the Booster and the experimentally determined migration rate. If we look at the top sample result in hole S2 of 777 pCi/ml of tritium and use the experimentally determined rate of migration and the depth to the aquifer of 13.1m, they calculate that the concentration will have decayed away to 1.1E-8 pCi/ml. If we look at the bottom sample, which is 11.3 m away from the aquifer, they calculate that the 116 pCi/ml will have decayed to 5.2E-8 pCi/ml. The conclusions is that the rate of migration determined over the 24 year irradiation history of the Booster extraction point is small enough that there is no problem with migration of tritium to the aquifer.

  14. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  15. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  16. Massive subcritical compact arrays of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  17. Nonlinear dead water resistance at subcritical speed

    Science.gov (United States)

    Grue, John

    2015-08-01

    The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.

  18. Massive subcritical compact arrays of plutonium metal

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1998-01-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use

  19. Modeling of the CTEx subcritical unit using MCNPX code

    International Nuclear Information System (INIS)

    Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance

    2011-01-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  20. NSLS-II booster timing system

    International Nuclear Information System (INIS)

    Cheblakov, P.; Karnaev, S.; De Long, J.

    2012-01-01

    NSLS-II light source includes the main storage ring with beam lines and injection part consisting of 200 MeV linac, a full-energy 3 GeV booster synchrotron and two transport lines. The booster timing system is a part of NSLS-II timing system which uses hardware from MicroResearch Finland: Event Generator (EVG) and Event Receivers (EVRs). The booster timing is based on the events coming from NSLS-II EVG: 'Pre-Injection', 'Injection', 'Pre-Extraction', 'Extraction'. These events are referenced to the selected RF bucket of the storage ring and correspond to the first RF bucket of the booster. EVRs provide triggers both for the injection and the extraction pulse devices. EVRs also provide the timing of booster cycle operation and generation of events for cycle-to-cycle updates of pulsed and ramping parameters, and synchronization of the booster beam instrumentation devices. This paper describes the final design of the booster timing system. The timing system functional diagrams and block diagram are presented. (authors)

  1. 47 CFR 74.733 - UHF translator signal boosters.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false UHF translator signal boosters. 74.733 Section... Translator, and TV Booster Stations § 74.733 UHF translator signal boosters. (a) The licensee of a UHF television broadcast translator station may be authorized to operate one or more signal boosters for the...

  2. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  3. Sub-criticality monitoring for ADTR trademark control

    International Nuclear Information System (INIS)

    Ashworth, Roger

    2014-01-01

    Following the debut of the Accelerator Driven Thorium Reactor (ADTR trademark) Power Station at ENC 2010 in Barcelona, thorium as a reactor fuel has gained increasing support. The ADTR trademark concept reactor introduced the combination of an accelerator driven system (ADS) with traditional control rod technology, to provide a very high gain novel sub-critical ADS reactor design. The high gain of the system, while significantly reducing the demands on the accelerator design, pushes up operational sub-criticality (k eff ) closer to unity. In this paper we review this design and the progress made since ENC 2010. We compare 2 different methods of measuring the sub-critical neutron multiplication factor as the fuel cycle develops. The paper discusses the most recent work on k eff measurement and the interesting relationship between neutron flux, accelerator current and fuel temperature when using beam pulse methods to determine operational sub-criticality, of which a European patent is being granted. (orig.)

  4. Physics of subcritical multiplying regions and experimental validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1996-01-01

    The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)

  5. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  6. Tdap Booster Requirements for Secondary Schools

    Science.gov (United States)

    ... Experts State Information Tdap booster requirements for secondary schools State Td or Tdap Mandate for Sec School ... Checklists Standing Orders Storage & Handling Talking with Parents Temperature Logs Top Handouts Translations Vaccine Index >> view all ...

  7. 78 FR 29062 - Signal Booster Rules

    Science.gov (United States)

    2013-05-17

    ... number of FCC rules concerning signal boosters for consumer and industrial use. This document corrects a... chapter; the Maritime Services (ship earth station devices only) pursuant to part 80 of this chapter; and...

  8. Beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate low intensity (2 x 10 10 ) polarized protons, high intensity (1.5x10 13 ) protons and heavy ions through Au +33 . Coping with this wide range of beams, the 3 x 10 -11 Torr vacuum and the radiation environment presented challenges for the beam monitors. Some of the more interesting instrumentation design and performance during the recent Booster proton commissioning will be described

  9. Gas Test Loop Booster Fuel Hydraulic Testing

    International Nuclear Information System (INIS)

    Gas Test Loop Hydraulic Testing Staff

    2006-01-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3

  10. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  11. New beam instrumentation in the AGS Booster

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2x10 10 polarized protons to 1.5x10 13 protons and heavy ions through Au +33 . The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs

  12. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  13. New beam instrumentation in the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

  14. RF cogging in the FNAL Booster Accelerator

    International Nuclear Information System (INIS)

    William A. Pellico and Robert C. Webber

    2000-01-01

    The Fermilab Booster operates at a Radio Frequency (RF) harmonic number of 84 with beam in all buckets. One or two bunches of beam are systematically lost in the 8 GeV extraction process as beam is swept across a magnetic septum during the extraction kicker rise time. The prompt radiation and component activation resulting from this localized high energy beam loss become serious concerns as Booster beam throughput must be increased more than tenfold to meet the requirements of RUN II, NUMI, and MiniBooNE experiments. Synchronizing a gap in the beam to the firing of the extraction kickers, a relatively easy and standard practice in many machines, can eliminate the problem. This seemingly simple operation is greatly complicated in the Booster by the need to synchronize extraction to beam already circulating in the Main Injector. Coupled with the inflexibility of the Booster resonant magnetic cycle, cycle to cycle variations, and constraints inherent in the accelerator physics, that requirement forces active control of the gap's azimuthal position throughout the acceleration process as the revolution frequency sweeps rapidly. Until recently, the complexities of actually implementing and demonstrating this process in the Booster had not been worked out. This paper describes a successful demonstration of gap cogging in the Booster

  15. Septum magnets for booster ring

    International Nuclear Information System (INIS)

    Mishra, R.K.; Mhaskar, S.P.; Ramamurthi, S.S.

    1991-01-01

    Synchrotron radiation source facility in CAT will employ one septum magnet for the injection of 20 MeV electron beam from the microtron and another septum magnet for the extraction of 700 MeV electron beam from the booster synchrotron. The septum is a boundary that combines or separates the beam by providing the different deflecting fields on either side of this boundary. In this magnet, septum sheet must be as thin as possible to reduce the beam losses and fringing field must be very low. Two septum magnets have been designed, one has 2 mm thick septum sheet for the injection of beam and another one has 3 mm thick septum sheet for the extraction of beam. The field strength of injection and extraction septum magnets, is 0.15 T and 0.88 T respectively. The fringing field near the septum sheet is only 10 G and 30 G for the injection and extraction magnet respectively. The field simulation has been done by computer code PANDIRA. The field homogeneity within gap is ± 0.1%. The design details are discussed in this paper. (author). 4 refs., 1 tab., 1 fig

  16. Grand unification and subcritical hybrid inflation

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Ishiwata, Koji

    2014-12-01

    We consider hybrid inflation for small couplings of the inflaton to matter such that the critical value of the inflaton field exceeds the Planck mass. It has recently been shown that inflation then continues at subcritical inflaton field values where quantum fluctuations generate an effective inflaton mass. The effective inflaton potential interpolates between a quadratic potential at small field values and a plateau at large field values. An analysis of the allowed parameter space leads to predictions for the scalar spectral index n s and the tensor-to-scalar ratio r similar to those of natural inflation. Using the range for n s and r favoured by the Planck data, we find that the energy scale of the plateau is constrained to the interval (1.6-2.4) x 10 16 GeV which includes the energy scale of gauge coupling unification in the supersymmetric standard model. The tensor-to-scalar ratio is predicted to have the lower bound r>0.049 for 60 e-folds before the end of inflation.

  17. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1995-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  18. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1994-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  19. Safety features of subcritical fluid fueled systems

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C.R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  20. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  1. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  2. Analysis of the MUSE-3 subcritical experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aliberti, G; Rimpault, G; Jacqmin, R; Lebrat, J F; Chauvin, J P; Granget, G [CEA Cadarache, Dept. d' Etudes des Reacteurs 13 - Saint Paul lez Durance (France); Salvatores, M [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2001-07-01

    The purpose of the MUSE (MUltiplication avec Source Externe) experimental programme is to investigate the neutronic properties of fast sub-critical cores coupled with known external sources of neutrons. Measurements of the MUSE-3 experiments (third phase of the MUSE program) included reactivity, U-235 fission rates across various traverses, absolute fission rates and dynamic measurements. Special care was taken in assessing the various sources of errors and uncertainties affecting the results when modelling and analysing MUSE-3 experiments with the ERANOS neutronic code system. Measured and calculated values agree well with each other (discrepancies within the uncertainty bars) except absolute fission rates which are affected by the large uncertainties associated with the inherent source (30 %) and with the strength of the fusion source (25%). However, such uncertainties do not contribute to the uncertainty in the importance of the source, {phi}{sup *}, which is linked to the ratio of the measured reaction rate with and without the fusion source (the generator being switched off and on). The analysis yielded therefore valuable results, in particular on the relative importance of the source from one configuration to another. The uncertainty in the calculated {phi}{sup *}, is of 1-2% (JEF2 and ERALIB1) for configurations without diffuser and 6% for the configuration with a Pb diffuser. There is therefore no bias in this important ADS characteristic as calculations lie within the measured error bars. From this analysis, it can be concluded that MUSE-3-type experiments are suitable for the assessment of tools used for designing ADS. (author)

  3. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  4. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  5. Measurements relevant to simulating subcriticality in ADS facilities with blanket

    International Nuclear Information System (INIS)

    Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)

  6. Subcriticality determination of nuclear fuel assembly by Mihalczo method

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.

    1986-01-01

    To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)

  7. Summary of Booster Development and Qualification Report

    Energy Technology Data Exchange (ETDEWEB)

    Francois, Elizabeth G. [Los Alamos National Laboratory; Harry, Herbert H. [Los Alamos National Laboratory; Hartline, Ernest L. [Los Alamos National Laboratory; Hooks, Daniel E. [Los Alamos National Laboratory; Johnson, Carl E. [Los Alamos National Laboratory; Morris, John S. [Los Alamos National Laboratory; Novak, Alan M. [Los Alamos National Laboratory; Ramos, Kyle J. [Los Alamos National Laboratory; Sanders, Victor E. [Los Alamos National Laboratory; Scovel, Christina A. [Los Alamos National Laboratory; Lorenz, Thomas [LLNL; Wright, Mark [AWE; Botcher, Tod [PANTEX; Marx, Erin [NSWC-IHDIV; Gibson, Kevin [NSWC-IHDIV

    2012-06-21

    This report outlines booster development work done at Los Alamos National Laboratory from 2007 to present. The booster is a critical link in the initiation train of explosive assemblies, from complex devices like nuclear weapons to conventional munitions. The booster bridges the gap from a small, relatively sensitive detonator to an insensitive, but massive, main charge. The movement throughout the explosives development community is to use more and more insensitive explosive components. With that, more energy is needed out of the booster. It has to initiate reliably, promptly, powerfully and safely. This report is divided into four sections. The first provides a summary of a collaborative effort between LANL, LLNL, and AWE to identify candidate materials and uniformly develop a testing plan for new boosters. Important parameters and the tests required to measure them were defined. The nature of the collaboration and the specific goals of the participating partners has changed over time, but the booster development plan stands on its own merit as a complete description of the test protocol necessary to compare and qualify booster materials, and is discussed in its entirety in this report. The second section describes a project, which began in 2009 with the Department of Defense to develop replacement booster formulations for PBXN-7. Replacement of PBXN-7 was necessary because it contained Triaminotrinitrobenzene (TATB), which was becoming unavailable to the DoD and because it contained Cyclotrimethylenetrinitramine (RDX), which was sensitive and toxic. A LANL-developed explosive, Diaminoazoxyfurazan (DAAF), was an important candidate. This project required any replacement formulation be a drop-in replacement in existing munitions. This project was timely, in that it made use of the collaborative booster development project, and had the additional constraint of matching shock sensitivity. Additionally it needed to be a safety improvement, and a performance

  8. Subcritical reactivity measurement at Angra 1 nuclear power plant

    International Nuclear Information System (INIS)

    Kuramoto, Renato Yoichi Ribeiro; Miranda, Anselmo Ferreira

    2011-01-01

    In order to speed up the Angra 1 NPP physics tests, this work intends to develop a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements at Angra 1 NPP. In the first part of this work, we have applied the Modified Neutron Source Multiplication (MNSM) Method with fundamental mode extraction, in order to improve the monitoring of the subcriticality at Angra 1 NPP during the criticality approach. In the second part, we developed a preliminary subcritical reactivity meter algorithm based on the point-reactor inverse kinetic model with six delayed neutron groups and external neutron source. The source strength was obtained through the Least Squares Inverse Kinetics Method (LSIKM). (author)

  9. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  10. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  11. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  12. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  13. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  14. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 10 10 to 1.5 x 10 13 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  15. Developing the World's Most Powerful Solid Booster

    Science.gov (United States)

    Priskos, Alex S.; Frame, Kyle L.

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing

  16. Estimation of subcriticality with the computed values. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Arakawa, Takuya; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    For measurements of reactivities and neutron count rate space distributions, seven subcritical cores including non-square array cores were constructed using critical assembly TCA. MCNP-4A was used for the experimental analysis. The calculational results of the neutron count rate space distributions agreed with the measured ones within the each error range. It means that for calculation error indirect estimation method, the calculated neutron multiplication factors are equal to ones of experimental reactivities. It is shown that from these experiments and calculations estimation method of subcriticality with the computed values based on the calculation error indirect estimation method is also applicable to six non-square array cores. (author).

  17. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  18. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  19. Designing a mini subcritical nuclear reactor

    International Nuclear Information System (INIS)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M.

    2015-10-01

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of 239 PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of 239 PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k e -f f , the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k eff , the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons 239 PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k eff was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k eff of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five cylinders not met. (Author)

  20. Design of the Zero Gradient Synchrotron Booster-II lattice

    International Nuclear Information System (INIS)

    Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.

    1975-01-01

    A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)

  1. 30 CFR 57.8518 - Main and booster fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main and booster fans. 57.8518 Section 57.8518... and Underground § 57.8518 Main and booster fans. (a) All mine main and booster fans installed and used...-cycle shutdowns or planned or scheduled fan maintenance or fan adjustments where air quality is...

  2. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...

  3. Improving subcritical crack growth resistance for alumina glass dental composite

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.

    2005-01-01

    The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass

  4. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  5. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  6. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  7. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  8. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  9. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  10. Operational behaviour of CO{sub 2} booster systems; Betriebsverhalten von CO{sub 2}-Booster-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Javerschek, Oliver; Hieble, Tobias [BITZER Kuehlmaschinenbau GmbH, Sindelfingen (Germany)

    2011-07-01

    The operating characteristics of booster systems and the resulting operating conditions of CO{sub 2} booster systems in supermarket refrigeration are explained and discussed. Criteria and challenges of different operating and load conditions are gone into. Simulated and measured operating states of a small-scale booster system are compared and evaluated. [German] In der vorliegenden Veroeffentlichung werden unterschiedliche Betriebsverhalten und die daraus resultierenden Betriebsbedingungen von CO{sub 2}-Booster-Systemen in der Supermarktkaelte erlaeutert und diskutiert. Dabei werden wesentliche Kriterien und Herausforderungen bei den unterschiedlichen Betriebs- und Lastbedingungen besprochen. Ausserdem werden simulierte und gemessene Betriebszustaende einer kleinen Booster-Kaelteanlage vergleichend betrachtet und bewertet.

  11. Tracking study of hadron collider boosters

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  12. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  13. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  14. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  15. Results from the AGS Booster transverse damper

    International Nuclear Information System (INIS)

    Russo, D.; Brennan, M.; Meth, M.; Roser, T.

    1993-01-01

    To reach the design intensity of 1.5 x 10 13 protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s -1 have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented

  16. Measuring target for the PS Booster

    CERN Multimedia

    1971-01-01

    The measuring target for the PS Booster (originally 800 MeV, now 1.4 GeV). It measures the size of the beam by destroying all particles with amplitudes greater than the size of the fork, the position and width of which are adjustable. The plunging time is only 20 ms and the acceleration at the tip of the fork reaches 90 g. The servo-controlled linear motor is shown detached from the mechanism. See also 7602008.

  17. SNS RING STUDY AT THE AGS BOOSTER.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG, S.Y.; AHRENS, L.; BEEBE-WANG, J.; BLASKIEWICZ, M.; FEDOTOV, A.; GARDNER, C.; LEE, Y.Y.; LUCCIO, A.; MALITSKY, N.; ROSER, T.; WENG, W.T.; WEI, J.; ZENO, K.; REECE, K.; WANG, J.G.

    2000-06-30

    During the g-2 run at the BNL AGS in early 2000, a 200 MeV storage-ring-like magnetic cycle has been set-up and tuned at the Booster in preparing for the Spallation Neutron Source (SNS) accumulator ring study. In this article, we report the progress of the machine set-up, tuning, some preliminary studies, and the future plan.

  18. Momentum Cogging at the Fermilab Booster

    International Nuclear Information System (INIS)

    Seiya, K.; Drennan, C.C.; Pellico, W.; Triplett, A.K.; Waller, A.M.

    2012-01-01

    The Fermilab Booster has an upgrade plan called the Proton Improvement Plan (PIP). The flux throughput goal is 2E17 protons/hour which, is almost double the present flux, 1.1E17 protons/hour. The beam loss in the machine is going to be an issue. The Booster accelerates beam from 400 MeV to 8 GeV and extracts to the Main Injector (MI). The current cogging process synchronizes the extraction kicker gap to the MI by changing radial position of the beam during the cycle. The gap creation occurs at about 700 MeV, which is about 6 ms into the cycle. The cycle-to-cycle variations of the Booster are larger at lower energy. However, changing the radial position at low energy for cogging is limited because of aperture. Momentum cogging is able to move the gap creation to an earlier time by using dipole correctors and radial position feedback, and is able to control the revolution frequency and radial position at the same time. The new cogging is expected to reduce beam loss and not be limited by aperture. The progress of the momentum cogging system development is going to be discussed in this paper.

  19. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  20. Subcriticality calculation in nuclear reactors with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  1. Subcriticality calculation in nuclear reactors with external neutron sources

    International Nuclear Information System (INIS)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  2. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  3. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  4. Subcritical to supercritical flow transition in a horizontal stratified flow

    International Nuclear Information System (INIS)

    Asaka, H.; Kukita, Y.

    1995-01-01

    The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)

  5. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  6. Breaking rocks made easy: subcritical processes and tectonic predesign

    Science.gov (United States)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of

  7. A simple proof of exponential decay of subcritical contact processes

    Czech Academy of Sciences Publication Activity Database

    Swart, Jan M.

    2018-01-01

    Roč. 170, 1-2 (2018), s. 1-9 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : subcritical contact process * sharpness of the phase transition * eigenmeasure Subject RIV: BA - General Mathematics Impact factor: 1.895, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0462694.pdf

  8. Inverse kinetics for subcritical systems with external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2017-01-01

    Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.

  9. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  10. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    International Nuclear Information System (INIS)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications

  11. Measurement of kinetic parameters in the fast subcritical core MASURCA

    International Nuclear Information System (INIS)

    Baeten, Peter; Abderrahim, Hamid Aiet

    2004-01-01

    In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS

  12. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  13. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  14. Design project of fast subcritical system 'Mala Lasta'; Idejno resenje brzog podkriticnog sistema Mala LASTA

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Stefanovic, D; Popovic, D; Pesic, M; Zavaljevski, N; Nikolic, D; Arsenovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1988-10-15

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters.

  15. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Hoeibraaten, S.

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments

  16. Low Energy Electron Cooler for NICA Booster

    CERN Document Server

    Denisov, A P

    2017-01-01

    BINP has developed an electron cooler to increase the ion accumulation efficiency in the NICA (Nuclotron-based Ion Collider fAcility) heavy ion booster (JINR, Dubna). Adjustment of the cooler magnetic system provides highly homogeneous magnetic field in the cooling section B trans/B long ≤ 4∙10-5 which is vital for efficient electron cooling. First experiments with an electron beam performed at BINP demonstrated the target DC current of 500 mA and electron energy 6 keV.

  17. The superconducting linac booster at the ANU

    International Nuclear Information System (INIS)

    Weisser, D.C.

    1995-02-01

    This report outlines the progress of the installation of the superconducting Linac booster at the Australian National University. The Linac is based upon four modules, three of which contain three split-loop resonators. The fourth cryostat was intended to be a superbuncher and so houses only one resonator. The first stage of Linac operation will employ only three modules with 2 MV/m from each resonator. It is expected that the implementation of all nine modules, in subsequent stages, would boost beams by 18 MV/q. The project has fostered productive international collaboration between UK and Australian scientists. 1 tab., 6 figs

  18. The injection and extraction of SSRF booster

    International Nuclear Information System (INIS)

    Li Yuan; Li Haohu; Liu Guimin; Li Deming

    2008-01-01

    The layout of injection and extraction system were introduced in this paper. The horizontal and vertical injection acceptance are about 23 πmm·mrad and 37 πmm·mrad, respectively, while emittance of the injected beam is 9 πmm·mrad (3σ). This ensures the high injection efficiency. Three slow kickers can form a good bump. The inside position of the entrance of septum is set to 15 mm, where the bumped beam and the extraction beam are 10 mm and 22 mm, respectively, far from the booster central orbit. (authors)

  19. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  20. Position pickup of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The beam position around the 4 rings of the PS Booster (originally 800 MeV, now 1.4 GeV), is measured with electrostatic pickups (PU). They consist of a ceramic cylinder forming part of the vacuum chamber, and, in order to save space, they are located inside the multipole lenses. The inside of the ceramic is coated with a metallic layer, into which the form of the electrodes was cut by computer-controlled micro-sandblasting. Each PU has a pair of horizontal and a pair of vertical electrodes, as well as a separate intensity-sensing circular electrode.

  1. The low energy booster project status

    International Nuclear Information System (INIS)

    Tuttle, G.W.

    1993-05-01

    In order to achieve the required injection momentum, the Superconducting Super Collider (SSC) has an accelerator chain comprised of a Linear Accelerator and three synchrotrons. The Low Energy Booster (LEB) is the first synchrotron in this chain. The LEB project has made significant progress in the development of major subsystems and conventional construction. This paper briefly reviews the performance requirements of the LEB and describes significant achievements in each of the major subsystem areas. Highlighted among these achievements are the LEB foreign collaborations with the Budker Institute of Nuclear Physics (BINP) located in Novosibirsk, Russia

  2. Design of a molten heavy-metal coolant and target for fast-thermal accelerator driven sub-critical system (ADS)

    International Nuclear Information System (INIS)

    Satyamurthy, P.; Degwekar, S.B.; Nema, P.K.

    2001-01-01

    Accelerator Driven sub-critical Systems (ADS) have evoked considerable interest in recent years. The Energy Amplifier concept developed by C. Rubbia and others at CERN incorporates a buoyancy driven, lead-coolant primary system for extracting the heat generated in the fast reactor as well as that in neutron spallation target. In earlier publications, our BARC group has proposed a one-way coupled booster reactor system which could be operated at proton beam currents as low as 1-2 mA for a power output of 750 MW th . Here, the basic idea is to have a fast booster reactor zone of low power (- 100 MW th ) which is separated by a large gap from the main thermal reactor zone. In this arrangement, the spallation neutron source feeds neutrons to the fast reactor zone where neutrons are further multiplied. Further in this system, the neutrons from the booster region enter the main reactor but very few neutrons from main reactor return to booster, thus ensuring one-way coupling. In earlier work, several possible configurations of the booster and thermal regions were presented. In the present work, we describe an engineering design particularly with respect to thermal hydraulics of lead/lead-bismuth eutectic coolant also acting as spallation neutron source. This hybrid ADS reactor consists of fast and thermal reactor zones producing about 100 MW th and 650 MW th respectively. The scheme of the system is shown. The fast core consists of 48 hexagonal fuel bundles each containing 169 fuel pins of 8.2 mm diameter arranged in 11.4 mm triangular array pitch. The average thermal power per fuel pin is about 13.46 kw. However, due to neutron flux peaking effect, the maximum fuel pin power can be up to 2.5 times this average power. The thermal reactor consists of heavy water as moderator and coolant similar to a typical CANDU type Indian PHWR except for fuel composition. Though the gap between fast and thermal zones essentially provides one way coupling of neutron flux, a thermal

  3. Compensation of dogleg effect in Fermilab Booster

    CERN Document Server

    Xiao Biao Huang

    2003-01-01

    The edge focusing of dogleg magnets in Fermilab Booster has been causing severe distortion to the horizontal linear optics. The doglegs are vertical rectangular bends, therefore the vertical edge focusing is canceled by body focusing and the overall effect is focusing in the horizontal plane. The maximum horizontal beta function is changed from 7m to 46.9m and maximum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This is believed to be one of the major reasons of beam loss. In this technote we demonstrate that this effect can be effectively corrected with Booster's quadrupole correctors in short straight sections (QS). There are 24 QS correctors which can alter horizontal linear optics with negligible perturbation to the vertical plane. The currents of correctors are determined by harmonic compensation, i.e., cancellation of dogleg's harmonics that are responsible for the distortion with that of QS correctors. By considering a few leading harmonics, the ideal lattice can be partly restored....

  4. Identifying strategies to improve the effectiveness of booster seat laws

    Science.gov (United States)

    2008-05-01

    The objective of this project was to identify strategies to improve the effectiveness of booster seat laws. The project explored the possible factors that relate to the use and nonuse of booster seats, and examined the attitudes of law enforcement of...

  5. Thermodynamic investigation of a booster-assisted ejector refrigeration system

    International Nuclear Information System (INIS)

    Zhao, Hongxia; Zhang, Ke; Wang, Lei; Han, Jitian

    2016-01-01

    Highlights: • COP based on thermal input increases with booster outlet pressure. • Both entrainment ratio and area ratio increase with booster outlet pressure. • COP based on work is larger than compressor-based refrigeration system. • An optimum booster outlet pressure obtains maximum COP based on work. • Exergy destruction occurs mainly in ejector, condenser, evaporator and generator. - Abstract: In order to improve performance of ejector refrigeration system, a booster is added before an ejector to enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass, momentum and energy conservation, a 1D model of ejector for optimal performance prediction was presented and validated with experimental data. A detailed study of working characteristics of the booster assisted ejector refrigeration system was carried out and compared against conventional ejector refrigeration system and compressor based refrigeration system, on the basis of first and second laws of thermodynamics. Effects of booster outlet pressure on COP_t_h based on thermal energy and COP_w based on work input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates were also computed and analyzed for components of the booster-assisted ejector refrigeration system. Ways to reduce exergy destruction were discussed.

  6. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  7. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  8. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  9. Treatment of fluctuations of startup rates for core subcriticality monitoring

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Martinez, Aquilino Senra

    1996-01-01

    In this paper it is presented a method to eliminate the variations in the source and intermediate range count rate, which are used for the on-line and real time monitoring of the critical safety function Subcriticality. The method may be applied to a safety parameters display system, because it is very simple and precise, which it will not affect the real time requirements of such systems. Variations in the count range could cause a temporary positive startup rate, that could lead to incorrect addressing of function restoration guideline. (author)

  10. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  11. Measurement of subcritical multiplication by the interval distribution method

    International Nuclear Information System (INIS)

    Nelson, G.W.

    1985-01-01

    The prompt decay constant or the subcritical neutron multiplication may be determined by measuring the distribution of the time intervals between successive neutron counts. The distribution data is analyzed by least-squares fitting to a theoretical distribution function derived from a point reactor probability model. Published results of measurements with one- and two-detector systems are discussed. Data collection times are shorter, and statistical errors are smaller the nearer the system is to delayed critical. Several of the measurements indicate that a shorter data collection time and higher accuracy are possible with the interval distribution method than with the Feynman variance method

  12. Activity report of working party on reactor physics of subcritical system. October 2001 to March 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)

  13. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  14. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1994-01-01

    I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and a transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the large subcriticality k=0.9-0.95 which we originally proposed for such transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyze the power drop that occurred in Phenix reactor, and show that the operating this reactor in subcritical conditions improves safety. (author). 13 refs., 5 figs

  15. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1994-01-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety

  16. Superconducting linac booster for NSC Pelletron

    International Nuclear Information System (INIS)

    Roy, A.; Prakash, P.N.; Ajithkumar, B.P.; Ghosh, S.; Changrani, T.; Mehta, R.; Sarkar, A.; Muralidhar, S.; Dutt, R.N.; Kumar, M.; Shepard, K.W.; and others.

    1996-01-01

    The progress made in the heavy ion superconducting linac booster project for the Nuclear Science Centre Pelletron accelerator is overviewed. Prototypes of the accelerating structure have been fabricated at Argonne National Laboratory and undergone several diagnostic tests. In the first phase heavy ions up to mass 80 will be accelerated to energies above the Coulomb barrier and in the second phase the mass limit would be increased to 120. The subsystems of the project are the basic accelerating structures, the RF instrumentation and control, the cryogenic system and the beam optics. Preliminary designs for the buncher and linac cryostats have been made. Several prototypes of RF electronics and control modules have been fabricated and tested. (R.P.)

  17. Pulsed neutron source very intense, Booster

    International Nuclear Information System (INIS)

    Abbate, J.M.

    1978-09-01

    A compact Accelerator-Booster (fast, pulsed and modulate reactivity research reactor) is a new and appropriate conception to use as a very intense thermal neutrons source. Its definition and feasibility have been already described in several studies showing its relative advantages in comparison with others kinds of facilities. This work, wich is part of one of those studies, contains a general analysis on the meis facility parameters and core and shielding theoretical calculations. The following results were obtained: Selection and test of a calculation system suitable to use in compact fast reactors; Development a method to perform estimations in some safety and shielding problems and obtainment of adequate theoretical predictions on the general performance. Moreover, final results for importent parameters of the feasibility study and predesign (critical mass and volume, lifetime, etc.) and others related to the use of plutonium oxide as fuel are given and then evaluations of different basic functions are showed. (author) [es

  18. Autonomous booster device of a safety valve

    International Nuclear Information System (INIS)

    Namand, H.

    1983-01-01

    The invention concerns an autonomous booster device of a protection safety valve of a pressure vessel. The valve comprises a hollow structure, a seat connected with a mobile flap forming one piece with a stem and a calibration spring bearing on the stem and on the valve structure to maintain the flap bearing on the seat. The stem of the flap is prolongated in a box forming one piece with the valve structure and receives an added push of a spring. The box acts as a pressure device of which the piston can exercise on the stem a push opposite to and larger than the spring one. The feeding device of the pressure box is finally described in detail [fr

  19. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 10 13 protons and carbon to gold ions at 50-3 x 10 9 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  20. Technology for low cost solid rocket boosters.

    Science.gov (United States)

    Ciepluch, C.

    1971-01-01

    A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.

  1. Tha AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.; Cameron, P.; Damn, R.

    1988-01-01

    A high level rf system, including a power amplifier and cavity has been designed for the AGS Booster. It covers a frequency range of 2.4 to 4.2 Mhz and will be used to accelerate high intensity proton, and low intensity polarized proton beams to 1.5 GeV and heavy ions to 0.35 GeV per nucleon. A total accelerating voltage of up to 90kV will be provided by two cavities, each having two gaps. The internally cross-coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate the high beam intensity, up to 0.75 /times/ 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two paralleled cells. The amplifier is a grounded cathode configuration driven by a remotely located solid state amplifier

  2. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  3. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  4. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  5. Neutronic calculations for a subcritical system with external source

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J. I

    2006-01-01

    We present a neutronic study on an A D S, systems capable of transmute minor actinides and fission products in order to reduce their radiotoxicity and mean-life.We compare neutronic parameters obtained with Scale/Tort and M C N P modelling a sub-critical system with source from a N E A Benchmark.Due to lack of nuclear data at the temperature of the system, we perform calculations at available temperature of libraries (300 K); to compensate the reactivity insertion due to the temperature change we reduce the size of the fuel zone in order to get a sub-critical system that allow u s to evaluate neutronic parameters of the system with source.We have found that the numerical results (neutron spectrum, neutron flux distributions and other neutronic parameters) are in agreement with the M C N P and with those of the benchmark participants even though the geometric models used are not exactly the same. We conclude that with the real temperature cross sections, the calculation scheme developed (Scale/Tort and M C N P) will give reliable results in A D S evaluations [es

  6. Neutron noise measurements at the Delphi subcritical assembly

    International Nuclear Information System (INIS)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-01-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  7. Booster Vaccination: The Role of Reduced Antigen Content Vaccines as a Preschool Booster

    Directory of Open Access Journals (Sweden)

    Giovanni Gabutti

    2014-01-01

    Full Text Available The need for boosters for tetanus, diphtheria, pertussis, and polio, starting from preschool age, is related to the waning immune protection conferred by vaccination, the elimination/reduction of natural boosters due to large-scale immunization programs, and the possibility of reintroduction of wild agents from endemic areas. Taking into account the relevance of safety/tolerability in the compliance with vaccination among the population, it have been assessed whether today enough scientific evidences are available to support the use of dTap-IPV booster in preschool age. The review of the literature was conducted using the PubMed search engine. A total of 41 works has been selected; besides, the documentation produced by the World Health Organization, the European Centre for Disease Control, and the Italian Ministry of Health has been consulted. Many recent papers confirm the opportunity to use a low antigenic dose vaccine starting from 4 to 6 years of age. There is also evidence that 10 years after immunization the rate of seroprotected subjects against diphtheria does not differ significantly between those vaccinated with paediatric dose (DTaP or reduced dose (dTaP or dTap product. The dTpa vaccine is highly immunogenic for diphtheria toxoids regardless of prior vaccination history (2 + 1 and 3 + 1 schedules.

  8. Rf beam control for the AGS Booster

    International Nuclear Information System (INIS)

    Brennan, J.M.

    1994-01-01

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made

  9. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Power flow control using quadrature boosters

    Science.gov (United States)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  11. Rf beam control for the AGS Booster

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  12. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  13. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  14. Logic and control module for the Fermilab booster beam damper

    International Nuclear Information System (INIS)

    Sandberg, B.R.

    1977-01-01

    A logic and control module is included in the electronic system of the booster superdamper. This module produces a 9-bit digital word that controls the delay of beam bunch position information in the Fermilab booster synchrotron so that it arrives at the damping electrodes at the same time as the bunch of beam to be corrected. This delay word generator also has an output feature that only allows delay time decreases as the booster synchrotron frequency program increases monotonically. Such a feature guards against low-index incidental FM from affecting the delay computations

  15. 47 CFR 74.1233 - Processing FM translator and booster station applications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Processing FM translator and booster station... SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1233 Processing FM translator and booster station applications. (a) Applications for FM translator and booster stations are...

  16. Analysis of neutronics and dynamic characteristics with reactivity injection in LBE cooled sub-critical reactor

    International Nuclear Information System (INIS)

    Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin

    2014-01-01

    Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)

  17. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1991-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. A the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the coarse of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development

  18. Object-oriented programming techniques for the AGS Booster

    International Nuclear Information System (INIS)

    Skelly, J.F.

    1992-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. At the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the course of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available both for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development. (author)

  19. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  20. Superconducting LINAC booster for the pelletron accelerator at Bombay

    International Nuclear Information System (INIS)

    Pillay, R.G.; Kurup, M.B.; Jain, A.K.; Biswas, D.; Kori, S.A.; Srinivasan, B.

    1989-01-01

    A superconducting heavy ion linear accelerator being constructed as a booster for the 14 UD pelletron installed recently at Bombay. The work involved in this project and the progress made so far are reviewed. (author). 15 refs., 8 figs

  1. SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Borland, M.; Harkay, K.; Lindberg, R.; Yao, C.-Y.

    2017-06-25

    The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that the efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.

  2. Design and status of the AGS booster accelerator

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described

  3. Design and status of the AGS booster accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Lee, Y.Y.

    1987-01-01

    Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described. (LEW)

  4. Simulations Of Transverse Stacking In The NSLS-II Booster

    International Nuclear Information System (INIS)

    Fliller, R. III; Shaftan, T.

    2011-01-01

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.

  5. Pati-Salam version of subcritical hybrid inflation

    Science.gov (United States)

    Bryant, B. Charles; Raby, Stuart

    2016-05-01

    In this paper we present a model of subcritical hybrid inflation with a Pati-Salam (PS) symmetry group. Both the inflaton and waterfall fields contribute to the necessary e -foldings of inflation, while only the waterfall field spontaneously breaks PS hence monopoles produced during inflation are diluted during the inflationary epoch. The model is able to produce a tensor-to-scalar ratio, r model also incorporates a Z4R symmetry which can resolve the μ problem and suppress dimension 5 operators for proton decay, leaving over an exact R parity. Finally the model allows for a complete three-family extension with a D4 family symmetry which reproduces low energy precision electroweak and LHC data.

  6. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  7. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...... bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found...... that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when...

  8. Monitoring of MNSR operation by measuring subcritical photoneutron flux

    International Nuclear Information System (INIS)

    Haddad, Kh.; Alsomel, N.

    2011-01-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as 117 Cd (activation product) and 140 Ba ( 140 La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring.

  9. Dynamic subcriticality measurements using the CF neutron noise method: Videotape

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Johnson, E.B.

    1987-01-01

    The capability to measure the subcriticality for a multiplying system with k-effective values as low as 0.3 was demonstrated for measurement times of approximately 10 s; the measured k-effective values obtained do not depend on the speed with which the solution height is changed or on whether the tank is filling or draining. As in previous experiments, the low-frequency ratios of spectral densities are all that are needed to obtain the k-effective value. This method's effectiveness for systems where conditions are changing with time as demonstrated, probably exceeds the dynamic requirements for most nuclear fuel plant processing applications. The calculated k-effective values using the KENO code and Hansen-Roach cross-sections compare well with the experimental values. Before the dynamic capability of the method can be considered fully explored, additional dynamic experiments are required for other geometries and fuel concentrations.

  10. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  11. Measurement of material buckling of subcritical assembly CAPITU

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.

    1976-11-01

    Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt

  12. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina

    2013-01-01

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  13. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  14. Selection of initial events of accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi

    2013-01-01

    The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)

  15. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  16. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  17. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  18. Methods for the reactivity evaluation in subcritical systems analysis: a review

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Carta, M.

    2011-01-01

    The assessment of the subcritical source-driven system technology for waste incineration and power production requires the development of reliable and efficient techniques for the reactivity evaluation and monitoring. Starting from the standard methods developed for close-to-criticality systems, extensive research activities have been carried out to analyze the behavior of subcritical assembly in time-dependent condition and to infer the subcriticality level from local flux values. In the present work, a review of some key aspects in the method development for ADS analysis is proposed, with special attention to the techniques for reactivity evaluation. (author)

  19. A rookie's guide to Booster operations. Booster technical note no. 231

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Alternating Gradient Synchrotron Dept.

    1998-09-29

    The purpose of the Booster is to act as an injector for the AGS. It accelerates both protons and other ions. Proton acceleration is distinguished from the acceleration of other ions for several reasons. First, the experimental physics associated with protons, called High Energy Physics is different than that associated with other Ions, called Heavy Ion Physics. From the machine perspective, the process of injection of so called Heavy Ions (ions which are not protons), is distinctly different, from that of protons. A different preinjector, or injector for the Booster, is used for each case. For Protons, a 200 MeV Linear accelerator (The Linac) serves as a preinjector; for Heavy Ions, the Tandem Van De Graaf (The Tandem) is the preinjector. An attribute of the circulating beam which determines to a large degree what problems and what type of machine setup is involved is the beam intensity. The author's focus in this guide is on trying to convey the knowledge and experience involved in the operation of the Booster. Many of the problems encountered can be traced back to equipment failures, often power supplies. Although diagnostics are used, there can also be issues with the controls system itself. Problems with the controls system and prevent fixing or even finding a problem with a machine. The issue of improving a machines' performance can often involve trial and error and observations. The hard part is finding the relationships between things in the day to day operation of the machine. Abstractions about physics, information about controls and instrumentation, and purely empirical observations of how the machine behaves are all part of it.

  20. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  1. FCC-ee Pre-Booster Accelerators

    CERN Document Server

    Ogur, S; Zimmermann, F

    2017-01-01

    CERN’s ambitious new project, Future Circular Collider-ee, will have four operations as Z, W, H, and tt factories covering energies from 45.6 to 175 GeV. The main challenge of Z-operation is to achieve currents as high as 1450 mA; this will depend heavily on the injector. For this reason, we conclude that we need a high bunch charge of 3.3 × 1010, for both e− and e+, and fill 91 500 of each of those bunches into the collider. To achieve the goal, we have designed an S-band (2.856 GHz) normal conducting electron linac up to 6 GeV, which we will use to create and accelerate both electrons and positrons. Positrons will be created inside the linac at 4.46 GeV, will be accelerated up to 1.54 GeV at the linac, and will then be transferred to the designed damping ring. In this paper, we present the designed linac, damping ring, and the operational requirements of the 100 km booster.

  2. NSRL Extraction Bump Control in the Booster

    International Nuclear Information System (INIS)

    Brennan, L.

    2008-01-01

    Due to inadequacies in the user interface of the booster orbit control system, a number of new tools were developed. The first priority was an accurate calculation of the winding currents given specific displacements at each extraction septa. Next, the physical limits of the power supplies (±600 amps) needed to be taken into account. In light of this limit, a system is developed that indicates to the user what the allowed values of one bump parameter are once the other two have been specified. Finally, techniques are developed to account for the orbit behavior once power supplies are requested to exceed their ±600 amp limit. This includes a recalculation of bump parameters and a calculation of the amplitude of the residuals. Following this, possible areas for further development are outlined. These techniques were computationally developed in Mathematica and tested in the Methodical Accelerator Design (MAD) program before they were implemented into the control system. At the end, a description of the implementation of these techniques in a new interface is described. This includes a depiction of the appearance and functionality of the graphical user interface, a description of the input and output flow, and an outline of how each important calculation is performed

  3. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  4. The AGS Booster high frequency rf system

    International Nuclear Information System (INIS)

    Sanders, R.T.; Cameron, P.; Eng, W.; Goldman, M.A.; Jablonski, E.; Kasha, D.; Keane, J.; McNerney, A.; Meth, M.; Plotkin, M.; Puglisi, M.; Ratti, A.; Spitz, R.

    1991-01-01

    A high level rf system, including a power amplifier and cavity, has been designed and built for the AGS Booster. It covers a frequency range of 2.4 to 4.2 MHz and will be used to accelerate high intensity protons. Low intensity polarized protons and heavy ions, to the 1.5 GeV level. A total accelerating voltage of up to 90 kV will be provided by two cavities, each having two gaps. The internally cross coupled, pushpull cavities are driven by an adjacently located power amplifier. In order to accommodate beam intensities up to 0.75 x 10 13 protons per bunch, a low plate resistance power tetrode is used. The tube anode is magnetically coupled to one of the cavity's two parallel cells. The amplifier is a grounded cathode configuration driven by a remotely located solid-state amplifier. It has been tested in the laboratory at full gap voltage with satisfactory results. 5 refs., 2 figs., 1 tab

  5. Booster Applications Facility report, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P. (ed.)

    1991-06-01

    This report summarizes studies and planning performed by Brookhaven National Laboratory (BNL) personnel at the request of NASA for the design, construction and operation of experimental areas and facilities for utilization of ion beams from the BNL Booster synchrotron particle accelerator. These facilities would be primarily utilized to simulate space radiation for radiobiological research, shielding studies and detector calibrations. The feasibility of such a project has been established, preliminary designs and cost estimates have been developed and a formal proposal can be submitted pending DOE concurrence. The main body of this report consists of the material presented by BNL during the meeting with a NASA appointed Panel on December 10 and 11, 1990. The individual speakers have provided brief summaries of their talks and explanations of their figures. In addition there are two appendices. One, contains detailed discussion of the shared mode of operation and the corresponding beam compatibility tables. The second appendix contains cost estimate details. An executive summary on budgets and schedules has been added, containing possible phased construction and outfitting scenarios and the corresponding expense and commitment profiles as well as new operational cost estimates. Material contained in the executive summary reflects the correction of some errors and new studies performed in response to the NASA Panel suggestions.

  6. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    Science.gov (United States)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  7. Neutron fluctuation analysis in a subcritical multiplying system with a stochastically pulsed poisson source

    International Nuclear Information System (INIS)

    Kostic, Lj.

    2003-01-01

    The influence of the stochastically pulsed Poisson source to the statistical properties of the subcritical multiplying system is analyzed in the paper. It is shown a strong dependence on the pulse period and pulse width of the source (author)

  8. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  9. Discriminators for the Accelerator-Based Conversion (ABC) concept using a subcritical molten salt system

    International Nuclear Information System (INIS)

    Arthur, E.; Busksa, J.; Davidson, W.; Poston, D.

    1995-05-01

    Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation

  10. Subcriticality monitoring method based on the exponential technique usable for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Suzaki, T.

    1987-01-01

    Buckling measurement methods in subcritical nuclear fuel systems (negative buckling measurements in small systems are well-known as the exponential experiment) were discussed from the viewpoint of the applicability to on-site monitorings of subcriticality and fuel characteristics of interest. From demonstration experiments using the TCA, it was revealed that the method is quite promising. Applicability of the method to the critical approach in critical assemblies was also discussed. (author)

  11. Reactor parameters and constants determination by using measurements in subcritical and exponential assembly

    International Nuclear Information System (INIS)

    Voi, Dante Luiz; Santos Bastos, Wilma dos

    1995-01-01

    Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs

  12. Frequency of booster injections of allergoids.

    Science.gov (United States)

    Norman, P S; Creticos, P S; Marsh, D G

    1990-01-01

    In 1982, 43 ragweed-sensitive patients receiving maintenance injections of full doses of ragweed allergoid were selected for a study of the immunologic and clinical efficacy of booster injections only four times a year. These patients had participated for 2 to 7 years as part of a trial of mixes of up to four allergoids to common pollens in the mid-Atlantic area tailored to each patient's skin test sensitivity. They were divided into a group (21 patients) to receive injections every 3 months and a group (22 patients) to receive injections about every 6 weeks (eight injections per year). Patients were rerandomized after 1 year so that half of each original group switched to the alternate treatment, and this program was continued until after the ragweed season of 1985. Thirty-four patients were still under study the last year. Doses, per injection, were 100 allergoid units (1 allergoid unit equals 100 PNU) of each allergen in the mixture. Symptom scores during the 8 weeks of each of the four ragweed seasons were not significantly higher in the 3-month treated group. IgG antibody levels to Amb a I (antigen E) were followed until early 1984 and were not significantly different in the two groups, even though the 6-week treated patients received a two times higher cumulative dose per year. Rates of local and systemic reactions (percent of injections eliciting reactions) were not different in the groups, which means that the 3-month treated group had about half as many reactions by virtue of taking half as many injections.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-01-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses

  14. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  15. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  16. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  17. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  18. LS1 Report: first beams in the Booster

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    On Monday, 2 June, the Operations Group injected the first beams into the PS Booster (PSB). The PSB, the second machine in the LHC injector chain to be recommissioned (Linac2 was the first), also provides beams for non-LHC experiments, some of which will need beams for physics as early as this summer.   The PS Booster. The Operations Group has been back in control of the PS Booster for a month now, having taken over where the engineers and experts of the EN Department, who were responsible for the maintenance work, left off. The group first ran tests with no beam (known as “cold check-out”) to check and requalify all the machine instrumentation, from the control room to the ring itself. Now in beam mode, the Booster is being prepared both to begin supplying the PS at the end of June and, above all, for physics to restart in the ISOLDE experimental area. The PS Booster console in the CERN Control Centre. “We have around 15 types of beams to ‘prepa...

  19. LS1 Report: PS Booster prepares for beam

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    With Linac2 already up and running, the countdown to beam in the LHC has begun! The next in line is the PS Booster, which will close up shop to engineers early next week. The injector will be handed over to the Operations Group who are tasked with getting it ready for active duty.   Taken as we approach the end of LS1 activities, this image shows where protons will soon be injected from Linac2 into the four PS Booster rings. Over the coming two months, the Operations Group will be putting the Booster's new elements through their paces. "Because of the wide range of upgrades and repairs carried out in the Booster, we have a very full schedule of tests planned for the machine," says Bettina Mikulec, PS Booster Engineer in Charge. "We will begin with cold checks; these are a wide range of tests carried out without beam, including system tests with power on/off and with varying settings, as well as verification of the controls system and timings." Amon...

  20. Development study on subcriticality monitor. 1. Report under business contract with Japan Nuclear Fuel Cycle Development Institute

    CERN Document Server

    Yamada, S

    2002-01-01

    In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...

  1. Onset of Fast Magnetic Reconnection via Subcritical Bifurcation

    Directory of Open Access Journals (Sweden)

    ZHIBIN eGUO

    2015-04-01

    Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.

  2. The Chain-Length Distribution in Subcritical Systems

    International Nuclear Information System (INIS)

    Nolen, Steven Douglas

    2000-01-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated

  3. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea

    Directory of Open Access Journals (Sweden)

    Yating Zhang

    2017-03-01

    Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  4. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    Science.gov (United States)

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  5. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2007-01-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  6. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  7. The Chain-Length Distribution in Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)

    2000-06-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  8. Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Mary Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-05-02

    Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, and monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.

  9. New Pulsed Orbit Bump Magnets for the Fermilab Booster Synchrotron

    CERN Document Server

    Lackey, James; John, Carson; Kashikhin, Vladimir; Makarov, Alexander; Prebys, Eric

    2005-01-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New, 0.28T pulsed window frame dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a high saturation flux density Ni-Zn ferrite in the yoke rather than laminated steel. The presented magnetic design includes two and three dimensional magnetic field calculations with eddy currents and ferrite nonlinear effects.

  10. Diamond Light Source Booster fast orbit feedback system

    International Nuclear Information System (INIS)

    Gayadeen, S.; Duncan, S.R.; Christou, C.; Heron, M.T.; Rowland, J.

    2012-01-01

    The Fast Orbit Feedback system that has been installed on the Diamond Light Source Storage ring has been replicated on the Booster synchrotron in order to provide a test bed for the development of the Storage Ring controller design. To realise this the Booster is operated in DC mode. The electron beam is regulated in two planes using the Fast Orbit Feedback system, which takes the beam position from 22 beam position monitors for each plane, and calculates offsets to 44 corrector power supplies at a sample rate of 10 kHz. This paper describes the design and realization of the controller for the Booster Fast Orbit Feedback, presents results from the implementation and considers future development

  11. Proposed data acquisition system for the Fermilab Booster

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Peggs, S.; Wu, G.; Saltmarsh, C.

    1991-01-01

    At present, studies involving the FNAL Booster (or in fact most accelerators) depend on knowing exactly what detector one has to look at and at what time. Because of this, most studies are done 'on-line' and involve looking for repetitive effects using a limited number of detectors. In this paper the authors propose to design a Booster Data Acquisition System (BDAQ) for the FNAL Booster. In essence this system consists of a large number of digitizers with circular memory buffers. After a machine cycle of interest, these buffers are frozen and then read out into a mass storage device. This paper discusses the hardware and software capabilities needed to make such a data acquisition system a powerful tool for doing accelerator physics studies and improving machine performance

  12. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  13. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  14. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  15. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  16. Automated tuning of the advanced photon source booster synchrotron

    International Nuclear Information System (INIS)

    Biedron, S.G.; Milton, S.V.

    1997-01-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance

  17. Observation and correction of resonance stopbands in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Ahrens, L.; Glenn, J.W.; Lee, Y.Y.; Roser, T.; Soukas, A.; van Asselt, W.; Weng, W.T.

    1993-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. Therefore, the beam is spread over may lower order resonance lines and the stopbands have to be corrected to minimize the amplitude growth by proper compensation of the driving harmonics resulting from random errors. The observation and correction of second and third order resonance stopbands in the AGS Booster, and the establishment of a favorable operating point at high intensity are discussed

  18. Injection and transfer lines of the PS Booster

    CERN Multimedia

    Photographic Service

    1972-01-01

    In the foreground is the vacuum chamber for the 50 MeV proton beam coming from the Linac. The tank held by white frames houses the "Vertical Distributor", which deflects the Linac beam to the levels of the Booster's 4 superposed rings. After acceleration in the Booster, originally to 800 MeV, today to 1.4 GeV, the beams from the 4 rings are combined in the vertical plane and transfered to the 26 GeV PS. The "Recombination Line", intersecting the injection line, crosses the picture from left to right.

  19. Design study of CEPC Alternating Magnetic Field Booster

    CERN Document Server

    Bian, T; Cai, Y; Cui, X; Gao, J; Koratzinos, M; Su, F; Wang, D; Wang, Y; Xiao, M; Zhang, C

    2017-01-01

    The CEPC is a next generation circular e+e- collider proposed by China. The design of the full energy booster ring of the CEPC is especially challenging. The ejected beam energy is 120 GeV, but that of the injected beam is only 6 GeV. In a conventional approach, the low magnetic field of the main dipole magnets creates problems. We propose operating the booster ring as a large wiggler at low beam energies and as a normal ring at high energies to avoid the problem of very low dipole magnet fields.

  20. Analysis of resonance-driving imperfections in the AGS Booster

    International Nuclear Information System (INIS)

    Gardner, C.; Shoji, Y.; Danby, G.; Glenn, J.W.; Jackson, G.J.; Soukas, A.; van Asselt, W.; Whalen, C.

    1994-01-01

    At the design intensity of 1.5 x 10 13 ppp, the space charge tune shift in the AGS Booster at injection has been estimated to be about 0.35. The beam tunes are therefore spread over many lower order resonance lines and the associated stopbands must be corrected in order to minimize the amplitude growth due to resonance excitation. This requires proper compensation of the resonance-driving harmonics which result from random magnetic field errors. The observation and correction of second and third order resonance stopbands in the AGS Booster is reviewed, and an analysis of magnetic field imperfections based on the required corrections is given

  1. Fiber optics in the BNL Booster radiation environment

    International Nuclear Information System (INIS)

    Beadle, E.R.

    1991-01-01

    The Booster instrumentation uses analog and digital fiber optic links, designed to withstand at least 50 krads without performance degradation. The links use inexpensive and commercially available components that operate at a center wavelength of 820 nm. The analog link operates to 30 MHz over a 200 m fiber and can provide insertion gain. The digital link provides 60 ns timing pulses without the dispersive effects of coaxial cables. The optical fiber is a step-index hard clad silica type with a 200 micron core. This paper presents the component selection criteria, link design, installation, testing and performance for the optical links in the Booster instrumentation systems

  2. Design of the AGS Booster Beam Position Monitor electronics

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

    1991-01-01

    The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry

  3. Measured longitudinal beam impedance of booster gradient magnets; TOPICAL

    International Nuclear Information System (INIS)

    James L Crisp and Brian J. Fellenz

    2001-01-01

    The Booster gradient magnets have no vacuum pipe which forces the beam image current to flow along the laminated pole tips. Both D and F style magnets were measured with a stretched wire to determine the longitudinal beam impedance caused by these laminations. Results are compared to calculations done 30 years ago. The inductive part of the magnet impedance is interesting because it partially compensates for the negative inductance effects of space charge on the beam. An R/L circuit consisting of 37K(center d ot) in parallel with between 40 and 100uH is a reasonable approximation to the total impedance of Booster magnet laminations

  4. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    International Nuclear Information System (INIS)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.

    2012-01-01

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  5. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  6. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) Systems Study; Volume 1 - Executive Summary

    National Research Council Canada - National Science Library

    Ware, Larry

    1989-01-01

    ...) solid rocket boosters (SRBs) with liquid rocket boosters (LRBs), Figure 1.0-1. The main objectives of a LRB substitution for the SRB were increased STS safety and reliability and increased payload performance...

  7. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  8. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  9. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  10. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2011-10-15

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  11. Sub-Critical Nuclear Reactor Based on FFAG-Accelerator

    International Nuclear Information System (INIS)

    Lee, Hee Seok; Kang, Hung Sik; Lee, Tae Yeon

    2011-01-01

    After the East-Japan earthquake and the subsequent nuclear disaster, the anti-nuclear mood has been wide spread. It is very unfortunate both for nuclear science community and for the future of mankind, which is threatened by two serious challenges, the global warming caused by the greenhouse effect and the shortage of energy cause by the petroleum exhaustion. While the nuclear energy seemed to be the only solution to these problems, it is clear that it has its own problems, one of which broke out so strikingly in Japan. There are also other problems such as the radiotoxic nuclear wastes that survive up to even tens of thousands years and the limited reserves of Uranium. To solve these problems of nuclear fission energy, accelerator-based sub-critical nuclear reactor was once proposed. (Its details will be explained below.) First of all, it is safe in a disaster such as an earthquake, because the deriving accelerator stops immediately by the earthquake. It also minimizes the nuclear waste problem by reducing the amount of the toxic waste and shortening their half lifetime to only a few hundred years. Finally, it solves the Uranium reserve problem because it can use Thorium as its fuel. The Thorium reserve is much larger than that of Uranium. Although the idea of the accelerator-driven nuclear reactor was proposed long time ago, it has not been utilized yet first by technical difficulty and economical reasons. The accelerator-based system needs 1 GeV, 10 MW power proton accelerator. A conventional linear accelerator would need several hundred m length, which is highly costly particularly in Korea because of the high land cost. However, recent technologies make it possible to realize that scale accelerator by a reasonable size. That is the fixed-field alternating gradient (FFAG) accelerator that is described in this article

  12. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  13. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang

    2002-01-01

    The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy

  14. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  15. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  16. 47 CFR 74.1290 - FM translator and booster station information available on the Internet.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false FM translator and booster station information... DISTRIBUTIONAL SERVICES FM Broadcast Translator Stations and FM Broadcast Booster Stations § 74.1290 FM translator and booster station information available on the Internet. The Media Bureau's Audio Division...

  17. 76 FR 11680 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2011-03-03

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... Commission's Rules to Establish Rules for Digital Low Power, Television Translator, and Television Booster... Digital Low Power Television Translator, Television Booster Stations, and to Amend Rules for Digital Class...

  18. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-09-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs

  19. Dipole power supply for National Synchrotron Light Source Booster upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far

  20. Simulation of proton RF capture in the AGS Booster

    International Nuclear Information System (INIS)

    Khiari, F.Z.; Luccio, A.U.; Weng, W.T.

    1988-01-01

    RF capture of the proton beam in the AGS Booster has been simulated with the longitudinal phase-space tracking code ESME. Results show that a capture in excess of 95% can be achieved with multiturn injection of a chopped beam

  1. Multipole stack for the 4 rings of the PS Booster

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The PS Booster (originally 800 MeV, now 1.4 GeV) saw first beam in 1972, routine operation began in 1973. The strive for ever higher intensities required the addition of multipoles. Manufacture of 8 stacks of multipoles was launched in 1974, for installation in 1976. For details, see 7511120X.

  2. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  3. Booster HBV vaccination; is it really necessary? | Alavian | Egyptian ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Booster HBV vaccination; is it ...

  4. FNAL Booster intensity, extraction, and synchronization control for collider operation

    International Nuclear Information System (INIS)

    Ducar, R.J.; Lackey, J.R.; Tawzer, S.R.

    1987-03-01

    Booster operation for collider physics is considerably different than for fixed target operation. Various scenarios for collider physics, machine studies, and P-Bar targeting may require that the intensity vary from 5E10 PPP to 3E12 PPP at a 15 Hertz machine cycle rate. In addition to the normal Booster single turn extraction mode, collider operations require that the Booster inject into the Main Ring a small number of beam bunches for coalescing into a single high intensity bunch. These bunches must be synchronized such that the center bunch arrives in the RF bucket which corresponds to the zero phase of the coalescing cavity. The system implemented has the ability to deliver a precise fraction of the available 84 Booster beam bunches to Main Ring or to the P-Bar Debuncher via the newly installed AP-4 beam line for tune-up and studies. It is required that all of the various intensity and extraction scenarios be accommodated with minimal operator intervention

  5. The AGS Booster main ring power supply system

    International Nuclear Information System (INIS)

    Soukas, A.; Hughes, K.; Sandberg, J.; Toldo, F.; Zhang, S.Y.

    1989-01-01

    The AGS Booster is being designed as a very versatile particle accelerator. Its primary function is to be a high quality injector to the currently operating Alternating Gradient Synchrotron (AGS). The Booster/AGS combination will produce proton intensities greater than 5 x 10 13 protons per pulse (ppp), and accelerate heavy ions, with mass up to 200, to a maximum energy of 15 GeV per atomic mass unit (GeV/amu). The power supply for the Booster Main Ring (BMRPS) has to accommodate a wide range of cycles and a wide range of operating parameters. The cycles range from storage for several seconds to rapid cycling at 7.5 Hz. The peak output power is 18 MW. This paper will describe the AGS Booster machine powering requirements, the choice of power supply, the a.c. circuit tie-in and its associated problems and some of the details of the design of the BMRPS. 9 refs., 2 figs

  6. Beam aperture and emittance growth in the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors have developed analytical tools for calculating the variation of particle action, smear and emittance growth due to nonlinear elements in accelerators (with second order perturbation theory in two dimensions). The authors' results for the AGS-Booster is presented

  7. Chromatic perturbation and resonance analysis for the AGS-Booster

    International Nuclear Information System (INIS)

    Parsa, Z.

    1987-01-01

    The authors investigated the nonlinear effects with the emphasis on nonlinear resonances. They present some of their findings, (e.g. the structure resonances; stop-bandwidths, etc.) for the AGS-Booster Lattice using program HARMON. Comparison with the results obtained from the algorithm ''NONLIN'' is presented

  8. Simulation of the capture process in the Fermilab Booster

    International Nuclear Information System (INIS)

    Stahl, S.; Ankenbrandt, C.

    1987-01-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new Rf voltage program for capture which ameliorates transverse space-charge effects is described and simulated

  9. 47 CFR 101.151 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... authorized to operate multiple address systems in the 928-929/952-960 MHz and 932-932.5/941-941.5 MHz bands..., or portable station(s). The booster will fill in only weak signal areas and cannot extend the system... automatic gain control circuitry which will limit the total effective radiated power (ERP) of the unit to a...

  10. 47 CFR 90.219 - Use of signal boosters.

    Science.gov (United States)

    2010-10-01

    ... to operate radio systems in the frequency bands above 150 MHz may employ signal boosters at fixed... fill in only weak signal areas and cannot extend the system's normal signal coverage area. (b) Class A... effective radiated power (ERP) of the unit to a maximum of 5 watts under all conditions. Class B broadband...

  11. History of the ZGS 500 MeV booster.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  12. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  13. Activities of working party on 'Subcritical core of accelerator-driven system' under the research committee on reactor physics of AESJ and JAERI

    International Nuclear Information System (INIS)

    Iwasaki, T.; Tsujimoto, K.; Nishihara, K.; Kitamura, Y.

    2004-01-01

    The Research Committee on Reactor Physics under the Atomic Energy Society of Japan and the Japan Atomic Energy Research Inst. organized the working party (ADS-WP) on S ubcritical Core of Accelerator-Driven System . The ADS-WP investigated reactor physics of subcriticality from the viewpoint of the accelerator driven system (ADS) since subcriticality has been almost studied from the viewpoint of critical safety. The working party was set in July 2001 and it worked for two years. The activities of the ADS-WP are (Work-I) theory of subcriticality, (Work-II) benchmark of subcritical core, (Work-III) setting of subcriticality level of ADS and (Work-JAO monitoring of subcriticality. These activities clarified about the important issues related to the subcriticality or the subcritical core from the wide ranges of theory, analysis, calculation, design and monitoring for ADS. The activities were already summarized and the report will be published in March 2004. (authors)

  14. Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system

    International Nuclear Information System (INIS)

    Wang Yuwei; Yang Yongwei; Cui Pengfei

    2011-01-01

    The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)

  15. A new formulation for the importance function in the kinetics of subcritical reactors

    International Nuclear Information System (INIS)

    Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando

    2012-01-01

    Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.

  16. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  18. Validation of neutronic methods applied to the analysis of fast subcritical systems. The MUSE-2 experiments

    International Nuclear Information System (INIS)

    Soule, R.; Salvatores, M.; Jacqmin, R.; Martini, M.; Lebrat, J.F.; Bertrand, P.; Broccoli, U.; Peluso, V.

    1997-01-01

    In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)

  19. Validation of neutronic methods applied to the analysis of fast subcritical systems. The MUSE-2 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Soule, R; Salvatores, M; Jacqmin, R; Martini, M; Lebrat, J F; Bertrand, P [CEA Centre d` Etudes de Cadarache, Service de Physique des Reacteurs et du Cycle, 13 - Saint-Paul-lez-Durance (France); Broccoli, U; Peluso, V

    1998-12-31

    In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)

  20. Prompt neutron decay constants and subcritical measurements for material control and accountability in SHEBA

    International Nuclear Information System (INIS)

    Sanchez, R.; Jaegers, P.

    1998-01-01

    Rossi-Alpha measurements were performed on the SHEBA assembly to determine the prompt neutron decay constants. These prompt neutron decay constants represent an eigenvalue characteristic of this particular assembly, which can be used to infer the amount of fissile material in the assembly. In addition, subcritical measurements using Rossi-Alpha and the source-jerk techniques were also performed on the SHEBA assembly. These measurements were compared against TWODANT calculations and agreed quite well. The subcritical measurements were also used to obtain a unique signature that represented the amount of material associated with the degree of subcriticality of the SHEBA assembly. Finally, the Feynman variance-to-mean technique in conjunction with TWODANT, were used to determine the effective delayed neutron fraction for the SHEBA assembly

  1. Proposed sub-criticality level for an 80 MWTHd-bismuth-cooled Ads

    International Nuclear Information System (INIS)

    Mansani, L.; Monti, R.; Neuhold, P.

    2003-01-01

    The degree of operational sub-criticality of an Accelerator-driven System (ADS) on the one hand directly affects key accelerator system parameters, such as the proton beam current required to sustain the selected rated power level and, on the other, the likelihood of approaching or attaining criticality under abnormal or accident conditions. Then, if in all such conditions the safety goal is pursued to design the sub-critical core so that it stays away from criticality with adequate margin, the required operational sub-criticality level must be determined by a properly balanced approach between excessively demanding accelerator system performances and risk of accidental criticality. The approach must necessarily include evaluation and appropriate combination of the relevant reactivity effects (e.g. from system cool-down, postulated accident scenarios, geometrical variations) and proper consideration of specific design features (such as, for instance, the absence of safety rods, intended as neutron absorbing devices having a role equivalent to the shutdown rods in critical reactors). The paper presents a possible approach to the determination of the operational sub-criticality level of an 80 MWth Lead-Bismuth-cooled pool type ADS, initially conceived and developed by a team of Italian Organisations led by Ansaldo, with funding from the Ministry of University and Scientific and Technological Research, and currently in the process of being assessed, versus a gas-cooled concept, in the frame of a contract with the Commission of the European Communities. After a brief description of the Lead-Bismuth-cooled ADS concept relevant features and of the key safety goals in terms of required sub-criticality margin, the evaluated reactivity effects are presented, a method to combine them is discussed and a proposed operational sub-criticality level is derived. (author)

  2. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  3. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Alberto [Universidad Politecnica de Madrid (Spain); Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto [ANL, Argonne (United States); Bornos, Victor; Kiyavitskaya, Anna [Joint Institute of Power Eng. and Nucl. Research ' Sosny' , Minsk (Belarus); Carta, Mario [ENEA, Casaccia (Italy); Janczyszyn, Jerzy [AGH-University of Science and Technology, Krakow (Poland); Maiorino, Jose [IPEN, Sao Paulo (Brazil); Pyeon, Cheolho [Kyoto University (Japan); Stanculescu, Alexander [IAEA, Vienna (Austria); Titarenko, Yury [ITEP, Moscow (Russian Federation); Westmeier, Wolfram [Wolfram Westmeier GmbH, Ebsdorfergrund (Germany)

    2008-07-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  4. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  5. Conceptual design of the fusion-driven subcritical system FDS-I

    International Nuclear Information System (INIS)

    Wu, Y.; Zheng, S.; Zhu, X.; Wang, W.; Wang, H.; Liu, S.; Bai, Y.; Chen, H.; Hu, L.; Chen, M.; Huang, Q.; Huang, D.; Zhang, S.; Li, J.; Chu, D.; Jiang, J.; Song, Y.

    2006-01-01

    The fusion-driven subcritical system (named FDS-I) was previously proposed as an intermediate step toward the final application of fusion energy. A conceptual design of the FDS-I is presented, which consists of the fusion neutron driver with relatively easy-achieved plasma parameters, and the He-gas/liquid lithium-lead Dual-cooled subcritical Waste Transmutation (DWT) blanket used to transmute long-lived radioactive wastes and to generate energy on the basis of self-sustainable fission and fusion fuel cycle. An overview of the FDS-I is given and the specifications of the design analysis are summarized

  6. Subcritical Measurements Research Program for Fresh and Spent Materials Test Reactor Fuels

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    'A series of subcritical noise measurements were performed on fresh and spent University of Missouri Research Reactor fuel assemblies. These experimental measurements were performed for the purposes of providing benchmark quality data for validating transport theory computer codes and nuclear cross-section data used to perform criticality safety analyses for highly enriched, uranium-aluminum Material Test Reactor fuel assemblies. A mechanical test rig was designed and built to hold up to four fuel assemblies and neutron detectors in a subcritical array. The rig provided researchers with the ability to evaluate the reactivity effects of variable fuel/detector spacing, fuel rotation, and insertion of metal reflector plates into the lattice.'

  7. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  8. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  9. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  10. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  11. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the

  12. Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems

    International Nuclear Information System (INIS)

    Gulik, Volodymyr; Tkaczyk, Alan H.

    2014-01-01

    Highlights: • The optimization of two-zone homogeneous subcritical systems has been performed. • A Serpent model for two-zone heterogeneous subcritical systems has been developed. • The optimization of two-zone heterogeneous subcritical systems has been carried out. • Economically optimal core composition of two-zone subcritical system was found. • The neutron spectra of the heterogeneous subcritical systems have been obtained. - Abstract: Subcritical systems driven by external neutron sources, commonly known as Accelerator-Driven System (ADS), are one type of advanced nuclear reactor exhibiting attractive characteristics, distinguished from the traditional critical systems by their intrinsic safety features. In addition, an ADS can be used for the transmutation of the nuclear waste, accumulated during the operation of existing reactors. The optimization of a subcritical nuclear reactor in terms of materials (fuel content, coolant, etc.), geometrical, and economical parameters is a crucial step in the process of their design and construction. This article describes the optimization modeling performed for homogeneous and heterogeneous two-zone subcritical systems in terms of geometry of the fuel zones. Economical assessment was also carried out for the costs of the fuel in the core of the system. Optimization modeling was performed with the Serpent-1.1.18 Monte Carlo code. The model of a two-zone subcritical system with a fast inner and a thermal gas-cooled graphite-moderated outer zone was developed, simulated, and analyzed. The optimal value for the pitch of fuel elements in the thermal outer zone was investigated from the viewpoint of the cost of subcritical system. As the main goal of ADS development is nuclear waste transmutation, neutron spectra for both fast and thermal zones were obtained for different system configurations. The results of optimization modeling of homogeneous and heterogeneous two-zone subcritical systems show that an optimal

  13. Preliminary study of AC power feeders for AGS booster

    International Nuclear Information System (INIS)

    Meth, M.

    1992-01-01

    It has been proposed that the AGS Heavy Ion/Proton Booster be excited directly from the electric power distribution system without intervening an energy storage buffer such as an MG set or a magnetic energy buffer. The average power requirement of the AGS Booster is less than many single-loads presently housed on the lab site. However, the power swing will be the largest single pulsating load on the lab site. The large power swings will impact on the power grid producing utility-line disturbances such as voltage fluctuations and harmonic generation. Thus, it is necessary to carefully evaluate the quality of the electric power system resulting from the interconnection, such that the utility system is not degraded either on the lab site or at LILCO's substation

  14. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  15. Frequency control of RF booster cavity in TRIUMF

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.

    1993-01-01

    A booster is used in the TRIUMF cyclotron to increase the energy gain per turn for beam orbits corresponding to energies greater than 370 MeV. It operates at 92.24 MHz, the 4 th harmonic of the cyclotron main rf, and at a nominal voltage of 150 kV. Excitation is provided by a 90 kW rf system that is phase locked to the main rf. When the main rf is interrupted due to sparking or other causes, a controller built into the low frequency source of the booster rf system disables the phase-locked loop, and reconfigures the source as a temperature stabilized oscillator operating at the last locked frequency. When the cyclotron rf is restored it usually will be at different frequency. The oscillator tunes automatically to this new frequency. The acquisition time is extended by the controller to match the response time of the mechanical tuner in the cavity

  16. Power Supply of the Booster Magnets for the ILSF Synchrotron

    Directory of Open Access Journals (Sweden)

    O Ahmadi

    2017-08-01

    Full Text Available The Iranian Light Source Facility (ILSF booster main specifications including 250 ms ramp up, 2Hz repetition rate, and quasi-sinusoidal wave shape, up to this point have been the basis for calculations. Each family of magnets including Dipole, Quadrupole and Sextupoles will feed by individual power supply. In order to maintain constant transverse tunes and chromaticity while the beam is accelerated, quadrupole and sextupole magnet currents must closely track the current in the dipole magnets. In booster rings, feeding the high inductance load, tracking of Quadrupole and sextupole magnets, reducing output current fluctuation and having a precise high bandwidth current regulation system are particular challenges. In order to meet the requirements, it is necessary to have a fully digital controller to achieve a fast regulation system. The prototype power supply and its test results are described in this paper  

  17. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  18. RF field control for Kaon Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1992-08-01

    A conceptual design is developed for control of the Kaon Factory booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluate the proposed controllers. These simulations indicate that adequate tuning performance can be obtained with the combination of adaptive feed forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feed forward and proportional feedback control. (Author) (figs., tabs.)

  19. RF field control for KAON Factory booster cavities

    International Nuclear Information System (INIS)

    Craig, S.T.; de Jong, M.S.

    1990-11-01

    A conceptual design is developed for control of the KAON Factory Booster rf accelerating fields. This design addresses control of cavity: tuning, voltage amplitude, and voltage phase angle. Time-domain simulations were developed to evaluated the proposed controllers. These simulations indicated that adequate tuning performance can be obtained with the combination of adaptive feed-forward and proportional feedback control. Voltage amplitude and voltage phase can be adequately controlled using non-adaptive feedforward and proportional feedback control

  20. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  1. Construction and early commissioning results of the AGS Booster

    International Nuclear Information System (INIS)

    Weng, W.T.; Ahrens, L.; Damm, R.; McNerney, A.J.

    1991-01-01

    The AGS Booster synchrotron has been designed to accelerate protons from 200 MeV to 1.5 GeV and heavy ions from several MeV per nucleon to several hundred MeV per nucleon for all the nuclei up to gold. The design requirements and measurements results of major accelerator components and systems are presented. The early commissioning results of the injection is also presented. 12 refs., 9 figs., 2 tabs

  2. Study of an energy upgrade of the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M E; Bartmann, W; Bartolome, S; Bertone, C; Blas, A; Borburgh, J; Bozzini, D; Butterworth, A; Carli, C; Dahlen, P; Dobers, T; Findlay, A; Folch, R; Gilbert, N; Hansen, J; Hermanns, T; Jensen, S; Le Roux, P; Lopez-Hernandez, L A; Mahner, E; Masi, A; Mikulec, B; Muttoni, Y; Newborough, A; Nisbet, D; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Puccio, B; Raginel, V; Ruehl, I; Tan, J; Todd, B; Weterings, W; Widorski, W

    2011-01-01

    CERN’s LHC injector chain will have to deliver beams with ultimate brilliance as the LHC is heading for increased luminosity in the coming years. In order to overcome bottlenecks in the injector chain, an increase of the beam transfer energy from the CERN Proton Synchrotron Booster (PSB) to the Proton Synchrotron (PS) has been investigated as a possible upgrade scenario. This paper gives an overview of the technical solutions and summarizes the conclusions of the feasibility study.

  3. A Linac afterburner to supercharge the Fermilab booster

    International Nuclear Information System (INIS)

    Ankenbrandt M, Charles email = popovic@fnal.gov

    2002-01-01

    A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M

  4. A tool for model based diagnostics of the AGS Booster

    International Nuclear Information System (INIS)

    Luccio, A.

    1993-01-01

    A model-based algorithmic tool was developed to search for lattice errors by a systematic analysis of orbit data in the AGS Booster synchrotron. The algorithm employs transfer matrices calculated with MAD between points in the ring. Iterative model fitting of the data allows one to find and eventually correct magnet displacements and angles or field errors. The tool, implemented on a HP-Apollo workstation system, has proved very general and of immediate physical interpretation

  5. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  6. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  7. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  8. K/sub infinity/-meter concept verified via subcritical-critical TRIGA experiments

    International Nuclear Information System (INIS)

    Ocampo Mansilla, H.

    1983-01-01

    This work presents a technique for building a device to measure the k/sub infinity/ of a spent nuclear fuel assembly discharged from the core of a nuclear power plant. The device, called a k/sub infinity/-meter, consists of a cross-shaped subcritical assembly, two artificial neutron sources, and two separate neutron counting systems. The central position of the subcritical assembly is used to measure k/sub infinity/ of the spent fuel assembly. The initial subcritical assembly is calibrated to determine its k/sub eff/ and verify the assigned k/sub infinity/ of a selected fuel assembly placed in the central position. Count rates are taken with the fuel assembly of known k/sub infinity/'s placed in the central position and then repeated with a fuel assembly of unknown k/sub infinity/ placed in the central position. The count rate ratio of the unknown fuel assembly to the known fuel assembly is used to determine the k/sub infinity/ of the unknown fuel assembly. The k/sub infinity/ of the unknown fuel assembly is represented as a polynomial function of the count rate ratios. The coefficients of the polynomial equation are determined using the neutronic codes LEOPARD and EXTERMINATOR-II. The analytical approach has been validated by performing several subcritical/critical experiments, using the Penn State Breazeale TRIGA Reactor (PSBR), and comparing the experimental results with the calculations

  9. Development of reactivity feedback effect measurement techniques under sub-critical condition in fast reactors

    International Nuclear Information System (INIS)

    Kitano, A.; Nishi, H.; Suzuki, T.; Okajima, S.; Kanemoto, S.

    2012-01-01

    The first-of-a-kind reactor has been licensed by a safety examination of the plant design based on the measured data in precedent mock-up experiments. The validity of the safety design can be confirmed without a mock-up experiment, if the reactor feed-back characteristics can be measured before operation, with the constructed reactor itself. The 'Synthesis Method', a systematic and sophisticated method of sub-criticality measurement, is proposed in this work to ensure the safety margin before operation. The 'Synthesis Method' is based on the modified source multiplication method (MSM) combined with the noise analysis method to measure the reference sub-criticality level for MSM. A numerical simulation for the control-rod reactivity worth and the isothermal feed-back reactivity was conducted for typical fast reactors of 100 MWe-size, 300 MWe-size, 750 MWe-size, and 1500 MWe-size to investigate the applicability of Synthesis Method. The number of neutron detectors and their positions necessary for the measurement were investigated for both methods of MSM and the noise analysis by a series of parametric survey calculations. As a result, it was suggested that a neutron detector located above the core center and three or more neutron detectors located above the radial blanket region enable the measurement of sub-criticality within 10% uncertainty from -$0.5 to -$2 and within 15% uncertainty for the deeper sub-criticality. (authors)

  10. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  11. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  12. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  13. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-01-01

    The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.

  14. Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro da Cruz

    2013-01-01

    This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)

  15. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  16. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  17. Emittance measurement and modeling for the Fermilab Booster

    Directory of Open Access Journals (Sweden)

    Xiaobiao Huang

    2006-01-01

    Full Text Available Turn-by-turn beam profile data measured at the Fermilab Booster are studied. Lattice models with experimental accelerator ramping parameters are used to obtain the lattice functions for data analysis. We studied the horizontal and vertical emittance growth behavior in different stages of a booster ramping cycle and its relation to the beam intensity. The transverse and longitudinal components in the horizontal beam width are separated by a fitting model which makes use of the different scaling rules of the beam momentum. We analyze the post-transition horizontal beam size oscillation based on a model where the longitudinal phase-space mismatch has resulted from rf voltage mismatch during the transition-energy crossing. We carried out systematic multiparticle simulation to show that the source of the vertical emittance growth is a combination of the random errors in skew-quadrupole and dipole fields, and the systematic Montague resonance. The effect of random quadrupole field is small for the Fermilab Booster because the betatron envelope tunes are reasonably far away from the half-integer stop band.

  18. Reusable Boosters in a European-Russian Perspective

    Science.gov (United States)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  19. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  20. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng

    2014-05-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  1. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Zhou, Cheng

    2014-01-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  2. Compatibility of booster seats and vehicles in the U.S. market.

    Science.gov (United States)

    Bing, Julie A; Agnew, Amanda M; Bolte, John H

    2018-05-19

    The objective of this study was to analyze booster and rear vehicle seat dimensions to identify the most frequent compatibility problems. Measurements were collected from 40 high-back and backless boosters and 95 left rear and center rear row seating positions in 50 modern vehicles. Dimensions were compared for 3,800 booster/vehicle seat combinations. For validation and estimation of tolerance and correction factors, 72 booster installations were physically completed and compared with measurement-based compatibility predictions. Dimensions were also compared to the International Organization for Standardization (ISO) volumetric envelopes of forward-facing child restraints and boosters. Seat belt buckles in outboard positions accommodated the width of boosters better than center positions (success rates of 85.4 and 34.7%, respectively). Adequate head restraint clearance occurred in 71.9 to 77.2% of combinations, depending on the booster's head support setting. Booster recline angles aligned properly with vehicle seat cushion angles in 71.5% of combinations. In cases of poor angle alignment, booster angles were more obtuse than the vehicle seat angles 97.7% of the time. Head restraint interference exacerbated angle alignment issues. Data indicate success rates above 90% for boosters being fully supported by the length of the seat cushion and for adequate height clearance with the vehicle roofline. Comparison to ISO envelopes indicates that most boosters on the U.S. market are taller and angled more obtusely than ISO target envelopes. This study quantifies some of the common interferences between boosters and vehicles that may complicate booster usage. Data are useful for design and to prioritize specific problem areas.

  3. Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors

    International Nuclear Information System (INIS)

    Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing

    2014-01-01

    A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)

  4. Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise; Zhang, Ning

    2016-01-01

    Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), to which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM S olver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) ''Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.''). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.

  5. The operational status of the Booster injector for the AGS accelerator complex at BNL

    International Nuclear Information System (INIS)

    Ahrens, L.; Bleser, E.; Brennan, J.M.; Gardner, C.; Gill, E.; Glenn, J.W.; Reece, K.; Roser, T.; van Asselt, W.; Weng, W.T.

    1992-01-01

    The Booster synchrotron at Brookhaven National Laboratory has been incorporated into the accelerator chain at the Alternating Gradient Synchrotron (AGS) complex. After a successful first commissioning effort in the spring of 1991, the Booster has been part of this year's silicon, gold and proton physics runs. After a brief review of the Booster design goals, and of the early commissioning, this paper will summarize this year's activities

  6. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty; Subkritiske tester - kjernevaapentesting under avtalen om fullstendig proevestans

    Energy Technology Data Exchange (ETDEWEB)

    Hoeibraaten, S

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments.

  7. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  8. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  9. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    International Nuclear Information System (INIS)

    Huang, Xiaobiao

    2005-01-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  10. Electronics for damping transverse instabilities for the Fermilab booster synchrotron

    International Nuclear Information System (INIS)

    Higgins, E.F. Jr.

    1977-01-01

    Transverse instabilities are controlled by an active beam damper which corrects the orbit of individual proton bunches in the Fermilab booster synchrotron. The corrective signals, which are in reality processed versions of the beam pick-up data, are applied to the beam via power amplifier/deflector electrodes approximately one turn after sensing the bunch position. The electronic systems of the damper are configured as a closed-loop feedback arrangement. A brief outline is given of the overall damper system configuration, and the beam position detector, coaxial cable delay system, and data receiver are described

  11. Progress on the IPNS Enriched Uranium Booster Target

    International Nuclear Information System (INIS)

    Knox, A.E.; Carpenter, J.M.; Bailey, J.L.

    1986-09-01

    We describe the Enriched Uranium Booster Target designed for use in Argonne's Intense Pulsed Neutron Source. This report contains a general description of the system, and descriptions of the thermal-hydraulic and loss-of-coolant accident analyses, of the neutronic, criticality and power density calculations, of the assessment of radiation and thermal cycling growth, and of the disk fabrication methods. We also describe the calculations of radionuclide buildup and the related hazards analysis and our calculations of the temperature and stress profiles in the disks, and briefly allude to considerations of security and safeguards

  12. Main cycle controls for the AGS Booster synchrotron

    International Nuclear Information System (INIS)

    Culwick, B.B.; Yen, S.

    1991-01-01

    The AGS Booster is a separated function synchrotron with the main excitation coils of the dipoles and quadrupoles connected electrically in series. This circuit is driven by a complex modular power supply with current and voltage reference functions to obtain the desired magnetic fields as a function of time. The dipole cycle is defined by algebraic functions specifying the desired field profile as a function of time. These functions are processed through successive phases to convert to the signals needed to provide the power supply with one current and six voltage references. The user interface and algorithms to derive the control variables are described. 4 refs., 3 figs

  13. Summary of the 70 GeV Booster Group

    International Nuclear Information System (INIS)

    Makdisi, Y.; Khiari, F.

    1985-06-01

    The energy range of the 70 GeV SSC booster makes it difficult to employ a single technique for preserving the beam polarization. Results of DEPOL calculations show that the expected resonance strengths are below the .5 x 10 -1 level, which poses no problem for resonance jumping. It was found that a single adiabatically energized Siberian snake will not significantly depolarize the beam. Thus one good solution to the mixing problem is that the snake magnets be energized during the acceleration cycle reaching maximum operating value at 20 GeV, where they take over the resonance jumping role. The possibility of adiabatically energizing two snakes was found to be feasible

  14. Making the Case for Reusable Booster Systems: The Operations Perspective

    Science.gov (United States)

    Zapata, Edgar

    2012-01-01

    Presentation to the Aeronautics Space Engineering Board National Research Council Reusable Booster System: Review and Assessment Committee. Addresses: the criteria and assumptions used in the formulation of current RBS plans; the methodologies used in the current cost estimates for RBS; the modeling methodology used to frame the business case for an RBS capability including: the data used in the analysis, the models' robustness if new data become available, and the impact of unclassified government data that was previously unavailable and which will be supplied by the USAF; the technical maturity of key elements critical to RBS implementation and the ability of current technology development plans to meet technical readiness milestones.

  15. Status of the Upgrade of the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M; Bartmann, W; Bartolome, S; Benedetto, E; Bertone, C; Blas, A; Bonnal, P; Borburgh, J; Bozzini, D; Butterworth, A; Carli, C; Carlier, E; Cole, J; Dahlen, P; Delonca, M; Dobers, T; Findlay, A; Froeschl, R; Hansen, J; Hay, D; Jensen, S; Lacroix, J; Le Roux, P; Lopez Hernandez, L; Maglioni, C; Masi, A; Mason, G; Mathot, S; Mikulec, B; Muttoni, Y; Newborough, A; Nisbet, D; Olek, S; Paoluzzi, M; Perillo-Marcone, A; Pittet, S; Puccio, B; Raginel, V; Riffaud, B; Ruehl, I; Sarrió Martínez, A; Tan, J; Todd, B; Venturi, V; Weterings, W

    2013-01-01

    The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H- ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.

  16. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  17. Laser-plasma booster for ion post acceleration

    Directory of Open Access Journals (Sweden)

    Satoh D.

    2013-11-01

    Full Text Available A remarkable ion energy increase is demonstrated for post acceleration by a laser-plasma booster. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when this intense short-pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in plasma. During the increase phase in the magnetic field, a longitudinal inductive electric field is induced for the forward ion acceleration by the Faraday law. Our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by several tens of MeV.

  18. Shielding for a tandem accelerator coupled to linac booster

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Bisht, J.S.; Venkataraman, G.

    1996-01-01

    Shielding calculation for the Beam-Hall-II of pelletron facility, augmented with linac booster in its phase-II at Nuclear Science Centre, New Delhi, has been done. An estimate is obtained by reduction factor method considering source radiation of monoenergetic neutrons, which is then compared with the detail computation using computer code ALICE considering total energy and angular distribution of neutrons. Another code ASFIT is used to take into account the build up of gamma dose from (n, gamma) reactions within the concrete shield incorporating new radiation weighting factors as recommended by ICRP-60. (author). 8 refs., 2 figs

  19. Unavoidable food supply chain waste: acid-free pectin extraction from mango peel via subcritical water.

    Science.gov (United States)

    Xia, H; Matharu, A S

    2017-09-21

    Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.

  20. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  1. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  2. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal

    2017-09-01

    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  3. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.

  4. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  5. Observations of the severity of notch-root radius in initiation of subcritical crack growth

    International Nuclear Information System (INIS)

    Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.

    1981-01-01

    Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography

  6. Comparison between two gas-cooled TRU burner subcritical reactors: fusion-fission and ADS

    International Nuclear Information System (INIS)

    Carluccio, T.; Rossi, P.C.R.; Angelo, G.; Maiorino, J.R.

    2011-01-01

    This work shows a preliminary comparative study between two gas cooled subcritical fast reactor as dedicated transuranics (TRU) transmuters: using a spallation neutron source or a D-T fusion neutron source based on ITER. The two concepts are compared in terms of a minor actinides burning performance. Further investigations are required to choose the best partition and transmutation strategy. Mainly due to geometric factors, the ADS shows better neutron multiplication. Other designs, like SABR and lead cooled ADS may show better performances than a Gas Coolead Subcritical Fast Reactors and should be investigated. We noticed that both designs can be utilized to transmutation. Besides the diverse source neutron spectra, we may notice that the geometric design and cycle parameters play a more important role. (author)

  7. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  8. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  9. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Sub-critical pulsed neutron experiments with uranyl nitrate solutions in spherical geometry

    International Nuclear Information System (INIS)

    Gurin, Victor N.; Ryazanov, Boris G.; Sviridov, Victor I.; Volnistov, Vladimir V.

    2003-01-01

    The pulse source method is used to study homogeneous solution assemblies. Three sets of sub-critical pulse experiments with spherical tanks filled with water solution of uranyl nitrate (90% enrichment) were carried out at the RF-GS facility, Obninsk, Russia. Seven spherical tanks with the volume within the range of 1.29 L to 19.8 L were used in the experiments. Three uranium concentrations were studied, i.e. 20.7, 29.6 and 37.5 g/L. The sub-critical experiments were analyzed with the MCNP 4A code based on the Monte-Carlo method, and with ENDF/B-V library. (author)

  11. Estimation of subcriticality with the computed values analysis using MCNP of experiment on coupled cores

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka

    1998-01-01

    Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)

  12. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  13. Influence of moderator to fuel ratio (MFR) on burning thorium in a subcritical assembly

    International Nuclear Information System (INIS)

    Wojciechowski, Andrzej

    2014-01-01

    The conversion ratio (CR) of Th-232 to U-233 calculation results for a subcritical reactor assembly is presented as a function of MFR, burnup, power density (PD) and fissile concentration. The calculated model is based on subcritical assembly which makes configuration of fuel rods and volumes of moderator and coolant changes possible. This comfortable assembly enables investigation of CR in a thorium cycle for different value of MFR. Additionally, the calculation results of U-233 saturation concentration are explained by mathematical model. The value of MFR main influences the saturation concentration of U-233 and fissile and the fissile concentration dependence of CR. The saturation value of CR is included in the range CR ∈ (0.911, 0.966) and is a slowly increasing function of MFR. The calculations were done with a MCNPX 2.7 code

  14. On the estimation of subcritical reactivity by the pulsed α-method

    International Nuclear Information System (INIS)

    Shulepin, V.S.

    1974-01-01

    A technique for calculating the neutron generation time is considered. It is based on the use of only basic (non-conjugate) conditionally critical reactor equations. The formula is drawn to show the relation between the reactivity coefficient Ksub(eff), damping decrement and neutron generation time. Some transformations result in a conditionally critical equation at Ksub(eff) equal to unit, from which the neutron generation time is found that is necessary to measure subcritical reactivity by the α-method

  15. Numerical investigation of the flow over a golf ball in the subcritical and supercritical regimes

    International Nuclear Information System (INIS)

    Smith, C.E.; Beratlis, N.; Balaras, E.; Squires, K.; Tsunoda, M.

    2010-01-01

    In order to understand the role of surface dimpling on the flow over a golf ball, direct numerical simulations (DNS) are conducted within the framework of an immersed boundary approach for two physical regimes. Computations of the flow over a non-rotating golf ball are reported for a subcritical flow at a Reynolds number of 2.5 x 10 4 and a supercritical case at a Reynolds number of 1.1 x 10 5 . Grid refinement studies for both Reynolds numbers indicated that characteristics of the subcritical flow could be captured using a mesh of 337 x 10 6 points, and for the supercritical case using a grid with 1.2 x 10 9 points. Flow visualizations reveal the differences in separation characteristics between the two Reynolds numbers. Profiles of the mean velocity indicate that the flow detaches completely at approximately 84 o in the subcritical case (measured from the stagnation point at the front of the ball), while in the supercritical regime there are alternating regions of reattachment and separation within dimples with complete detachment around 110 o . Energy spectra highlight frequencies associated with vortex formation over the dimples prior to complete detachment in the supercritical regime. Reynolds stresses quantify momentum transport in the near-wall region, showing that the axial stress increases around 90 o for the subcritical case. In the supercritical regime these stress components alternately increase and decrease, corresponding to local separation and reattachment. Prediction of the drag coefficient for both Reynolds numbers is in reasonable agreement with measurements.

  16. A new approach to make collapsed cross section for burnup calculation of subcritical system

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao

    2008-01-01

    A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)

  17. Derivation and experimental demonstration of the perturbed reactivity method for the determination of subcriticality

    International Nuclear Information System (INIS)

    Kwok, K.S.; Bernard, J.A.; Lanning, D.D.

    1992-01-01

    The perturbed reactivity method is a general technique for the estimation of reactivity. It is particularly suited to the determination of a reactor's initial degree of subcriticality and was developed to facilitate the automated startup of both spacecraft and multi-modular reactors using model-based control laws. It entails perturbing a shutdown reactor by the insertion of reactivity at a known rate and then estimating the initial degree of subcriticality from observation of the resulting reactor period. While similar to inverse kinetics, the perturbed reactivity method differs in that the net reactivity present in the core is treated as two separate entities. The first is that associated with the known perturbation. This quantity, together with the observed period and the reactor's describing parameters, are the inputs to the method's implementing algorithm. The second entity, which is the algorithm;s output, is the sum of all other reactivities including those resulting from inherent feedback and the initial degree of subcriticality. During an automated startup, feedback effects will be minimal. Hence, when applied to a shutdown reactor, the output of the perturbed reactivity method will be a constant that is equal to the initial degree of subcriticality. This is a major advantage because repeated estimates can be made of this one quantity and signal smoothing techniques can be applied to enhance accuracy. In addition to describing the theoretical basis for the perturbed reactivity method, factors involved in its implementation such as the movement of control devices other than those used to create the perturbation, source estimation, and techniques for data smoothing are presented

  18. Analytical solution of point kinetic equations for sub-critical systems

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro C.

    2013-01-01

    This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)

  19. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  20. 3D CAD model of the subcritical nuclear reactor of IPN

    International Nuclear Information System (INIS)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A.; Ibarra R, G.; Del Valle G, E.; Sanchez R, A.

    2016-09-01

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  1. Noise method for monitoring the sub-criticality in accelerator driven systems

    International Nuclear Information System (INIS)

    Rugama, Y.; Munoz-Cobo, J.L.; Valentine, T.E.; Mihalczo, J.T.; Perez, R.B.; Perez-Navarro, A.

    2001-01-01

    In this paper, an absolute measurements technique for the sub-criticality determination is presented. The development of ADS, requires of methods to monitor and control the sub-criticality of this kind of systems, without interfering it's normal operation mode. This method is based on the Stochastic Neutron and Photon Transport Theory developed by Munoz-Cobo et al., and which can be implemented in presently available neutron transport codes. As a by-product of the methodology a monitoring measurement technique has been developed and verified using two coupled Monte Carlo programs. The spallation collisions and the high-energy transport are simulated with LAHET. The neutrons transports with energies less than 20 MeV and the estimation of the count statistics for neutron and/or gamma ray counters in fissile systems, is simulated with MCNP-DSP. It is possible to get the kinetics parameters and the k eff value of the sub-critical system through the analysis of the counter detectors. (author)

  2. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  3. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  4. Applicability of Avery's coupled reactor theory to estimate subcriticality of test region in two region system

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    1992-01-01

    The author examined the validity to estimate the subcriticality of a test region in a coupled reactor system using only measurable quantities on the basis of Avery's coupled reactor theory. For the purpose, we analyzed coupled reactor experiments performed at the Tank-type Critical Assembly in Japan Atomic Energy Research Institute by using two region systems and evaluated the subcriticality of the test region through a numerical study. Coupling coefficients were redefined at the quasi-static state because their definitions by Avery were not clear. With the coupling coefficients obtained by the numerical calculation, the multiplication factor of the test region was evaluated by two formulas; one for the evaluation using only the measurable quantities and the other for the accurate evaluation which contains the terms dropped in the former formula by assuming the unchangeableness for the perturbation induced in a driver region. From the comparison between the results of the evaluations, it was found that the estimation using only the measurable quantities is valid only for the coupled reactor system where the subcriticality of the test region was very small within a few dollars in reactivity. Consequently, it is concluded that the estimation using only the measurable quantities is not applicable to a general coupled reactor system. (author)

  5. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  6. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-01-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed

  7. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  8. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  9. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  10. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  11. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    Science.gov (United States)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  12. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    Science.gov (United States)

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  13. Neutronics of a sub-critical system burning non-recycled LWR waste

    International Nuclear Information System (INIS)

    Wallenius, J.; Tucek, K.; Gudowski, W.; Sanders, C.

    1999-01-01

    We have investigated neutronic properties of a subcritical system designed for transmutation of non-recycled TRU discharges from commercial light water reactors. Burnable absorbers (BA) and depleted uranium in variable concentrations are introduced in order to maximize fission to absorption ratios, and to minimize power peaking as well as reactivity losses. The use of nitride fuel raises linear power ratings to 60-110 kW/m while keeping fuel center line temperatures below 1400 K after gap closure. A comparatively small power peaking of 1.5 at a subcriticality level of 0.97 allows for a total core power of 1200 MWth with a corresponding proton beam power of 20 MW at BOL. Core averaged fission to absorption ratios for Np and Am as high as 0.5 are achieved using 10 B enriched B 4 C as BA. Hence, both Pu and minor actinide inventories are reduced during burnup in the here proposed system, mitigating swelling problems arising due to high-activity in MA-based fuels. Disadvantages following BA introduction, such as increase of void coefficients and decrease of negative doppler feedback in conjunction with small values of β eff , are addressed by setting the BOL subcriticality level to 0.97. (author)

  14. Plant Outage Time Savings Provided by Subcritical Physics Testing at Vogtle Unit 2

    International Nuclear Information System (INIS)

    Cupp, Philip; Heibel, M.D.

    2006-01-01

    The most recent core reload design verification physics testing done at Southern Nuclear Company's (SNC) Vogtle Unit 2, performed prior to initial power operations in operating cycle 12, was successfully completed while the reactor was at least 1% ΔK/K subcritical. The testing program used was the first application of the Subcritical Physics Testing (SPT) program developed by the Westinghouse Electric Company LLC. The SPT program centers on the application of the Westinghouse Subcritical Rod Worth Measurement (SRWM) methodology that was developed in cooperation with the Vogtle Reactor Engineering staff. The SRWM methodology received U. S. Nuclear Regulatory Commission (NRC) approval in August of 2005. The first application of the SPT program occurred at Vogtle Unit 2 in October of 2005. The results of the core design verification measurements obtained during the SPT program demonstrated excellent agreement with prediction, demonstrating that the predicted core characteristics were in excellent agreement with the actual operating characteristics of the core. This paper presents an overview of the SPT Program used at Vogtle Unit 2 during operating cycle 12, and a discussion of the critical path outage time savings the SPT program is capable of providing. (authors)

  15. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    Science.gov (United States)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  16. Preparations for Upgrading the RF Systems of the PS Booster

    CERN Document Server

    Albright, Simon; Shaposhnikova, Elena

    2016-01-01

    The accelerators of the LHC injector chain need to be upgraded to provide the HL-LHC beams. The PS Booster, the first synchrotron in the LHC injection chain, uses three different RF systems (first, second and up to tenth harmonic) in each of its four rings. As part of the LHC Injector Upgrade the current ferrite RF systems will be replaced with broadband Finemet cavities, increasing the flexibility of the RF system. A Finemet test cavity has been installed in Ring 4 to investigate its effect on machine performance, especially beam stability, during extensive experimental studies. Due to large space charge impedance Landau damping is lost through most of the cycle in single harmonic operation, but is recovered when using the second harmonic and controlled longitudinal emittance blow-up. This paper compares beam parameters during acceleration with and without the Finemet test cavity. Comparisons were made using beam measurements and simulations with the BLonD code based on a full PS Booster impedance model. Thi...

  17. Charge exchange injection for Nuclotron and Nuclotron booster

    International Nuclear Information System (INIS)

    Dinev, D.; Mikhajlov, V.

    2000-01-01

    The acceleration of polarized beams is between the major items in the JINR LHE's heavy ion superconducting synchrotron Nuclotron research programme. One effective way to increase the intensities of polarized deuteron beams is the application of the charge exchange injection into the Nuclotron. The paper represents the results of a new analytical description of the heavy ion stripping injection based on the Boltzmann kinetic equation. Expressions for the ion density evolution in the transverse phase plane for the emittance growth due to the elastic scattering and to energy losses in the stripping foil and for the number of successfully stored particles have been derived. These results have been applied to the stripping injection of polarized deuterons into the Nuclotron as well as to the stripping injection of heavy ions into the now under consideration Nuclotron rapid cycling booster. It has been shown that an estimated 40-fold intensity gain could be achieved for the stripping injection of polarized D - into the Nuclotron and that an effective stripping injection of light and medium ions into the booster could be realized

  18. Design and testing of the AGS Booster BPM detector

    International Nuclear Information System (INIS)

    Thomas, R.; Ciardullo, D.J.; Van Zwienen, W.

    1991-01-01

    The AGS Booster beam position monitor system must accurately measure the position of beams and bunches over a wide range of intensity. The frequency of operation must also cover a wide range (600 kHz to 4.2 MHz) since the Booster accelerates both protons and heavy ions. Split-cylinder electrodes were chosen to monitor the position of the beam because of their good low frequency response and high linearity. The need to accelerate low-energy partially-stripped heavy ions requires the pick-up electrodes (PUEs) to operate in a 3 x 10 -11 torr vacuum. The PUEs are to measure the beam position to an absolute accuracy of ±0.5 mm and must therefore be mechanically stable despite the requirements that they be vacuum fired at 950 degree C and baked periodically to 300 degree C. This presentation describes both the mechanical design of the PUEs and the automated test procedure used to ensure the stability, accuracy, and linearity of each unit. 3 refs., 5 figs

  19. 76 FR 44821 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-07-27

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend Rules... translator facilities in the 700 MHz band. These provisions provide procedures for a primary wireless...

  20. 76 FR 72849 - Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend...

    Science.gov (United States)

    2011-11-28

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and To Amend Rules... for Digital Low Power Television, Television Translator, and Television Booster Stations and to Amend... television, TV translator, and Class A television station DTV licensees''). The Commission has also revised...

  1. 75 FR 63766 - Digital Low Power Television, Television Translator, and Television Booster Stations and Digital...

    Science.gov (United States)

    2010-10-18

    ...] Digital Low Power Television, Television Translator, and Television Booster Stations and Digital Class A... TV, TV Translator or TV Booster Station, FCC Form 346; 47 CFR 74.793(d); LPTV Out-of-Core Digital... collection requirements: 47 CFR 74.793(d) proposes that certain digital low power and TV translator stations...

  2. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  3. Study on the method of determining the sub-criticality of a reactor via the measurement of core neutron flux spatial distribution

    International Nuclear Information System (INIS)

    Ma Aifeng; Jiang Xiaofeng; Zhang Shaohong

    2007-01-01

    A new methodology based on rigorous reactor physics theory astead of the point reactor assumption was proposed to determine or monitor the sub-criticality ora reactor, especially the sub-critical reactor of ADS, via the measurement of in-core flux spatial distribution. Preliminary numerical studies on the 1st ADS sub-critical experimental facilities-Venus No.1 in China have demonstrated the feasibility of this new method. Related discussions pointed out the potential applications of the method. (authors)

  4. 47 CFR 73.827 - Interference to the input signals of FM translator or FM booster stations.

    Science.gov (United States)

    2010-10-01

    ... translator or FM booster stations. 73.827 Section 73.827 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Interference to the input signals of FM translator or FM booster stations. (a) An authorized LPFM station will not be permitted to continue to operate if an FM translator or FM booster station demonstrates that...

  5. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  6. Automatic delamination defect detection in radiographic sequence of rocket boosters

    International Nuclear Information System (INIS)

    Rebuffel, V.; Pires, S.; Caplier, A.; Lamarque, P.

    2003-01-01

    Solid rocket motors are routinely examined in real-time X-ray radioscopic mode. The large and cylindrical boosters are rotating between a high energy source and a two dimensional detector. The purpose of this control is to detect possible defects all through the sample. In the tangential configuration, the part of the object that intersects the X-rays beam is the peripheral one, allowing to detect the delamination defect between the propellant and the external metal envelope. But the defect detectability is very poor due to the strong attenuation of the X-rays through the motors. During the rotation of the booster, the system acquires a sequence of radiographs where the defects are visible over several successive instants. We have previously developed a real-time tomo-synthesis system, processing the radiographs on line, and based on a tomo-synthesis reconstruction algorithm in order to improve the signal-to-noise ratio. This system is installed at the industrial site of Kourou, and is currently used by the operators in charge of the visual inspection of the boosters. In this paper, we present a method that processes the digital images obtained by the system in the purpose of automatically extracting the delamination defects. Due to the size and the poor contrast of the defects, a single image is not sufficient to perform this detection. A spatio-temporal aspect is required for the algorithm to be robust and efficient. In a first step, the proposed method computes the apparent local displacement between the current radiograph and a reference one. This reference image is acquired at the beginning of the rotation, with few noise, and is supposed to be defect free. The apparent displacement is due to the non-perfect rotation positioning. It may be uniform or not, depending on the deformation of the insulation liner of the metallic wall. The images are then registered and compared. On the resulting difference image we apply a smoothed threshold to obtain an

  7. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  8. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  9. Rf beam loading in the Brookhaven AGS with booster injection

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Raka, E.; Weng, W.T.

    1992-01-01

    Multi-batch bunched beam loading during injection from the Booster to the AGS will be discussed. The full intensity beam injection to the upgraded AGS rf system with beam phase and radial feedbacks will be studied. It is shown that a beam phase feedback is necessary in order to guarantee a predictable hewn behavior after the first batch injection, otherwise the initial phase deviation for the following batch injections cannot be controlled. However, the effectiveness of the phase feedback control of the transient beam loading may be limited by an emittance blow up in the process. It is shown that a fast power amplifier feedback with a moderate gain can significantly reduce the transient effect of the bunched beam injection

  10. Digital intelligent booster for DCC miniature train networks

    Science.gov (United States)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  11. Improved Longitudinal Blow-up and Shaving in the Booster

    CERN Document Server

    Hancock, S

    2013-01-01

    The low-intensity proton beam for p-Pb collisions in the LHC did not come back in the Booster at the beginning of 2013 anything like it had been set up at the end of 2012. In particular there were unexplained intensity fluctuations of ±100%. Although the root cause of the drift in performance was never established, its investigation revealed long-standing issues in the longitudinal plane which, when corrected, allowed single-bunch beams to be delivered with unprecedented reproducibility and control of both intensity and longitudinal emittance. The new approach was adopted for the ion run and subsequently for MDs at higher intensities, where it made possible a robust control of intensity at constant 6D phase space volume. Post-LS1, it may even provide a platform upon which to build a more exotic controlled longitudinal blow-up to generate higher intensity bunches with a flattened line density.

  12. Bench measurements of coupling impedance of AGS Booster components

    International Nuclear Information System (INIS)

    Ratti, A.; Shea, T.J.

    1991-01-01

    Quantifying instability thresholds for modern synchrotrons and storage rings requires some knowledge of the accelerator's coupling impedance. To this end, the wire technique has been implemented to measure the longitudinal coupling impedance of AGS Booster devices. The techniques are being refined to allow measurement of RHIC devices at higher frequencies. All the measurements are performed using an HP 8753 Network Analyzer controlled via GPIB by a Macintosh computer. The computer provides an environment for automated data acquisition, data analysis, and report generation. Resistive matches between the 50ω analyzer cables and the 300ω pipe-and-wire structure allow the use of a simple response calibration in the measurement of S21 to 400MHz. Results from ferrite loaded rf cavities, position monitors and kickers are presented. 4 refs., 4 figs

  13. CERN's PS Booster LLRF renovation : plans and initial beam tests

    CERN Document Server

    Angoletta, ME; Butterworth, A; Findlay, A; Leinonen, PM; Molendijk, JC; Pedersen, F; Sanchez-Quesada, J; Schokker, M

    2010-01-01

    In 2008 a project was started to renovate the CERN's PS Booster (PSB) low-level RF (LLRF). Required LLRF capabilities include frequency program, beam phase, radial and synchronization loops. The new LLRF will control the signals feeding the three RF cavities present in each ring; it will also shape the beam in a dual harmonic mode, operate a bunch splitting and create a longitudinal blow-up. The main benefits of this new LLRF are its full remote and cycle-to-cycle controllability, built-in observation capability and flexibility. The overall aim is to improve the robustness, maintainability and reliability of the PSB operation and to make it compatible with the injection from the future Linac4. This paper outlines the main characteristics of the software and hardware building blocks. Initial beam test results and hints on the main milestones and future work are also given.

  14. The new frontier in muscular dystrophy research: booster genes

    DEFF Research Database (Denmark)

    Engvall, Eva; Wewer, Ulla M

    2003-01-01

    More than 30 different forms of muscular dystrophy (MD) have been molecularly characterized and can be diagnosed, but progress toward treatment has been slow. Gene replacement therapy has met with great difficulty because of the large size of the defective genes and because of difficulties...... of the boosters are better understood, drugs may be developed to provide the boost to muscle. Some of the experiences in models of muscular dystrophy may inspire new approaches in other genetic degenerative diseases as well....... in delivering a gene to all muscle groups. Cell replacement therapy has also been difficult to realize. Will it even be possible to design specific therapy protocols for all MDs? Or is a more realistic goal to treat some of the secondary manifestations that are common to several forms of MD, such as membrane...

  15. Model based controls and the AGS booster controls system architecture

    International Nuclear Information System (INIS)

    Casella, R.A.

    1987-01-01

    For the past three years the Accelerator Controls Section has been responsible for the development of the Heavy Ion Transfer Line (HITL) used to inject heavy ions created at the Tandem Van de Graaff into the Alternating Gradient Synchrotron (AGS). This was recognized as an opportunity to test new ideas for control of a beam line, which if successful, could be implemented in an upgrade of the existing control system for the AGS. The in place control system for the AGS consisted of DEC PDP10 computer as the primary computer interface to the accelerator via three control room consoles, and keeper of the device database. For the HITL project it was decided to make the control system a true distributed network putting more computing power down at the device level via intelligent subsystems. A network of Apollo workstations was added at the host level. Apollos run a distributed operating system and are connected to each other by the Domain Token Ring Network. The Apollos were seen as the new primary computers for consoles with each console containing at least one Apollo. These hosts and all other subsystems are connected to each other via an in house developed LAN (RELWAY). The design of the control system developed for HITL was mostly successful. The proposed AGS Booster is designed to be a synchrotron injector for the AGS. With the forthcoming development of the Booster for the AGS an opportunity has again developed to implement new ideas for accelerator control. One weakness of the HITL control system is the limited cpu power and poor debugging facilities of the stations

  16. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation

    International Nuclear Information System (INIS)

    Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C.

    2017-01-01

    Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S N ) formulation and the response matrix method was applied to solve the forward and the adjoint S N problems. Numerical results are given to verify the present. (author)

  17. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: lrcmoraes@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: ricardob@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pós-Graduação em Modelagem Computacional

    2017-07-01

    Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S{sub N}) formulation and the response matrix method was applied to solve the forward and the adjoint S{sub N} problems. Numerical results are given to verify the present. (author)

  18. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    Science.gov (United States)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  19. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  20. Bias in calculated keff from subcritical measurements by the 252Cf-source-driven noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.

    1995-01-01

    The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method

  1. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  2. Performance evaluation of DAAF as a booster material using the onionskin test

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Francois, Elizabeth G [Los Alamos National Laboratory; Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Harry, Herbert H [Los Alamos National Laboratory

    2010-12-02

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in Diaminoazoxyfurazan (DAAF) for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemispherical IHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  3. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    International Nuclear Information System (INIS)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-01-01

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO_4"2"− based film formed; however minor quantities of NiFe_xCr_2_-_xO_4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe_xCr_2_-_xO_4 spinel. The surface films on both alloys were identified as NiFe_2O_4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  4. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  5. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  6. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol

    International Nuclear Information System (INIS)

    Yin Jianzhong; Xiao Min; Wang Aiqin; Xiu Zhilong

    2008-01-01

    Biodiesel synthesis from soybean oil and methanol was investigated under supercritical and subcritical conditions. Under the supercritical conditions, the maximum methyl ester yield exceeded 98% when the molar ratio of methanol to oil was 42:1 and the reaction temperature ranged from 260 deg. C to 350 deg. C. In order to decrease the operational temperature and pressures and to increase the conversion efficiency of methanol, first co-solvent was added to the reaction mixture to improve the reaction process, and then a novel idea was presented in which catalysis and supercritical effect were coupled together. Thus, with 2.5 wt% hexane, temperature of 300 deg. C, methanol to oil ratio of 42, a 85.5% conversion is observed in 30 min, while a 62.2% conversion is observed without hexane in the same condition; with less carbon dioxide, temperature of 300 deg. C, methanol to oil ratio of 42, a 91.6% conversion is observed in 20 min, while a 51.4% conversion is observed without carbon dioxide in the same condition; With only a little amount of potassium hydroxide as the catalyst (KOH/oil = 0.1 wt%), a 98% yield of methyl esters was obtained in 10 min at a reaction temperature of 160 deg. C and the molar ratio (methanol/oil) of 24:1. In contrast, above 1 wt% of catalyst is required in the conventional alkali-catalyzed method; while only 6% yield of methyl ester was obtained at 260 deg. C (corresponding to subcritical conditions) without the catalyst. This result demonstrated that by coupling the catalysis and subcritical operation, the amount of catalyst could be largely reduced and the methanol utilization could be significantly enhanced. Thus, the present method offers some advantages over both the conventional alkali-catalyst method and the expensive supercritical method

  7. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  8. Determination of neutron interaction effect and subcriticality for light water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Miyoshi, Y.; Suzaki, T.; Kobayashi, I.

    1984-01-01

    From the view point of nuclear criticality safety for fuel storage, transport and processing, a series of critical experiments have been performed using a Tank-type Critical Assembly (TCA) at the Japan Atomic Energy Research Institute. The first series of experiments are concerned with the neutron interaction effects between two cores composed of BWR-type fuel rods in water. The reactivity contribution from one core to another have been measured by the water level worth method and a pulsed neutron source method. Two symmetrical rectangular cores were composed in TCA and the water gap between two cores were parametrically changed. The volume ratios of water to fuel are 1.83 and 2.48 of which lattice pitches are 1.96 cm and 2.15 cm respectively. As for the pulsed neutron experiment, Gozani's area ratio method is theoretically extended to a coupled-core system, and the applicability of this method has been studied for determination of the reactivity at a subcritical state and the coupling coefficient that represents reactivity contribution from one core to another. The object of the second series of experiment is development of the technique which determine the reactivity at a high sub-critical state. The CF-252 source driven neutron noise analysis method proposed by Mihalczo has been tested in order to examine whether it could be available for measuring the subcriticality for the light water moderated system. The tested core was water reflected annular type which consisted of 308 UO 2 fuel rods and had a void region at the core center

  9. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  10. Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques

    International Nuclear Information System (INIS)

    Szieberth, Máté; Klujber, Gergely; Kloosterman, Jan Leen; Haas, Dick de

    2015-01-01

    Highlights: • Neutron noise measurements were performed at the Delphi subcritical assembly. • Bias in the fitted prompt decay constant was observed due to higher modes. • Spatial dependence of the higher mode was surveyed. • Effect of two different source distributions was investigated. • An estimation of the prompt decay constant is given for the Delphi. - Abstract: The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft University of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean (VTM, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurements also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly

  11. Vertical septum magnets for distributing the beam to the 4 PS Booster rings

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    To facilitate H- injection from Linac4 to the PS Booster via the transfer line the BI.SMV10 (Booster Injection Septum Magnet Vertical) provides the vertical deflection of the 160 MeV H- beam to rings 1, 2 and 4 of the Booster. Currently this system is capable of deflecting 50 MeV protons and comprises an assembly of ferrite type magnets in an “omega” section vacuum tank (see fig. 1). The current system shall be replaced with a UHV compatible vacuum chamber incorporating 3 sets of double septum magnets, pulsed from 3 individual power supplies via transformers with 12:1 ratio.

  12. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  13. Critical and sub-critical experiments on U-BeO lattices

    International Nuclear Information System (INIS)

    Benoist, P.; Gourdon, Ch.; Martelly, J.; Sagot, M.; Wanner, G.

    1958-01-01

    Sub-critical experiments have allowed us to measure the material buckling of uranium natural oxide of beryllium lattices with a grid of 15 cm, and made up of uranium bars measuring 2.60 - 2.92 - 3.56 and 4.40 cm of diameter. A critical experiment has then been conducted with hollow 1.35 per cent enriched uranium bars. A study of U-BeO 18.03 cm grid lattices is at present being conducted. (author) [fr

  14. Subcritical experiments at the FREYA experiment; Experimentos subcriticos en el proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.; Villamarin fernandez, D.

    2013-07-01

    The FREYA Project of the 7th Framework Program is aimed to the study of the kinetics of subcritical reactors coupled to an external neutron source, and, more specifically, to the validation of reactivity monitoring techniques. CIEMAT activities within the frame of this project have consisted in analyzing the possible ways of correcting the spatial and energy effects on these reactivity monitoring techniques, as well as analyzing the effects that may have on them the presence of different materials in the reflector and the position of the neutron source.

  15. Decay constants of subcritical system by diffusion theory for two groups

    International Nuclear Information System (INIS)

    Moura Neto, C. de.

    1977-01-01

    The effects of a neutronic pulse applied to a subcritical multiplicative medium are analysed on the basis of the diffusion theory for one and two groups. The decay constants of the system for various values of geometric buckling were determined from the experimental data. A natural uranium-light water lattice was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes is attempted through two groups formulation. (author)

  16. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  17. Decay constants of a subcritical system by two-group diffusion theory

    International Nuclear Information System (INIS)

    Moura Neto, C. de.

    1979-08-01

    The effects of a neutronic pulse applied to a subcritical multiplicative medium are analyzed on the basis of the diffusion theory for one and two groups. The decay constants of the system were determined from the experimental data, for various values geometric buckling. A natural uranium light-water configuration was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes are verified through two groups formulation. (Author) [pt

  18. Estimation of subcriticality of TCA using 'indirect estimation method for calculation error'

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Arakawa, Takuya; Sakurai, Kiyoshi

    1996-01-01

    To estimate the subcriticality of neutron multiplication factor in a fissile system, 'Indirect Estimation Method for Calculation Error' is proposed. This method obtains the calculational error of neutron multiplication factor by correlating measured values with the corresponding calculated ones. This method was applied to the source multiplication and to the pulse neutron experiments conducted at TCA, and the calculation error of MCNP 4A was estimated. In the source multiplication method, the deviation of measured neutron count rate distributions from the calculated ones estimates the accuracy of calculated k eff . In the pulse neutron method, the calculation errors of prompt neutron decay constants give the accuracy of the calculated k eff . (author)

  19. Subcritical neutron generator-test facility for nuclear waste transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilo, I.V.; Kolomiets, A.A.; Kozodaev, A.M. [ITEP, Moscow (Russian Federation)] [and others

    1995-10-01

    The development of the optimal design of high power facility for NPP transmutation and for a number of applications can not be carried out without preliminary tests of much cheaper prototypes. It has been proposed to combine in new test facility 36 MeV Linac ISTRA constructed in ITEP, original Be target and subcritical blanket that will be mounted on the place of partly disassembled heavy water ITEP experimental reactor. The basic parameters of Linac, schemes of the target and blanket are described. It will provide the direct experiments on installation which can be considered as prototype for future linac driven high power facilities.

  20. American National Standard: for safety in conducting subcritical neutron-multiplication measurements in-situ

    International Nuclear Information System (INIS)

    1983-01-01

    This standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in-situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  1. Neutron pulse propagation in natural UO sub(2) subcritical assembly moderated by heavy water

    International Nuclear Information System (INIS)

    Prado Souza, R.M.G. do.

    1976-01-01

    Short neutron bursts are fed to the graphite base of CAPITU, a D sub(2)O - natural uranium subcritical assembly. Due to the dispersive properties of the media the wave -components of the neutron pulses are attenuated and phase shifted along the axial direction. The experimental impulse response is Fourier transformed to yield the system's dispersion law, a relationship connecting the neutron diffusion parameters and the inverse complex relaxation length K (ω). The experimental results for five assemblies studied in CAPITU are compared with the theoretical dispersion law obtained from the two group diffusion theory. (author)

  2. Sensitivity analysis of source driven subcritical systems by the HGPT methodology

    International Nuclear Information System (INIS)

    Gandini, A.

    1997-01-01

    The heuristically based generalized perturbation theory (HGPT) methodology has been extensively used in the last decades for analysis studies in the nuclear reactor field. Its use leads to fundamental reciprocity relationships from which perturbation, or sensitivity expressions can be derived, to first and higher order, in terms of simple integration operation of quantities calculated at unperturbed system conditions. Its application to subcritical, source-driven systems, now considered with increasing interest in many laboratories for their potential use as nuclear waste burners and/or safer energy producers, is here commented, with particular emphasis to problems implying an intensive system control variable. (author)

  3. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  4. The measurement of subcritical reactivity in nuclear reactors by use of a high frequency sine-wave modulated neutron source

    International Nuclear Information System (INIS)

    Guppy, C.B.

    1964-11-01

    In this report the frequency response characteristics for phase and gain of the fundamental reactor mode of the zero power kinetics are given for various subcritical reactivities in a fast reactor and in a thermal reactor. Results, of a study on harmonic effects based on a small zero energy thermal reactor are presented which demonstrate the importance of spatial harmonic effects. A harmonic theory for thermal reactors is developed. A new method of measuring, subcritical reactivity at moderately high frequencies is suggested which circumvents the harmonic problem. It is shown that at high frequencies there is more sensitivity than at low frequencies and that this could lead to an increased range over which subcritical reactivity can be measured. (author)

  5. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  6. Calchulation of physical parameters of the subcritical assembly located in the higher Institute of Nuclear Sciences and Technology

    International Nuclear Information System (INIS)

    Castaneda Donate, S.; Quintero, B.; Santos, J.

    1992-01-01

    A detailed calculation of the core is necessary to analyze the influence of the neutron source on the neutron flux in the subcritical assembly of the Higher Institute Nuclear Science and Technology. A new calculation methodology for the neutronic characteristics of the subcritical assembly is presented, based on the calculation tools available nowadays in our department (WIMS, SNAP, etc). The main results are: Neutron-physical constants of the reactor cells; absolute neutron flux distribution and an estimation of the adequate regions for detector location based on higher armonic terms influence

  7. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  8. Thermodynamic and chemical parameters of the exhaust effluents from the HARPOON booster motor

    Science.gov (United States)

    Stephens, J. B.; Goldford, A. I.

    1978-01-01

    The exhaust products from the Harpoon booster motors were analyzed using both thermodynamic analysis and finite-rate chemistry. The resulting constituents are presented together with a discussion of the techniques employed.

  9. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  10. Data acquisition and control of the Zero Gradient Synchrotron 500 MeV booster synchrotron

    International Nuclear Information System (INIS)

    Timm, R.E.; Forrestal, J.; Hogrefe, R.; Voss, D.

    1977-01-01

    A data acquisition and control philosophy for the Zero Gradient Synchrotron (ZGS) 500 MeV booster has involved a top down design incorporating all of the systems comprising the booster. Consideration of operational complexity was necessary because the booster is to be used simultaneously for ZGS injection, and solid state physics studies. Existing software and hardware capabilities of the ZGS computer were considered. The resulting data acquisition and control system is based on a mix of sequential logic and a minicomputer. Hardware considerations were based on a ten year life expectancy of the booster. Due to time, budget, and manpower constraints, the incorporation of the total design has been divided into three phases of implementation. The first phase is covered and the remaining phases are outlined

  11. Weak Depolarizing Resonances in the 3-TeV VLHC Booster

    International Nuclear Information System (INIS)

    Anferov, V.A.

    1999-01-01

    The possibility of polarized-proton-beam acceleration in the proposed low-field 3-TeV VLHC booster is considered. We find that the low-field combined function magnets in the booster's long FODO cells cause an inadvertent cancellation of most depolarizing fields due to a mechanism suggested earlier by Chao and Derbenev [Part.Accel.36, 25 (1991)]. The strongest spin-depolarizing resonances in the 3-TeV booster seem to be similar in strength to those in the 250-GeV RHIC. Moreover, the strength of the 3-TeV booster's strongest intrinsic depolarizing resonances decreases with energy, in contrast with the energy growth of the depolarizing resonance's strength in most proton synchrotrons. copyright 1999 The American Physical Society

  12. Terpineol as a novel octane booster for extending the knock limit of gasoline

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Naser, Nimal; Roberts, William L.; Dibble, Robert W.; Sarathy, Mani

    2016-01-01

    Improving the octane number of gasoline offers the potential of improved engine combustion, as it permits spark timing advancement without engine knock. This study proposes the use of terpineol as an octane booster for gasoline in a spark ignited

  13. Disintegration of the agricultural by-product wheat bran under subcritical conditions.

    Science.gov (United States)

    Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad

    2018-02-10

    The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  15. High order statistical signatures from source-driven measurements of subcritical fissile systems

    International Nuclear Information System (INIS)

    Mattingly, J.K.

    1998-01-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements

  16. An MCNP parametric study of George C. Laurence's subcritical pile experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dranga, R.; Blomeley, L., E-mail: ruxandra.dranga@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carrington, R. [McGill Univ., Dept. of Mathematics and Statistics, Montreal, Quebec (Canada)

    2014-12-01

    In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)

  17. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  18. Subcritical saturation of the magnetorotational instability through mean magnetic field generation

    Science.gov (United States)

    Xie, Jin-Han; Julien, Keith; Knobloch, Edgar

    2018-03-01

    The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.

  19. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    International Nuclear Information System (INIS)

    Go, Alchris Woo; Sutanto, Sylviana; NguyenThi, Bich Thuyen; Cabatingan, Luis K.; Ismadji, Suryadi; Ju, Yi-Hsu

    2014-01-01

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  20. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  1. Dynamic analysis of an accelerator-based subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1997-01-01

    There has been a recent revival of interest in accelerator-driven subcritical fluid-fueled systems for radioactive waste management. This motivates the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetic study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional blocks: A discrete ordinates model is used to calculate the flux distribution for the source-driven system (DORT); A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity (ABCcore); A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model (ABCvip); A transient driver simulates system transients and records simulation data (ABCtrans). Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. 11 refs., 6 figs., 1 tab

  2. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  3. Subcritical thermal convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Cardin, P.; Guervilly, C.

    2016-12-01

    We study non-linear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals (10-2-1). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than 10-6, which is continuous at the onset (supercritical bifurcation) and consists of the interaction of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of 10-8. On the strong branch, the Reynolds number of the flow is greater than 1000, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis (E = 10-6, Pr =10-2). Non-linear oscillations are observed near the onset of convection for E = 10-7 and Pr = 10-1.

  4. Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Guervilly, Céline; Cardin, Philippe

    2016-12-01

    We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.

  5. Subcriticality determination of low-enriched UO2 lattices in water by exponential experiment

    International Nuclear Information System (INIS)

    Suzaki, Takenori

    1991-01-01

    To determine the static k (effective neutron multiplication factor) ranging from the critical to an extremely subcritical states, the exponential experiments were performed using various sizes of light-water moderated and reflected low-enriched UO 2 lattice cores. For comparison, the pulsed neutron source experiments were also carried out. In the manner of the Gozani's bracketing method applied to the pulsed source experiment, a formula to obtain k from the measured spatial-decay constant was derived on the basis of diffusion theory. Parameters in the formulas needed to obtain k from the respective experiments were evaluated by 4-group neutron diffusion calculations. The results of the exponential experiments agreed well with those of the pulsed source experiments, the 4-group diffusion calculations and the 137-group Monte Carlo calculations. Therefore, the present data-processing method developed for the exponential experiment was demonstrated to be valid. Besides, through the examination on the parameters used in the data processing, it was found that the dependence of parameter value upon k is weak in the exponential experiment compared with that in the pulsed source experiment. This indicates the superiority of the exponential experiment over the pulsed source experiment for the subcriticality determination of a wide range. (author)

  6. Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation

    Science.gov (United States)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2018-05-01

    A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.

  7. Homoclinic connections and subcritical Neimark bifurcation in a duopoly model with adaptively adjusted productions

    International Nuclear Information System (INIS)

    Agliari, Anna

    2006-01-01

    In this paper we study some global bifurcations arising in the Puu's oligopoly model when we assume that the producers do not adjust to the best reply but use an adaptive process to obtain at each step the new production. Such bifurcations cause the appearance of a pair of closed invariant curves, one attracting and one repelling, this latter being involved in the subcritical Neimark bifurcation of the Cournot equilibrium point. The aim of the paper is to highlight the relationship between the global bifurcations causing the appearance/disappearance of two invariant closed curves and the homoclinic connections of some saddle cycle, already conjectured in [Agliari A, Gardini L, Puu T. Some global bifurcations related to the appearance of closed invariant curves. Comput Math Simul 2005;68:201-19]. We refine the results obtained in such a paper, showing that the appearance/disappearance of closed invariant curves is not necessarily related to the existence of an attracting cycle. The characterization of the periodicity tongues (i.e. a region of the parameter space in which an attracting cycle exists) associated with a subcritical Neimark bifurcation is also discussed

  8. An MCNP parametric study of George C. Laurence's subcritical pile experiment

    International Nuclear Information System (INIS)

    Dranga, R.; Blomeley, L.; Carrington, R.

    2014-01-01

    In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)

  9. Critical and subcritical mass calculations of fissionable nuclides based on JENDL-3.2+

    International Nuclear Information System (INIS)

    Okuno, H.

    2002-01-01

    We calculated critical and subcritical masses of 10 fissionable actinides ( 233 U, 235 U, 238 Pu, 239 Pu, 241 Pu, 242m Am, 243 Cm, 244 Cm, 249 Cf and 251 Cf) in metal and in metal-water mixtures (except 238 Pu and 244 Cm). The calculation was made with a combination of a continuous energy Monte Carlo neutron transport code, MCNP-4B2, and the latest released version of the Japanese Evaluated Nuclear Data Library, JENDL-3.2. Other evaluated nuclear data files, ENDF/B-VI, JEF-2.2, and JENDL-3.3 in its preliminary version were also applied to find differences in results originated from different nuclear data files. For the so-called big three fissiles ( 233 U, 235 U and 239 Pu), analyzing the criticality experiments cited in ICSBEP Handbook validated the code-library combination, and calculation errors were consequently evaluated. Estimated critical and lower limit critical masses of the big three in a sphere with/without a water or SS-304 reflector were supplied, and they were compared with the subcritical mass limits of ANS-8.1. (author)

  10. Initial instability of round liquid jet at subcritical and supercritical environments

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-01-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  11. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  12. Critical and subcritical damage monitoring of bonded composite repairs using innovative non-destructive techniques

    Science.gov (United States)

    Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.

    2012-04-01

    Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.

  13. 233U breeding in accelerator-driven sub-critical fast reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; An Yu

    1999-01-01

    Accelerator-driven Sub-critical Fast Reactor (ADFR) is chosen as fissile-material-breeding reactor. (U-Pu)O x is chosen as fuel in the core and ThO 2 as fertile material in the blanket zone to breed 233 U. Molten lead is chosen as coolant because of its better neutronic and chemical characteristics over sodium. The program system used for neutronics study consists of: LAHET, for the simulation of the interaction between the proton with medium energy and the nuclei of the target; MCNP4A, for the simulation of neutron transport with energy below 20 MeV in the sub-critical reactor; CONNECT1, for the processing of some tallies provided by the output of MCNP4A in order to prepare micro-cross sections for elements used for burnup calculation; ORIGEN2, used for multi-region burnup calculation; CONNECT2, for the processing of atom densities of some elements provided in the output of ORIGEN2 in order to prepare input to LAHET calculation for next time step. The calculated results show that the proposed case is feasible for breeding fissile material considering the criticality safety, power density, burnup, etc

  14. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    International Nuclear Information System (INIS)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2017-01-01

    Highlights: • Using ethanol in subcritical thermodynamic conditions, without catalysts. • The net energy ratio-NER identifies opportunities for industrial application. • The presence of water and free fatty acids improved the TG conversion. • Transesterification reactions of animal fat, soybean and palm oils. - Abstract: Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. These results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.

  15. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  16. Blood Pressure Directed Booster Trainings Improve Intensive Care Unit Provider Retention of Excellent Cardiopulmonary Resuscitation Skills.

    Science.gov (United States)

    Wolfe, Heather; Maltese, Matthew R; Niles, Dana E; Fischman, Elizabeth; Legkobitova, Veronika; Leffelman, Jessica; Berg, Robert A; Nadkarni, Vinay M; Sutton, Robert M

    2015-11-01

    Brief, intermittent cardiopulmonary resuscitation (CPR) training sessions, "Booster Trainings," improve CPR skill acquisition and short-term retention. The objective of this study was to incorporate arterial blood pressure (ABP) tracings into Booster Trainings to improve CPR skill retention. We hypothesized that ABP-directed CPR "Booster Trainings" would improve intensive care unit (ICU) provider 3-month retention of excellent CPR skills without need for interval retraining. A CPR manikin creating a realistic relationship between chest compression depth and ABP was used for training/testing. Thirty-six ICU providers were randomized to brief, bedside ABP-directed CPR manikin skill retrainings: (1) Booster Plus (ABP visible during training and testing) versus (2) Booster Alone (ABP visible only during training, not testing) versus (3) control (testing, no intervention). Subjects completed skill tests pretraining (baseline), immediately after training (acquisition), and then retention was assessed at 12 hours, 3 and 6 months. The primary outcome was retention of excellent CPR skills at 3 months. Excellent CPR was defined as systolic blood pressure of 100 mm Hg or higher and compression rate 100 to 120 per minute. Overall, 14 of 24 (58%) participants acquired excellent CPR skills after their initial training (Booster Plus 75% vs 50% Booster Alone, P = 0.21). Adjusted for age, ABP-trained providers were 5.2× more likely to perform excellent CPR after the initial training (95% confidence interval [95% CI], 1.3-21.2; P = 0.02), and to retain these skills at 12 hours (adjusted odds ratio, 4.4; 95% CI, 1.3-14.9; P = 0.018) and 3 months (adjusted odds ratio, 4.1; 95% CI, 1.2-13.9; P = 0.023) when compared to baseline performance. The ABP-directed CPR booster trainings improved ICU provider 3-month retention of excellent CPR skills without the need for interval retraining.

  17. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  18. Response to booster doses of hepatitis B vaccine among young adults who had received neonatal vaccination.

    Directory of Open Access Journals (Sweden)

    Paul K S Chan

    Full Text Available Newborns who have received hepatitis B immunization in 1980s are now young adults joining healthcare disciplines. The need for booster, pre- and post-booster checks becomes a practical question.The aim of this study is to refine the HBV vaccination policy for newly admitted students in the future.A prospective study on medical and nursing school entrants to evaluate hepatitis B serostatus and the response to booster doses among young adults.Among 212 students, 17-23-year-old, born after adoption of neonatal immunization, 2 (0.9% were HBsAg positive, 40 (18.9% were anti-HBs positive. At 1 month after a single-dose booster for anti-HBs-negative students, 14.5% had anti-HBs 100 mIU/mL, respectively. The anti-HBs levels were significantly higher for females than males (mean [SD]: 431 [418] vs. 246 [339] mIU/mL, P = 0.047. At 2-4 month after the third booster dose, 97.1% had anti-HBs >100 mIU/mL and 2.9% had 10-100 mIU/mL.Pre-booster check is still worthwhile to identify carriers among newly recruited healthcare workers born after adoption of neonatal immunization. A 3-dose booster, rather than a single dose, is required for the majority to achieve an anti-HBs level >100 mIU/mL, as memory immunity has declined in a substantial proportion of individuals. Cost-effectiveness of post-booster check for anti-HBs is low and should be further evaluated based on contextual specific utilization of results.

  19. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  20. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds