Sample records for y2o3 ods-fe-cr model

  1. Microstructural Characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr Model Alloy s

    De Castro, V.; Jenkins, M.L. [Oxford Univ., Dept. of Materials (United Kingdom); Leguey, T.; Mufioz, A.; Pareja, R.; Monge, M.A. [Madrid Univ. Carlos 3, Dept. de Fisica (Spain)


    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels with Cr contents ranging between 9-12 wt% are promising candidates for use as structural materials in future fusion reactors. They are likely to be superior to austenitic steels because of their better thermal properties and higher swelling resistance. A major concern of these materials is their maximum service temperature, as this determines the overall efficiency of the reactor. It has been demonstrated that one way to increase this temperature is to homogeneously disperse hard nano-sized oxide particles, such as Y{sub 2}O{sub 3}, into the steel matrix. Oxide dispersion strengthened (ODS) steels produced by mechanical milling and hot isostatic pressing (HIP ) are considered as potential structural materials for fusion reactors. In Europe, efforts have been focused on the ODS-RAFM-9CrW steel EUROFER. These ODS steels show good tensile and creep properties, acceptable ductility, but poor impact properties. Microstructural characterization of real steels, especially of the structures of oxide/steel matrix interfaces which play an important role in the performance of the material, is a difficult task. In the present work we have fabricated and characterised a simpler model ODS system based on a Fe-Cr binary alloy, in the belief that this will help us better to understand complex ODS-RAFM steels. Two Fe-12wt% Cr batches, one containing 0.3 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3} free have been produced by milling plus compaction by HIP. These materials are being characterized by X-ray diffraction, electron microscopy and atom probe field ion microscopy. Results will be compared with those obtained for ODS-EUROFER produced under the same conditions. (authors)

  2. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications

    Pint, B. A.; Dryepondt, S.; Unocic, K. A.; Hoelzer, D. T.


    Oxide dispersion strengthened (ODS) FeCrAl alloys with 12-15% Cr are being evaluated for improved compatibility with Pb-Li for a fusion energy application and with high temperature steam for a more accident-tolerant light water reactor fuel cladding application. A 12% Cr content alloy showed low mass losses in static Pb-Li at 700°C, where a LiAlO2 surface oxide formed and inhibited dissolution into the liquid metal. All the evaluated compositions formed a protective scale in steam at 1200°C, which is not possible with ODS FeCr alloys. However, most of the compositions were not protective at 1400°C, which is a general and somewhat surprising problem with ODS FeCrAl alloys that is still being studied. More work is needed to optimize the alloy composition, microstructure and oxide dispersion, but initial promising tensile and creep results have been obtained with mixed oxide additions, i.e. Y2O3 with ZrO2, HfO2 or TiO2.

  3. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  4. Advanced ODS FeCrAl alloys for accident-tolerant fuel cladding

    Dryepondt, Sebastien N [ORNL; Unocic, Kinga A [ORNL; Hoelzer, David T [ORNL; Pint, Bruce A [ORNL


    ODS FeCrAl alloys are being developed with optimum composition and properties for accident tolerant fuel cladding. Two oxide dispersion strengthened (ODS) Fe-15Cr-5Al+Y2O3 alloys were fabricated by ball milling and extrusion of gas atomized metallic powder mixed with Y2O3 powder. To assess the impact of Mo on the alloy mechanical properties, one alloy contained 1%Mo. The hardness and tensile properties of the two alloys were close and higher than the values reported for fine grain PM2000 alloy. This is likely due to the combination of a very fine grain structure and the presence of nano oxide precipitates. The nano oxide dispersion was however not sufficient to prevent grain boundary sliding at 800 C and the creep properties of the alloys were similar or only slightly superior to fine grain PM2000 alloy. Both alloys formed a protective alumina scale at 1200 C in air and steam and the mass gain curves were similar to curves generated with 12Cr-5Al+Y2O3 (+Hf or Zr) ODS alloys fabricated for a different project. To estimate the maximum temperature limit of use for the two alloys in steam, ramp tests at a rate of 5 C/min were carried out in steam. Like other ODS alloys, the two alloys showed a significant increase of the mas gains at T~ 1380 C compared with ~1480 C for wrought alloys of similar composition. The beneficial effect of Yttrium for wrought FeCrAl does not seem effective for most ODS FeCrAl alloys. Characterization of the hardness of annealed specimens revealed that the microstructure of the two alloys was not stable above 1000 C. Concurrent radiation results suggested that Cr levels <15wt% are desirable and the creep and oxidation results from the 12Cr ODS alloys indicate that a lower Cr, high strength ODS alloy with a higher maximum use temperature could be achieved.

  5. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    Liang, SONG; Xianping, WANG; Le, WANG; Ying, ZHANG; Wang, LIU; Weibing, JIANG; Tao, ZHANG; Qianfeng, FANG; Changsong, LIU


    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (∼17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  6. Sintering of Astroloy-Y2O3 particulate composites

    Roy S.


    Full Text Available The present paper describes the preparation and properties of Astroloy-Y2O3 (up to 8 vol% sintered composites. A dilatometric study of green composites carried out in argon up to 1325°C, revealed that maximum shrinkage occurs in a 6 vol% Y2O3 composite, while the lowest shrinkage was noted in an 8 vol% composite. It is observed that the greater the volume fraction of Y2O3, the higher is the onset of temperature for the beginning of the shrinkage process. A post sintering hot forging operation serves very well as an alternative to repressing-resintering. Mechanical properties have better values for 6 vol% Y2O3 composite as compared to other composites.

  7. Thermodynamic Assessment of the Y2o3-yb2o3-zro2 System

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan


    Yttria-zirconia (Y2O3-ZrO2) is the most widely used of the rare earth oxide-zirconia systems. There are numerous experimental studies of the phase boundaries in this system. In this paper, we assess these data and derive parameters for the solution models in this system. There is current interest in other rare earth oxide-zirconia systems as well as systems with several rare earth oxides and zirconia, which may offer improved properties over the Y2O3-ZrO2 system. For this reason, we also assess the ytterbia-zirconia (Yb2O3-ZrO2) and Y2O3-Yb2O3-ZrO2 system.

  8. Microstructural characterization of Y{sub 2}O{sub 3} ODS-Fe-Cr model alloys

    Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)], E-mail:; Leguey, T.; Munoz, A.; Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Marquis, E.A.; Lozano-Perez, S.; Jenkins, M.L. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom)


    Two Fe-12 wt% Cr alloys, one containing 0.4 wt% Y{sub 2}O{sub 3} and the other Y{sub 2}O{sub 3}-free, have been produced by mechanical alloying followed by hot isostatic pressing. These oxide dispersion strengthened and reference alloys were characterized both in the as-HIPed state and after tempering by transmission electron microscopy and atom-probe tomography. The as-HIPed alloys exhibited the characteristic microstructure of lath martensite and contained a high density of dislocations. Small voids with sizes <10 nm were also observed. Both alloys also contained M{sub 3}C and M{sub 23}C{sub 6} carbides (M = Cr, Fe) probably as a result of C ingress during milling. After tempering at 1023 K for 4 h the microstructures had partially recovered. In the recovered regions, martensite laths were replaced by equiaxed grains in which M{sub 23}C{sub 6} carbides decorated the grain boundaries. In the ODS alloy nanoparticles containing Y were commonly observed within grains, although they were also present at grain boundaries and adjacent to large carbides.

  9. Preparation, Characterization and Photo-Catalytic Behavior of Y2O3/TiO2 Composite Semiconductor Nanopowder

    李芳柏; 古国榜; 李新军; 万洪富; 黄志尧


    Y2O3/TiO2 samples were prepared by sol-gel process and characterized by means of X-ray diffraction (XRD), laser Raman spectra (LRS), UV-visible diffuse reflectance spectra (DRS), specific surface area (BET), and transmission electron microscopy (TEM). The results show that the relative intensity of 101 peak of anatase and 002 peak of rutile, the mean crystal diameter and mean particle diameter of Y2O3/TiO2 samples decrease while specific surface area increases owing to doping Y2O3. Y2O3/TiO2 samples have a larger specific surface area and higher thermal stability. Owing to quantum size effect, the reflectance of Y2O3/TiO2 samples is larger than that of pure TiO2 in the range of 380~460 nm and the position of Raman peaks varies slightly. Being a model reaction, the photo-catalytic degradation of methylene blue (MB) with positive charge and methyl orange (MO) with negative charge was investigated in TiO2 and Y2O3/TiO2 nanopowder suspension irradiated by high-pressure mercury lamp. As a result, the addition of Y2O3 to TiO2 is detrimental to photo-activity of TiO2 for MB photo-degradation and photo-catalytic behavior is enhanced due to 5%, 10% Y2O3 deposited on TiO2 for the photo-degradation of MO. And the relationship between photo-physical properties and photo-activity was discussed.

  10. Bio-inspired synthesis of Y2O3: Eu3+ red nanophosphor for eco-friendly photocatalysis

    Prasanna kumar, J. B.; Ramgopal, G.; Vidya, Y. S.; Anantharaju, K. S.; Daruka Prasad, B.; Sharma, S. C.; Prashantha, S. C.; Premkumar, H. B.; Nagabhushana, H.


    We report the synthesis of Y2O3: Eu3+ (1-11 mol%) nanoparticles (NPs) with different morphologies via eco-friendly, inexpensive and simple low temperature solution combustion method using Aloe Vera gel as fuel. The formation of different morphologies of Y2O3: Eu3+ NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure. The influence of Eu3+ ion concentration on the morphology, UV-Visible absorption, PL emission and photocatalytic activity of Y2O3: Eu3+ nanostructures were investigated. Y2O3: Eu3+ NPs exhibit intense red emission with CIE chromaticity coordinates (0.50, 0.47) and correlated color temperature values at different excitation ranges from 1868 to 2600 K. The control of Eu3+ ion on Y2O3 matrix influences the photocatalytic decolorization of methylene blue (MB) as a model compound was evaluated under UVA light. Enhanced photocatalytic activity of conical shaped Y2O3: Eu3+ (1 mol%) was attributed to dopant concentration, crystallite size, textural properties and capability of reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. These findings show great promise of Y2O3: Eu3+ NPs as a red phosphor in warm white LEDs as well as eco-friendly heterogeneous photocatalysis.

  11. Bio-inspired synthesis of Y2O3: Eu(3+) red nanophosphor for eco-friendly photocatalysis.

    Prasanna kumar, J B; Ramgopal, G; Vidya, Y S; Anantharaju, K S; Daruka Prasad, B; Sharma, S C; Prashantha, S C; Premkumar, H B; Nagabhushana, H


    We report the synthesis of Y2O3: Eu(3+) (1-11 mol%) nanoparticles (NPs) with different morphologies via eco-friendly, inexpensive and simple low temperature solution combustion method using Aloe Vera gel as fuel. The formation of different morphologies of Y2O3: Eu(3+) NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure. The influence of Eu(3+) ion concentration on the morphology, UV-Visible absorption, PL emission and photocatalytic activity of Y2O3: Eu(3+) nanostructures were investigated. Y2O3: Eu(3+) NPs exhibit intense red emission with CIE chromaticity coordinates (0.50, 0.47) and correlated color temperature values at different excitation ranges from 1868 to 2600 K. The control of Eu(3+) ion on Y2O3 matrix influences the photocatalytic decolorization of methylene blue (MB) as a model compound was evaluated under UVA light. Enhanced photocatalytic activity of conical shaped Y2O3: Eu(3+) (1 mol%) was attributed to dopant concentration, crystallite size, textural properties and capability of reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers followed the order SO4(2-)>Cl(-)>C2H5OH>HCO3(-)>CO3(2-). These findings show great promise of Y2O3: Eu(3+) NPs as a red phosphor in warm white LEDs as well as eco-friendly heterogeneous photocatalysis.

  12. Effect of Y2O3 stabilized ZrO2 coating with tri-model structure on bi-layered thermally grown oxide evolution in nano thermal barrier coating systems at elevated temperatures

    Mohammadreza Daroonparvar; Muhamad Azizi Mat Yajid; Noordin Mohd Yusof; Hamid Reza Bakhsheshi-Rad; Z Valefi; Esah Hamzah


    Bi-layered thermally grown oxide (TGO) layer plays a major role in the spallation of Y2O3 stabilized ZrO2 (YSZ) layer form the bond coat in the thermal barrier coating (TBC) systems during oxidation. On the other hand, bi-layered TGO formation and growth in the TBC systems with nanostructured YSZ have not been deeply investigated during cyclic oxidation. Hence, Inconel 738/NiCrAlY/normal YSZ and Inconel 738/NiCrAlY/nano YSZ systems were pre-oxidized at 1000 °C and then subjected to cyclic oxidation at 1150 °C. According to microstructural observations, nanostructured YSZ layer over the bond coat should have less mi-cro-cracks and pinholes, due to the compactness of the nanostructure and the presence of nano zones that resulted in lower O infiltration into the nanothermal barrier coating system, formation of thinner and nearly continuous mono-layered thermally grown oxide on the bond coat during pre-oxidation, lower spinels formation at the Al2O3/YSZ interface and finally, reduction of bi-layered thermally grown oxide thickness during cyclic oxidation. It was found that pre-heat treatment and particularly coating microstructure could influence microstructural evolution (bi-layered TGO thickness) and durability of thermal barrier coating systems during cyclic oxidation.

  13. Oxidation Resistance of Fe-13Cr Alloy with Micro-Laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) Films

    Yao Mingming; He Yedong; Wang Deren; Gao Wei


    The micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite films were prepared on the surface of Fe-13Cr alloy by an electrochemical process and a sintering process alternately. High-resolution field emission scanning electron microscopy (FE-SEM) was used to characterize the laminated films, indicating that the micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) films have nano-structures. SEM, EDS and mass gain measurement were adopted to study the oxidation resistance of films on Fe-13Cr alloy. It is proved that such micro-laminated films are more effective than ZrO2-Y2O3 or Al2O3-Y2O3 films to resist the oxidation of the alloy, and the oxidation resistance is increased with increasing layers in micro-laminated films. These beneficial effects can be contributed to the mechanism, by which such micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite film combines all the beneficial effects and overcomes all the disadvantages of both ZrO2-Y2O3 film and Al2O3-Y2O3 film during oxidation of alloy.

  14. Synthesis of Y2O3: Eu3+ Hollow Spheres Using Silica as Templates

    Liu Guixia; Hong Guangyan; Dong Xiangting; Wang Jinxian


    The Y2O3:Eu3+ hollow spheres were synthesized using the template-mediated method. XRD patterns indicated that the broadened diffraction peaks resulted from nanocrystals in Y2O3:Eu3+ shells of hollow spheres. XPS spectra showed that the Y2O3:Eu3+ shells were linked with silica cores by a Si-O-Y chemical bond. SEM and TEM observations showed that the size of the SiO2/Y2O3:Eu3+ core-shell particle was about 100 nm, and the thickness of the Y2O3:Eu3+ hollow sphere was less than 5 nm. The photoluminescence spectra of the SiO2/Y2O3:Eu3+ core-shell materials and Y2O3:Eu3+ hollow spheres had red luminescent properties, and the broadened emission peaks came from nanocrystals composed of the Y2O3:Eu3+ shell.

  15. Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning.

    Dong, Guoping; Chi, Yingzhi; Xiao, Xiudi; Liu, Xiaofeng; Qian, Bin; Ma, Zhijun; Wu, E; Zeng, Heping; Chen, Danping; Qiu, Jianrong


    Y(2)O(3): Eu(3+) nanofibers with the average diameter of ~300 nm were in situ fabricated by electrospinning. X-ray diffraction (XRD) pattern confirmed that the Y(2)O(3): Eu(3+) nanofibers were composed of pure body-centered cubic (bcc) Y(2)O(3) phase. High-resolution transmission electron microscopy (HRTEM) results indicated that Y(2)O(3): Eu(3+) nanofibers were constituted of nonspherical crystalline grains, and these crystalline grains were orderly arranged along the axial direction of single nanofiber. These Y(2)O(3): Eu(3+) nanofibers showed a partially polarized photoluminescence (PL). The arrangement of crystalline grains and the mismatch of dielectric constant between Y(2)O(3): Eu(3+) nanofiber and its environment probably contributed together to the polarized PL from Y(2)O(3): Eu(3+) nanofiber.

  16. Photodegradation of Azo-dye by Y2O3/TiO2 Loaded on Carboxymethyl Cellulose Films

    HE Xiao-yun; CHEN Ri-yao; ZHENG Xi; CHEN Zhen


    Nanosize TiO2, Y2 O3/TiO2 particles were prepared by the sol-gel process. The structure was characterized by means of XRD,TEM. The photoelectric properties of the nanoparticles were studied by PL.The thickness and the surface of the carboxymethyl cellulose film was measured by SEM. Based on a model reaction, the photocatalytic degradation of methylene blue with positive charge was investigated in TiO2,Y2O3/TiO2 nanopowder composite films irradiated by UV lamp. The results revealed that the degradation process belonged to the first-order kinetic reaction.

  17. Liquid phase sintering of silicon carbide with AlN/Y2O3, Al2O3/Y2O3 and SiO2/Y2O3 additions

    Kurt Strecker


    Full Text Available In this work, the influence of the additive system on the liquid phase sintering of silicon carbide has been investigated. The additives employed were mixtures of AlN/Y2O3, Al2O3/Y2O3 and SiO2/Y2O3. The total additive content was fixed at 20 vol.-%, maintaining the Y2O3 content in each additive system at 35 vol.-%. Cold isostatically pressed samples were sintered at 1900, 2000 and 2100 °C under Ar atmosphere during 30 min. The most promising results have been obtained by samples with AlN/Y2O3 additions sintered at 2000 °C, exhibiting the smallest weight loss of about 6% and the highest flexural strengths of about 433 MPa. Samples with Al2O3/Y2O3 and SiO2/Y2O3 additions exhibited high weight loss, because of reactions of Al2O3 and SiO2 with the SiC matrix, forming gaseous species such as Al2O, SiO and CO, resulting in depletion of the liquid phase, and, consequently, in inferior final densities and mechanical properties. Concerning the SiO2/Y2O3 additive system, the reactions seem to be completed already at temperatures below 1900 °C, turning this additive mixture unsuitable. The microstructural analysis indicated only the presence of the b-SiC phase for all samples; no phase transformation of the b-SiC into a-SiC has been observed.

  18. Mo-Y2O3阴极发射机理研究%Study on Emission Mechanism of Mo-Y2O3 Cathode

    王金淑; 胡延槽; 周美玲; 左铁镛; 张久兴; 聂祚仁


    采用热重分析、X射线衍射、扫描电镜及光电子能谱等方法对 Mo-Y2O3 阴极中钇的价态进行了研究,探讨了该阴极的发射机理。Y2O3 与 Mo2C 在 1173K 以上发生化学反应。Y2O3 与 Mo2C 混合物经 1873K 高温处理后,产物中含有两种价态的 Y:Y0 和化合态的 Y3+。Mo-Y2O3 阴极的发射可用原子膜机理解释;在阴极工作过程中,Mo2C 将 Y2O3 还原成单质钇,钇覆盖在钼基体表面,降低了基体钼的逸出功,促进了阴极的发射。%The valence of element yttrium of Mo-Y2O3 cathode materials was studied by using thermal weight analysis, X-ray diffraction analysis, scanning electron microscopy and X-ray photoelectron spectrum. On the basis of experiment results, the emission mechanism of Mo-Y2O3 cathode was discussed. It is proved that yttrium oxide can be reduced by molybdenum carbide. The reaction between Y2O3 powder and Mo2C happens at 1173K. After the powder mixture of Y2O3 and Mo2C is heat-treated at 1873K, yttrium exists in two kinds of chemical state:yttrium of zero valence and yttrium of three valences. The emission of Mo-Y2O3 cathode can be explained by the following mechanism. A monoatomic layer of metallic yttrium at the surface forms and causes the emissivity of the cathode. The film can be created after yttrium oxide reduced to metal yttrium by molybdenum carbide during activating period and operation of the filament, and yttrium subsequently diffuses to the surface mainly along grain boundaries and migrates over the surface. Yttrium at the surface doesn′t give emission current, but the monoatomic active surface layer has a lower work function than clean molybdenum.

  19. Effect of Y2O3 on microstructure and oxidation of chromizing coating

    ZHOU Yue-bo; ZHANG Hai-jun; WANG Yong-dong


    A Y2O3-modified chromizing coating was produced by chromizing an as-electrodeposited Ni-Y2O3 composite film using pack cementation method at 1 100 ℃ for 3 h. For comparison, chromizing was also performed under the same condition on an as-deposited Ni film without Y2O3 particles. Oxidation at 900 ℃ for 120 h indicates that although on both two chromizing coatings chromia scales grow during oxidation, the Y2O3-modified chromizing coating exhibits an increased oxidation resistance due to the formation of thinner, denser and freer-grain scale. The effect of Y2O3 on the coating formation and the coating oxidation behavior was discussed in detail.

  20. Solution combustion synthesis of Fe-Ni-Y2O3 nanocomposites for magnetic application

    刘烨; 秦明礼; 章林; 贾宝瑞; 陈鹏起; 张德志; 曲选辉


    Fe−Ni−Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma FeNi matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe−Ni−Y2O3 nanocomposites were characterized by XRD, FESEM and TEM. Porous Fe−Ni−Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe−Ni−Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe−Ni−Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg) and 3.11 kA/m, respectively.

  1. Photocatalytic Removal of Dye and Reaction Mechanism Analysis over Y2O3 Composite Nanomaterials

    Guo Xiaohui


    Full Text Available Y2O3 supported photocatalysts MOx (M = Fe, Ti and Bi/Y2O3 were synthesized by hydrothermal and deposition-precipitation method and used in photocatalytic degradation of xylenol orange and rhodamine B under UV light irradiation. The crystalline structure and optical properties were well characterized by XRD and UV-vis DRS. The results of XRD revealed that the MOx/Y2O3 were composed of Fe2O3, TiO2, Bi0.8Y1.2O3 and Y2O3. The UV-vis DRS showed that MOx/Y2O3 photocatalysts exhibited stronger absorption in ultraviolet, and the absorption edge shifted to visible light region significantly. The photocatalytic experiments indicated that MOx/Y2O3 photocatalysts showed better activity for photodegradation of xylenol orange than rhodamine B. Moreover, the role of Y2O3 and the mechanism of photocatalysis is proposed.

  2. Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites

    T K Vishnuvardhan; V R Kulkarni; C Basavaraja; S C Raghavendra


    Conducting polymer composites of polypyrrole/yttrium oxide (PPy/Y2O3) were synthesized by in situ polymerization of pyrrole with Y2O3 using FeCl3 as an oxidant. The Y2O3 is varied in five different weight percentages of PPy in PPy/Y2O3 composites. The synthesized polymer composites are characterized by infrared and X-ray diffraction techniques. The surface morphology of the composite is studied by scanning electron microscopy. The glass transition temperature of the polymer and its composite is discussed by DSC. Electrical conductivity of the compressed pellets depends on the concentration of Y2O3 in PPy. The frequency dependent a.c. conductivity reveals that the Y2O3 concentration in PPy is responsible for the variation of conductivity of the composites. Frequency dependent dielectric constant at room temperature for different composites are due to interfacial space charge (Maxwell Wagner) polarization leading to the large value of dielectric constant. Frequency dependent dielectric loss, as well as variation of dielectric loss as a function of mass percentage of Y2O3 is also presented and discussed.

  3. Flux Pinning Effects of Y2O3 Nanoparticulate Dispersions in Multilayered YBCO Thin Films



  4. Investigation of the interface characteristics of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions

    Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan


    We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.

  5. Application of Y(2)O(3):Er(3+) nanorods in dye-sensitized solar cells.

    Wang, Jiangli; Wu, Jihuai; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Lan, Zhang; Xiao, Yaoming; Yue, Gentian; Yin, Shu; Sato, Tsugio


    Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare earth ions improve the energy level of the TiO(2) electrode through a doping effect and thus increase the photovoltage. The light scattering is ameliorated by the one-dimensional nanorod structure. The DSSC containing Y(2)O(3):Er(3+) (5 wt%) in the doping layer achieves a light-to-electric energy conversion efficiency of 7.0%, which is an increase of 19.9% compared to the DSSC lacking of Y(2)O(3):Er(3+).

  6. Y2O3:Eu nanocrystals as biomarkers prepared by a microwave hydrothermal method

    Kaszewski, Jarosław; Godlewski, Michał M.; Witkowski, Bartłomiej S.; Słońska, Anna; Wolska-Kornio, Ewelina; Wachnicki, Łukasz; Przybylińska, Hanka; Kozankiewicz, Bolesław; Szal, Anna; Domino, Małgorzata A.; Mijowska, Ewa; Godlewski, Marek


    Microwave hydrothermal growth of Y2O3 crystallites results in needle-shaped aggregates of μm length. Thermal treatment has little influence on the material microstructure, but significant impact on the nanometric level. Nanoparticles doped with europium show an intense red luminescence, related to the 5D0 → 7F2 transition of Eu3+ ions. The luminescence intensity increases with the calcination temperature and is accompanied by increasing size of Y2O3:Eu crystallites. EPR studies show the absence of Eu2+ related signals in the material. Y2O3:Eu nanoparticles crystallized via a microwave hydrothermal method were employed as luminescent biomarkers in mice. The initial tests confirmed their applicability as biological markers. Persorption of the Y2O3:Eu nanoparticles after IG in the adult mouse duodenum, brain and liver is reported.

  7. Spontaneous luminescence of Eu3+ ions in porous Y2O3 nanospheres

    Zaitsev, S. V.; Ermolaeva, Yu. V.; Matveevskaya, N. A.; Zver'kova, I. I.; Tolmachev, A. V.


    A study of the luminescence of Eu3+ ions in Y2O3 nanospheres indicates a significant influence of the porous structure of nanoparticles on the luminescence of dopant ions. It is shown that filling the nanopores of initially porous Y2O3 nanospheres shortens the decay time of the spontaneous luminescence of doping europium ions. The change in the decay time is associated with the change in the effective refractive index of the porous nanospheres.

  8. Microstructure of Nano-Y2O3/Cobalt Based Alloy Composite Coating by Laser Cladding

    何宜柱; 李明喜; 袁晓敏; 斯松华


    Composite coatings made of nano-Y2O3/cobalt-based alloy and produced by crosscurrent CO2 laser on Ni-based superalloy are introduced. Cross-section or surface of the coatings was examined to reveal their microstructure using optical microscope,SEM,including EDS microanalysis,TEM and XRD. The results show that some equilibrium or non-equilibrium phases,such as γ-Co,Cr23C6,Y2O3 and ε-Co exist in the coatings. Fine and short dendritic microstructure and columnar to equiaxed transition (CET) occurred by adding nano-Y2O3 particles. With the increasing amount of nano-Y2O3(1%,mass fraction),fully equiaxed crystallization appeared. These are caused by nano-Y2O3 particles acting as new nucleation site and rapid solidification of the melt. The results also show that inhomogeneous dispersion of nano-Y2O3 results in the formation of ε-Co phase in the coatings. The sub-microstructure of the clad is stacking fault. The mechanism of the formation of equiaxed grains is also analyzed.

  9. High Temperature Performances of Spherical Nickel Hydroxide with Additive Y2O3

    米欣; 叶茂; 阎杰; 魏进平; 高学平


    The effect of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatures are much lower than usual. In order to improve high-temperature performances, charge/discharge curves of the Ni(OH)2 electrodes with different amounts of Y2O3 at different temperatures were studied. It is found that the specific capacities of the spherical Ni(OH)2 with Y2O3 as additive are much higher than those of the regular at higher temperatures. The specific capacity of Ni(OH)2 containing 1% Y2O3 at 0.2C C/D rate is 35% higher than that of the regular. The specific capacity of Ni(OH)2 containing 0.2% Y2O3 at 1C C/D rate is 15% higher than that of the regular. Mechanism of Y2O3 improving high temperature performances of Ni(OH)2 electrode was also discussed in detail.

  10. Characterization of SPEEK/Y2O3 proton exchange membrane treated with high magnetic field

    TONG Juying; GUO Qiang; TAN Xiaolin; LI Xia; LI Dan; DONG Yunfeng


    The membranes of sulfonated poly(etheretherketone) of 48.3% sulfonation degree doped with Y2O3 were prepared, and then treated with parallel high magnetic field of 6 and 12 T at 120 ℃ for 4 h, respectively. The small-angle X-ray scattering revealed that the structure of the composite membranes would be changed by high magnetic field treatment. The cross-section morphology of the composite membranes by a scanning electron microscope showed that the Y2O3 could be dispersed evenly in the composite membranes which were relatively smooth and compact but formed small conglomeration with increasing Y2O3 content and treating high magnetic field. The water uptake of membranes would be reduced with Y2O3 content increasing, but not be modified by the treatment of high magnetic field. The proton conductivity of membranes would be increased with temperature rising from 20 to 60 ℃, and improved under high magnetic field, which could all exceed 10-2 S/cm at 75% relative humidity, but decrease with doping content of Y2O3 from 2 wt.% to 8 wt.%. The methanol permeability of the composite membranes would be decreased with Y2O3 content increasing and slightly reduced after high magnetic field treatment.

  11. Hydrothermal Synthesis and Tunable Multicolor Upconversion Emission of Cubic Phase Y2O3 Nanoparticles

    Haibo Wang


    Full Text Available Highly crystalline body-centered cubic structure Y2O3 with lanthanide (Ln codopants (Ln = Yb3+/Er3+ and Yb3+/Ho3+ has been synthesized via a moderate hydrothermal method in combination with a subsequent calcination. The structure and morphology of Y(OH3 precursors and Y2O3 nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. The results reveal that the Y2O3 nanoparticles possess cubic phase and form the quasispherical structure. The upconversion luminescence properties of Y2O3 nanoparticles doped with different Ln3+ (Yb3+/ Er3+ and Yb3+/ Ho3+ ions were well investigated under the 980 nm excitation. The results show that the Yb3+/Er3+ and Yb3+/Ho3+ codoped Y2O3 nanoparticles exhibit strong red and light yellow upconversion emissions, respectively. It is expected that these Y2O3 nanoparticles with tunable multicolor output and intense red upconversion emission may have potential application in color displays and biolabels.

  12. Synthesis of Y2O3 Nano-Powder from Yttrium Oxalate under Ambient Temperature

    Li Ling


    High purity Y2O3 nano-powders was synthesized directly from solution of industrial YCl3 by method of oxalate precipitation through super-micro-reactors made by complex non-ionic surfactant. The purity and diameter of Y2O3 particles were controlled by such processing parameters as concentration of YCl3 and oxalic acid and complex non-ionic surfactant etc. TEM photomicrographs show that Y2O3 particles are spherical in shape, with an average diameter of less than 30 nm. Test results certify that the purity and particle diameter as well as the dispersion of Y2O3 nano-powder depend on the concentrations of YCl3, oxalic acid and complex non-ionic surfactant. The optimum ranges of the concentrations for YCl3 and complex non-ionic surfactant when the diameter of Y2O3 particles is smaller than 100 nm are 0.43~1.4 mol·L-1 and 0.031~0.112 mol·L-1 respectively, while the mass fraction range of oxalic acid is 10%~18%. The purity of Y2O3 nano-powder tested by ICP-AES analysis is 99.99%.

  13. Al2O3-Y2O3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications

    López, J.; Borbón-Nuñez, H. A.; Lizarraga-Medina, E. G.; Murillo, E.; Machorro, R.; Nedev, N.; Marquez, H.; Farías, M. H.; Tiznado, H.; Soto, G.


    Nanolaminate multilayers made of Al2O3 and Y2O3 bilayer slabs were grown at 250 °C by means of thermal Atomic Layer Deposition (ALD). Several samples were prepared, where the number of ALD cycles for the Al2O3 slab was kept constant at 17 ALD cycles, while the number for the Y2O3 slabs was varied from 1 to 100. An optical model was built and adapted for each sample considering the Cauchy relationship, which was used to simulate the optical response for transparent materials. The thickness obtained from the optical model was in agreement with the thickness of cross-sectional SEM images. The optical band gap, obtained from single-effective-oscillator model, varied from 5.45 to 4.24 eV as a function of the Y2O3 slab thickness. The refractive index as well as the optical band gap can be modulated systematically using the Al2O3:Y2O3 ratio as control parameter. By means of simulated propagation modes it is shown that there is a multimode behavior for thickness around 200 nm at wavelengths between 300 and 1550 nm. This study reveals the possibility of using Al2O3-Y2O3 nanolaminates as the core of optical waveguides. It also shows the potential of ALD technique for fabrication of submicron waveguides useful in miniature optical circuits.

  14. 静电纺丝技术制备Y2O3纳米纤维%Fabrication of Y2O3 Nanofibres by Electrospining

    刘莉; 董相廷; 王进贤; 车红锐



  15. Effect of excess Y2O3 addition on the physical properties of melt processed YBCO bulks

    YANG; Wanmin; ZHOU; Lian; FENG; Yong; ZHANG; Pingxiang; WU


    The YBCO superconductors with Y2O3 addition were prepared by a modified melt textured process and the effects of excess Y2O3 addition on the physical properties of melt textured YBCO have been investigated. It is found that the melt temperature of YBCO samples decreases drastically with the increasing Y2O3, and the maximum levitation forces are drastically different for samples with different Y2O3 addition. It is also found that the optimal Y2O3 addition to YBCO is about 10wt%. Considering the microstructure and the starting composition, the results are well discussed and interpreted.

  16. Cr incorporated phase transformation in Y2O3 under ion irradiation

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.


    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  17. Cr incorporated phase transformation in Y2O3 under ion irradiation

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.


    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.

  18. Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets

    孙万昌; 张佩; 李攀; 佘晓林; 赵坤


    Y2O3-doped TiCN-based cermets were prepared by pressureless sintering with powders TiC, TiN, Ni, etc. as main starting materials. The influence of sintering processes and Y2O3on properties of TiCN-based cermets were investigated. The phase composi-tion of TiCN-based cermets almost had no change with Y2O3 addition. The fullly densified TiCN-based cermets were achieved by P-2 sitering process. The fracture surface showed lots of small dimples caused by hard phase particles pulling-off, and the left hard phase particles were attached to the arborous dendritic matrix. The Vickers hardness, fracture toughness and bending strength of TiCN-based cermets increased firstly and then decreased with the increment of Y2O3 content. When Y2O3 contents were both 0.8 wt.%, compared with the P-1 sintered samples, the Vickers hardness, fracture toughness and bending strength of the P-2 sintered sam-ples reached 14.84 GPa, 8.66 MPa·m1/2 and 660.4 MPa, which were increased by 7.9%, 6.1% and 45.8%, respectively.

  19. Cubic or monoclinic Y 2O 3:Eu 3+ nanoparticles by one step flame spray pyrolysis

    Camenzind, Adrian; Strobel, Reto; Pratsinis, Sotiris E.


    Continuous, single-step synthesis of monocrystalline Y 2O 3:Eu 3+ nanophosphor particles (10-25 nm in diameter and 5 wt% Eu) was achieved by flame spray pyrolysis (FSP). The effect of FSP process parameters on materials properties was investigated by X-ray diffraction (XRD), nitrogen adsorption (BET) and transmission electron microscopy (TEM). Photoluminescence (PL) emission were measured as well as the time-resolved PL-intensity decay. Controlled synthesis of monoclinic or cubic Y 2O 3:Eu 3+ nanoparticles was achieved without post-treatment by controlling the high temperature residence time of these particles. The cubic nanoparticles exhibited longer decay times but lower maximum PL intensity than commercial micron-sized bulk Y 2O 3:Eu 3+ phosphor powder.

  20. Photophysical properties and biocompatibility of Photoluminescent Y2O3:Eu nanoparticles in polymethylmetacrylate matrix.

    Abe, Shigeaki; Hamba, Yusuke; Iwadera, Nobuki; Yamagata, Shuichi; Yawaka, Yasutaka; Uo, Motohiro; Iida, Junichiro; Kiba, Takayuki; Murayama, Akihiro; Watari, Fumio


    In this study, we produced europium-doped yttoria (Y2O3:Eu) nanoparticles and investigated their photoluminescent properties and biocompatibility. The Y2O3:Eu nanoparticles showed excellent photoluminescent properties and cytocompatibility. We also analyzed the photophysical properties of the nanoparticles in PMMA films. When the Y2O3:Eu nanoparticles were incorporated in the polymer film, they showed a strong red emission spectrum, similar to that seen with the particles alone. Energy dispersive X-ray spectroscopy (EDS) measurements indicated that the particles were distributed homogeneously in the PMMA film. Such materials could be applied not only to optoelectronic devices but also to biomedical applications such as bioimaging tools or luminescent medical/dental adhesive materials.

  1. Upconversion properties of Y2O3:Er films prepared by sol-gel method

    QIAO Yanmin; GUO Hai


    Y2O3:Er3+ films were prepared by a simple sol-gel process. The structural properties of Y2O3:Er3+ flints were characterized with X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The results indicated that the Y2O3:Er3+ f'rims might have high upconversion efficiency because of their low vibrational energy. Under 785 and 980 nm laser excitation, the samples showed green (2H11/2→4I15/2, 4S3/2→4I15/2) and red (4F9/2→4I15/2) upconversion emissions. The upconversion mechanisms were stud-led in detail through laser power dependence. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The cross relaxation process in Er3+ was also investigated.

  2. Wettability of Y2O3: A Relative Analysis of Thermally Oxidized, Reactively Sputtered and Template Assisted Nanostructured Coatings

    Natarajan T. Manikandanath


    Full Text Available The wettability of reactively sputtered Y2O3, thermally oxidized Y-Y2O3 and Cd-CdO template assisted Y2O3 coatings has been studied. The wettability of as-deposited Y2O3 coatings was determined by contact angle measurements. The water contact angles for reactively sputtered, thermally oxidized and template assisted Y2O3 nanostructured coatings were 99°, 117° and 155°, respectively. The average surface roughness values of reactively sputtered, thermally oxidized and template assisted Y2O3 coatings were determined by using atomic force microscopy and the corresponding values were 3, 11 and 180 nm, respectively. The low contact angle of the sputter deposited Y2O3 and thermally oxidized Y-Y2O3 coatings is attributed to a densely packed nano-grain like microstructure without any void space, leading to low surface roughness. A water droplet on such surfaces is mostly in contact with a solid surface relative to a void space, leading to a hydrophobic surface (low contact angle. Surface roughness is a crucial factor for the fabrication of a superhydrophobic surface. For Y2O3 coatings, the surface roughness was improved by depositing a thin film of Y2O3 on the Cd-CdO template (average roughness = 178 nm, which resulted in a contact angle greater than 150°. The work of adhesion of water was very high for the reactively sputtered Y2O3 (54 mJ/m2 and thermally oxidized Y-Y2O3 coatings (43 mJ/m2 compared to the Cd-CdO template assisted Y2O3 coating (7 mJ/m2.

  3. Dynamics of the Green and Red Upconversion Emissions in Yb3+-Er3+-Codoped Y2O3 Nanorods

    O. Meza


    Full Text Available Efficient green and red upconversion emission in Y2O3:Yb3+, Er3+ nanorods under 978 nm radiation excitation is achieved. Experimental effective lifetimes, luminescent emissions, and nanorod sizes depend strongly on the solvent ratios used during the synthesis. A microscopic nonradiative energy transfer model is used to approach the dynamics of the green, red, and infrared emissions. The excellent agreement between simulated and experimental decay suggests that the energy transfer mechanisms responsible of the visible emission depend on the solvent ratio.

  4. Effect of the BSCCO superconducting properties by tiny Y2O3 addition

    Dong, Yan; Sun, Aimin; Xu, Bin; Zhang, Hongtao; Zhang, Meng


    In this paper, the effect of tiny Y2O3 addition in (Bi,Pb)-2223 superconductor prepared by solid state reaction technique was studied. The properties of samples have been investigated via X-ray diffraction (XRD), resistance-temperature (R-T) curve, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). XRD data indicated that all samples are multiphase and the major phases are high-temperature phases and low-temperature phases. The volume fraction of (Bi,Pb)-2223 is not great change with tiny Y2O3 addition. All samples exhibit superconducting phase with the critical transition temperature and one-step transition, however, the transition width was decreased with the Y2O3 addition up to 0.04 wt.% and sharp increased with the excessive oxide addition. SEM pictures show that the Y2O3 appeared on the flake-type grains surface obviously, but the number and size of the hole between grains are decreased in the 0.04 wt.% addition.

  5. Preparation of Y2O3: Eu3+ phosphor by molten salt assisted method

    HUANG Yan; YE Hong-qi; ZHUANG Wei-dong; HU Yun-sheng; ZHAO Chun-lei; LI Cui; GUO Song-xia


    A kind of fine and quasi-spherical Y2O3:Eu3+ phosphor was prepared by firing a preparative precursor at 1 200 ℃ for 2 h with the molten salts of Na2CO3, S and NaCl. The precursor was obtained by homogeneous precipitation of yttrium and europium with oxalic acid when using EDTA, citric acid or starch as complexant. The structure and morphology of the phosphors were characterized by XRD and SEM, respectively. The influence of complexing environment, firing temperature and molten salts on formation of the phosphor Y2O3: Eu3+ was discussed. The result show that the prepared Y2O3:Eu3+ phosphor is of quasi-spherical structure with size of 2-3 μm. Its luminescent intensity is 30% higher than that of the same phosphor prepared by the same procedure but without molten salts, and is 5% higher than that of commercial Y2O3:Eu3+ red phosphor.

  6. [Preparation and photoluminescence study of Er3+ : Y2O3 transparent ceramics].

    Luo, Jun-ming; Li, Yong-xiu; Deng, Li-ping


    Y2O3 acted as the matrix material, which was doped with different concentrations of Er3+, Er3+ : Y2O3 nanocrystalline powder was prepared by co-precipitation method, and Er3+ : Y2O3 transparent ceramics was fabricated by vacuum sintering at 1700 degrees C, 1 x 10(-3) Pa for 8 h. By using the X-ray diffraction (D/MAX-RB), transmission electron microscopy(Philips EM420), automatic logging spectrophotometer(DMR-22), fluorescence analyzer (F-4500) and 980 nm diode laser, the structural, morphological and luminescence properties of the sample were investigated. The results show that Er3+ dissolved completely in the Y2O3 cubic phase, the precursor was amorphous, weak diffraction peaks appeared after calcination at 400 degrees C, and if calcined at 700 degrees C, the precursor turned to pure cubic phase. With increasing the calcining temperature, the diffraction peaks became sharp quickly, and when the calcining temperature reached 1100 degrees C, the diffraction peaks became very sharp, indicating that the grains were very large. The particles of Er+ : Y2O3 is homogeneous and nearly spherical, the average diameter of the particles is in the range of 40-60 nm after being calcined at 1000 degrees C for 2 h. The relative density of Er3+ : Y2O3 transparent ceramics is 99.8%, the transmittance of the Er2+ : Y2O3 transparent ceramics is markedly lower than the single crystal at the short wavelength, but the transmittance is improved noticeably with increasing the wavelength, and the transmittance exceeds 60% at the wavelength of 1200 nm. Excited under the 980 nm diode laser, there are two main up-conversion emission bands, green emission centers at 562 nm and red emission centers at 660 nm, which correspond to (4)S(3/2) / (2)H(11/2) - (4)I(15/2) and (4)F(9/2) - (4)I(15/2) radiative transitions respectively. By changing the doping concentrations of Er3+, the color of up-conversion luminescence can be tuned from green to red gradually. The luminescence intensity is not reinforce

  7. [Synthesis and luminescent properties of novel red phosphor SrO . Y2O3 : Eu].

    Zhai, Yong-Qing; Yang, Guo-Zhong; Liu, Yu; Liu, Hong-Mei


    A novel red-emitting phosphor SrO . Y2O3 : Eu was synthesized by glycine combustion process. The phases and structure, the size and morphology, and the luminescent properties of the samples were investigated respectively by XRD, SEM and fluorescence spectrophotometer (FL). The results show that the samples include two phases, SrY2O4 and Y2O3, which belong to orthorhombic system and cubic system respectively. The particles of SrO . Y2O3 : Eu obtained at 1 200 degrees C are nearly spherical in shape, and the mean grain size is in the range of 100-200 nm. The excitation spectrum of SrO . Y2O3 : Eu phosphor shows a broad band with a main peak around 280 nm, which is due to the charge-transfer (CT) in the excitation of an electrons from the oxygen 2p state to an Eu3+ 4f state. Excited with a radiation of 280 nm, the phosphor emits strong red fluorescence, and the main emission peak is around 592 nm, which can be assigned to the transition of 5D0 -->7 F1 of Eu3+ ion. Another strong emission peak is at 614 nm, which can be assigned to the transition of 5D0 --> 7 F2 Of Eu3+ ion. Moreover, it was found that the ratio of glycine to nitrate ion, calcinations temperature and the concentration of Eu3+ have significant effect on the luminescent intensity of SrO . Y2O3 : Eu.

  8. Dependence of photoluminescence (PL) emission intensity on Eu3+ and ZnO concentrations in Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphors

    Mhlongo, GH


    Full Text Available Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphor powders with different concentrations of Eu3+ ions were synthesized by a sol–gel method and their luminescence properties were investigated. The red photoluminescence (PL) from Eu3+ ions with the main...

  9. In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+

    Yuan, Guohai; Li, Mingxia; Yu, Mingqi; Tian, Chungui; Wang, Guofeng; Fu, Honggang


    Y2O3/Y2O2S:Eu3+ nanocomposites were successfully prepared by reducing Y2O3:Eu3+ nanocrystals. The obtained Y2O3/Y2O2S:Eu3+ nanocomposites not only can emit enhanced red luminescence excited at 338 nm, but also can be used to improve the efficiency of the dye sensitized solar cells, resulting an efficiency of 8.38%, which is a noticeable enhancement of 12% compared to the cell without Y2O3/Y2O2S:Eu3+ nanocomposites. The results of the incident photon to current, dynamic light scattering, and diffuse reflectance spectra indicated that the enhancement of the cell efficiency was mainly related to the light scattering effect of Y2O3/Y2O2S:Eu3+ nanocomposites. As a phosphor powder, the emission at ~615 nm of Y2O3/Y2O2S:Eu3+ was split into two sub-bands. Compared with Y2O3:Eu3+, the 5D0 → 7F0 and 5D0 → 7F1 emissions of Y2O3/Y2O2S:Eu3+ showed a little red-shift.

  10. Down conversion luminescence behavior of Er and Yb doped Y2O3 phosphor

    Sadhana Agrawal


    Full Text Available We have studied downconversion luminescence behaviour of Y2O3 phosphor doped with Er 1 mol% and 1 mol% of Yb. The sample was prepared by modified solid state reaction method. Using inorganic material like (Y2O3, Flux Calcium Fluoride (CaF2 and Er2O3 as well as Yb2O3 with molar ratio 1 mol% of dopant. The prepared phosphor sample was characterized using Powder X-Ray Diffraction (PXRD, Field Emission Gun Scanning Electron Microscopy (FEGSEM, High Resolution Transmission Electron Microscopy (HRTEM, Photoluminescence (PL, Thermoluminescence (TL and CIE techniques. The obtained sample shows an intense greenish-white emission (ranging from 350 to 600 nm, centered at 565 nm under a wide range of UV light excitation (220–400 nm.

  11. Site Selective Spectroscopy of Surfactant-Assembled Y2O3∶Eu Nanotubes

    吴长锋; 秦伟平; 张继森; 秦冠仕; 赵丹


    Y2O3:Eu nanotubes were synthesized by a surfactant assembly mechanism. Under ultraviolet-light excitation, the nanotubes present luminescence properties different from that of Y2O3∶Eu nanoparticles. The peak position of the charge transfer band in excitation spectra varies with the monitoring emission peaks, while the emission spectra are dependent on the excitation wavelength. Laser selective spectroscopy was performed to distinguish the local symmetries of the Eu3+ ions in the nanotubes. The results of laser-selective excitation in dicate that the emission centers near the surface of nanotube walls exhibit inhomogeneously broadened spectra without spectral structures while the two sites (site B and site C) inside the nanotube walls present resolved spectral structures . It is concluded by the number and peak positions of the spectral lines that the sites Band Cpossess different site symmetries.

  12. Influence of dispersant on Y_2O_3:Eu~(3+) powders synthesized by combustion method

    王超男; 赵江波; 李勇; 张慰萍; 尹民


    Y2O3:Eu3+ powders were synthesized by combustion method and the influence of dispersant was investigated.XRD analysis indicated that the particle size increased with a small amount of dispersant firstly and then decreased with a further increase of dispersant.The morphologies of the powders were studied by scanning electron microscopy(SEM) and high-resolution transmission electron microscopy(HRTEM).SEM images revealed that an appropriate amount of dispersant could reduce the agglomeration significantly.Due ...

  13. Effects of Y2O3 upon mechanical properties of laser coating

    Chi Deng; Yong Wang; Yaping Zhang; Jiacheng Gao


    @@ Roles of Y2O3 in mechanical properties of the bioceramic coating by the laser cladding were reported in this paper. The bonding strength of interface between the laser coatings with/without Y2O3 and substrate Ti-6Al-4V (TC4), bending strength, compressive strength, tensile strength, and hardness in these coatings were contrastively tested, and the ceramic-metal interface was observed by scanning electronic microscopy (SEM). These results indicated that the rare earth was the important factor which influenced the mechanical properties of the coating. Y2O3 was adequately dispersed in the melting pool of the laser coating, crystal grain got smaller after the melted coating was cooled, the impurity existing in crystal interface was reduced by chemical reactions, and so the strength was evidently improved. On the other hand, the rare earth could also obviously increase the hole numbers in the coating and decrease the compressive strength. So the effects of the rare earth on the laser coating were intricate and all-purpose.

  14. Platinum-assisted post deposition annealing of the n-Ge/Y2O3 interface

    Zimmermann, C.; Bethge, O.; Lutzer, B.; Bertagnolli, E.


    The impact of annealing temperature and annealing duration on the interface properties of n-Ge/Y2O3/Pt MOS-capacitors is investigated employing an ultrathin catalytically acting Pt-layer. X-ray photoelectron spectroscopy analysis has been used to verify an enhanced growth of GeO2 and thermally stabilizing yttrium germanate at the n-Ge/Y2O3 interface induced by an oxygen post deposition annealing (PDA). Especially at 500 °C and 550 °C high quality Ge/Y2O3 interfaces have been achieved resulting in very low interface trap density of 7.41*1010 eV-1 cm-2. It is shown that either a short oxygen annealing at higher temperatures (550 °C) or a long time annealing at lower temperatures (450 °C) are appropriate to realize low interface trap density (D it). It turns out that a Pt-assisted PDA in combination with a final PMA are needed to reduce hysteresis width significantly and to bring flat band voltages toward ideal values.

  15. Electrochemical preparation and characterization of brain-like nanostructures of Y2O3

    Mustafa Aghazadeh; Mojtaba Hosseinifard; Mohammad Hassan Peyrovi; Behrouz Sabour


    Nanostructured Y2O3 was successfully prepared via a two-step and template-free method.Firstly,yttrium hydroxide precursor was galvanostatically grown on the steel substrate from chloride bath by direct and pulse current deposition modes.Direct current deposition was carried out at the constant current density of 0.1 A/dm2 for 600 s.The pulse current was also performed at a typical on-time and off-time (ton=l s and ton=l s) with an average current density of 0.05 A/dm2 (Ia=0.05 A/dm2) for 600 s.The obtained hydroxide films were then scraped from the substrates and thermally converted into final oxide product via heat-treatment.Thermal behaviors and phase transformations during the heat treatment of the hydroxide powder samples were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).The final oxide products were characterized by means of X-ray diffraction (XRD),Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The results showed that the well-crystallized Y2O3 with brain-and sphere-like morphology were achievable via pulse and direct deposition modes,respectively.It was concluded that pulse current cathodic electrodeposition offered a facile route for preparation of nanostructured Y2O3.

  16. Pressureless reactive sintering mechanism of nanocrystalline Bi2O3-Y2O3 solid electrolyte


    The nanocrystalline Bi2O3-Y2O3 solid electrolyte material was synthesized by pressureless reactive sintering process with Bi2O3 and Y2O3 nano mixed powder as raw materials, which was prepared by a chemical coprecipitation process. The study on the behavior of nano δ-Bi2O3 formation and its grain growth showed that the solid solution reaction of Y2O3 and β-Bi2O3 to form δ-Bi2O3occurs mainly in the initial stage of sintering process, and nano δ-Bi2O3 crystal grains grow approximately following the rule of paracurve ((D-D0)2=K.t) during sintering process. After sintered at 600℃ for 2 h, the samples could reach above 96% in relative density and have dense microstructure with few remaining pores, the δ-Bi2O3 grains are less than 100 nm in size.

  17. Synthesis and characterization of Y2O3-reduced graphene oxide nanocomposites for photocatalytic applications

    Saravanan, T.; Anandan, P.; Azhagurajan, M.; Arivanandhan, M.; Pazhanivel, K.; Hayakawa, Y.; Jayavel, R.


    Yittrium oxide (Y2O3)-reduced graphene oxide (rGO) nanocomposite was prepared by a low temperature solution process by mixing different weight ratios of chemically derived rGO and Y2O3. The structural properties of nanocomposite materials have been analyzed by x-ray diffraction. Laser Raman spectroscopic study further confirmed the formation of the nanocomposite materials. The morphology of the nanocomposite has been analyzed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) images. From the FE-SEM and TEM images, it was found that the nanocrystals of Y2O3 were interpolated in the graphene sheets. X-ray photoelectron spectroscopy (XPS) analysis confirmed that the rGO has a reasonable amount of C-O groups as the doublet was observed in the C 1s spectrum. Moreover, the O 1s peak illustrates the doublet peaks which confirms the presence of OH and other functional groups at the surfaces of rGO. Electrochemical behavior of the nanocomposite was studied by cyclic voltammetric studies. The nanocomposite with higher weight percent of rGO shows better photocatalytic performance compared to the samples with low weight percent of rGO. The photocatalytic characteristics of the nanocomposite have been discussed based on the XPS results. The presence of hydroxyl group in the rGO of nanocomposites increases the OH radical formation and suppresses the recombination of excitons, which is responsible for the rapid decomposition of dye molecules.

  18. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    Whittenberger, J. Daniel; Luton, Michael J.


    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  19. Influence of Y2O3 on the structure and properties of calcium magnesium aluminosilicate glasses

    Mahdy, Ebrahim A.; Ibrahim, S.


    Glasses were prepared whose composition is defined by the formula: 25CaOsbnd 20MgOsbnd xY2O3sbnd (9-x) Al2O3sbnd 46SiO2 mol.% (0 ⩽ x ⩾ 3). To investigate the relation between the structural change and compositional variation by introducing Y2O3 instead of Al2O3, the glasses were analyzed by Fourier transform Infrared (FT-IR) analysis and differential thermal analysis (DTA). The density, molar volume, hardness and the chemical durability were measured and calculated. The FTIR spectra were recorded in the spectral range from 400 to 4000 cm-1 and showed significant depolymerization of silicate groups and hence resulting in a net decrease of local symmetry. Introducing yttrium in the glasses increases both glass transition (Tg) and softening (Ts) temperatures. The obtained Vicker's microhardness, the density values and the chemical stability data were increased by addition Y2O3 instead of Al2O3 in the glasses. The resulting data were greatly correlated to the role played by the cations present in the glass structure.

  20. Aluminizing Coating and Aluminizing-Y2O3 Coating Deposited by Pulsed Spark

    何业东; 黄祖芬; 王德仁; 齐惠滨; 高 高唯


    Aluminizing coating and aluminizing-dispersed Y2O3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y2O3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by dispersed Y2O3, etc.

  1. Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering

    HUO Di; ZHENG Yanchun; SUN Xudong; LI Xiaodong; LIU Shaohong


    In the present work transparent Y2O3 ceramics were made by slip casting and vacuum sintering of nanopowders with sodium polyacrylic acid (PAA-Na) as dispersant.The rheological properties of Y2O3 nanopowder slurry were investigated using different amounts of dispersant and solid contents.The microstructures and transmittance of the sintered ceramics were also studied by means of scauning electron microscopy (SEM) and ultra-violet visible spectrometry.The results showed that rheological behaviors of the Y2O3 nanopowder slurry were effectively promoted by sodium polyacrylic acid.Highly dispersive and stable slurries were obtained as the dispersant was added over 1.0dwb% under the fixed conditions of pH 11 and 45 wt.% solid content.All the slip cast green bodies were sintered into highly dense ceramics after sintering at 1700 ℃ for 5 h in vacuum,wherein the sample added with 1.1% sodium polyacrylic acid exhibited the highest relative density of 99.36% and transmission of 30% at 800 nm wavelength.

  2. Growth mechanism evolvement influence on out-of-plane texture of Y2O3 seed layer for coated conductors

    Xia, Yudong; Tao, Bowan; Xiong, Jie; Zhang, Xin; Zhao, Yong


    The Y2O3 films were deposited on biaxially textured Ni-5%W (NiW) substrates at different substrate temperatures (Ts). The microstructures of the Y2O3 films were characterized by X-ray diffraction (XRD) θ-2θ scans and ω-scans. The Y2O3 lattice parameters and residual stress were measured and calculated by high-resolution reciprocal space mapping (HR-RSM). Results showed that the Y2O3 films deposited on the NiW substrate exhibited different growth mechanisms at different Ts. At a low temperature range, the Y2O3 films grew via the tilt growth mechanism. The Y2O3 film grown at Ts=620 °C exhibited the highest residual stress and sharpest out-of-plane texture. With the increase in Ts, the growth mechanism changed to the epitaxial growth mechanism. At Ts=720 °C, the Y2O3 underwent epitaxial growth on the NiW substrates, and the out-of-plane textures of Y2O3 and NiW were almost identical.

  3. Preparation and Characterization of Sol-Gel Derived Au Nanoparticle Dispersed Y2O3:Eu Films

    Guo Hai; Zhang Weiping; Dong Ning; Lou Liren; Yin Min; Tillement O; Mugnier J; Bernstein E; Brevet P F


    Gold nanoparticles dispersed Y2O3 films were prepared through a sol-gel method by using yttrium acetate and Au nanoparticles colloid as precursors. The films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-VIS absorption spectra. XRD patterns and TEM images of Y2O3+Au films give the same results on structure and particle size as that of pure Y2O3 films. The surface plasma resonance (SPR) of Au nanoparticles in Y2O3+Au film was observed around 550 nm in the absorption spectrum and its position shifts to red with increasing annealing temperature is caused by the increase of dielectric constant of Y2O3 matrix and the size of Au nanoparticles. The second and third order nonlinear optical effects of Y2O3+Au films were also observed. The photoluminescent properties of Y2O3:Eu+Au films were investigated and results indicate that there exist an energy transfer from Eu3+ to Au nanoparticles and this energy transfer decreases the emission of Eu3+ in Y2O3:Eu+Au film.

  4. Effects of Y2O3 insertion layer on anisotropic magnetoresistance of Ni81Fe19 films

    Wang, Shuyun; Huang, Huaxue; Sun, Yang; Gao, Tiejun; He, Yuan


    A series of Ta(4 nm)/Y2O3(t)/Ni81Fe19(20 nm)/Y2O3(t)/Ta(3 nm) films were prepared on glass substrates by magnetron sputtering under appropriate conditions. AMR value, phase composition and magnetic hysteresis hoop of Ni81Fe19 films were measured and analyzed by four-point probe technology, X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively. Influence of Y2O3 which work as oxidation intercalation on AMR values of Ni81Fe19 films was investigated. The experiment results show that, at the substrate temperature of 450∘C, the AMR value of the film with Y2O3 layer thickness of 2.5 nm can reach 4.61%, increasing by 71.3% compares with the film without Y2O3 layer.

  5. Y2O3表面涂层对Ni高温氧化性能的影响%Influence of Superficial Y2O3 Coatings on High-Temperature Oxidation of Ni

    王永东; 李柏茹


    在Ni基体上制备了Y2O3涂层,并对其如何影响Ni在900℃的氧化性能进行了研究.作为对比,采用相同的工艺在Ni基体上制备了CeO2涂层.900℃下恒温氧化表明:Y2O3或CeO2对Ni的氧化机理没有影响;但与CeO2相比,Y2O3在降低Ni的氧化速度上有更强的作用.此外Y2O3和CeO2涂层的厚度也对Ni的氧化影响不明显.对Y2O3或CeO2如何影响Ni的氧化性能进行了分析.%The effects of superficial Y2O3 coatings on the high-temperature oxidation of nickel at 900 ℃ in air were evaluated.For comparison,Ni substrates with and without superficial CeO2 coating were also prepared in the same condition.The results indicate that Y2O3 or CeO2 coatings result in a significant decrease in the oxidation rate of Ni,especially the former;however the oxidation mechanisms are essentially unaffected.The thickness of Y2O3 or CeO2 coatings has little influence on the oxidation rate of Ni.The beneficial effects of Y2O3 or CeO2 on the oxidation rate of Ni were discussed.

  6. Numerical simulation of ZrO2(Y2O3 ceramic plate penetration by cylindrical plunger

    Bratov V.


    Full Text Available In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven to be applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3 ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith's surface energy was evaluated and was found to be an order of magnitude higher as comparing to its static value.

  7. Research on Y2O3:Eu Phosphor Coated with In2O3


    Y2O3:Eu red phosphor for FED application was prepared by high temperature solid-state reaction. The In2O3 coating by precipitation method to the phosphor was applied and the analyses of XRD, Zeta potential, SEM, EDS and low voltage cathodoluminescence (CL) were conducted for investigating the coating effect. The results showed that In2O3 coating promoted the low voltage CL of the phosphor efficiently. The promotion was possibly due to the enhancement of the surface conductivity of the phosphor grains.

  8. Thermally and optically stimulated luminescence of AlN-Y2O3 ceramics after ionising irradiation

    Trinkler, L.; Bos, A.J.J.; Winkelman, A.J.M.;


    Thermally (TL) and optically stimulated luminescence (OSL) were studied in AlN-Y2O3 ceramics after irradiation with ionising radiation. The extremely high TL sensitivity (approximately 60 times the sensitivity of LiF:Mg,Tl (TLD-100)) makes AlN-Y2O3 ceramics attractive as a TLD material. However......, an essential drawback of AlN-Y2O3 is its high fading rate. Special attention has been focused on understanding and improving the fading properties. In particular, the influence of the ceramics production conditions and the additive concentration on the fading rate have been studied. Experimental results...

  9. Deuterium implantation into Y2O3-doped and pure tungsten: Deuterium retention and blistering behavior

    Zhao, M.; Jacob, W.; Manhard, A.; Gao, L.; Balden, M.; von Toussaint, U.; Zhou, Z.


    The blistering and near-surface deuterium retention of a Y2O3-doped tungsten (W) and two different pure W grades were studied after exposure to deuterium (D) plasma at elevated temperatures (370, 450 and 570 K). Samples were exposed to a deuterium fluence of 6 × 1024 D m-2 applying a moderate ion flux of about 9 × 1019 D m-2 s-1 at an ion energy of 38 eV/D. Morphological modifications at the surface were analyzed by confocal laser scanning microscopy and scanning electron microscopy. The D depth profiles and the accumulated D inventories within the topmost 8 μm were determined by nuclear reaction analysis. Blistering and deuterium retention were strongly dependent on the implantation temperature. In addition, blistering was sensitively influenced by the used tungsten grade, although the total amount of retained D measured by nuclear reaction analysis was comparable. Among the three different investigated tungsten grades, Y2O3-doped W exhibited the lowest degree of surface modification despite a comparable total D retention.

  10. Ab initio study of He trapping, diffusion and clustering in Y2O3

    Lai, Wensheng; Ou, Yidian; Lou, Xiaofeng; Wang, Fei


    Ab initio calculations have been performed to study the formation and migration energies of helium atoms and the stability of helium-vacancy clusters in a Y2O3 crystal. The calculated formation energies show that a helium atom is preferred to occupy an yttrium vacancy site with a large volume and low electron density. The migration energy of the helium atom by an interstitial mechanism is 0.31 eV. Calculations of the binding energies of an extra helium atom to the helium-vacancy clusters vary with the number of helium atoms in the clusters with a typical value of 0.4-0.7 eV. This turns negative when the He atoms reach saturation; that indicates that vacancy clusters can attract a limited number of helium atoms to form small stable helium-vacancy clusters. Our calculations suggest that the use of Y2O3 in oxide dispersion strengthened ferritic steels may reduce He gas bubble formation as it may act as sink for trapping helium atoms.

  11. Effect of Y2O3 on microstructure and mechanical properties of hypereutectic Al-20% Si alloy

    YANG Ya-feng; XU Chang-lin; WANG Hui-yuan; LIU Chang; JIANG Qi-chuan


    The effect of Y2O3 on the microstructure and mechanical properties of the hypereutectic Al-20%Si(mass fraction) alloy was investigated. The results show that, with the addition of Y2O3 into the Al-P-Ti-TiC modifier, the average size of primary silicon in th.e Al-20%Si alloy modified by Al-P-Ti-TiC-Y2O3 modifier (approximately 15μm or less) is significantly reduced, and the morphology of eutectic silicon changes from coarse acicular and plate like to refined fibrous. The Brinell hardness (HB189) and tensile strength (301 MPa) of Al-20%Si alloy modified by the Al-P-Ti-TiC-Y2O3 increase by 11.6% and 10.7%, respectively, for the alloys afrer heat treatment.

  12. Effect of Y2O3 and Total Oxide Addition on Mechanical Properties of Pressureless Sintered β-SiC


    The effect of Y2O3 and the total oxide volume fraction (Y2O3+Al2O3) on density and mechanical properties of lowtemperature (1770~1940℃) pressureless sintered β-SiC ceramics were presented. The optimum temperature forpressureless sintering of β-SiC was found to be ~1850℃ and the optimum content of Y2O3 in the oxides was foundto be between 40 and 57 wt pct. The highest sintered density was achieved by adding oxides at 14 vol. pct. Both ofthe highest strength and fracture toughness were achieved at ~14 vol. pct oxide addition and yttria concentrationsbetween 40 and 57 wt pct in the oxides. Hardness, on the other hand, was found to be the highest for samples with14 vol. pct oxide addition and ~64 wt pct Y2O3 in oxides.

  13. Microstructural characterization of oxide dispersion strengthened (ODS) Fe-12Cr-0.5Y2O3 alloy

    Shamsudin, Farha Mizana; Radiman, Shahidan; Abdullah, Yusof; Hamid, Nasri A.


    Oxide dispersion strengthened (ODS) ferritic alloy containing 12wt% Cr and 0.5wt% Y2O3 was prepared by mechanical alloying (MA) method and then compacted into bulk shape. Field emission scanning electron microscopy (FESEM) was performed to characterize the microstructure of milled alloy powder. The fragments and nanoclusters of Y2O3 were observed in this alloy powder. FESEM-EDS mapping on the milled alloy powder reveal the uniformity of the element distribution achieved by the alloy. The Y element is finely dispersed into the alloy matrix and the O element is observed indicating the presence of oxides throughout the alloy sample. The compacted alloy was then heat treated at 1050°C and analyzed by field emission scanning electron microscope (FESEM). The formations of nano-scale Y2O3 were observed after the heat treatment process of alloy indicating the dispersion and incorporation of Y2O3 nanoparticles into the alloy matrix.

  14. Preparation and tribological properties of surface-modified nano-Y2O3 as additive in liquid paraffin

    Yu, Lin; Zhang, Lin; Ye, Fei; Sun, Ming; Cheng, Xiaoling; Diao, Guiqiang


    Surface-modified nano-Y2O3 was prepared by a coupling-grafting method with vinyl methylerichlorosilane and methyl methacrylate as the coupling agent and grafting agent, respectively. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron micrograph (TEM) and thermal gravimetric analysis (TGA). The tribological properties of the surface-modified nano-Y2O3 as additive in liquid paraffin were evaluated with a four-ball tester. The results show that the nano-Y2O3 keeps its original crystalline structure after surface modification, and the modified nano-Y2O3 forms a core-shell structure with an average particle size of 24.5 nm. The maximum non-seizure load (PB value) and sintered load (PD value) increase by 25% and 26.9%, respectively, when compared with those of liquid paraffin, and the wear scar diameter (WSD) also decrease by 21% when 0.10% surface-modified nano-Y2O3 was added. The protective inorganic-organic film formed by nano-Y2O3 and organic modifiers plays an important role in the improved tribological properties of liquid paraffin.

  15. Luminescent Properties of Y2O3∶Eu Nanocrystalls Synthesized by EDTA Complexing Sol-Gel Process

    翟永清; 姚子华; 刘保生; 翟建; 王凯肖


    Y2O3: Eu nanocrystals were synthesized by EDTA complexing sol-gel process at a relatively low temperature, in which ethylen-diamine-tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelating agent and polymerization agent respectively. Formation process of Y2O3:Eu and structure characterization were carried out by TG-DTA, XRD, SEM/EDX. The results show that pure cubic phase Y2O3: Eu nanocrystalsere is produced after the precursor calcinated at 600 ℃ for 2 h, and the crystallinity increases with increasing calcination temperature. The nanoparticles of the Y2O3: Eu are basically spherical in shape. The mean particle size increases from about 30 to 70 nm when the calcination temperature increases from 600 to 1000 ℃. The luminescent properties of phosphor were analyzed by measuring the excitation and emission spectra. The main emission peak of the sample is around 612 nm, resulting in a red emission. The emission intensity increases with the calcination temperature. Compared with microsized Y2O3: Eu phosphors prepared by a conventional method, nanosized Y2O3: Eu synthesized by the present work, gives and a clear red shift in the emission spectrum. Moreover, the quenching concentration of Eu is raised.

  16. Plasma Sprayed Dense MgO-Y2O3 Nanocomposite Coatings Using Sol-Gel Combustion Synthesized Powder

    Wang, Jiwen; Jordan, Eric H.; Gell, Maurice


    MgO-Y2O3 nanostructured composite powder (volume ratio of 50:50) was synthesized by a sol-gel combustion process which generated crystal sizes in the 10-20 nm range. The MgO-Y2O3 nanopowder was plasma sprayed using a conventional, DC arc plasma spray system. X-ray diffraction analysis shows that the as-sprayed MgO-Y2O3 coating is composed of cubic MgO and Y2O3 phases and has ~95% density. Microstructure characterization by SEM reveals that the as-sprayed coating has fine grain sizes of 100-300 nm as a result of rapid solidification. The hardness of the coating, 7.5 ± 0.6 GPa, is higher than that of coarse-grained, dense MgO, and Y2O3 ceramics. This approach demonstrates the potential of plasma spray processes for making thick, dense MgO-Y2O3 nanocomposite performs for applications as durable, infrared windows.

  17. Ultrasound synthesis of Y2O3: Dy3+ nanophosphor: Structural and photometric properties suitable for wLEDs

    Marappa, B.; Rudresha, M. S.; Nagabhsuhana, H.; Basavaraj, R. B.; Prasad, B. Daruka


    The facile ultrasound synthesis of Y2O3:Dy3+ nanostructures by using bio-surfactant mimosa pudica leaves extract. The concentration of bio-surfactant was the key factor in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Dy3+ was characterized by SEM, TEM and HRTEM. The PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy3+ concentration on the structure morphology, UV absorption, and PL emission of Y2O3: Dy3+ nanostructures were investigated systematically. Y2O3: Dy3+ exhibits intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and CCT value is 5525 K which corresponds to vertical day light. SEM micrographs showed superstructure morphology influenced by both sonication time as well as surfactant concentration. Pl emission spectra shows three intense peaks observed at 480, 574 and 666 nm attributed to the Dy3+ transitions. The photometric properties were studied by evaluating the CIE, CCT diagrams and the results were very fruitful in making the white light emitting diodes. This method has been considered to be the cost effective and eco-friendly to synthesize nanomaterials with superior morphology suitable for display device applications.

  18. Photocatalysis Characteristics of Y2O3 Doped TiO2%Y2O3掺杂的TiO2的自然光催化降解性能研究

    雅菁; 贾堤; 刘云兆; 陈玉如


      采用溶胶-凝胶法,通过在TiO2中掺杂氧化钇,在太阳光的照射下进行染料溶液的光催化降解。结果表明,Y2O3掺杂TiO2的自然光催化活性显著高于未掺杂TiO2,与未掺杂TiO2在紫外灯下的催化活性相当。%  TiO2 and Y2O3 doped TiO2 thin films were prepared by sol-gel method and their solar ray photocatalysis characteristics were examined. The results show that the photocatalytic activities of Y2O3 doped TiO2 thin films are higher than that of TiO2 thin films.

  19. Effect of Superficially Applied Y2O3 Coating on High-Temperature Corrosion Behavior of Ni-Base Superalloys

    Goyal, Gitanjaly; Singh, Harpreet; Singh, Surindra; Prakash, Satya


    Inhibitors and oxide additives have been investigated with varying success to control high-temperature corrosion. Effect of Y2O3 on high-temperature corrosion of Superni 718 and Superni 601 superalloys was investigated in the Na2SO4-60 pct V2O5 environment at 1173 K (900 °C) for 50 cycles. Y2O3 was applied as a coating on the surfaces of the specimens. Superni 601 was found to have better corrosion resistance in comparison with Superni 718 in the Na2SO4-60 pct V2O5 environment. The Y2O3 superficial coating was successful in decreasing the reaction rate for both the superalloys. In the oxide scale of the alloy Superni 601, Y and V were observed to coexist, thereby indicating the formation of a protective YVO4 phase. There was a distinct presence of a protective Cr2O3-rich layer just above the substrate/scale interface in the alloy. Whereas Cr2O3 was present with Fe and Ni in the scale of Superni 718. Y2O3 seemed to be contributing to better adhesion of the scale, as comparatively lesser spalling was noticed in the presence of Y2O3.

  20. 静电纺丝法制备Y2O3纳米纤维与表征%Preparation and Characterization of Y2O3 Nanofibers via Electrospinning

    刘莉; 董相廷; 王进贤; 车红锐


    采用静电纺丝法制备了PVA/Y(NO3)3复合纳米纤维,在适当的温度下进行热处理,得到Y2O3纳米纤维. 利用XRD,SEM,TG-DTA,FTIR等现代分析手段对样品进行了表征. XRD分析表明,PVA/Y(NO3)3复合纤维为无定型,焙烧温度在600 ℃以上得到晶态单相的Y2O3纳米纤维,属于立方晶系,空间群为Ia3. SEM分析表明,PVA/Y(NO3)3复合纤维表面光滑,平均直径为110 nm. 焙烧温度对Y2O3纳米纤维的形成有重要影响. 600 ℃焙烧得到的Y2O3纳米纤维的平均直径约50 nm,900 ℃焙烧得到的Y2O3纳米纤维由纳米颗粒堆积而成,部分已断裂. TG-DTA和FTIR分析表明,PVA,Y(NO3)3以及水分在600 ℃以上时完全分解挥发,最终样品为晶态单相的Y2O3纳米纤维.

  1. Influences of Y2O3 dopant content on residual stress,structure, and optical properties of ZrO2 thin films

    Qiling Xiao; Shuying Shao; Jianda Shao; Zhengxiu Fan


    Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 contents (from 0 to 12 mol%) are deposited on BK7 glass substrates by electron-beam evaporation method. The effects of different Y2O3 dopant contents on residual stress, structure, and optical properties of ZrO2 thin films are investigated. The results show that residual stress in YSZ thin films varies from tensile to compressive with the increase of Y2O3 molar content. The addition of Y2O3 is beneficial to the crystallization of YSZ thin film and transformation from amorphous to high temperature phase, and the refractive index decreases with the increase of Y2O3 molar content. Moreover, the variations of residual stress and the shifts of refractive index correspond to the evolution of structures induced by the addition of Y2O3.

  2. Effect of Y2O3 and Dy2O3 on Microstructure and Mechanical Behaviors of Aluminum Nitride Ceramics


    The effects of two types of additives, Y2O3 and Dy2O3, on the sintering and mechanical behaviors of AlN ceramics were investigated. The experimental results show that the sintering temperature can be decreased and the mechanical behavior can be improved by adding rare earth in AlN ceramics. The strength of AlN ceramics with Y2O3 and Dy2O3 are 326 and 320 MPa, respectively, which are 97.6% and 93.9% higher than the un-doped AlN ceramics. The fracture behavior on the fracture surfaces of rare earth oxide AlN ceramics was found to be a mixed mode of transgranular fracture and intergranular fracture. As a result, it is concluded that the improvement of bending strength of AlN ceramics with Y2O3 and Dy2O3 addition are mainly achieved by strengthening the grain boundary.

  3. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies

    Zhao, Mingyue; Zhou, Zhangjian; Zhong, Ming; Tan, Jun; Lian, Youyun; Liu, Xiang


    Thermal shock resistance of fine grained W-Y2O3 materials fabricated by two different manufacturing technologies (i.e. spark plasma sintering and high temperature sintering in combination with hot rolling deformation) was examined under transient high heat loads below and slightly above the melting threshold of pure tungsten. The tests were performed with the electron beam test facility EMS-60 at Southwestern Institute of Physics, China. The comparison of the thermal shock response in this work showed that the deformed W-Y2O3 performed a superior behavior to spark plasma sintered W-Y2O3 in suppressing the crack formation, melting resistance and recrystallization resistance. The thermo-physical properties and mechanical characterizations necessary for understanding the thermal shock response of these materials were also presented and discussed.

  4. Study on Mg-PSZ Ceramics Doped with Y2O3 and CeO2


    Mg-PSZ ceramics doped with Y2O3 and CeO2 was prepared using traditional processing method. The fine-grain PSZ ceramics(dc≤10 μm) sintered at low temperature(≤1550 ℃) was obtained by means of composition design. The effects of co-stabilization of Y2O3, CeO2 and annealing at 1100 ℃ on material composition, microstructure and mechanical properties were studied. The results show that Y2O3 and CeO2 during annealing at 1100 ℃ can inhibit subeutectoid decomposition reaction effectively, and optimize nucleation and growth of t-ZrO2 precipitates in c-ZrO2 matrix phase. The materials show transgranular and intergranular fracture characteristics, and exhibit better mechanical properties owing to the cooperative effect of stress-induced transformation toughening and microcrack toughening.

  5. Single-Step Synthesis of Cubic Y2O3:Eu3+ Nanophosphor by Flame Spray Pyrolysis

    Lee, Jae Seok; Lee, Jinhyung; Han, Hyuksu; Kumar, Purushottam; Singh, Rajiv K.


    In this report, we investigated a single-step process for formation of high crystallinity Y2O3:Eu3+ red nanophosphor by flame spray pyrolysis (FSP) without post-heat treatments. Crystallinity of as-formed nanophosphor particle was improved by addition of urea to the nitrate-based liquid precursor. Urea increased the temperature in the flame zone thus ensuring Y2O3:Eu3+ formation at higher flame temperature. Higher temperature reached during combustion of urea promoted the formation of better crystallinity, nano-sized and spherical-shaped particles. The effect of urea in the precursor to obtain high-efficiency Y2O3:Eu3+ nanophosphor was studied.

  6. Enhancement of Color Rendering Index for White Light LED Lamps by Red Y2O3:EU3+ Phosphor

    Tran Hoang Quang Minh


    Full Text Available We present an application of the red Y2O3:Eu3+ dopant phosphor compound for reaching the color rendering index as high as 86. The Multi-Chip White LED lamps (MCW-LEDs with high Correlated Color Temperatures (CCTs including 7000 K and 8500 K are employed in this study. Besides, the impacts of the Y2O3:Eu3+ phosphor on the attenuation of light through phosphor layers of the various packages is also demonstrated based on the Beer-Lambert law. Simulation results provide important conclusion for selecting and developing the phosphor materials in MCW-LEDs manufacturing.

  7. Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system

    Stecura, S.


    The effects of bond and thermal barrier coating compositions, thicknesses, and densities on air plasma spray deposited Ni-Cr-Al-Y/ZrO2-Y2O3 life were evaluated in cyclic furnace oxidation tests at temperatures from 1110 to 1220 C. An empirical relation was developed to give life as a function of the above parameters. The thermal barrier system tested which had the longest life consisted of Ni-35.0 wt% Cr-5.9 wt% Al-0.95 wt% Y bond coating and ZrO2-6.1 wt% Y2O3 thermal barrier coating.

  8. Effect of Y2O3, CeO2 on Sintering Properties of Si3N4 Ceramics

    苏盛彪; 包亦望; 王黎; 李竟先


    The effect of rare earth oxides Y2O3 or CeO2 on sintering properties of Si3N4 ceramics was studied and the mechanism of assisting action during sintering was analyzed. The results indicate that the best sintering properties appear in Si3N4 ceramics with 5% Y2O3 or 8% CeO2. Secondary crystallites are formed at grain boundaries after heat treatment, which decreases the amount of glass phase and contributes to the improvement of high-temperature mechanical properties of silicon nitride.

  9. ZrO2 and ZrO2-Y2O3 coatings deposited by double pulsed plasma arc


    A novel surface technique has been developed to produce ZrO2 and ZrO2-Y2O3 coatings on the surface of alloys by using double pulsed plasma arc to react with a solution film containing nano-oxide particles. These coatings exhibit smooth surface and excellent adhesion with substrate. The morphologies of the ceramic coatings and phases were analyzed. It was shown that the oxidation resistance of l8-8 stainless steel was markedly improved by applying ZrO2 and ZrO2-Y2O3 coatings.

  10. Inelastic neutron scattering and lattice dynamics of ZrO2, Y2O3 and ThSiO4

    Preyoshi P Bose; R Mittal; N Choudhury; S L Chaplot


    Zirconia (ZrO2), yttria (Y2O3) and thorite (ThSiO4) are ceramic materials used for a wide range of industrial applications. The dynamical properties of these materials are of interest as they exhibit numerous interesting phase transitions at high temperature and pressure. Using a combination of inelastic neutron scattering and theoretical lattice dynamics we have studied the phonon spectra and thermodynamic properties of these compounds. The experimental data validate the theoretical model, while the model enables microscopic interpretations of the observed data. The calculated thermodynamic properties are in good agreement with the experimental data.

  11. Photoluminescent properties of nanostructured Y 2O 3:Eu 3+ powders obtained through aerosol synthesis

    Marinkovic, K.; Mancic, L.; Gomez, L. S.; Rabanal, M. E.; Dramicanin, M.; Milosevic, O.


    Red emitting Y 2O 3:Eu 3+ (5 and 10 at.%) submicronic particles were synthesized through ultrasonic spray pyrolysis method from the pure nitrate solutions at 900 °C. The employed synthesis conditions (gradual increase of temperature within triple zone reactor and extended residence time) assured formation of spherical, dense, non-agglomerated particles that are nanostructured (crystallite size ˜20 nm). The as-prepared powders were additionally thermally treated at temperatures up to 1200 °C. A bcc Ia-3 cubic phase presence and exceptional powder morphological features were maintained with heating and are followed with particle structural changes (crystallite growth up to 130 nm). Emission spectra were studied after excitation with 393 nm wavelength and together with the decay lifetimes for Eu 3+ ion 5D0 and 5D1 levels revealed the effect of powder nanocrystalline nature on its luminescent properties. The emission spectra showed typical Eu 3+5D0 → 7F i ( i = 0, 1, 2, 3, 4) transitions with dominant red emission at 611 nm, while the lifetime measurements revealed the quenching effect with the rise of dopant concentration and its more consistent distribution into host lattice due to the thermal treatment.

  12. Physical Properties of SiCp/Sialon Composites with 4% Y2O3

    Ru Hongqiang; Gong Ganlei; Zhang Ning; Wang Lei; Qiu Guanming; Sun Xudong


    SiCp/Sialon ceramic manix composites were fabricated by pressureless sintering method using the Sialon powder synthesized from the kaolin clay and submicron SiC particles. The best sintering parameter of SiCp/Sialon composites with 4% (mass fraction) Y2O3 is 1500 ℃×2 h. It is shown that with the increasing of SiCp content, the bulk density decreases, the apparent porosity increases, the flexure strength increases at first and then decreases, the fracture toughness increases and hardness gradually decreases. The best physical properties can be obtained with 10 mass% SiCp, and the bulk density is 3.06 g ·cm-3, apparent porosity is 2.4%, flexure strength is 389.5 MPa, and Vickers hardness is 18.4 GPa. There will be 1280 MPa radial tensile stress and 640 MPa tangential stress in side of Sialon of interphase boundary between SiCp and Sialon phase by calcilation. The mechanism of improvement of SiC content on mechanical properties are also discussed.

  13. Small fatigue crack propagation in Y2O3 strengthened steels

    Hutař, P.; Kuběna, I.; Ševčík, M.; Šmíd, M.; Kruml, T.; Náhlík, L.


    This paper is focused on two type of Y2O3 strengthened steels (Fe-14Cr ODS and ODS-EUROFER). Small fatigue crack propagation was experimentally measured using special small cylindrical specimens (diameter 2 and 2.6 mm) with shallow notch grinded in the gauge length. In the middle of this notch, a pre-crack of length of 50 μm was fabricated using a focused ion beam technique. Fatigue crack growth rate was measured for different applied total strain amplitudes and described using plastic part of the J-integral. Obtained results were compared with published data of EUROFER 97. The effect of the oxide dispersion on small fatigue crack propagation was found rather insignificant. Ferritic Fe-14Cr ODS steel shows more brittle behaviour, i.e. for the same cyclic plasticity, characterised by the plastic part of the J-integral, the small cracks grow faster. A new methodology for residual lifetime prediction of structures containing physically small cracks, based on plastic part of the J-integral, is presented.

  14. The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer

    Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev


    In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.

  15. Y2O3掺杂对硅酸盐玻璃结构及其熔体黏度的影响%Effect of Y2O3 Dopant on Structure and Viscosity of Silicate Glass and Melt

    王觅堂; 程金树; 李梅; 何峰


    Silicate glasses and melts, soda lime silicate glass frits with various contents of Y2O3 were prepared via melting-quenching in water The effect of Y2O3 on the structure and viscosity was investigated. The samples were characterized by Raman spectrometer and viscometer, respectively. The melting temperature was obtained based on the Arrhenius equation. Some expressions for the glass structure (i.e., fraction of non-bridging oxygen, average number of non-bridging oxygen per tetrahedron, average number of oxygen pre tetrahedron and average number of bridging comers per tetrahedron) were proposed. The results show that Y2O3 doped into soda lime silicate glass can change the [SiO4] tetrahedron structural unit, and the average number of non-bridging oxygen per tetrahedron and the average number of oxygen pre tetrahedron both increase and the average number of bridging corners per tetrahedron decreases with increasing the content of Y2O3. In addition, the incorporation of Y2O3 also decreases the viscosity and melting temperature of soda lime silicate glass.%为了探索稀土氧化物Y2O3掺杂对硅酸盐玻璃结构及其高温熔体黏度的影响,用熔融-水淬法制得了掺杂不同含量Y2O3的Na2O-CaO-SiO2系玻璃料,采用激光共聚焦Raman光谱仪和高温旋转黏度计分别对玻璃料进行了Raman光谱和黏度的测试,根据Arrhenius方程推算了玻璃的熔制温度,同时给出了计算玻璃结构中每个四面体中的氧数、非桥氧数、平均桥数及非桥氧比例的公式.结果表明:Y2O3的掺杂使得Na2O-CaO-SiO2系玻璃中,具有不同非桥氧的结构单元之间发生了一定转化.随着Y2O3掺杂量的增加,玻璃中每个四面体中的氧数和非桥氧数都逐渐增大,玻璃中每个四面体中的连接数降低.此外Y2O3的掺杂降低了Na2O-CaO-SiO2系玻璃的高温黏度与熔制温度,且与玻璃结构的变化规律相一致.

  16. Microstructures and characteristics of deep trap levels in ZnO varistors doped with Y2O3


    In this paper discussions on ZnO based varistor ceramics doped with different ratios of Y2O3 are presented.Analysis on the phase and microstructures of the samples indicates that an additional phase is detected in the samples doped with Y2O3,and the average grain size of the specimens decreases from about 9.2μm to 4.5μm,with an increase in the addition of Y2O3 from 0 mol%to 3 mol%.The corresponding varistor’s voltage gradient markedly increases from 462 V/mm to 2340 V/mm,while the nonlinear coefficient decreases from 22.3 to 11.5,respectively.Furthermore,the characteristics of deep trap levels in these ZnO samples are investigated by measuring their dielectric spectroscopies.The trap energy level and capture cross section evaluated by relaxation peak of the Cole-Cole plot vary slightly as the addition of Y2O3 increases.These traps may be ascribed to the intrinsic defects of ZnO lattice.

  17. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi


    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  18. Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures

    Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.


    Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.

  19. Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process

    Bing Guo; Hoon Yim; Wonjoong Hwang; Matt Nowell; Zhiping Luo


    In this study, factors affecting the crystal structure of flame-synthesized Y2O3:Eu particles were investigated, especially the particle size effect and its interaction with Eu doping concentration. Polydisperse Y2O3:Eu (size range 200nm to 3 μm) powder samples with Eu doping concentrations from 2.5 mol% to 25 mol% were generated in either H2/air or H2/O2 substrate-free flames. The crystal structure of the powder samples was determined by powder X-ray diffraction (XRD),which was complemented by photoluminescence (PL) measurements. Single particle crystal structure was determined by single particle selected area electron diffraction (SAED),and for the first time,by electron backscatter diffraction (EBSD).H2/air flames resulted in cubic phase Y2O3:Eu particles with hollow morphology and irregular shapes.Particles from H2/O2 flames had dense and spherical morphology; samples with lower Eu doping concentrations had mixed cubic/monoclinic phases: samples with the highest Eu doping concentrations were phase-pure monoclinic. For samples generated from H2/O2 flames,a particle size effect and its interaction with Eu doping concentration were found: particles smaller than a critical diameter had the monoclinic phase,and this critical diameter increased with increasing Eu doping concentration. These findings suggest that the formation of monoclinic Y2O3:Eu is inevitable when extremely hot substrate-free flames are used,because typical flame-synthesized Y2O3:Eu particle sizes are well below the critical diameter.However,it may be possible to generate particles with dense,spherical morphology and the desired cubic structure by using a moderately high flame temperature that enables fast sintering without melting the particles.

  20. Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process

    HOU Qingyu; HUANG Zhenyi; GAO Jiasheng


    Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobalt-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.

  1. Aluminizing and Aluminizing-Y2O3 Coatings Deposited by Pulse Spark%电脉冲沉积铝化物及铝化物-Y2O3涂层

    黄祖芬; 何业东; 王德仁; 齐慧滨; 雷林海; 吴浩


    采用电脉冲沉积技术在20碳钢表面上获得了冶金结合的晶粒尺寸约为几十到几百纳米的铝化物和铝化物+弥散Y2O3复合微晶涂层。 600 ℃空气中氧化100 h的结果表明, 电脉冲沉积获得的两种涂层均可显著地降低20碳钢的氧化速率并提高氧化层的抗剥落性能。用AFM, SEM, EDS和XRD对铝化物涂层及氧化层进行了分析,并讨论了两种涂层提高抗氧化性能的作用机制。%Aluminizing and aluminizing-dispersed Y2O3 composite coatings were prepared on 20 steel specimens by pulse spark technique, which exhibited a micro-crystallized structure with grain size in the range of several tens to several hundred nanometers. It is shown that after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y2O3 composite coatings has even more better property than the aluminizing coatings. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phase structure of these coatings and the oxide scale formed during oxidation. The mechanism for these coatings to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of dispersed Y2O3, etc.

  2. Antireflection and downconversion response of Nd3+ doped Y2O3/Si thin film deposited by AACVD process

    Elleuch, R.; Salhi, R.; Deschanvres, J.-L.; Maalej, R.


    Nd3+:Y2O3 nanograins-like structure films with various Nd concentrations, were deposited on Si (1 0 0) substrates by aerosol assisted chemical vapor deposition (AACVD) process. The intense 900 nm emission of Nd3+ corresponding to the 4F3/2 → 4I9/2 transition was investigated as a function of the annealing temperature. The reflectance percentage of the optimized 5 mol.% Nd:Y2O3 film was recorded at about 16% in 400-1000 nm range. The refractive index (n = 1.94) and the low porosity (P = 2.74%) showed the high transparency of this film. The obtained results demonstrate that this film can enhance the Si solar cell efficiency by light trapping and spectrum shifting.

  3. Oxidation of Al2O3-30%TiCN-0.2%Y2O3 Composite

    Li Xikun; Qiu Guanming; Xiu Zhimeng; Sun Xudong; Yan Changhao; Dai Shaojun


    The oxidation behavior of Al2O3-30%TiCN-0.2%Y2O3 composite and its effect on high temperature bending strength was studied. The result indicates that the mass gain during static oxidation of the material under normal atmosphere follows the parabolic law. Oxide increases with increasing temperature and prolonging time. It has good oxidation resistance. The product of oxidation of the material is TiO2. Therefore, the volume of the material expands. The oxide film is destroyed because residual stress inside the oxide film is released. Proper oxidation is beneficial to the improvement of bending strength of Al2O3-30%TiCN-0.2%Y2O3 composite. The strength increase is up to 4.5%.

  4. Ultrasonic Degradation of Methyl Orange in Presence of Y2O3 Doping Anatase TiO2 Catalyst

    Wang Jun; Guo Baodong; Pan Zhijun; Liu Zhenrong; Wen Fuyu; Zhang Zhaohong


    Various affecting factors and degradation mechanism were studied on ultrasonic degradation of methyl orange adopting Y2O3 doping anatase TiO2 catalyst prepared in laboratory.In the experiment, the UV-VIS spectrophotometer was used to follow and inspect the degradation process of methyl orange.The results indicate that the ultrasonic degradation ratios of methyl orange in the presence of anatase TiO2 catalyst are much better than those without catalyst.Moreover, the catalytic performance of Y2O3 doping anatase TiO2 catalyst is obviously higher than that of anatase TiO2 catalyst without doping.The optimal conditions were adopted in this work and the degradation and COD elimination ratio of methyl orange got to98% and 99.0% in 90 min, respectively.

  5. Effect of Y2O3 and Sm2O3 on Sintering and Mechanical Behaviors of Alumina Ceramics

    Yao Yijun; Qiu Tai; Jiao Baoxiang


    The effects of Y2O3 and Sm2O3 doping on the sintering temperature, microstructure and mechanical behaviors of Al2O3 ceramics were investigated. The experimental results show that the sintering temperature can be decreased and the mechanical behavior can be improved by adding rare earth in alumina ceramics. The relative density of rare-earthdoped alumina ceramics reaches 98.8% after sintering at 1600 ℃ for 2 h, and its bending strength and fracture toughness reach 439 MPa and 5.28 MPa·m1/2,respectively.Introduction of Y2O3 and Sm2O3 in Al2O3 can restrain the growth of grains, refine the size of grains, and thus form a fine-grained structure. The fracture characteristic is the mixed modes of intergranular and transgranular fracture.

  6. Luminescent properties of praseodymium doped Y2O3 and LaAlO3 nanocrystallites and polymer composites

    M. Dudek; A. Jusza; K. Anders; L. Lipi(n)ska; M. Baran; R. Piramidowicz


    Luminescent properties of Y2O3 and LaAlO3 nanopowders doped with Pr3+ ions and PMMA-based composite materials doped with these powders were reported.The set of active nanopowders differing in praseodymium ions concentration was prepared using sol-gel method and carefully characterized with respect to emission properties in the visible spectral range.In particular,the excitation and emission spectra were measured together with fluorescence decay profiles and the differences between optical properties of these materials were discussed and compared with data available for bulk materials.Finally,the PMMA-based composite materials doped with pr3+:Y2O3 and Pr3+:LaA1O3 nanopowders were manufactured and characterized.The obtained results showed that polymer composites doped with active nanopowders in general tended to keep the luminescent properties of the original nanopowders.

  7. Study on the Effect between Dynamics of MgO Grain Growth and Additive of Y2O3


    In this paper, samples of CaO-riched MgO-CaO added with Y2O3 were prepared and the growth rate of MgO grains were investigated, and the calculation of the grain growth active energy at different temperatures was done for the high performance anti-hydration CaO-riched MgO-CaO clinker. It is of significance for decreasing the synthetic temperature in industry production.

  8. Thermal barrier ZrO2 - Y2O3 obtained by plasma spraying method and laser melting


    Purpose: The aim of the paper is to determine the influence of laser melting upon the selected physical properties of ZrO2 - Y2O3 ceramic coatings deposited by APS (Air Plasma Spraying) method on super-alloys which function as TBC (Thermal Barriers Coatings).Design/methodology/approach: Laser melting which helps eliminate pores and other structural defects of coatings deposited by plasma spraying method should contribute to the improvement of their density and durability as thermal barriers. ...

  9. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    Quah, Hock Jin; Cheong, Kuan Yew


    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  10. Mechanical Properties of ZrO2 Ceramic Stabilized by Y2O3 and CeO2


    ZrO2 ceramic was made from evenly dispersed (Y,Ce)-ZrO2 powder with different compositions,which was prepared by the chemical coprecipitation, and stabilized by compound additions through appropriate techniques.And its mechanical property that is related to the phase content and its microstructure was studied by X-ray diffraction(XRD),scan electron microscope(SEM).The results show that Y2O3 has stronger inhibition to the growth of ZrO2 crystal than CeO2 has.Therefore,within an appropriate composition range of Y2O3 and CeO2,the higher the content of Y2O3,the lower the content of CeO2,the smaller ZrO2 crystal.Combining this feature and the stabilization technique with complex additions instead of simple addition,ZrO2 ceramic with high density and excellent mechanical properties can be made under normal conditions. It is concluded that the improvement of mechanical properties originates from the toughening of microcrack,phase transformation and the effect of grain evulsions.

  11. Thermal shock behavior of W-0.5 wt% Y2O3 alloy prepared via a novel chemical method

    Zhao, Mei-Ling; Luo, Lai-Ma; Lin, Jing-Shan; Zan, Xiang; Zhu, Xiao-Yong; Luo, Guang-Nan; Wu, Yu-Cheng


    A wet-chemical method combined with spark plasma sintering was used to prepare W-0.5 wt% Y2O3 alloy. The W-0.5 wt% Y2O3 precursor was reduced at 800 °C for 4 h under different hydrogen flow rates of 300, 400, 500, 600, and 700 ml/min. The reduced powder was analyzed by X-ray diffraction (XRD), laser particle size analyzer (LPSA), and scanning electron microscopy (SEM). An optimized process for reducing precursor was discussed. After sintering, the specimens were exposed to different laser beam irradiation energies (90, 120, 150, and 180 W) to simulate loads as expected for edge localized modes (ELMs). Top surface and cross-sectional morphology were observed by SEM, and the changes in hardness were evaluated. The changes in microstructural properties (i.e., Y2O3-particle distribution, crack propagation direction, depth of thermal shock effect, and grain size of the recrystallization region) after thermal shock were investigated.

  12. Preparation and Luminescence Properties of Y2O3:Eu3+Nano-powders%Y2O3:Eu3+纳米粉体的制备及其性能研究


    Y2O3:Eu3+ nano-powders were prepared by using co-precipitation method with Y2O3 and Eu2O3 as rawmate-rials, NH3∙H2O and NH4HCO3 as the precipitant, calcining at 700~1200℃ for 2h.The synthesized Y2O3:Eu3+ na-no-powders with different Eu3+ doping ratio,calcining temperatures andprecipitants were characterized by X-ray diffrac-tometry (XRD), Scanning electron microscopy (SEM) and fluorescence spectrophotometer.The results illustrated that the diffraction peaks of samples are well consistent with JCPDS No.41-1105. The nanopowders with NH3∙H2O as the precipitant calcined at 1100℃ for 2h had a uniform distribution, approximating sphere. The particle size was in the range of 50~80nm.The nano-powders with NH4HCO3 as the precipitant calcined at 1100℃ for 2h had an uniform distri-bution, high purity and good dispersibility. The particle size was in the range of 60~80nm.The nano-powders emitted the red light at the 611nm under the UV-light with 254nm excited.%以Y2O3, Eu2O3为原料, NH3∙H2O和NH4HCO3为沉淀剂,采用共沉淀法,在700至1200℃下煅烧2h制备出Y2O3:Eu3+纳米粉体,通过X射线衍射分析(XRD)、扫描电镜(SEM)和荧光分光光度计等表征样品的性能,研究不同掺杂浓度,不同烧结温度及不同沉淀剂对粉体各项性能的影响。结果表明,以两种沉淀剂制备的纳米粉体均为纯相,与Y2O3标准PDF卡片41-1105相吻合。以NH3∙H2O为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,近似球形,粒径分布在50~80nm,以NH4HCO3为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,纯度高,具有良好的分散性,粒径分布在60~80nm。制备出来的粉体在波长为254nm的紫外光激发下发出611nm的红光。

  13. Structural properties of Y2O3–Al2O3 liquids and glasses: An overview

    Wilding, Martin C.; Wilson, Mark; McMillan, Paul F.; Benmore, Chris J.; Weber, J. K.R.; Deschamps, Thierry; Champagnon, Bernard


    Liquids in the system Y2O3- Al2O3 have been the subject of considerable study because of the reported occurrence of a first-order density and entropy-driven liquid-liquid phase transition (LLPT) in the supercooled liquid state. The observations have become controversial because of the presence of crystalline material that can be formed simultaneously and that can mask the nucleation and growth of the lower density liquid. The previous work is summarized here along with arguments for and against the different viewpoints. Also two studies have been undertaken to investigate the LLPT in this refractory system with emphasis on determining the structure of unequivocally amorphous materials. These include the in situ high energy X-ray diffraction (HEXRD) of supercooled Y2O3 - Al2O3 liquids and the low frequency vibrational dynamics of recovered glasses. Manybody molecular dynamics simulations are also used to interpret the results of both studies. The HEXRD measurements, combined with aerodynamic levitation and rapid data acquisition techniques, show that for the 20 mol% Y2O3 (i.e. AlY20) liquid there is a shift in the position of the first peak in the diffraction pattern over a narrow temperature range (2100-1800 K) prior to crystallization. Microbeam Raman spectroscopy measurements made on AlY20 glasses clearly show contrasting spectra in the low frequency part of the spectrum for low(LDA) and high-density (HDA) glassy regions. The molecular dynamics simulations identify contrasting coordination environments around oxygen anions for the high- (HDL) and low-density (LDL) liquids. (C) 2014 Elsevier B.V. All rights reserved.

  14. Effect of Y2O3 and Al2O3 on the oxidation resistance of Si3N4

    Hench, L. L.; Vaidyanathan, P. N.; Dutta, S.


    Oxidation of cold-pressed and sintered Si3N4 containing 15 wt% Y2O3 and 2, 4, 6, and 8% Al2O3 is observed at temperatures as low as 1000 C with IR reflection spectroscopy. Concentrations of Al2O3 in excess of 4% greatly retard the rate of oxidation and alter the mechanism of surface attack by promoting formation of a glassy layer on the surface containing mixed oxynitride bonds. The glassy layer retards heterogeneous attack and reduces the effect of an oxidation transition temperature between 1000 and 1100 C for these materials.

  15. Some adhesion/cohesion characteristics of plasma-sprayed ZrO2-Y2O3 under tensile loading

    Mullen, Robert L.; Vlcek, Brian L.; Hendricks, Robert C.; Mcdonald, Glen


    A set of 12.7 mm diameter stainless steel tubes were coated with ceramic and expanded. The bond cast was 0.08 to 0.13 mm NiCrAlY with 0.38 mm of ZrO2-8Y2O3 ceramic. Upon pressurization, the tube substrate yielded and overstressed the coatings in tension. The coatings cracked (i.e., they failed) but did not come off the tube. These results demonstrate that tensile failure of plasma-sprayed coatings is not catastrophic as is compressive failure, which leads to spallation.

  16. Reduction of Tb4+ions in luminescent Y2O3:Tb nanorods prepared by microwave hydrothermal method

    Jarosaw Kaszewski; Bartomiej S Witkowski; ukasz Wachnicki; Hanka Przybyliska; Bolesaw Kozankiewicz; Ewa Mijowska; Marek Godlewski


    Terbium doped yttrium oxide was prepared with the microwave hydrothermal method. The Y2O3:Tb nanomaterial crystal-lized as needle-like grains. Bright luminescence in the green region was observed. Significant luminescence intensity increase was obtained after thermal treatment. Reduction of terbium ions was observed after heating in the air atmosphere. Tb4+ions were found to be stabilized by crystal impurities. Hydroxyl species were found to have impact on vacancies elimination. The terbium ions were used as optical and magnetic indicator of the material properties.

  17. Sol-gel synthesis and photoluminescence properties of BaSO_4/Y_2O_3:Eu~(3+) core-shell submicrospheres

    张明; 李新海; 王志兴; 胡启阳; 李金辉; 刘婉蓉


    Europium-doped nanocrystalline Y2O3 phosphor layers were coated on the surface of preformed submicron BaSO4 spheres via the sol-gel process.The obtained BaSO4/Y2O3:Eu3+ core-shell phosphors were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS) and photoluminescence spectra.The results showed that the obtained BaSO4/Y2O3:Eu3+ core-shell phosphors consisted of well-dispersed submicron spherical particles with na...

  18. Agglomeration Control of Ultrafine Y2 O3-ZrO2 and (MgO, Y2 O3)-ZrO2 Powders Synthesized by Coprecipitation Process

    MA Yalu; ZHANG Yu; ZHENG Junping


    Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3,MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were designed separately, meanwhile different techniques used to control the agglomeration formation were proposed. By means of TEM, SEM, Raman spectroscopy and IR spectroscopy, the mechanisms of agglomeration control in the precipitation processes and post-precipitation and drying process were investigated. The experimental results show that adding appropriate anion surface active agents (such as PAA1460) or polymer (PEG1540 matching with PEG200) in aqueous solution systems during precipitation processes could reinforce charge effect and location effect for gel particles interface. Adding wetting agents to wet gels washing with distilled water during drying process could change interface structure of gel particles and decrease surface tension between gel particles. The agglomeration control in the precipitation, post-precipitation and drying processes had remarkable influence on the characteristics of powders. By adding various macromolecules in the processes, the agglomeration state could be controlled efficiently, and the characteristics of powders were improved.

  19. Effect of particle size on the flux pinning properties of YBa2Cu3O7-δ thin films containing fine Y2O3 nanoprecipitates

    Yamasaki, H.


    The magnetic-field angle dependence of the critical current density, J c(H, θ), was measured at various temperatures in co-evaporated YBa2Cu3O7-δ (YBCO) thin films. The YBCO films showed volcano-shaped J c(θ) peaks around H//ab, and J c(θ) peaks around H//c were not observed. Film A, deposited at a lower temperature than the commercial standard film B, showed lower J c values at high temperatures (T ≥ 60 K) compared with film B, although film A showed higher J c at T = 20 K. Plan-view transmission electron microscope observations revealed that films A and B contained a high density of fine Y2O3 nanoprecipitates. The modes in the distribution of their cross-sectional areas are 10-20 nm2 in film A and 20-30 nm2 in film B. Because of the smaller particle size, film A showed lower J c at high temperatures owing to the smaller elementary pinning force, f p, but showed higher J c at 20 K where the temperature-dependent coherence length ξ ab (T) was short (˜2 nm) and comparable with the radius of Y2O3 nanoparticles. Film A showed anisotropic scaling behavior at T = 70-80 K, and the T dependence of J c followed ˜(1 - T/T c) m (1 + T/T c)2 (m ≈ 2.5), which was expected from a simple flux-pinning model.

  20. Mimosa pudica (L.) assisted green synthesis and photoluminescence studies of Y2O3:Mg2+ nanophosphor for display applications

    Venkatachalaiah, KN; Venkataravanappa, M.; Nagabhushana, H.; Basavaraj, R. B.


    For the first time green route method was used to synthesize pure and Mg2+(1-11 mol %) doped Y2O3 nanophosphors by using Mimosa pudica leaves extract as a fuel. The final product was well characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL).The PXRD result shows the formation of single phase, cubic structure of Y2O3 with crystallite sizes ∼25 nm. The SEM results showed porous and agglomerated structures, TEM images showed the crystallite size of the material and was found to be around ∼ 25 nm. PL emission spectra show the blue light emission under the excitation wavelength of 315 nm. The emission peaks of Mg2+were observed at 428 nm, 515 nm and 600 nm corresponding to the transitions of 4F9/2 → 6Hi7/2 (violet), 4F9/2 → 6Hi5/2 (blue), 4F9/2 → 6HJ3/2 (yellow) respectively. The estimated CIE chromaticity co-ordinate was very close to the national television standard committee value of blue emission. CCT was found to be ∼ 6891 K as a result the present phosphor was potential to be used for warm white light emitting display applications.

  1. Nuclear spin coherence properties of 151Eu3+ and 153Eu3+ in a Y2O3 transparent ceramic

    Karlsson, J.; Kunkel, N.; Ikesue, A.; Ferrier, A.; Goldner, P.


    We have measured inhomogeneous linewidths and coherence times (T 2) of nuclear spin transitions in a Eu3+ :Y2O3 transparent ceramic by an all-optical spin echo technique. The nuclear spin echo decay curves showed a strong modulation which was attributed to interaction with Y nuclei in the host. The coherence time of the 29 MHz spin transition in 151Eu3+ was 16 ms in a small applied magnetic field. Temperature dependent measurements showed that the coherence time was constant up to 18 K and was limited by spin-lattice relaxation for higher temperatures. Nuclear spin echoes in 153Eu3+ gave much weaker signals than for the case of 151Eu3+ . The spin coherence time for the 73 MHz spin transition in 153Eu3+ was estimated to 14 ms in a small magnetic field. The study shows that the spin transitions of ceramic Eu3+ :Y2O3 have coherence properties comparable to the best rare-earth-doped materials available.

  2. Y2O3:Eu3+ core-in-multi-hollow microspheres: facile synthesis and luminescence properties.

    Liu, Guixia; Liu, Shujun; Dong, Xiangting; Wang, Jinxian


    Y2O3:Eu3+ core-in-multi-hollow microspheres were synthesized via a facile hydrothermal method in the presence of glucose followed by a subsequent heat-treatment process. X-ray diffraction (XRD) pattern shows that the as-obtained hollow spheres are cubic phase of Y2O3. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images indicate that the samples are three layer hollow spheres with a diameter of 2-4 microm and the outermost wall thickness of 100 nm, the size of the inner core is about 300-400 nm, and the sub-outer wall thickness is about 100 nm. X-ray energy dispersive spectrum (EDS) shows that the samples are composed of Y, Eu and O. Photoluminescence spectra show that the hollow spheres have a strong characteristic red emission corresponding to the 5D0 - 7F2 transition of Eu3+ ions under ultraviolet excitation. This method can be used to synthesize other rare earth oxide hollow luminescent materials.

  3. Microstructural Characteristics of Y2O3-MgO Composite Coatings Deposited by Suspension Plasma Spray

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark


    Dense composite Y2O3-MgO coatings have been deposited by suspension plasma spray. Ethanol-based suspensions of powders synthesized by thermal decomposition of precursor solutions containing yttrium nitrate (Y[n]) and magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were selected as the feedstock; this gave powders with both phases in each particle, to inhibit phase segregation during solvent evaporation. The influence of powder characteristics on the microstructures of the coatings was investigated. The Y[n]Mg[a] suspension was more stable, with a better dispersion of the component phases than the Y[n]Mg[n] suspension. The coatings deposited using each suspension type exhibited lamellar structures comprising Y2O3 and MgO phases in wavy alternating streaks, with unmelted/semi-melted particles entrapped in the lamellae; this indicates that phase segregation still occurred in the molten state. Eutectic structures were formed in the coating generated using the Y[n]Mg[a] suspension, resulting from improved mixing of the component phases in the suspension powder.

  4. Concentrated aqueous Si3N4 -Y2O3 -Al2O3 slips stabalized with tetramethylammonium hydroxide

    Albano M. P.


    Full Text Available In order to obtain well dispersed concentrated aqueous Si3N4 slips for slip casting, the influence of pH and sintering aid powders (Y2O3 and Al2O3 on the viscosity and on the amount of tetramethylammonium ions adsorbed were determined. 35 vol% aqueous Si3N4 and Si3N4-6wt%Y2O3-4wt% Al2O3 slips were prepared in an attrition mill. Tetramethylammonium hydroxide was added to adjust the pH values in a range of 9.7 to 12.3. The viscosity of Si3N4 slips and the amount of [(CH34N]+ ions in solution increased with increasing pH. These counterions contributed mainly to increase the ionic strength of the solution with increasing the slip viscosity. The sintering aid powders had a positive effect on the dispersion of the Si3N4 powder at pH 10.3-12.3 since low viscosity values could be obtained. This was attributed to the lower concentration of counterions in solution.

  5. Directed laser processing of compacted powder mixtures Al2O3-TiO2-Y2O3

    Vlasova M.


    Full Text Available The phase formation, microstructure and surface texture of laser treated ternary powder mixtures of Al2O3-TiO2-Y2O3 had been studied. Rapid high temperature heating and subsequent rapid cooling due to the directed movement of the laser beam forms concave ceramic tracks. Phase composition and microstructure of the tracks depends on the Al2O3 content and the TiO2/Y2O3 ratio of the initial mixtures. The main phases observed are Y3Al5O12, Y2Ti2O7, Al2O3 and Al2TiO5. Due to the temperature gradient in the heating zone, complex layered structures are formed. The tracks consist of three main layers: a thin surface layer, a layer of crystallization products of eutectic alloys, and a lower sintered layer. The thickness of the crystallization layer and the shrinkage of the irradiation zone depend on the amount of Y3Al5O12 and Al2O3 crystallized from the melt.

  6. Effects of Ta incorporation in Y2O3 gate dielectric of InGaZnO thin-film transistor

    Song, J. Q.; Qian, L. X.; Lai, P. T.


    The effects of Ta incorporation in Y2O3 gate dielectric on the electrical characteristics of InGaZnO thin-film transistor are investigated. With an appropriate Ta content in the Y2O3 gate dielectric, the saturation mobility of the thin-film transistor can be significantly increased, about three times that of the control sample with Y2O3 gate dielectric. Accordingly, the sample with a Ta/Ta+Y ratio of 68.6% presents a high saturation mobility of 33.5 cm2 V-1 s-1, low threshold voltage of 2.0 V, large on/off current ratio of 2.8 × 107, and suppressed hysteresis. This can be attributed to the fact that the Ta incorporation can suppress the hygroscopicity of Y2O3 and thus reduces the Y2O3/InGaZnO interface roughness and also the traps at/near the interface, as supported by atomic force microscopy and low-frequency noise measurement, respectively. However, excessive Ta incorporation in the Y2O3 gate dielectric leads to degradation in device performance because Ta-related defects are generated.

  7. Correlative near-infrared light and cathodoluminescence microscopy using Y2O3:Ln, Yb (Ln = Tm, Er) nanophosphors for multiscale, multicolour bioimaging

    Fukushima, S.; Furukawa, T.; Niioka, H.; Ichimiya, M.; Sannomiya, T.; Tanaka, N.; Onoshima, D.; Yukawa, H.; Baba, Y.; Ashida, M.; Miyake, J.; Araki, T.; Hashimoto, M.


    This paper presents a new correlative bioimaging technique using Y2O3:Tm, Yb and Y2O3:Er, Yb nanophosphors (NPs) as imaging probes that emit luminescence excited by both near-infrared (NIR) light and an electron beam. Under 980 nm NIR light irradiation, the Y2O3:Tm, Yb and Y2O3:Er, Yb NPs emitted NIR luminescence (NIRL) around 810 nm and 1530 nm, respectively, and cathodoluminescence at 455 nm and 660 nm under excitation of accelerated electrons, respectively. Multimodalities of the NPs were confirmed in correlative NIRL/CL imaging and their locations were visualized at the same observation area in both NIRL and CL images. Using CL microscopy, the NPs were visualized at the single-particle level and with multicolour. Multiscale NIRL/CL bioimaging was demonstrated through in vivo and in vitro NIRL deep-tissue observations, cellular NIRL imaging, and high-spatial resolution CL imaging of the NPs inside cells. The location of a cell sheet transplanted onto the back muscle fascia of a hairy rat was visualized through NIRL imaging of the Y2O3:Er, Yb NPs. Accurate positions of cells through the thickness (1.5 mm) of a tissue phantom were detected by NIRL from the Y2O3:Tm, Yb NPs. Further, locations of the two types of NPs inside cells were observed using CL microscopy.

  8. Microstructure formation and interface characteristics of directionally solidified TiAl-Si alloys in alumina crucibles with a new Y2O3 skull-aided technology

    Fan, Jianglei; Liu, Jianxiu; Wu, Shen; Tian, Shuxia; Gao, Hongxia; Wang, Shengyong; Guo, Jingjie; Wang, Xiao


    The microstructure evolution and interface characteristics of a directionally solidified Ti-43Al-3Si (at.%) alloy in an alumina (Al2O3) crucible with new Y2O3 skull-aided technology were investigated. The Y2O3-skull that is in contact with the TiAl-melt is relatively stable, which results in a more controlled reaction between the skull and the melt than in the case of an Al2O3 crucible is used. A thin reaction layer was formed between the mould and the melt through mutual diffusion. The layer thickness increased with increasing reaction time. The thickness of this layer was less than 80 μm for reaction times up to 5800 s. Y2O3 particles were not found in the specimen because the mould coating was prepared with fine Y2O3 powder without a binder, which prevented the Y2O3 particles splitting from the coating as a consequence of thermal physical erosion. The oxygen content of the TiAl-alloy increased with increasing reaction time. The total oxygen content of the solidified specimen was less than that of the specimen solidified in the Al2O3 crucibles. This new Y2O3 skull-aided technology is expected to improve the surface quality of TiAl-alloys and reduce the reaction between the crucible/mould and molten TiAl alloys during directional solidification processing with longer contact times.

  9. Adhesion of Y2O3-Al2O3-SiO2 coatings to typical aerospace substrates

    Marraco-Borderas, C.; Nistal, A.; Garcia, E.; Sainz, M.A.; Martin de la Escalera, F.; Essa, Y.; Miranzo, P.


    High performance lightweight materials are required in the aerospace industry. Silicon carbide, carbon fiber reinforced carbon and slicon carbide composites comply with those requirements but they suffer from oxidation at the high temperature of the service conditions. One of the more effective approaches to prevent this problem is the use of protecting ceramic coatings, where the good adhesion between substrates and coatings are paramount to guarantee the optimal protection performance. In the present work, the adhesion between those substrates and glass coatings of the Y2O3-Al2O3-SiO2 system processed by oxyacetylene flame spraying is analyzed. Increasing load scratch tests are employed for determining the failure type, maximum load and their relation with the elastic and mechanical properties of the coatings. The results points to the good adhesion of the coatings to silicon carbide and carbon fibre reinforced silicon carbide while the carbon fiber reinforced carbon is not a suitable material to be coated. (Author)

  10. Upconversion emission enhancement of TiO2 coated lanthanide-doped Y2O3 nanoparticles

    Lü Qiang; Zhao Lian-Cheng; Guo Feng-Yun; Li Mei-Cheng


    To investigate the upconversion emission,this paper synthesizes Tm3+ and Yb3+ codoped Y2O3 nanoparticles,and then coats them with TiO2 shells for different coating times. The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2,5.4,and 2.2 times for coating times of 30,60 and 90 min at an excitation power density of 3.21×102 W·cm-2,in comparison with the emission intensity of non-coated nanoparticles. Therefore it can be concluded that the intense upconversion emission of Y203:Tm3+,Yb3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.

  11. Thermal barrier ZrO2 - Y2O3 obtained by plasma spraying method and laser melting

    K. Kobylańska–Szkaradek


    Full Text Available Purpose: Purpose: The aim of the paper is to determine the influence of laser melting upon the selected physical properties of ZrO2 - Y2O3 ceramic coatings deposited by APS (Air Plasma Spraying method on super-alloys which function as TBC (Thermal Barriers Coatings.Design/methodology/approach: Laser melting which helps eliminate pores and other structural defects of coatings should contribute to the improvement of their density and durability as thermal barriers. In order to prove the assumptions made in the paper, coatings featuring varied porosity and deposited upon the nickel base super-alloys surface with the initially sprayed NiCrAlY bond coat have been subjected to laser melting and then their structure, thermal conductivity and thermal life prediction in the conditions of cyclic temperature changes from 20 to 1200ºC have been examined.Findings: It has been revealed that the coatings featuring low porosity laser melted on part of their thickness and heated up to about 700ºC demonstrate the highest thermal life prediction under the conditions mentioned and at slightly lower thermal conductivity.Research limitations/implications: Low wettability of metal by ceramic which results from various surface tensions of these materials is the cause of their lower adhesion to the substrate during laser melting all through their thickness. It is so because delaminations occur between phases the boundary and cracks.Practical implications: The worked out conditions of laser melting might be used in the process of creation of TBC which feature high working durability upon super-alloy elements.Originality/value: It has been found that homogenization of chemical composition of coatings occurs during laser melting leading to the reduction of ZrO2 - Y2O3 phase with monoclinic lattice participation as well as to the reduction of structural stresses which accompany this phase transformation during heating and cooling process.

  12. Synthesis of Al2O3/TiCN-0.2%Y2O3 Composite by Hot Pressing

    Li Xikun; Qiu Guanming; Qiu Tai; Zhao Haitao; Bai Hua; Sun Xudong


    Al2O3/TiCN composites were synthesized by hot pressing. The influences of components and HP temperature on mechanical properties, such as bending strength, breaking tenacity and Vickers hardness were investigated. The results showed that the mechanical properties of Al2O3/TiCN composite increased with temperature when hot pressing temperature is below 1650 ℃. The mechanical properties reached their maximums when the composites were sintered at 1650 ℃ for 30 min under hot pressing pressure of 35 Mpa, the value of bending strength, breaking tenacity and Vickers hardness was 1015 Mpa, 6.89 Mpa·m1/2, and 20.82 Mpa, respectively. When hot pressing temperature was above 1650 ℃, density decreased because of decomposition with increased temperature, and mechanical properties dropped because of rapid growth of grains in size at high temperature. Microstructure analysis showed that the addition of Y2O3 led to the formation of YAG phase so as to inhibit the growth of crystals. This helped to improve breaking tenacity of the composites. TiCN particles with diameters of 1 μm dispersed at Al2O3 grain boundaries, inhibited grain growth and enhanced mechanical properties of the composites. SEM study of the propagation of indentation cracks showed that the bridge linking behavior between matrix and strengthening phase might lead to the formation of the coexisted field of crack deflection, branching and bridge linking. The mechanism of this phenomenon was that the addition of Y2O3 improved the dispersion of TiCN particles so as to enhance the tenacity of the composites. The breaking tenacity was changed from 5.94 to 6.89 Mpa·m1/2.

  13. Inhibited Aluminization of an ODS FeCr Alloy

    Vande Put Ep Rouaix, Aurelie [ORNL; Pint, Bruce A [ORNL


    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small ({approx} 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  14. Study on Occupation Behavior of Y2O3 in X8R Nonreducible BaTiO3-Based Dielectric Ceramics

    Yao, Guofeng; Wang, Xiaohui; Li, Longtu


    The effects of Y2O3 on BaTiO3-MgO-MnO2-CaZrO3 nonreducible ceramics were investigated. Specimens with Y2O3 contents ranging from 1.0 to 2.5 mol % were prepared via the solid state method. The Curie temperature (Tc) and the electrical properties were closely related to the occupation behavior of yttrium, which is known as an amphoteric element. Tc increased almost linearly as a function of Y2O3 content when the doping content was low. Transmission electron microscopy (TEM) indicated a typical “core-shell” structure. The lattice parameters corresponding to the grain cores and the shells were determined by X-ray diffractometry (XRD) separately. The relief of the internal stresses arising from the lattice mismatch was responsible for the Tc shift. The specimens doped by a high level of Y2O3 can fulfill the EIA X8R specification with a high dielectric constant (ɛRT > 2400) and a low dielectric loss (tan δ< 1.1%). A high insulation resistivity and a slow degradation rate were obtained when a sufficient amount of Y2O3 was incorporated, which were attributed to the substitution of Ti4+ and the formation of a donor-acceptor complex.

  15. Influence of Ytterbia Content on 'Residual Stress and Microstructure of Y2O3-ZrO2 Thin Films Prepared by EB-PVD

    XIAO Qi-Ling; SHAO Shu-Ying; HE Hong-Bo; SHAO Jian-Da; FAN Zheng-Xiu


    Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress increases monotonically with the increase of Y2O3content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.

  16. Effect of Eu ion incorporation on the emission behavior of Y2O3 nanophosphors: A detailed study of structural and optical properties

    Kumar, Y.; Pal, Mou; Herrera, M.; Mathew, X.


    In order to investigate the effect of doping concentration on the luminescence behavior of yttrium oxide (Y2O3) europium (Eu) doped nanoparticles were prepared by co-precipitation method. Incorporation of Eu ion in Y2O3 matrix is clearly reflected in structural and optical properties of the doped Y2O3 phosphor. Cathodoluminescence (CL) spectroscopy proves the presence of strong Eu3+ emissions along with the presence of an additional weak band corresponding to electronic transitions 4f65d1 (7FJ) - 4f7 (8S7/2) of the Eu2+. The presence of Eu3+ and Eu2+ ions in Y2O3 nanoparticles have been additionally confirmed by XPS analysis. Luminescence band corresponding to Eu3+ ions appears in both CL and photoluminescence (PL) spectra, covering the orange-red emissions from 580 to 710 nm. Vibrational properties analyzed through Raman spectroscopy have revealed the evolution of different peaks associated with Eu emission in the doped Y2O3 nanocrystals.

  17. Effect of ZrO2 (9mol% Y2O3) coating thickness on the electronic conductivity of Mg-PSZ oxygen sensors

    Changhe Gao; Hailei Zhao; Qingguo Liu; Weijiang Wu; Weihua Qiu


    The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750℃ for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated MgPSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarka -bly, probably due to the lower electronic conductivity of Y2O3-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measurement. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this improvement.

  18. Study on UV Excitation Properties of Eu3+ at S6 Site in Bulk and Nanocrystalline Cubic Y2O3

    张家骅; 贾明理; 吕少哲; 骆永石; 任新光; 王笑军


    Increases of emission intensities for Eu3+ at the S6 site relative to that at the C2 site were observed as UV excitation wavelength decreases from 300 nm to 200 nm in both bulk and nanocrystalline cubic Y2O3:Eu3+. Decomposition of excitation spectra shows that the charge transfer band of Eu3+ at the S6 site lies in the high-energy side of that at the C2 site, resulting in that the energy transfer from the host prefers to the S6 site. Detailed emission and excitation spectral characteristics were analyzed and discussed. In addition, spectral red-shift were found in both charge transfer bands in nanocrystalline Y2O3:Eu3+ compared to the bulk material. The number ratio of S6 sites to C2 sites is also smaller in nanocrystalline Y2O3:Eu3+ than that in the bulk one.

  19. Modified Eu-doped Y2 O3 nanoparticles as turn-off luminescent probes for the sensitive detection of pyridoxine.

    Zobeiri, Eshagh; Bayandori Moghaddam, Abdolmajid; Gudarzy, Forugh; Mohammadi, Hadi; Mozaffari, Shahla; Ganjkhanlou, Yadolah


    Europium-doped yttrium oxide nanoparticles (Y2 O3 :Eu NPs) modified by captopril were prepared in aqueous solution. In this study, we report the effect of pyridoxine hydrochloride on the photoluminescence intensity of Y2 O3 :Eu NPs in pH 7.2 buffer solution. By increasing the pyridoxine concentration, the luminescence intensity of Y2 O3 :Eu NPs is quenched. The results show that this method demonstrates high sensitivity for pyridoxine determination. A linear relationship is observed between 0.0 and 62.0 μM with a correlation coefficient of 0.995 and a detection limit of 0.023 μM.

  20. Y2O3-CeO2-ZrO2 Powder Prepared by Co-Precipitation and As-Plasma-Sprayed Coating

    SHAO Gang-qin; ZHANG Wen-xi; HOU Zhong-tao; YUAN Run-zhang


    The Y2O3-CeO2-ZrO2 powders were prepared using a co-precipitation process and the corresponding coatings were prepared by plasma spraying. The results show that an optimal composition exists in Y2O3-doped CeO2-ZrO2, but not in CeO2-doped Y2O3-ZrO2. The powders mainly contain tetragonal phase and a trace amount of monoclinic phase. The homogeneity in composition, large agglomerate size, ideal particle size distribution and high flowability were obtained. The as-sprayed coatings are composed of non-transformable tetragonal phase, tz′structure, and resistant to transformation under thermal or mechanical stresses.

  1. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    Shulong Wang


    Full Text Available In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA by atomic force microscopy (AFM. The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT. Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  2. Effect of Y2O3 addition on the properties of mullite bonded porous SiC ceramics prepared by an infiltration technique

    Kayal, N.


    Full Text Available Mullite bonded porous SiC ceramics were synthesized by infiltrating a powder compact of SiC and Y2O3 with a liquid precursor of mullite which on subsequent heat treatment at 1300-1500 ºC produced mullite bonded porous SiC ceramics. The effect of Y2O3 content and sintering temperature on phase composition, microstructure, oxidation degree of SiC, flexural strength, porosity and pore size distribution were studied. Due to enhance oxidation and well developed neck formation by the addition of Y2O3 a high strength 49 MPa was achieved for the porous mullite bonded SiC ceramics with porosity 28 vol %.Se han sintetizado materiales porosos de SiC-Mullita mediante la infiltración de polvo prensado de SiC y Y2O3 con un precursor líquido de mullita, el cual con un tratamiento térmico posterior a 1300-1500 °C da lugar a los materiales porosos de SiC-Mullita. Se estudió el efecto del contenido de Y2O3 y la temperatura de sinterización en la constitución mineralógica, en la microestructura, en el grado de oxidación del SiC, la resistencia a la flexión, la porosidad total y su distribución de tamaño. Debido a la oxidación y a la mejora en la formación de los cuellos por la adición de Y2O3, se alcanzan altos valores de resistencia, 49 MPa, para estos materiales porosos de SiC-Mullita con porosidad 28 % en volumen.

  3. Y2O3 modified TiO2 nanosheets enhanced the photocatalytic removal of 4-chlorophenol and Cr (VI) in sun light

    Zhao, Xiaona; Wu, Pei; Liu, Min; Lu, Dingze; Ming, Junlan; Li, Chunhe; Ding, Junqian; Yan, Qiuyang; Fang, Pengfei


    Y2O3 modified TiO2 nanosheets (Y2O3@TNSs), capable of exhibiting sun light, were synthesized through one pot/hydrothermal method using Y (NO3)3 as precursor. Multiple techniques were applied to investigate the structures, morphologies, optical and electronic properties and photocatalytic performance of the as-prepared samples. The Y2O3@TNSs, with thickness of approximately 3-4 nm, large surface area of 240-350 m2/g, were full of Y2O3 nanoparticles highly dispersed on the surface. The introduction of Y2O3 influenced the crystallinity and the structure evolution of TNSs, besides, improved the light absorption ability. The surface photo-current and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate modification. The degradation activity of this sun-light-induced photocatalytic has enhanced apparently on 4-Chlorophenol and K2Cr2O7 solution, the degradation efficiency of 4-Chlorophenol reached 5.69 times than that of P25, and the maximum TOC removal obtained after 120 min was 67.6%, indicating that most organic compounds were released from the solution. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Y2O3 and TNSs, which led to a fast separation and slow recombination of photo-induced electron-hole pairs. Consequently, the high efficiency in the experiments showed a promising application of the catalyst in the oxidation or reduction degradation of organic pollutants.

  4. Defect structure of zirconium oxide nanosized powders with Y2O3, Sc2O3, Cr2O3 impurities

    Yurchenko, L.; I. Bykov; Vasylyev, A; Vereshchak, V.; Suchaneck, G.; Jastrabik, L.; Dejneka, A.


    Formation mechanisms of paramagnetic centers originating from Zr3+ and Cr3+ ions as well as the influence of composition of nanoparticles on thermogeneration processes of these paramagnetic centers in ZrO2 structure were studied. A set of nanosized powders of zirconium oxide was investigated by electron paramagnetic resonance method: nominally pure ZrO2; ZrO2 with Y2O3 and Sc2O3; ZrO2 with Cr2O3; ZrO2 with Y2O3 and Cr2O3. It is observed that the influence of annealing on EPR lines of Zr...

  5. Diode-pumped high power 2.7 μm Er:Y2O3 ceramic laser at room temperature

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan


    Investigation of room temperature laser performance of the polycrystalline Er:Y2O3 ceramic at 2.7 μm with respect to dopant concentrations was conducted. With 7 at.% Er3+ concentration Er:Y2O3 ceramic as laser gain medium, over 2.05 W of CW output power at 2.7 μm was generated with a slope efficiency of 11.1% with respect to the absorbed LD pump power. The prospects for improvement in lasing efficiency and output power are considered.

  6. Light Emission Intensities of Luminescent Y2O3:Eu and Gd2O3:Eu Particles of Various Sizes

    Adam, Jens; Metzger, Wilhelm; Koch, Marcus; Rogin, Peter; Coenen, Toon; Atchison, Jennifer S.; König, Peter


    There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature. PMID:28336860

  7. Pinning properties of Y211 added cold top-seeded YBCO grown on Y2O3 layer

    Çakır, Bakiye; Duman, Şeyda; Aydıner, Alev


    In this study, samples having different composition were prepared with the cold top seeding-melt-growth (TSMG) process by using Nd123 seed. Y2O3 buffer layer was placed to bottom of the pellets consist of Y123: Y211 powder mixtures. Two samples were fabricated in stoichiometric ratios of 1:0 and 1:0.4 labeled as Y0 and Y40, respectively. The Tc onset values of Y0 and Y40 were found to be 93.4 and 93.6 K at 0 T, respectively. The dependence of the effective activation energy U of the flux pinning on the magnetic field and temperature of the sample were determined using the Arrhenius activation energy law from the resistivity curves. The magnetization measurements were performed using a vibrating sample magnetometer (VSM) at 30, 50 and 77 K. The critical current densities (J c) for Y0 and Y40 samples were determined to be 5.1×103 and 3.7×103 A/cm2 at 77 K in 0 T, respectively. The normalized pinning force density versus the reduced field was examined at different temperatures to determine the pinning mechanism.

  8. Preparation of Y2O3/GeO2/Epoxy Resin Based Multilayer Radiation Shielding Material and its Property Research%Y2 O3/GeO2/环氧树脂基辐射防护材料的制备及性能研究

    代旭之; 肖德涛


    用表面处理稀土氧化物Y2O3,GeO2的方法制备了Y2O3/GeO2/环氧树脂辐射防护材料。采用X射线衍射仪( XRD )研究了材料的微观结构;用多道γ谱仪测试并分析了材料的辐射防护能力。结果表明,制得的材料中的Y2 O3和GeO2粒子并未与环氧树脂发生键和反应,Y2 O3与GeO2粉末的加入明显提升了材料防护射线的效果。%Y2 O3/GeO2/Epoxy Resin Based Multilayer Radiation Shielding Material was pre-pared for radiation protection via route of surface treatment on Y2O3 and GeO2.The material’s microstructure was studied by X-ray diffraction( XRD);Radiation shielding property was cal-culated by gamma energy spectrum system.Results show that the obtained materials of Y2O3 and GeO2 particles was not with the key and the reaction of epoxy resin,the material’s shield capability is significantly improved by addition of Y2 O3 and GeO2 powder.

  9. High yield hydrogen production from low CO selectivity ethanol steam reforming over modified Ni/Y 2O 3 catalysts at low temperature for fuel cell application

    Sun, Jie; Luo, Dingfa; Xiao, Pu; Jigang, Li; Yu, Shanshan

    Ethanol-water mixtures were converted directly into H 2 with 67.6% yield and >98% conversion by catalytic steam reforming at 350 °C over modified Ni/Y 2O 3 catalysts heat treated at 500 °C. XRD was used to test the structure and calculate the grain sizes of the samples with different scan rates. The initial reaction kinetics of ethanol over modified and unmodified Ni/Y 2O 3 catalysts were studied by steady state reaction and a first-order reaction with respect to ethanol was found. TPD was used to analyze mechanism of ethanol desorption over Ni/Y 2O 3 catalyst. Rapid vaporization, efficiency tube reactor and catalyst were used so that homogeneous reactions producing carbon, acetaldehyde, and carbon monoxide could be minimized. And even no CO detective measured during the first 49 h reforming test on the modified catalyst Ni/Y 2O 3. This process has great potential for low cost H 2 generation in fuel cells for small portable applications where liquid fuel storage is essential and where systems must be small, simple, and robust.

  10. Recycling Y and Eu from Waste Fluorescent Powder and High Temperature Solid-State Synthesis of Y2O3:Eu Phosphors

    Xiaodong Chen


    Full Text Available Y2O3:Eu were prepared through precursors synthesized by leaching tests, removing impurities, enrichment of Y and Eu from residual purified liquors, annealing treatment, and high temperature solid-state reaction method, which is the most suitable for large-scale production. The analysis of product shows that the purity is 99.42%. The resultant powders were characterized by X-ray diffraction (XRD, differential thermal analysis (TG-DTA, scanning electron microscope (SEM, and photoluminescence (PL. Compared with the commercial phosphors, the XRD spectrum of the product samples revealed the synthesized particles to have a pure cubic Y2O3:Eu structure without any impurities in the crystalline phase. On the morphology, the Y2O3:Eu particles synthesized by a combustion and high temperature solid state process with sintering aids, were large and uniform. For luminescence property, the emission intensity of Y2O3:Eu phosphors synthesized by combustion process and high temperature solid state process with sintering aids were higher than those without sintering aids, at 1400 °C.

  11. Microwave Behavior of α-Fe/Fe3B/Y2O3 Nanocomposites in GHz Range Prepared by Melt-Spun Technique

    Liu Jiurong; Masahiro Itoh; Ken-ichi Machida


    Nanocomposites α-Fe/Fe3B/Y2O3 were prepared by a melt-spun technique, and the electromagnetic wave absorption properties were measured in the 0.05~20.05 GHz range. Compared with α-Fe/Y2O3 composites, the resonance frequency (fr) of α-Fe/Fe3B/Y2O3 shifted to a higher frequency range due to the large anisotropy field (HA) of tetragonal Fe3B (~0.4 mA·m-1). The relative permittivity (εr=εr′-jεr″) was constantly low over the 0.5~10 GHz region, which indicates that the composite powders have a high resistivity (ρ=~100 Ωm). The effective electromagnetic wave absorption (RL<-20 dB) was obtained in a frequency range of 2.7~6.5 GHz on resin composites of 80% (mass fraction) α-Fe/Fe3B/Y2O3 powders, with thickness of 6~3 mm respectively. A minimum reflection loss of -33 dB was observed at 4.5 GHz with an absorber thickness of 4 mm.

  12. Aerosol synthesis and characterization of nanostructured particles of Y3Al5O12:Ce3+ and Y2O3:Eu3+

    Marinković Katarina R.


    Full Text Available Nanostructured YAG:Ce3+ and Y2O3:Eu3+ were synthesized by low temperature (320°C aerosol synthesis-LTAS and high temperature (900°C aerosol synthesis-HTAS, respectively. The synthesis included aerosol generation from a nitrate precursor solution by an ultrasonic atomizer (1.3 MHz. The obtained aerosol was introduced into a tubular flow reactor, using air as the carrier gas, where successively, on a droplet level, evaporation/drying, precipitation and thermolysis occurred. The obtained powders were collected and thermally treated at different temperatures (900-1200°C. The phase development and the morphology were investigated by the X-ray powder diffraction method (XRPD and scanning electron microscopy combined with energy dispersive spectrometry (SEM/EDS. Structural refinement was performed using the Rietveld method with the Fullprof and Koalariet programs. The average crystallite size for the Y2O3:Eu system was calculated using the Profit program. It was shown that 89 wt.% of Y3Ai5Oi2:Ce was obtained by annealing (1000°C/6 h the as prepared, amorphous powder, synthesized by the low temperature aerosol method (LTAS. High temperature spray pyrolysis (HTAS at 900°C led to the formation of the targeted cubic phase of Y2O3:Eu3+. The microstructural parameters of the asprepared samples of the Y2O3:Eu3+ system indicate the formation of nanostructures with crystallite size smallest than 20 nm. The substitution of luminescent centers (Ce3+, Eu3+ into a host lattice (YAG, Y2O3, respectively was confirmed by changes in the crystal lattice parameters. Also, it was shown in both systems that good morphological characteristics (non-a­gglomerated, spherical, submicron particles were obtained enabling improved luminescent characteristics.

  13. Interaction mechanism between niobium-silicide-based alloy melt and Y2O3 refractory crucible in vacuum induction melting process

    Gao Ming


    Full Text Available The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2Al-2Hf-17Cr (at.% alloys, to reveal the possible interactions between the alloy melt and the refractory crucible. Multiple melting time lengths and two cooling schemes were designed and used for the experiments. The chemical composition and microstructure of the tested alloy and the melt-crucible interaction were investigated and evaluated. In the experiments, Y2O3 crucible displays good physical-chemical compatibility. The results indicate that the increment of O element in the as-cast ingot is 0.03at.%-0.04at.% (72-97 ppm and the increment of Y element is very insignificant. The key features of the alloy melt interacting with Y2O3 ceramics are analyzed and concluded in the paper. As a result of the dissolution reaction xY2O3 (in molten alloy + (1-xHfO2 (impurity →Hf1-xY2xO2-x, a continuous double-layer solid film consisted of HfO2 solid solution (~2 μm and pure HfO2 (~5 μm is formed on the surface of the test ingot after cooled down in the crucible. The experimental results show that the Y2O3 crucible is applicable to the vacuum induction melting of Nb-Si based alloys.

  14. 溶胶-凝胶法制备的Y2O3薄膜的光波导性质研究%Elaboration and Characterization of Y2O3 Waveguide Thin Films Prepared by Sol-Gel Process


    用醋酸钇溶解于甲氧基乙醇的溶胶-凝胶法制备了Y2O3光波导薄膜. 通过二乙烯三胺的络合作用, 获得了均匀和稳定的前驱液, 并用浸渍提拉法得到了薄膜. 差热分析、红外吸收光谱被用来表征Y2O3凝胶和粉末. 用XRD、扫描电子显微镜、 m 线法和波导荧光光谱法研究了Y2O3光波导薄膜的结构和光波导性质. 结果表明, Y2 O3薄膜对于光活性掺杂是一种很好的基质材料, 预示Y2O3薄膜在光电子方面具有巨大的应用前景.

  15. Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system

    Toshiyuki Mori, John Drennan, Yarong Wang, Graeme Auchterlonie, Ji-Guang Li and Anya Yago


    Full Text Available Doped ceria (CeO2 compounds are fluorite type oxides which show oxide ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in application of these materials for 'low temperature operation (500–650 °C' of solid oxide fuel cells (SOFCs. In this study, YxCe1−xO2−δ (x=0.05, 0.1, 0.15, 0.2 and 0.25 fine powders were prepared using a carbonate co-precipitation method. The relationship between electrolytic properties and nano-structural features in the sintered bodies was examined. The micro-structures of Y0.05Ce0.95O1.975, Y0.15Ce0.85O1.925 and Y0.25Ce0.75O1.875 as representative three specimens have been investigated in more detail with transmission electron microscopy (TEM. The big diffuse scattering was observed in the background of electron diffraction pattern recorded from Y0.15Ce0.85O1.925 and Y0.25Ce0.75O1.875 sintered bodies. This means that the coherent micro-domain with ordered structure is in the micro-structure. While Y0.25Ce0.75O1.875 sintered body with low conductivity and high activation energy has big micro-domains, the micro-domain size in Y0.15Ce0.85O1.925 with high conductivity and low activation energy was much smaller than that of Y0.25Ce0.75O1.875. TEM observation gives us message that the size of coherent micro-domain with ordered structure would closely relate to the electrolytic properties such as conductivity and activation energy in the specimens. It was concluded that a control of micro-domain size in nano-scale in Y2O3 doped CeO2 system was a key for development of high quality solid electrolyte in fuel cell application.

  16. Estudo da viabilidade de obtenção de cerâmicas de SiC por infiltração espontânea de misturas eutéticas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN Study of the viability to produce SiC ceramics by Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN spontaneous infiltration

    G. C. R. Garcia


    Full Text Available As cerâmicas de carbeto de silício, SiC, apresentam excelentes propriedades quando obtidas por infiltração de determinados líquidos. Na infiltração o tempo de contato entre o líquido e o SiC a temperaturas elevadas é muito curto, diminuindo a probabilidade de formação dos produtos gasosos que interferem negativamente na resistência da peça final, como ocorre na sinterização via fase líquida. O objetivo deste trabalho é mostrar uma correlação entre molhabilidade e capacidade de infiltração de alguns aditivos em compactos de SiC. Foram preparados compactos de SiC por prensagem isostática a frio e posterior pré-sinterização via fase sólida. Nesses compactos foram infiltradas misturas de Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN, nas composições eutéticas, 10 ºC acima da temperatura de fusão das respectivas misturas por 4, 8 e 12 min. Após infiltração, as amostras foram analisadas quanto à densidade aparente e real, fases cristalinas, microestrutura e grau de infiltração, sendo que as amostras infiltradas com Y2O3-AlN apresentaram melhores resultados.Silicon carbide ceramics, SiC, obtained by liquid infiltration have shown excellent properties. In infiltration process the contact time of the liquid with SiC at elevated temperature is short, decreasing the probability to form gaseous products that contribute negatively in the final product properties. This phenomenon occurs during SiC liquid phase sintering. The purpose of the present study was to investigate the correlation between wettability and infiltration tendency of some additives in SiC compacts. SiC compacts were prepared by cold isostatic pressing followed by solid phase pre-sintering. Into the compacts were introduced Y2O3-AlN, Y2O3-Al2O3, R2O3-AlN liquids with eutectic compositions at a temperature 10 ºC higher than the melting point of each mixture for 4, 8 and 12 min. Before infiltration, the samples were analyzed by determining densities, crystalline phases

  17. Electronic and vibrational properties of yttria-stabilised zirconia from first-principles for 10-40 mol% Y2O3

    Cousland, G. P.; Cui, X. Y.; Ringer, S.; Smith, A. E.; Stampfl, A. P. J.; Stampfl, C. M.


    Density-functional theory calculations are performed to investigate the electronic and vibrational density-of-states (DOS) for a series of recently predicted stable and metastable structures of yttria-stabilised zirconia (YSZ) with yttria (Y2O3) concentrations of 14, 17 and 20 mol%. Analogous quantities are also studied for the so-called δ-phase, which forms for 40 mol% yttria, as well as for model structures with ≈10.3 mol% yttria. These calculated results, together with those for the cubic, tetragonal and monoclinic phases of ZrO2, afford a comparison of structural, electronic and vibrational properties as a function of yttria concentration. With increasing yttria content, the electronic DOS exhibit a decrease in the valence band-width (of about 2.0 eV relative to the cubic phase) and a corresponding increase of the band-gap of 0.73 eV (from cubic to 40 mol% yttria containing ZrO2). Regarding the vibrational DOS (vDOS), the addition of yttria causes the peaks in the vDOS of ZrO2 to become less distinct, reflecting the more dense occupation of states due to the larger number of atoms in each primitive cell, and to the lower symmetry. The vDOS of the various YSZ structures appear qualitatively similar with contributions from O atoms spanning the whole frequency range and cation related contributions present for frequencies < 40 - 45 meV. With increasing yttria content, more Zr atoms become seven-fold coordinated as in monoclinic ZrO2, concominantly the vDOS increasingly resembles that of m-ZrO2, but with notable contributions from Y atoms, which has a main peak at about 17 meV, similar to that of Zr atoms.

  18. Effect of Y2O3 contents on oxidation resistance at 1150 °C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy

    Sun, Duanjun; Liang, Chunyuan; Shang, Jinlong; Yin, Jihui; Song, Yaru; Li, Weizhou; Liang, Tianquan; Zhang, Xiuhai


    Ni-20Cr-5Al alloy with Y2O3 addition (i.e., 0, 0.2, 0.4, 0.6, 0.8, 1.0, 3.0 and 5.0 wt%) are used to prepare oxide dispersion strengthening (ODS) Ni-based superalloy by powder metallurgy technology. The effect of Y2O3 particles on oxidation resistance at 1150 °C and mechanical properties at room temperature of Ni-20Cr-5Al alloy was investigated. The results show that the oxidation resistance of alloys is improved when the content of Y2O3 is under 0.6 wt%. The oxidation resistance of alloys decreased obviously when the content of Y2O3 is over 0.8 wt%. It is due to the small amount of Y2O3 is conducive to form stable oxide scale, and improves the adhesion of oxide scale and matrix. While Y2O3 content is too high, it is easier to result in segregation of Y2O3, which create defects in matrix and decrease exfoliation resistance of oxide scale. Continuous and compact Al2O3 oxide scale can effectively protect matrix. The relative density of alloys can be significantly increased with Y2O3 addition which is 0.2-0.6 wt%, it's speculated that distribution of Y2O3 in matrix is benefit to promote rearrangement and densification of grains during process of sintering. While Y2O3 content is more than 0.8 wt%, Y2O3 will hinder viscous flow and reduce relative density due to its strong thermal stability.

  19. Microstructure and Friction-Wear Characteristics of Electro-Brush Plating Ni-Co-W Based Y2O3 Composite Coating%电刷镀Ni-Co-W/Y2O3复合镀层的组织与摩擦磨损特性

    袁庆龙; 凌文丹; 李平


    Ni-Co-W based composite coating containing micron-Y2O3 particles were prepared by electro-brush plating on 45 steel sub-sbate. The surface morphology, section structure, phase structure, hardness and wear resistance of coatings were determined and comparatively analyzed with scanning electron microscope, X-ray diffaction, micro-hardness tester and friction-wear tester. The results showed that Ni-Co-W/Y2O3 composite coating presented uniform thickness, and compact combination was formed with concave convex inlaying between the Ni-Co-W/Y2O3 composite coating and substrate. Compared with Ni-Co-W alloy coating, the surface morphology of Ni-Co-W/Y2O3 composite coating was more leveling and smooth, the microstructure was more compact, microcrack decreased significantly, the micro-hardness was higher, and friction coefficient was lower than that of Ni-Co-W alloy coating. Y2O3 particles had the a-bility to maintain interaction of coating and friction pairs, which weakened the effects of plough wear and adhesion wear, and the wear resistance of Ni-Co-W/Y2O3 composite coating was much better than that of Ni-Co-W alloy coating. The XRD analysis showed that the structure of these two kinds of coating both existed amorphous state, and the structure of coatings changed from amorphous to crystalline state due to the addition of micron-Y2O3 particles.%采用复合电刷镀工艺在45钢基材上制备了含微米Y2O3颗粒的Ni-Co-W基复合刷镀层,采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机等对镀层的表面形貌、截面组织、结构、硬度及耐磨性进行了测定,与Ni-Co-W镀层进行了对比分析.结果表明:Ni-Co-W/Y2O3复合镀层厚度均匀,与基体之间呈凸凹镶嵌,结合紧密;与Ni-Co-W合金镀层相比,Ni-Co-W/Y2O3复合镀层的表面更加平整、光滑,组织更为致密,微裂纹明显减少;硬度较Ni-Co-W合金镀层更高,摩擦系数较低,Y2O3颗粒在镀层与摩擦副相互作用的过程中

  20. Analysis of grain boundary phase devitrification of Y2O3- and Al2O3-doped Si3N4

    Hench, L. L.; Vaidyanathan, P. N.


    The present study has the objective to show that a Fourier Transform IR (FTIR) spectrometer in a single-beam reflection mode can be used for direct comparison of fractured vs nonfractured Si3N4 surfaces. This can be done because the FTIR method permits a digital summation of nearly 1000 scans of the fracture surface. Commercial-grade Si3N4, Y2O3, and Al2O3 were used in the study. The samples were heat treated in a vacuum induction heating furnace at either 1000 C for 10 h or 1200 C for 10 h each. Use of Fourier transform IR reflection spectroscopic analysis and X-ray diffraction shows that 10 h at 1200 C is sufficient to devitrify the amorphous grain boundary phase of Si3N4 containing 15 percent Y2O3 + 2 percent Al2O3 densification aids.

  1. TiC Particle Reinforced Silicon Nitride Composite Joined With Y2O3-Al2O3-SiO2 Mixture


    Silicon nitride composite is joined to itself by heating interlayer of Y2O3-Al2O3-SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room temperature to 1373K. The interface microstructure and fractured surfaces after testing are observed and analyzed by SEM, EPMA and XRD respectively. The results show that Y2O3-Al2O3-SiO2 glass reacts with Si3N4 at interface, forming the Si3N4/Si2N2O(Y-Al-Si-O-N glass/ Y-Al-Si-O glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increases, reaching a peak, and then decreases.According to interfacial analyses, the bonding strength depends on joint thickness.

  2. Study on electrochemical preparation of Al-Li-Y alloys from Y2O3 in LiCl-KCl-AlCl3 molten salts

    LI Yaming; WANG Fengli; ZHANG Milin; HAN Wei; TIAN Yang


    The electrochemical preparaton of Al-Li-Y alloys from LiCl-KCl-A1Cl3-Y2O3 system was studied. The chlorination of Y2O3 by AlCl3 led to the formation of Y (Ⅲ) ions in the molten salts. Cyclic voltammogram (CV) showed that the underpotential deposition (UPD) of yttrium on pre-deposited aluminum caused the formation of Al-Y alloy. Al-Li-Y alloys with different yttriurn contents were obtained by galvanostatic electrolysis and analysed by SEM-EDS and ICP. The ICP results showed that the lithium and yttrium contents in Al-Li-Y alloysdepended on the addition of AlCl3 into the melts.

  3. Properties of plasma sprayed NiCrAlY + (ZrO2 + Y2 O3 ) coating on refractory steel surface

    L(U) Tao; CHEN Fei; DING Hua-dong; HAN Dan-feng


    NiCrAlY + (ZrO2 + Y2 O3 ) thermal barrier coating was prepared on the surface of refractory steel 1Cr18Ni9Ti with plasma spraying technique. The phases and microstructure of the thermal barrier coating were determined by scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results show that the bonding between thermal barrier coating and substrate is sound. The surface hardness of 1Cr18Ni9Ti reaches up to 1 000 HV, but that of substrate is only 300 HV. The patterns sprayed with CoNiCrAlY+(ZrO2+Y2 O3 ) ceramic coating have a good heat insulation effect at 800 ℃ for heat insulation temperature difference reaches 54 ℃, which increases the operating temperature and service life of refractory steel.

  4. 下转换发光粉Y2O3/Sm3+在染料敏化太阳能电池中的应用%The Application of Down-conversion Luminescent powder Y2O3/Sm3+ in Dye-sensitized Solar Cells

    王江丽; 林建明; 吴季怀; 兰章; 范乐庆; 黄韵防; 唐子颖


    Y2O3/Sm3+ down-conversion luminescent powder was synthesized by a method of precipitation,its structure was characterized by X-ray diffraction. Also, its excitation and emission spectra were presented. Owing to the character of down-conversion, Y2O3/Sm3+ down-conversion luminucent powder was introduced into TiO2 film in dye-sensitized solar cell (DSSC). As a luminescence medium, Y2O3/Sm3+ down-conversion luminescent improves the light harvesting via a conversion luminescence process and increases the photocurrent and the photovoltage. When the TiO2 electrode was doped by 3% Y2O3/Sm3+ ,the cell light-to-electric conversion efficiency was improved from 5. 049% to 5. 940%.%采用沉淀法制备了Y2O3/Sm3+下转换发光粉,利用x射线衍射、荧光光谱对其进行了表征,并利用该发光粉具有下转换发光的特点将其应用于染料敏化太阳能电池(DSSC).结果表明,Y2O3/Sm3+下转换发光粉可以增加电池对太阳光的吸收范围,提高电池的光电流和光电压.研究了掺杂量对电池性能的影响,当掺杂量为3%时,光电转换效率从5.049%提高到5.94%,表明了其是一种有效提高光电转换效率的方法.

  5. Y2O3掺杂对Ta2O5-TiO2电容-压敏陶瓷的影响%Effect of Y2O3 Doping in Ta2O5-TiO2 Capacitor-varistor Double-functional Ceramic

    王天国; 邵刚勤; 李喜宝; 张文俊


    制备了Y2O3-Ta2O5-TiO2电容-压敏电阻器材料,对样品进行了XRD和SEM分析,测试了其压敏性能、介电常数和晶界势垒特性.结果表明:Y2O3对TiO2电容-压敏电阻的性能有显著的影响,在1 400 ℃烧结条件下,摩尔掺量为0.25%Y2O3的样品表现出优良的综合电性能,其压敏电压为9.7 V/mm,非线性系数为4.5,相对介电常数为8.82×104,这与该样品具有最高的晶界势垒高度相一致.%The Y2O3-Ta2O5-TiO2 based capacitor-varistor ceramics were prepared. The phases and microstructure were de-termined by XRD and SEM. The electrical properties were studied by I-V curves, dielectric and boundary defect barriers measurements. Results show that the Y2O3 dopant had significant effect on varistor properties and dielectric properties of Ta2O5-doped TiO2 based capacitor-varistors ceramics. The optimal sample doped with 0.25% Y2O3 sintered at 1 400 ℃ exhibited a low breakdown voltage of 9.7 V/mm, a nonlinear coefficient of 4.5 and an ultrahigh relative dielectric constant of 8.82 x 104,which was consistent with the highest grain-boundary defect barriers.

  6. Preparación de nanopartículas y nanoestructuras luminiscentes de Y2O3: Eu3+, Tb3+ usando el método poliol

    Flores-González, M. A.


    Full Text Available The materials on nanosized dimension exhibit properties that can be significantly different from their massive counterpart, for this reason the increasing investigation developed in this domain continues advancing. Tb3+ and Eu3+ doped Y2O3 in the nanoscale size were obtained by the polyol mediated synthesis. This work presents a general view of nanoparticle synthesis and the aggregation of the same, in order to form nanostructured materials with luminescent properties. Nanometric and nanostructured materials were evaluated by luminescence spectroscopy where the emission spectra observations for the two materials show high similarity. These observations confirm on the one hand that Tb3+ and Eu3+ ions are located in the Y2O3 matrix, on the other hand that the aggregate material are constituted by nanoparticles with resembling size (5 nm.Los materiales a escala nanométrica presentan en general propiedades diferentes a las que presentan las mismas composiciones en estado masivo, motivo por el cual, se incrementa cada día el interés por su estudio fundamental y sus aplicaciones en sistemas de nueva tecnología. Utilizando el método poliol se obtuvieron materiales nanométricos de Y2O3 dopado con Tb3+ y Eu3+. Este documento presenta un panorama general de la síntesis de las nanopartículas y la agregación de las mismas para formar nanoestructuras con propiedades luminiscentes. Los dos tipos de nanomateriales fueron evaluados por espectroscopia de luminiscencia y las observaciones de sus espectros de emisión muestran una gran similitud entre ellos, con lo cual se confirma por un lado que los iones de Tb y Eu se han integrado en la matriz de Y2O3 y por otro lado, que el material agregado está constituido de nanopartículas con un tamaño semejante (5 nm.

  7. Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu(3+)-doped Y2O3 nanophosphors prepared by the sol-gel method.

    Lamiri, Lyes; Guerbous, Lakhdar; Samah, Madani; Boukerika, Allaoua; Ouhenia, Salim


    Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Dual-Function Au@Y2O3:Eu(3+) Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo


    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y2O3:Eu(3+) phosphor (Au@Y2O3:Eu(3+)) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y2O3:Eu(3+) phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y2O3:Eu(3+) film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  9. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.


    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  10. Preparation, characterization and mechanical properties of Y 2O 3 thin film deposited on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane

    Wang, Jinqing; Liu, Xiaohong; Guan, Fei; Wang, Bo; Yang, Shengrong


    Silane coupling reagent (3-mercaptopropyl)trimethoxysilane was self-assembled on a single-crystal Si substrate to form a two-dimensional organic monoalyer (MPTS-SAM) and the terminal -SH group in the film was in-situ oxidized to -SO 3H group to endow the film with good chemisorption ability. Thus Y 2O 3 thin film were deposited on the oxidized MPTS-SAM, by enhanced hydrolysis of yttrium nitrate (Y(NO 3) 3 · 6H 2O) solution in the presence of urea (CO(NH 2) 2) at 80 °C, making use of the chemisorption ability of the -SO 3H group. The thickness and refractive index of the films were determined with an ellipsometer. The morphologies of the films were observed on an atomic force microscope. The adhesion strength and friction behavior of the films on the silicon substrate sliding against a steel ball was examined on a UMT-2MT friction and wear test system. It was found that the Y 2O 3-600 thin film was well adhered to the substrate with a critical load ( Lc) of 2.8 N and had excellent antiwear and friction-reduction performance under a low load of 0.2 N. Thus the Y 2O 3 film might find promising application in the surface-protection of single crystal Si and SiC in microelectromechanical systems (MEMS).

  11. Research on Gelcasting Formation of SiC-Al2O3-Y2O3-La2O3 Systems

    郭文利; 徐廷献; 靳正国


    The rheological behavior and gelcasting of composite suspensions of SiC and synthesized Al2O3-Y2O3-La2O3 powder as sintering aid were investigated. It was found that the rheological behavior of SiC particles could be modified with a slightly oxidized surface that was similar to silica in colloidal behavior. The smaller the particles were, the more similar to silica the SiC powder was. The pH value of Al2O3-Y2O3-La2O3 synthesized powder slurry at isoelectric points (IEP) is higher than that of SiC powder. The dispersant PAA-NH4 changes the IEP of both SiC and Al2O3-Y2O3-La2O3 powder slurry to higher pH values. The experimental results indicate that the composite suspension could possess satisfactory stability and lower viscosity at pH =10.1 and PAA-NH4 as dispersant. The optimum solid loading was 5500 in volume. Machinable green bodies with uniform complex shape are gained after molding.

  12. Investigation on pumping oxygen characteristics of (Bi2O3)0.73(Y2O3)0.27 solid electrolyte

    LI Ying; WANG Changzhen


    (Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen characteristics in non-dehydrated Ar gas were investigated, where a ZrO2 (Y2O3 stabilized) oxygen sensor was used to measure the oxygen partial pressure Po2. The results showed that the Po2 value reached magnitudes of 1×10-20-1×10-10 Pa at the applied pumping oxygen voltage of 0.5 V, 1×10-37-1×10-27 Pa at 1.0 V and 1×10-53-1×10-47 Pa at 2.0 V within the temperature range from 550 to 650 ℃. Moreover, no cracks were found in the tested solid electrolyte tubes. Thus, the Bi2O3-Y2O3 system might be used in solid electrolyte oxygen pump for purifying gases.

  13. Electronic and optical properties of ceramic Sc2O3 and Y2O3: Compton spectroscopy and first principles calculations

    Ahuja, Babu Lal; Sharma, Sonu; Heda, Narayan Lal; Tiwari, Shailja; Kumar, Kishor; Meena, Bhoor Singh; Bhatt, Samir


    We present the first-ever experimental Compton profiles (CPs) of Sc2O3 and Y2O3 using 740 GBq 137Cs Compton spectrometer. The experimental momentum densities have been compared with the theoretical CPs computed using linear combination of atomic orbitals (LCAO) within density functional theory (DFT). Further, the energy bands, density of states (DOS) and Mulliken's population (MP) data have been calculated using LCAO method with different exchange and correlation approximations. In addition, the energy bands, DOS, valence charge density (VCD), dielectric function, absorption coefficient and refractive index have also been computed using full potential linearized augmented plane wave (FP-LAPW) method with revised functional of Perdew-Becke-Ernzerhof for solids (PBEsol) and modified Becke Johnson (mBJ) approximations. Both the ab-initio calculations predict wide band gaps in Sc2O3 and Y2O3. The band gaps deduced from FP-LAPW (with mBJ) are found to be close to available experimental data. The VCD and MP data show more ionic character of Sc2O3 than Y2O3. The ceramic properties of both the sesquioxides are explained in terms of their electronic and optical properties.

  14. The dependence of the polycrystalline structure and electroluminescent properties of ZnS:Mn deposited on Y 2O 3 films on thickness

    Nakanishi, Y.; Fukuda, Y.; Hatanaka, Y.; Shimaoka, G.


    The dependence of polycrystalline structure and electroluminescent (EL) properties of ZnS:Mn on the thickness of ZnS:Mn thin films deposited on Y 2O 3 films at 200°C by electron-beam evaporation has been investigated. RHEED experiments showed that the Y 2O 3 film deposited on a transparent electrode at 200°C had a fiber structure with [100] orientation. It was found from RHEED observation that ZnS:Mn films with thickness below about 500Ådeposited over the Y 2O 3 film had a zincblende structure which changed to a fiber structure with [111] orientation as the film thickness increased. The brightness and the efficiency of ZnS:Mn thin film EL devices with a thickness below about 1000Åwere lower than those of EL devices with a thickness above 1000Å. These effects are attributed to a very poor crystallinity in the transition region from [100] to [111] orientation during the early stages of growth.

  15. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride.

    Quah, Hock Jin; Cheong, Kuan Yew


    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).

  16. Preparation and Luminescence Properties of Gd2O3:Eu3+ @Y2O3 Core-shell Nanomaterials%核壳型Gd2O3:Eu3+@Y2O3纳米发光材料的制备与发光性能

    白海英; 刘桂霞; 董相廷; 王进贤


    Gd2O3:Eu3+@Y2O3 core-shell structural luminescence nanomaterials were prepared by homogeneous precipitation method.XRD patterns show that the sample calcined at 800 ℃ is cubic phase Gd2O3,and the crystal grows well, after coated with Y2O3, the diffraction peak position of Gd2O3 is not changed,while with the increase of the coating thickness, cubic phase Y2O3 diffraction peaks appear.In FTIR spectra,it is observed that Gd-O, Y-O stretching vibration absorption peaks increase with decreasing the coating thickness, this reason is that when the coating thickness is suitable, the dangling bonds on the particle surface are less, which results in Gd(Eu,Y)-O bonds increase.SEM images indicate that the samples before and after coated are all in sphere shape.XPS analysis further proves that the Y2O3 is coated on the surface of Gd2O3:Eu3+.Photoluminescence properties show that coating the Y2O3 host with different thickness on the surface of Gd2O3:Eu3+ nanoparticles, the Eu3+ characteristic red emission can be observed.And when the coating thickness is suitable, that is Gd2O3:Eu3+/Y2O3 ratio of R=4: 1, the luminescence intensities of core-shell particles are higher than that of the Gd2O3:Eu3+ core nanocrystals, it is thought that the core-shell samples decrease the negative effects of nanoparticles on the luminescence properties.%采用均相沉淀法制备了均匀球形的Gd2O3:Eu3+@Y2O3核壳结构纳米发光材料.XRD结果表明经过800℃焙烧后样品为立方晶系的Gd2O3,并且晶体发育良好,包覆Y2O3之后Gd2O3的衍射峰位置无明显变化,但随着包覆厚度的增加,出现了立方晶系Y2O3的衍射峰.FTIR谱图观测到了Gd-O,Y-O伸缩振动吸收峰,随着包覆厚度的减少吸收峰增强,认为当包覆层的厚度适当时,颗粒表面的悬空键(断键)变少,Gd(Eu,Y)-O键增多所致.SEM表明包覆前后样品为均匀分散的球形结构.XPS分析进一步证明了表面包覆上了Y2O3.荧光光谱表明:纳米Gd2O3:Eu3+表面包覆不同厚度的基质Y

  17. Research on technology of laser cladding Ni/WC-Y2O3 on 35CrMo steel surface%35CrMo钢表面激光熔覆Ni/WC-Y2O3合金工艺研究

    丁阳喜; 孙晓龙


    The influences of laser power, scanning speed and off-focus on the properties of layer cladding Ni/WC -Y2O3 on the surface of 35CrMo steel were studied. Choose the right levels to make the orthogonal experiment , then the laser cladding process parameters which adapt to produce the excellent hardness and surface wear properties of the cladding layer could be got. In addition, the influence of WC and Y2O3 to the microstructure properties of the cladding layer was also analyzed.%研究了35CrMo钢表面激光熔覆Ni/WC-Y2O3时激光功率、扫描速度和离焦量对熔覆层性能的影响,通过选择合适的水平进行正交试验,得到了熔覆层硬度和耐磨性能优良的较优工艺参数.此外,还分析了WC和Y2O3对熔覆层组织性能的影响.

  18. 掺杂 Y2O3和 BaCeO3提高MOD-YBCO 超导性能的研究*%Enhanced flux pinning in MOD-YBCO films with co-doping of BaCeO3 and Y2O3 nanoparitcles∗


      本文通过在前驱液中添加过量钇盐和铈的有机盐,采用三氟乙酸盐-金属有机沉积法(TFA-MOD)在铝酸镧单晶基体上制备了含有纳米氧化钇和纳米铈酸钡的 YBCO 薄膜.与纯 YBCO 薄膜相比,掺杂 Y2O3/BaCeO3的 YBCO 膜的临界转变温度几乎保持不变,为91 K 左右.而掺杂 Y2O3/BaCeO3的 YBCO 膜的临界电流密度达到5.0 MA/cm2(77 K,0T),是纯 YBCO 膜临界电流密度的1.5倍.薄膜中的 Y2O3和 BaCeO3可能在 YBCO 内部起到了有效的钉扎磁通作用.%Enhancing the critical-current density of YBCO films is essential to gain a deeper understanding of the vortex pinning mecha-nisms and enable commercial applications of high-temperature superconductivity. Combined BaCeO3 and Y2O3 nanoparticles have been achieved to be co-doped in YBa2Cu3O7−x (YBCO) films by metalorganic deposition using trifluoroacetates (TFA-MOD). The formation of integrated nanoparticles increases the critical current density (Jc) of Y2O3/BaCeO3 doped-YBCO films while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. YBCO film containing BaCeO3 and Y2O3 showed Tc value of 91 K and Jc value of 5 MA/cm2 at self-field (0 T, 77 K). The strongly enhanced flux pinning over a wide range of magnetic field may be attributed to the combined BaCeO3 and Y2O3 created by optimized TFA-MOD conditions.

  19. Extraction of Y2 O3 :Cr(3+) nanophosphor by eco-friendly approach and its suitability for white light-emitting diode applications.

    Prasanna Kumar, J B; Ramgopal, G; Sunitha, D V; Prasad, B Daruka; Nagabhushana, H; Vidya, Y S; Anantharaju, K S; Prashantha, S C; Sharma, S C; Prabhakara, K R


    Cr(3)(+) -doped Y2 O3 (0.5-9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound. The calcined product was confirmed for its crystallinity and purity by powder X-ray diffraction (PXRD) studies which showed a single-phase nano cubic phosphor. The particles size estimated by Scherrer formula was in the range of 6-19 nm. The UV-vis spectra showed absorption bands at 198, 272 and 372 nm having band gap energy in the range 4.00-4.26 eV. In order to investigate the possibility of its use in white light emitting display applications, the photoluminescence properties of Cr(3)(+) -doped Y2 O3 nanophosphors were studied at an excitation wavelength in the near ultraviolet (UV) light region (361 nm). The emission spectra consisted of emission peaks in the blue ((4) F9/2  → (6) H15/2 ), orange ((4) F9/2  → (6) H13/2 ) and red ((4) F9/2  → (6) H11/2 ) regions. The CIE coordinates (0.33, 0.33) lie in the white light region. Hence Y2 O3 :Cr(3)(+) can be used for white light-emitting diode (LED) applications. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Semiconductor plasmon induced upconversion enhancement in mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell nanocomposites.

    Zhou, Donglei; Li, Dongyu; Zhou, Xiangyu; Xu, Wen; Chen, Xu; Liu, Dali; Zhu, Yongsheng; Song, Hongwei


    The ability to modulate the intensity of electromagnetic field by semiconductor plasmon nanoparticles is becoming attractive owing to its unique doping induced local surface plasmon resonance (LSPR) effect different from metals. Herein, we synthesized the mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell composites and experimentally and theoretically studied the semiconductor plasmon induced upconversion (UC) enhancement, and obtained 30 folds UC enhancement compared to that of SiO2@Y2O3:Yb(3+),Er(3+) composites. The UC enhancement was induced by the synthetic effect: amplification of excitation field and the increase of resonance energy transfer (ET) rate from Yb(3+) ions to Er(3+) ions. The experimental results were analyzed in the light of FDTD calculations confirming the effect of amplification of excitation field. In addition, UCL spectra, UC enhancement and dynamics dependent on concentration (Yb(3+)/Er(3+) ions) were investigated and found that the resonance energy transfer (ET) rate from Yb(3+) ions to Er(3+) ions increased ~25% in the effect of LSPR waves. Finally, power dependence of fingerprint identification was successfully performed based on the mCu2-xS@SiO2@Y2O3:Yb(3+),Er(3+) core-shell composites, the color of which can change from green to orange with excitation power increasing. Our work opens up a new concept to design and fabricate the upconversion core-shell structure based on semiconductor plasmon nanoparticles (NPs) and provides applications for upconversion nanocrystals (UCNPs) and semiconductor plasmon NPs in photonics.

  1. Concentration and annealing effect on PL properties of sol-gel derived SiO_2-Y_2O_3:Eu~(3+) nanocomposites

    王忆; 曾庆光; 胡社军; 吴坤彬; 蒋俊宏; 陈根廷


    An improved sol-gel method was employed to prepare Eu3+ ions doped SiO2-Y2O3 nanocomposites.Systematic study was carried out on the effect of post-annealing treatment on photoluminescence(PL) properties of the samples under various europium ions doping concentrations.X-ray diffraction(XRD) patterns indicated that the samples showed an amorphous matrix structure,and the scanning electron microscopy(SEM) pictures showed that the samples presented a nano size(from 21 to 42 nm) granular-stack structure after hi...

  2. Enhancement of secondary emission property of molybdenum cathode co-doped with La_2O_3 and Y_2O_3

    王金淑; 刘伟; 任志远; 杨帆; 高非; 周美玲


    La2O3 and Y2O3 co-doped Mo secondary emitters were prepared by three kinds of doping method combined with high temperature plasma sintering.The secondary electron emission property and microstructure of the cathodes were studied.It showed that the cathode prepared by liquid-liquid doping method exhibited the best emission property among all the samples prepared by liquid-solid doping,solid-solid doping and liquid-liquid doping methods due to a uniform distribution of different substances.RE2O3 existed unifo...

  3. Synthesis of Y2O3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding%TC4钛合金表面激光熔覆法制备Y2O3颗粒增强Ni/TiC复合涂层

    张可敏; 邹建新; 李军; 于治水; 王慧萍


    A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding.The phase component,microstructure,composition distribution and properties of the composite layer were investigated.The composite layer has graded microstructures and compositions,due to the fast melting followed by rapid solidification and cooling during laser cladding.The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified.The size of TiC dendrites decreases with increasing depth.Y2O3 fine particles distribute in the whole clad layer.The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380,which is 4 times higher than the initial hardness.The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating.%采用激光熔覆法在TC4钛合金表面原位制备Y2O3颗粒增强Ni/TiC复合涂层,研究涂层的相组成、微结构、成分分布及性能.结果表明,复合涂层内的微结构和成分在深度方向具有分层现象,这主要是由激光熔覆过程的快速熔凝和冷却过程所致.在激光熔覆过程中,TiC粉末完全熔化并在凝固过程中析出为细小枝晶,这些TiC枝晶的尺寸随着深度的增加而减小,而Y2O3颗粒则分布在整个重熔层中.Y2O3颗粒增强Ni/TiC复合涂层具有较均匀的硬度,其最高值约为HV1380,比基体高4倍以上.由于复合涂层具有高的硬度,钛合金经过激光熔覆后其耐磨性得到大幅度提高.

  4. Y2O3对等离子喷焊高铬铁基涂层组织和性能的影响%Effect of Y2O3on microstructure and properties of high-chromium Fe-base coating produced by plasma arc cladding process

    李殿凯; 李明喜; 洪海峰


    采用光学显微镜、扫描电镜(SEM)、X射线衍射(XRD)以及磨损实验,研究了添加1%(质量分数)Y2O3对等离子喷焊高铬铸铁型铁基合金涂层组织和耐磨性的影响.结果表明,加入1%Y2O3并未改变涂层中相的组成,主要都是由面心立方的γ(Fe、Ni)固溶体和六方结构的M7C3型碳化物构成,但使γ(Fe、Ni)固溶体生长晶面由[002]转变为以[111]和[002]晶面为主.由于涂层中Y2O3的加入,稀土氧化物颗粒可作为异质形核核心,细化组织,并抑制碳化物的生长,使其弥散分布于共晶组织中,从而提高喷焊层的显微硬度和耐磨性能.%High chromium iron based coatings with and without 1% Y2O3 were produced by plasma arc cladding process on a low carbon steel.Microstructure and tribological characteristics of the coatings were studied using optical microscope,scanning electron microscopy,X-ray diffraction and wear test.The results show that the high chromium iron based coating is composed of γ-(FeNi) solid solution with face-centered cubic lattice and M7 C3 (M =Cr,Fe,Mo) carbides with hexagonal lattice structure.The Y2O3 in the Fe-based coating doesn't change the coating' s phase composition,but it changes the crystal growth direction of γ-(Fe,N i)solid solution from almost single[002]to both [111] and [002].The rare earth oxide Y2O3 not only acts as the heterogeneous nucleation to refine the microstructure but also restrains the growth of the carbides.Additionally,it improves the microhardness and wear resistance of the coating by making the refined carbide particles dispersively distribute in the coating matrix.

  5. Continuous Single-Step Fabrication of Nonaggregated, Size-Controlled and Cubic Nanocrystalline Y2O3:Eu3+ Phosphors Using Flame Spray Pyrolysis

    Chang, Hankwon; Lenggoro, I. Wuled; Okuyama, Kikuo; Kim, Tae-Oh


    Continuous single-step fabrication of cubic nanocrystalline Y2O3:Eu3+ phosphor particles using flame spray pyrolysis was successfully conducted without any post-heat treatments. The morphology of the as-prepared particles was spherical and nonaggregated. The mean size of as-prepared particles was easily controlled by adjusting the precursor concentration. On varying the overall concentration of the precursor solution from 0.01 to 0.5 M, the crystallite size and geometric mean particle diameter varied from 38.4 nm to 50.6 nm and 263 nm to 741 nm, respectively. XRD spectra of as-prepared particles indicated that all products, regardless of the precursor concentration, showed the cubic phase with high crystallinity without any post-treatments, although residence times in the flame were very short. Upon excitation with 254 nm light, all of the as-prepared particles showed bright red emission due to the 4f-4f transitions of Eu3+ ions, and the highest photoluminescent intensity at 611 nm was found at a Eu3+ content of about 12 mol%. These results indicate the possibility of the fabrication of cubic nanocrystalline Y2O3:Eu3+ phosphors with a high production rate and high purity.

  6. Enhancement of Visible Upconversion Emission in Y2O3:Er3+-Yb3+ by Addition of Thiourea and LiOH in the Phosphor Synthesis

    Eder Resendiz-L


    Full Text Available Spherical like Y2O3 nanostructures doped with Er3+ and Yb3+ ions have been synthesized by a facile hydrothermal method. The samples were prepared by using different precipitant agents in the synthesis process. The phosphors were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and photoluminescence spectroscopy. Effects of the precipitant agents on structural, morphological, and photoluminescence properties of Y2O3:Er3+-Yb3+ are studied and discussed. XRD analysis indicates that all samples, prepared with different precipitant agents, present the same cubic phase. Electron microscopy measurements show regular spherical shapes with size diameter depending on precipitant agent. Photoluminescence reveals that the samples have strong green (563 nm and red (660 nm emissions corresponding to 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. The nanophosphors prepared with both Thiourea and Lithium Hydroxide exhibit the stronger visible upconversion luminescence under 980 nm diode laser excitation.

  7. Blue light emitting Y2O3:Tm3 + nanophosphors with tunable morphology obtained by bio-surfactant assisted sonochemical route

    Venkatachalaiah, K. N.; Nagabhushana, H.; Darshan, G. P.; Basavaraj, R. B.; Daruka Prasad, B.; Sharma, S. C.


    Modified sonochemical route was used to prepare Y2O3:Tm3+ (1-11 mol%) nanophosphor using Mimosa pudica (M.P.) leaves extract as bio-surfactant. The prepared samples were exhibited high crystalline nature with various morphologies. This was due to sonochemical experimental reaction took place between cavitation bubbles and nearby solution. The average crystallite sizes of the prepared samples were about 15 nm to 21 nm as obtained from PXRD and TEM analysis. The ultraviolet visible absorption spectra showed prominent bands with an energy gap varied from 5.73 eV to 5.84 eV. Photoluminescence (PL) emission spectra shows the prominent blue light emission peak at 456 nm attributed to 1D2 → 3F4 transitions of Tm3+ ions. Judd-Ofelt intensity parameters were estimated by using PL emission spectra. The photometric characteristics of the prepared compounds were very close to the blue color of NTSC standards. So the results were fruitful in making use of Y2O3:Tm3 + nanophosphor as an alternative material for effective blue component in WLED's.

  8. Preparation of highly c-axis oriented AlN thin films on Hastelloy tapes with Y2O3 buffer layer for flexible SAW sensor applications

    Peng, Bin; Jiang, Jianying; Chen, Guo; Shu, Lin; Feng, Jie; Zhang, Wanli; Liu, Xinzhao


    Highly c-axis oriented aluminum nitrade (AlN) films were successfully deposited on flexible Hastelloy tapes by middle-frequency magnetron sputtering. The microstructure and piezoelectric properties of the AlN films were investigated. The results show that the AlN films deposited directly on the bare Hastelloy substrate have rough surface with root mean square (RMS) roughness of 32.43nm and its full width at half maximum (FWHM) of the AlN (0002) peak is 12.5∘. However, the AlN films deposited on the Hastelloy substrate with Y2O3 buffer layer show smooth surface with RMS roughness of 5.46nm and its FWHM of the AlN (0002) peak is only 3.7∘. The piezoelectric coefficient d33 of the AlN films deposited on the Y2O3/Hastelloy substrate is larger than three times that of the AlN films deposited on the bare Hastelloy substrate. The prepared highly c-axis oriented AlN films can be used to develop high-temperature flexible SAW sensors.

  9. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    Chen, Chun-Liang; Lin, Chen-Han


    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  10. Corrosion resistance of plasma sprayed NiCrAl + (ZrO2 + Y2O3 ) thermal barrier coating on 18 -8 steel surface

    CHEN Fei; L(U) Tao; DING Hua-dong; ZHOU Hai; LIU Kai


    The corrosion resistance of NiCrAl +(ZrO2 + Y2 O3 )thermal barrier coating, formed with the plasma spraying technique, on the 18 - 8 steel surface was investigated. The phase structure and morphology of the coating were analyzed by means of X-ray diffraction(XRD) and scanning electron microscopy(SEM). The electrochemical corrosion behavior of the coating in 1.0 mol/L H2 SO4 solution was studied by using electrochemical measurement methods. The results show that the gradient plasma spraying coating is composed of the NiCrAlY primer coating and the (ZrO2 + Y2O3 ) top coating, and the coating thickness is 360 μm. The microhardness of coating reaches 1 100 HV. The corrosion resistance of the plasma sprayed coating of the 18 - 8 steel surface is about 5 times as great as that of the original pattern. The corrosion resistance of the coating is enhanced notably.

  11. Integrated plasmonic and upconversion starlike Y2O3:Er/Au@TiO2 composite for enhanced photon harvesting in dye-sensitized solar cells

    Meng, Fanli; Luo, Yi; Zhou, Yali; Zhang, Jinwen; Zheng, Yanzhen; Cao, Guozhong; Tao, Xia


    A plasmon-enhanced upconversion composite Y2O3:Er/Au@TiO2 (SYE/A@T) with a three-dimensional starlike morphology is prepared and then mixed with submicron TiO2 (200 nm) to form a multifunctional scattering layer in TiO2-based dye-sensitized solar cells (DSSCs). In such starlike micronsized upconverter, Au nanoparticle-assisted plasmon effect can intensify the upconversion emission of Y2O3:Er, and simultaneously TiO2 coating can improve the charge transport within SYE/A@T. Therefore, the SYE/A@T shows extended light-absorbing range to near-infrared region and improved light-scattering ability, leading to an improved photovoltaic performance of DSSCs. With the optimum mixing ratio, a conversion efficiency of 8.62% is attained, which is a significant improvement of 27.6% compared with the cell without adding SYE/A@T. Our work provides a feasible strategy to prepare an upconversion composite with plasmon-enhanced emission and enable this composite to accommodate the DSSCs system and improve the conversion efficiency of DSSCs.

  12. A Comparative Study of Er3+, Er3+-Eu3+, Er3+-Tb3+, and Er3+-Eu3+-Tb3+ Codoped Y2O3 Nanoparticles as Optical Heaters

    G. A. Sobral


    Full Text Available Fluorescence intensity ratio (FIR technique, based on the thermal coupling of H11/22 and S3/24 energy levels of erbium ions, was used to study the optical heating behavior of rare earth doped yttrium oxide nanophosphors (Y2O3:Er3+, Y2O3:Er3+-Eu3+, Y2O3:Er3+-Tb3+, and Y2O3:Er3+-Eu3+-Tb3+ synthesized via PVA-assisted sol-gel route. The samples were optically heated by an 800 nm CW diode laser, while the upconverted green emissions were used to measure their temperatures in real time. The experimental results indicate that the studied nanoparticles are promising candidates to applications such as photothermal treatments and hyperthermia.

  13. Biomimetic fabrication of 2D photonic Y_2O_3:Eu~(3+) phosphor templated from butterfly wing scales%蝶翅二维光子晶体结构Y_2O_3:Eu~(3+)的仿生制备

    于奎龙; 范同祥


    以自然界中多种多样、复杂精细的生物结构为模板,即通过生物模板法,可制备出具有类似结构的人工材料以提高材料性能或探索材料新的性质。本研究以具有精细二维光子晶体结构的绿斑德凤蝶(Papilio epiphorbas)鳞片为模板,采用以水溶胶凝胶为前驱体的生物模板法成功制备出具有精细二维光子晶体结构的Y2O3:Eu3+荧光体。场发射扫描电镜对仿生Y2O3:Eu3+进行了结构表征,证明仿生Y2O3:Eu3+可以完好地复制蝴蝶鳞片的二维光子晶体结构;采用激光共聚焦显微拉曼光谱仪对仿生Y2O3:Eu3+进行了光致发光测试,证明Eu3+充分掺杂使荧光体产生了特征荧光。通过水溶胶前驱体工艺和水溶液前驱体工艺的对比研究,证明了以水溶胶为前驱体的生物模板法在制备精细结构材料上的优势,对精细结构材料的生物模板法制备具有重要参考价值。%Using the natural intricate and delicate structures in biology as templates,i.e.biotemplation,the artificial analogue could be fabricated for improving the properties of novel materials.The green wing scales of the butterfly Papilio epiphorbas with intricate two dimensional photonic crystal(2D PhC) structure were adopted as templates to fabricate the 2D PhC Y2O3:Eu3+ phosphor through the aqueous sol-gel method.Field emission scanning electron microscopy(FE-SEM) demonstrated that the biomimetic Y2O3:Eu3+ could well duplicate the 2D PhC structure of butterfly scales.Emission spectra of the biomimetic Y2O3:Eu3+ tested via Laser-focused Raman microspectrometer confirmed that Eu3+ was efficiently dopped into the Y2O3 matrix and the target biomimetic material was obtained.The experimental contrast of fabrication routes with aqueous sol-gel precursor and water solution precursor indicated the advantages of the aqueous sol-gel method in fabricating delicate materials through biotemplation and thus could

  14. Synthesization and red fluorescent property of Y2O3∶Eu3+ nanosperes by thermo-decomposition method%热分解法合成Y2O3∶Eu3+纳米球及红色荧光性质研究

    张艺; 王兴磊; 朱振华; 李紫薇; 何晓燕


    用热分解法在油酸和油胺混合溶剂中,320℃条件下,反应3h,成功制备了Y2O3∶Eu3+纳米球.透射显微镜(SEM)和X粉末衍射仪(XRD)表征结果表明,成功合成了尺寸大约为15nm的Y2O3∶Eu3纳米球,JCPDS号为82-2415.且在紫外灯照射下,溶解于环己烷中的Y2O3∶Eu3+纳米晶发射出比较强的红光,从荧光发射光谱上发现,发射峰的位置为594nm、614nm、628nm和709nm,分别对应Eu3离子的5D0→7F1,5 D0→7 F2和5 D0→7F4跃迁.

  15. Flux Pinning Properties in YBa2Cu3Oy Films with BaSnO3 Nano-rods and Spatially-controlled Y2O3 Nano-dots

    Sueyoshi, Tetsuro; Tokita, Yuuki; Fujiyoshi, Takanori; Mitsugi, Fumiaki; Ikegami, Tomoaki

    The quasi-multilayered films consisting of YBa2Cu3Oy layers with BaSnO3 nano-rods and pseudo-layers of Y2O3 were prepared using a multilayering process in a PLD method, in order to investigate the influence of the spatial distribution of Y2O3 nano-dots on the hybrid flux pinning. The additional doping of Y2O3, however, hardly contributed to the flux pinning at higher temperature, probably due to Y2O3 nano-dots in small size in this work. At lower temperature, on the other hand, all the multilayered films show higher critical current density Jc than the film only with BaSnO3 nano-rods in a wide range of magnetic field orientations centered at B || ab. In particular, more flat angular dependence of Jc at low magnetic field around B || ab was found for the multilayered film with Y2O3 nano-dots more distributed in the out-of-plane direction. For B || c, by contrast, the magnetic field dependence of Jc was more weakened for the multilayered film with more correlated row of Y2O3 nano-dots along the in-plane direction.

  16. 引入 Y2 O3对刚玉-尖晶石中间包挡渣墙高温强度和抗渣性的影响%Influence of adding Y2O3 on HMOR and slag resistance of corundum-spinel tundish slag barrier

    郭钰龙; 梁永和; 聂建华; 尹玉成


    Corundum-spinel tundish slag wall specimens were prepared using special grade bauxite,brown corundum,fused white corundum,magnesium aluminate spinel,α-Al 2 O3 micropowder,ρ-Al 2 O3 ,calcium alu-minate cement as the main raw materials,adding dispersant and other additives like steel fibre.The effect of Y2 O3 addition on hot properties and slag resistance of the specimens was studied.The results show that with Y2 O3 addition increasing,the specimens have higher hot strength and better slag resistance.When the Y2 O3 addition is 2 mass%,the specimen has the best hot strength and slag resistance.The microstructure analysis shows that at high temperatures Y2 O3 reacts with Al 2 O3 forming high melting point phase Y3 Al 5 O12 , which activates the crystal lattice and enhances the density of the specimen effectively.Y2 O3 is active and can form liquid yttrium silicate with silica at high temperatures,bonding spinel and Al 2 O3 in the material tightly,and preventing the further slag penetration.As the addition of Y2 O3 increases,abundant CA6 protec-tion layers are observed at the reaction layer and the penetration layer,restraining the further penetration of slag.Meanwhile,the formed CA6 consumes CaO in the slag,enhancing the slag viscosity and lowering the penetration ability of the slag,and thus stopped slag penetration gradually.%以特级矾土、棕刚玉、电熔白刚玉、镁铝尖晶石、α-Al2 O3微粉、ρ-Al2 O3、铝酸钙水泥为主要原料,添加分散剂和钢纤维等外加剂,研究了加入 Y2 O3对刚玉-尖晶石质中间包挡渣墙高温性能和抗渣性能的影响。结果表明:随着 Y2 O3加入量的增加,试样的高温抗折强度增大,抗渣性能变好,当加入量为2%(w)时其高温强度和抗渣性能均最优。显微结构分析表明:Y2 O3高温下与 Al2 O3反应生成 Y3 Al5 O12高熔点相,活化了晶格,有效提高试样的致密度,Y2 O3活性较大,高温下还能与材料中 SiO2反应形

  17. Effect of Y2O3 Content on Microstructure of Gradient Bioceramic Composite Coating Produced by Wide-Band Laser Cladding

    Liu Qibin; Zou Jianglong; Zheng Min; Dong Chuang


    To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that "monosodium glutamate" effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.

  18. Tensile and fracture toughness properties of the nanostructured oxide dispersion strengthened ferritic alloy 13Cr-1W-0.3Ti-0.3Y 2O 3

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.; Odette, G. R.; Yamamoto, T.; Gragg, D.


    The realization of fusion power as an attractive energy source requires advanced structural materials that can cope with ultra-severe thermo-mechanical loads and high neutron fluxes experienced by fusion power plant components, such as the first wall, divertor and blanket structures. Towards this end, two variants of a 13Cr-1W-0.3Ti-0.3Y 2O 3 reduced activation ferritic (RAF-) ODS steel were produced by ball milling phase blended Fe-13Cr-1W, 0.3Y 20 3 and 0.3Ti powders in both argon and hydrogen atmospheres. The milled powders were consolidated by hot isostatic pressing (HIP). The as-HIPed alloys were then hot rolled into 6 mm plates. Microstructural, tensile and fracture toughness characterization of the hot rolled alloys are summarized here and compared to results previously reported for the as-HIPed condition.

  19. Effects of firing schedule on solubility limits and transport properties of ZrO2–TiO2–Y2O3 fluorites

    Fagg, D.P.; Frade, J.R.; Mogensen, Mogens Bjerg


    The low Y/high Zr edge of the cubic defect fluorite solid solution in the system ZrO2–TiO2–Y2O3 in air is reassessed, as it is these compositions which have been suggested to offer the highest levels of mixed conductivity. Vegard's law is obeyed for values of x which lie within the cubic defect...... fluorite phase in Zr1−x−yYyTixO2−δ for values of y=0.2 and 0.25. Measured lattice parameters show good agreement with those calculated from the Kim relation. Deviation from Vegard's law places the limit of the solid solution at x=0.18 and 0.20 for values of y=0.2 and 0.25, respectively, at 1500 °C...

  20. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    Humberto Vieira Fajardo


    Full Text Available In the present study, TiO2 nanopowder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM, X-ray diffraction (XRD analysis, Zeta potential and surface area through N2 fisisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles.

  1. Grain-boundary phases in hot-pressed silicon nitride containing Y2O3 and CeO2 additives

    Guha, J. P.; Hench, L. L.


    Auger electron spectroscopy in conjunction with X-ray powder diffraction and scanning electron microscopy is used to analyze the grain-boundary phases of Y2O3- and CeO2-doped Si3N4 hot-pressed materials in order to demonstrate that the additives concentrate predominantly in the grain boundaries of Si3N4 in the form of various oxynitride phases. A high oxygen content observed in sample fracture surfaces was found to be consistent with the existence of an oxygen-enriched phase in the grain boundaries. The presence of yttrium and cerium in the fracture surfaces and an overall increase in the O/N ratio imply that the additive oxides are predominantly concentrated in the intergranular phases.

  2. Characterization of Mixed xWO3(1-xY2O3 Nanoparticle Thick Film for Gas Sensing Application

    M. H. Shahrokh Abadi


    Full Text Available Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO3(1-xY2O3 nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8 thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD, atomic force microscopy (AFM, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH4 and butane (C4H10 at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder.

  3. Effect of porosity and pore morphology on the low-frequency dielectric response in sintered ZrO2-8 mol% Y2O3 ceramic compact

    D Sen; T Mahata; A K Patra; S Mazumder; B P Sharma


    Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01-100 kHz, in sintered ZrO2-8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, specific surface area etc. It has been observed that the real and the imaginary parts of the complex dielectric permittivity, for the specimens, depend not only on the porosity but also on the pore size distribution and pore morphology significantly. Unlike normal Debye relaxation process, where the loss tangent vis-à-vis the imaginary part of the dielectric constant shows a pronounced peak, in the present case the same increases at lower frequency region and an anomalous non-Debye type relaxation process manifests.

  4. Effect of the substitution of Y2O3 for CaO on the bioactivity of 2.5CaO.2SiO2 glass.

    Costantini, A; Fresa, R; Buri, A; Branda, F


    Glasses were prepared whose composition is defined by the following general formula: (2.5-x)CaO.x/3Y2O3.2SiO2 (0 < or = x < or = 1). Their behaviour when they were soaked in a simulated body fluid (SBF) and their thermal properties (glass transformation and softening temperatures, Tg and Ts respectively) were studied Tg and Ts increase with the Y2O3 content. The trend can be explained on the basis of the increased structural rigidity when Ca2+ ions are substituted by Y2+ ions, because of the formation of stronger bonds to the oxygen. The bioactivity was studied by means of electron microscopy equipped with an energy dispersive system for elemental analysis and IR spectroscopy. All the glasses studied except the one with the greatest amount of Y2O3. x = 1.0, reacted with SBF by forming a calcium phosphate layer. The experimental results suggest that the bioactivity is negatively influenced by the Y2O3 content: the tendency to form a calcium phosphate layer is reduced the greater the amount of CaO substituted. A comparison with literature data indicates that the amount of Y2O3 that can be substituted depends on the CaO content of the base CaO-SiO2 glass. The experimental results are in good agreement with the mechanism reported in the literature. After 7 days soaking, crystalline hydroxyapatite is formed in the Y2O3-free glass and in the glasses of low Y2O3 content (x-0.2).

  5. Effect of CeO2 and Y2O3 on microstructure, bioactivity and degradability of laser cladding CaO-SiO2 coating on titanium alloy.

    Li, H C; Wang, D G; Chen, C Z; Weng, F


    To solve the lack of strength of bulk biomaterials for load-bearing applications and improve the bioactivity of titanium alloy (Ti-6Al-4V), CaO-SiO2 coatings on titanium alloy were fabricated by laser cladding technique. The effect of CeO2 and Y2O3 on microstructure and properties of laser cladding coating was analyzed. The cross-section microstructure of ceramic layer from top to bottom gradually changes from cellular-dendrite structure to compact cellular crystal. The addition of CeO2 or Y2O3 refines the microstructure of the ceramic layer in the upper and middle regions. The refining effect on the grain is related to the kinds of additives and their content. The coating is mainly composed of CaTiO3, CaO, α-Ca2(SiO4), SiO2 and TiO2. Y2O3 inhibits the formation of CaO. After soaking in simulated body fluid (SBF), the calcium phosphate layer is formed on the coating surface, indicating the coating has bioactivity. After soaking in Tris-HCl solution, the samples doped with CeO2 or Y2O3 present a lower weight loss, indicating the addition of CeO2 or Y2O3 improves the degradability of laser cladding sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能%Thermophysical Properties of Y2O3 and Gd2O3 Co-doped SrZrO3 Thermal Barrier Coating Material

    马文; 宋峰雨; 董红英; 许萍; 伦文山; 郑学斌


    Y2O3 (5mol%) and Gd2O3 (5mol%) co-doped SiZrO3 (Sr(Zr0.9Y0.05Gd0.05)O2.95, SZYG) was synthesized by solid state reaction method. The phase stability of the SZYG powder synthesized at high temperature of 1450°C for a long period and at temperature range of 200-1400°C was characterized by XRD and DSC, respectively. The coefficients of thermal expansion (CTEs) of bulk SZYG recorded by a high-temperature dilatometer show that the phase transitions of SrZrO3 is suppressed remarkably by co-doping Y2O3 and Gd2O3. The thermal conductivity of bulk SZYG at 10001 is 1.36 W/(mK), which is 35% lower than that of bulk SrZrO3 and 8YSZ. The good chemical compatibility of SZYG with 8YSZ and A12O3, is detected after heat-treatment at 1250°C for 24 h.%采用固相反应法合成了5mol% Y2O3与5mol% Gd2O3共掺杂SrZrO3(Sr(Zr0.9Y0.05Gd0.05)O2.95,SZYG)粉末.采用X射线衍射(XRD)和差示扫描量热仪(DSC)分别研究了SZYG粉末在1450℃长期热处理后以及200~1400℃范围内的相稳定性.采用高温热膨胀仪测量了SZYG块材的热膨胀系数,结果表明:通过Y2O3与Gd2O3共掺杂改性可以明显抑制SrZrO3的相转变.在1000℃下SZYG块材的热导率是~1.36 W/(m.K),与SrZrO3和8YSZ块材相比降低~35% SZYG分别与8YSZ和Al2O3在1250℃热处理24h表现出很好的化学相容性.

  7. Yb2O3-Y2O3-Gd2O3-ZrO2热障涂层制备及性能研究%Preparation and Properties of Yb2O3-Y2O3-Gd2O3-ZrO2 Ceramics for Thermal Barrier Coatings

    孙现凯; 王全胜; 柳彦博; 杜仲; 张锐


    以Yb2O3、Y2O3 、Gd2O3稀土氧化物粉末和ZrOCl2·8H2O粉末为原料,采用化学共沉淀法制备了Yb2O3-Y2O3-Gd2O3-ZrO2 (YYGZO)热喷涂用粉末,采用大气等离子喷涂技术制备了YYGZO涂层,利用场发射扫描电镜(FESEM)、X射线衍射(XRD)研究了YYGZO粉末及涂层的微观组织形貌、相结构.结果表明,制备的热喷涂YYGZO粉末大部分呈规则实心球体状,且球形度良好,颗粒粒径均匀,大部分颗粒粒径分布为30~60μm,流动性能较好,满足大气等离子喷涂的要求.YYGZO涂层具有较好的高温相结构稳定性.所制备YYGZO热障涂层组织结构比较致密,涂层各个界面结合紧密,孔隙率约为9.23%,结合强度为35.2 MPa.%Yb2O3-Y2O3-Gd2O3-ZrO2 (YYGZO)composition powder was synthesized by the chemical coprecipitation method using Yb2O3,Y2O3,Gd2O3 and ZrOCl2 ·8H2O powders as raw materials,and applied as ceramic topcoats of thermal barrier coating (TBC) by atmospheric plasma spraying (APS).Microstructure and phases of YYGZO powder and thermal barrier coatings were examined by scanning electrical microscopy (FESEM) and X-ray diffraction (XRD).The results showed that the YYGZO ceramics powder were prepared with solid sphere shape and proper distribution of particle size about 30-60 μm by spray-dried method are suitable for atmospheric plasma spraying.Phase analyses revealed that YYGZO coatings keep the single phase before and after under heat treatment at 1200 ℃.The coating has compact microstructure and higher binging strength between the topcoat and bondcoat.The bingding strength and porosity of the coating are about 35.2 MPa and 9.23%,respectively.

  8. Effect of β-Si3N4 Content on Y2O3 -MgO-α-Si3N4 Properties%β-Si3N4含量对Y2O3-MgO-α-Si3N4陶瓷性能的影响

    李荐; 李淳伟; 周宏明; 黄祖琼; 刘凡; 李艳芬; 杨俊; 杨亮


    利用扫描电子显微分析等手段,研究了棒状β-Si3N4含量对Y2O3-MgO-α-Si3N4陶瓷致密度、力学性能和显微结构的影响,确定了β-Si3N4和α-Si3N4的适宜配比.结果显示:随着β-Si3N4含量的增加,Y2O3-MgO-α-Si3N4陶瓷材料致密度和力学性能均先增加后降低,当β-Si3N4含量达到40%时,陶瓷致密度和力学性能同时达到最大,此时致密度为93%,横向断裂强度为583.4 MPa,断裂韧性为5.42 MPa·m1/2.%The influence of bar-shaped (3-Si3N4 content on the density, mechanical property and microstructure of Y2O3-MgO-a-Si3N4 was researched by using SME and other methods, and the most appropriate proportion of JJ-Si3N4 to ct-Si3N4 was determined. The results showed that with the increasing of the content of p-Si3N4 both of the density and mechanical property of Y2O3-MgO-a-Si3N4 ceramic material first increased, then decreased. When p-Si3N4 content achieved 40% , the density and mechanical property both reached to the maximum, with a density of 93% , transverse rupture strength of 583.4 Mpa and fracture toughness of 5.42 Mpa ? M1/2.

  9. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil


    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  10. Effect of the Fourth Element on Bonding of Silicon Nitride Ceramics with Y2O3-Al2O3-SiO2 Glass Solders



    Bonding of Si3N4 ceramic was performed with Y2O3-Al2O3-SiO2(YAS)-X glass solders,which were mixed with TiO2 (YT) and Si3N4 (YN), respectively. The effects of bonding conditions and interfacial reaction on the joint strength were studied. The joint strength in different bonding conditions was measured by four-point bending tests. The interfacial microstructures were observed and analyzed by SEM, EPMA and XRD. It is shown that with the increase of bonding temperature and holding time, the joint strength increases reaching a peak, and then decreases. When TiO2 is put into YAS solder,the bonding interface with Si3N4/(Y-Sialon glass+TiN)/TiN/Y-Sialon glass is formed. When YAS solder is mixed with Si3N4 powder, the interfacial residual thermal stress may be decreased, and then the joint strength is enhanced. According to microanalyses, the bonding strength is related to interfacial reaction.

  11. Al2O3-Y2O3 Nano- and Micro-Composite Coatings on Fe-9Cr-Mo Alloy


    Al2O3-Y2O3 nano- and micro-composite coatings were deposited on Fe-9Cr-Mo substrates by using sol-gel composite coating technology. The processing includes dipping samples in a sol-gel solution dispersed with fine ceramic powders, which are prepared by high-energy ball milling. High-resolution microscopy (FE-SEM) analyses show that the coating is composed of composite particle clusters with an average diameter of 1μm, and the coating is relatively dense without cracking during drying and sintering stages. XRD analyses show that the oxide coating is mainly composed of α-Al2O3 and γ-Al2O3. The oxidation tests performed at 600 C in air show that the coatings are provided with much improved resistance against high temperature oxidation and scale spallation. It is indicated that nano-structured composite particles and reactive elements are integrated into the coatings, which plays an important role in preventing agglomeration of nano-particles and initiation of cracks.

  12. Sintering behavior of mullite with addition of SiO2-MgO-Y2O3-SrCO3

    Lim, Chang-Bin; Yeo, Dong-Hun; Shin, Hyo-Soon


    As the size of semiconducting silicon (Si) wafers increases, that of the ceramic substrate, which is main part of a semiconductor probing system, has also increased. The increased number of layers due to high integrity of Si wafers and the narrow pattern linewidths for impedance matching require the use of Cu-Mo conducting paste, rather than conventional Mo paste, for low electrical resistivity. For co-firing of a Cu-Mo electrode with a ceramic substrate, a green ceramic substrate with a printed pattern must be sintered at a temperature below 1400 °C. To obtain a mullite composition that can be co-fired with a Cu-Mo electrode at a temperature below 1400 °C, we added 1.0 wt% of SiO2, 1.0 wt% of MgO, 1.5 wt% of Y2O3, and 7.0 wt% of SrCO3 to a commercial mullite composition, and we sintered the specimen with that composition at 1350 °C in a reducing atmosphere to obtain a density of 3.20 g/cm3. The sintered specimen's coefficient of thermal expansion at temperatures from room temperature to 200 °C was 4.53 ppm/°C, which is acceptable for a semiconductor probing system.

  13. Dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 system

    Yixiang Chen


    Full Text Available The dependence of glass-forming ability on starting compositions in Y2O3–Al2O3–SiO2 (YAS system has been investigated by melting experiment. Transparent YAS glasses have been prepared under the condition of furnace cooling instead of quenching. It is found that, in the YAS ternary phase diagram, the compositions on the Y3Al5O12–SiO2 line and with 52-68 mol% SiO2 have a higher glass-forming ability to produce pure glass. For the compositions with too much or less SiO2 or with Y/Al = 5/3, 1/1, or 1/3, crystallization occurs with the formation of Y3Al5O12, Y2Si2O7, Al6Si2O13, or SiO2. The densities of the YAS glasses increase with decreasing SiO2 contents and increasing Y/Al ratios, and for the samples with Y/Al = 3/5 there is a good linear relationship between the density and SiO2 content.

  14. Characteristic results and prospects of the 13Cr-1W-0.3Ti-0.3Y 2O 3 ODS steel

    Eiselt, Ch. Ch.; Klimenkov, M.; Lindau, R.; Möslang, A.


    For specific blanket and divertor applications in future fusion power reactors a replacement of presently considered reduced activation ferritic martensitic (RAFM) steels as structural material by suitable oxide dispersion strengthened (ODS) ferritic martensitic steels would allow a substantial increase of the operating temperature from ˜550 °C to about 650 °C. Temperatures above 700 °C in the He cooled modular divertor concept necessitates the use of ferritic (RAF) ODS steels, which are not limited by a phase transition. Therefore a 13Cr-1W-0.3Ti-0.3Y 2O 3 ferritic ODS steel is being developed, using an Attritor with varying milling parameters. Afterwards the mechanically alloyed powders were encapsulated, sealed and consolidated in a hot isostatic press device. In this work, the effects of several parameter variations on the microstructure of the produced ferritic ODS-alloys, analysed by optical microscopy (OM) and high resolution TEM, as well as results of conducted mechanical tests are presented.

  15. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong


    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8- x) mol pct yttria-costabilized zirconia ( xCe(8- x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8- x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  16. Up-Conversion Y2O3:Yb(3+),Er(3+) Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment.

    Ge, Kun; Zhang, Cuimiao; Sun, Wentong; Liu, Huifang; Jin, Yi; Li, Zhenhua; Liang, Xing-Jie; Jia, Guang; Zhang, Jinchao


    The rare earth hollow spheres with up-conversion luminescence properties have shown potential applications in drug delivery and bioimaging fields. However, there have been few reports for the degradation properties of rare earth oxide drug carriers. Herein, uniform and well-dispersed Y2O3:Yb(3+),Er(3+) hollow spheres (YOHSs) have been fabricated by a general Pechini sol-gel process with melamine formaldehyde colloidal spheres as template. The novel YOHSs with up-conversion luminescence has good drug loading amount and drug-release efficiency; moreover, it exhibits pH-responsive release patterns. In particular, the YOHSs sample exhibits low cytotoxicity and excellent degradable properties in acid buffer. After the sample was loaded with anticancer drug doxorubicin (DOX), the antitumor result in vitro indicates that YOHS-DOX might be effective in cancer treatment. The animal imaging test also reveals that the YOHSs drug carrier can be used as an outstanding luminescent probe for bioimaging in vivo application prospects. The results suggest that the degradable drug carrier with up-conversion luminescence may enhance the delivery efficiency of drugs and improve the cancer therapy in clinical applications.

  17. Sintering effect on ageing behavior of rare earths (Pr6O11-Er2O3-Y2O3)-doped ZnO varistor ceramics

    Choon-Woo Nahm


    The electrical properties and ageing behavior of the rare earths (Pr6O11-Er2O3-Y2O3)-doped ZnO varistor ceramics were systematically investigated at sintering temperature range of 1335-1350 ℃.With an increase in the sintering temperature,the sintered density increased from 5.41 to 5.64 g/cm3 and the average grain size increased from 5.8 to 7.9 μm.The varistor properties and ageing behavior were significantly affected by small sintering temperature range of 1335-1350 ℃.The breakdown field noticeably decreased from 5767 to 3628 V/cm with an increase in the sintering temperature.The varistor ceramics exhibited the highest nonlinear coefficient (43.2) at the sintering temperature of 1340 ℃.The varistor ceramics sintered at 1350 ℃ exhibited a surprisingly excellent stability by exhibiting 0.3% in the variation rate of the breakdown field and 0.3% in the variation rate of the nonlinear coefficient for ageing stress of 0.95 E1 mA/150 ℃/24 h.

  18. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong


    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8-x) mol pct yttria-costabilized zirconia (xCe(8-x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8-x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  19. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    Lima, Rogerio S.; Marple, Basil R.


    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T-front and substrate backside T-back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  20. Synthesis and structural characterization of (Bi2O3)1– (Y2O3) and (Bi2O3)1– (Gd2O3) solid solutions

    Srikant Ekhelikar; G K Bichile


    Solid solution series, (Bi2O3)1– (Y2O$_3) and (Bi2O$_3)1– (Gd2O$_3), for = 0.10, 0.20, 0.30 and 0.40 were synthesized by standard ceramic technique. The structural phase characterization was carried out using X-ray powder diffraction technique. It was found that the solid solution containing 20–40 mole% of Y2O3 had face-centred cubic structure. All samples of the solid solution series, (Bi2O3)1– (Gd2O3), had rhombohedral single phase in the concentration range 0.10 ≤ ≤ 0.40. Lattice parameters of fcc phase of Y2O3 doped samples were calculated from the X-ray diffraction data. The lattice constant `’ gradually decreases with increasing content of dopant concentration () for the Y2O3 doped system and obeys Vegard’s rule. The unit cell parameters for the (Bi2O3)1– (Gd2O3) doped samples showing rhombohedral phase were obtained on hexagonal setting.

  1. Influence of the substitution of Y2O3 for CeO2 on the mechanical and microstructural properties of silicon nitride Influência da substituição de Y2O3 por CeO2 nas propriedades mecânicas e microestruturais do nitreto de silício

    J. V. C. de Souza


    Full Text Available This work investigated the substitution of Y2O3 for CeO2 in liquid-phase sintered silicon nitride ceramics. Cost reduction as well as good physical, mechanical and microstructural properties are the main objectives of the present study. Two powder mixtures were prepared, varying the contents of alpha-Si3N4, Al2O3, AlN, Y2O3 and CeO2. The mixtures were homogenized in ethanol, dried in a rotating evaporator and kiln, respectively, and then uniaxially (100 MPa and cold isostatically pressed (300 MPa. The samples were sintered at 1850ºC for 1 h in a graphite resistive furnace under nitrogen atmosphere. After sintering the density of the samples was higher than 97% of the theoretical value. The fracture toughness and hardness were higher than 5.28 MPa.m½ and 17.12 GPa, respectively. Phase analysis by X-ray diffraction and scanning electron microscopy revealed the presence of alpha-SiAlON and beta-Si3N4.Este trabalho foi proposto com objetivo de analisar a possibilidade da substituição de Y2O3 por CeO2 sinterização via fase líquida de nitreto de silício (Si3N4, visando obter um material com boas propriedades físicas, mecânicas e microestruturais, além da redução de custos de produção desta cerâmica. Para o desenvolvimento deste trabalho foram preparadas duas misturas de pós, variando-se as proporções entre alfa-Si3N4, Al2O3, AlN, Y2O3 e CeO2. As misturas de pós foram homogeneizadas em etanol, secas em evaporador rotativo e estufa, respectivamente. Em seguida, prensadas uniaxialmente (100 MPa e isostaticamente a frio(300 MPa. As amostras foram sinterizadas à 1850 ºC durante 1 h, em forno com elemento resistivo de grafite sob atmosfera de nitrogênio. Após sinterização, as amostras apresentaram densidades relativas superiores a 97% do valor teórico. A tenacidade à fratura e a dureza foram superiores a 5,28 MPa.m½ e 17,12 GPa, respectivamente. As análises de fases por difração de raios X e microscopia eletrônica de

  2. Joining of Silicon Nitride Using Y2O3-Al2O3-SiO2 Mixtures%用Y2O3-Al2O3-SiO2钎料进行Si3N4的连接

    周飞; 陈铮; 李志章; 罗启富



  3. Study on Oxidation Resistance of ZrO2-Y2 O3 and A12 O3-TiO2 Coatings by Plasma Spraying on Copper Alloy%铜合金表面等离子喷涂ZrO2-Y2 O3和A12 O3-TiO2涂层的抗高温氧化性能

    柯德庆; 潘应君


    目的:对比研究ZrO2-Y2 O3和A12 O3-TiO2涂层的抗高温氧化性能。方法采用等离子喷涂工艺,以NiCrAl为粘接层,在铜合金基体表面分别制备ZrO2-Y2 O3和A12 O3-TiO2涂层,测试涂层的显微组织、元素种类及含量、显微硬度,并在相同条件下测试涂层的抗高温氧化性能。结果 ZrO2-Y2 O3和A12 O3-TiO2涂层都具有明显的层状结构,涂层结合紧密,内部孔洞细小,显微硬度分别为423HV 和628HV。这两种涂层都具有一定的抗高温氧化性能,NiCrAl粘结层是整个涂层最薄弱的环节。结论等离子喷涂ZrO2-Y2 O3涂层的抗高温氧化性能优于A12 O3-TiO2涂层。%Objective In order to study the oxidation resistance of ZrO2-Y2 O3 and A12 O3-TiO2 coatings, ZrO2-Y2 O3 and A12 O3-TiO2 coatings with NiCrAl bonding layer were successfully prepared by plasma spraying process. Methods The microstruc-tures, element types and levels and micro-hardness of the different coatings were studied by metallurgical microscopy, scanning e-lectron microscopy (SEM), energy dispersive spectrometer (EDS) and micro-hardness measurement. Oxidation resistance of all the specimens were tested under the same conditions. Results Both ZrO2-Y2 O3 and A12 O3-TiO2 coatings had a significant layer structure, good adhesion and low porosity. The micro-hardness of ZrO2-Y2 O3 and A12 O3-TiO2 coatings was 423HV and 628HV, respectively. Both ZrO2-Y2 O3 and A12 O3-TiO2 coatings had certain oxidation resistance. NiCrAl bonding layer was the weakest part of the whole coatings. Conclusion ZrO2-Y2 O3 coatings had better oxidation resistance than A12 O3-TiO2 coatings.

  4. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    Placek, L M; Keenan, T J; Wren, A W


    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  5. Effect of the Fourth Element on Bonding of Si3N4 Ceramics with Y2O3-A l2O3-SiO2 Glass Solders%第四组元对Y2O3-Al2O3-SiO2钎料连接氮化硅陶瓷的影响



    Y2O3-Al2O3-SiO2(YAS)钎料中添加TiO2(YT)和Si3N4(YN), 并进 行氮化硅陶瓷的连接。 用四点弯曲方法测定不同连接工艺下的连接强度, 并对连接界面进 行SEM, EPMA和XRD分析。 接头强度随着保温时间、 连接温度的增加, 而逐渐增加。 在 达到峰值后, 连接强度逐渐降低。 在YAS中添加TiO2, 可以形成Si3N4/Y-Sialon 玻璃+TiN/TiN/Y-Sialo玻璃的梯度层界面; 而在YAS钎料中添加Si3N4, 可以降低接 头界面的热应力, 改善接头强度。 微观分析表明: 接头强度的变化主要与界面反应有关 。%Bonding of Si3N4 ceramics was performed with Y2O3-Al2O3-SiO2(YAS )-X glass solders, which were mixed with TiO2 (YT) and Si3N4(YN) respe ctively. The effects of bonding conditions and interfacial reaction on the joint strength were studied. The joint strength of different bonding conditions was m easured by four-point bending tests. The interfacial microstructures were obser ved and analyzed by SEM, EPMA and XRD respectively. It is shown that with the in crease of bonding temperature and holding time, the joint strength increases rea ching a peak, and then decreases. When TiO2 is put into YAS solder, the bondi ng interface with Si3N4/Y-Sialon glass+TiN/TiN/Y-Sialo glass is formed. W hen YAS solder is mixed with Si3N4 powder, the interfacial thermal stress m ay be decreased, and the joint strength is enhanced. According to microanalyses , the bonding strength is related to interface reaction.

  6. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications

    Wang, Shunbin; Li, Chengzhi; Yao, Chuanfei; Jia, Shijie; Jia, Zhixu; Qin, Guanshi; Qin, Weiping


    Intense ∼1.2 μm fluorescence is observed in Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses under 915 nm laser diode excitation. The 1.2 μm emission can be ascribed to the transition 5I6→5I8 of Ho3+. With the introducing of BaF2, the content of OH in the glasses drops markedly, and the 1.2 μm emission intensity increases gradually as increasing the concentration percentage of BaF2. Furthermore, microstructured fibers based on the TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method, and a relative positive gain of ∼9.42 dB at 1175.3 nm is obtained in a 5 cm long fiber.

  7. Effect of CeO2, MgO and Y2O3 additions on the sinterability of a milled Si3N4 with 14.5 wt% SiO2

    Arias, A.


    The sinterability of alpha Si3N4 with 0-5.07 equivalent per cent of CeO2, MgO, or Y2O3 has been studied in the temperature range 1650-1820 C by density measurements and X-ray diffraction analysis. Maximum densities were obtained in the range 1765-1820 C and were 99.6% of theoretical with 2.5% CeO2; 98.5% of theoretical with 1.24 to 1.87% MgO, and 99.2% of theoretical with 2.5% Y2O3. Densities 94% or more of theoretical value were obtained with as little as 0.62 equivalent per cent additive.

  8. Tailoring red-green-blue emission from Er3+, Eu3+ and Tb3+ doped Y2O3 nanocrystals produced via PVA-assisted sol-gel route

    Sobral, G. A.; Gomes, M. A.; Avila, J. F. M.; Rodrigues, J. J.; Macedo, Z. S.; Hickmann, J. M.; Alencar, M. A. R. C.


    Y2O3 luminescent nanoparticles were synthesized via PVA-assisted sol-gel method and their structural and optical properties were investigated. Effects of rare earth (Er3+, Eu3+ and Tb3+) doping on luminescence properties of the produced nanophosphors have been investigated under NIR (800 nm) and UV (240-300 nm) excitation. Intense infrared to red and green emissions were observed and a weak blue upconverted luminescence was also detected. Moreover, it was observed that changing the doping ions, the color emitted by the samples could be modified and different combinations of UV excitation and doping produced effective white light emissions. The obtained results demonstrate that PVA-assisted sol-gel is an effective methodology for the synthesis of rare-earth doped Y2O3 nanophosphors.

  9. Core-shell-like Y2O3:[(Tb3+-Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion.

    Wu, Xiaojie; Zhang, Zhenzhong; Meng, Fanzhi; Yu, Yingning; Han, Lin; Liu, Xiaojuan; Meng, Jian


    Combination with semiconductors is a promising approach to the realization of broadband excitation of light conversion materials based on rare earth compounds, to boost the energy efficiency of silicon solar cells. Cd(1-x)Zn(x)S is a wide bandgap semiconductor with large exciton binding energy. By changing its composition, the bandgap of Cd(1-x)Zn(x)S can be tuned to match the absorption of trivalent lanthanide (Ln) ions, which makes it a competent energy donor for the Ln(3+)-Yb(3+) couple. In this work, we designed a clean route to a broadband down-converter based on a core-shell-like Y2O3:[(Tb(3+)-Yb(3+)), Li(+)]/Cd0.81Zn0.19S (CdZnS) heterostructure. By hot-pressing and subsequent annealing of a Y2O3:[(Tb(3+)-Yb(3+)), Li(+)]/CdZnS mixture, highly pure CdZnS was sublimated and deposited on the Y2O3:[(Tb(3+)-Yb(3+)), Li(+)] grains while maintaining the original composition of the precursor. The CdZnS shell acted as a light absorber and energy donor for the Tb(3+)-Yb(3+) quantum cutting couple. Because the use of solvents was avoided during the formation of the heterostructures, few impurities were incorporated into the samples, and the non-radiative transition was therefore markedly suppressed. The Y2O3:[(Tb(3+)-Yb(3+)), Li(+)]/CdZnS heterostructures possess strong near-infrared (NIR) luminescence from Yb(3+). Broadband down-conversion to the Yb(3+) NIR emission was obtained in a wide range of 250-650 nm.

  10. In situ synthesis and properties of self-reinforced Si$_3$N$_4$–SiO$_2$–Al$_2$O$_3$–Y$_2$O$_3$ (La$_2$O$_3$) glass–ceramic composites



    In-situ-grown $\\beta$-Si$_3$N$_4$-reinforced SiO$_2$–Al$_2$O$_3$–Y$_2$O$_3$ (La$_2$O$_3$) self-reinforced glass–ceramic composites were obtained without any $\\beta$-Si$_3$N$_4$ seed crystal. These composites with different compositions were prepared in a nitrogenatmosphere for comparison of phase transformation and mechanical properties. The results showed that SiO$_2$–Al$_2$O$_3$–Y$_2$O$_3$ (La$_2$O$_3$) glass can effectively promote $\\alpha$- to $\\beta$-Si$_3$N$_4$ phase transformation. The crystallized Y$_2$Si$_2$O$_7$–La$_{4.67}$Si$_3$O$_{13}$ phaseswith a high melting point significantly benefited the high-temperature mechanical properties of the composites. TheSi$_3$N$_4$–SiO$_2$–Al$_2$O$_3$–Y$_2$O$_3 $(La$_2$O$_3$) glass–ceramic composites exhibit excellent mechanical properties compared with unreinforcedglass–ceramic matrix, which is undoubtedly attributed to the elongated $\\beta$-Si$_3$N$_4$ grains. These glass–ceramic Si$_3$N$_4$ composites with excellent comprehensive properties might be a promising material for high-temperature applications.

  11. CF4 decomposition over solid ternary mixture NaF-Si-MO (MO =La2O3, CeO2, Pr6O11, Nd2O3, Y2O3)

    Yanfei Pan; Xianjun Niu; Yanan Wang; Xiufeng Xu


    A solid ternary mixture consisting of NaF,silicon and one metal oxide such as La2O3,CeO2,Pr6O11,Nd2O3,and Y2O3 was prepared and used as de-fluorinated reagent for CF4 decomposition.The results show that 90% conversion of CF4 can be reached initially over NaF-Si-La2O3,NaF-Si-CeO2,NaF-Si-Nd2O3,and NaF-Si-Y2O3 at 850 ℃.The fresh and used reagents were characterized using XRD and XPS techniques.It was found that the active components of NaF and metal oxides in NaF-Si-CeO2,NaF-Si-Pr6O11,NaF-Si-Nd2O3,and NaF-Si-Y2O3 were transformed into inert phases of mixed metal fluorides and silicates,respectively,resulting in an ineffective utilization of these de-fluorinated reagents,whereas no inert phases from NaF and La2O3 can be observed in the used NaF-Si-La2O3,indicating the NaF-Si-La2O3 reagent could be utilized more efficiently than the other reagents in CF4 decomposition.

  12. Thermal Conductivity and Stability of HfO2-Y2O3 and La2Zr2O7 Evaluated for 1650 Deg C Thermal/Environmental Barrier Coating Applications

    Zhu, Dong-Ming; Bansal, Narottam P.; Miller, Robert A.


    HfO2-Y2O3 and La2Zr2O7 are candidate thermal and environmental barrier coating (T/EBC) materials for gas turbine ceramic matrix composite (CMC) combustor applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature stability of hot-pressed and plasma sprayed specimens with representative partially-stabilized and fully-cubic HfO2-Y2O3 compositions and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasmasprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC hexoloy or SiC/SiC CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications are also discussed.

  13. Preparation of Y2O3 : Er3+ by Coprecipitation Method and Influence of Initial pH on the Luminescent Properties%Y2O3:Er3的共沉淀法制备和pH值对发光性质的影响

    王晓纯; 任博; 郭常新; 姜桂铖; 尹民


    采用共沉淀法,通过氨水调节沉淀剂碳酸氢铵的pH值,制备了一系列YO:1%Er样品.傅里叶变换红外光谱以及兀素分析表明,沉淀剂pH值在8.0~9.5之间变化时,前驱沉淀物化学结构基本不变;而X射线荧光潜仪分析与SEM形貌表征的结果表明,pH值改变时不仅会导致前驱沉淀物中Er含量的变化.而且使得煅烧后粉末颗粒的粒径及其分布发生改变.测量煅烧后粉末样晶的荧光光谱,结果显示,pH值变化引起的Er含最和颗粒粒径的变化,都会导致粉末样品发光性质产生差异.%Samples of Y2O3 : l%Er were prepared by coprecipitation method and the pH value of precipitant ammonium bicarbonate was adjusted by ammonia. Results of Fourier transform infrared spectra (FTIR) and elemental analysis showed that the chemical construction of precursors at pH range of 8. 0~9. 5 had little change. By X-ray fluorescence spectrometer (XRF) and scanning electron microscope (SEM) analysis, it was found that the pH value of precipitant had a significant impact on the content of erbium in precursor and it can influence particle size as well as its distribution of the products, both of which had important effects on the luminescent properties of the products.

  14. Mechanical properties and the microstructure of the plasma-sprayed ZrO2Y2O3 / ZrO2Y2O3CoNiCrAlY / CoNiCrAlY coating / Механические характеристики и микроструктура покрытий ZrO2Y2O3 / ZrO2Y2O3CoNiCrAlY / CoNiCrAlY, нанесенных воздушно-плазменным напылением / Mehaničke osobine i mikrostruktura plazma naprskane prevlake ZrO2Y2O3 / ZrO2Y2O3CoNiCrAIY/ CoNiCrAIY

    Mihailo R. Mrdak


    Full Text Available ZrO2 stabilized with Y2O3 has superior and excellent physical properties compared to other modern ceramic materials. Due to its high biocompatibility, ZrO2 ceramics in the ZrO2 - Y2O3 system is widely used as a biomaterial in orthopedic surgery. ZrO2 - Y2O3 ceramics is widely applied in the production of the head of the hip, knee prosthesis, temporary holders, and more. ZrO2 is used for a total hip replacement (THR, for an artificial knee joint as well as for the application and development of other medical devices. In order to use ZrO2Y2O3 ceramics (YSZ in biomedical substrates, it is necessary to deposit coating layers without defects. For the purpose of the deposition of a ZrO28wt.%Y2O3 ceramic coating with the best structural properties, the ZrO2Y2O3 / ZrO2Y2O3CoNiCrAlY / CoNiCrAlY coating system was tested. For financial reasons, the deposition was performed on a steel substrate by applying a CoNiCrAlY bond coating, which does not affect the structure and functionality of the ZrO2Y2O3 ceramic layer. The structure of the layers was tested by the method of light microscopy, and the surface of the upper ZrO28wt.%Y2O3 ceramic coating was tested by the method of scanning electron microscopy SEM. The obtained characteristics showed that the porosity content in the ceramic layer was not high and that micropores were uniformly distributed. The mechanical properties of the layers were assessed by testing microhardness using the method HV0.3 and tensile bond strength using tensile testing. The values of the microhardness of the ZrO28wt.%Y2O3 coating were satisfactory as well as the tensile bond strength of the coating system. / Керамика ZrO2 стабилизированная оксидом иттрия Y2O3 обладает наилучшими характеристиками по сравнению с иными современными керамическими материалами. Благодаря высокому

  15. Thermophysical Properties of Gd2 O3-Yb2 O3-Y2 O3-ZrO2 Thermal Barrier Coating Material%Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能

    李嘉; 谢铮; 何箐; 邹晗; 吕玉芬


    Objective To improve the performance of traditional ceramic thermal barrier coatings by rare earth oxides doping yt-tria stabilized zirconia ( YSZ) . Methods The Gd2 O3-Yb2 O3-Y2 O3-ZrO2( GYYZO) materials with various doped contents were pre-pared by co-precipitation, and the GYYZO bulk materials and coatings were prepared by cold isostatic pressing ( CIP) and plasma spraying( PS) , respectively. The thermal conductivity and thermal expansion coefficient tests of materials with different composi-tions were taken to analyze and evaluate the thermophysical properties of GYYZO materials. X-ray diffraction ( XRD) analysis of the coatings was conducted after high-temperature annealing treatment to evaluate the high temperature stability of coatings with dif-ferent compositions. Results The thermal conductivities and coefficient of thermal expansion ( CTEs) of zirconia based bulk materi-als decreased with the increasing doped content. The thermal conductivity of bulk GYYZO doped with 5. 5% ~9. 84% mole frac-tion of rare earth oxides at 1000 ℃ was 1. 25~1. 56 W/(m·K), which was reduced by 22% ~37. 5% as compared with that of bulk 8YSZ, and the CTEs was (10~11. 1) ×10-6/K, which was closed to that of the tradition 8YSZ materials. After long-term heat treatment at 1400℃, the content of monoclinic phase for GYYZO coating with low doped content was obviously lower than that of 8YSZ coating. Conclusion The multiple rare earth oxides doped YSZ has good high temperature phase stability, low thermal conductivity and suitable thermal expansion coefficient, and can be used as candidate ceramic materials for high-performance ther-mal barrier coatings.%目的:通过多元稀土氧化物掺杂改性YSZ,提高传统热障涂层的性能。方法使用化学共沉淀法制备不同掺杂量的Gd2 O3-Yb2 O3-Y2 O3-ZrO2( GYYZO)材料,并分别使用冷等静压-烧结和等离子喷涂工艺制备块材和涂层。通过测试块材的热导率和热膨胀系数,分析评价材

  16. Synthesis of Y2O3-ZrO2-SiO2 composite coatings on carbon fiber reinforced resin matrix composite by an electro-plasma process

    Zhang, Yuping; Lin, Xiang; Chen, Weiwei; Cheng, Huanwu; Wang, Lu


    In the present paper the Y2O3-ZrO2-SiO2 composite coating was successfully synthesized on carbon fiber reinforced resin matrix composite by an electro-plasma process. The deposition process, microstructures and oxidation resistance of the coatings with different SiO2 concentrations were systematically investigated. A relatively dense microstructure was observed for the Y2O3-ZrO2-SiO2 composite coating with the SiO2 concentration above 5 g/L. The coating exhibited very good oxidation resistance at 1273 K with the mass loss rate as low as ∼30 wt.%, compared to 100 wt.% of the substrate. The formation of the ceramic composites was discussed in detail based on the electrochemical mechanism and the deposition dynamics in order to explain the effect of the plasma discharge. We believe that the electro-plasma process will find wide applications in preparing ceramics and coatings in industries.

  17. Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging.

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping


    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small Cu(x)S nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-Cu(x)S composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached Cu(x)S nanoparticles and the enhanced chemotherapy promoted by the heat from the Cu(x)S-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.

  18. Spark Plasma Sintering of α/β Si3N4 Ceramics with MgO-Al2O3 and MgO-Y2O3 as Sintering Additives

    Yu, F. L.; Bai, Y.; Han, P. D.; Shi, Q. L.; Ni, S.; Wu, J. H.


    In the present work, the α/β Si3N4 ceramics were fabricated by spark plasma sintering (SPS) at 1400-1500 °C for 6 min with 3wt.%MgO + 5wt.%Al2O3 and 3wt.%MgO + 5wt.%Y2O3 as sintering additives. The results showed that the phase composition, microstructure and mechanical properties of α/β Si3N4 ceramics were highly dependent on the type of sintering additive. The incomplete phase transformation from α to β occurred in the presence of an oxynitride (Mg-Al(Y)-Si-O-N) liquid phase. Compared with MgO-Al2O3, MgO-Y2O3 can significantly improve the β conversion rate of as-sintered α/β Si3N4 ceramics. And the as-sintered ceramics using MgO + Al2O3 as sintering additives had higher mechanical properties.

  19. Synthesis of ZrO2-HfO2-Y2O3-Sc2O3 Nano-Particles by Sol-Gel Technique in Aqueous Solution of Alcohol


    Agglomeration-free nanosized ZrO2-HfO2-Y2O3-Sc2O3 composite powders were successfully synthesized by Sol-Gel technique in heated aqueous solution of alcohol, using analytically pure ZrOCl2·8H2O, HfOCl2·8H2O, Y(NO3)3·6H2O, and Sc2O3 as raw materials. The effect of synthesis condition on the size and dispersity of the composite powders was investigated by means of XRD, TEM, and TG-DSC techniques. The results showed that well-dispersed predecessor of ZrO2-HfO2-Y2O3-Sc2O3 composite nanopowders could be obtained. The optional condition: PEG6000 as dispersant was 1%, alcohol/H2O ratio was 5/1, metallic ion concentration in whole solution was 0.5 mol·L-1 and the pH value of the solution was 12. After calcined at 620 ℃, the powder obtained was in uniform cubic structure, and its average particle size was about 13 nm, which was good for producing nanocrystalline solid electrolyte.

  20. Separation of Red(Y_2O_3:Eu~(3+)),Blue(BaMgAl_(10)O_(17):Eu~(2+))and Green(CeMgAl_(10)O_(17):Tb)Rare Earth Phosphors by Liquid/Liquid Extraction

    MEI Guangjun; RAO Peng; Mitsuaki Matsuda; Toyohisa Fujita


    A novel process for separation of red(Y_2O_3:Eu~(3+)),blue(BaMgAl_(10)O_(17):Eu~(2+))and green(CeMgAl_(10)O_(17):Tb~3)rare earth fluorescent powders was proposed.At first,the blue powder can be extracted selectively from an aqueous solution using a chelating collector 2-thenoyltrifluoroacetone (TTA)dissolved in heptane at alkaline pH condition,then,chloroform was used for extracting the green powder into organic phase.The red phosphor remains in aqueous phase with potassium sodium tartrate depressant(PST).Therefore,three phosphors can be separated successfully from their artificial mixtures by liquid/liquid extraction,and grades and recovery of separated products reach respectively as follows:red is 96.9%and 95.2%,blue is 82.7%and 98.8%,green is 94.6%and 82.6%.

  1. Role of Y4Al2O9 in High Temperature Oxidation Resistance of NiCoCrAlY-ZrO2·Y2O3 Coatings


    NiCoCrAlY-ZrO2·Y2O3 coatings were deposited on the substrates by using a technology of combining electron,atom and ion beams (three beams). Isothermal oxidation for these samples was performed at 1100℃ for 100-300 h. The results show that a thermally grown oxide (TGO) layer was formed between NiCoCrAlY layer and oxidation. The TGO contains α-Al2O3 and Y4Al2O9 etc. oxides. The intensity ratio of α-Al2O3/Y4Al2O9 was monotonously decreased with increasing oxidation time based on XRD (X-ray diffraction) analysis. The Y4Al2O9 phase plays the most important role in high temperature oxidation resistance at 1100℃. The related mechanism was also discussed.

  2. Influence of ZrO2-Y2O3 and ZrO2-CaO coatings on microstructural and mechanical properties on Mg-1,3Ca- 5,5Zr biodegradable alloy

    Istrate, B.; Munteanu, C.; Matei, MN; Oprisan, B.; Chicet, D.; Earar, K.


    Zirconia (ZrO2) as a ceramic biomaterial facilitates the osteoconductivity in new bone formation around implant. In order to improve the degradation and the surface properties, it is necessary to apply a surface film to satisfy multiple clinical requirements such as mechanical strength, biocompatibility, and degradation rate. Therefore, surface changing to form a tenacious, biocompatible and corrosion resistant modified layer has become a necessary study in biodegradable materials. The aim of the study is to observe the morphology, structural and scratch analysis for some coatings of ZrO2-CaO and ZrO2-Y2O3 having similar thickness deposited with an atmospheric plasma spraying facility, Sulzer Metco 9MCE, using scanning electron microscopy and X-Ray diffraction. Some mechanical aspects were highlighted during the scratch test. Comparative scratch tests were carried out to study the bonding properties between the coatings and the substrates.

  3. Study of superconducting a-axis oriented YBa 2Cu 3O 7-δ thin films deposited on Y 2O 3/YSZ/Si with PrBa 2Cu 3O 7-δ seed layer

    Rosova, Alica; Chromik, Stefan; Benacka, Stefan; Wuyts, Bart


    Epitaxial a-axis oriented YBa 2Cu 3O 7-δ (YBCO) superconducting thin films have been grown by off-axis magnetron sputtering on Y 2O 3/YSZ/Si substrates with PrBa 2Cu 3O 7-δ (PBCO) seed layer. The YBCO thin films were deposited immediately after the on-axis magnetron sputtering of PBCO. XRD analyses show that the a-axis volume fraction for 120 nm thick YBCO films varies with substrate temperature during PBCO deposition and its maximum value is higher than 98%. The TEM study shows the clear dependence between the character of the R- T dependence and the microstructure of our YBCO thin films, which varies with the change of the volume ratio of a-axis to c-maxis oriented YBCO.

  4. The effects of energy transfer on the Er3+ 1.54 μm luminescence in nanostructured Y2O3 thin films with heterogeneously distributed Yb3+ and Er3+ codopants

    Hoang, J.; Schwartz, Robert N.; Wang, Kang L.; Chang, J. P.


    We report the effects of heterogeneous Yb3+ and Er3+ codoping in Y2O3 thin films on the 1535 nm luminescence. Yb3+:Er3+:Y2O3 thin films were deposited using sequential radical enhanced atomic layer deposition. The Yb3+ energy transfer was investigated for indirect and direct excitation of the Yb 2F7/2 state using 488 nm and 976 nm sources, respectively, and the trends were described in terms of Forster and Dexter's resonant energy transfer theory and a macroscopic rate equation formalism. The addition of 11 at. % Yb resulted in an increase in the effective Er3+ photoluminescence (PL) yield at 1535 nm by a factor of 14 and 42 under 488 nm and 976 nm excitations, respectively. As the Er2O3 local thickness was increased to greater than 1.1 Å, PL quenching occurred due to strong local Er3+ ↔ Er3+ excitation migration leading to impurity quenching centers. In contrast, an increase in the local Yb2O3 thickness generally resulted in an increase in the effective Er3+ PL yield, except when the Er2O3 and Yb2O3 layers were separated by more than 2.3 Å or were adjacent, where weak Yb3+ ↔ Er3+ coupling or strong Yb3+ ↔ Yb3+ interlayer migration occurred, respectively. Finally, it is suggested that enhanced luminescence at steady state was observed under 488 nm excitation as a result of Er3+ → Yb3+ energy back transfer coupled with strong Yb3+ ↔ Yb3+ energy migration.

  5. Phase composition, structure and properties of (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution crystals (x=0.08-0.11; y=0.01-0.02) grown by directional crystallization of the melt

    Borik, M. A.; Bredikhin, S. I.; Bublik, V. T.; Kulebyakin, A. V.; Kuritsyna, I. E.; Lomonova, E. E.; Milovich, F. O.; Myzina, V. A.; Osiko, V. V.; Ryabochkina, P. A.; Seryakov, S. V.; Tabachkova, N. Yu.


    For the first time crystals of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solutions (x=0.08-0.11; y=0.01-0.02) have been grown by directional melt crystallization. We have determined the range of melt compositions for which growth from the melt produces of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution single crystals. The single-phase optically transparent single crystals following composition were grown: (ZrO2)0.9(Sc2O3)0.08(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.09(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01; (ZrO2)0.88(Sc2O3)0.10(Y2O3)0.02. Comprehensive study of the crystal structure by using XRD, transmission electron microscopy, and Raman spectroscopy revealed that the all single crystals, which is identified by XRD data as cubic one, in fact have t″ tetragonal structure, which forms by small displacement of oxygen ions along the c-axis. Data on the phase stability of the crystals during mechanical crushing were obtained. The electrical conductivity was measured as a function of temperature by electrochemical impedance spectroscopy. It is established that (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01 crystals have the highest conductivity (0.168 S/cm at 1173 K).

  6. Thermal Fatigue Testing of ZrO2-Y2O3 Thermal Barrier Coating Systems using a High Power CO2 Laser

    Zhu, Dongming; Miller, Robert A.


    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure, under thermal loads that simulate diesel engine conditions, are investigated. The surface cracks initiate early and grow continuously under thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N*(sub NCF), which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 microns/LCF cycle for a pure LCF test to 2.8 microns/LCF cycle for a combined LCF and HCF test at N*(sub NCF) about 20,000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that HCF damage effect increases with increasing surface temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as with the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  7. Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2(Y2O3 por fusión zonal con láser

    Peña, J. I.


    Full Text Available In this work a study of the floating zone during the growth of bars of Al2O3-ZrO2(Y2O3 by the laser floating zone technique is presented. The axial thermal gradient in the solidification interface has been calculated and compared with the experimental one of 6.5*105 K/m. For this calculation the coefficients of heat transference during the solidification process have been determined. The floating zone profile has been also studied and the maximum stable length for the zone determined, verifying the stability criterion established by some authors. The study is completed with an estimation of the laser power necessary to carry out the growth. This value is compared with the measured one during the growth of 2 mm diameter bars.En este trabajo se presenta un estudio de la zona flotante durante el crecimiento de barras de Al2O3-ZrO2 (Y2O3 por la técnica de fusión zonal por láser. Se ha calculado el gradiente térmico axial existente en la intercara de solidificación y comparado con el que se ha medido de forma experimental, siendo éste de 6,5*105 K/m. Para este cálculo se han determinado los coeficientes de transferencia de calor durante el proceso de resolidificación. También se ha estudiado el perfil de la zona flotante y analizado el rango de estabilidad en términos de longitud máxima de zona, verificándose experimentalmente los límites teóricos establecidos por algunos autores. El estudio se completa con una estimación de la potencia necesaria para llevar a cabo el crecimiento confirmando su validez para el caso particular de cilindros de 2 mm de diámetro.

  8. Preparation of Uniform Y2O3 Hollow Spheres by Using Melamine-formaldehyde Microspheres as Templates%以三聚氰胺-甲醛微球为模板制备均一氧化钇空心球

    江学良; 孙刚; 张姣; 余露; 徐雄; 周亮吉


    Monodispersed MF microspheres were fabricated by melamine formaldehyde polycondensation crosslinking process in aqueous solution,the core-shell structure precursor was prepared by a urea-based homogeneous precipitation technique with MF microspheres as templates,and Y2 O3 hollow microspheres were obtained by calcination to remove tempaltes.The morphology and structure of Y2 O3 hollow microspheres were characterized by Fourier transform infrared spectroscopy (FT-IR),scanning electron microscopy (SEM),transmission electron microscopy (TEM),X-ray diffraction analysis (XRD),X-ray energy dispersive spectroscopy (XPS),thermal gravimetric analysis (TG) and differential scanning calorimetry (DSC).The results show that the MF templates can be effectively removed and the amorphous precursor has converted to crystalline Y2O3 during the annealing progress.Y2O3 hollow spheres were generated with particle size of about 1.7 μm and the shell thickness of 100 nm.%利用三聚氰胺和甲醛在水溶液中缩聚交联生成的单分散三聚氰胺-甲醛(MF)微球为模板,尿素为沉淀剂,通过均相沉淀法制备出核壳结构前驱体,煅烧除去模板,得到氧化钇(Y2O3)空心球.通过傅立叶红外光谱(FT-IR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)、X射线衍射分析(XRD)、X射线能谱仪(XPS)、热重分析(TG)和差示扫描量热分析(DSC)对Y2 O3空心球的形貌与结构组成进行表征.结果表明,经煅烧后,MF模板可被有效去除,无定形的前驱体转变成结晶的Y2O3,生成粒径约1.7.μm、壳层厚度为100 nm的Y2O3空心球.

  9. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu


    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  10. Análisis de la adhesión de recubrimientos del sistema Y2O3-Al2O3-SiO2 sobre sustratos de interés para la industria aeroespacial

    Cinta Marraco-Borderas


    Full Text Available En la industria aeroespacial se necesitan materiales ligeros que tengan unas altas prestaciones mecánicas combinadas con una baja densidad. El carburo de silicio, el carbono reforzado con fibra de carbono y el carburo de silicio reforzado con fibra de carbono son materiales que cumplen con estos requisitos, pero a altas temperaturas presentan problemas de oxidación. Una de las formas más efectivas de prevenir este fenómeno es la utilización de recubrimientos cerámicos, cuya correcta adhesión sobre los distintos sustratos es fundamental para garantizar su funcionamiento. En el caso del presente trabajo, se analiza la adhesión de recubrimientos vítreos del sistema Y2O3-Al2O3-SiO2 obtenidos mediante proyección térmica por llama oxiacetilénica. Para ello, se realizan ensayos de rayado a carga creciente analizando el tipo y la carga de fallo y su relación con las propiedades elásticas y mecánicas de los recubrimientos. Los resultados indican que la adhesión sobre los sustratos carburo de silicio y carburo de silicio reforzado con fibra de carbono es buena, mientras que el carbono reforzado con fibra de carbono no es un material adecuado para recubrir.

  11. Effect of heat-treatment on phase formation and crystallization of sol–gel derived Al2O3, ZrO2–Y2O3, and Ta2O5 oxide coatings

    Yang-Il Jung


    Full Text Available Various oxides of Al2O3, ZrO2–Y2O3, and Ta2O5 were coated on ferritic–martensitic steel for application as an environmental barrier layer. Sol–gel based coating was investigated to form the oxides by varying the coating parameters, such as the concentration of the precursors, the temperature of the curing, cycles of repeated runs, and additional heat-treatment. The obtained coatings revealed nano-sized granular structures. The surface morphologies were rough in alumina and zirconia, but appeared smooth in tantalum oxide. In the case of alumina and tantalum oxide, coated layers were mostly amorphous after pyrolysis at 750 °C. The crystalline phases were obtained after an additional heat-treatment at 950 °C. In the case of zirconia, a desirable oxide phase was formed when the samples were cured at 750 °C during the coating process. In addition to the heat-treatment after the coating, the repeated coatings were effective in crystallizing the coated layers and forming proper oxides.

  12. Isothermal and athermal type martensitic transformations in yttria doped zirconia%添加Y2O3的ZrO2的等温和变温马氏体相变



    The phase transformation from the high temperature tetragonal phase to the low temperature monoclinic phase of zirconia had been long considered to be a typical athermal martensitic transformation until it was recently identified to be a fast isothermal transformation. The isothermal nature becomes more apparent when a stabilizing oxide, such as yttria, is doped, by which the transformation temperature is reduced and accordingly the transformation rate becomes low.Thus it becomes easy to experimentally establish a C-curve nature in a TTT (Time-Temperature-Transformation) diagram. The C-curve approaches that of well known isothermal transformation of Y-TZP (Yttria Doped Tetragonal Zirconia Polycrystals), which typically contains 3mol% of Y2O3.In principle, an isothermal transformation can be suppressed by a rapid cooling so that the cooling curve avoids intersecting the C-curve in TTT diagram. Y-TZP is the case, where the stability of the metastable tetragonal phase is relatively high and thus the tetragonal phase persists even at the liquid nitrogen temperature. On the other hand, the high temperature tetragonal phase of pure zirconia can never be quenched-in at room temperature by a rapid cooling; instead it always turns into monoclinic phase at room temperature. This suggests the occurrence of an athermal transformation after escaping the isothermal transformation, provided the cooling rate was fast enough to suppress the isothermal transformation. Thus, with an intermediate yttria composition, it would be possible to obtain the tetragonal phase which is not only metastable at room temperature but athermally transforms into the monoclinic phase by subzero cooling.The objective of the present work is to show that, with a certain range of yttria content, the tetragonal phase can be quenched in at room temperature and undergoes isothermal transformation and athermal transformation depending on being heated at a moderate temperature or under-cooled below room

  13. Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2

    Wisniewski, Wolfgang; Seidel, Sabrina; Patzig, Christian; Rüssel, Christian


    The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition Y2Si2O7 (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO2 (Y-ZrO2) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less Y2O3. An epitaxial relationship between Y-ZrO2 and ε-YS is proven and multiple twinning relationships occur in the YS phases.

  14. Nd:Y 2O 3 nanopowders for laser ceramics

    Kopylov, Yu. L.; Kravchenko, V. B.; Komarov, A. A.; Lebedeva, Z. M.; Shemet, V. V.


    Nanopowders of Nd-doped yttrium oxide were obtained by chemical co-precipitation method using nitrate salts solutions and different precipitant agents - urea, ammonium carbonate and oxalic acid. Precursor and oxide particles agglomeration, particle form, particle size and specific surface area depend critically upon experimental conditions. Plates and rods were formed with hydroxycarbonate and oxalates precipitation correspondingly, whereas hydroxynitrates gave more uniform spherical particles' shapes. Calcination at 900-1200 °C gave oxide powders with specific area in the range 15-50 m 2/g. High energy ball milling was used to decrease grain agglomeration. Powders with around 100 nm size were used to prepare pellets by slip casting into porous moulds using PMMA or PAA additives to reduce viscosity of the slurries with high powder contents. The pellets density around 0.48-0.52 of the theoretical value was obtained. Vacuum sintering of the pellets at 1700-1800 °C gave transparent ceramic samples with grain size between 10 and 50 μm. The most serious defects in the ceramics are closed pores which reduce their transparency.

  15. Thermal properties of plasma-sprayed yttria-stabilized zirconia thermal barrier coating on Ti-6Al-4V alloy analyzed by scanning thermal microscopy%钛合金表面等离子喷涂Y2O3稳定的ZrO2涂层的 扫描热显微镜分析

    郭富安; 纪艳丽; N.Trannoy



  16. Stability and performance of robust dual-phase (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-Al0.02Zn0.98O1.01 oxygen transport membranes 

    Pirou, Stéven; Bermudez, Jose M.; Hendriksen, Peter Vang


    Dual-phase composite oxygen transport membranes consisting of 50 vol% Al0.02Zn0.98O1.01 and 50 vol% (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10 were successfully developed and tested. The applicability of the membrane in oxy-fuel power plants schemes involving direct exposure to flue gas was evaluated...... (ATR-FTIR), and Raman spectroscopy revealed excellent stability. Additionally, an electrical conductivity measurement over 900 h confirmed that the composite is stable under prolonged exposure to CO2. However, an instability of the dual-phase membrane under oxygen partial pressures below ~10−4 atm....... was found. Oxygen permeation tests on a 1 mm thick self-standing membrane resulted in an oxygen flux of 0.33 mLN min−1 cm−2 at 925 °C in air/N2. Stability tests in CO2 with 3 vol% O2 demonstrated the potential for the use of 10Sc1YSZ-AZO dual-phase membranes in oxy-combustion processes involving direct...

  17. Study on Properties of Plasma Sprayed NiCrAl + (ZrO2 +Y2O3 )Coating On Refractory Steel Surface%耐热钢表面等离子喷涂热障涂层性能研究

    陈飞; 周海; 吕涛; 丁华东



  18. Separation of Red(Y_2O_3:Eu~(3+)),Blue(Sr,Ca,Ba)_(10)(PO_4)_6Cl_2:Eu~(2+)and Green(LaPO_4:Tb~(3+),Ce~(3+))Rare Earth Phosphors by Liquid/Liquid Extraction

    MEI Guangjun; RAO Peng; MITSUAKI Matsuda; TOYOHISA Fujita


    A novel process for separation of red(Y_2O_3:Eu~(3+)),blue(Sr,Ca,Ba)_(10)(PO_4)_6Cl_2:Eu~(2+) and green(LaPO_4:Tb~(3+),Ce~(3+) )fine tricolor phosphor powders was established.First,the green phosphor was extracted and separated from three phosphor mixtures in heptane/DMF(N,N-Dimethylformamide)system using stearylamine or laurylamine(DDA)as the cationic surfactant.Then,after being treated with 99.5%ethanol,the blue and red phosphors could be separated in Heptane/DMF system in presence of 1-octanesulfonic acid sodium salt as the anionic surfactant.Satisfactory separation results have been achieved through two steps extractions with their artificial mixtures.The grades and recovery of separated products reached respectively as follows:red product was 95.3%and 90.9%,blue product was 90.0%and 95.2%,and green product was 92.2%and 91.8%.

  19. Effects of bond coat and top coat (including nano zones) structures on morphology and type of formed transient stage oxides at pre-heat treated nano NiCrAlY/nano ZrO2-8%Y2O3 interface during oxidation

    Mohammadreza Daroonparvar


    Bond coat geometry is able to significantly influence thermally grown oxide (TGO) layer formation and growth in thermal barrier coating systems at the onset of oxidation. Moreover, nanostructured yttria stabilized zirconia coating with three model struc-ture (including nano zones) could reduce oxygen partial pressure to the formation pressure of continues alumina oxide scale which was able to protect the substrate from extra oxidation and corrosion. Thus, nano NiCrAlY/nano YSZ and normal NiCrAlY/nano YSZ coatings were prepared by air plasma spray method and then evaluated by high temperature oxidation test at 1000 °C for 160 h. As-sprayed samples were also pre-oxidized at 1000 °C for 48 h and then examined by electrochemical polarization test. The corrosion rate of the pre-oxidized nano NiCrAlY/nano YSZ coating was estimated to be the lowest compared to that of the other samples. It might be related to the formation of continues alumina layer on the nano NiCrAlY at the onset of oxidation. This continuous layer could reduce the penetration of the aggressive solution into the NiCrAlY coating and acted as a protective layer (with the lowest an-odic current density). This layer also lessened TGO growth rate at the stages II and III of the growth.

  20. Structure and Properties of the Fe/Y2O3 Interface from First Principles Calculations

    Choudhury, Samrat [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory


    Fundamentals of radiation damage are: (1) Formation of Frenkel pair (interstitial-vacancy pair) defects in the lattice; (2) Concentration of Frenkel pair defects >>> thermal equilibrium thermodynamic concentration; and (3) The radiation damage response of a material is determined by the fate of these excess Frenkel pair defects in the lattice. The objective is to understand the electronic and atomic structure of Fe/Y{sub 2}O{sub 3} interface and segregation behavior of the alloying elements at the interface. The significance of the results of this report are: (1) Provides a science based approach to design new radiation resistant materials. Obtained two controlling parameters - Dislocation density (composition, orientation relationship) and Oxygen partial pressure; (2) Applicable to any other metal/oxide interfaces (both functional and structural properties at the interface) - (a) Nano Catalysts: Oxide-supported metal catalysts Ni/ZrO{sub 2}, (b) Thermal barrier coatings (Ni/Al{sub 2}O{sub 3}), (c) Corrosion of metals and alloys.

  1. Processing Studies for Optically Transparent La(2)O(3)-Doped Y(2)O(3).


    291 (x), February "f, 1967. 28. G. D. Miles , R. A. J. Sambell, J. Rutherford, and G. W. Stephenson, "Fabrication of Fully Dense Transparent...Rice Code 3854 W. R. Grace Co. Naval Weapons Center 7379 Route 32 Chi-i Lake, CA 93555 Columbia. MD 210&4 Dr. T. A. Hewston Mr. D. Roy Code 3854

  2. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Pošarac Milica; Devečerski A.; Volkov-Husović T.; Matović B.; Minić D.M.


    The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4) obtained by the modified glycine nitrate procedure (MGNP). Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase...

  3. The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel

    Pošarac Milica


    Full Text Available The effect of yttria additive on the thermal shock behavior of magnesium aluminate spinel has been investigated. As a starting material we used spinel (MgAl2O4 obtained by the modified glycine nitrate procedure (MGNP. Sintered products were characterized in terms of phase analysis, densities, thermal shock, monitoring the damaged surface area in the refractory specimen during thermal shock and ultrasonic determination of the Dynamic Young modulus of elasticity. It was found that a new phase between yttria and alumina is formed, which improved thermal shock properties of the spinel refractories. Also densification of samples is enhanced by yttria addition.

  4. Strain localization in compressed ZrO2(Y2O3) ceramics

    Barannikova, S. A.; Buyakova, S. P.; Zuev, L. B.; Kul'Kov, S. N.


    Spatiotemporal distributions of local components of the distortion tensor of a nonplastic material—yttria partially stabilized tetragonal zirconia (YTZ) ceramics—have been studied under active compressive straining conditions using double-exposure speckle photography techniques. The strain localization patterns are presented and the features of macroscopic strain inhomogeneity in the elastic state of YTZ ceramics are considered.

  5. Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation

    Tan, Xiaoyue; Luo, Laima; Chen, Hongyu; Zhu, Xiaoyong; Zan, Xiang; Luo, Guangnan; Chen, Junling; Li, Ping; Cheng, Jigui; Liu, Dongping; Wu, Yucheng


    ...). Polycrystallization and amorphization were also observed in the irradiation damage layer. The W materials tended to exhibit lattice distortion, amorphization, polycrystallization and phase transformation under He-ion irradiation...

  6. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert Journal subnav -->var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("Online Submission","",""),new Array("","","x"));writeJournalLinks("", "40001185");Journal subnav -->journal info area -->journal info area --> Previous Issue | Next Issue >Volume 241, Issue13 (November 2004)Articles in the Current Issue:Rapid Research NoteStrong Eu emission of annealed Y2O3:Eu nanotube and nano-sized crystals

    Sekita, Masami; Iwanaga, Kenichi; Hamasuna, Tomomi; Mohri, Shinji; Uota, Masafumi; Yada, Mitsunori; Kijima, Tsuyoshi


    We have observed a drastic increase of the Eu3+ emission intensity by annealing nanotubes and nano-sized hexagonal-mesostructured crystals of the Y2O3:Eu system together with bulk samples. It is found that there are three Eu3+ sites in all samples. Stark splitting schemes are proposed for the three homogeneous sites.

  7. Activated sintering of ThO2 and ThO2-Y2O3 with NiO.

    Halbfinger, G. P.; Kolodney, M.


    Scanning electron microscopy and isothermal shrinkage measurements were used to study the effects of additives on the sintering of Thoria-Yttria compacts and loose powders. Small amounts of the oxides of Ni, Zn, Co, and Cu were found to reduce the sintering temperature (which is normally above 2000 C). In particular, NiO, at a concentration of 0.8 wt %, was found to yield high-density bodies at temperatures below 1500 C. Densification occurs very rapidly, and is followed by a much slower sintering process typical of volume diffusion.

  8. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K


    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  9. Photoluminescence and attenuation of spray-pyrolysis deposited erbium-doped Y2O3 planar optical waveguides

    Hoekstra, T.H.; Hoekstra, T.H.; Hilderink, L.T.H.; Lambeck, Paul; Popma, T.J.A.


    Erbium-doped Y20 3 planar optical waveguides have been fabricated by spray-pyrolysis deposition. The attenuation spectrum of the waveguide shows peaks that are due to absorption of the erbium ions. The as-deposited layers also show photoluminescence sharply peaking at 1540 nm with additional Stark

  10. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.


    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer-Emmett-Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra.

  11. Single-Crystal Y2O3 Epitaxially on GaAs(001 and (111 Using Atomic Layer Deposition

    Y. H. Lin


    Full Text Available Single-crystal atomic-layer-deposited (ALD Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE GaAs(001-4 \\(\\times\\ 6 and GaAs(111A-2 \\(\\times\\ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using \\textit{in-situ} reflection high-energy electron diffraction in our uniquely designed MBE/ALD multi-chamber system. More detailed studies on the crystallography of the hetero-structures were carried out using high-resolution synchrotron radiation X-ray diffraction. When deposited on GaAs(001, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are of a cubic phase and have (110 as the film normal, with the orientation relationship being determined: Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(110\\[\\(001\\][\\(\\overline{1}10\\]//GaAs(\\(001\\[\\(110\\][\\(1\\overline{1}0\\]. On GaAs(\\(111\\A, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are also of a cubic phase with (\\(111\\ as the film normal, having the orientation relationship of Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(111\\[\\(2\\overline{1}\\overline{1}\\] [\\(01\\overline{1}\\]//GaAs (\\(111\\ [\\(\\overline{2}11\\][\\(0\\overline{1}1\\]. The relevant orientation for the present/future integrated circuit platform is (\\(001\\. The ALD-Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\/GaAs(\\(001\\-4 \\(\\times\\ 6 has shown excellent electrical properties. These include small frequency dispersion in the capacitance-voltage CV curves at accumulation of ~7% and ~14% for the respective p- and n-type samples with the measured frequencies of 1 MHz to 100 Hz. The interfacial trap density (Dit is low of ~10\\(^{12}\\ cm\\(^{−2}\\eV\\(^{−1}\\ as extracted from measured quasi-static CVs. The frequency dispersion at accumulation and the D\\(_{it}\\ are the lowest ever achieved among all the ALD-oxides on GaAs(\\(001\\.

  12. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys

    Unocic, Kinga A.; Hoelzer, David T.


    The Dual Coolant Lead Lithium (DCLL: eutectic Pb-17Li and He) blanket concept requires improved Pb-17Li compatibility with ferritic steels in order to demonstrate acceptable performance in fusion reactors. As an initial step, static Pb-17at.%Li (Pb-17Li) capsule experiments were conducted on new oxide dispersion strengthened (ODS) FeCrAl alloys ((1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), (3) Y2O3 + HfO2 (125YH), and (4) Y2O3 + TiO2 (125YT)) produced at ORNL via mechanical alloying (MA). Tests were conducted in static Pb-17Li for 1000 h at 700 °C. Alloys showed promising compatibility with Pb-17Li with small mass change after testing for 125YZ, 125YH and 125YT, while the 125Y alloy experienced the highest mass loss associated with some oxide spallation and subsequent alloy dissolution. X-ray diffraction methods identified the surface reaction product as LiAlO2 on all four alloys. A small decrease (∼1 at.%) in Al content beneath the oxide scale was observed in all four ODS alloys, which extended 60 μm beneath the oxide/metal interface. This indicates improvements in alloy dissolution by decreasing the amount of Al loss from the alloy. Scales formed on 125YZ, 125YH and 125YT were examined via scanning transmission electron microscopy (S/TEM) and revealed incorporation of Zr-, Hf-, and Ti-rich precipitates within the LiAlO2 product, respectively. This indicates an inward scale growth mechanism. Future work in flowing Pb-17Li is needed to further evaluate the effectiveness of this strategy in a test blanket module.

  13. Calculating models on surface tension of RE2O3-MgO-SiO2 (RE=La, Nd, Sm, Gd and Y) melts%RE2O3-MgO-SiO2(RE=La,Nd,Sm,Gd和Y)熔体表面张力的计算模型

    吴铖川; 成国光


    基于熔体组元离子半径和Butler方程,建立RE2O3−MgO−SiO2(RE=La,Nd,Sm,Gd和Y)熔体表面张力热力学计算模型。本模型利用纯组元的表面张力和摩尔体积以及熔体中各组元阳离子和阴离子半径可以获得E2O3−MgO−SiO2熔体表面张力随熔渣成分和温度的变化规律。计算1873 K La2O3−MgO−SiO2熔体等表面张力线并研究熔体成分对表面张力的影响。1873 K的纯组元La2O3,Gd2O3,Nd2O3和Y2O3的表面张力通过本模型计算分别为686、677、664和541 mN/m。除了Y2O3外,纯稀土氧化物的表面张力随其阳离子磁场强度增加而呈线性减小,而Y2O3的表面张力相对减小更多。表面张力的计算结果与文献数据一致,1873 K本模型平均偏差为1.05%。%A thermodynamic model was developed for determining the surface tension of RE2O3−MgO−SiO2 (RE=La, Nd, Sm, Gd and Y) melts considering the ionic radii of the components and Butler’s equation. The temperature and composition dependence of the surface tensions in molten RE2O3−MgO−SiO2 slag systems was reproduced by the present model using surface tensions and molar volumes of pure oxides, as well as the anionic and cationic radii of the melt components. The iso-surface tension lines of La2O3−MgO−SiO2 slag melt at 1873 K were calculated and the effects of slag composition on the surface tension were also investigated. The surface tensions of La2O3, Gd2O3, Nd2O3 and Y2O3 at 1873 K were evaluated as 686, 677, 664 and 541 mN/m, respectively. The surface tension of pure rare earth oxide melts linearly decreases with increasing cationic field strength, except for Y2O3 oxide, while Y2O3 has a much weaker surface tension. The evaluated results of the surface tension show good agreements with literature data, and the mean deviation of the present model is found to be 1.05% at 1873 K.

  14. [The enhancement of 1.5 microm near infrared luminescence in Er3+ and Yb3+ codoped Y2O3 nanocrystalline].

    Meng, Qing-Yu; Chen, Bao-Jiu; Lü, Shu-Chen; Sun, Jiang-Ting; Qu, Xiu-Rong


    Y0.96 Er0.02 Yb0.02)O3 nanocrystals of 10 and 40 nm average particle size were prepared by combustion method. And bulk materials of the same components were obtained by annealing at 1 200 degrees C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, transmission electron microscope (TEM), and scanning electron microscopy (SEM) were used to characterize the crystal structure and morphology of the samples. The upconversion emission spectra and NIR (near-infrared) emission spectra were measured, under 980 nm excitation. The research result indicates that as the particle size decreases, the upconversion red emission and NIR emission components increase in the emission spectra. This phenomenon is attributed to the large ratio of surface area to volume in nanocrystals. This characteristic makes the nanocrystals absorb more OH-, whose vibrational energy is 3 200-3 800 cm(-1). The increase in the OH- number enhances the rate of nonradiative relaxation from Er3+ 4I11/2 to 4I13/2 energy level (energy gap is 3 600 cm(-1)). This nonradiative relaxation process depopulates the 4I11/2 level and makes the green emission weaker. Meanwhile, this process populates the 4I3/2 level and makes the red and NIR emissions stronger. The intensity of 1.5 microm main peak is 1.6 times that of bulk materials. This result has great significance in actual applications of nanophosphors.

  15. Optimization of photoluminescence of Y(2)O(3):Eu and Gd(2)O(3):Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes.

    Antic, B; Rogan, J; Kremenovic, A; Nikolic, A S; Vucinic-Vasic, M; Bozanic, D K; Goya, G F; Colomban, P H


    Spherical shaped nanoparticles of series Y(2 - x)Eu(x)O(3) (x = 0.06, 0.10, 0.20, and 2) and Gd(2 - x)Eu(x)O(3) (x = 0.06, 0.10) were prepared by thermolysis of 2,4-pentanedione complexes of Y, Gd, and Eu. The bixbyite phase of Gd(2 - x)Eu(x)O(3) samples was formed at 500 degrees C, whereas the thermal decomposition of Y and Eu complexes' mixtures occurred at higher temperatures. Linearity in the concentration dependence on lattice parameter confirmed the formation of solid solutions. The distribution of Eu(3+) in Gd(2 - x)Eu(x)O(3) was changed with thermal annealing: in the as-prepared sample (x = 0.10) the distribution was preferential at C(3i) sites while in the annealed samples, Eu(3+) were distributed at both C(2) and C(3i) sites. Rietveld refinement of site occupancies as well as emission spectra showed a random distribution of cations in Y(2 - x)Eu(x)O(3). The photoluminescence (PL) measurements of the sample showed red emission with the main peak at 614 nm ((5)D(0)-(7)F(2)). The PL intensity increased with increasing concentration of Eu(3+) in both series. Infrared excitation was required to obtain good Raman spectra. The linear dependence of the main Raman peak wavenumber offers a non-destructive method for monitoring the substitution level and its homogeneity at the micron scale.

  16. The synthesis and characterization of mixed Y2O3-doped ZrO2 and -Fe2O3 nanosized powders

    Raming, Tomas; Winnubst, Louis; Verweij, Henk


    Several wet chemical precipitation methods used to synthesise nanocrystalline composite powders containing zirconium oxide, yttrium oxide and iron(III) oxide are described. The crystallisation and phase composition of the precipitates were studied as a function of temperature. A co-precipitation met

  17. HRTEM Study of Oxide Nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y2O3 ODS Steel

    Hsiung, L; Fluss, M; Wall, M; Kimura, A


    Crystal and interfacial structures of oxide nanoparticles in 16Cr-4Al-2W-0.3Ti-0.3Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles lead us to propose three-stage mechanisms to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels.

  18. Microstructure and mechanical properties of ZrO2 (Y2O3)-Al2O3 nanocomposites prepared by spark plasma sintering

    Shufeng Li; Hiroshi Izui; Michiharu Okano; Weihua Zhang; Taku Watanabe


    Zirconia (yttria)-alumina ceramic nanocomposites were fabricated from different powders by spark plasma sintering (SPS).One powder was a commercially available nanocomposite powder TZP-3Y2OA,consisting of 3 mol% yttria-stabilized zirconia (3-YSZ) reinforced with 20 wt% alumina,and the other,used as a comparison,was a conventional mechanically mixed powder 3YSZ-20A,a blend made of 3 mol% yttria-stabilized zirconia powder ZrO2 (3Y) and 20 wt% α-alumina powder.The effect of the sintering temperature on the densification,the sintering behavior,the mechanical properties and the microstructure of the composites was investigated.The results showed that the density increased with increasing sintering temperature,and thus,the mechanical properties were strengthened because of the increased densification.The nanocomposite powder TZP-3Y20A was easily sintered,and good mechanical properties were achieved as compared with the powder from the conventional mechanically mixed method,the maximum flexural strength and fracture toughness of which were 967 MPa and 5.27 MPa m1/2,respectively.

  19. Photodegradation and self-healing in a Rhodamine 6G dye and Y$_2$O$_3$ nanoparticle-doped polyurethane random laser

    Anderson, Benjamin R; Eilers, Hergen


    One of the fundamental difficulties in implementing organic dyes in random lasers is irreversible photodegradation of the dye molecules, leading to loss of performance and the need to replace the dye. We report the observation of self-healing after photodegradation in a Rhodamine 6G dye and nanoparticle doped polyurethane random laser. During irradiation we observe two distinct temporal regions in which the random lasing (RL) emission first increases in intensity and redshifts, followed by further redshifting, spectral broadening, and decay in the emission intensity. After irradiation the emission intensity is found to recover back to its peak value, while still being broadened and redshifted, which leads to the result of an enhancement of the spectrally integrated intensity. We also perform IR-VIS absorbance measurements and find that the results suggest that during irradiation some of the dye molecules form dimers and trimers and that the polymer host is irreversibly damaged by photooxidation and Norrish ty...

  20. Influence of the Ratio of Ethanol to Water on the Agglomeration of Al2O3/Y2O3-ZrO2 Nanoparticles

    Li Xiuhua; Du Juanjuan; Zhu Liying; Cheng Huijie; Wang Lingwei


    A method of heating ethanol-aqueous salt solution combined with co-precipitation was used to synthesize Al2O3/ZrO2 nanoparticles. The analysis of DSC and XRD revealed that the transformation temperature from amorphous to crystal phase was about 850℃. The grain size was increased with the raising of calcine temperature. The alcohol-water ratio did not affect the formation of main crystal phases, but affected the agglomeration of nanoparticles based on the results of TEM. When alcohol-water ratio was 5:1, the dispersion of nanoparticles was good. When there was not alcohol, the dispersion of nanoparticles was poor because there was only pure co-precipitation reaction and the speed of co-precipitation reaction was too high to have enough time of PEG. dispersing particles.

  1. Propriedades reológicas e microestruturais de eletrólito de ZrO2/Y2O3

    H. A. Taroco; Basaglia,R. M. F.; R. Z. Domingues; Brant, M; Matencio, T.


    Para reduzir a temperatura de operação das pilhas a combustível de óxido sólido (PaCOS), estruturas com filmes finos de eletrólito depositados, por aerografia, sobre suportes de anodo porosos foram desenvolvidas. As barbotinas, empregadas para fabricação dos filmes, foram preparadas a partir de suspensões com pós de zircônia estabilizada com ítria (ZEI), solventes, dispersantes, ligantes e plastificantes apropriados. Neste trabalho, foi feito o estudo da influência dos ligantes sobre a estabi...

  2. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Zhu, Dongming; Spuckler, Charles M.


    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  3. Preparation and Characterization of Fe2O3-SiO2-Y2O3-Al2O3 Ferromagnetic Glass Ceramics Microspheres for Hyperthermia Application%热疗用Fe2O3-SiO2-Y2O3-Al2O3微晶玻璃微球的制备与性能

    张佶颖; 王德平; 黄文旵


    采用火焰漂浮法制备新型含钇铁磁微晶玻璃微球(ferromagnetic glass ceramic microspheres,FGCMs),用以放疗与热疗相结合的医疗用途.通过热分析和X射线衍射(X-ray diffraction,XRD)研究热处理温度对FGCMs性能的影响.使用偏光显微镜观察FC-CMs的形貌.用振动样品磁强计(vibrating sample magnetometer,VSM)和磁热测试装置研究FGCMs的磁性能和磁热性能.通过XRD和VSM数据计算样品中微晶相的含量.用比发热量和比能量吸收率表征FGCMs的发热能力.实验结果表明:FGCMs有很大的应用前景,可用于热疗-放疗联合治疗肿瘤.%Novel ferromagnetic glass ceramic microspheres (FGCMs) containing yttrium which can be used for clinical applications combining features of radiotherapy and hyperthermia were prepared by heat treatment and flame spray method. Influence of the heat treatment of ferromagnetic glass ceramic was investigated by the differential thermal analysis (DTA) and X-ray diffraction (XRD).Morphology of the FGCMs was characterized by the polarizing microscopy. Magnetism property and heating power of the FGCMs were measured by a vibrating sample magnetometry(VSM) and a thermomagnetic measurement equipment, respectively. Amount of crystallized magnetite was calculated by the XRD and VSM data. Specific heat values and specific absorption rate values of the FGCMs was calculated to characterize the heating ability of the FGCMs. The experimental results show that the FGCMs have great potential to offer the dual-function of hyperthermia and radiotherapy in the treatment of cancer.

  4. Modelling of the luminescent properties of nanophosphor coatings with different porosity

    Kubrin, R.; Graule, T.


    Coatings of Y2O3:Eu nanophosphor with the effective refractive index of 1.02 were obtained by flame aerosol deposition (FAD). High-pressure cold compaction decreased the layer porosity from 97.3 to 40 vol % and brought about dramatic changes in the photoluminescent performance. Modelling of interdependence between the quantum yield, decay time of luminescence, and porosity of the nanophosphor films required a few basic simplifying assumptions. We confirmed that the properties of porous nanostructured coatings are most appropriately described by the nanocrystal cavity model of the radiative decay. All known effective medium equations resulted in seemingly underestimated values of the effective refractive index. While the best fit was obtained with the linear permittivity mixing rule, the influence of further effects, previously not accounted for, could not be excluded. We discuss the peculiarities in optical response of nanophopshors and suggest the directions for future research.

  5. Mechanical wet-milling and subsequent consolidation of ultra-fine Al2O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering

    Khalil Abdelrazek KHALIL; Sug Won KIM


    Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.


    范益群; 冯君; 徐南平; 时钧


    @@ INTRODUCTION Nanoparticle synthesis in flame is an attractive and effective method [1]. Nanoparticle can be synthesized in flame by either gas-to-particle conversion or particle-to-particle conversion [2-4]. Since precursors in gas-to-particle conversion must be gases, it is required that the corresponded liquid precursors have high volatility. In comparison with gas-to-particle conversion, precursors in particle-to-particle conversion are less limited, varying from flammable organometallic solutions to various aqueous metal salt solutions such as metal chlorides, metal nitrates and metal acetates. The precursor material is atomized and carried by a gas into the flame. Generally speaking organometallic compounds are more expensive while aqueous metal salt solutions are readily available. Therefore flame spray pyrolysis using aqueous metal salt solutions as precursors has greater advantages.

  7. Effects of fly ash and boric acid on Y2O3-stabilized tetragonal ZrO2 dispersed with MgAl2O4: An experimental study on rat subcutaneous tissue.

    Ergun, Gulfem; Guru, Metin; Egilmez, Ferhan; Cekic-Nagas, Isil; Yilmaz, Dervis


    The aim of this study was to evaluate the subcutaneous tissue reaction around zirconia-based materials. Forty-eight male Wistar Albino rats were used in this study. Disk-shaped (1mm height and 5mm diameter) samples composed of 67% spinel (MgAl2O4), 27% tetragonal zirconia polycrystal, 4% (m/m) fly ash and 2% (m/m) boric acid were inserted into dorsal muscles of rats. After 1, 4, 8 and 16 weeks, the animals were sacrificed and zirconia materials were removed with the surrounding tissue. Tissue sections were made with a microtome and then stained with hematoxylin and eosin. Sections were evaluated for the intensity of inflammation. Additionally, the somatic and visceral lymph nodes were evaluated. Data were submitted to one-way analysis of variance (ANOVA) and Tukey HSD tests at a significant level of p < 0.05. There were statistically significant differences between mean inflammatory scores in different experimental periods (p <0.05). In addition, the inflammatory reaction decreased over time. The tested materials had no damaging effect on the rat lymph nodes and did not have a toxic action on the internal organs. Therefore, zirconia polycrystal tested in the present study may offer a promising treatment alternative after further mechanical and biological studies are performed. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Evaluación del comportamiento tribológico de recubrimientos híbridos vidrio/grafeno del sistema Y2O3-Al2O3-SiO2

    Gómez Gómez, Alberto


    En la actualidad, industrias como la aeroespacial y la aeronáutica están introduciendo materiales cerámicos en la producción de elementos estructurales o sistemas de propulsión, impulsados por las excelentes propiedades de este tipo de materiales. En particular, materiales como el SiC y compuestos de C/C y SiC/C son utilizados en Sistemas de Protección Térmica en aplicaciones de alta exigencia como lanzaderas espaciales, donde se exponen a condiciones excepcionalmente adversas con elevadas te...

  9. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites

    F. A. Mirza


    Full Text Available Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs. This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes. The predicted results were observed to be in good agreement with the experimental data reported in the literature.

  10. Numerical model for thermal parameters in optical materials

    Sato, Yoichi; Taira, Takunori


    Thermal parameters of optical materials, such as thermal conductivity, thermal expansion, temperature coefficient of refractive index play a decisive role for the thermal design inside laser cavities. Therefore, numerical value of them with temperature dependence is quite important in order to develop the high intense laser oscillator in which optical materials generate excessive heat across mode volumes both of lasing output and optical pumping. We already proposed a novel model of thermal conductivity in various optical materials. Thermal conductivity is a product of isovolumic specific heat and thermal diffusivity, and independent modeling of these two figures should be required from the viewpoint of a clarification of physical meaning. Our numerical model for thermal conductivity requires one material parameter for specific heat and two parameters for thermal diffusivity in the calculation of each optical material. In this work we report thermal conductivities of various optical materials as Y3Al5O12 (YAG), YVO4 (YVO), GdVO4 (GVO), stoichiometric and congruent LiTaO3, synthetic quartz, YAG ceramics and Y2O3 ceramics. The dependence on Nd3+-doping in laser gain media in YAG, YVO and GVO is also studied. This dependence can be described by only additional three parameters. Temperature dependence of thermal expansion and temperature coefficient of refractive index for YAG, YVO, and GVO: these are also included in this work for convenience. We think our numerical model is quite useful for not only thermal analysis in laser cavities or optical waveguides but also the evaluation of physical properties in various transparent materials.

  11. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System.

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun


    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease.

  12. A Theoretical Model for Predicting Residual Stress Generation in Fabrication Process of Double-Ceramic-Layer Thermal Barrier Coating System

    Song, Yan; Wu, Weijie; Xie, Feng; Liu, Yilun; Wang, Tiejun


    Residual stress arisen in fabrication process of Double-Ceramic-Layer Thermal Barrier Coating System (DCL-TBCs) has a significant effect on its quality and reliability. In this work, based on the practical fabrication process of DCL-TBCs and the force and moment equilibrium, a theoretical model was proposed at first to predict residual stress generation in its fabrication process, in which the temperature dependent material properties of DCL-TBCs were incorporated. Then, a Finite Element method (FEM) has been carried out to verify our theoretical model. Afterwards, some important geometric parameters for DCL-TBCs, such as the thickness ratio of stabilized Zirconia (YSZ, ZrO2-8%Y2O3) layer to Lanthanum Zirconate (LZ, La2Zr2O7) layer, which is adjustable in a wide range in the fabrication process, have a remarkable effect on its performance, therefore, the effect of this thickness ratio on residual stress generation in the fabrication process of DCL-TBCs has been systematically studied. In addition, some thermal spray treatment, such as the pre-heating treatment, its effect on residual stress generation has also been studied in this work. It is found that, the final residual stress mainly comes from the cooling down process in the fabrication of DCL-TBCs. Increasing the pre-heating temperature can obviously decrease the magnitude of residual stresses in LZ layer, YSZ layer and substrate. With the increase of the thickness ratio of YSZ layer to LZ layer, magnitudes of residual stresses arisen in LZ layer and YSZ layer will increase while residual stress in substrate will decrease. PMID:28103275

  13. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors.

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie


    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density (J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  14. Improved performance and stability of Ag-infiltrated nanocomposite La0.6Sr0.4Co0.2Fe0.8O3-δ-(Y2O3)0.08(ZrO2)0.92 oxygen electrode for H2O/CO2 co-electrolysis

    Fan, Hui; Han, Minfang


    An Ag-infiltrated nanocomposite LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ)-YSZ (yttria stabilized zirconia) oxygen electrode is prepared for co-electrolysis of steam and CO2. Scanning electron microscopy (SEM) associated with energy dispersive X-ray spectroscopy (EDS) is employed to verify that nano-Ag particles are formed into the porous LSCF-YSZ electrode. Polarization curves and electrochemical impedance spectra (EIS) of the cell as well as long-term durability are investigated. In comparison with the Ag-free cell, the Ag-loaded cell exhibited improved performance and long-term stability when 45% H2O, 45% CO2, and 10% H2 is introduced as inlet gas. With infiltration of metal Ag, the ohmic resistance of the cell decreases from 0.14 Ω cm2 to 0.11 Ω cm2, and the polarization resistance from 0.30 Ω cm2 to 0.17 Ω cm2 at 800 °C. No significant deterioration of the Ag-infiltrated cell is observed when operating for 200 h at 1.3 V and 750 °C. With respect to varied H2O/CO2 ratio (1:2, 1:1, and 2:1) in feed gas, higher H2O percent content is resulted into higher cell performance, despite the fact that varied inlet gas composition did not dramatically influence the cell performance.

  15. Produção e caracterização de revestimento cerâmico Al2O3 – ZrO2 – Y2O3 inerte ao petróleo cru por processo de aspersão térmica para indústria petrolífera

    ARAÚJO, Juliana Carvalho Da Silva


    O petróleo, por sua relevância na economia global, demanda um volume crescente de pesquisas no setor e com isso a necessidade do uso de materiais resistentes à ambientes agressivos como é o caso do petróleo cru, gerando procedimentos eficazes e seguros que minimizem impactos ao meio ambiente. Revestimento termicamente aspergido tem sido intensamente utilizado na indústria de petróleo, aeroespacial, elétrica entre outros. Os revestimentos podem ser feitos de metal, cerâmica, vidros e a maioria...

  16. Development of improved ATF engineering alloy - Mechanical testing of Phase 2 alloy

    Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lovato, Manuel L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    In this report we present the results on the tensile testing of phase 2 FeCrAl alloys (Mo and Nb added for high temperature strength) developed at Oak Ridge National Laboratory. We also compare FeCrAl with MA956 which is an ODS FeCrAl.

  17. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Lowell, C. E.; Deadmore, D. L.


    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  18. UV Bandpass Optical Filter for Microspectometers

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.


    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in t

  19. X-Ray Diffraction Phase Analyses for Granulated and Sintered Ceramic Materials

    Suminar Pratapa


    Full Text Available One basic problematic aspect in x-ray diffraction phase analysis is microabsorption effect which may arise from the size of the crystallite phases. Complication of the problem may intensify in sintered ceramic materials where milling of the samples is not simple. We report the Rietveld x-ray diffraction phase analysis of MgO-α-Al2O3 powder mixtures with phase content ratio of 1:1 by weight and MgO-Y2O3 sintered ceramic composites with Y2O3 contents of 10%, 20% and 30% by weight. The mixtures were pre-sintered at 1000°C for 2 hours and then milled while the composites were sintered at 1550°C for 3 hours. The phase composition analysis was done using Rietica, a non-commercial Rietveld method-based software. Relative and absolute phase compositions were examined and results showed that there was a significant amount of phase composition bias resulted from the examination. For the powder mixture, milling can reduce microabsorption effect and hence the calculation bias. For the ceramic composite where milling is almost impossible, additional of Y2O3 caused smaller crystallite size of MgO, so that composition bias is smaller in composites with higher Y2O3 content. A mathematical model is proposed to provide more acceptable phase composition results.

  20. Residual Stresses Modeled in Thermal Barrier Coatings

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.


    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  1. First Principles Atomistic Model for Carbon-Doped Boron Suboxide


    spectroscopy (EELS). J. Solid State Chem. 1997;133:365. 3. Herrmann M, Thiele M, Jaenicke-Roessler K, Freemantle CS, Sigalas I. Oxidation resistance...boron suboxide. Mater Sci and Eng A. 2011;528:5778. 5. Herrmann M, Kleebe HJ, Raethel J, Sempf K, Lauterback S, Muller MM, Sigalas I. Field...assisted densification of superhard B6O materials with Y2O3/Al2O3 addition. J Am Ceram Soc. 2009;92:2368. 6. Herrmann , M. Raethel, J. Bales, A. Sempf, K

  2. Preparation and testing of corrosion and spallation-resistant coatings

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)


    The goal of this project was to take a recently developed method of bonding oxide dispersion-strengthened (ODS) FeCrAl plating to nickel superalloys closer to commercial use in syngas-fired turbines. The project was designed to better understand and develop the bonding process and to determine if plating APMT®, a specific highly oxidation-resistant ODS FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The superalloys investigated for protection were CM247LC and Rene® 80, both alumina scale-forming alloys. The method for bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces, creating a bond between the APMT and the superalloy that is stronger than the APMT itself. Testing showed that the diffusivity of zinc in both APMT and CM247LC is quite similar at 700°C but 15 times higher in the APMT at 1214°C. Coefficients of thermal expansion were determined for each of the alloys as a function of temperature. This information was entered into a finite-element model using ANSYS, which was used to design a clamping jig for pressing the APMT to the superalloys at the bonding temperature. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding Unfortunately, the analyses also showed some small pieces of broken aluminum oxide scale near the bond lines, indicating that its scale was not sufficiently removed during prebonding cleaning. Samples from each of the bonded blocks were sent to Siemens for

  3. Effect of spherical porosity on co-fired dense/porous zirconia bi-layers cambering

    Teocoli, Francesca; Marani, Debora; Kiebach, Wolff-Ragnar


    analyze the model case of dense taped of 8 mol% Y2O3-stabilized ZrO2 laminated on ca. 400 μ thick 3 mol% Y2O3 doped zirconia porous tapes, with homogenous spherical porosity of 13 vol%, 46 vol%, and 54 vol%. Sintering stress during densification is evaluated from the shrinkage rates and viscoelastic...... behavior during sintering by thermo-mechanical analysis, using cyclic loading dilatometry. The camber development of the bi-layers is measured by in-situ optical dilatometry. In accordance with the model prediction, cambering can be controlled tuning the porosity while achieving a synergetic effect between...

  4. Study of the influence of ceramic thermal coating on the aircraft blade vibration

    Daniel Dragomir-Stanciu


    Full Text Available The paper analyzes the influence of the ceramic layer on the vibration of the high pressure stage turbine blades in take-off transient conditions. As reference model, the high pressure stage blades of the Tumanski R13 jet engine were considered. The analyse was done using the Ansys 14.5. The vibration eigenmodes and eigenvalues for the blade with and without a ZrO2/3%Y2O3 deposited coating are compared.

  5. Models

    Juel-Christiansen, Carsten


    Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter......Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter...

  6. TAOI B- Computational Microstructural Optimization Design Tool for High Temperature Structural Materials

    Mishra, Rajiv [Univ. Of North Texas, Denton, TX (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States)


    The objectives of this research were two-fold: (a) develop a methodology for microstructural optimization of alloys - genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and (b) develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications. The broader outcome of these objectives is expected to be creation of an integrated approach for ‘structural materials by microstructural design’. Three alloy systems were considered for computational optimization and validation, (i) Ni-20Cr (wt.%) base alloy using only solid solution strengthening, (ii) nano-Y2O3 containing Ni-20Cr-1.2Y2O3 (wt.%) alloy for dispersion strengthening and (iii) a sub-micron Al2O3 for composite strengthening, Ni-20Cr-1.2Y2O3-5.0Al2O3 (wt.%). The specimens were synthesized by mechanical alloying and consolidated using spark plasma sintering. Detailed microstructural characterization was done along with initial mechanical properties to validate the computational prediction. A key target property is to have creep rate of 1x10-9 s-1 at 100 MPa and 800oC. The initial results were quite promising and require additional quantification of strengthening contributions from dislocation-particle attractive interaction and load transfer. The observed creep rate was in order of 10-9 s-1 for longer time creep test of Ni-20Cr -1.2Y2O3-5Al2O3, lending support to the overall approach pursued in this project.

  7. Optical characterization of biological tissues and rare earth nanoparticles

    Barrera, Frederick John, III

    The ubiquitous use of lasers as both a diagnostic and therapeutic tool for medical applications (e.g. laser surgery, photoacoustic imaging, photodynamic therapy etc.), had rendered the understanding of optical properties of a biological medium critically important. The development of biomedical devices for the purposes of imaging or treatment requires a detailed investigation of these properties. Indeed, diagnostic monitoring of blood in vivo depends on knowledge of the distribution of light due to scattering in a blood medium. In addition, many optical properties of tissues have not been investigated experimentally at many clinically relevant wavelengths. The quantification of the scattering and absorptive behavior of tissue and its interaction with electromagnetic radiation is still at the core of predicting the outcome of a desired clinical effect. Therefore, the first portion of this Dissertation is a thorough characterization of ocular tissues in vitro using reflectance and transmittance spectroscopic techniques and computational models to extract and enlist a systematic study at wavelengths in the visible spectral region. The Kubelka-Munk (KM), Inverse Adding Doubling (IAD), and Inverse Monte Carlo (IMC) methods were used to determine the absorption and scattering coefficients and contrasted. The second portion of this Dissertation is an investigation of the optical and spectroscopic properties of novel rare earth Y2O3 and Nd3+:Y2O 3nanoparticles in a blood medium. Reflectance and transmittance measurements were performed and the absorption and scattering properties for the nanoparticle/blood samples were determined by computational methods and compared. Absorption and emission of Y2O3 and Nd3+:Y 2O3nanoparticle/blood medium revealed their utility as biomarkers.

  8. Modelling

    Spädtke, P


    Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.

  9. model

    trie neural construction oí inoiviouo! unci communal identities in ... occurs, Including models based on Information processing,1 ... Applying the DSM descriptive approach to dissociation in the ... a personal, narrative path lhal connects personal lo ethnic ..... managed the problem in the context of the community, using a.

  10. ODS iron aluminides

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; Ohriner, E.K.


    Interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system, has led to investigation of materials for heat exchangers capable of operation at temperatures of the order of 1200 to 1300{degrees}C. The candidate materials are ceramics and, possibly, oxide dispersion-strengthened (ODS) alloys. An ODS FeCrAl alloy was found to meet the strength requirements for such an application, in which the working fluid at 0.9 MPa was to be heated from 800 to 1100{degrees}C over a tube length of 4 m. The oxidation life of ODS FeCrAl alloys is determined by their ability to form or reform a protective alumina scale, and can be related to the time for the aluminum content of the alloy to be depleted to some minimum level. As a result, the service life is a function of the available aluminum content of the alloys and the minimum aluminum level at which breakaway oxidation occurs, hence there is a limit on the minimum cross section which can be safely employed at temperatures above 1200{degrees}C. Because of their significantly higher aluminum content ({ge}28 atom %/{ge}16 wt. percent compared to {approx}9 atom %15 wt. percent), alloys based on Fe{sub 3}Al afford a potentially larger reservoir of aluminum to sustain oxidation resistance at higher temperatures and, therefore, offer a possible improvement over the currently-available ODS FeCrAl alloys, providing they can be strengthened in a similar manner.

  11. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.


    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  12. Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y₂O₃.

    Jonane, Inga; Lazdins, Karlis; Timoshenko, Janis; Kuzmin, Alexei; Purans, Juris; Vladimirov, Pavel; Gräning, Tim; Hoffmann, Jan


    The local structure and lattice dynamics in cubic Y2O3 were studied at the Y K-edge by X-ray absorption spectroscopy in the temperature range from 300 to 1273 K. The temperature dependence of the extended X-ray absorption fine structure was successfully interpreted using classical molecular dynamics and a novel reverse Monte Carlo method, coupled with the evolutionary algorithm. The obtained results allowed the temperature dependence of the yttria atomic structure to be followed up to ∼6 Å and to validate two force-field models.

  13. 含二氧化锆陶瓷的热力学%Thermodynamics of some ZrO2-containing ceramics


    Thermodynamic assessment in the ternary systems ZrO2-CeO2-Y2O3 ,ZrO2-CeO2-Ce2O3 and the limiting binaries ZrO2-Y2O3,ZrO2-CeO2 ,CeO2-Y2O3, ZrO2-Ce2O3, CeO2-Ce2O3 as well as the modeling for oxides are reviewed comprehensively. Based on the recent estimations on the YO1.5 -CeO2, ZrO2 -CeO2 and ZrO2-YO1.5 systems, isothermal sections at 1 273 and 1 973 K of the ternary CeO2-ZrO2-YO1.5 system are calculated. In the system of ZrO2-CeO2-Ce2O3, the complex relation between the nonstoichiometry (y) in CeO2- y, the composition of the ZrO2-CeO2 solid solution and the oxygen partial pressure ( Po2 ) for different ZrO2 containing solid solutions Cez Zr1 - z O2 - x are evaluated from 1 473 to 1 773 K. The relation between the degree of Ce+ 4 reduction to Ce + 3 under different Po2 in the fluorite CeO2 - y and Cez Zr1- z O2 x solid solutions at different temperatures can be used as a guide in the development of functional ceramics.

  14. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    Perkins, R. J.; Bailey, P. G.


    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  15. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)


    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  16. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)


    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early generation powder-metallurgy (PM) oxide dispersion strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonable matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, To, in alloys irradiated to 7 dpa and higher.

  17. Analysis of the energetic/environmental performances of gas turbine plant: Effect of thermal barrier coatings and mass of cooling air

    Ion Ion V.


    Full Text Available Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1 maximum allowable temperature for top layer (1200ºC and (2 for blade material (1000ºC. The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.




    The deposition of nano-dimension coatings of Y2O3 and/or Y2O3/Al2O3 precursor material onto Si3N4 and SiC particles provides a methodology far the uniform dispersion of sintering aid and the compositional tailoring of intergranular phases in engineering ceramics. Coatings were precipitated from aque

  19. Synthesis and characterization of nanocrystalline Ni produced by cryomilling in liquid nitrogen

    YANG Bin; FAN Jianzhong; HAO Bin; TIAN Xiaofeng; CHENG Junsheng; ZHANG Jishan


    Nanocrystalline Ni powders were successfully fabricated by mechanically milling at cryogenic temperature (cryomilling) with 1 wt.%Y2O3 particles. The experimental results have shown that the Ni grain size is reduced to 25 nmafter 2 h of cryomilling in the presence of the Y2O3 particles. The cryomilled Ni/Y2O3 powders can maintain their nanocrystalline structure up to 900℃, or 62% of the melting point of Ni. A bulk nanocrystalline Ni/Y2O3 material with a thermally stable grain size of approximately 100 nm was produced by cryomilling, cold isostatic pressing, followed by hot isostatic pressing. The microhardness of bulk nanocrystalline Ni/1wt.%Y2O3 is 315 DPH, which is two times as high as that of conventional Ni.

  20. Investigation of the Effect of Yttrium Oxide Nanoparticles Doped with Cerium and Neodymium on Electro-Optics of Liquid Crystal Polymer Composites

    Zharkova, G. M.; Osipov, V. V.; Platonov, V. V.; Podkin, A. V.; Strel'tsov, S. A.


    Morphology and properties of liquid crystal polymer composites doped with inorganic nanoparticles are described. These composites comprised nematic liquid crystal 5CB, polyvinyl acetate, and nanoparticles of oxides (Y2O3, CeO2:Y2O3, and Nd2O3:Y2O3). Nanopowders were synthesized by the laser method of vaporization of a solid target under CO2-laser or fiber ytterbium laser irradiation. The effect of oxides on the electro-optical properties of the composites and times of response to an electrical pulse is investigated. It is shown that incorporation of CeO2:Y2O3 nanopowder in liquid crystal polymer composites affects the decrease of the control field and the increase of light transmission in an electric field stronger than incorporation of Nd2O3:Y2O3 nanoparticles.

  1. Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract

    S K Kannan; M Sundrarajan


    In this study, the synthesis of Yttrium oxide (Y2O3) nanoparticles was carried out from Acalypha indica leaf extract. The synthesized nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectrometer and transmission electron microscope for structural confirmation. The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis was carried out by Fourier transform infrared spectroscopy, to provide the evidence for the presence of Y–O–Y and O–Y–O stretchings in the synthesized Y2O3 nanoparticles. Thermogravimetric and differential scanning calorimetry analyses gave the thermal stability of Y2O3 nanoparticles. The results of the antibacterial studies conducted by using the synthesized Y2O3 revealed an increasing rate of antibacterial behaviour with pathogens.

  2. ODS iron aluminides

    Wright, I.G.; Pint, B.A.; Ohriner, E.K.; Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)


    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200{degrees}C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The program has two main thrusts: (a) alloy processing, which involves mechanical alloying and thermomechanical processing to achieve the desired size and distribution of the oxide dispersoid, and (b) optimization of the oxidation behavior to provide increased service life compared to ODS-FeCrAl alloys intended for the same applications. Control of the grain size and shape in the final alloy is very dependent on the homogeneity of the alloy powder, in terms of the size and distribution of the dispersed oxide particles, and on the level of strain and temperature applied in the recrystallization step. Studies of the effects of these variables are being made using mechanically-alloyed powder from two sources: a commercial powder metallurgy alloy vendor and an in-house, controlled environment high-energy mill. The effects of milling parameters on the microstructure and composition of the powder and consolidated alloy are described. Comparison of the oxidation kinetics of ODS-Fe{sub 3}Al alloys with commercial ODS-FeCrAl alloys in air at 1000-1300{degrees}C indicated that the best Fe{sub 3}Al-based alloys oxidized isothermally at the same rate as the ODS-FeCrAl alloys but, under thermal cycling conditions, the oxidation rate of ODS-Fe{sub 3}Al was faster. The main difference was that the ODS-Fe{sub 3}Al experienced significantly more scale spallation above 1000{degrees}C. The differences in oxidation behavior were translated into expected lifetimes which indicated that, for an alloy section thickness of 2.5 mm, the scale spallation of ODS-Fe{sub 3}Al leads to an expected service lifetime similar to that for the INCO alloy MA956 at 1100 to 1300{degrees}C.

  3. Development of ODS-Fe{sub 3}Al alloys

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)


    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  4. Leadership Models.

    Freeman, Thomas J.

    This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…

  5. The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study.

    Parkes, Michael A; Tompsett, David A; d'Avezac, Mayeul; Offer, Gregory J; Brandon, Nigel P; Harrison, Nicholas M


    Yttria stabilized zirconia (YSZ) is an important oxide ion conductor used in solid oxide fuel cells, oxygen sensing devices, and for oxygen separation. Doping pure zirconia (ZrO2) with yttria (Y2O3) stabilizes the cubic structure against phonon induced distortions and this facilitates high oxide ion conductivity. The local atomic structure of the dopant is, however, not fully understood. X-ray and neutron diffraction experiments have established that, for dopant concentrations below 40 mol% Y2O3, no long range order is established. A variety of local structures have been suggested on the basis of theoretical and computational models of dopant energetics. These studies have been restricted by the difficulty of establishing force field models with predictive accuracy or exploring the large space of dopant configurations with first principles theory. In the current study a comprehensive search for all symmetry independent configurations (2857 candidates) is performed for 6.7 mol% YSZ modelled in a 2 × 2 × 2 periodic supercell using gradient corrected density functional theory. The lowest energy dopant structures are found to have oxygen vacancy pairs preferentially aligned along the 〈210〉 crystallographic direction in contrast to previous results which have suggested that orientation along the 〈111〉 orientation is favourable. Analysis of the defect structures suggests that the Y(3+)-Ovac interatomic separation is an important parameter for determining the relative configurational energies. Current force field models are found to be poor predictors of the lowest energy structures. It is suggested that the energies from a simple point charge model evaluated at unrelaxed geometries is actually a better descriptor of the energy ordering of dopant structures. Using these observations a pragmatic procedure for identifying low energy structures in more complicated material models is suggested. Calculation of the oxygen vacancy migration activation energies within

  6. ODS iron aluminides

    Wright, I.G.; McKamey, C.G.; Pint, B.A.


    There has been a recent increase of interest in advanced cycles that involve indirectly-fired gas turbines, in which coal- or gas-fired high-temperature heat exchangers are used to heat a working fluid in a closed system. In a program conducted as part of the European COST-501 Concerted Action Project, available alloys based on FeCrAl-Y{sub 2}O{sub 3} were evaluated for use in the main heat exchanger in a similar closed-cycle gas turbine application. One of the currently available ODS FeCrAl alloys was found to meet the strength requirements for this application, in which the working fluid at 0.9 MPa (131 psi) flowing at 5,889 kg/hr (12,955 lb/hr) was to be heated from 800 to 1100{degrees}C (1472 to 2012{degrees}F) over a tube length of 4 m (13 ft).

  7. Model Transformations? Transformation Models!

    Bézivin, J.; Büttner, F.; Gogolla, M.; Jouault, F.; Kurtev, I.; Lindow, A.


    Much of the current work on model transformations seems essentially operational and executable in nature. Executable descriptions are necessary from the point of view of implementation. But from a conceptual point of view, transformations can also be viewed as descriptive models by stating only the

  8. Modelling business models

    Simonse, W.L.


    Business model design does not always produce a “design” or “model” as the expected result. However, when designers are involved, a visual model or artifact is produced. To assist strategic managers in thinking about how they can act, the designers’ challenge is to combine both strategy and design n

  9. Bio-mediated route for the synthesis of shape tunable Y₂O₃: Tb³⁺ nanoparticles: Photoluminescence and antibacterial properties.

    Prasannakumar, J B; Vidya, Y S; Anantharaju, K S; Ramgopal, G; Nagabhushana, H; Sharma, S C; Daruka Prasad, B; Prashantha, S C; Basavaraj, R B; Rajanaik, H; Lingaraju, K; Prabhakara, K R; Nagaswarupa, H P


    The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Tb(3+) ion concentration on structural morphology, UV-visible absorption and PL emission were investigated systematically. The PL emission of Y2O3: Tb(3+) (1-11 mol%) nanophosphors were studied in detail under 271 and 304nm excitation wavelengths. The CIE coordinates lies well within green region and correlated color temperature values were found to be 6221 and 5562K under different excitations. Thus, the present phosphor can serve as an excellent candidate for LEDs. Further, prismatic Y2O3: Tb(3+) (3 mol%) nanophosphor showed significant antibacterial activity against Pseudomonas desmolyticum and Staphylococcus aureus. The present study successfully demonstrates Y2O3: Tb(3+) nanophosphors can be used for display applications as well as in medical applications for controlling pathogenic bacteria.

  10. SOFC anode reduction studied by in situ TEM

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum;

    active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure NiO...... is a relatively rapid autocatalytic process. On the contrary, the reduction of NiO/YSZ is significantly slower, which indicates that the presence of YSZ inhibits the reduction of NiO. This study aims to obtain fundamental insight into this reduction mechanism and to explain the inhibitive influence of YSZ...

  11. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Zhu, Dongming; Miller, Robert A.


    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  12. In situ TEM analysis of a symmetric solid oxide cell in oxygen and vacuum–cation diffusion observations

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Wagner, Jakob Birkedal


    In order to establish the use of solid oxide fuel/electrolysis cells (SOFC/SOEC) in the energy market, a deeper understanding of degradation effects during operation is necessary. This study apply in situ transmission electron microscopy (TEM) of a symmetric model cell composed by two oxygen...... electrodes of La0.6Sr0.4CoO3-δ (LSC) and an electrolyte, ZrO2: 8% mol Y2O3 (8YSZ), deposited on 1% Nb doped SrTiO3-δ (STN) single crystal substrate by pulsed laser deposition. The results showed a high cation mobility of the electrodes when exposed to 900 ºC. Cobalt is found to agglomerate at the interface...

  13. The Influence of Surface Morphology of Buffer Layer on the Critical Current Density in YBCO Coated Conductors

    Jie Xiong


    Full Text Available 1 μm-thick YBa2Cu3O7-δ (YBCO films were grown on the Y2O3/yttria stabilized zirconia (YSZ/CeO2 buffer layers with different surface morphologies using direct-current sputtering. The critical current density (Jc value of YBCO was 1.1 MA/cm2 when the root mean square surface roughness (Rrms of the buffer layer was 2.5 nm. As the Rrms of the buffer layer increased to 15 nm, the Jc decreased to 0.3 MA/cm2. X-ray diffraction and scanning electron microscopy showed the strong relevance of the evolution of the structure and surface morphologies of YBCO films with the buffer layer of different Rrms. A model was proposed to explain the influence of surface morphology on the superconducting properties of YBCO films.

  14. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Taro Shimonosono


    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  15. Modelling SDL, Modelling Languages

    Michael Piefel


    Full Text Available Today's software systems are too complex to implement them and model them using only one language. As a result, modern software engineering uses different languages for different levels of abstraction and different system aspects. Thus to handle an increasing number of related or integrated languages is the most challenging task in the development of tools. We use object oriented metamodelling to describe languages. Object orientation allows us to derive abstract reusable concept definitions (concept classes from existing languages. This language definition technique concentrates on semantic abstractions rather than syntactical peculiarities. We present a set of common concept classes that describe structure, behaviour, and data aspects of high-level modelling languages. Our models contain syntax modelling using the OMG MOF as well as static semantic constraints written in OMG OCL. We derive metamodels for subsets of SDL and UML from these common concepts, and we show for parts of these languages that they can be modelled and related to each other through the same abstract concepts.

  16. Actant Models

    Poulsen, Helle


    This paper presents a functional modelling method called Actant Modelling rooted in linguistics and semiotics. Actant modelling can be integrated with Multilevel Flow Modelling (MFM) in order to give an interpretation of actants.......This paper presents a functional modelling method called Actant Modelling rooted in linguistics and semiotics. Actant modelling can be integrated with Multilevel Flow Modelling (MFM) in order to give an interpretation of actants....

  17. Modelling the models

    Anaïs Schaeffer


    By analysing the production of mesons in the forward region of LHC proton-proton collisions, the LHCf collaboration has provided key information needed to calibrate extremely high-energy cosmic ray models.   Average transverse momentum (pT) as a function of rapidity loss ∆y. Black dots represent LHCf data and the red diamonds represent SPS experiment UA7 results. The predictions of hadronic interaction models are shown by open boxes (sibyll 2.1), open circles (qgsjet II-03) and open triangles (epos 1.99). Among these models, epos 1.99 shows the best overall agreement with the LHCf data. LHCf is dedicated to the measurement of neutral particles emitted at extremely small angles in the very forward region of LHC collisions. Two imaging calorimeters – Arm1 and Arm2 – take data 140 m either side of the ATLAS interaction point. “The physics goal of this type of analysis is to provide data for calibrating the hadron interaction models – the well-known &...

  18. Modelling Practice


    This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data...... requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the consideration of key issues and questions relevant to the modelling activity. Practical advice, based on many...... years of experience is providing in directing the reader in their activities.Traps and pitfalls are discussed and strategies also given to improve model development towards “fit-for-purpose” models. The emphasis in this chapter is the adoption and exercise of a modelling methodology that has proven very...

  19. On the redox reactivity of doped UO2 pellets - Influence of dopants on the H2O2 decomposition mechanism

    Pehrman, Reijo; Trummer, Martin; Lousada, Cláudio M.; Jonsson, Mats


    The reactivity of doped UO2 such as SIMFUEL, Y2O3 doped UO2 and Y2O3/Pd doped UO2 towards H2O2 has been shown to be fairly similar to that of pure UO2. However, the oxidative dissolution yield, i.e. the ratio between the amount of dissolved uranium and the amount of consumed H2O2 is significantly lower for doped UO2. The rationale for the observed differences in dissolution yield is a difference in the ratio between the rates of the two possible reactions between H2O2 and the doped UO2. In this work we have studied the effect of doping on the two possible reactions, electron-transfer and catalytic decomposition. The catalytic decomposition was studied by monitoring the hydroxyl radical production (the primary product) as a function of time. The redox reactivity of the doped pellets was studied by using MnO4- and IrCl62- as model oxidants, only capable of electron-transfer reactions with the pellets. In addition, the activation energies for oxidation of UO2 and SIMFUEL by MnO4- were determined experimentally. The experiments show that the rate of catalytic decomposition of H2O2 varies by 30% between the most and least reactive material. This is a negligible difference compared to the difference in oxidative dissolution yield. The redox reactivity study shows that doping UO2 influences the redox reactivity of the pellet. This is further illustrated by the observed activation energy difference for oxidation of UO2 and SIMFUEL by MnO4-. The redox reactivity study also shows that the sensitivity to dopants increases with decreasing reduction potential of the oxidant. These findings imply that the relative impact of radiolytic oxidants in oxidative dissolution of spent nuclear fuel must be reassessed taking the actual fuel composition into account.

  20. Promoting Models

    Li, Qin; Zhao, Yongxin; Wu, Xiaofeng; Liu, Si

    There can be multitudinous models specifying aspects of the same system. Each model has a bias towards one aspect. These models often override in specific aspects though they have different expressions. A specification written in one model can be refined by introducing additional information from other models. The paper proposes a concept of promoting models which is a methodology to obtain refinements with support from cooperating models. It refines a primary model by integrating the information from a secondary model. The promotion principle is not merely an academic point, but also a reliable and robust engineering technique which can be used to develop software and hardware systems. It can also check the consistency between two specifications from different models. A case of modeling a simple online shopping system with the cooperation of the guarded design model and CSP model illustrates the practicability of the promotion principle.

  1. Cadastral Modeling

    Stubkjær, Erik


    Modeling is a term that refers to a variety of efforts, including data and process modeling. The domain to be modeled may be a department, an organization, or even an industrial sector. E-business presupposes the modeling of an industrial sector, a substantial task. Cadastral modeling compares to...

  2. Photoluminescence properties of rare-earth-doped (Er³⁺,Yb³⁺) Y₂O₃ nanophosphors by a combustion synthesis method.

    Kaur, Manmeet; Bisen, D P; Brahme, N; Singh, Prabhjot; Sahu, I P


    In this work, we report the synthesis of Y2O3:Er(3+), Y2O3:Yb(3+) and Y2O3:Er(3+),Yb(3+) nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X-Ray diffraction (XRD) patterns revealed that the synthesized particles have a body-centered cubic structure with space group Ia-3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er(3+) and Yb(3+) ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb(3+) to Er(3+) ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging.

  3. Preparation of Silicon Carbide with High Properties


    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  4. Model Warehouse


    This paper puts forward a new conception:model warehouse,analyzes the reason why model warehouse appears and introduces the characteristics and architecture of model warehouse.Last,this paper points out that model warehouse is an important part of WebGIS.

  5. Constitutive Models


    procedure is introduced for the analysis and solution of property models. Models that capture and represent the temperature dependent behaviour of physical properties are introduced, as well as equation of state models (EOS) such as the SRK EOS. Modelling of liquid phase activity coefficients are also......This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...... covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...

  6. Model cities

    Batty, M.


    The term ?model? is now central to our thinking about how weunderstand and design cities. We suggest a variety of ways inwhich we use ?models?, linking these ideas to Abercrombie?sexposition of Town and Country Planning which represented thestate of the art fifty years ago. Here we focus on using models asphysical representations of the city, tracing the development ofsymbolic models where the focus is on simulating how functiongenerates form, to iconic models where the focus is on representi...

  7. Model theory

    Chang, CC


    Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko

  8. Effect of Additives on Sintering of Cr2O3 in Reductive Atmosphere

    LIANGYonghe; SUNChengxu; 等


    The influence of additives TiO2,Y2O3 and composite rare earth on sintering of Cr2O3 in reductive atmosphere was studied.Results show that TiO2 can effectively increase the sinteed density at low temperature,As the increase of sintering temperature,such kind of effect becomes more and more unobvious and finaly disappear at 1550℃.Moreover,Y2O3 and composite rare earth have negative effect on sintering.

  9. Event Modeling

    Bækgaard, Lars


    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics. We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...

  10. Event Modeling

    Bækgaard, Lars


    The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...

  11. Luminescent sensors for tracking spatial particle distributions in an explosion

    Anderson, Benjamin R.; Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen; Svingala, Forrest R.; Daniels, Amber; Lightstone, James M.


    We previously developed and tested thermally sensitive particles that, when seeded into an explosive event, flow with the expanding post-detonation fireball and provide ex-situ measurements of this thermal environment. This current work presents the development and testing of tracking particles that are used in concert with the thermally sensitive particles to encode the initial positions of materials recovered for ex-situ analysis. These tracking sensors consist of fully-crystallized (c) rare-earth-doped yttria particles such as c-Dy:Y2O3, c-Sm:Y2O3, and c-Er,Yb:Y2O3. The temperature sensors consist of mixtures of precursor (p) and fully crystallized materials such as p-Eu:Y2O3/c-Tb:Y2O3 or p-Eu:ZrO2. Three mixtures containing one of the tracking sensors and one of the temperature sensing mixtures are placed at different locations within the chamber. Post-detonation, the tracking particles in the debris are excited by 355 nm light, resulting in different color luminescence, and allowing for potential visual inspection of the particle distribution originating from the different locations. Meanwhile, the temperature is determined from spectral changes of the precursor sensor materials or by comparison of the precursor sensor materials with the Tb:Y2O3 intensity reference.

  12. Numerical models

    Unnikrishnan, A; Manoj, N.T.

    Various numerical models used to study the dynamics and horizontal distribution of salinity in Mandovi-Zuari estuaries, Goa, India is discussed in this chapter. Earlier, a one-dimensional network model was developed for representing the complex...

  13. Computable models

    Turner, Raymond


    Computational models can be found everywhere in present day science and engineering. In providing a logical framework and foundation for the specification and design of specification languages, Raymond Turner uses this framework to introduce and study computable models. In doing so he presents the first systematic attempt to provide computational models with a logical foundation. Computable models have wide-ranging applications from programming language semantics and specification languages, through to knowledge representation languages and formalism for natural language semantics. They are al


    Taylor, J G


    We present tentative answers to three questions: firstly, what is to be assumed about the structure of the brain in attacking the problem of modeling consciousness; secondly, what is it about consciousness that is attempting to be modeled; and finally, what is taken on board the modeling enterprise, if anything, from the vast works by philosophers about the nature of mind.

  15. Zeebrugge Model

    Sclütter, Flemming; Frigaard, Peter; Liu, Zhou

    This report presents the model test results on wave run-up on the Zeebrugge breakwater under the simulated prototype storms. The model test was performed in January 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University. The detailed description of the model is given...

  16. Interface models

    Ravn, Anders P.; Staunstrup, Jørgen


    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  17. Constitutive Models


    This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...

  18. Model Experiments and Model Descriptions

    Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian


    The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.

  19. Scalable Models Using Model Transformation


    and the following companies: Agilent, Bosch, HSBC , Lockheed-Martin, National Instruments, and Toyota. Scalable Models Using Model Transformation...parametrization, and workflow automation. (AFRL), the State of California Micro Program, and the following companies: Agi- lent, Bosch, HSBC , Lockheed

  20. Cadastral Modeling

    Stubkjær, Erik


    to the modeling of an industrial sector, as it aims at rendering the basic concepts that relate to the domain of real estate and the pertinent human activities. The palpable objects are pieces of land and buildings, documents, data stores and archives, as well as persons in their diverse roles as owners, holders...... to land. The paper advances the position that cadastral modeling has to include not only the physical objects, agents, and information sets of the domain, but also the objectives or requirements of cadastral systems.......Modeling is a term that refers to a variety of efforts, including data and process modeling. The domain to be modeled may be a department, an organization, or even an industrial sector. E-business presupposes the modeling of an industrial sector, a substantial task. Cadastral modeling compares...

  1. Modelling in Business Model design

    Simonse, W.L.


    It appears that business model design might not always produce a design or model as the expected result. However when designers are involved, a visual model or artefact is produced. To assist strategic managers in thinking about how they can act, the designers challenge is to combine strategy and

  2. Climate Models

    Druyan, Leonard M.


    Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.

  3. Mathematical modelling


    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  4. Turbulence Model

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens


    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....

  5. Mathematical modelling

    Blomhøj, Morten


    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...

  6. Spherical models

    Wenninger, Magnus J


    Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.

  7. Zeebrugge Model

    Liu, Zhou; Frigaard, Peter

    This report presents the model on wave run-up and run-down on the Zeebrugge breakwater under short-crested oblique wave attacks. The model test was performed in March-April 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University.......This report presents the model on wave run-up and run-down on the Zeebrugge breakwater under short-crested oblique wave attacks. The model test was performed in March-April 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University....

  8. Stream Modelling

    Vestergaard, Kristian

    the engineers, but as the scale and the complexity of the hydraulic works increased, the mathematical models became so complex that a mathematical solution could not be obtained. This created a demand for new methods and again the experimental investigation became popular, but this time as measurements on small......-scale models. But still the scale and complexity of hydraulic works were increasing, and soon even small-scale models reached a natural limit for some applications. In the mean time the modern computer was developed, and it became possible to solve complex mathematical models by use of computer-based numerical...

  9. Ventilation Model

    V. Chipman


    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section, and the downstream applicability of the model results (i.e. wall heat fractions) to

  10. Modeling Documents with Event Model

    Longhui Wang


    Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.

  11. Model Selection for Geostatistical Models

    Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.


    We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.

  12. Didactical modelling

    Højgaard, Tomas; Hansen, Rune


    The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful to...

  13. Didactical modelling

    Højgaard, Tomas; Hansen, Rune


    The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful to construct this approach in mathematics education research.

  14. Animal models

    Gøtze, Jens Peter; Krentz, Andrew


    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  15. Martingale Model

    Giandomenico, Rossano


    The model determines a stochastic continuous process as continuous limit of a stochastic discrete process so to show that the stochastic continuous process converges to the stochastic discrete process such that we can integrate it. Furthermore, the model determines the expected volatility and the expected mean so to show that the volatility and the mean are increasing function of the time.

  16. Dispersion Modeling.

    Budiansky, Stephen


    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  17. Education models

    Poortman, Sybilla; Sloep, Peter


    Educational models describes a case study on a complex learning object. Possibilities are investigated for using this learning object, which is based on a particular educational model, outside of its original context. Furthermore, this study provides advice that might lead to an increase in

  18. Battery Modeling

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.


    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  19. Linguistic models and linguistic modeling.

    Pedryez, W; Vasilakos, A V


    The study is concerned with a linguistic approach to the design of a new category of fuzzy (granular) models. In contrast to numerically driven identification techniques, we concentrate on budding meaningful linguistic labels (granules) in the space of experimental data and forming the ensuing model as a web of associations between such granules. As such models are designed at the level of information granules and generate results in the same granular rather than pure numeric format, we refer to them as linguistic models. Furthermore, as there are no detailed numeric estimation procedures involved in the construction of the linguistic models carried out in this way, their design mode can be viewed as that of a rapid prototyping. The underlying algorithm used in the development of the models utilizes an augmented version of the clustering technique (context-based clustering) that is centered around a notion of linguistic contexts-a collection of fuzzy sets or fuzzy relations defined in the data space (more precisely a space of input variables). The detailed design algorithm is provided and contrasted with the standard modeling approaches commonly encountered in the literature. The usefulness of the linguistic mode of system modeling is discussed and illustrated with the aid of numeric studies including both synthetic data as well as some time series dealing with modeling traffic intensity over a broadband telecommunication network.

  20. OSPREY Model

    Veronica J. Rutledge


    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to

  1. Model hydrographs

    Mitchell, W.D.


    Model hydrographs are composed of pairs of dimensionless ratios, arrayed in tabular form, which, when modified by the appropriate values of rainfall exceed and by the time and areal characteristics of the drainage basin, satisfactorily represent the flood hydrograph for the basin. Model bydrographs are developed from a dimensionless translation hydrograph, having a time base of T hours and appropriately modified for storm duration by routing through reservoir storage, S=kOx. Models fall into two distinct classes: (1) those for which the value of x is unity and which have all the characteristics of true unit hydrographs and (2) those for which the value of x is other than unity and to which the unit-hydrograph principles of proportionality and superposition do not apply. Twenty-six families of linear models and eight families of nonlinear models in tabular form from the principal subject of this report. Supplemental discussions describe the development of the models and illustrate their application. Other sections of the report, supplemental to the tables, describe methods of determining the hydrograph characteristics, T, k, and x, both from observed hydrograph and from the physical characteristics of the drainage basin. Five illustrative examples of use show that the models, when properly converted to incorporate actual rainfall excess and the time and areal characteristics of the drainage basins, do indeed satisfactorily represent the observed flood hydrographs for the basins.

  2. Stereometric Modelling

    Grimaldi, P.


    These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at:

  3. Modeling complexes of modeled proteins.

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A


    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C(α) RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. A Model for Math Modeling

    Lin, Tony; Erfan, Sasan


    Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…

  5. Modelling survival

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight


    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test...... the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how...

  6. Modelling Constructs

    Kindler, Ekkart


    There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts, these no...

  7. Linear Models

    Searle, Shayle R


    This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

  8. Modeling Arcs

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar


    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  9. Paleoclimate Modeling

    National Oceanic and Atmospheric Administration, Department of Commerce — Computer simulations of past climate. Variables provided as model output are described by parameter keyword. In some cases the parameter keywords are a subset of all...

  10. Anchor Modeling

    Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia

    Maintaining and evolving data warehouses is a complex, error prone, and time consuming activity. The main reason for this state of affairs is that the environment of a data warehouse is in constant change, while the warehouse itself needs to provide a stable and consistent interface to information spanning extended periods of time. In this paper, we propose a modeling technique for data warehousing, called anchor modeling, that offers non-destructive extensibility mechanisms, thereby enabling robust and flexible management of changes in source systems. A key benefit of anchor modeling is that changes in a data warehouse environment only require extensions, not modifications, to the data warehouse. This ensures that existing data warehouse applications will remain unaffected by the evolution of the data warehouse, i.e. existing views and functions will not have to be modified as a result of changes in the warehouse model.

  11. Model theory

    Hodges, Wilfrid


    An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.

  12. Accelerated life models modeling and statistical analysis

    Bagdonavicius, Vilijandas


    Failure Time DistributionsIntroductionParametric Classes of Failure Time DistributionsAccelerated Life ModelsIntroductionGeneralized Sedyakin's ModelAccelerated Failure Time ModelProportional Hazards ModelGeneralized Proportional Hazards ModelsGeneralized Additive and Additive-Multiplicative Hazards ModelsChanging Shape and Scale ModelsGeneralizationsModels Including Switch-Up and Cycling EffectsHeredity HypothesisSummaryAccelerated Degradation ModelsIntroductionDegradation ModelsModeling the Influence of Explanatory Varia

  13. Do stroke models model stroke?

    Philipp Mergenthaler


    Full Text Available Stroke is one of the leading causes of death worldwide and the biggest reason for long-term disability. Basic research has formed the modern understanding of stroke pathophysiology, and has revealed important molecular, cellular and systemic mechanisms. However, despite decades of research, most translational stroke trials that aim to introduce basic research findings into clinical treatment strategies – most notably in the field of neuroprotection – have failed. Among other obstacles, poor methodological and statistical standards, negative publication bias, and incomplete preclinical testing have been proposed as ‘translational roadblocks’. In this article, we introduce the models commonly used in preclinical stroke research, discuss some of the causes of failed translational success and review potential remedies. We further introduce the concept of modeling ‘care’ of stroke patients, because current preclinical research models the disorder but does not model care or state-of-the-art clinical testing. Stringent statistical methods and controlled preclinical trials have been suggested to counteract weaknesses in preclinical research. We conclude that preclinical stroke research requires (1 appropriate modeling of the disorder, (2 appropriate modeling of the care of stroke patients and (3 an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.

  14. Persistent Modelling


    The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident...... characteristic of architectural practice. But the persistence in persistent modelling can also be understood to apply in other ways, reflecting and anticipating extended roles for representation. This book identifies three principle areas in which these extensions are becoming apparent within contemporary....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....

  15. Mathematical modeling

    Eck, Christof; Knabner, Peter


    Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

  16. Inflatable Models

    Ling Li; Vasily Volkov


    A physically-based model is presented for the simulation of a new type of deformable objects-inflatable objects, such as shaped balloons, which consist of pressurized air enclosed by an elastic surface. These objects have properties inherent in both 3D and 2D elastic bodies, as they demonstrate the behaviour of 3D shapes using 2D formulations. As there is no internal structure in them, their behaviour is substantially different from the behaviour of deformable solid objects. We use one of the few available models for deformable surfaces, and enhance it to include the forces of internal and external pressure. These pressure forces may also incorporate buoyancy forces, to allow objects filled with a low density gas to float in denser media. The obtained models demonstrate rich dynamic behaviour, such as bouncing, floating, deflation and inflation.

  17. Lens Model

    Nash, Ulrik William


    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...... of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mostly be on firms and their employees, but, to fully appreciate the scope, we have to keep in mind...

  18. Lens Model

    Nash, Ulrik William


    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...

  19. Molecular modeling

    Aarti Sharma


    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  20. Smashnova Model

    Sivaram, C


    An alternate model for gamma ray bursts is suggested. For a white dwarf (WD) and neutron star (NS) very close binary system, the WD (close to Mch) can detonate due to tidal heating, leading to a SN. Material falling on to the NS at relativistic velocities can cause its collapse to a magnetar or quark star or black hole leading to a GRB. As the material smashes on to the NS, it is dubbed the Smashnova model. Here the SN is followed by a GRB. NS impacting a RG (or RSG) (like in Thorne-Zytkow objects) can also cause a SN outburst followed by a GRB. Other variations are explored.

  1. Modelling language

    Cardey, Sylviane


    In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter‑language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro‑systems. The abstract model, which contrary to the current state of the art works in int

  2. Building Models and Building Modelling

    Jørgensen, Kaj Asbjørn; Skauge, Jørn

    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om......­lering og bygningsmodeller. Det bliver understreget at modellering bør udføres på flere abstraktions­niveauer og i to dimensioner i den såkaldte modelleringsmatrix. Ud fra dette identificeres de primære faser af bygningsmodel­lering. Dernæst beskrives de basale karakteristika for bygningsmodeller. Heri...... inkluderes en præcisering af begreberne objektorienteret software og objektorienteret modeller. Det bliver fremhævet at begrebet objektbaseret modellering giver en tilstrækkelig og bedre forståelse. Endelig beskrives forestillingen om den ideale bygningsmodel som værende én samlet model, der anvendes gennem...

  3. Zeebrugge Model

    Jensen, Morten S.; Frigaard, Peter

    In the following, results from model tests with Zeebrugge breakwater are presented. The objective with these tests is partly to investigate the influence on wave run-up due to a changing waterlevel during a storm. Finally, the influence on wave run-up due to an introduced longshore current...

  4. Why Model?

    Olaf eWolkenhauer


    Full Text Available Next generation sequencing technologies are bringing about a renaissance of mining approaches. A comprehensive picture of the genetic landscape of an individual patient will be useful, for example, to identify groups of patients that do or do not respond to certain therapies. The high expectations may however not be satisfied if the number of patient groups with similar characteristics is going to be very large. I therefore doubt that mining sequence data will give us an understanding of why and when therapies work. For understanding the mechanisms underlying diseases, an alternative approach is to model small networks in quantitative mechanistic detail, to elucidate the role of gene and proteins in dynamically changing the functioning of cells. Here an obvious critique is that these models consider too few components, compared to what might be relevant for any particular cell function. I show here that mining approaches and dynamical systems theory are two ends of a spectrum of methodologies to choose from. Drawing upon personal experience in numerous interdisciplinary collaborations, I provide guidance on how to model by discussing the question Why model?

  5. Why model?

    Wolkenhauer, Olaf


    Next generation sequencing technologies are bringing about a renaissance of mining approaches. A comprehensive picture of the genetic landscape of an individual patient will be useful, for example, to identify groups of patients that do or do not respond to certain therapies. The high expectations may however not be satisfied if the number of patient groups with similar characteristics is going to be very large. I therefore doubt that mining sequence data will give us an understanding of why and when therapies work. For understanding the mechanisms underlying diseases, an alternative approach is to model small networks in quantitative mechanistic detail, to elucidate the role of gene and proteins in dynamically changing the functioning of cells. Here an obvious critique is that these models consider too few components, compared to what might be relevant for any particular cell function. I show here that mining approaches and dynamical systems theory are two ends of a spectrum of methodologies to choose from. Drawing upon personal experience in numerous interdisciplinary collaborations, I provide guidance on how to model by discussing the question "Why model?"

  6. Model CAPM

    Burianová, Eva


    Cílem první části této bakalářské práce je - pomocí analýzy výchozích textů - teoretické shrnutí ekonomických modelů a teorií, na kterých model CAPM stojí: Markowitzův model teorie portfolia (analýza maximalizace očekávaného užitku a na něm založený model výběru optimálního portfolia), Tobina (rozšíření Markowitzova modelu ? rozdělení výběru optimálního portfolia do dvou fází; nejprve určení optimální kombinace rizikových instrumentů a následná alokace dostupného kapitálu mezi tuto optimální ...

  7. Transport modeling

    R.E. Waltz


    @@ There has been remarkable progress during the past decade in understanding and modeling turbulent transport in tokamaks. With some exceptions the progress is derived from the huge increases in computational power and the ability to simulate tokamak turbulence with ever more fundamental and physically realistic dynamical equations, e.g.

  8. Painting models

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.


    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  9. Modeling Muscles

    Goodwyn, Lauren; Salm, Sarah


    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  10. Entrepreneurship Models.

    Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.

    This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…

  11. Quality modelling

    Tijskens, L.M.M.


    For modelling product behaviour, with respect to quality for users and consumers, its essential to have at least a fundamental notion what quality really is, and which product properties determine the quality assigned by the consumer to a product. In other words: what is allowed and what is to be

  12. Criticality Model

    A. Alsaed


    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of

  13. Information Model for Product Modeling

    焦国方; 刘慎权


    The Key problems in product modeling for integrated CAD ∥CAM systems are the information structures and representations of products.They are taking more and more important roles in engineering applications.With the investigation on engineering product information and from the viewpoint of industrial process,in this paper,the information models are proposed and the definitions of the framework of product information are given.And then,the integration and the consistence of product information are discussed by introucing the entity and its instance.As a summary,the information structures described in this paper have many advantage and natures helpful in engineering design.

  14. Building Models and Building Modelling

    Jørgensen, Kaj; Skauge, Jørn


    I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygnings­model­lerings­programmer beskrevet. Vigtige aspekter om comp...

  15. Molecular Modelling

    Aarti Sharma


    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  16. Cheating models

    Arnoldi, Jakob

    The article discusses the use of algorithmic models for so-called High Frequency Trading (HFT) in finance. HFT is controversial yet widespread in modern financial markets. It is a form of automated trading technology which critics among other things claim can lead to market manipulation. Drawing...... on two cases, this article shows that manipulation more likely happens in the reverse way, meaning that human traders attempt to make algorithms ‘make mistakes’ or ‘mislead’ algos. Thus, it is algorithmic models, not humans, that are manipulated. Such manipulation poses challenges for security exchanges....... The article analyses these challenges and argues that we witness a new post-social form of human-technology interaction that will lead to a reconfiguration of professional codes for financial trading....

  17. Acyclic models

    Barr, Michael


    Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.

  18. Nuclear Models

    Fossión, Rubén


    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  19. Modelling Behaviour


    This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....

  20. Modeling Minds

    Michael, John

    others' minds. Then (2), in order to bring to light some possible justifications, as well as hazards and criticisms of the methodology of looking time tests, I will take a closer look at the concept of folk psychology and will focus on the idea that folk psychology involves using oneself as a model...... of other people in order to predict and understand their behavior. Finally (3), I will discuss the historical location and significance of the emergence of looking time tests...

  1. Modeling biomembranes.

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas


    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  2. Model Construct Based Enterprise Model Architecture and Its Modeling Approach


    In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.

  3. DTN Modeling in OPNET Modeler

    PAPAJ Jan


    Full Text Available Traditional wireless networks use the concept of the point-to-point forwarding inherited from reliable wired networks which seems to be not ideal for wireless environment. New emerging applications and networks operate mostly disconnected. So-called Delay-Tolerant networks (DTNs are receiving increasing attentions from both academia and industry. DTNs introduced a store-carry-and-forward concept solving the problem of intermittent connectivity. Behavior of such networks is verified by real models, computer simulation or combination of the both approaches. Computer simulation has become the primary and cost effective tool for evaluating the performance of the DTNs. OPNET modeler is our target simulation tool and we wanted to spread OPNET’s simulation opportunity towards DTN. We implemented bundle protocol to OPNET modeler allowing simulate cases based on bundle concept as epidemic forwarding which relies on flooding the network with messages and the forwarding algorithm based on the history of past encounters (PRoPHET. The implementation details will be provided in article.

  4. A Model

    Liu Zhiyang


    Similar to ISO Technical Committees,SAC Technical Committees undertake the management and coordination of standard's development and amendments in various sectors in industry,playing the role as a bridge among enterprises,research institutions and the governmental standardization administration.How to fully play the essential role is the vital issue SAC has been committing to resolve.Among hundreds of SAC TCs,one stands out in knitting together those isolated,scattered,but highly competitive enterprises in the same industry with the "Standards" thread,and achieving remarkable results in promoting industry development with standardization.It sets a role model for other TCs.

  5. 氧化钇弥散强化钨基复合材料的制备及其性能评价%Fabrication and Performance Evaluation of Yttrium Oxide Dispersion Strengthen Tungsten Composites

    谈军; 周张健; 钟铭; 骆学广; 屈丹丹


    W-0.5 wt%Y2O3-l wt%Ti composites were fabricated through high energy ball milling, sintering and thermal processing. The results show that the Y2O3 and Ti will dissolve in the W lattice during the high energy ball milling. It was found that the Y-Ti-O compound and Ti as the second phase will be precipitated from the W and disperse in the grain broundary in the process of sintering. After the hot-rolling treatment, the mode of the fracture of tungsten changed from the intergranular fracture mode to a transgranular mode, which led to the high mechanical properties of ODS W. The relative density, bending strength and the Vicker's hardness of ODS WR were 96.7 %, 788.0 Mpa and HV 432.8 respectively.%采用高能球磨、通氢烧结和后期热轧处理制备了W-0.5%Y2O3-1%Ti复合材料,对加工变形处理前后的W-0.5%Y2O3-1%Ti的显微组织结构和室温力学性能进行了研究.研究分析表明,采用高能球磨,可使Y2O3和Ti固溶到W中,在高温烧结的过程中,Y2O3和Ti以Y-Ti-O化合物和Ti的形式从钨基体中析出来,弥散分布在钨晶粒的晶界及其晶内.经在1 500℃左右热加工变形处理后,W-0.5%Y2O3-1%Ti的致密度显著提高,与此同时大量体积分数的穿晶断裂赋予了W-0.5%Y2O3-1%Ti复合材料较高的力学性能.实验结果表明经热轧后W-0.5%Y2O3-1%Ti的致密度、抗弯强度、维氏硬度分别可达96.7%,788.0 MPa和HV432.8.

  6. Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process

    Shahverdi, Ali

    Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: 1) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (ITP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y2O3, Ni-Co-Y2O3, and Ni-Mo-Y2O3) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, IM, and gas flow rate, FR) on the Tonset and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on Tonset. A methodology was then developed based upon the SWCNTs synthesis using the ITP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in

  7. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: Role of low molecular weight natural organic acids.

    Zhang, Fan; Wang, Zhuang; Wang, Se; Fang, Hao; Chen, Mindong; Xu, Defu; Tang, Lili; Wang, Degao


    Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size. LOA interaction with nY2O3 is shown to promote the release of dissolved yttrium from the nanoparticles, depending on the concentrations of LOAs. Toxic effects of the nY2O3 suspensions incubated with LOAs on Scenedesmus obliquus as a function of their mixture levels show three types of signs: stimulation, inhibition, and alleviation. The mechanism of the effects of LOAs on the nY2O3 toxicity may be mainly associated with the degree of agglomeration, particle-induced oxidative stress, and dissolved yttrium. Our results stressed the importance of LOA impacts on the fate and toxicity of ENPs in the aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    ZHANG Shenglin


    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  9. Heat-shock properties in yttrium-oxide films synthesized from metal-ethylenediamine tetraacetic acid complex through flame-spray apparatus

    Xin, D. Y.; Komatsu, Keiji; Abe, Keita; Costa, Takashi; Ikeda, Yutaka; Nakamura, Atsushi; Ohshio, Shigeo; Saitoh, Hidetoshi


    Recently, a new deposition technique using a metal-ethylenediamine tetraacetic acid (EDTA) complex has been developed. In this study, the heat-shock properties of metal-oxide films synthesized from a metal-EDTA complex were investigated. Y2O3 films were synthesized on stainless-steel (SUS) substrate from EDTA•Y•H through the combustion of H2-O2 gas. A cyclic heat-shock test was conducted on the fabricated Y2O3 films through exposure to the H2-O2 flame. The existence of Y2O3 crystals was confirmed. Surface cracks or damages were not observed in the samples after the cyclic thermal test. Although the number of cross-sectional cracks, crack lengths, and cracks per unit area was increased by the heat shock, delaminations were not observed in the Y2O3 films. The results show that the prepared Y2O3 films have high thermal-shock resistance and are suitable for use as thermal barrier coatings.

  10. Preparation and conductivity measurement of 7-8 mol % YSZ and 12 mol % CSZ for electrolyte SOFC

    Budiana, B.; Fitriana, F.; Ayu, N.; Suasmoro, S.


    The study of 7YSZ (93% ZrO2-7%Y2O3), 8YSZ (92% ZrO2-8%Y2O3), and CSZ (88% ZrO2-12% CaO) as SOFC electrolytes have been carried out successfully. 7YSZ and 8YSZ powders were prepared by solid state reaction method of mixed Y2O3 and ZrO2 followed by calcination at 1350 °C for 1 hour, while CSZ was commercial products. Pellets of 7YSZ, 8YSZ, and CSZ were prepared by 1.2 gr, pressed at 40 MPa and sintered at 1550 °C for 4 hours. Rietveld refinement revealed that 7YSZ comprised 47.27% monoclinic, 52.65% cubic, and 0.008% Y2O3 cubic, while 8YSZ comprised 48.45% monoclinic, 49.32% cubic, 2.23% Y2O3 cubic and CSZ has 88% ZrO2 and 12% CaO. Ionic conductivity and activation energy were obtained from Cole- Cole Plot of impedance, the activation energy of 7YSZ=1.03eV, 8YSZ=0.96eV and CSZ=0.78eV.

  11. Thermal, Mechanical and Electrical Properties of the PEO-based Solid Polymer Electrolytes Filled by Yttrium Oxide Nanoparticles

    LIANG Guijie; XU Jie; XU Weilin; SHEN Xiaolin; BAI Zhikui; YAO Mu


    The novel composite lithium solid polymer electrolytes (SPEs) composed of polyethylene oxide (PEO) matrix and yttrium oxide (Y2O3) nanofillers were prepared by a solution casting method.The crystal morphology of the SPEs was characterized by polarized optical microscope (POM) and wide-angle X-ray diffraction (WAXD).The induced nucleation and steric hindrance effects of Y203 nanofillers result in the increased amount as well as decreased size of PEO sphemlites which are closely related to the crystallinity of the SPEs.As the Y2O3 contents increase from 0 wt% to 15 wt,the crystallinity of the SPEs decreases proportionally.The thermal,mechanical and electrical properties of the SPEs were investigated by thermal gravimetric analysis (TGA),dynamic mechanical analysis (DMA) and AC impedance method,respectively.The physical properties including thermal,mechanical and electrical performances,depending remarkably on the polymer-filler interactions between PEO and Y2O3 nanoparticles,are improved by different degrees with the increase of Y2O3 contents.The (PEO)21Lii/10 wt%Y2O3 composite SPE exhibits the optimal room-temperature ionic conductivity of 5.95×10-5 S*cm-1,which satisfies the requirements of the conventional electrochromic devices..

  12. Modelling Behaviour


    This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....... posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science...

  13. Econometric modelling

    M. Alguacil Marí


    Full Text Available The current economic environment, together with the low scores obtained by our students in recent years, makes it necessary to incorporate new teaching methods. In this sense, econometric modelling provides a unique opportunity offering to the student with the basic tools to address the study of Econometrics in a deeper and novel way. In this article, this teaching method is described, presenting also an example based on a recent study carried out by two students of the Degree of Economics. Likewise, the success of this method is evaluated quantitatively in terms of academic performance. The results confirm our initial idea that the greater involvement of the student, as well as the need for a more complete knowledge of the subject, suppose a stimulus for the study of this subject. As evidence of this, we show how those students who opted for the method we propose here obtained higher qualifications than those that chose the traditional method.

  14. Modelling Defiguration

    Bork Petersen, Franziska


    For the presentation of his autumn/winter 2012 collection in Paris and subsequently in Copenhagen, Danish designer Henrik Vibskov installed a mobile catwalk. The article investigates the choreographic impact of this scenography on those who move through it. Drawing on Dance Studies, the analytical...... advantageous manner. Stepping on the catwalk’s sloping, moving surfaces decelerates the models’ walk and makes it cautious, hesitant and shaky: suddenly the models lack exactly the affirmative, staccato, striving quality of motion, and the condescending expression that they perform on most contemporary...... catwalks. Vibskov’s catwalk induces what the dance scholar Gabriele Brandstetter has labelled a ‘defigurative choregoraphy’: a straying from definitions, which exist in ballet as in other movement-based genres, of how a figure should move and appear (1998). The catwalk scenography in this instance...

  15. Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes

    Perry, Nicola Helen

    Reducing the operating temperature of solid oxide fuel cells (SOFCs), to improve durability and lower cost, requires an increase in the low temperature oxygen-ion conductivity of the electrolyte. This work investigates whether the electrolyte conductivity could be increased by decreasing the grain size into the nanoscale. Bulk electrolytes - cubic yttria-stabilized zirconia (YSZ, with 8mol% Y2O3), tetragonal zirconia polycrystal (TZP, with 3mol% Y2O3), and Sr- and Mg- co-doped LaGaO3 (LSGM) - were fabricated with grain sizes ranging from 10nm to 3mum, using commercial or sol-gel-derived nanopowders and various sintering techniques. Local grain boundary and grain core conductivities and dielectric constants were analyzed over a range of temperatures and atmospheres using AC-impedance spectroscopy and our novel nano-Grain Composite Model, and interpreted in terms of grain-size dependent defect chemistry (e.g. space charge models, local thermodynamics, and impurity/ acceptor segregation). All three oxides exhibited qualitatively similar electrical/ dielectric behavior. Their single crystal/ grain core dielectric constants exhibited an upturn with temperature, which was attributed to the onset of dipolar relaxation. Grain boundary dielectric constants were consistently higher than grain core dielectric constants at the nanoscale. n-GCM-derived electrical grain boundary half-widths agreed well with measured acceptor dopant segregation widths at grain boundaries. The local grain boundary conductivity was consistently increased in nanocrystalline vs. microcrystalline samples, although the mechanisms responsible for this behavior differed in each material. Grain core conductivity did not change with grain size in each case. Despite the increase in local grain boundary conductivity at the nanoscale, the total conductivity decreased monotonically with decreasing grain size in all three electrolytes; the grain boundaries remain barriers to transport (relative to grain cores

  16. On Activity modelling in process modeling

    Dorel Aiordachioaie


    Full Text Available The paper is looking to the dynamic feature of the meta-models of the process modelling process, the time. Some principles are considered and discussed as main dimensions of any modelling activity: the compatibility of the substances, the equipresence of phenomena and the solvability of the model. The activity models are considered and represented at meta-level.

  17. Towards a Multi Business Model Innovation Model

    Lindgren, Peter; Jørgensen, Rasmus


    This paper studies the evolution of business model (BM) innovations related to a multi business model framework. The paper tries to answer the research questions: • What are the requirements for a multi business model innovation model (BMIM)? • How should a multi business model innovation model...... look like? Different generations of BMIMs are initially studied in the context of laying the baseline for how next generation multi BM Innovation model (BMIM) should look like. All generations of models are analyzed with the purpose of comparing the characteristics and challenges of previous...

  18. Better Language Models with Model Merging

    Brants, T


    This paper investigates model merging, a technique for deriving Markov models from text or speech corpora. Models are derived by starting with a large and specific model and by successively combining states to build smaller and more general models. We present methods to reduce the time complexity of the algorithm and report on experiments on deriving language models for a speech recognition task. The experiments show the advantage of model merging over the standard bigram approach. The merged model assigns a lower perplexity to the test set and uses considerably fewer states.

  19. Model Selection Principles in Misspecified Models

    Lv, Jinchi


    Model selection is of fundamental importance to high dimensional modeling featured in many contemporary applications. Classical principles of model selection include the Kullback-Leibler divergence principle and the Bayesian principle, which lead to the Akaike information criterion and Bayesian information criterion when models are correctly specified. Yet model misspecification is unavoidable when we have no knowledge of the true model or when we have the correct family of distributions but miss some true predictor. In this paper, we propose a family of semi-Bayesian principles for model selection in misspecified models, which combine the strengths of the two well-known principles. We derive asymptotic expansions of the semi-Bayesian principles in misspecified generalized linear models, which give the new semi-Bayesian information criteria (SIC). A specific form of SIC admits a natural decomposition into the negative maximum quasi-log-likelihood, a penalty on model dimensionality, and a penalty on model miss...

  20. The IMACLIM model; Le modele IMACLIM



    This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)

  1. Building Mental Models by Dissecting Physical Models

    Srivastava, Anveshna


    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…

  2. The IMACLIM model; Le modele IMACLIM



    This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)

  3. Cathodoluminescent properties of Tb3+-doped yttria nanocrystallites

    P.Psuja; D.Hreniak; W.Str(e)k


    The Tb3+-doped Y2O3 nanopowders were synthesized using the modified Pechini method.The average size of nanocrystallites was controlled by different sintering temperatures.The structure and morphology of obtained nanopowders were examined using the XRD and SEM analyses.The Cr:Al2O3 was mixed with Tb3+:Y2O3 powders and its normalized emission was measure a relative intensity of Tb3+:Y2O3.The mixtures were electrophorefically deposited on ITO-glass slides.The cathodoluminescence spectra of obtained layers were recorded and analysed.The discussion over an influence of average grains size on phosphor efficiency was presented.

  4. Comportamiento mecánico de nuevas aleaciones de wolframio en función de la temperatura

    Aguirre Cebrian, Maria Vega


    La presente memoria de tesis tiene como objetivo principal la caracterización mecánica en función de la temperatura de nueve aleaciones de wolframio con contenidos diferentes en titanio, vanadio, itria y lantana. Las aleaciones estudiadas son las siguientes: W-0.5%Y2O3, W-2%Ti, W-2% Ti-0.5% Y2O3, W-4% Ti-0.5% Y2O3, W-2%V, W- 2%Vmix, W-4%V, W-1%La2O3 and W-4%V-1%La2O3. Todos ellos, además del wolframio puro se fabrican mediante compresión isostática en caliente (HIP) y son...

  5. Compositional effects on Si3N4 fracture surfaces

    Hench, L. L.; Ohuchi, F.; Vaidyanathan, P. N.; Dutta, S.


    Surface analysis techniques (X-ray, infrared reflection spectroscopy, Auger electron spectroscopy) applied to the same samples reveal that fracture surfaces of Si3N4 with Y2O3 densification aids possess a higher concentration of oxygen than the bulk. The oxide densification aids thus concentrate in the grain boundaries, and even low-temperature fracture is seen as occurring preferentially within the oxygen-enriched grain boundaries. It is found that increasing the concentrations of Y2O3 and Al2O3 increases the oxygen content of the fracture surface. A range of 13-15 percent Y2O3 + 6 percent Al2O3 gives an amorphous grain-boundary phase that is resistant to devitrification. Fracture occurs through the amorphous phase, and heat treatment at 1000 C has little effect on the amorphous phase.

  6. Thermoluminescence properties of AlN ceramics

    Trinkler, L.; Christensen, P.; Agersnap Larsen, N.


    The paper describes thermoluminescence (TL) properties of AlN:Y2O3 ceramics irradiated with ionising radiation. A high TL sensitivity of AlN:Y2O3 ceramics to radiation encouraged a study of the AlN ceramics for application as a dosimetric material. The paper presents experimental data on: glow...... curve, emission spectrum, dose response, energy dependence, influence of heating rate and fading rate. The measured TL characteristics were compared with those of well-known, widely used TLDs, i.e. LiF:Mg,Ti, LiF:Mg,Cu,P and Al2O3:C. It is concluded that AlN:Y2O3 ceramics showing a radiation sensitivity...

  7. Studies of aluminium nitride ceramics for application in UV dosimetry

    Trinkler, L.; Bøtter-Jensen, L.; Christensen, P.


    The study is reported of the ceramic material AlN-Y2O3 as a potential luminescence dosemeter for the detection of UV radiation. Both the thermoluminescence and the optically stimulated luminescence properties of the material have been studied after exposure to UV radiation and compared with those...... of the widely used dosemeter material Al2O3:C. It has been shown that AlN-Y2O3 ceramics exhibit three orders of magnitude higher sensitivity to UV radiation than does Al2O3,:C over a broad spectral region. The thermoluminescence from AlN-Y2O3 is characterised by linear dose dependence over a wide range...

  8. Mechanical behaviors of alumina ceramics doped with rare-earth oxides

    YAO Yijun; LI Chuncheng; WANG Ling; JIANG Xiaolong; QIU Tai


    The effects of three types of additives Y2O3, La2O3, and Sm2O3 on the sintering and mechanical behaviors of alumina ceramics were investigated. The bending strengths of alumina ceramics with Sm2O3 and Y2O3 additions were 455 and 439 MPa, respectively, higher than that with La2O3 addition. The fracture toughness of the ceramics with Sm2O3 and Y2O3 were also higher than that with La2O3 addition. The fracture mode of rare earth oxides doped alumina ceramics exhibited obvious transgranular fractures as well as intergranular fracture. The results of research show that the improvement of bending strength and fracture toughness of alumina ceramics with rare earth oxides was achieved by refining the grain size and strengthening the grain boundary.

  9. A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting

    逯圣路; 汤慧萍; 马前; 洪权; 曾立英


    A yttrium-containing high-temperature titanium alloy (Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting (SEBM). The resulting microstructure and textures were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscattered diffraction (EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50−250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen (7×10−4, mass fraction) and yttrium (10−3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.

  10. Morphology controllable synthesis of yttrium oxide-based phosphors from yttrium citrate precursors

    HUANG Manlian; GUO Kai; MAN Zhenyong; CHEN Haohong; YANG Xinxin; XU Fangfang; ZHAO Jingtai


    A novel yttrium citrate-templated conversion method for morphology controlled synthesis ofY2O3 microspheres,microflowers and microsheets was reported for the first time.The precursors with controllable morphologies were synthesized with a homogenous precipitation method in aqueous solution without any surfactant.Y2O3 samples with well-preserved morphological architectures were obtained by a subsequent thermal transformation strategy.The chemical formula of the precursor was identified and a two-stage growth mechanism was proposed.The effects of the aging time,reaction temperature,reactant concentration and molar ratio of yttrium nitrate to sodium citrate were discussed.The photoluminescence properties of the Y2O3∶Eu3+ microspheres,microflowers and microsheets prepared were also studied.

  11. Modelling live forensic acquisition

    Grobler, MM


    Full Text Available This paper discusses the development of a South African model for Live Forensic Acquisition - Liforac. The Liforac model is a comprehensive model that presents a range of aspects related to Live Forensic Acquisition. The model provides forensic...

  12. Continuous Time Model Estimation

    Carl Chiarella; Shenhuai Gao


    This paper introduces an easy to follow method for continuous time model estimation. It serves as an introduction on how to convert a state space model from continuous time to discrete time, how to decompose a hybrid stochastic model into a trend model plus a noise model, how to estimate the trend model by simulation, and how to calculate standard errors from estimation of the noise model. It also discusses the numerical difficulties involved in discrete time models that bring about the unit ...

  13. Comparative Protein Structure Modeling Using MODELLER.

    Webb, Benjamin; Sali, Andrej


    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.

  14. Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells.

    Chen, Zihan; Li, Qinghua; Chen, Chuyang; Du, Jiaxing; Tong, Jifeng; Jin, Xiao; Li, Yue; Yuan, Yongbiao; Qin, Yuancheng; Wei, Taihuei; Sun, Weifu


    In this work, dysprosium ion decorated yttrium oxide (Dy(3+):Y2O3) nanocrystal phosphors were incorporated into TiO2 acceptor thin film in a bid to enhance the light harvest, charge separation and transfer in the hybrid solar cells. The results show that the energy level offset between the donor (P3HT) and the acceptor (Dy(3+):Y2O3-TiO2) has been narrowed down, thus leading to the enhanced electron and hole transports, and also photovoltaic performances as compared to pure TiO2 without incorporating Dy(3+):Y2O3. By applying femtosecond transient optical spectroscopy, after the incorporation of dopant Dy(3+):Y2O3 into TiO2 at 6 wt%, both the hot electron and hole transfer lifetimes have been shortened, that is, from 30.2 ps and 6.94 ns to 25.1 ps and 1.26 ns, respectively, and an enhanced efficiency approaching 3% was achieved as compared to 2.0% without doping, indicating that the energetic charges are captured more efficiently benefitting a higher power conversion efficiency. Moreover, these results reveal that both the conduction band (CB) and valence band (VB) edges of the acceptor were elevated by 0.57 and 0.32 eV, respectively, after incorporating 6 wt% Dy(3+):Y2O3. This work demonstrates that distinct energy level alignment engineered by Dy(3+):Y2O3 phosphor has an important role in pursuing efficient future solar cells and underscores the promising potential of rare-earth phosphor in solar applications.

  15. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do


    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  16. Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties.

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus


    The preparation of macroscopic materials from two-dimensional nanostructures represents a great challenge. Restacking and random aggregation to dense structures during processing prevents the preservation of the two-dimensional morphology of the nanobuilding blocks in the final body. Here we present a facile solution route to ultrathin, crystalline Y2O3 nanosheets, which can be assembled into a 3D network by a simple centrifugation-induced gelation method. The wet gels are converted into aerogel monoliths of macroscopic dimensions via supercritical drying. The as-prepared, fully crystalline Y2O3 aerogels show high surface areas of up to 445 m(2)/g and a very low density of 0.15 g/cm(3), which is only 3% of the bulk density of Y2O3. By doping and co-doping the Y2O3 nanosheets with Eu(3+) and Tb(3+), we successfully fabricated luminescent aerogel monoliths with tunable color emissions from red to green under UV excitation. Moreover, the as-prepared gels and aerogels exhibit excellent adsorption capacities for organic dyes in water without losing their structural integrity. For methyl blue we measured an unmatched adsorption capacity of 8080 mg/g. Finally, the deposition of gold nanoparticles on the nanosheets gave access to Y2O3-Au nanocomposite aerogels, proving that this approach may be used for the synthesis of catalytically active materials. The broad range of properties including low density, high porosity, and large surface area in combination with tunable photoluminescence makes these Y2O3 aerogels a truly multifunctional material with potential applications in optoelectronics, wastewater treatment, and catalysis.

  17. Microstructural aspects of zirconia thermal barrier coatings

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.


    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  18. Recent Progress in the Development of Neodymium Doped Ceramic Yttria

    Prasad, Narasimha S.; Edwards, Chris; Trivedi, Sudhir B.; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra; Kear, Bernard


    Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium doped yttria (Nd:Y2O3) is considered to be an attractive material due to its possible lasing wavelengths of aprrox.914 nm and approx.946 nm for ozone profiling. These wavelengths when frequency tripled can generate UV light at approx.305 nm and approx.315 nm, which is particularly useful for ozone sensing using differential absorption lidar technique. For practical realization of space based UV transmitter technology, ceramic Nd:Y2O3 material is considered to possess great potential. A plasma melting and quenching method has been developed to produce Nd3+ doped powders for consolidation into Nd:Y2O3 ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises of two main steps: (a) plasma melting and quenching to generate dense, and homogeneous doped metastable powders, (b) pressure assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several 1" x 1" ceramic cylinders have been produced. The infrared transmission of undoped Y2O3 ceramics was as high as approx.75% without anti-reflection coating. In the case of Nd:Y2O3 ceramics infrared transmission values of approx.50% were achieved. Furthermore, Nd:Y2O3 samples with dopant concentrations of up to approx.2 at. % were prepared without significant emission quenching.

  19. Concept Modeling vs. Data modeling in Practice

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne


    account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how terminological ontologies can be used as the basis for developing conceptual and logical data models......This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal...

  20. Viability of thin wall tube forming of ATF FeCrAl

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  1. Viability of thin wall tube forming of ATF FeCrAl

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  2. Ab Initio Investigation of He Bubbles at the Y2Ti2O7-Fe Interface in Nanostructured Ferritic Alloys

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys are promising materials candidates for the next generation of nuclear reactors due to their ability to withstand high temperatures, high pressures, high neutron flux and especially, the presence of high concentrations of transmutation product helium. As helium diffuses through the matrix, large number densities of complex oxide nanoclusters, namely Y2Ti2O7, Y2O3 and Y2TiO5, act as trapping sites for individual helium atoms and helium clusters. Consequently, there is a significant decrease in the amount of helium that reaches grain boundaries, mitigating the threat of pressurized bubble formation and embrittlement. In order to understand the helium trapping mechanisms of the oxides at a fundamental level, the interface between the nanoclusters and the iron matrix must be modeled. We present results obtained using density functional theory on the Y2Ti2O7-Fe interface where the structure has been modeled based on experimental observations. Helium has been added along the interface in order to investigate the influence of helium on the structure and to obtain thermodynamic and kinetic parameters of helium along the interface.

  3. Business Model Innovation

    Dodgson, Mark; Gann, David; Phillips, Nelson; Massa, Lorenzo; Tucci, Christopher


    The chapter offers a broad review of the literature at the nexus between Business Models and innovation studies, and examines the notion of Business Model Innovation in three different situations: Business Model Design in newly formed organizations, Business Model Reconfiguration in incumbent firms, and Business Model Innovation in the broad context of sustainability. Tools and perspectives to make sense of Business Models and support managers and entrepreneurs in dealing with Business Model ...

  4. Modeling cholera outbreaks.

    Chao, Dennis L; Longini, Ira M; Morris, J Glenn


    Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios.

  5. Modeling cholera outbreaks

    Longini, Ira M.; Morris, J. Glenn


    Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios. PMID:23412687

  6. Model Manipulation for End-User Modelers

    Acretoaie, Vlad

    of these proposals. To achieve its first goal, the thesis presents the findings of a Systematic Mapping Study showing that human factors topics are scarcely and relatively poorly addressed in model transformation research. Motivated by these findings, the thesis explores the requirements of end-user modelers......End-user modelers are domain experts who create and use models as part of their work. They are typically not Software Engineers, and have little or no programming and meta-modeling experience. However, using model manipulation languages developed in the context of Model-Driven Engineering often...... requires such experience. These languages are therefore only used by a small subset of the modelers that could, in theory, benefit from them. The goals of this thesis are to substantiate this observation, introduce the concepts and tools required to overcome it, and provide empirical evidence in support...

  7. Air Quality Dispersion Modeling - Alternative Models

    Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.

  8. From Product Models to Product State Models

    Larsen, Michael Holm


    A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...... Object for this project. In the presentation, benefits and challenges of the PSM will be presented as a basis for the discussion....

  9. Study on Z-H/BMP Toughened Compound Artificial Bone and Its Osteogenesis

    XU Wei-guo; CHEN An-min; SUN Shu-zhen


    The purpose of this study was to find a kind of new artificial bone for anterior spinal fusion.ZrO2 stabilized by Y2O3 ( Y- PSZ), porous hydroxyapatite ( HA ) and bone morphogenetic protein (BMP) were used to make artificial compound bone ( Y2O3 ) ZrO2 -HA/ BMP( Z-H/ BMP ) , whose function was tested, microstructure and mineralogic composition constitution were analysised by SEM and XRD , and the corresponding animal tests were porformed. Osteogenesis of the material was observed by eyes, histology and SEM. Experimental results show that the component and ossific activity of Z-H/BMP were satisfactory.

  10. Structural characterization of liquid phase sintered silicon carbide by high-resolution X-ray diffractometry Caracterização estrutural do carbeto de silício sinterizado na presença de fase líquida por difratometria de raios X de alta resolução

    C. A. Kelly


    Full Text Available Silicon carbide (SiC was sintered using two different additives: AlN-Y2O3 or AlN-CRE2O3. CRE2O3 is a mixed oxide formed by Y2O3 and rare-earth oxides. The crystalline structures of the phases were analyzed by high-resolution X-ray diffraction using synchrotron light source. The results of the Rietveld refinement of the mixed oxide show a solid solution formation. In both silicon carbide samples prepared using AlN-Y2O3 or AlN-CRE2O3 3C (beta-phase and 6H (alpha-phase polytypes were found. The structural and microstructural results for both samples were similar. This is an indication of the viability of the use of CRE2O3 in substitution for Y2O3 as additive to obtain dense materials.Amostras de carbeto de silício (SiC foram sinterizadas com dois aditivos: AlN-Y2O3 ou AlN-CRE2O3. CRE2O3 é um óxido misto formado por Y2O3 e óxidos de terras raras. A estrutura cristalina das fases nas amostras foi analisada através de difração de raios X de alta resolução com fonte de luz síncrotron. Os resultados de refinamento do óxido misto pelo método de Rietveld mostraram a formação de uma solução sólida. Em ambas as amostras preparadas usando AlN- Y2O3 ou AlN- CRE2O3 foram detectados politipos 3C (fase beta e 6H (fase alfa. Os resultados estruturais e microestruturais das duas amostras mostraram-se similares. Esta é uma indicação da viabilidade do uso de CRE2O3 em substituição a Y2O3 como aditivo para a obtenção de materiais cerâmicos densos.

  11. Microstructural change on electron irradiated oxide dispersion strengthened ferritic steels

    Kinoshita, H.; Akasaka, N.; Takahashi, H.; Shibahara, I.; Onose, S.


    Oxide dispersion strengthened (ODS) ferritic steels were irradiated in a high voltage electron microscope (HVEM) to study their response to irradiation. Fe-13Cr with 0.25 wt% Y2O3 as dispersed particles and containing additions of either 0.45% Nb, 0.45% V and 0.67% Zr were irradiated at 673 and 723 K up to 15 dpa. The Y2O3 particles in all specimens were stable under these irradiation conditions. During irradiation, two types of dislocations were formed but observable voids were not formed. Furthermore, plate-like and granular-like precipitates formed in both the irradiated and nonirradiated regions.

  12. Effects of transient thermal shock loadings on the structure of zirconia ceramics

    Derkach, E. A.; Buyakova, Svetlana Petrovna; Kulkov, Sergey Nikolaevich


    In this paper the influence of thermal shock loadings on the phase composition and microstructure of ZrO[2](Y[2]O[3]) and ZrO[2](MgO) ceramics was studied. It was found that thermal shock strains were no effect on phase composition of ZrO[2](Y[2]O[3]) ceramics. Reducing the concentration of high-temperature tetragonal t-ZrO[2] and cubic c-ZrO[2] modifications and rising the content of low-temperature monoclinic m-ZrO[2] crystal system with increasing the number of thermal shock strains were o...

  13. Stimulated luminescence of AlN ceramics induced by ultraviolet radiation

    Trinkler, L.; Bøtter-Jensen, L.; Christensen, P.


    Properties of thermally stimulated luminescence (TL) and optically stimulated luminescence (OSL) of the ceramic material A1N-Y2O3 have been studied after exposure to ultraviolet radiation (UVR). The dosemeter material Al2O3 : C has been used for comparative measurements. The spectral sensitivity...... than that of Al2O3 : C in a broad spectral region. The possibility of using A1N-Y2O3 ceramic for UVR dosimetry is discussed. (C) 2001 Elsevier Science Ltd. All rights reserved....

  14. Synthesis and Characterization of Large Surface Area Yttrium Oxide by Precipitation Method

    崔大立; 龙志奇; 张顺利; 崔梅生; 黄小卫


    The method for preparing yttrium oxide with large specific surface area was introduced. By means of BET, SEM, TG and DTA analysis, the effects of precipitant, stirring velocity, non-RE impurity in solution, calcination temperature, on the surface area were studied respectively. The Y2O3 sample with specific surface area of more than 60 m2*g-1 and L.O.I less than 1% was prepared in the suitable precipitation condition and calcinations temperature when the ammonia used as precipitant. The SEM shows that the Y2O3 prepared with large surface area is the aggregation of about 50 nm particles.

  15. Analysis of inner filter effect on the up-conversion spectra of erbium doped yttrium oxide close-packed powders

    Rakov, Nikifor; Maciel, Glauco S.


    We observed that the up-conversion (UC) emission profiles of erbium (Er3+) doped yttrium oxide (Y2O3) close-packed powders prepared by combustion synthesis are different when the luminescence reflected from the sample is compared to the luminescence transmitted through the sample (thickness: ˜0.1 mm). The effect was identified as a combination of scattering and an inner filter effect (IFE). The IFE reduces the transmitted UC luminescence bandwidths up to 50%. The IFE was suppressed by the inclusion of free-standing undoped Y2O3 particles.

  16. Preparation of Hollow Spherical and Core/shell Structured Powders by Plasma Processing

    ZHANG; Xiaofeng; ZHOU; Kesong; DENG; Changguang; SONG; Jinbing; ZHANG; Jifu; DONG; Shujuan


    Four types of hollow spherical micro- and nano-szied powders of ZrO2-7wt.%Y2O3(7YSZ), ZrO2-7wt.%Y2O3, Al2O3-13 wt.% TiO2(AT) and WC as well as one type of core/shell structured powder of ZrB2-30 wt.%Mo Si2 were prepared via plasma processing. In addition, the formation mechanisms of hollow spherical and core/shell structured powders prepared via plasma processing were also proposed.

  17. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing


    International audience; Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfin...

  18. Nanocrystalline copper based microcomposites

    J.P. Stobrawa; Z.M. Rdzawski; W. Głuchowski; J. Domagała-Dubiel


    Purpose: The aim of this work was to investigate microstructure, mechanical properties and deformation behavior of copper microcomposites: Cu- Y2O3, Cu- ZrO2 and Cu-WC produced by powder metallurgy techniques.Design/methodology/approach: Tests were made with Cu-Y2O3, Cu-ZrO2 and Cu-WC microcomposites containing up to 2% of a strengthening phase. The materials were fabricated by powder metallurgy techniques, including milling of powders, followed by their compacting and sintering. The main mec...

  19. Measurement and Modeling: Infectious Disease Modeling

    Kretzschmar, MEE


    After some historical remarks about the development of mathematical theory for infectious disease dynamics we introduce a basic mathematical model for the spread of an infection with immunity. The concepts of the model are explained and the model equations are derived from first principles. Using th

  20. Modelling of Hydraulic Robot

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  1. Product and Process Modelling

    Cameron, Ian T.; Gani, Rafiqul

    This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models. These ...

  2. "Bohr's Atomic Model."

    Willden, Jeff


    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  3. Modelling of Hydraulic Robot

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  4. Forest-fire models

    Haiganoush Preisler; Alan Ager


    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  5. Solicited abstract: Global hydrological modeling and models

    Xu, Chong-Yu


    The origins of rainfall-runoff modeling in the broad sense can be found in the middle of the 19th century arising in response to three types of engineering problems: (1) urban sewer design, (2) land reclamation drainage systems design, and (3) reservoir spillway design. Since then numerous empirical, conceptual and physically-based models are developed including event based models using unit hydrograph concept, Nash's linear reservoir models, HBV model, TOPMODEL, SHE model, etc. From the late 1980s, the evolution of global and continental-scale hydrology has placed new demands on hydrologic modellers. The macro-scale hydrological (global and regional scale) models were developed on the basis of the following motivations (Arenll, 1999). First, for a variety of operational and planning purposes, water resource managers responsible for large regions need to estimate the spatial variability of resources over large areas, at a spatial resolution finer than can be provided by observed data alone. Second, hydrologists and water managers are interested in the effects of land-use and climate variability and change over a large geographic domain. Third, there is an increasing need of using hydrologic models as a base to estimate point and non-point sources of pollution loading to streams. Fourth, hydrologists and atmospheric modellers have perceived weaknesses in the representation of hydrological processes in regional and global climate models, and developed global hydrological models to overcome the weaknesses of global climate models. Considerable progress in the development and application of global hydrological models has been achieved to date, however, large uncertainties still exist considering the model structure including large scale flow routing, parameterization, input data, etc. This presentation will focus on the global hydrological models, and the discussion includes (1) types of global hydrological models, (2) procedure of global hydrological model development

  6. Bayesian Model Selection and Statistical Modeling

    Ando, Tomohiro


    Bayesian model selection is a fundamental part of the Bayesian statistical modeling process. The quality of these solutions usually depends on the goodness of the constructed Bayesian model. Realizing how crucial this issue is, many researchers and practitioners have been extensively investigating the Bayesian model selection problem. This book provides comprehensive explanations of the concepts and derivations of the Bayesian approach for model selection and related criteria, including the Bayes factor, the Bayesian information criterion (BIC), the generalized BIC, and the pseudo marginal lik

  7. From Numeric Models to Granular System Modeling

    Witold Pedrycz


    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  8. Geologic Framework Model Analysis Model Report

    R. Clayton


    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  9. Model Theory and Applications

    Mangani, P


    This title includes: Lectures - G.E. Sacks - Model theory and applications, and H.J. Keisler - Constructions in model theory; and, Seminars - M. Servi - SH formulas and generalized exponential, and J.A. Makowski - Topological model theory.

  10. Wildfire Risk Main Model

    Earth Data Analysis Center, University of New Mexico — The model combines three modeled fire behavior parameters (rate of spread, flame length, crown fire potential) and one modeled ecological health measure (fire regime...

  11. Energy modelling software

    Osburn, L


    Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...

  12. Computational neurogenetic modeling

    Benuskova, Lubica


    Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol

  13. Predictive Models for Music

    Paiement, Jean-François; Grandvalet, Yves; Bengio, Samy


    Modeling long-term dependencies in time series has proved very difficult to achieve with traditional machine learning methods. This problem occurs when considering music data. In this paper, we introduce generative models for melodies. We decompose melodic modeling into two subtasks. We first propose a rhythm model based on the distributions of distances between subsequences. Then, we define a generative model for melodies given chords and rhythms based on modeling sequences of Narmour featur...

  14. On the mechanism of deep craters formation under the action of high power ytterbium-fiber laser

    Kochurin, E. A.; Lisenkov, V. V.; Osipov, V. V.; Platonov, V. V.; Zubarev, N. M.


    Stability of a liquid crater wall formed under the action of an ytterbium-fiber laser in the course of the Nd3+:Y2O3 nanopowder production is studied theoretically. It has been shown that hydrodynamic instability can develop on the melt-vapor interface as a result of the tangential discontinuity of the velocity between the vapor stream and molten crater wall. The characteristic spatial and temporal scales are estimated in the framework of the proposed qualitative model, they are found to be 20-90 μm and 20-50 μs, respectively, that is in good agreement with experimental data. Thus, the droplet formation time (during which the amplitude of the boundary perturbation reaches the wavelength order) is much smaller than a pulse duration of the ytterbium-fiber laser (1360 μs). This means that a significant amount of material can be removed from the crater due to formation of microscale droplets during the irradiation. This mechanism can explain the much greater crater depth for the fiber laser than for CO2 laser (a pulse duration for which is 370 μs).

  15. Optical and structural characterization of yttrium calcium borate glasses

    Santos, Cristiane; Meneses, Domingos D. S.; Echegut, Patrick; Neuville, Daniel R.; Hernandes, Antonio C.; Ibanez, Alain


    Structural and optical properties of new stable glasses in the Y2O3 -- CaO -- B2O3 system, containing the same Y/Ca ratio as the YCa4O(BO3)3 (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy [1]. We have obtained the optical functions using a dielectric function model and their evolution with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content with the formation of pentaborate, metaborate, orthoborate and pyroborate groups. The orthoborate and pyroborate signatures increase with increasing the modifier cations. Refractive indexes values (from 1.597 to 1.627 at λ = 2 μm) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for doping with rare-earth ions for optical applications. [4pt] [1] C. N. Santos, D.D.S. Meneses, P. Echegut, D. R. Neuville, A. C. Hernandes, A. Ibanez, Appl. Phys. Lett. 94, 151901(2009).

  16. Envejecimiento y propiedades eléctricas de materiales basados en Y-TZP

    Cachadiña, I.


    Full Text Available The electrical response of 3mol% yttria tetragonal zirconia polycrystals (Y-TZP was measured as a function of the grain size in the low temperature range (T < 350°C. The impedance spectrum shows two peaks related to grain and grain boundary effects (high and low frequencies, respectively that were fitted by a circuit model in order to analyse their respective contributions. The evolution of the fitting parameters with the thermal cycles was also studied to determine the thermal unstability (aging.

    Se ha estudiado la respuesta eléctrica de policristales tetragonales de ZrO2 - 3mol% Y2O3 (Y-TZP con distintos tamaños de grano, en el rango de baja temperatura (T < 350°C, para analizar su comportamiento en el proceso de envejecimiento que sufren estos cristales. El espectro de impedancia, que inicialmente muestra dos picos relacionados con las contribuciones de grano y frontera de grano (altas y bajas frecuencias, respectivamente, ha sido ajustado mediante un modelo circuital para analizar sus contribuciones. La evolución de los parámetros de ajuste con los ciclos térmicos ha sido analizada para ver cual es la influencia del proceso de envejecimiento sobre éstos.

  17. Influence of defect-induced biaxial strain on flux pinning in thick YBa2Cu3O7 layers

    Solovyov, V [Brookhaven National Laboratory (BNL); Li, Q [Brookhaven National Laboratory (BNL); Weidong, Si [Brookhaven National Laboratory (BNL); Maiorov, B. [Los Alamos National Laboratory (LANL); Haugan, T. J. [Air Force Research Laboratory; Macmanus-driscoll, J L [University of Cambridge; Yao, H [Soochow University, Suzhou, People' s Republic of China; Jia, Q X [Los Alamos National Laboratory (LANL); Specht, Eliot D [ORNL


    This work reports a detailed structural study by synchrotron x-ray diffraction of several sets of thickYBa2Cu3O7 layers. The samples represent recent advances in flux-pinning design, containing various concentrations of artificial pinning centers: (i) BaZrO3 nanorods, (ii) BaZrO3 nanoparticles, and (iii) Y2O3 nanoparticles. A statistical analysis was performed in order to separate the effects of defect-induced and intrinsic pinning. We report a statistically significant correlation between the orthorhombic distortion of the YBCO matrix and the pinning strength. Our result implies that the in-plane ordering of oxygen ions in the chain positions accounts for approximately 60% of the pinning force. The strain-induced pinning mechanism analysis, based on the Eshelby model of elastically strained composites, predicts that small YBCO grain size is a critical component of a strong pinning architecture that can enable critical current density values approaching the depairing limit.

  18. Relation between mechanical and textural properties of dense materials of tetragonal and cubic zirconia

    Gómez Sofía


    Full Text Available In the current paper we present a study of the sinterability of two zirconia (ZrO2 nanopowders with different content of yttrium oxide (Y2O3 3 and 8 % tetragonal and cubic zirconia, respectively. After sintering between 900-1500ºC, the samples were characterized in terms of their density and porosity using Archimedes technique. Their grain size was evaluated using scanning electron microscope (SEM. Vickers hardness and fracture toughness (KIC were measured by the indentation method. The results showed that pores are almost eliminated at sintering temperatures higher than 1400ºC and grain size is larger due to the agglomerates formed as a result of grain growth. Vickers hardness evaluated at 1400ºC sintering temperature is greater than that obtained at 1500ºC due to the grain growth produced at this temperature. In addition, we show a correlation between Vickers hardness and the porosity, obtained by evaluating empirical and theoretical models.

  19. An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation

    Qu, Liu; Choy, Kwang-Leong; Wheatley, Richard


    Ceramic oxides that have high-temperature capabilities can be deposited on the superalloy components in aero engines and diesel engines to advance engine efficiency and reduce fuel consumption. This paper aims to study doping effects of Dy3+ and Y3+on the thermodynamic properties of ZrO2 synthesized via a sol-gel route for a better control of the stoichiometry, combined with molecular dynamics (MD) simulation for the calculation of theoretical properties. The thermal conductivity is investigated by the MD simulation and Clarke’s model. This can improve the understanding of the microstructure and thermodynamic properties of (DyY)Zr2O7 (DYZ) at the atomistic level. The phonon-defect scattering and phonon-phonon scattering processes are investigated via the theoretical calculation, which provides an effective way to study thermal transport properties of ionic oxides. The measured and predicted thermal conductivity of DYZ is lower than that of 4 mol % Y2O3 stabilized ZrO2 (4YSZ). It is discovered that DYZ is thermochemically compatible with Al2O3 at 1300 °C, whereas at 1350 °C DYZ reacts with Al2O3 forming a small amount of new phases.

  20. Thermochemistry of Silicates

    Costa, Gustavo; Jacobson, Nathan


    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).