WorldWideScience

Sample records for yak-aerosib transcontinental aircraft

  1. Behaviors, movements, and transmission of droplet-mediated respiratory diseases during transcontinental airline flights

    Science.gov (United States)

    Weiss, Howard; Elon, Lisa; Si, Wenpei; Norris, Sharon L.

    2018-01-01

    With over 3 billion airline passengers annually, the inflight transmission of infectious diseases is an important global health concern. Over a dozen cases of inflight transmission of serious infections have been documented, and air travel can serve as a conduit for the rapid spread of newly emerging infections and pandemics. Despite sensational media stories and anecdotes, the risks of transmission of respiratory viruses in an airplane cabin are unknown. Movements of passengers and crew may facilitate disease transmission. On 10 transcontinental US flights, we chronicled behaviors and movements of individuals in the economy cabin on single-aisle aircraft. We simulated transmission during flight based on these data. Our results indicate there is low probability of direct transmission to passengers not seated in close proximity to an infectious passenger. This data-driven, dynamic network transmission model of droplet-mediated respiratory disease is unique. To measure the true pathogen burden, our team collected 229 environmental samples during the flights. Although eight flights were during Influenza season, all qPCR assays for 18 common respiratory viruses were negative. PMID:29555754

  2. Behaviors, movements, and transmission of droplet-mediated respiratory diseases during transcontinental airline flights.

    Science.gov (United States)

    Hertzberg, Vicki Stover; Weiss, Howard; Elon, Lisa; Si, Wenpei; Norris, Sharon L

    2018-04-03

    With over 3 billion airline passengers annually, the inflight transmission of infectious diseases is an important global health concern. Over a dozen cases of inflight transmission of serious infections have been documented, and air travel can serve as a conduit for the rapid spread of newly emerging infections and pandemics. Despite sensational media stories and anecdotes, the risks of transmission of respiratory viruses in an airplane cabin are unknown. Movements of passengers and crew may facilitate disease transmission. On 10 transcontinental US flights, we chronicled behaviors and movements of individuals in the economy cabin on single-aisle aircraft. We simulated transmission during flight based on these data. Our results indicate there is low probability of direct transmission to passengers not seated in close proximity to an infectious passenger. This data-driven, dynamic network transmission model of droplet-mediated respiratory disease is unique. To measure the true pathogen burden, our team collected 229 environmental samples during the flights. Although eight flights were during Influenza season, all qPCR assays for 18 common respiratory viruses were negative. Copyright © 2018 the Author(s). Published by PNAS.

  3. Force10 networks performance in world's first transcontinental 10 gigabit ethernet network verified by Ixia

    CERN Multimedia

    2003-01-01

    Force10 Networks, Inc., today announced that the performance of the Force10 E-Series switch/routers deployed in a transcontinental network has been verified as line-rate 10 GE throughput by Ixia, a leading provider of high-speed, network performance and conformance analysis systems. The network, the world's first transcontinental 10 GE wide area network, consists of a SURFnet OC-192 lambda between Geneva and the StarLight facility in Chicago via Amsterdam and another OC-192 lambda between this same facility in Chicago and Carleton University in Ottawa, Canada provided by CANARIE and ORANO (1/2 page).

  4. 78 FR 33403 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2013-06-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF13-5-000] Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Leidy Southeast Expansion Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meetings The staff of the Federal...

  5. 77 FR 59391 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2012-09-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-497-000] Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Assesment for the Proposed Brandywine Creek Replacement Project; Request for Comments on Environmental Issues; and Notice of Public Scoping Meeting The staff of the Federal...

  6. 76 FR 40717 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF11-4-000] Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Northeast Supply Link Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meetings The staff of the Federal Energy...

  7. 75 FR 42738 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2010-07-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF10-16-000] Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Planned Mid-Atlantic Connector Expansion Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meeting July 15, 2010. The...

  8. 77 FR 55208 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2012-09-07

    ... Southside Expansion Project (Project) involving construction and operation of facilities by Transcontinental... Beginning at 6:30 p.m., Brian's Restaurant (upstairs room), 625 East Atlantic Ave., South Hill, VA 23970.... The Project would include construction and operation of the following facilities: Approximately 91.4...

  9. 77 FR 32626 - Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Impact...

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PF09-8-000] Transcontinental Gas Pipe Line Company, LLC; Notice of Intent To Prepare an Environmental Impact Statement for the Planned Rockaway Delivery Lateral Project, Request for Comments on Environmental Issues, and Notice of Public Scoping Meetings The staff of the Federa...

  10. Distribution of trace gases and aerosols in the troposphere over West Siberia and Kara Sea

    Science.gov (United States)

    Belan, Boris D.; Arshinov, Mikhail Yu.; Paris, Jean-Daniel; Nédélec, Philippe; Ancellet, Gérard; Pelon, Jacques; Berchet, Antoine; Arzoumanian, Emmanuel; Belan, Sergey B.; Penner, Johannes E.; Balin, Yurii S.; Kokhanenko, Grigorii; Davydov, Denis K.; Ivlev, Georgii A.; Kozlov, Artem V.; Kozlov, Alexander S.; Chernov, Dmitrii G.; Fofonov, Alexader V.; Simonenkov, Denis V.; Tolmachev, Gennadii

    2015-04-01

    The Arctic is affected by climate change much stronger than other regions of the globe. Permafrost thawing can lead to additional methane release, which enhances the greenhouse effect and warming, as well as changes of Arctic tundra ecosystems. A great part of Siberian Arctic is still unexplored. Ground-based investigations are difficult to be carried out in this area due to it is an out-of-the-way place. So, in spite of the high cost, aircraft-based in-situ measurements can provide a good opportunity to fill up the gap in data on the atmospheric composition over this region. The ninth YAK-AEROSIB campaign was focused on the airborne survey of Arctic regions of West Siberia. It was performed in October 2014. During the campaign, the high-precision in-situ measurements of CO2, CH4, CO, O3, black carbon and aerososls, including aerosol lidar profiles, have been carried out in the Siberian troposphere from Novosibirsk to Kara Sea. Vertical distributions of the above atmospheric constituents will be presented. This work was supported by LIA YAK-AEROSIB, CNRS (France), the French Ministry of Foreign Affairs, CEA (France), the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  11. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Directory of Open Access Journals (Sweden)

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  12. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    Science.gov (United States)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  13. Genetic characterization of human T-cell lymphotropic virus type 1 in Mozambique: transcontinental lineages drive the HTLV-1 endemic.

    Directory of Open Access Journals (Sweden)

    Ana Carolina P Vicente

    2011-04-01

    Full Text Available Human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. It has been estimated that 10-20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt DNA analysis was performed and individuals classified in mtDNA haplogroups.LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions

  14. Realidades amazónicas: navegaçao interna e transcontinental sulamericana

    Directory of Open Access Journals (Sweden)

    1973-01-01

    ramifications intérieures qui, telles un réseau ferré parfaitement établi, permettent de pénétrer profondément cet intérieur immense a partir de quatre sorties sur l'océan. La sixième partie se réfère a une frange 'océanique' intérieure de 1500 Km de profondeur qui, à partir des voies d'eau déjà décrites, pourrait constituer une zone de grand développement pour l'intérieur de l'Amérique latine, abandonné a cause de son éloignement de la cote. Ainsi, le développement qui se poursuit le long de l'Atlantique, du Pacifique et du littoral caraïbe pourrait pénétrer a l'intérieur du continent. L'A. montre également combien les voies d'eau existantes, après élimination de certains obstacles, seraient un facteur naturel d'intégration pour tout l'intérieur dont la plus grande partie est constituée par l'Amazonie. Cette conclusion constitue une introduction anticipée pour la suite de cette étude éventuellement publiée dans ce Bulletin. Dans cette étude, l'A. insiste sur l'aspect énergétique, complément de l'aspect navigation qui en constitue souvent un sous-produit, d'autant plus que la rareté des ressources énergétiques devient tous les jours plus aiguë alors que les réserves hydroélectriques des rivières sud-américaines restent peu ou pas exploitées. In the first part of this FIRST STUDY OF THE AMAZON, called 'SOUTH AMERICAN INTERNAL AND TRANSCONTINENTAL NAVIGATION' - which by obvious reasons is not limited to the watershed of the Amazon, but also includes the neighboring rivers - we detail the causes which led us to its elaboration, i.e. the great gift of Nature to present the South American Continent a potamographic abundance without equal in the world as well as its present state of non utilization. We demonstrate with technical data the great advantages of water transport - the most economic of all transports - and that this type of transport has not become obsolete by the modern road transport, as a tendentious propaganda wants to

  15. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  16. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  17. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  18. Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion

    Directory of Open Access Journals (Sweden)

    Jaime Martinez-Urtaza

    2017-11-01

    Full Text Available Vibrio parahaemolyticus is the leading cause of seafood-related infections with illnesses undergoing a geographic expansion. In this process of expansion, the most fundamental change has been the transition from infections caused by local strains to the surge of pandemic clonal types. Pandemic clone sequence type 3 (ST3 was the only example of transcontinental spreading until 2012, when ST36 was detected outside the region where it is endemic in the U.S. Pacific Northwest causing infections along the U.S. northeast coast and Spain. Here, we used genome-wide analyses to reconstruct the evolutionary history of the V. parahaemolyticus ST36 clone over the course of its geographic expansion during the previous 25 years. The origin of this lineage was estimated to be in ~1985. By 1995, a new variant emerged in the region and quickly replaced the old clone, which has not been detected since 2000. The new Pacific Northwest (PNW lineage was responsible for the first cases associated with this clone outside the Pacific Northwest region. After several introductions into the northeast coast, the new PNW clone differentiated into a highly dynamic group that continues to cause illness on the northeast coast of the United States. Surprisingly, the strains detected in Europe in 2012 diverged from this ancestral group around 2000 and have conserved genetic features present only in the old PNW lineage. Recombination was identified as the major driver of diversification, with some preliminary observations suggesting a trend toward a more specialized lifestyle, which may represent a critical element in the expansion of epidemics under scenarios of coastal warming.

  19. Pollutants transport and atmospheric variability of CO2 over Siberia: contribution of airborne measurements

    International Nuclear Information System (INIS)

    Paris, J.D.

    2008-12-01

    The work presented here intends to characterize the variations of atmospheric concentrations of CO 2 , CO, O 3 and ultrafine particles, over a large scale aircraft transect above Siberia, during three intensive YAK-AEROSIB campaigns in April 2006, September 2006 and August 2007, respectively. Pollutant and greenhouse gases distribution in this poorly studied region is needed to model atmospheric long range transport. I show here that CO concentrations at the time of the campaigns is broadly affected by (1) advection of Chinese pollutants through baro-clinic perturbations, (2) advection (diffuse or not) of European pollutants at various altitudes, (3) and of biomass burning from Central Asia. This set of factors is analyzed through a novel statistical technique based on clustering of backward transport simulated by the FLEXPART Lagrangian model. Large observed CO 2 gradients in summer are matched against vertical mixing in GCM simulated CO 2 . At last I present ultrafine particle measurements, and a possible nucleation summer maximum in the clean, continental mid-troposphere. (author)

  20. Improvement of the Dynamic Responses of Heart Rate Variability Patterns after Needle and Laser Acupuncture Treatment in Patients with Burnout Syndrome: A Transcontinental Comparative Study

    Directory of Open Access Journals (Sweden)

    Gerhard Litscher

    2013-01-01

    Full Text Available We investigated manual needle and laser needle acupuncture as a complementary therapy for patients with burnout syndrome. Twenty patients with a mean age ± SD of 38.7 ± 8.4 years were assigned to two groups, each consisting of ten patients. One group was treated with manual needle acupuncture and the other with laser needle acupuncture. Heart rate, heart rate variability (HRV, and a new score called dynamic acupuncture treatment score (DATS served as evaluation parameters. The study documented significant effects on heart rate after needle acupuncture treatment and significant effects on HRV caused by both needle and laser needle acupuncture. Based on new neurovegetative acupuncture treatment evaluation scores, it can be stated that both noninvasive laser needle acupuncture and manual needle acupuncture have the potential to be a powerful approach for evidence-based complementary treatment of patients with burnout syndrome. Further transcontinental studies to verify or refute the preliminary findings are in progress.

  1. Transcontinental mourning dove recovery

    Science.gov (United States)

    Sharp, Brian

    1971-01-01

    A Mourning Dove (Zenaida macroura) banded in New York has been reported shot in California. On 25 August 1969, near Palmyra (43°00' N, 77°10' W), New York Department of Environmental Conservation personnel placed U. S. Fish & Wildlife Service band 883-97279 on the leg of a hatching-year Mourning Dove of unknown sex. During the first weekend of the dove season in September 1970, Stan Solus (P.O. Box 594, Seiad Valley, California) recovered the band from a dove he shot in the Shasta Valley, Siskiyou County, California (41°30' N, 122°20' W). As Mr. Solus included the band with his reporting letter and, in response to my asking him for verification, reaffirmed his original information, the recovery has been accepted as authentic. I suggest this vagrancy may be explained by assuming that the inexperienced New York bird got emotionally involved with a western bird with which it shared winter quarters, perhaps in Mexico, and thus the following year ended up a flower child in California.

  2. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  3. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  4. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  5. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  6. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  7. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  8. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  9. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  10. Is ozone, rather than PM2.5, actually the largest contributor to premature deaths associated with trans-continental transport of air pollution?

    Science.gov (United States)

    Henze, D. K.; Davila, Y.; Anenberg, S.; Malley, C.; Kuylenstierna, J. C. I.; Vallack, H.; Ashmore, M. R.; Turner, M.; Sudo, K.; Jonson, J. E.; Chin, M.; Doherty, R. M.

    2017-12-01

    While both ozone and PM2.5 contribute to a range of deleterious human health impacts, evaluations of regional and global burdens of disease associated with exposure to these pollutants have concluded that PM2.5 is the larger driver of premature deaths from degraded air quality. This is owing to both high PM2.5 concentrations in heavily populated areas and stronger concentration-response relationships between PM2.5 exposure and increased mortality risk. Meanwhile, both PM2.5 and O3 are formed and/or advected far downwind of their sources and contribute to long-range (trans-continental) pollution transport. Ozone most often makes greater contributions to long-range pollution transport in terms of percent changes in surface-level concentrations given its longer tropospheric lifetime than PM2.5. Combining these factors, previous works have identified PM2.5 as more frequently being the dominant long-range source of air pollution related premature deaths, closely followed by O3. Here we re-evaluate this question using several updates, drawing from ensembles of model simulations performed as part of Phase 2 of the Hemispheric Transport of Air Pollutants (HTAP) project. Most importantly, we use recently revised concentration-response relationships for respiratory (and, less confidently, cardiovascular) disease associated with long-term O3 exposure, which we have shown increases estimates of premature death owing to O3 several-fold, and integrated exposure response (IER) functions for PM2.5. Further, we attempt to overcome well-recognized biases in estimating PM2.5 exposure with global-scale models via assimilation of high resolution (0.1 x 0.1) maps of surface PM2.5 derived from satellite observations. Overall, we find that our revised estimates of long-range O3 and PM2.5 related premature deaths are most often dominated by O3. These findings provide additional incentives for considering the global-scale consequences of regional emissions controls of O3 precursors.

  11. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  12. Automated Inspection of Aircraft

    Science.gov (United States)

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  13. Aircraft Depainting Technology

    National Research Council Canada - National Science Library

    Kozol, Joseph

    1999-01-01

    ... of aircraft and component stripping at various levels of maintenance. Under this program, the Navy pursued development of non-HAP chemical paint strippers as alternatives for methylene chloride based strippers...

  14. The Aircraft Industry, 2006

    National Research Council Canada - National Science Library

    Daniel, Keith

    2006-01-01

    .... and global economic growth. The overall outlook for the industry is positive. Orders for commercial aircraft are up from a boom in air travel that is likely to continue well into the next decade...

  15. The Aircraft Industry

    National Research Council Canada - National Science Library

    Fitzgerald, Tim; Baiche, Noureddine; Brewer, Mike; Collins, Al; Knapp, Kathy; Kott, Marilyn; McGill, Duncan; Mensah, Dunstan; Neighbors, Mark; Reardon, Dee

    2005-01-01

    .... As the airline companies prepare to buy new Boeing and Airbus passenger jets, they remain under intense pressure to cut costs in order to remain profitable, forcing aircraft and engine manufacturers...

  16. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  17. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  19. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  20. Multifuel rotary aircraft engine

    Science.gov (United States)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  1. 2002 Industry Studies: Aircraft

    Science.gov (United States)

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  2. Aircraft to aircraft intercomparison during SEMAPHORE

    Science.gov (United States)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  3. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  4. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  5. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  6. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  7. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  8. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  9. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  10. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  11. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  12. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  13. Aircraft Capability Management

    Science.gov (United States)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  14. Aircrafts' taxi noise emission

    NARCIS (Netherlands)

    Asensio, C.; Pagan Munoz, Raul; López, J.M.

    2008-01-01

    An investigation has been conducted, with the objective of creating a database of inputs that can be used with noise prediction software, to evaluate noise of aircraft taxing movements and community noise exposure levels. The acoustic consultant can use these data with any of the software packages,

  15. Aircraft parameter estimation

    Indian Academy of Sciences (India)

    With the evolution of high performance modern aircraft and spiraling developmental and experimental costs, the importance of flight validated databases for flight control design applications and for flight simulators has increased significantly in the recent past. Ground-based and in-flight simulators are increasingly used not ...

  16. Load event: Aircraft crash

    International Nuclear Information System (INIS)

    Fritsch, H.

    1985-01-01

    The bibliography includes 48 quotations, up to the year 1983, on the following issues: Experiments and computational methods. Design load for the dimensioning of reinforced concrete buildings and components with respect to the dynamic load in the event of an aircraft crash. (orig./HP) [de

  17. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.

  18. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  19. Aircraft Design Software

    Science.gov (United States)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  20. Combat Aircraft Maneuverability.

    Science.gov (United States)

    1981-12-01

    rodynamique, propulsion, rdsistance den structures, etc ... - lea m~thodes d’essaia an soufflerie, aur banca au aol, sur simulateurs. A un niveau de synthbse...Dunstan Graham, "Aircraft Dynamics and Automatic Control," Princeton University Press , Princeton, N.J., 1973. 9. Hoh, Roger H., Thomas T. Myers...discussion of the roll coupling problem" Progress in Aerospace Sciences, Vol 15, Pergamon Press , Oxford 1974 17-8 (6] R.W. KLOPPENSTEIN "Zeroes of

  1. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-03-01

    Current developmental activities of aircraft gas turbines in Japan are reviewed. V2500-A5 engine with thrust of 30,000 LBF is scheduled to be used for real aircraft in 1994, and intensive developmental activities are also proceeding in larger engines over 90,000 LBF. Recently, developmental programs of engines for 75-100 seat aircraft have been actively discussed, and Japanese engine makers are having discussions towards international collaboration. Such engines will be high bypass turbofans of 12,000-22,000 LBF. Development of SST/HST engines in a speed range from subsonic to Mach 5 is under the initiative of the Agency of Industrial Science and Technology. The Technical Research and Development Institute of Japan, Defence Agency achieved the target thrust of 3.4 tons in the small turbofan engine program, and the small turboshaft engine for small helicopters is also under development. Both National Aerospace Laboratory (NAL) and Institute of Space and Aeronautical Science (ISAS) are now conducting the research programs on turbo-ramjet engines under a component test phase. 1 fig.

  2. Principles for Aircraft Energy Mapping

    OpenAIRE

    Berg, Frederick T N

    2013-01-01

    An increasing emphasis on energy eciency in aircraft systems has in recentyears led to greater interest in integrated design and optimisation withinthe industry. New tools are needed to understand, compare and manage energyuse of an aircraft throughout its design and operation. This thesis describes a new methodology to meet this need: aircraft exergy mapping.The choice of exergy, a 2nd law metric, to describe the energy ows is fundamental to the methodology, providing numerous advantages ove...

  3. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  4. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  5. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  6. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  7. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  8. Design for aircraft impact

    International Nuclear Information System (INIS)

    Kar, A.K.

    1978-01-01

    Aircraft impact against nuclear power plant structures leads to both local and overall effects on the structure. Among the local effects, backface spalling is most important. The overall effects of impact on structural stability are commonly evaluated in terms of the adequacy of the structure in flexure and shear. Empirical formulas are presented for the determination of local effects of aircraft impact on nuclear power plant facilities. The formulas lead to easy and reasonable estimates of the thickness required to prevent backface spalling. The impactive load depends upon the collapse load of the fuselage, its collapse mechanism, mass distribution and the impact velocity. A simplified method is given for evaluating the design load. The time history, obtained by the proposed method, closely resembles those obtained by more rigorous methods. Procedures for obtaining shear and flexural strengths of concrete walls or roofs, subjected to impact, are provided. The span-to-depth ratio is considered. Recommendations are made on the available ductility ratio and structural behavior. (Author)

  9. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2012-09-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design are based.

  10. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2011-06-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design is based.

  11. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  12. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  13. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  14. Fire resistant aircraft seat program

    Science.gov (United States)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  15. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  16. Flow Control Enabled Aircraft Design

    National Research Council Canada - National Science Library

    Nangia, Rajendar

    2004-01-01

    ...: Many future advanced aircraft concepts being considered by the Air Force fall outside the current aerodynamic design practice and will rely heavily on the use of flow control technology to optimize flight performance...

  17. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  18. Aircraft Evaluation Using Stochastic Duels

    Science.gov (United States)

    2017-09-01

    for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and...Fighter aircraft systems and weapons designs are known to involve substantial capital investment . Due to possible budget constraints in the U.S. Navy, the...of fighter aircraft to analysts and decision-makers before they invest further resources into larger-scale, higher-resolution simulations for

  19. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  20. Advanced technology composite aircraft structures

    Science.gov (United States)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  1. IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2010-11-01

    Full Text Available In this paper, we provide a detailed comparison between carbon monoxide (CO data measured by the Infrared Atmospheric Sounding Interferometer (IASI/MetOp and aircraft observations over the Arctic. The CO measurements were obtained during North American (NASA ARCTAS and NOAA ARCPAC and European campaigns (POLARCAT-France, POLARCAT-GRACE and YAK-AEROSIB as part of the International Polar Year (IPY POLARCAT activity in spring and summer 2008. During the campaigns different air masses were sampled including clean air, polluted plumes originating from anthropogenic sources in Europe, Asia and North America, and forest fire plumes originating from Siberia and Canada. The paper illustrates that CO-rich plumes following different transport pathways were well captured by the IASI instrument, in particular due to the high spatial coverage of IASI. The comparison between IASI CO total columns, 0–5 km partial columns and profiles with collocated aircraft data was achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of information content and surface properties at the location of the observations. For profiles, the data were found to be in good agreement in spring with differences lower than 17%, whereas in summer the difference can reach 20% for IASI profiles below 8 km for polluted cases. For total columns the correlation coefficients ranged from 0.15 to 0.74 (from 0.47 to 0.77 for partial columns in spring and from 0.26 to 0.84 (from 0.66 to 0.88 for partial columns in summer. A better agreement is seen over the sea in spring (0.73 for total column and 0.78 for partial column and over the land in summer (0.69 for total columns and 0.81 for partial columns. The IASI vertical sensitivity was better over land than over sea, and better over land than over sea ice and snow allowing a higher potential to detect CO vertical distribution during

  2. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  3. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  4. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  5. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  6. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  7. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  8. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  9. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  10. Model of aircraft noise adaptation

    Science.gov (United States)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  11. Aircraft Crash Survival Design Guide. Volume 5. Aircraft Postcrash Survival

    Science.gov (United States)

    1980-01-01

    neck Access door toprille capm enrFuel tank Figue 3. Fangblefiler eckinsalgbelati n. A-j L)n wal Aircraft skin Frangible filler neck Failure plane...This is because a number of major assumptions must be made in the extrapolation: the smoke generated is uniformly distri- buted and is independent

  12. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  13. NASA Johnson Space Center Aircraft Operations Division

    Science.gov (United States)

    Bakalyar, John A.

    2018-01-01

    This presentation provides a high-level overview of JSC aircraft and missions. The capabilities, including previous missions and support team, for the Super Guppy Transport (SGT) aircraft are highlighted.

  14. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  15. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  16. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    OpenAIRE

    Stanislav Vladimirovich Daletskiy; Stanislav Stanislavovich Daletskiy

    2017-01-01

    The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is ...

  17. 31 CFR 560.528 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  18. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  19. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  20. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  1. The Transeurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon

    Directory of Open Access Journals (Sweden)

    Schütz Uwe HW

    2012-07-01

    Full Text Available Abstract Background The TransEurope FootRace 2009 (TEFR09 was one of the longest transcontinental ultramarathons with an extreme endurance physical load of running nearly 4,500 km in 64 days. The aim of this study was to assess the wide spectrum of adaptive responses in humans regarding the different tissues, organs and functional systems being exposed to such chronic physical endurance load with limited time for regeneration and resulting negative energy balance. A detailed description of the TEFR project and its implemented measuring methods in relation to the hypotheses are presented. Methods The most important research tool was a 1.5 Tesla magnetic resonance imaging (MRI scanner mounted on a mobile unit following the ultra runners from stage to stage each day. Forty-four study volunteers (67% of the participants were cluster randomized into two groups for MRI measurements (22 subjects each according to the project protocol with its different research modules: musculoskeletal system, brain and pain perception, cardiovascular system, body composition, and oxidative stress and inflammation. Complementary to the diverse daily mobile MR-measurements on different topics (muscle and joint MRI, T2*-mapping of cartilage, MR-spectroscopy of muscles, functional MRI of the brain, cardiac and vascular cine MRI, whole body MRI other methods were also used: ice-water pain test, psychometric questionnaires, bioelectrical impedance analysis (BIA, skinfold thickness and limb circumference measurements, daily urine samples, periodic blood samples and electrocardiograms (ECG. Results Thirty volunteers (68% reached the finish line at North Cape. The mean total race speed was 8.35 km/hour. Finishers invested 552 hours in total. The completion rate for planned MRI investigations was more than 95%: 741 MR-examinations with 2,637 MRI sequences (more than 200,000 picture data, 5,720 urine samples, 244 blood samples, 205 ECG, 1,018 BIA, 539 anthropological

  2. Aircraft Noise Reduction Subproject Overview

    Science.gov (United States)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  3. Radar Detectability of Light Aircraft

    Science.gov (United States)

    1976-04-01

    a vestigial blind speed at 121 knots. Aircraft radial velocity compon- ents for the flights discussed here varied between zero and 125 knots. Typi.cal...the contributions of Mr. D.M. Selwyn who designed the digital recording equipment and organized the flight tests, and Dr. A.W.R. Gilchrist who edited

  4. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  5. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  6. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available - unmanned aircraft; pilot training. I. INTRODUCTION Unmanned aircraft offer flexibility not found in manned aircraft. They can be made smaller and cheaper to operate. They offer payload advantages relative to small manned aircraft. They can also perform... certificate to non-state users. To facilitate useful operations by UAs, future operations must be subject to no more than routine notification (e.g. an ATC flight plan), just like manned aircraft already are. Before such operations can be established, some...

  7. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  8. Perspectives on Highly Adaptive or Morphing Aircraft

    Science.gov (United States)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  9. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  10. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje

    2002-01-01

    A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures....../models to be simulated) and with possibilities for including various forms of intelligent computer assistance. This training concept and the technology are not specific toaviation, but can be used to simulate various types of control panels in different domains. The training effectiveness of pilots' procedure training...... in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...

  11. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  12. Small Aircraft Data Distribution System

    Science.gov (United States)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  13. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  14. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  15. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  16. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  17. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  18. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  19. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  20. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  1. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  2. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  3. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  4. Cyberinfrastructure for Aircraft Mission Support

    Science.gov (United States)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  5. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  6. Aircraft Icing Handbook. Volume 1

    Science.gov (United States)

    1991-03-01

    Maryland - . . . Kohiman Aviation, Lawrence , Kansas Ohio State University, Columbus, Ohio .I --- t-r 1-- - -t I.Q,,- t ../e . Pratt and Whitney...lower; about six percent at -22 ’F (-30 *C). 1.2.3 Variations with Season The summer or warm season months create large warm air masses which can...on Aircraft Surfaces," NASA TM 87184, May 1986. 2-54 Hausman , R.J. and Turnock, S.R., "Investigation of Surface Water Behavior During Glaze Ice

  7. Innovative Materials for Aircraft Morphing

    Science.gov (United States)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  8. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  9. New entrants and overcapacity: lessons from regional aircraft manufacturing

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2010-01-01

    The commercial aircraft manufacturing industry has been largely dominated by the advanced economies in North America and Western Europe. During recent decades, several emerging economies have invested heavily in the commercial aircraft industry, notably in regional aircraft manufacturing. This paper

  10. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-19

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the manufacturer's..., contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, Mailstop s581a, 6900...

  11. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-07-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  12. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-08-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-76A helicopters to require modifying the electric rotor brake (ERB... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager...

  13. Aircraft

    Science.gov (United States)

    2003-01-01

    xml Internet . Teal Group Corp. Aviation Week and Space Technology , 18 March 2003, 1. 62 Babak Minovi, “Turbine Industry Struggles with Weak Markets ...xml Internet . Teal Group Corp. Aviation Week and Space Technology , 18 March 2003, 1. 64 Babak Minovi, “Turbine Industry Struggles with Weak Markets ...what several executives referred to as the “perfect storm” now blowing through the aviation market . With this information many questions remain: Will

  14. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  15. Beryllium in aircraft brakes - a summary

    International Nuclear Information System (INIS)

    Zenczak, S.

    1977-01-01

    Beryllium has been in use in aircraft brakes for ten years. During the original design phases of the several aircraft programs using beryllium a number of problems requiring solution confronted the designers. In actual service the solution to these problems performed much better than had been anticipated. A summary is presented. (author)

  16. Time to retire : Indicators for aircraft fleets

    NARCIS (Netherlands)

    Newcamp, Jeffrey; Verhagen, W.J.C.; Curran, R.

    2017-01-01

    It is well known that aircraft fleets are aging alongside rising operations and support costs. Logisticians and fleet managers who better understand the milestones and timeline of an aging fleet can recognise potential savings. This paper outlines generalised milestones germane to military aircraft

  17. 14 CFR 121.538 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 121.538 Section 121.538..., FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.538 Aircraft security. Certificate holders conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter...

  18. 14 CFR 135.125 - Aircraft security.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft security. 135.125 Section 135.125....125 Aircraft security. Certificate holders conducting operators conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. [67 FR 8350, Feb. 22, 2002] ...

  19. Cycle Counting Methods of the Aircraft Engine

    Science.gov (United States)

    Fedorchenko, Dmitrii G.; Novikov, Dmitrii K.

    2016-01-01

    The concept of condition-based gas turbine-powered aircraft operation is realized all over the world, which implementation requires knowledge of the end-of-life information related to components of aircraft engines in service. This research proposes an algorithm for estimating the equivalent cyclical running hours. This article provides analysis…

  20. 36 CFR 331.14 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ... GOVERNING THE PROTECTION, USE AND MANAGEMENT OF THE FALLS OF THE OHIO NATIONAL WILDLIFE CONSERVATION AREA, KENTUCKY AND INDIANA § 331.14 Aircraft. (a) The operation of aircraft on WCA lands and waters is prohibited... business of the Federal Government or used in emergency rescue in accordance with the directions of the...

  1. Do supersonic aircraft avoid contrails?

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2008-02-01

    Full Text Available The impact of a potential future fleet of supersonic aircraft on contrail coverage and contrail radiative forcing is investigated by means of simulations with the general circulation model ECHAM4.L39(DLR including a contrail parameterization. The model simulations consider air traffic inventories of a subsonic fleet and of a combined fleet of sub- and supersonic aircraft for the years 2025 and 2050, respectively. In case of the combined fleet, part of the subsonic fleet is replaced by supersonic aircraft. The combined air traffic scenario reveals a reduction in contrail cover at subsonic cruise levels (10 to 12 km in the northern extratropics, especially over the North Atlantic and North Pacific. At supersonic flight levels (18 to 20 km, contrail formation is mainly restricted to tropical regions. Only in winter is the northern extratropical stratosphere above the 100 hPa level cold enough for the formation of contrails. Total contrail coverage is only marginally affected by the shift in flight altitude. The model simulations indicate a global annual mean contrail cover of 0.372% for the subsonic and 0.366% for the combined fleet in 2050. The simulated contrail radiative forcing is most closely correlated to the total contrail cover, although contrails in the tropical lower stratosphere are found to be optically thinner than contrails in the extratropical upper troposphere. The global annual mean contrail radiative forcing in 2050 (2025 amounts to 24.7 mW m−2 (9.4 mW m−2 for the subsonic fleet and 24.2 mW m−2 (9.3 mW m−2 for the combined fleet. A reduction of the supersonic cruise speed from Mach 2.0 to Mach 1.6 leads to a downward shift in contrail cover, but does not affect global mean total contrail cover and contrail radiative forcing. Hence the partial substitution of subsonic air traffic leads to a shift of contrail occurrence from mid to low latitudes, but the resulting change in

  2. TEPC measurements in commercial aircraft

    International Nuclear Information System (INIS)

    Taylor, G. C.; Bentley, R. D.; Horwood, N. A.; Hunter, R.; Iles, R. H.; Jones, J. B. L.; Powell, D.; Thomas, D. J.

    2004-01-01

    The collaborative project involving the Mullard Space Science Laboratory (MSSL), Virgin Atlantic Airways (VAA), the UK Civil Aviation Authority (CAA) and the UK National Physical Laboratory (NPL) has been performing tissue-equivalent proportional counter measurements of cosmic ray doses in commercial aircraft since January 2000. In that time data have been recorded on over 700 flights, including over 150 flights with Air New Zealand (ANZ). This substantial set of data from the southern hemisphere is an ideal complement to the London-based measurements performed primarily on VAA flights. Although some ANZ data remains to be analysed, dose information from 111 flights has been compared with the CARI and EPCARD computer codes. Overall, the agreement between the measurements and EPCARD was excellent (within 1% for the total ambient dose equivalent), and the difference in the total effective doses predicted by EPCARD and CARI was <5%. (authors)

  3. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  4. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Science.gov (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  5. Alternate aircraft fuels prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  6. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  7. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    Infrared missiles pose a significant threat to civilian and military aviation. ManPADS missiles are especially dangerous in the hands of rogue and undisciplined forces. Yet, not all the launched missiles hit their targets; the miss being either attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft-missile engagement is a complex series of events, many of which are only partially understood. Aircraft and missile designers focus on the optimal design and performance of their respective systems, often testing only in a limited set of scenarios. Most missiles react to the contrast intensity, but the variability of the background is rarely considered. Finally, the vulnerability of the aircraft depends jointly on the missile's performance and the doctrine governing the missile's launch. These factors are considered in a holistic investigation. The view direction, altitude, time of day, sun position, latitude/longitude and terrain determine the background against which the aircraft is observed. Especially high gradients in sky radiance occur around the sun and on the horizon. This paper considers uncluttered background scenes (uniform terrain and clear sky) and presents examples of background radiance at all view angles across a sphere around the sensor. A detailed geometrical and spatially distributed radiometric model is used to model the aircraft. This model provides the signature at all possible view angles across the sphere around the aircraft. The signature is determined in absolute terms (no background) and in contrast terms (with background). It is shown that the background significantly affects the contrast signature as observed by the missile sensor. A simplified missile model is constructed by defining the thrust and mass profiles, maximum seeker tracking rate, maximum

  8. 14 CFR 49.11 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 49.11 Section 49.11... AIRCRAFT TITLES AND SECURITY DOCUMENTS General § 49.11 FAA Aircraft Registry. To be eligible for recording, a conveyance must be mailed to the FAA Aircraft Registry, Department of Transportation, Post Office...

  9. 77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-11-23

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel... Modification Do not incorporate Cessna Aircraft Company Engine Fuel Return System Modification Kit MK 172-28-01...

  10. 77 FR 45979 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-08-02

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc... information identified in this proposed AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach...

  11. 77 FR 31169 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-05-25

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-31T and..., contact Piper Aircraft, Inc., 926 Piper Drive, Vero Beach, Florida 32960; telephone: (772) 567-4361...

  12. 8 CFR 1280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 1280.21 Section 1280... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 1280.21 Seizure of aircraft. Seizure of an aircraft under the... that its value is less than the amount of the fine which may be imposed. If seizure of an aircraft for...

  13. 8 CFR 280.21 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Seizure of aircraft. 280.21 Section 280.21... OF FINES § 280.21 Seizure of aircraft. Seizure of an aircraft under the authority of section 239 of... than the amount of the fine which may be imposed. If seizure of an aircraft for violation of section...

  14. 36 CFR 13.1004 - Aircraft use.

    Science.gov (United States)

    2010-07-01

    ... NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Gates of the Arctic National Park and Preserve... residents who permanently reside in the following exempted community(ies) may use aircraft for access to...

  15. Spring 2008 Industry Study: Aircraft Industry

    National Research Council Canada - National Science Library

    Smith, John; Dedecker, Craig; Doerer, Robert; Dols, Jonathan; Ekwall, Bengt; Heck, Mark; Jungco, Rolando; Koch, David; Lolley, James; Matyi, Kyle; McCaffrey, Terrance; Provost, Carla; Snyder, Daniel; Szucs, Jozsef; Truhn, Harry; Tyler, J. R

    2008-01-01

    .... With the exception of the relatively less mature unmanned aircraft systems sector, significant changes to the number and identity of competing firms are not likely in the next few years, although...

  16. Knowledge-based scheduling of arrival aircraft

    Science.gov (United States)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  17. Aircraft Vortex Wake Decay Near the Ground

    Science.gov (United States)

    1977-05-01

    A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...

  18. Design of heavy lift cargo aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the bird of the skies of the future. The heavy lift cargo aircraft which is currently being developed by me has twice the payload capacity of an Antonov...

  19. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  20. Analysis of Aircraft Crash Accident for WETF

    International Nuclear Information System (INIS)

    Jordan, Hans

    2001-01-01

    This report applies the methodology of DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities'', to the Weapons Engineering Tritium Facility (WETF) at LANL. Straightforward application of that methodology shows that including local helicopter flights with those of all other aircraft with potential to impact the facility poses a facility impact risk slightly in excess of the DOE standard's threshold--10 -6 impacts per year. It is also shown that helicopters can penetrate the facility if their engines impact that facility's roof. However, a refinement of the helicopter impact analysis shows that penetration risk of the facility for all aircraft lies below the DOE standard's threshold. By that standard, therefore, the potential for release of hazardous material from the facility as a result of an aircraft crashing into the facility is negligible and need not be analyzed further

  1. Safety of Cargo Aircraft Handling Procedure

    Directory of Open Access Journals (Sweden)

    Daniel Hlavatý

    2017-07-01

    Full Text Available The aim of this paper is to get acquainted with the ways how to improve the safety management system during cargo aircraft handling. The first chapter is dedicated to general information about air cargo transportation. This includes the history or types of cargo aircraft handling, but also the means of handling. The second part is focused on detailed description of cargo aircraft handling, including a description of activities that are performed before and after handling. The following part of this paper covers a theoretical interpretation of safety, safety indicators and legislative provisions related to the safety of cargo aircraft handling. The fourth part of this paper analyzes the fault trees of events which might occur during handling. The factors found by this analysis are compared with safety reports of FedEx. Based on the comparison, there is a proposal on how to improve the safety management in this transportation company.

  2. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  3. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  4. 36 CFR 327.4 - Aircraft.

    Science.gov (United States)

    2010-07-01

    ..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...

  5. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    S P Govinda Raju. Aircraft of various types are necessary for meeting the ... configuration is thoroughly evaluated for performance, stabil- ity and controllability .... Specialised tests, like those for measuring various stability de- rivatives involve ...

  6. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  7. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  8. Full-scale aircraft tire pressure tests

    OpenAIRE

    FABRE, C; BALAY, Jean Maurice; LERAT, P; MAZARS, A

    2009-01-01

    This paper describes an outdoor full-scale test planned to improve experimental and theoretical knowledge related to the effects of aircraft internal tire inflation pressure on the behavior and damage of flexible pavement. Since modern aircraft can have tire pressures greater than 15 bar, the tests will focus on pressures from 15 bar to 17.5 bar. The experimental pavement located on the Toulouse-Blagnac airport in France will include up to seven al different test sections, representative of c...

  9. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  10. Aircraft 4D trajectories planning under uncertainties

    OpenAIRE

    Chaimatanan , Supatcha; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; To sustain the rapidly increasing air traffic demand, the future air traffic management system will rely on a concept, called Trajectory-Based Operations (TBO), that will require aircraft to follow an assigned 4D trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via strategic (long-term) trajectory deconfliction rather than the currently-practicing tactical (short-term) conflict resolution. In this context, this paper presen...

  11. Pathfinder-Plus aircraft in flight

    Science.gov (United States)

    1998-01-01

    The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

  12. Aircraft gas turbine engine vibration diagnostics

    OpenAIRE

    Stanislav Fábry; Marek Češkovič

    2017-01-01

    In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...

  13. Direct carbon dioxide emissions from civil aircraft

    OpenAIRE

    Grote, Matt; Williams, Ian; Preston, John

    2014-01-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories – policy and legal-related measures, and technological and operational measures. Results of the review are used to develop sever...

  14. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  15. Scheduling Aircraft Landings under Constrained Position Shifting

    Science.gov (United States)

    Balakrishnan, Hamsa; Chandran, Bala

    2006-01-01

    Optimal scheduling of airport runway operations can play an important role in improving the safety and efficiency of the National Airspace System (NAS). Methods that compute the optimal landing sequence and landing times of aircraft must accommodate practical issues that affect the implementation of the schedule. One such practical consideration, known as Constrained Position Shifting (CPS), is the restriction that each aircraft must land within a pre-specified number of positions of its place in the First-Come-First-Served (FCFS) sequence. We consider the problem of scheduling landings of aircraft in a CPS environment in order to maximize runway throughput (minimize the completion time of the landing sequence), subject to operational constraints such as FAA-specified minimum inter-arrival spacing restrictions, precedence relationships among aircraft that arise either from airline preferences or air traffic control procedures that prevent overtaking, and time windows (representing possible control actions) during which each aircraft landing can occur. We present a Dynamic Programming-based approach that scales linearly in the number of aircraft, and describe our computational experience with a prototype implementation on realistic data for Denver International Airport.

  16. 41 CFR 102-33.210 - How do we account for the use of our Government aircraft?

    Science.gov (United States)

    2010-07-01

    ... PROPERTY 33-MANAGEMENT OF GOVERNMENT AIRCRAFT Managing Government Aircraft and Aircraft Parts Accounting...., the Governmental function that the aircraft was dispatched to perform); (d) Departure and destination...

  17. Modeling Programs Increase Aircraft Design Safety

    Science.gov (United States)

    2012-01-01

    Flutter may sound like a benign word when associated with a flag in a breeze, a butterfly, or seaweed in an ocean current. When used in the context of aerodynamics, however, it describes a highly dangerous, potentially deadly condition. Consider the case of the Lockheed L-188 Electra Turboprop, an airliner that first took to the skies in 1957. Two years later, an Electra plummeted to the ground en route from Houston to Dallas. Within another year, a second Electra crashed. In both cases, all crew and passengers died. Lockheed engineers were at a loss as to why the planes wings were tearing off in midair. For an answer, the company turned to NASA s Transonic Dynamics Tunnel (TDT) at Langley Research Center. At the time, the newly renovated wind tunnel offered engineers the capability of testing aeroelastic qualities in aircraft flying at transonic speeds near or just below the speed of sound. (Aeroelasticity is the interaction between aerodynamic forces and the structural dynamics of an aircraft or other structure.) Through round-the-clock testing in the TDT, NASA and industry researchers discovered the cause: flutter. Flutter occurs when aerodynamic forces acting on a wing cause it to vibrate. As the aircraft moves faster, certain conditions can cause that vibration to multiply and feed off itself, building to greater amplitudes until the flutter causes severe damage or even the destruction of the aircraft. Flutter can impact other structures as well. Famous film footage of the Tacoma Narrows Bridge in Washington in 1940 shows the main span of the bridge collapsing after strong winds generated powerful flutter forces. In the Electra s case, faulty engine mounts allowed a type of flutter known as whirl flutter, generated by the spinning propellers, to transfer to the wings, causing them to vibrate violently enough to tear off. Thanks to the NASA testing, Lockheed was able to correct the Electra s design flaws that led to the flutter conditions and return the

  18. Common factors in the withdrawal of European aircraft manufacturers from the regional aircraft market

    NARCIS (Netherlands)

    Heerkens, Johannes M.G.; de Bruijn, E.J.; Steenhuis, H.J.

    2010-01-01

    We investigate whether there were common causes for the withdrawal from the regional aircraft market of three established manufacturers (BAE Systems, Fokker and Saab), while competitors thrived. We focus on the markets for 50- and 100-seat aircraft. One cause concerning the 50-seat market was the

  19. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Science.gov (United States)

    2010-01-01

    ... data approved by the Administrator. (e) The holder of an air carrier operating certificate or an... holder of a repairman certificate (light-sport aircraft) with a maintenance rating may approve an aircraft issued a special airworthiness certificate in light-sport category for return to service, as...

  20. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  1. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  2. Systematic analysis of aircraft separation requirements

    Science.gov (United States)

    Ennis, Rachelle Lea

    2005-12-01

    Minimum separation standards are necessary for safety in the air traffic control system. At the same time, minimum separation standards constrain the flow of air traffic and cause delays that translate to millions of dollars in fuel costs. Two necessary separation standards are defined. Then, practical methods for calculating the minimum required size of these separation standards are presented. First, the protected zone is considered. The protected zone represents a region around a given aircraft that no other aircraft should penetrate for the safety of both aircraft. It defines minimum separation requirements. Three major components of the protected zone and their interplays are identified: a vortex region, a safety buffer region, and a state-uncertainty region. A systematic procedure is devised for the analysis of the state-uncertainty region. In particular, models of trajectory controls are developed that can be used to represent different modes of pilot and/or autopilot controls, such as path feedback and non-path feedback. Composite protected zones under various conditions are estimated, and effective ways to reduce sizes of protected zones for advanced air traffic management are examined. In order to maintain minimum separation standards between two aircraft, proper avoidance maneuvers must be initiated before their relative separation reaches the minimum separation due to aircraft dynamics, controller and pilot response delays, etc. The concept of the required action threshold is presented. It is defined as the advanced time for which the conflict resolution process must begin in order to maintain minimum separation requirements. Five main segments in the process of conflict resolution are identified, discussed, and modeled: state information acquisition, comprehension and decision, communication, pilot response, and aircraft maneuver. Each of the five segments is modeled via a time constant. Time estimates for the first four segments are obtained from

  3. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  4. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  5. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  6. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  7. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  8. A strategic planning methodology for aircraft redesign

    Science.gov (United States)

    Romli, Fairuz Izzuddin

    Due to a progressive market shift to a customer-driven environment, the influence of engineering changes on the product's market success is becoming more prominent. This situation affects many long lead-time product industries including aircraft manufacturing. Derivative development has been the key strategy for many aircraft manufacturers to survive the competitive market and this trend is expected to continue in the future. Within this environment of design adaptation and variation, the main market advantages are often gained by the fastest aircraft manufacturers to develop and produce their range of market offerings without any costly mistakes. This realization creates an emphasis on the efficiency of the redesign process, particularly on the handling of engineering changes. However, most activities involved in the redesign process are supported either inefficiently or not at all by the current design methods and tools, primarily because they have been mostly developed to improve original product development. In view of this, the main goal of this research is to propose an aircraft redesign methodology that will act as a decision-making aid for aircraft designers in the change implementation planning of derivative developments. The proposed method, known as Strategic Planning of Engineering Changes (SPEC), combines the key elements of the product redesign planning and change management processes. Its application is aimed at reducing the redesign risks of derivative aircraft development, improving the detection of possible change effects propagation, increasing the efficiency of the change implementation planning and also reducing the costs and the time delays due to the redesign process. To address these challenges, four research areas have been identified: baseline assessment, change propagation prediction, change impact analysis and change implementation planning. Based on the established requirements for the redesign planning process, several methods and

  9. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  10. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  11. Comparison of alternate fuels for aircraft

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  12. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  13. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    Science.gov (United States)

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  14. Conversion of the dual training aircraft (DC into single control advanced training aircraft (SC. Part I

    Directory of Open Access Journals (Sweden)

    Ioan ŞTEFĂNESCU

    2011-03-01

    Full Text Available Converting the DC school jet aircraft into SC advanced training aircraft - and use them forthe combat training of military pilots from the operational units, has become a necessity due to thebudget cuts for Air Force, with direct implications on reducing the number of hours of flight assignedto operating personnel for preparing and training.The purpose of adopting such a program is to reduce the number of flight hours allocated annuallyfor preparing and training in advanced stages of instruction, for every pilot, by more intensive use ofthis type of aircraft, which has the advantage of lower flight hour costs as compared to a supersoniccombat plane.

  15. Robust Aircraft Squadron Scheduling in the Face of Absenteeism

    National Research Council Canada - National Science Library

    Gokcen, Osman B

    2008-01-01

    Air Force fighter aircraft squadrons the world over share a unique problem. Each requires complex training schedules coupling aircraft to pilots, the duo to missions and airspaces, and then the entire combination to a feasible time slot...

  16. Civil aircraft side-facing seat research summary.

    Science.gov (United States)

    2012-11-01

    The Federal Aviation Administration (FAA) has standards and regulations that are intended to protect aircraft : occupants in the event of a crash. However, side-facing seats were not specifically addressed when aircraft seat : dynamic test standards ...

  17. Visit to China's ARJ21 Aircraft Manufacturing Facility

    National Research Council Canada - National Science Library

    Balut, Stephen J; McNicol, David L; Nelson, J. R; Harmon, Bruce R; Holder, Stephen G

    2008-01-01

    During a December 2007 visit to China to share information about civilian aircraft costs, a delegation from IDA visited the Shanghai Aircraft Manufacturing Facility where the commercial chinese ARJ21...

  18. Smart Patches for Monitoring Fatigue Crack Growth in Aircraft Structures

    National Research Council Canada - National Science Library

    Ihn, Jeong-Beom

    2001-01-01

    A built-in cost-effective diagnostic system for monitoring crack growth in aircraft structures was developed, particularly for riveted fuselage joints and cracked aircraft parts with composite bonded patches...

  19. System for indicating fuel-efficient aircraft altitude

    Science.gov (United States)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  20. Practical Voice Recognition for the Aircraft Cockpit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to the urgent need for improved pilot interfaces in the modern aircraft cockpit. Recent advances in aircraft equipment bring tremendous...

  1. 75 FR 8427 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2010-02-24

    ... entitled, ``State of the Art of Supersonics Aircraft Technology--What has progressed in science since 1973... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Civil Supersonic Aircraft Panel Discussion AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation...

  2. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  3. Unmanned Aircraft Systems: The Road to Effective Integration

    National Research Council Canada - National Science Library

    Petrock, Christopher T; Huizenga, Thomas D

    2006-01-01

    ...) sharing airspace with manned assets. There have been at least two recent collisions between unmanned and rotary-wing aircraft at lower altitudes in Iraq, as well as numerous near misses with fixed-wing aircraft at higher altitudes...

  4. Fault Tolerance, Diagnostics, and Prognostics in Aircraft Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract In modern fighter aircraft with statically unstable airframe designs, the flight control system is considered flight critical, i.e. the aircraft will...

  5. Cost Valuation: A Model for Comparing Dissimilar Aircraft Platforms

    National Research Council Canada - National Science Library

    Long, Eric J

    2006-01-01

    .... A demonstration of the model's validity using aircraft and cost data from the Predator UAV and the F-16 was then performed to illustrate how it can be used to aid comparisons of dissimilar aircraft...

  6. 77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-09-13

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... proposed AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop...

  7. Modular Electric Propulsion Test Bed Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  8. Investigating accidents involving aircraft manufactured from polymer composite materials

    OpenAIRE

    Dunn, Leigh

    2013-01-01

    This thesis looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. ...

  9. 77 FR 45480 - Deductions for Entertainment Use of Business Aircraft

    Science.gov (United States)

    2012-08-01

    ... Deductions for Entertainment Use of Business Aircraft AGENCY: Internal Revenue Service (IRS), Treasury... business aircraft for entertainment. These final regulations affect taxpayers that deduct expenses for... section 274 of the Internal Revenue Code (Code) of deductions for the use of business aircraft for...

  10. 14 CFR 47.19 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 47.19 Section 47.19... REGISTRATION General § 47.19 FAA Aircraft Registry. Each application, request, notification, or other communication sent to the FAA under this Part must be mailed to the FAA Aircraft Registry, Department of...

  11. Fleet Management Decision Making With Individual Aircraft Tracking Data

    NARCIS (Netherlands)

    Newcamp, Jeffrey; Verhagen, W.J.C.; Curran, R.

    2017-01-01

    Individual aircraft tracking data can be used by aircraft fleet managers to detect patterns in historical usage as a means to aid aging aircraft decision-making. This work tackles two aspects of applying these tracking data: investigating retirement patterns and assessing how base assignment can

  12. Application of automation for low cost aircraft cabin simulator

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Boomen, van den G.J.A.; Rauterberg, G.W.M.

    2010-01-01

    This paper presents an application of automation for low cost aircraft cabin simulator. The aircraft cabin simulator is a testbed that was designed for research on aircraft passenger comfort mprovement product. The simulator consists of an economy class section, a business class section, a lavatory

  13. 78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-02-12

    ... (2) Model 172S, S/N l72S11074 through 172S11193. (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe... Airworthiness Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT...

  14. 77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-12-05

    ... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition This AD was prompted by reports of chafing of a new... flight, reinstall the fuel return line assembly (Cessna P/N 0516031-1) following Cessna Aircraft Company...

  15. 76 FR 70379 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2011-11-14

    ...) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code Fuel, 28...-1245; Directorate Identifier 2011-CE-033-AD; RIN 2120-AA64] Airworthiness Directives; Cessna Aircraft... certain Cessna Aircraft Company (Cessna) Models 172R and 172S airplanes. The existing AD requires you to...

  16. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition... Fuel Return System Modification Do not install Cessna Aircraft Company Service Bulletin SB 04- 28-03...

  17. 31 CFR 538.519 - Aircraft and maritime safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft and maritime safety. 538.519..., Authorizations, and Statements of Licensing Policy § 538.519 Aircraft and maritime safety. Specific licenses may... aircraft, and to ensure the safety of ocean-going maritime traffic in international waters. ...

  18. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...

  19. 78 FR 25363 - Airworthiness Directives; Diamond Aircraft Industries Airplanes

    Science.gov (United States)

    2013-05-01

    ... holidays. For service information identified in this AD, contact Diamond Aircraft Industries GmbH, N.A... Aircraft Industries GmbH has issued Mandatory Service Bulletin 40NG-018/1, dated November 20, 2012. The... Aircraft Industries GmbH Mandatory Service Bulletin 40NG-018/1, dated November 26, 2012. (2) If chafing...

  20. Future V/STOL Aircraft For The Pacific Basin

    Science.gov (United States)

    Albers, James A.; Zuk, John

    1992-01-01

    Report describes geography and transportation needs of Asian Pacific region, and describes aircraft configurations suitable for region and compares performances. Examines applications of high-speed rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and landing (STOL) aircraft. Configurations benefit commerce, tourism, and development of resources.

  1. 78 FR 7642 - Airworthiness Directives; Piper Aircraft, Inc.

    Science.gov (United States)

    2013-02-04

    ... Airworthiness Directives; Piper Aircraft, Inc. AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) PA-28, PA-32, PA-34, and PA-44...

  2. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2012-07-19

    ...-0756; Directorate Identifier 2012-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... adopt a new airworthiness directive (AD) for all Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and PA-19 airplanes. This proposed AD was prompted by...

  3. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-05-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2012-0756; Directorate Identifier 2012-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  4. 78 FR 56150 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-09-12

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... published in the Federal Register. AD 2013-13-01 applies to certain Piper Aircraft, Inc. Models PA-46-310P... nitrile parts are installed for certain Piper Aircraft, Inc. Models PA-46-310P, PA-46-350P, PA-46R-350T...

  5. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a... ``Public Aircraft Oversight Forum: Ensuring Safety for Critical Missions'', are to (1) raise awareness of...

  6. 48 CFR 1852.228-71 - Aircraft flight risks.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Aircraft flight risks. 1852... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract (particularly...

  7. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  8. 77 FR 67561 - Airworthiness Directives; Univair Aircraft Corporation Airplanes

    Science.gov (United States)

    2012-11-13

    ... Airworthiness Directives; Univair Aircraft Corporation Airplanes AGENCY: Federal Aviation Administration (FAA...) that published in the Federal Register. That AD applies to certain Univair Aircraft Corporation Models... throughout the AD for Univair Aircraft Corporation Models (ERCO) 415-C, 415-CD, 415-D, E, G; (Forney) F-1 and...

  9. 77 FR 68058 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-70, S-70A, S-70C, S-70C(M... after receipt. For service information identified in this AD, contact Sikorsky Aircraft Corporation...

  10. 77 FR 33083 - Airworthiness Directives; WACO Classic Aircraft Corporation Airplanes

    Science.gov (United States)

    2012-06-05

    ... Airworthiness Directives; WACO Classic Aircraft Corporation Airplanes AGENCY: Federal Aviation Administration... directive (AD) for certain WACO Classic Aircraft Corporation Models 2T-1A, 2T-1A-1, and 2T-1A-2 airplanes... information identified in this AD, contact WACO Classic Aircraft Corporation; 15955 South Airport Rd., Battle...

  11. 78 FR 60656 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2013-10-02

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters to require modifying the No. 1 engine forward... Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main...

  12. 77 FR 52205 - Airworthiness Directives; Univair Aircraft Corporation Airplanes

    Science.gov (United States)

    2012-08-29

    ... Airworthiness Directives; Univair Aircraft Corporation Airplanes AGENCY: Federal Aviation Administration (FAA... certain Univair Aircraft Corporation Models (ERCO) 415-C, 415-CD, 415-D, E, G; (Forney) F-1 and F-1A... inspection results. This new AD was prompted by a report of a Univair Aircraft Corporation Model ERCO 415-D...

  13. 77 FR 21402 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-10

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the discovery of tail... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  14. Final Rule for Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    EPA adopted emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  15. 76 FR 6525 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Science.gov (United States)

    2011-02-07

    ... Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia Aircraft... following new AD: 2011-03-04 Cessna Aircraft Company (Type Certificate Previously Held by Columbia Aircraft... the following Cessna Aircraft Company (type certificate previously held by Columbia Aircraft...

  16. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  17. Simulation Packages Expand Aircraft Design Options

    Science.gov (United States)

    2013-01-01

    In 2001, NASA released a new approach to computational fluid dynamics that allows users to perform automated analysis on complex vehicle designs. In 2010, Palo Alto, California-based Desktop Aeronautics acquired a license from Ames Research Center to sell the technology. Today, the product assists organizations in the design of subsonic aircraft, space planes, spacecraft, and high speed commercial jets.

  18. Shimmy of Aircraft Main Landing Gears

    NARCIS (Netherlands)

    Besselink, I.J.M.

    2000-01-01

    The landing gear is an important aircraft system, which has to meet many different design requirements. It is a highly loaded structure, which is designed for minimum weight. Shimmy is a dynamic instability of the landing gear, which is caused by the interaction of the dynamic behaviour of the

  19. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Science.gov (United States)

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  20. Congestion Pricing for Aircraft Pushback Slot Allocation.

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    Full Text Available In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  1. 14 CFR 34.6 - Aircraft safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Aircraft safety. 34.6 Section 34.6... safety. (a) The provisions of this part will be revised if at any time the Administrator determines that an emission standard cannot be met within the specified time without creating a safety hazard. (b...

  2. Congestion Pricing for Aircraft Pushback Slot Allocation

    Science.gov (United States)

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  3. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...

  4. Aircraft and background noise annoyance effects

    Science.gov (United States)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  5. Lightning Protection for Composite Aircraft Structures

    Science.gov (United States)

    Olson, G. O.

    1985-01-01

    Lightning protection system consisting of two layers of aluminum foil separated by layer of dielectric material protects graphite/epoxy composite structures on aircraft. Protective layer is secondarily applied lightning protection system, prime advantage of which is nullification of thermal and right angle effect of lightning arc attachment to graphite/epoxy laminate.

  6. Commercial Aircraft Pricing: Application of Lessons Learned

    Science.gov (United States)

    2017-12-01

    Given this, and the 45 Sean Broderick , “Boeing Revives Emphasis On Post-Delivery Business...web.stanford.edu/~lanierb/research/Dynamic_Aircraft_RES.pdf. Broderick , Sean. “Boeing Revives Emphasis On Post-Delivery Business.” Inside MRO, MRO

  7. Aircraft Performance for Open Air Traffic Simulations

    NARCIS (Netherlands)

    Metz, I.C.; Hoekstra, J.M.; Ellerbroek, J.; Kugler, D.

    2016-01-01

    The BlueSky Open Air Tra_c Simulator developed by the Control & Simulation section of TU Delft aims at supporting research for analysing Air Tra_c Management concepts by providing an open source simulation platform. The goal of this study was to complement BlueSky with aircraft performance

  8. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1996-01-01

    Exhaust emissions from aircraft include oxides of nitrogen (NO x ), water vapor (H 2 O), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  9. Aircraft route forecasting under adverse weather conditions

    Directory of Open Access Journals (Sweden)

    Thomas Hauf

    2017-04-01

    Full Text Available In this paper storm nowcasts in the terminal manoeuvring area (TMA of Hong Kong International Airport are used to forecast deviation routes through a field of storms for arriving and departing aircraft. Storms were observed and nowcast by the nowcast system SWIRLS from the Hong Kong Observatory. Storms were considered as no-go zones for aircraft and deviation routes were determined with the DIVSIM software package. Two days (21 and 22 May 2011 with 22 actual flown routes were investigated. Flights were simulated with a nowcast issued at the time an aircraft entered the TMA or departed from the airport. These flights were compared with a posteriori simulations, in which all storm fields were known and circumnavigated. Both types of simulated routes were then compared with the actual flown routes. The qualitative comparison of the various routes revealed generally good agreement. Larger differences were found in more complex situations with many active storms in the TMA. Route differences resulted primarily from air traffic control measures imposed such as holdings, slow-downs and shortcuts, causing the largest differences between the estimated and actual landing time. Route differences could be enhanced as aircraft might be forced to circumnavigate a storm ahead in a different sense. The use of route forecasts to assist controllers coordinating flights in a complex moving storm field is discussed. The study emphasises the important application of storm nowcasts in aviation meteorology.

  10. Aircraft Piston Engine Exhaust Emission Symposium

    Science.gov (United States)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  11. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  12. A Flight Dynamic Model of Aircraft Spinning

    Science.gov (United States)

    1990-06-01

    r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests

  13. Unmanned Aircraft Systems for Logistics Applications

    Science.gov (United States)

    2011-01-01

    supply stock levels at acceptable risk by employing a mix of “ jingle air” (Mi-8 helicopters and small, fixed-wing aircraft flown by contractor air...crews), “ jingle trucks” (locally contracted trucks), and “green air” (U.S. Army aviation, typically CH-47s, though not exclu- sively) to move materiel

  14. Demonstrative Maneuvers for Aircraft Agility Predictions

    Science.gov (United States)

    2008-03-01

    AIAA Paper 1996-3741. 19. Raymer , Daniel P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., 3rd...Shaw, Robert L. Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis, MD, 1985. 25. Smith, Steven W. The Scientist and

  15. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  16. Access improvement to aircraft passengers' hand luggage.

    Science.gov (United States)

    Alberda, W; Kampinga, O; Kassels, R; van Kester, R; Noriega, J; Vink, P

    2015-01-01

    Efficient use of space and passenger comfort in aircraft interiors are major issues. There is not much research available about the flying experience regarding passengers' personal belongings. The objective of this study is to explore concepts within the current aircraft seats which improve the passenger experience related to their personal belongings like wallets, mobile phones and laptops. Through on-site observations, interviews and online questionnaires, data regarding the number of personal belongings taken into the airplane and opinions about access to hand luggage were gathered. These data were used to develop different concepts to optimize the aircraft interior, which were evaluated by passengers. Almost every passenger carries a phone (88%), wallet (94%), travel documents (98%) and keys (76%) with them and they like to have these stored close by. Passengers rate the concept that provides integrated storage in the tray table of the aircraft seat the best. Extra storage possibility in the table-tray seems a promising solution according to the passengers.

  17. Aircraft impact design for SGHWR containment

    International Nuclear Information System (INIS)

    Bartley, R.; Davies, I.Ll.

    1976-01-01

    A description is given of the influence on the design of the containment structure to meet the recent safety requirements in the UK of specified external hazards. Methods of preliminary design for the case of aircraft impact are described to enable structural sizes to be determined. (author)

  18. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  19. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  20. 75 FR 41986 - Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications to...

    Science.gov (United States)

    2010-07-20

    ...- Sport Aircraft; Modifications to Rules for Sport Pilots and Flight Instructors With a Sport Pilot Rating... rule; OMB approval of information collection. SUMMARY: This document announces the Office of Management... rule, ``Certification of Aircraft and Airmen for the Operation of Light-Sport Aircraft; Modifications...

  1. Aircraft crash upon outer containment of nuclear power plant

    International Nuclear Information System (INIS)

    Abbas, H.; Paul, D.K.; Godbole, P.N.; Nayak, G.C.

    1996-01-01

    In this paper, analysis of an aircraft crash upon an outer containment of a nuclear power plant is presented. The effect of target yielding is considered simultaneously by calculating the reaction time in a time marching scheme. The concrete model employed is capable of predicting the cracking and yielding. The response for different cracking strains and different locations of aircraft strike for different aircraft has been studied. Critical location of aircraft strike for the containment has been investigated. The analytical procedure and the material model used are found to be capable of representing the aircraft impact response of the containment structure. (orig.)

  2. Review of Aircraft Electric Power Systems and Architectures

    DEFF Research Database (Denmark)

    Zhao, Xin; Guerrero, Josep M.; Wu, Xiaohao

    2014-01-01

    In recent years, the electrical power capacity is increasing rapidly in more electric aircraft (MEA), since the conventional mechanical, hydraulic and pneumatic energy systems are partly replaced by electrical power system. As a consequence, capacity and complexity of aircraft electric power...... systems (EPS) will increase dramatically and more advanced aircraft EPSs need to be developed. This paper gives a brief description of the constant frequency (CF) EPS, variable frequency (VF) EPS and advanced high voltage (HV) EPS. Power electronics in the three EPS is overviewed. Keywords: Aircraft Power...... System, More Electric Aircraft, Constant Frequency, Variable Frequency, High Voltage....

  3. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    Science.gov (United States)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  4. Aircraft Noise and Quality of Life around Frankfurt Airport

    Directory of Open Access Journals (Sweden)

    Thomas Eikmann

    2010-08-01

    Full Text Available In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL and health-related quality of life (HQoL were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship.

  5. Control of Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  6. Structural analysis at aircraft conceptual design stage

    Science.gov (United States)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions

  7. Aeroelastic tailoring of composite aircraft wings

    Science.gov (United States)

    Mihaila-Andres, Mihai; Larco, Ciprian; Rosu, Paul-Virgil; Rotaru, Constantin

    2017-07-01

    The need of a continuously increasing size and performance of aerospace structures has settled the composite materials as the preferred materials in aircraft structures. Apart from the clear capacity to reduce the structural weight and with it the manufacture cost and the fuel consumption while preserving proper airworthiness, the prospect of tailoring a structure using the unique directional stiffness properties of composite materials allows an aerospace engineer to optimize aircraft structures to achieve particular design objectives. This paper presents a brief review of what is known as the aeroelastic tailoring of airframes with the intent of understanding the evolution of this research topic and at the same time providing useful references for further studies.

  8. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  9. Study on afterburner of aircraft engine

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1991-07-01

    Study on the afterburner for aircraft engines was reported which is used as an optimum means to produce the supersonic capability of military aircrafts. The basic principle and types of the afterburner were outlined, and as the major problem concerning turbofan afterburners, a combustion capacity at low temperature in fan air flow was discussed, in particular, flame stabilization and combustion efficiency. Basic studies were conducted by fuel spray test, combustion stability test, sector model combustion test and numerical analysis of afterburner internal flow. As a result, a mixing spray fuel injection system with injection of a small amount of fuel into flameholder wake resulted in broadening of a combustible region, and an original flameholder combined with a scoop and double gutters caused a high combustion efficiency. The prototype afterburner was developed for F3 turbofan engines in association with Japan Defence Agency, and a combustion efficiency of 74% was obtained in on-engine running test. 4 refs., 14 figs.

  10. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  11. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  12. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  13. Inspection of aging aircraft: A manufacturer's perspective

    Science.gov (United States)

    Hagemaier, Donald J.

    1992-01-01

    Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.

  14. Fuel consumption and exhaust emissions of aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, R. [Institute of Flightmechanics, Braunschweig (Germany)

    1997-12-31

    The reduction of contamination of sensitive atmospheric layers by improved flight planning steps, is investigated. Calculated results have shown, that a further development of flight track planning allows considerable improvements on fuel consumption and exhaust emissions. Even if air traffic will further increase, optimistic investigations forecast a reduction of the environmental damage by aircraft exhausts, if the effects of improved flight track arrangement and engine innovations will be combined. (R.P.) 4 refs.

  15. Support Resources Demand Parameters - Aircraft. Revision A

    Science.gov (United States)

    1980-01-15

    Maintenance Squadron A- ST Advance Medium STOL Transport APU Auxillary Power Unit ASSY Assembly ATC Air Training Command AVG Average BAC Boeing Aerospace...entire study that will result in an organized and prioritized body of decision criteria and parameters that may be used by logistics managers, supervisors...technicians, and other decision makers in the process of predicting resource demand rates for operational and new emerging aircraft weapon systems

  16. Collaborative Systems Driven Aircraft Configuration Design Optimization

    OpenAIRE

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide; Nagel, Björn

    2016-01-01

    A Collaborative, Inside-Out Aircraft Design approach is presented in this paper. An approach using physics based analysis to evaluate the correlations between the airframe design, as well as sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated ...

  17. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The distribution of military aircraft and proximity to commercial air routes requires the analysis of aircraft impact effect on nuclear power plant facilities in Europe. The typical approach on recent projects has been the hardening of safety-related buildings and/or protection of redundant safety-related equipment through separation. The 'hardened-building' approach has led to the consideration of severe shock and vibration caused by the aircraft impact and development of corresponding floor response spectra for component design. Conservatively calculated loads resulting from these are in some cases quite severe. The reactor auxiliary system building (Soft Shell Hardcore design) allows a more defensive alternate in the form of a partially softened design. In this approach the equipment layout is arranged such that equipment performing either safety functions or having the potential for significant release of radioactivity (upon destruction) is located in the central area of the plant and is enclosed in thick concrete walls for shielding and protection purposes. The non-safety class equipment is arranged in the area peripheral to the hardened central area and enclosed in thin concrete walls. Since the kinetic energy of the impacting aircraft is absorbed by the collapsed thin walls and ceilings, the vibrational effect on the safety class equipment is drastically reduced. In order to achieve the objective of absorbing high kinetic energy and yet reduce the shock and vibration effects, the softened exterior walls require low resistance and high ductility. This investigation determines the feasibility of two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model. (Auth.)

  18. The Demand for Single Engine Piston Aircraft,

    Science.gov (United States)

    1987-08-01

    flying markets. The wing incorporates the drooped leading edge technology developed by NASA for more stability and spin resistance and its aerodynamic ...composites more quickly because of the absence of certi- ficatjcr: requirements. Less conventional configurations such as carar( wings and winglets are...smooth contours and surfaces. Composites offer much promise and are already in use in winos of a number of aircraft. Winglets reduce vortex drag by

  19. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  20. Unmanned Aircraft Systems Roadmap, 2005-2030

    Science.gov (United States)

    2005-01-01

    UCAV Unmanned Combat Air Vehicle ISS Integrated Sensor Suite UCS Unmanned Control System ITU International Telecommunications Union UFO UHF...RDC) at Groton, CT. These have included alien and drug interdiction along the Texas coast and in the Caribbean, UA launch and recovery systems...altitude aircraft and UA; and narrowband services to support mobile and handheld services as a replacement or follow-on for the UHF Follow-On ( UFO

  1. Human Factors Aspects of Aircraft Accidents

    Science.gov (United States)

    1982-10-01

    invaatiaaamanta traa important« : chainaa da grand entratian avion, revision daa motaura at banca d’aaaala, reviaion daa Equipements nEceaaitant daa...defectueux. Sur le plan des accidents d’apparells militaires, qui sort quelque peu de ma specia- lite, les renseignements disponibles dans la presse ...Undoubtedly, a compelling reason for staying with the aircraft was to try to regain pitch attitude control in view of a large audience of press and

  2. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  3. Decentralized flight trajectory planning of multiple aircraft

    OpenAIRE

    Yokoyama, Nobuhiro; 横山 信宏

    2008-01-01

    Conventional decentralized algorithms for optimal trajectory planning tend to require prohibitive computational time as the number of aircraft increases. To overcome this drawback, this paper proposes a novel decentralized trajectory planning algorithm adopting a constraints decoupling approach for parallel optimization. The constraints decoupling approach is formulated as the path constraints of the real-time trajectory optimization problem based on nonlinear programming. Due to the parallel...

  4. Applications for Navy Unmanned Aircraft Systems

    Science.gov (United States)

    2010-01-01

    comunication intelligence (COMINT) collection, and airborne electronic attack applications. If the UCAS-D program is successful in addressing many of the...position navigation and timing RF radio frequency RSTA reconnaissance, surveillance, and target acquisition SAB Scientific Advisory Board SAR synthetic...Aircraft Systems Roadmap 2005–2030 and Unmanned Systems Roadmap 2007–2032, and the 2003 Air Force Scientific Advisory Board (SAB) UAS study

  5. Automation of the aircraft design process

    Science.gov (United States)

    Heldenfels, R. R.

    1974-01-01

    The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.

  6. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  7. Optimizing height presentation for aircraft cockpit displays

    Science.gov (United States)

    Jordan, Chris S.; Croft, D.; Selcon, Stephen J.; Markin, H.; Jackson, M.

    1997-02-01

    This paper describes an experiment conducted to investigate the type of display symbology that most effectively conveys height information to users of head-down plan-view radar displays. The experiment also investigated the use of multiple information sources (redundancy) in the design of such displays. Subjects were presented with eight different height display formats. These formats were constructed from a control, and/or one, two, or three sources of redundant information. The three formats were letter coding, analogue scaling, and toggling (spatially switching the position of the height information from above to below the aircraft symbol). Subjects were required to indicate altitude awareness via a four-key, forced-choice keyboard response. Error scores and response times were taken as performance measures. There were three main findings. First, there was a significant performance advantage when the altitude information was presented above and below the symbol to aid the representation of height information. Second, the analogue scale, a line whose length indicated altitude, proved significantly detrimental to performance. Finally, no relationship was found between the number of redundant information sources employed and performance. The implications for future aircraft and displays are discussed in relation to current aircraft tactical displays and in the context of perceptual psychological theory.

  8. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  9. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  10. Evolution of civil aircraft industry development

    Directory of Open Access Journals (Sweden)

    Aram I. Afyan

    2017-01-01

    Full Text Available Civil aircraft industry market is а complex multistage system of manufacturers and consumers, which affects countries all over the world. The globalization and world economic growth caused inevitable merger of national markets into one system where the key role belongs to few corporations. In the article the author analyze peculiarities of civil aircraft industry global market shaping. Main reasons of aircraft industry centers appearance are considered through socio political and economic development of the industry. Factors that caused national specialization of manufacturing countries are examined along with peculiarities of Boeing leadership. The main stages of the industry development are described starting from the beginning of the 20th century up to the present day. The author highlights specific characters of European manufacturers development and their merger into one multinational conglomerate. Besides, modern market status is examined through benchmark study of the main competitors. Main tendencies of the industry are segmentation and new aviation industry clusters appearance. Key actors of regional aviation are described, which are Embraer and Bombardier. Reasons of their appearance and development are analyzed. Main pretenders for the aviation industry global market entrance are outlined.

  11. A Simple Two Aircraft Conflict Resolution Algorithm

    Science.gov (United States)

    Chatterji, Gano B.

    2006-01-01

    Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.

  12. Thermal comfort assessment in civil aircraft cabins

    Directory of Open Access Journals (Sweden)

    Pang Liping

    2014-04-01

    Full Text Available Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET∗ of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.

  13. Aircraft digital flight control technical review

    Science.gov (United States)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  14. NASA's Zero-g aircraft operations

    Science.gov (United States)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  15. Robustness of mission plans for unmanned aircraft

    Science.gov (United States)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  16. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    Science.gov (United States)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  17. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    Science.gov (United States)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  18. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  19. Assessment of NDE needs for aging corporate and private aircraft

    Science.gov (United States)

    Reinhart, Eugene R.

    1998-03-01

    Considerable attention has been focused on the life extension of ageing military and commercial aircraft by the government and major aircraft fabricators. A vital, but often neglected segment of the aircraft industry is the are of inspecting ageing fleets of corporate and privately-owned aircraft. Many of these aircraft are inspected and maintained by the various FAA-approved repair stations located around the country. Nondestructive inspection (NDI) methods, equipment, and trained inspectors are a key aspect of maintaining these aircraft; however, there are currently several issues that need to be addressed by the private sector NDI community. Personnel training and certification to an accepted standard is critically needed in this industry since experience and capability in NDI can vary considerably between FAA stations and inspectors. Also, the updating of NDI methods are standards is needed. A review of these issues and suggestions for improvement are presented.

  20. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  1. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    OpenAIRE

    Michael Schultz

    2018-01-01

    Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays). To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground opera...

  2. An overview of major aspects of the aircraft impact problem

    International Nuclear Information System (INIS)

    Kamil, H.; Kost, G.; Sharpe, R.

    1978-01-01

    The major aspects of the aircraft impact problem are identified and the most relevant topics for future investigations are discussed. The emphasis is on three main topics: modeling techniques, influence of non-linear behavior, and importance of damping in the dynamic structural response analyses for aircraft loading. Results are presented from brief studies involving response of linear and nonlinear simple systems to short-duration impulsive loadings of the aircraft impact type. (Auth.)

  3. Aircraft dynamic loads generated in wake vortex encounters

    OpenAIRE

    Suñer Perucho, Carles

    2014-01-01

    The study illustrated in these pages was developed in the Structural Dynamics and Aeroelasticity Department of the Military Aircraft division of Airbus Defence and Space in Getafe, Madrid (Spain). That department is a multidisciplinary one involving several categories. Some of its competences are the analysis of impacts, acoustics and vibrations for the aircraft and all their systems. Also, the dynamic response of the aircraft to different events is part of the tasks for that department. It i...

  4. F-15 PCA (Propulsion Controlled Aircraft) Simulation Cockpit

    Science.gov (United States)

    1990-01-01

    The F-15 PCA (Propulsion Controlled Aircraft) simulation was used from 1990 to 1993. It was used for the development of propulsion algorithms and piloting techniques (using throttles only) to be used for emergency flight control in the advent of a major flight control system failure on a multi-engine aircraft. Following this program with the Dryden F-15, similiar capabilities were developed for other aircraft, such as the B-720, Lear 24, B-727, C-402, and B-747.

  5. MATHEMATICAL MODELLING OF AIRCRAFT PILOTING PROSSESS UNDER SPECIFIED FLIGHT PATH

    Directory of Open Access Journals (Sweden)

    И. Кузнецов

    2012-04-01

    Full Text Available The author suggests mathematical model of pilot’s activity as follow up system and mathematical methods of pilot’s activity description. The main idea of the model is flight path forming and aircraft stabilization on it during instrument flight. Input of given follow up system is offered to be aircraft deflection from given path observed by pilot by means of sight and output is offered to be pilot’s regulating actions for aircraft stabilization on flight path.

  6. An aircraft noise pollution model for trajectory optimization

    Science.gov (United States)

    Barkana, A.; Cook, G.

    1976-01-01

    A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.

  7. Adaptive and Online Health Monitoring System for Autonomous Aircraft

    OpenAIRE

    Mokhtar, Maizura; Zapatel-Bayo, Sergio Z.; Hussein, Saed; Howe, Joe M.

    2012-01-01

    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour b...

  8. Wide Body Aircraft Demand Potential at Washington National Airport,

    Science.gov (United States)

    1977-09-01

    the city-pair markets. Probably the most important feature of FA-7 is the fact that it allows for investigation of the behavior of airlines to changes...FINANCIAL INFORMfATION YLIGHTS BY AIRCRAFT TPE ~.4/J \\ FUEL COSUMED PASSENGERS UARRIED BY TOA IR F FLIGHITS TOTAL AIRCRAFT USAGE coded data. Sample...the various levels of operations. Similar behavior can be identified in the simultaneous increase of both types of aircraft at Dulles. Tables lAthrough

  9. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  10. Study of LH2 fueled subsonic passenger transport aircraft

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  11. 78 FR 4092 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-01-18

    ... aircraft's hydraulic power pack wiring for incorrect installation, and if needed, correct the installation... hydraulic power pack wiring for incorrect installation, and if needed, correct the installation. Since...

  12. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  13. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1998-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  14. Integrated Network of Optimizations for Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  15. Fractographic Analysis of High-Cycle Fatgue in Aircraft Engines

    National Research Council Canada - National Science Library

    Shockey, Donald

    2000-01-01

    .... Fracture surfaces produced under systematically varied cydic load conditions in laboratory specimens of titanium turbine blade alloy were provided to the program by an aircraft engine manufacturer...

  16. Fractographic Analysis of High-Cycle Fatigue in Aircraft Engines

    National Research Council Canada - National Science Library

    Shockey, Donald

    2000-01-01

    .... Fracture surfaces produced under systematically varied cyclic load conditions in laboratory specimens of titanium turbine blade alloy were provided to the program by an aircraft engine manufacturer...

  17. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  18. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  19. Offsite radiological consequence analysis for the bounding aircraft crash accident

    International Nuclear Information System (INIS)

    OBERG, B.D.

    2003-01-01

    The purpose of this calculation note is to quantitatively analyze a bounding aircraft crash accident for comparison to the DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', Appendix A, Evaluation Guideline of 25 rem. The potential of aircraft impacting a facility was evaluated using the approach given in DOE-STD-3014-96, ''Accident Analysis for Aircraft Crash into Hazardous Facilities''. The following aircraft crash FR-equencies were determined for the Tank Farms in RPP-11736, ''Assessment Of Aircraft Crash FR-equency For The Hanford Site 200 Area Tank Farms'': (1) The total aircraft crash FR-equency is ''extremely unlikely.'' (2) The general aviation crash FR-equency is ''extremely unlikely.'' (3) The helicopter crash FR-equency is ''beyond extremely unlikely.'' (4) For the Hanford Site 200 Areas, other aircraft type, commercial or military, each above ground facility, and any other type of underground facility is ''beyond extremely unlikely.'' As the potential of aircraft crash into the 200 Area tank farms is more FR-equent than ''beyond extremely unlikely,'' consequence analysis of the aircraft crash is required

  20. Disruption Management for an Airline - Rescheduling of aircraft

    DEFF Research Database (Denmark)

    Larsen, Jesper; Løve, Michael; Sørensen, Kim Riis

    2002-01-01

    The Aircraft Recovery Problem (ARP) involves decisions concerning aircraft to flight assignments in situations where unforseen events have disrupted the existing flight schedule, e.g. bad weather causing flight delays. The aircraft recovery problem aims to recover these flight schedules through...... a series of reassignments of aircraft to flights, delaying of flights and cancellations of flights. This article demonstrates an effective method to solve ARP. A heuristic is implemented, which is able to generate feasible revised flight schedules of a good quality in less than 10 seconds. This article...

  1. Small Aircraft Transportation System Higher Volume Operations Concept

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  2. Model Updating in Online Aircraft Prognosis Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  3. Research on aircraft emissions. Need for future work

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, A. [German Aerospace Establishment, Cologne (Germany). Transport Research Div.

    1997-12-31

    Reflecting the present status of the research on aircraft emissions and their impacts upon the atmosphere, task-fields for a work programme for the research on aircraft emissions can be derived. Most important measures are to support the efforts to define adequate reduction measures, and (with highest priority) scenario-writing for the long-term development in aircraft emissions, to be able to include into the decision making process the aspect of in-time-reaction against unwanted future. Besides that, a steady monitoring of global aircraft emissions will be necessary. (author) 5 refs.

  4. Study of quiet turbofan STOL aircraft for short haul transportation

    Science.gov (United States)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  5. Modeling aircraft noise induced sleep disturbance

    Science.gov (United States)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the

  6. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  7. Response of equipment to aircraft impact

    International Nuclear Information System (INIS)

    Wolf, J.P.; Bucher, K.M.; Skrikerud, P.E.

    1977-01-01

    The loading case of an aircraft crashing onto certain safety-relevant buildings of a nuclear-power plant has recently become, in certain countries, as important as that of the safe-shutdown earthquake. Although its probability of occurrence is substantially smaller than that of the SSE, the analysis is justified as an aircraft can also be regarded as representative of other shock loading cases. For the purpose of design it is convenient to distinguish between the response of the actual structure and that of the equipment. The former, which consists of global stress resultants and of local effects such as spalling, scabbing, penetration and perforation of the concrete of the structure, is quite well understood and is not examined in this paper. The latter, caused by propagating shock waves, has, rather surprisingly, received little attention, although, for earthquake excitation, the analysis of equipment is routinely performed. The high accelerations experienced by the equipment are calculated and the corresponding floor-response spectra show that the airplane crash is dominant in the high-frequency range, when compared to the effect of earthquakes. As the aircraft impacts on a small area of the structure only, and the corresponding function of the load versus time exhibits a substantial content of high frequency, the modelling of the structure has to be rather detailed. Several thousand dynamic degrees of freedom in a finite-element idealization result, when analyzing e.g. a typical reactor auxiliary building, the familiar lumped-beam models used successfully for earthquake analysis can obviously not be chosen. (Auth.)

  8. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  9. Commercial Aircraft Development and the Export Market

    Science.gov (United States)

    Snodgrass, J.

    1972-01-01

    The various factors which endanger the future of commercial aircraft development are defined. The factors discussed are: (1) a decline in federally funded research and development programs, (2) a general decline in the economic health of the domestic airlines, (3) the increased cost of development which may be several times the net worth of the company, (4) the development overseas of common market and manufacturing consortia, and (5) foreign manufacturers receiving significant financial support from their national governments. It is stated that unless immediate and innovative solutions to combat these factors are found, the commercial aviation industry will be in serious difficulty.

  10. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  11. Fire resistant films for aircraft applications

    Science.gov (United States)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  12. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  13. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  14. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  15. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  16. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  17. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  18. 75 FR 66009 - Airworthiness Directives; Cessna Aircraft Company (Type Certificate Previously Held by Columbia...

    Science.gov (United States)

    2010-10-27

    ... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously the Lancair... Company (Type Certificate Previously Held by Columbia Aircraft Manufacturing (Previously The Lancair...-15895. Applicability (c) This AD applies to the following Cessna Aircraft Company (type certificate...

  19. Trust Control of VTOL Aircraft Part Deux

    Science.gov (United States)

    Dugan, Daniel C.

    2014-01-01

    Thrust control of Vertical Takeoff and Landing (VTOL) aircraft has always been a debatable issue. In most cases, it comes down to the fundamental question of throttle versus collective. Some aircraft used throttle(s), with a fore and aft longitudinal motion, some had collectives, some have used Thrust Levers where the protocol is still "Up is Up and Down is Down," and some have incorporated both throttles and collectives when designers did not want to deal with the Human Factors issues. There have even been combinations of throttles that incorporated an arc that have been met with varying degrees of success. A previous review was made of nineteen designs without attempting to judge the merits of the controller. Included in this paper are twelve designs entered in competition for the 1961 Tri-Service VTOL transport. Entries were from a Bell/Lockheed tiltduct, a North American tiltwing, a Vanguard liftfan, and even a Sikorsky tiltwing. Additional designs were submitted from Boeing Wichita (direct lift), Ling-Temco-Vought with its XC-142 tiltwing, Boeing Vertol's tiltwing, Mcdonnell's compound and tiltwing, and the Douglas turboduct and turboprop designs. A private party submitted a re-design of the Breguet 941 as a VTOL transport. It is important to document these 53 year-old designs to preserve a part of this country's aviation heritage.

  20. Locating industrial VOC sources with aircraft observations

    International Nuclear Information System (INIS)

    Toscano, P.; Gioli, B.; Dugheri, S.; Salvini, A.; Matese, A.; Bonacchi, A.; Zaldei, A.; Cupelli, V.; Miglietta, F.

    2011-01-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: → Flight plan aimed at sampling industrial area at various altitudes and locations. → SPME sampling strategy was based on plume detection by means of CO 2 . → Concentrations obtained were lower than the limit values or below the detection limit. → Scan mode highlighted presence of γ-butyrolactone (GBL) compound. → Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  1. Critical joints in large composite aircraft structure

    Science.gov (United States)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  2. Propeller installation effects on turboprop aircraft acoustics

    Science.gov (United States)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  3. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  4. Deicing System Protects General Aviation Aircraft

    Science.gov (United States)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  5. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  6. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  7. Aviation Frontiers: On-Demand Aircraft

    Science.gov (United States)

    Moore, Mark D.

    2010-01-01

    Throughout the 20th Century, NASA has defined the forefront of aeronautical technology, and the aviation industry owes much of its prosperity to this knowledge and technology. In recent decades, centralized aeronautics has become a mature discipline, which raises questions concerning the future aviation innovation frontiers. Three transformational aviation capabilities, bounded together by the development of a Free Flight airspace management system, have the potential to transform 21st Century society as profoundly as civil aviation transformed the 20th Century. These mobility breakthroughs will re-establish environmental sustainable centralized aviation, while opening up latent markets for civil distributed sensing and on-demand rural and regional transportation. Of these three transformations, on-demand aviation has the potential to have the largest market and productivity improvement to society. The information system revolution over the past 20 years shows that vehicles lead, and the interconnecting infrastructure to make them more effective follows; that is, unless on-demand aircraft are pioneered, a distributed Air Traffic Control system will likely never be established. There is no single technology long-pole that will enable on-demand vehicle solutions. However, fully digital aircraft that include electric propulsion has the potential to be a multi-disciplinary initiator of solid state technologies that can provide order of magnitude improvements in the ease of use, safety/reliability, community and environmental friendliness, and affordability.

  8. Analysing the effects of rigid and flexible aircraft dynamics on the ejection of a large store

    CSIR Research Space (South Africa)

    Jamison, Kevin

    2011-09-01

    Full Text Available duration ? ERU forces + store weight release causes aircraft ?g-jump? ? Period of ERU force is short enough to excite wing vibration modes ? ERU force/time & front/back force balance important for determining store separation rates from aircraft... ? Constrained motion in other DOF ? Used mass, inertias, CG of aircraft without Katleho ? Used trimmed forces of aircraft with Katleho ? Assumes delay in pilot response to g-jump ? CSIR 2011 Slide 14 Aircraft rigid accelerations Aircraft mass...

  9. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    Science.gov (United States)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  10. ABOUT THE FORMATION OF THE DEVELOPMENT COSTS OF THE AIRCRAFT

    Directory of Open Access Journals (Sweden)

    I. V. Artemenko

    2015-01-01

    Full Text Available The article discusses approaches to the formation of the limit prices of aircraft with using of elements of economic-mathematical modeling. Theoretical and practical aspects of development of methods of solving economic problems in the implementation of the mechanism of formation of effective innovation-stimulating prices in the drafting and design of aircraft.

  11. ABOUT THE FORMATION OF THE DEVELOPMENT COSTS OF THE AIRCRAFT

    OpenAIRE

    I. V. Artemenko; V. S. Oleshko; V. M. Samoylenko

    2015-01-01

    The article discusses approaches to the formation of the limit prices of aircraft with using of elements of economic-mathematical modeling. Theoretical and practical aspects of development of methods of solving economic problems in the implementation of the mechanism of formation of effective innovation-stimulating prices in the drafting and design of aircraft.

  12. 22 CFR 121.3 - Aircraft and related articles.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Aircraft and related articles. 121.3 Section 121.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS THE UNITED STATES MUNITIONS LIST Enumeration of Articles § 121.3 Aircraft and related articles. In Category VIII...

  13. How Effective Is Communication Training For Aircraft Crews

    Science.gov (United States)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  14. Decay or collapse: Aircraft wake vortices in grid turbulence

    NARCIS (Netherlands)

    Ren, M.; Elsenaar, A.; van Heijst, G.J.F.; Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2006-01-01

    Trailing vortices are naturally shed by airplanes and they typically evolve into a counter-rotating vortex pair. Downstream of the aircraft, these vortices can persist for a very long time and extend for several kilometers. This poses a potential hazard to following aircraft, particularly during

  15. Aircraft measurements of aerosol black carbon from a coastal ...

    Indian Academy of Sciences (India)

    ABL) and 1500m (above the ABL). During this, the aircraft covered a latitudinal span of ~3.6. ◦. , which was much higher than the spatial coverage in the earlier sorties at HYD and KNP. The limit of the latitudinal coverage was basically due to the endurance of the aircraft. The results are shown in figure 6. The flight originated ...

  16. 77 FR 55770 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-09-11

    ... aircraft's hydraulic power pack wiring for incorrect installation, and if needed, correct the installation... this AD, whichever occurs first, inspect the hydraulic power pack wiring for correct installation...) Correct the Installation of the Hydraulic Power Pack Wiring (1) Single engine aircraft: If you find...

  17. Measuring compliance during aircraft (Component) redeliveries at KLM engineering & maintenance

    NARCIS (Netherlands)

    Burhani, Shahir; Verhagen, W.J.C.; Curran, Ricky

    2016-01-01

    Aircraft and aircraft components are redelivered to the next operator or owner during the phase-out process. During this process the operator is required by law and contract requirements to show compliance with maintenance procedures. At KLM E&M the phase-out documentation process is under

  18. PRINCIPLE "EARLY MATCHING" AERODYNAMIC DESIGN AIRCRAFT WITH LANDING GEAR HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    V. P. Morozov

    2015-01-01

    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  19. Application of a greedy algorithm to military aircraft fleet retirements

    NARCIS (Netherlands)

    Newcamp, J.M.; Verhagen, W.J.C.; Udluft, H.; Curran, Ricky

    2017-01-01

    This article presents a retirement analysis model for aircraft fleets. By employing a greedy algorithm, the presented solution is capable of identifying individually weak assets in a fleet of aircraft with inhomogeneous historical utilization. The model forecasts future retirement scenarios

  20. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  1. Aircraft Landing and Attitude Control Using Dynamic Matrix Control

    Directory of Open Access Journals (Sweden)

    George Cristian Calugaru

    2017-06-01

    Full Text Available This paper proposes a method for an efficient control of the aircraft landing and attitude through Dynamic Matrix Control. The idea of MPC structures used in aircraft control has been well established during the last few years, but some aspects require further investigation. With this in mind, the paper proposes structures for aircraft landing and aircraft attitude control by using single DMC controllers for landing and respectively one DMC controller for each of the attitude axis (pitch attitude hold, bank angle hold and heading hold. The model used for analysis of the aircraft landing structure is based on the last phase of landing. Also, the model used to illustrate the attitude control is that of a pitch attitude hold system of a N250-100 aircraft. Simulations are performed for a variety of control and prediction horizons, taking into account the possibility of adding a weighting factor for the control actions. Apart from separate studies on step reference variations, for some use cases, a generic reference trajectory is provided as a control purpose of the system. Results show a better performance of the proposed method in terms of control surface transition and protection of the actuators involved and a better time response in stabilizing the aircraft attitude. Overall, the aspects shown ensure an improved aircraft attitude control and landing stabilization.

  2. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    International Nuclear Information System (INIS)

    Ragan, G.E.

    2002-01-01

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area

  3. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  4. Robust Control of an Ill-Conditioned Aircraft

    DEFF Research Database (Denmark)

    Breslin, S.G.; Tøffner-Clausen, S.; Grimble, M.J.

    1996-01-01

    A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point.......A robust controller is designed for a linear model of an Advanced Short Take-Off and Vertical Landing (ASTOVL) aircraft at one operating point....

  5. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    Science.gov (United States)

    2015-11-01

    found that different capabilities were being used to determine inspection intervals for different aircraft [7]. This led to an internal effort...capability of the NDI technique determines the inspection intervals and the Distribution Statement A. Approved for public release; distribution...damage and that the aircraft structure had to be inspectable . The results of the damage tolerance assessments were incorporated into USAF Technical

  6. Recent and Future Enhancement in NDI for Aircraft Structures (Postprint)

    Science.gov (United States)

    2015-11-01

    found that different capabilities were being used to determine inspection intervals for different aircraft [7]. This led to an internal effort...capability of the NDI technique determines the inspection intervals and the Distribution Statement A. Approved for public release; distribution...damage and that the aircraft structure had to be inspectable . The results of the damage tolerance assessments were incorporated into USAF Technical

  7. 76 FR 48047 - Airworthiness Directives; Diamond Aircraft Industries Powered Sailplanes

    Science.gov (United States)

    2011-08-08

    ... 5 p.m., Monday through Friday, except Federal holidays. For service information identified in this... Service Information Diamond Aircraft Industries GmbH has issued Service Bulletin No. MSB 36-105/1, dated...-105, dated April 21, 2011, as specified in Diamond Aircraft Industries GmbH Service Bulletin No. MSB...

  8. 78 FR 57104 - Airworthiness Directives; Diamond Aircraft Industries Airplanes

    Science.gov (United States)

    2013-09-17

    ... p.m., Monday through Friday, except Federal holidays. For service information identified in this... AD docket. Relevant Service Information Diamond Aircraft Industries GmbH has issued Mandatory Service... service information related to this AD, contact Diamond Aircraft Industries GmbH, N.A. Otto-Str.5, A-2700...

  9. 78 FR 41277 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-07-10

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... certain Piper Aircraft, Inc. Models PA-46-310P, PA-46-350P, PA-46R-350T, and PA-46-500TP airplanes. This... through Friday, except Federal holidays. For service information identified in this AD, contact Piper...

  10. 78 FR 51121 - Airworthiness Directives; Piper Aircraft, Inc.

    Science.gov (United States)

    2013-08-20

    ...-0742; Directorate Identifier 2013-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft...). SUMMARY: We propose to supersede an existing airworthiness directive (AD) that applies to certain Piper... identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida 32960; telephone...

  11. 76 FR 60367 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2011-09-29

    ... Airworthiness Directives; Piper Aircraft, Inc. Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are revising an existing airworthiness directive (AD) for certain Piper...). ADDRESSES: For service information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive...

  12. Airport acoustics: Aircraft noise distribution and modelling of some ...

    African Journals Online (AJOL)

    Airport acoustics: Aircraft noise distribution and modelling of some aircraft parameters. MU Onuu, EO Obisung. Abstract. No Abstract. Nigerian Journal of Physics Vol. 17 (Supplement) 2005: pp. 177-186. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  13. The organization closed water battery plant Aircraft Factory

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2008-01-01

    Full Text Available  The information on unrational water usage and losts is given in the article. The necessity of closed water cycle introduction is shown for the aircraft repairing plant. The principle scheme of closed cycle water usage is developed for the accumulator department of the aircraft repairing plant. Modern technological equipment is offered for implementation.

  14. 78 FR 35085 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the new and...

  15. 77 FR 24251 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2012-04-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the new and...

  16. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  17. 78 FR 37701 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Science.gov (United States)

    2013-06-24

    ... Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for Pilatus Aircraft Ltd. Models PC-6, PC-6-H1, PC-6-H2, PC-6/350, PC- 6/350-H1, PC-6/350-H2... components and the flap actuator could result in loss of control. We are issuing this proposed AD to require...

  18. 14 CFR 13.17 - Seizure of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Seizure of aircraft. 13.17 Section 13.17... INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.17 Seizure of aircraft. (a) Under... officer, or a Federal Aviation Administration safety inspector, authorized in an order of seizure issued...

  19. 77 FR 68057 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Sikorsky Aircraft Corporation (Sikorsky) Model S-76C helicopters. This AD requires installing an improved... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  20. 77 FR 68061 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-11-15

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD requires inspecting the tail rotor (T/R... Corporation, Attn: Manager, Commercial Technical Support, mailstop s581a, 6900 Main Street, Stratford, CT...

  1. 77 FR 18969 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-03-29

    ... Corporation Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aircraft Corporation (Sikorsky) Model S-76C helicopters. This proposed AD is prompted by a bird-strike to.... For service information identified in this proposed AD, contact Sikorsky Aircraft Corporation, Attn...

  2. 36 CFR 2.17 - Aircraft and air delivery.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Aircraft and air delivery. 2.17 Section 2.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.17 Aircraft and air delivery. (a) The following are...

  3. 36 CFR 1002.17 - Aircraft and air delivery.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Aircraft and air delivery. 1002.17 Section 1002.17 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.17 Aircraft and air delivery. (a) Delivering or retrieving a person or...

  4. A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft...

  5. Thin-film Hybrid Coating for Ice Mitigation on Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current aircraft utilize electro-thermal/mechanical protection systems to actively remove ice from vital aircraft surfaces. These systems have high power...

  6. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  7. A New Cryocooler for MgB2 Superconducting Systems in Turboelectric Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design...

  8. The community response to aircraft noise around six Spanish airports

    Science.gov (United States)

    Garcia, A.; Faus, L. J.; Garcia, A. M.

    1993-06-01

    The community response to aircraft noise has been studied through a social survey. A total of 1800 persons living in the vicinity of six major Spanish airports have been interviewed at their homes concerning the environmental quality of the area, dissatisfaction with road traffic noise and aircraft noise, activities interfered with by noise, most disturbing aircraft types, and subjective evaluation of airport impact. All the responses obtained in this survey have been compared with aircraft noise levels corresponding to the residence locations of the people interviewed (values of NEF levels were calculated with the INM model). The results obtained in this work allow one to evaluate the impact of aircraft noise under a wide range of different situations.

  9. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  10. Investigation of incidents of terrorism involving commercial aircraft.

    Science.gov (United States)

    Clark, M A; Wagner, G N; Wright, D G; Ruehle, C J; McDonnell, E W

    1989-07-01

    Deaths resulting from terrorism involving aircraft have occurred incident to hijackings as well as bombings. Passengers or groups of passengers have been chosen by terrorists as the recipients of violence based on citizenship, religion, and political beliefs. They have usually been segregated from other passengers and subsequently mistreated and/or murdered. Thorough documentation of the injuries of victims is essential to the investigation of such atrocities; a medicolegal autopsy correlated with a scene investigation is of paramount importance. Aircraft bombings can create extremely sensitive political situations and public demands for quick resolution. The autopsy of victims in such circumstances, if properly conducted, can yield invaluable trace evidence leading to the identification of the explosive device. The examination of any surviving victims as well as the aircraft is also critical in reconstructing the event. Deaths occurring as the result of in-flight aircraft bombings can produce injuries by five different mechanisms, viz. blast, shrapnel, decompression, impact with the aircraft, and ground impact.

  11. Passengers' perception of the safety demonstration on board an aircraft

    Science.gov (United States)

    Ruenruoy, Ratchada

    The cabin safety demonstration on board an aircraft is one of the methods to provide safety information for passengers before aircraft takeoff. However, passengers' enthusiasm toward safety demonstrations is normally low. Therefore, the study of passengers' perception toward safety briefings on board an aircraft is important in increasing the safety awareness for the travelling public on commercial aircraft. A survey was distributed to measure the perceptions of Middle Tennessee State University (MTSU) faculty and staff, Aerospace students, and international students who have traveled in the last year. It was generally found that watching the cabin safety demonstration before aircraft takeoff was believed to be important for passengers. However, the attention to the safety demonstration remained low because the safety briefings were not good enough in terms of clear communication, particularly in the recorded audio demonstration and the live safety demonstration methods of briefing.

  12. Frequency Analysis of Aircraft hazards for License Application

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards

  13. Inductive sensor for lightning current measurement, fitted in aircraft windows, part II: Measurements on an A320 aircraft

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2011-01-01

    A novel sensor for the detection of the lightning current through the fuselage of an aircraft has been tested on an A320 aircraft. An accurate method-of-moment model of the window edge provided reliable calibration of the sensor for external fields. The data have been analyzed and the good

  14. Annoyance by aircraft noise and fear of overflying aircraft in relation to attitudes toward the environment and community

    Science.gov (United States)

    Loeb, M.; Moran, S. V.

    1977-01-01

    It has been suggested that expressions of annoyance attributable to aircraft noise may reflect in part fear of aircraft overflights and possible crashes. If this is true, then residents of areas where crashes have occurred should express more annoyance. To test this hypothesis, 50 residents of an Albany, New York area where an aircraft crash producing fatalities recently occurred and 50 residents of a comparable nearby area without such a history, were asked to respond to a 'Quality of Life Questionnaire.' Among the items were some designed to test annoyance by noise and fear of aircraft overflights. It was predicted that those in the crash area would express more fear and would more often identify aircraft as a noise source. These hypotheses were sustained. A near-replication was carried out in Louisville, Kentucky; results were much the same. Analyses indicated that for the crash-area groups, there was associating of aircraft fear and noise annoyance responses; this was true to an apparently lesser extent for non-crash groups. The greater annoyance of crash groups by aircraft community noise apparently does not carry over to situations in which aircraft noise is assessed in the laboratory.

  15. Impact damage in aircraft composite sandwich panels

    Science.gov (United States)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  16. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    Science.gov (United States)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  17. Joint Technical Coordinating Group on Aircraft Survivability (JTCG/AS). Bibliography of Joint Aircraft Survivability Reports

    Science.gov (United States)

    2000-07-01

    PMSG ). Report No.: JTCG/AS-99-D-003 Report Classification: UNCLASSIFIED Title: JTCG/AS Bibliography of Joint Aircraft Survivability Reports and...indicates those approved and not approved for funding by the Principal Members Steering Group ( PMSG ). Report No.: Report Classification: JTCG/AS-97-V-010...demonstrated by additional tests conducted at NWSC/Crane (up to Mach 0.8) and Rockwell International wind tunnel (up to Mach 1/9 and 30,000 feet altitude

  18. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  19. Some trends in aircraft design: Structures

    Science.gov (United States)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  20. National Unmanned Aircraft Systems Project Office

    Science.gov (United States)

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  1. Consideration of materials for aircraft brakes

    Science.gov (United States)

    Peterson, M. B.; Ho, T.-L.

    1974-01-01

    A study has been made of the frictional behavior of several aircraft brake materials using a simple high-temperature Falex-type apparatus. Tests were run at velocities of seven ft/minute; loads to 600 pounds and temperatures to 700 C. The data for these brake materials sliding against a variety of steels and other materials indicate a large reduction in friction due to surface oxidation in the temperature range 250 to 300 C. It also was found that the retention of this oxide was a function of the temperature changes. With increasing temperature the oxide was removed, while with reducing temperature it was retained. Frictional behavior was more characteristic of the steel than the brake material.

  2. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  3. Analysis of aircraft impact to concrete structures

    International Nuclear Information System (INIS)

    Arros, Jorma; Doumbalski, Nikolay

    2007-01-01

    Analysis of aircraft impact to nuclear power plant structures is discussed utilizing a simplified model of a 'fictitious nuclear building' to perform analyses using LS-DYNA software, representing the loading: (i) by the Riera force history method and (ii) by modeling the crash by impacting a model of a plane similar to Boeing 747-400 to the structure (i.e., 'missile-target interaction method'). Points discussed include: (1) comparison of shock loading within the building as obtained from the Riera force history analysis versus from the missile-target interaction analysis, (2) sensitivity of the results on the assumed Riera force loading area, (3) linear versus nonlinear modeling and (4) on failure criteria

  4. A fuel cell driven aircraft baggage tractor

    Energy Technology Data Exchange (ETDEWEB)

    Sterkenburg, Stefan van [HAN Univ. of Applied Sciences (Netherlands); Rijs, Aart van; Hupkens, Huib [Silent Motor Company, Arnhem (Netherlands)

    2010-07-01

    Silent Motor Company and the HAN University of Applied Science collaborate in the development of an aircraft baggage tractor. The baggage tractor is equipped with an 8kW fuel cell stack connected to a 26kWh battery-pack. The control system implemented minimizes the start-up time of the fuel cell system, protects the fuel cell against overload and underload and controls the State of Charge (SOC) of the battery to its optimum value. A practical SOC-determination method is implemented which does not need detailed knowledge about the batteries applied. This paper presents a description of the fuel cell system, its energy management system and SOC-determination method and the results of first test measurements. (orig.)

  5. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  6. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  7. Suicide and Murder-Suicide Involving Aircraft.

    Science.gov (United States)

    Kenedi, Christopher; Friedman, Susan Hatters; Watson, Dougal; Preitner, Claude

    2016-04-01

    This is a systematic review of suicide and homicide-suicide events involving aircraft. In aeromedical literature and in the media, these very different events are both described as pilot suicide, but in psychiatry they are considered separate events with distinct risk factors. Medical databases, internet search engines, and aviation safety databases were searched in a systematic way to obtain relevant cases. Relevant articles were searched for additional references. There were 65 cases of pilot suicide and 6 cases of passengers who jumped from aircraft found. There were also 18 cases of homicide-suicide found involving 732 deaths. Pilots perpetrated 13 homicide-suicide events. Compared to non-aviation samples, a large percentage of pilot suicides in this study were homicide-suicides (17%). Homicide-suicide events occur extremely rarely. However, their impact in terms of the proportion of deaths is significant when compared to deaths from accidents. There is evidence of clustering where pilot suicides occur after by media reports of suicide or homicide-suicide. Five of six homicide-suicide events by pilots of commercial airliners occurred after they were left alone in the cockpit. This, along with a sixth incident in which active intervention by a Japan Air crew saved 147 lives, suggests that having two flight members in the cockpit is potentially protective. No single factor was associated with the risk for suicide or homicide-suicide. Factors associated with both events included legal and financial crises, occupational conflict, mental illness, and relationship stressors. Drugs and/or alcohol played a role in almost half of suicides, but not in homicide-suicides.

  8. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  9. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  10. Live Aircraft Encounter Visualization at FutureFlight Central

    Science.gov (United States)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  11. Aircraft Impact Assessment of APR1400 Reactor Containment Building

    International Nuclear Information System (INIS)

    Moon, Il Hwan; Kim, Do Yeon; Kim, Jae Hee; Kim, Sang Yun

    2011-01-01

    The implementation of a protection to withstand aircraft impact on safety-related structures and systems is basically based on a probabilistic evaluation for each site, if the licensing body doesn't require a deterministic approach. Existing nuclear power plants in Korea were designed based on the probabilistic approach, and the aircraft impact hazard remained less than a probability of 10 -7 . However, a man-made aircraft impact have been considered as a possible external accident for the nuclear power plant. New plant designs that are to be constructed in the U.S. after July 2009 must consider the effect of impact from a large commercial aircraft according to the requirements of 10 CFR 50.150. Especially, Reactor Containment Building (RCB) housing the safety-related equipment and fuels should be protected safely against aircraft crash without perforation and scabbing failure of external wall. APR1400 RCB is constructed as a prestressed concrete containment vessel (PCCV) which is surrounded by the auxiliary building housing additional safety-related equipment and other systems. In this study, the aircraft impact analyses for the RCB are carried out using Riera forcing function and aircraft model. Considered external wall thickness is 4 ft 6 in. for the cylindrical wall and 4 ft for the dome. Actual strengths of concrete and steel are considered as the material properties. For these analyses, the dynamic increment factor and concrete aging effect are considered in accordance with NEI 07-13(2011)

  12. Hull loss accident model for narrow body commercial aircraft

    Directory of Open Access Journals (Sweden)

    Somchanok Tiabtiamrat

    2010-10-01

    Full Text Available Accidents with narrow body aircraft were statistically evaluated covering six families of commercial aircraft includingBoeing B737, Airbus A320, McDonnell Douglas MD80, Tupolev TU134/TU154 and Antonov AN124. A risk indicator for eachflight phase was developed based on motion characteristics, duration time, and the presence of adverse weather conditions.The estimated risk levels based on these risk indicators then developed from the risk indicator. Regression analysis indicatedvery good agreement between the estimated risk level and the accident ratio of hull loss cases per number of delivered aircraft.The effect of time on the hull loss accident ratio per delivered aircraft was assessed for B737, A320 and MD80. Equationsrepresenting the effect of time on hull loss accident ratio per delivered aircraft were proposed for B737, A320, and MD80,while average values of hull loss accident ratio per delivered aircraft were found for TU134, TU154, and AN 124. Accidentprobability equations were then developed for each family of aircraft that the probability of an aircraft in a hull loss accidentcould be estimated for any aircraft family, flight phase, presence of adverse weather factor, hour of day, day of week, monthof year, pilot age, and pilot flight hour experience. A simplified relationship between estimated hull loss accident probabilityand unsafe acts by human was proposed. Numerical investigation of the relationship between unsafe acts by human andfatality ratio suggested that the fatality ratio in hull loss accident was dominated primarily by the flight phase media.

  13. Accident analysis for aircraft crash into hazardous facilities: DOE standard

    International Nuclear Information System (INIS)

    1996-10-01

    This standard provides the user with sufficient information to evaluate and assess the significance of aircraft crash risk on facility safety without expending excessive effort where it is not required. It establishes an approach for performing a conservative analysis of the risk posed by a release of hazardous radioactive or chemical material resulting from an aircraft crash into a facility containing significant quantities of such material. This can establish whether a facility has a significant potential for an aircraft impact and whether this has the potential for producing significant offsite or onsite consequences. General implementation guidance, screening and evaluation guidelines, and methodologies for the evaluations are included

  14. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  15. Probabilistic assessment of NPP safety under aircraft impact

    International Nuclear Information System (INIS)

    Birbraer, A.N.; Roleder, A.J.; Arhipov, S.B.

    1999-01-01

    Methodology of probabilistic assessment of NPP safety under aircraft impact is described below. The assessment is made taking into account not only the fact of aircraft fall onto the NPP building, but another casual parameters too, namely an aircraft class, velocity and mass, as well as point and angle of its impact with the building structure. This analysis can permit to justify the decrease of the required structure strength and dynamic loads on the NPP equipment. It can also be especially useful when assessing the safety of existing NPP. (author)

  16. Fuel-conservative guidance system for powered-lift aircraft

    Science.gov (United States)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  17. Energy optimization analysis of the more electric aircraft

    Science.gov (United States)

    Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen

    2018-02-01

    The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.

  18. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    Science.gov (United States)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  19. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  20. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  1. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  2. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  3. Improvement of Aircraft Crash Effective Areas for Koeberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    Momoti, S.; Dongmo, G.B.; Combrink, Y.

    2017-01-01

    Probabilistic Safety Assessment (PSA): Tool for determining safe functioning of nuclear power plant to meet regulatory requirements; One of the inputs to the PSA are the frequency and consequences of an aircraft crash. Overview: Frequency of Aircraft Crash; Effective Area of an Aircraft Crashing into Koeberg - Aviation Categories, - Shielding of sensitive target buildings; Impact of refining the Effective AreaFrequency of Aircraft Crash

  4. Optimised Sound Absorbing Trim Panels for the Reduction of Aircraft Cabin Noise

    NARCIS (Netherlands)

    Hannink, M.H.C.; Wijnant, Ysbrand H.; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.

    2004-01-01

    The EU project FACE (Friendly Aircraft Cabin Environment) aims to improve the environmental comfort in aircraft cabins. As part of this project, this paper focuses on the reduction of noise in aircraft cabins. For modern aircraft flying at cruise conditions, this cabin noise is known to be dominated

  5. 76 FR 4226 - Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Sailplanes

    Science.gov (United States)

    2011-01-25

    ... through Friday, except Federal holidays. For service information identified in this AD, contact Aircraft... docket. Relevant Service Information Aircraft Industries a.s. has issued LET Aircraft Industries... Airworthiness Directives; Aircraft Industries a.s. Model L 23 Super Blanik Sailplanes AGENCY: Federal Aviation...

  6. 76 FR 18033 - Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper...

    Science.gov (United States)

    2011-04-01

    ... Airworthiness Directives; Piper Aircraft, Inc. (Type Certificate Previously Held by The New Piper Aircraft, Inc... applies to certain Piper Aircraft, Inc. Models PA-46-310P and PA- 46-350P airplanes that are equipped with... information identified in this AD, contact Piper Aircraft, Inc., 2926 Piper Drive, Vero Beach, Florida 32960...

  7. 48 CFR 1252.228-70 - Loss of or damage to leased aircraft.

    Science.gov (United States)

    2010-10-01

    ... market value of the aircraft at the time of such loss or damage, which value may be specifically agreed to in clause 1252.228-71, “Fair Market Value of Aircraft,” less the salvage value of the aircraft... Contractor will be paid the fair market value of the aircraft as stated in the clause. (d) The Contractor...

  8. 76 FR 1349 - Airworthiness Directives; Cessna Aircraft Company (Cessna) (Type Certificate A00003SE Previously...

    Science.gov (United States)

    2011-01-10

    ... Airworthiness Directives; Cessna Aircraft Company (Cessna) (Type Certificate A00003SE Previously Held by... Company (Type Certificate A00003SE previously held by Columbia Aircraft Manufacturing (previously The... Cessna Aircraft Company (Cessna) (Type Certificate A00003SE previously held by Columbia Aircraft...

  9. Digital Preservation Theory and Application: Transcontinental Persistent Archives Testbed Activity

    Directory of Open Access Journals (Sweden)

    Paul Watry

    2007-12-01

    Full Text Available The National Archives and Records Administration (NARA and EU SHAMAN projects are working with multiple research institutions on tools and technologies that will supply a comprehensive, systematic, and dynamic means for preserving virtually any type of electronic record, free from dependence on any specific hardware or software. This paper describes the joint development work between the University of Liverpool and the San Diego Supercomputer Center (SDSC at the University of California, San Diego on the NARA and SHAMAN prototypes. The aim is to provide technologies in support of the required generic data management infrastructure. We describe a Theory of Preservation that quantifies how communication can be accomplished when future technologies are different from those available at present. This includes not only different hardware and software, but also different standards for encoding information. We describe the concept of a “digital ontology” to characterize preservation processes; this is an advance on the current OAIS Reference Model of providing representation information about records. To realize a comprehensive Theory of Preservation, we describe the ongoing integration of distributed shared collection management technologies, digital library browsing, and presentation technologies for the NARA and SHAMAN Persistent Archive Testbeds.

  10. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    to the technical characteristics of individual installations spread across large regions. The proposed methodology is validated using actual power data in Europe and can be applied to represent intermittent generation in network development plans, reliability and market studies, as well as operational guidelines.......The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales...

  11. Transcontinental phylogeography of the Daphnia pulex species complex.

    Science.gov (United States)

    Crease, Teresa J; Omilian, Angela R; Costanzo, Katie S; Taylor, Derek J

    2012-01-01

    Daphnia pulex is quickly becoming an attractive model species in the field of ecological genomics due to the recent release of its complete genome sequence, a wide variety of new genomic resources, and a rich history of ecological data. Sequences of the mitochondrial NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit 1 genes were used to assess the global phylogeography of this species, and to further elucidate its phylogenetic relationship to other members of the Daphnia pulex species complex. Using both newly acquired and previously published data, we analyzed 398 individuals from collections spanning five continents. Eleven strongly supported lineages were found within the D. pulex complex, and one lineage in particular, panarctic D. pulex, has very little phylogeographical structure and a near worldwide distribution. Mismatch distribution, haplotype network, and population genetic analyses are compatible with a North American origin for this lineage and subsequent spatial expansion in the Late Pleistocene. In addition, our analyses suggest that dispersal between North and South America of this and other species in the D. pulex complex has occurred multiple times, and is predominantly from north to south. Our results provide additional support for the evolutionary relationships of the eleven main mitochondrial lineages of the D. pulex complex. We found that the well-studied panarctic D. pulex is present on every continent except Australia and Antarctica. Despite being geographically very widespread, there is a lack of strong regionalism in the mitochondrial genomes of panarctic D. pulex--a pattern that differs from that of most studied cladocerans. Moreover, our analyses suggest recent expansion of the panarctic D. pulex lineage, with some continents sharing haplotypes. The hypothesis that hybrid asexuality has contributed to the recent and unusual geographic success of the panarctic D. pulex lineage warrants further study.

  12. Probable existence of a Gondwana transcontinental rift system in ...

    Indian Academy of Sciences (India)

    S Mazumder

    2017-08-31

    Aug 31, 2017 ... war Basin, Pakistan; J. Geol. Soc. India 76(5) ... lurics in Gulf of Kutch region, Gujarat, India; Project ... Mumbai Offshore Basin, India: Possible role of mega- tsunami .... Pandey U S 2012 Mapping the thickness of Deccan Trap.

  13. Australia's transcontinental gas grid is no longer a dream

    Energy Technology Data Exchange (ETDEWEB)

    Scholes, W

    1989-08-01

    The first cargo of Australian LNG has set sail in the Northwest Sanderling for Tokyo Electric's power plant at Futtsu. It is two months ahead of schedule. On September 19, the Australian Prime Minister, Bob Hawke, will officially open the plant on the Burrup Peninsular. After more than a decade of discussion and construction one of the Australia's largest energy projects is up and running. Yet this is not the only large project going on in Australia. Its success has prompted the Australian gas industry to think big. (author).

  14. Trans-Continental Transport of Air Pollution from Central Asia

    Science.gov (United States)

    Granberg, I.; Chen, B.; Carmichael, G.; Solomon, P.; Sofiev, M.; Sitnov, S.; Rubinstein, K.; Maximenkov, L.; Artamonova, M.; Pogarski, F.

    2009-04-01

    In the frames of ISTC project #3715 for an overview of the year evolution of aerosol in Central Asia the analysis of aerosol optical thickness (AOT) was producing. Monitoring of AOT was making on the base of AOT satellite observation by MODIS devices, located on board of the Terra and Aqua satellites. The region was 34-51 N, and 54-96 E for the year 2007. The analysis revealed that AOT in the region is characterized by pronounced annual pace with the rapid growth of AOT winter, spring peak (τ ~ 0,4), the slow decline of ALO spring to autumn and autumn minimum (τ ~ 0,2). In August a weak secondary maximum of AOT took place. In mid-June and in the first decade of July and August in the region had increased the value of AOT, accompanied by significant increase in AOT volatility. In particular, 8 and 9 August, the average for the region AOT exceeded 0.6. Diagnosis of aerosol emissions was based on an analysis of the spatial and temporal changes of AOT field. Obviously, the spatial scale of data and data discretization in time determines the emissions of power can be diagnosed. The spatial AOT distribution shows that aerosol plumes from the area of the Aral Sea in 2007 were carried out mainly by southeastern and eastern fronts. In the region, there are two major sources of aerosol emissions: one of them located in the south of the Aral Sea and the Kara-Kum desert, and a second, more powerful - over Taklamakan desert. Particularly, data were obtained on the dust storms occurrence of December 15, 2007 in the southern Aral Sea region. In order to detect its influence on the Kyrgyzstan stations dust measurements, simulations of the dust plume from the area of Aral Sea were produced by SILAM model of Finnish Meteorological Institute. Two sets of runs have been performed: forward simulations for estimation of the area affected by the dust elevated by the wind during the storm from the area of Aral Sea. The model has evaluated 5-day dispersion of the plume. The second run was made in adjoint mode, aiming at evaluation of the footprint of the two observations sites - Bishkek and Lidar stations. Here the footprint is the area, which sources affected the observations within the selected period. The analysis of carry of aerosol particles on Central Tien-Shan and further on the basis of construction 4- day time back and direct trajectories is carried out, which were calculated for all days of realization of lidar measurements. The resulting trajectory air mass and density distribution of impurities, which is regionally polluted continental (RPC) air masses transported from Western air flow from Central Asia contributed significantly to the level of pollution at Japanese station Happo. Measuring the content of aerosols in the atmosphere in Central Asia held in a small number of items, and currently available data are insufficient to specify the initial conditions and / or verification of long-range transport models. It should be noted that the main source of aerosol in Central Asia is Taklamakan desert. Average value and AOT variability over it several times higher than corresponding AOT values over the rest of the region. The greatest variability aerosol over Taklamakan observed from late March to mid-May. For example, on April 22, 2008 average of the AOT in cell 5° x 5° over the western part of Taklamakan - value reached 3,171. AOT virtually throughout the region positively correlated with AOT over Taklamakan desert. The most noticeable effect makes an aerosol of Taklamakan found in the south-east Kyrgyzstan, Tajikistan in the east and north of the Tibetan highlands. The impact of the Aral Sea area is restricted significantly less. In doing so, AOT in the central part of the region reveals a weak negative correlation with the AOT over the Aral Sea.

  15. Touring between war and peace Imagining the 'transcontinental motorway', 19301950

    NARCIS (Netherlands)

    Badenoch, Alexander

    2007-01-01

    In 1930 the Alliance internationale de tourisme, a confederation of national cycle and motor touring clubs, set out plans for a motor road from London to Istanbul. This article explores the reasons for the road plan's relative success as a transnational project in the tense inter-war years by

  16. A background radiation survey along the transcontinental railway in Australia

    International Nuclear Information System (INIS)

    Minato, Susumu; Kodaira, Kazuo; Ito, Masaru

    1995-01-01

    This article reports a survey, carried out during a period from October 31 to November 3, 1994 in Australia, as well as some basic techniques of train-borne measurements for estimating outdoor gamma-ray dose rates. Surface rock and bedrock data are presented for convenience for geological analysis. Cosmic-ray dose rates estimated from atmospheric pressure data are also presented for researchers who are interested in total background radiation dose rates. It was found that gamma levels can be high in the western area. The dose rate data were based on the shielding correction factor evaluated at platforms in many stations. To confirm the validity of this method, the data from train-borne surveys in central Japan were compared with the present Australian data. There were, to some extent, correlations between them. The present study suggests that the train-borne measurements are useful for surveying wide area in a short time with an error of about 20%. (N.K.)

  17. Direct carbon dioxide emissions from civil aircraft

    Science.gov (United States)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  18. Hybrid Prediction Method for Aircraft Interior Noise, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is research and development of methods for application of the Hybrid FE-SEA method to aircraft vibro-acoustic problems. This proposal...

  19. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    Science.gov (United States)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  20. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  1. Continuous Biometric Authentication for Authorized Aircraft Personnel: A Proposed Design

    National Research Council Canada - National Science Library

    Carrillo, Cassandra

    2003-01-01

    .... The primary goal of this thesis is to propose a hypothetical design for the use of a non- intrusive mechanism on the flight deck of an aircraft to provide continuous or periodic authentication...

  2. Modular Electric Propulsion Test Bed Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  3. Numerical analyses of an aircraft crash on containment building

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae Min; Kim, Seung Hyun; Chang, Yoon Suk [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The containment building is responsible to isolate and protect internal devices against external conditions like earthquake, hurricane and impact loading. It has also to protect leakage of radioactivity, like LOCA (Loss Of Coolant Accident), when severe accidents occurred. Meanwhile, social awareness such as terrorism has been increased globally after international aircraft crashes at World Trade Center and Pentagon. In this paper, FE (Finite Element) analyses according to variation of crash locations and speeds were carried out to examine the aircraft crash impact on a domestic containment building. In this paper, numerical analyses of aircraft crash on NPP's containment building were performed taking into account different locations and aircraft speeds. (1) Amounts of concrete failure were dependent on the crash locations and the connector was the most delicate location comparing to the dome and wall part. (2) Maximum stress values generated at the liner plate and rebars did not exceed their UTS values.

  4. Windhover Unmanned Aircraft Systems (UAS) Software Ecosystem, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The safety of Unmanned Aircraft Systems (UAS) flights is currently the responsibility of the pilot who is required to keep the vehicle within their line of sight...

  5. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  6. Autonomous Agricultural Application using Unmanned Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Interest in Unmanned Aircraft Systems (UAS) for civilian use has increased greatly in recent years and is expected to grow significantly in the future. NASA is...

  7. Hiawatha Aircraft Anti-Collision System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For Small Unmanned Aerial Vehicles (SUAVs), the FAA mandate to equip all aircraft with ADS-B Out transmitters by 1 January 2020 to support NextGen goals presents...

  8. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    Science.gov (United States)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  9. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  10. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  11. Core Flight Software for Unmanned Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Use of Unmanned Aircraft Systems (UAS) is increasing worldwide, but multiple technical barriers restrict the greater use of UASs. The safe operation of UASs in the...

  12. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  14. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  15. Unmanned Aircraft Systems Integration in the National Airspace System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  16. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  17. Aircraft Nodal Data Acquisition System (ANDAS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  18. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  19. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  20. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  1. Thermal Management System for Superconducting Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft powered by hydrogen power plants or gas turbines driving electric generators connected to distributed electric motors for propulsion have the potential to...

  2. Aircraft noise, air pollution, and mortality from myocardial infarction.

    NARCIS (Netherlands)

    Huss, A.; Spoerri, A.; Egger, M.; Roosli, M.

    2010-01-01

    OBJECTIVE: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. METHODS: We analyzed the Swiss National Cohort, which includes

  3. Water Supply Systems For Aircraft Fire And Rescue Protection

    Science.gov (United States)

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  4. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    Science.gov (United States)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  5. Computational Appliance for Rapid Prediction of Aircraft Trajectories, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation air traffic management systems will be based to a greater degree on predicted trajectories of aircraft. Due to the iterative nature of future air...

  6. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... previously accepted consensus standards relating to the provisions of the Sport Pilot and Light-Sport... Light Sport Aircraft developed the revised standards with Federal Aviation Administration (FAA...

  7. The research of optical windows used in aircraft sensor systems

    International Nuclear Information System (INIS)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Impact of New large Aircraft on Airport Design

    Science.gov (United States)

    1998-03-01

    The object of this project is to assess the impact of the introduction of proposed new large aircraft (NLA) on current airport design standards and administered by the Federal Aviation Administration (FAA). This report identifies several key design a...

  9. Composite Materials in Aircraft Mishaps Involving Fire: A Literature Review

    National Research Council Canada - National Science Library

    Wright, Mark

    2003-01-01

    .... The Naval Air Systems Command (NAVAIR), which provides technical guidance for aircraft fire safety, was concerned that hazards presented by new composite materials and greater quantities of composites may not be adequately addressed...

  10. Numerical analyses of an aircraft crash on containment building

    International Nuclear Information System (INIS)

    Sim, Jae Min; Kim, Seung Hyun; Chang, Yoon Suk

    2016-01-01

    The containment building is responsible to isolate and protect internal devices against external conditions like earthquake, hurricane and impact loading. It has also to protect leakage of radioactivity, like LOCA (Loss Of Coolant Accident), when severe accidents occurred. Meanwhile, social awareness such as terrorism has been increased globally after international aircraft crashes at World Trade Center and Pentagon. In this paper, FE (Finite Element) analyses according to variation of crash locations and speeds were carried out to examine the aircraft crash impact on a domestic containment building. In this paper, numerical analyses of aircraft crash on NPP's containment building were performed taking into account different locations and aircraft speeds. (1) Amounts of concrete failure were dependent on the crash locations and the connector was the most delicate location comparing to the dome and wall part. (2) Maximum stress values generated at the liner plate and rebars did not exceed their UTS values

  11. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Science.gov (United States)

    2012-07-05

    ...: AIRCRAFT ENGINES 0 1. The authority citation for part 33 continues to read as follows: Authority: 49 U.S.C..., analysis, and component test. * * * * * Issued in Washington, DC, on June 7, 2012. Lirio Liu, Acting...

  12. Hiawatha Aircraft Anti-Collision System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For SUAVs, the FAA mandate to equip all aircraft with ADS-B Out transmitters by 1 January 2020 to support NextGen goals presents both logistical and mission security...

  13. Enhancing Combat Survivability of Existing Unmanned Aircraft Systems

    Science.gov (United States)

    2008-12-01

    1 With efforts underway to develop rules integrating UAS’s into the National Airspace System, and...realizing that Federal Aviation Administration rule -making authority applied only to "aircraft," the term Remotely Operated Aircraft (ROA) was coined in...http://www.af.mil/factsheets/factsheet.asp?id=122 [10] Peter La Franchi , “US study recommends self-protection for UAVs”, Flight International, 7

  14. Estimation of aircraft aerodynamic derivatives using Extended Kalman Filter

    OpenAIRE

    Curvo, M.

    2000-01-01

    Design of flight control laws, verification of performance predictions, and the implementation of flight simulations are tasks that require a mathematical model of the aircraft dynamics. The dynamical models are characterized by coefficients (aerodynamic derivatives) whose values must be determined from flight tests. This work outlines the use of the Extended Kalman Filter (EKF) in obtaining the aerodynamic derivatives of an aircraft. The EKF shows several advantages over the more traditional...

  15. Fire-resistant materials for aircraft passenger seat construction

    Science.gov (United States)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  16. Calculation of odour emissions from aircraft engines at Copenhagen Airport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Morten; Kousgaard, Uffe [National Environmental Research Institute, Frederiksborgvej 399, 4000 Roskilde (Denmark); Oxboel, Arne [FORCE Technology, Park Alle 345, 2605 Broendby (Denmark)

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. (author)

  17. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    Science.gov (United States)

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future.

  18. Nuclear containment structure subjected to commercial and fighter aircraft crash

    International Nuclear Information System (INIS)

    Sadique, M.R.; Iqbal, M.A.; Bhargava, P.

    2013-01-01

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment

  19. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  20. Nuclear containment structure subjected to commercial and fighter aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Sadique, M.R., E-mail: rehan.sadique@gmail.com; Iqbal, M.A., E-mail: iqbalfce@iitr.ernet.in; Bhargava, P., E-mail: bhpdpfce@iitr.ernet.in

    2013-07-15

    Highlights: • Nuclear containment response has been studied against aircraft crash. • Concrete damaged plasticity and Johnson–Cook elasto-viscoplastic models were employed. • Boeing 747-400 and Boeing 767-400 aircrafts caused global failure of containment. • Airbus A320 and Boeing 707-320 aircrafts caused local damage. • Tension damage of concrete was found more prominent compared to compression damage. -- Abstract: The response of a boiling water reactor (BWR) nuclear containment vessel has been studied against commercial and fighter aircraft crash using a nonlinear finite element code ABAQUS. The aircrafts employed were Boeing 747-400, Boeing 767-400, Airbus A-320, Boeing 707-320 and Phantom F4. The containment was modeled as a three-dimensional deformable reinforced concrete structure while the loading of aircraft was assigned using the respective reaction–time curve. The location of strike was considered near the junction of dome and cylinder, and the angle of incidence, normal to the containment surface. The material behavior of the concrete was incorporated using the damaged plasticity model while that of the reinforcement, the Johnson–Cook elasto-viscoplastic model. The containment could not sustain the impact of Boeing 747-400 and Boeing 767-400 aircrafts and suffered rupture of concrete around the impact region leading to global failure. On the other hand, the maximum local deformation at the point of impact was found to be 0.998 m, 0.099 m, 0.092 m, 0.089 m, and 0.074 m against Boeing 747-400, Phantom F4, Boeing 767, Boeing 707-320 and Airbus A-320 aircrafts respectively. The results of the present study were compared with those of the previous analytical and numerical investigations with respect to the maximum deformation and overall behavior of the containment.

  1. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  2. Integrating the Unmanned Aircraft System into the National Airspace System

    Science.gov (United States)

    2011-06-18

    HALE High Altitude Long Endurance IFR Instrument Flight Rules ISR Intelligence, Surveillance, and Reconnaissance JFC Joint Force Commander JP...many advantages and disadvantages of unmanned aircraft now made national headlines as UAS executed missions, once reserved for manned aircraft...of this research. To operate above 18,000 feet MSL the UAS must be filed under Instrument Flight Rules, or IFR flight plan. Additionally, the

  3. Residual life estimation of cracked aircraft structural components

    OpenAIRE

    Maksimović, Mirko S.; Vasović, Ivana V.; Maksimović, Katarina S.; Trišović, Nataša; Maksimović, Stevan M.

    2018-01-01

    The subject of this investigation is focused on developing computation procedure for strength analysis of damaged aircraft structural components with respect to fatigue and fracture mechanics. For that purpose, here will be defined computation procedures for residual life estimation of aircraft structural components such as wing skin and attachment lugs under cyclic loads of constant amplitude and load spectrum. A special aspect of this investigation is based on using of the Strain Energy Den...

  4. Experiments Result in Safer, Spin-Resistant Aircraft

    Science.gov (United States)

    2014-01-01

    The General Aviation Spin Program at Langley Research Center devised the first-of-their-kind guidelines for designing more spin-resistant aircraft. Thanks to NASA's contributions, the Federal Aviation Administration introduced the Part 23 spin-resistance standard in 1991. Los Angeles-based ICON Aircraft has now manufactured a new plane for consumer recreational flying that meets the complete set of criteria specified for Part 23 testing.

  5. Data and Performances of Selected Aircraft and Rotocraft

    DEFF Research Database (Denmark)

    Filippone, Antonino

    2000-01-01

    The study reports a comparative view of over 250 aircraft and rotorcraft. We report over 30 geometric characteristics of wings and rotor blades, aerodynamic coefficients and efficiencies, performances and more. Accuracy levels are provided whereever available......The study reports a comparative view of over 250 aircraft and rotorcraft. We report over 30 geometric characteristics of wings and rotor blades, aerodynamic coefficients and efficiencies, performances and more. Accuracy levels are provided whereever available...

  6. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  7. Advanced Airborne Defensive Laser for Incorporation on Strike Fighter Aircraft

    Science.gov (United States)

    2017-09-01

    Systems within the Pod The Cyclops pod contains several systems working together to perform the high - level functions. The status of these systems must be...by the aircraft is limited, and Cyclops power requirements are high . commercial off-the-shelf (COTS) Ram Air Turbines are available and are...Supply Subsystem The Cyclops pod must generate its own power due to lack of available power from the aircraft; therefore, the Power supply has high

  8. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  9. Spanwise transition section for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    A blended wing-body aircraft includes a central body, a wing, and a transition section which interconnects the body and the wing on each side of the aircraft. The two transition sections are identical, and each has a variable chord length and thickness which varies in proportion to the chord length. This enables the transition section to connect the thin wing to the thicker body. Each transition section has a negative sweep angle.

  10. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    Science.gov (United States)

    1982-07-01

    Type of Report end Period Covered Ag Sponsorin ncy Na.e and Address FINAL REPORT U.S. DEPARTMENT OF TRANSPORTATION October, 1980 - June, 1982 FEDERAL...Philadelphia, Pennsylvania Weybridge, Surry England KT130SF Mr. Roy Riseley Mr. William Miles de Havilland Aircraft Cessna Aircraft Company Garratt Blvd. Wallace...Guido F. Pesotti Mr. Frank C. Davis Technical Director Engineering Specialist Empresa Brasileira Aeronautica, S.A. Garrett Turbine Engine Company

  11. Aircraft LTO emissions regulations and implementations at European airports

    Science.gov (United States)

    Yunos, Siti Nur Mariani Mohd; Ghafir, Mohammad Fahmi Abdul; Wahab, Abas Ab

    2017-04-01

    Aviation affects the environment via the emission of pollutants from aircraft, impacting human health and ecosystem. Impacts of aircraft operations at lower ground towards local air quality have been recognized. Consequently, various standards and regulations have been introduced to address the related emissions. This paper discussed both environmental regulations by focusing more on the implementations of LTO emissions charges, an incentive-based regulation introduced in Europe as an effort to fill the gap in addressing the environmental issues related to aviation.

  12. Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages

    Science.gov (United States)

    1994-01-01

    RepoW Techniques for Prwurized Aircraft AXWdOg 4.9 Summary and Conclusions The basics of adhesive bonded repairs for aluminum aircraft fuselages have... of cruise altitude and bending stresses in the plate at the tip of one-sided reinforcements (chapter 5). The expanded Rose model was transformed into a...DEPARTMEN1 OF THE AIR FORCE AGENCY REPORT NUMBER AFIT/CI 2950 P STREET WRIGHT-PATTERSON AFB OH 45433-7765 11. SUPPLEMENTARY NOTES Usa. DISTRUISUIOII

  13. MATHEMATICAL MODEL OF WEAR CHARACTER FAILURE IN AIRCRAFT OPERATION

    OpenAIRE

    Радько, Олег Віталійович; Молдован, Володимир Дмитрович

    2016-01-01

    In this paper the mathematical model of failures associated with wear during aircraft exploitationis developed. Тhe calculations of the distribution function, distribution density and failurerate gamma distribution at low coefficients of variation and the relatively low value of averagewear rate for the current time, which varies quite widely. The results coincide well with thephysical concepts and can be used to build different models of aircraft. Gamma distribution is apretty good model for...

  14. Assessment of sensors and aircraft for oil spill remote sensing

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fruhwirth, M.

    1993-01-01

    Environment Canada has assessed sensors and aircraft suitable for remote sensing, particularly the capability of sensors to detect oil and to discriminate oil from background targets. The assessment was based on past experience and technical considerations. The first sensor recommended for use is an infrared camera or an IR/UV system. This recommendation is based on the system's ability to detect oil and discriminate this from the background, and the low cost of these sensors. The laser fluorosensor is recommended as the second device, as it is the only unit capable of positively discriminating oil on water, among weeds, and in sediment or beach material. Cameras operating in the visible region of the spectrum are recommended for two functions: documentation and providing background or location imagery for other sensors. Imaging radars, be they SAR or SLAR, are recommended for long-range searches or for oil spill work at night or when fog is present. Radars are expensive and require dedicated aircraft. Passive microwave devices are currently being developed but have not been proven as an alternative to radar or for measuring slick thickness. A laser based thickness sensor is under development. Satellite systems were also assessed. Satellite sensors operating in the visible spectrum have only limited application to major oil spills. New radar sensors show limited potential. The major limitation of any satellite system is the limited coverage time that is a function of its orbit. A study of aircraft and aircraft modifications was carried out to catalog aircraft modifications necessary to operate oil spill remote sensors. A potential user could select modifications that are already approved and thus save the high costs of aircraft modification design. The modifications already approved in Canada and the US for a given aircraft provide criteria for the selection of an aircraft

  15. Considerations on radiation protection of aircraft crew in Brazil

    International Nuclear Information System (INIS)

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  16. An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm

    OpenAIRE

    Cho, Vincent; Wu, Gene Pak Kit; Ip, W.H.

    2009-01-01

    The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constrain...

  17. The Exergy of Lift and Aircraft Exergy Flow Diagrams

    OpenAIRE

    Paulus, Jr., David; Gaggioli, Richard

    2010-01-01

    Aside from incidental, auxiliary loads, in level flight the principal load on the aircraft propulsion engine is the power required to provide the continuous lift. To construct an exergy flow diagram for an aircraft – for example, for the purpose of pinpointing inefficiencies and for costing – an expression is needed for the exergy delivered to and by the wings. That is, an expression is needed for the exergy of lift. The purpose of this paper is to present an expression de...

  18. Structureborne noise investigations of a twin engine aircraft

    Science.gov (United States)

    Garrelick, J. M.; Cole, J. E., III; Martini, K.

    1986-01-01

    The interior noise of aircraft powered by advanced turbo-prop concepts is likely to have nonnegligible contributions from structureborne paths, these paths being those involving propeller loads transmitted to the structures of the lifting surfaces. As a means of examining these paths, structural measurements have been performed on a small twin-engine aircraft, and in addition analytical models of the structure have been developed. In this paper results from both portions of this study are presented.

  19. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  20. PIV-based load determination in aircraft propellers

    OpenAIRE

    Ragni, D.

    2012-01-01

    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by PIV velocimetry. The technique offers important advantages in aircraft propellers, since the loads can be locally inspected without the need to install pressure sensors and momentum balances in rot...