WorldWideScience

Sample records for wrought magnesium alloys

  1. Recent research and developments on wrought magnesium alloys

    Directory of Open Access Journals (Sweden)

    Sihang You

    2017-09-01

    Full Text Available Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys. In this contribution, recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design, focusing on Mg-Al, Mg-Zn and Mg-rare earth (RE systems. The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms, e.g. grain refinement, precipitation and texture hardening effect. Finally, the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.

  2. Potential automotive uses of wrought magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

    1996-06-01

    Vehicle weight reduction is one of the major means available to improve automotive fuel efficiency. High-strength steels, aluminum (Al), and polymers are already being used to reduce weight significantly, but substantial additional reductions could be achieved by greater use of low-density magnesium (Mg) and its alloys. Mg alloys are currently used in relatively small quantities for auto parts, generally limited to die castings (e.g., housings). Argonne National Laboratory`s Center for Transportation Research has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel/aluminum for automotive structural and sheet applications. Mg sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. This study identifies high cost as the major barrier to greatly increased Mg use in autos. Two technical R and D areas, novel reduction technology and better hot-forming technology, could enable major cost reductions.

  3. Forgeability of modified AZ and ZK wrought magnesium alloys

    NARCIS (Netherlands)

    Kurz, G.; Sillekens, W.H.; Werkhoven, R.J.; Letzig, D.

    2009-01-01

    Wrought magnesium alloy products have favourable attributes compared to castings with regard to mechanical properties. In addition they provide a complementary class of shapes and geometries. These are the current drivers for developments within the field of magnesium forging technology. Within this

  4. Deformation behavior and microstructure evolution of wrought magnesium alloys

    Science.gov (United States)

    Wang, Shouren; Song, Linghui; Kang, Sukbong; Cho, Jaehyung; Wang, Yingzi

    2013-05-01

    There are many researches on the deformation behavior of wrought magnesium alloys, such as AZ31, AZ80, AZ91, and ZK60 magnesium alloys at different temperatures and strain rates, but few of them focuses on the deformation behavior of AZ41M and ZK60M alloys, especially under the twin-roll casting (TRC) state. Meanwhile, the existing researches only focus on the grain refinement law of the magnesium alloys under deformation conditions, the deformation mechanism has not been revealed yet. The hot compression behavior of AZ41M and ZK60M magnesium alloys under the temperature and strain rate ranges of 250-400 °C and 0.001-1 s-1 are studied by thermal simulation methods using Gleeble 1500 machine and virtual simulation using finite element analysis software. Simulation results show that sine hyperbolic law is the most suitable flow stress model for wider deformation conditions. The most reasonable selected deformation conditions of ZK60M alloy is 350 °C/0.1 s-1 for TRC and 350 °C/1 s-1 for conventional casting (CC), while AZ41M alloy is 300 °C/0.01 s-1 for TRC and 350 °C/0.1 s-1 for CC. Deformation behavior and dynamic recrystallization (DRX) mechanism of them are analyzed at the same deformation conditions. The microstructures of AZ41M and ZK60M alloys are observed at different deformed conditions by optical microscopy (OM) and electron back scatter diffraction (EBSD) and it reveals the flow behavior and deformation mechanism of them. Working harden and work soften contribute to the activation of basal, non-basal slip systems which promote DRX. The proposed research reveals the deformation behavior and mechanism of the AZ41M and ZK 60M magnesium alloys and concludes their optimized deformation parameters and processes and provides a theory basis for their manufacturing and application.

  5. Potential applications of wrought magnesium alloys for passenger vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.; Stodolsky, F.; Wu, S.

    1995-12-31

    Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, aluminum (Al), and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of magnesium (Mg) and its alloys, which have very low density. Magnesium alloys are currently used in relatively small quantities for auto parts; use is generally limited to die castings, such as housings. The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel or aluminum for automotive structural and sheet applications. This study identifies technical and economic barriers to this replacement and suggests R&D areas to enable economical large-volume use. Detailed results of the study will be published at a later date. Magnesium sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. Currently, Mg sheet has found limited use in the aerospace industry, where costs are not a major concern. The major barrier to greatly increased automotive use is high cost; two technical R&D areas are identified that could enable major reductions in costs. These are novel reduction technology and better hot-forming technology, possibly operating at lower temperatures and involving superplastic behavior.

  6. Design of Ultrasonic Fatigue Specimen of MB8 Wrought Magnesium Alloy by Analytic Method

    Directory of Open Access Journals (Sweden)

    DENG Haipeng

    2016-08-01

    Full Text Available Ultrasonic fatigue specimen of MB8 wrought magnesium alloy was designed by calculation. In order to reduce the vibration amplitude, heat and pressure of the cooling system and also to protect the phase change, the sample was designed into variable cross-section. Based on the vibration displacement equation, boundary condition and displacement continuity condition, the relationship between the resonant length and other dimensions of the sample was derived. A series of size of ultrasonic fatigue specimens was calculated, which provided reference for the research of ultrasonic fatigue test of magnesium alloy. The results show that the resonance length decreases with the increase of the length of transition section, and the arc transition radius increases with the increase of the length of arc transition section.With the decrease of the length of arc transition section, Cs and M decreases for the specimen without uniform cross section in middle. With the decrease of the length of uniform cross section in the middle, Cs and M decreased for the specimen with uniform cross section in the middle.

  7. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds

    Energy Technology Data Exchange (ETDEWEB)

    Commin, Loreleie, E-mail: lorelei.commin@kit.edu [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Dumont, Myriam [Aix-Marseille Universite, CNRS, IM2NP (UMR 6242), Faculte St-Jerome, Case 261, Av. Escadrille Normandie-Niemen, 13 397 Marseille Cedex 20 (France); Rotinat, Rene; Pierron, Fabrice [LMPF, Arts et Metiers ParisTech, rue St Dominique, 51000 Chalons en Champagne (France); Masse, Jean-Eric; Barrallier, Laurent [MecaSurf, Arts et Metiers ParisTech, 2 cours des Arts et Metiers, 13100 Aix en Provence (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Study of AZ31 FSW mechanical behaviour. Black-Right-Pointing-Pointer Early yielding occurs in the TMAZ, the nugget and base metal zones undergo almost no plastic strains. Black-Right-Pointing-Pointer Texture gradient in the TMAZ localises the deformations in this area. Black-Right-Pointing-Pointer Residual stresses have a major influence in FSW mechanical behaviour. - Abstract: Friction stir welding induces a microstructural evolution and residual stresses that will influence the resulting mechanical properties. Friction stir welds produced from magnesium alloy hot rolled plates were studied. Electron back scattered diffraction was used to determine the texture evolution, residual stresses were analysed using X ray diffraction and tensile tests coupled with speckle interferometry were performed. The residual stresses induced during friction stir welding present a major influence on the final mechanical properties.

  8. Influence of loading path and precipitates on indentation creep behavior of wrought Mg–6 wt% Al–1 wt% Zn magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Madhya Pradesh 482005 (India); Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Jain, Jayant [Department of Applied Mechanics, Indian Institute of Technology, Delhi 110016 (India); Agarwal, Arvind, E-mail: agarwala@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2016-01-05

    This study reports the effect of loading path and precipitates on indentation induced creep behavior of AZ61 magnesium alloy. Indentation creep tests were performed on solution-treated and peak-aged extruded AZ61 magnesium alloy, and Atomic Force Microscopy (AFM) investigations were carried out to study deformation mechanisms. Twinning is the dominant creep mechanism for indentation along the extrusion direction (ED) in solution-treated alloy. A combination of slip and twinning appears to be the prominent mechanisms for indentation creep perpendicular to ED. Creep flow is arrested for indentation perpendicular to ED, due to slip–twin interactions. Influence of precipitates on creep deformation was also studied. Aged specimen exhibited higher creep resistance than solution-treated specimen. Unlike solution-treated specimens, twinning was not observed in aged alloy. Creep in aged specimen was attributed to slip.

  9. Formability of a wrought Mg alloy evaluated by impression testing

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Walid; Gollapudi, Srikant; Charit, Indrajit; Murty, K. Linga

    2018-01-17

    This study is focused on furthering our understanding of the different factors that influence the formability of Magnesium alloys. Towards this end, formability studies were undertaken on a wrought Mg-2Zn-1Mn (ZM21) alloy. In contrast to conventional formability studies, the impression testing method was adopted here to evaluate the formability parameter, B, at temperatures ranging from 298 to 473 K. The variation of B of ZM21 with temperature and its rather limited values were discussed in the light of different deformation mechanisms such as activation of twinning, slip, grain boundary sliding (GBS) and dynamic recrystallization (DRX). It was found that the material characteristics such as grain size, texture and testing conditions such as temperature and strain rate, were key determinants of the mechanism of plastic deformation. A by-product of this analysis was the observation of an interesting correlation between the Zener-Hollomon parameter, Z, and the ability of Mg alloys to undergo DRX.

  10. Analysis of the potential for new automotive uses of wrought magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  11. Analysis of the upward direct chill casting of magnesium alloys

    OpenAIRE

    Landaberea, Aitor; Pedrós, Pablo; Anglada, Eva; Garmendia, Iñaki

    2006-01-01

    The upward direct chill casting, where the continuous casting is operated vertically against the gravity, is a novel technology which has been applied to the production of high quality magnesium alloys circumventing the main disadvantages of using conventional continuous casting processes since the risks of burning and explosion are practically eliminated. This represents a key aspect to increase the industrial application of magnesium wrought products. In order to help on the understanding o...

  12. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  13. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    OpenAIRE

    Berat Barıs BULDUM; Aydın SIK; Iskender OZKUL

    2013-01-01

    Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attra...

  14. European Community research on forging of magnesium alloys (MagForge): state of affairs

    NARCIS (Netherlands)

    Sillekens, W.H.; Chevaleyre, F.; Gantar, G.

    2009-01-01

    While the interest in wrought magnesium applications is growing, forging of magnesium alloys in Europe and beyond is still restricted to a few specialized companies that operate for niche markets. Technical matters that relate to this are underdeveloped mechanical properties of available feedstock

  15. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  16. Comparison of the heat treatment response of wrought and SSM-HPDC alloy 6082

    CSIR Research Space (South Africa)

    Möller, H

    2011-06-01

    Full Text Available The natural and artificial aging responses of wrought and SSM-HPDC alloy 6082 are compared. It is shown that the heat treatment response of this Al-Mg-Si alloy is not influenced by differences in microstructures produced by different processing...

  17. Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys

    CSIR Research Space (South Africa)

    Curle, UA

    2010-09-01

    Full Text Available aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield...

  18. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  19. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  20. Ultralight Magnesium-Lithium Alloys

    OpenAIRE

    A. Białobrzeski; K. Saja; Hubner, K.

    2007-01-01

    The article gives basic information on the chief constituents of Mg-Li alloys and on their expected properties. A schematic representation and technical performance of a pilot stand for melting and pouring of reactive ultralight magnesium-based alloys have been presented. The preliminary data regarding the manufactured magnesium alloys with about 2-3 % Li and about 10 % Li have been given in the form of microstructures and chemical compositions.

  1. Development of magnesium diecasting alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F. (Magnesium Elektron, Manchester (United Kingdom))

    1998-01-01

    Although there are many fascinating aspects of the development of magnesium diecasting alloys, the volume potential of the automotive industry has always had a major influence on justifying the significant R and D expenditure necessary for this task. Apart from a review of the history of magnesium diecasting alloy development, I would therefore like to focus this presentation on aspects of development specifically relevant to current automotive requirements. (orig.)

  2. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  3. Magnesium alloying - some metallurgical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pekgueleryuez, M.Oe. [Inst. of Magnesium Technology (ITM), Quebec, PQ (Canada); Avedesian, M.M. [Inst. of Magnesium Technology (ITM), Quebec, PQ (Canada)

    1992-12-31

    The incentive for alloy development is the need for new materials with a combination of better performance properties at lower cost. Over the past 45 years the development of new Mg alloys has lagged steel, aluminum, copper, zinc and other metals. The reasons for the slow development of Mg alloys since the 1920`s may have been the real and perceived short comings of Mg which has limited the wide acceptance of the metal by the various industries. In addition the advent of high performance plastics has put new competitive pressure on magnesium. Upon a close look, it can be seen that Mg does not possess a full alloy spectrum; there are really three to four major commercial alloy systems such as Mg-Al-Zn, Mg-Al, Mg-Zn and Mg-Rare Earths. In 1990 most magnesium usage for structural applications was in diecasting (36 kt) and 90% of this was in one alloy, AZ91D. This shows that Mg has not yet fully realized its potential as a structural metal. The 1990`s may, however, generate a long term driving force for magnesium alloy development due to the fact that industries such as the transport industry are faced more than ever with weight reduction objectives. They are driven to use light weight metals and will continue to do so in the future. Magnesium which is the lightest structural metal offers an attractive solution and the interest in the metal is increasing rapidly. This paper attempts to address the major problems of magnesium alloys with the view of identifying opportunities for cost-competitive ways of eliminating the problems of magnesium via alloy and microstructural design. A basic understanding of the fundamental mechanisms affecting strength and creep of Mg is also presented. (orig.)

  4. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C [Los Alamos National Laboratory; Sediako, Dimitry [CANADIAN NEUTRON BEAM; Shook, S [APPLIED MAGNESIUM INTERNATIONAL; Sediako, A [MCGILL UNIV

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed using E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.

  5. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  6. Microstructural and technological optimisation of magnesium alloys

    OpenAIRE

    Facchinelli, Nicola

    2013-01-01

    Magnesium is one of the most abundance element in nature, and it's characterised by a lower density than aluminium. These characteristics confer great potential to magnesium alloys, which are so used for specialised applications, like for military purposes and in the aerospace industry. While some magnesium alloys, including the AM60B alloy, are historically associated to high pressure die casting, for such applications the magnesium alloy components are usually produced by the gravity castin...

  7. Optimization of Squeeze Casting Parameters for 2017 A Wrought Al Alloy Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Najib Souissi

    2014-04-01

    Full Text Available This study applies the Taguchi method to investigate the relationship between the ultimate tensile strength, hardness and process variables in a squeeze casting 2017 A wrought aluminium alloy. The effects of various casting parameters including squeeze pressure, melt temperature and die temperature were studied. Therefore, the objectives of the Taguchi method for the squeeze casting process are to establish the optimal combination of process parameters and to reduce the variation in quality between only a few experiments. The experimental results show that the squeeze pressure significantly affects the microstructure and the mechanical properties of 2017 A Al alloy.

  8. Bearing Strengths of Some Wrought-aluminum Alloys

    Science.gov (United States)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  9. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-11-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ`s) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  10. Magnesium-lithium casting alloys

    Science.gov (United States)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  11. On the shock response of the magnesium alloy Elektron 675

    Science.gov (United States)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  12. Electrodeposition of magnesium and magnesium/aluminum alloys

    Science.gov (United States)

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  13. Magnesium and related low alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.; Caillat, R.; Darras, R. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent {<=} Zr {<=} 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent {<=} Zn {<=} 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [French] Dans une premiere partie les auteurs etudient la corrosion comparee du magnesium commercial, d'un alliage magnesium-zirconium (0,4 pour cent {<=} Zr {<=} 0,7 pour cent), d'un alliage ternaire magnesium-zinc-zirconium (0,8 pour cent {<=} Zn {<=} 1,2 pour cent), et d'alliages anglais 'type Magnox', dans l'air sec decarbonate, l'air humide decarbonate, le gaz carbonique sec et humide a des temperatures de 300 a 600 deg. C. Dans une seconde partie, est etudiee la stabilite structurale de ces materiaux apres des recuits de 300 a 450 deg. C, et de 10 a 1000 heures. Sont presentees les variations, apres ces traitements thermiques, de la grosseur du grain, et des caracteristiques mecaniques de traction a la temperature ambiante. Enfin, quelques diagrammes de vitesse de fluage et de durees de vie sont presentes sur ces materiaux pour des temperatures variant entre 300 et 450 deg. C. (auteur)

  14. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingtao [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  15. Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.

    Science.gov (United States)

    Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S

    1997-01-01

    The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.

  16. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  17. Purely inorganic coatings based on nanoparticles for magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feil, Florian [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)], E-mail: feil@dechema.de; Fuerbeth, Wolfram; Schuetze, Michael [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)

    2009-03-30

    The chemical nanotechnology is offering a chance to apply stable inorganic coatings onto magnesium alloys. The cast alloy AZ91 as well as the wrought alloy AZ31 could be dip-coated with aqueous dispersions based on commercially available silica particles and various additives. The high surface activity of the nanoparticles and appropriate additives, e.g. boron, aluminium or alkali salts, help to densify these coatings under moderate conditions even suitable for those thermally precarious magnesium alloys. Another coating technique is based on the electrophoretic deposition of nanoparticles already containing all sintering aids. These particles could be synthesised by a base-catalysed sol-gel process. Polydiethoxysiloxane can act as an adhesion promoter for these coatings. Additionally concentration gradients of different oxides within these particles can adjust the coating properties, too. Usually single coatings are very thin (200-500 nm). However, multiple coating applications as well as a process involving special particle mixtures lead to coatings with a thickness of up to several micrometers. Even after thermal treatment at 200 or 400 deg. C these coatings stay crack-free. The composition and texture of these coatings were studied using IR, atomic force microscopy (AFM), scanning electron microscopy (SEM) and other techniques. Electrochemical impedance measurements show an improvement of the corrosion performance by these coatings. The coating resistance is improving with the coating thickness.

  18. Effect of surface treatment on wear behavior of magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Y. Fouad

    2011-03-01

    Full Text Available In the present study, wear test has been performed on wrought magnesium alloy AZ31 samples. The test samples were in different conditions as; in the as cast alloy or after undergoing different surface treatment of the wrought alloy. The surface treatments included ball burnishing, swaging and shot peening. The shot peening is done at two main pressure loads; 0.1 and 0.3 bars, while other parameters are held constant. The test results show that the wear worst results were observed in the as cast sample at pressure load 0.3 bars, while the shot peening sample has the worst wear rate among all samples at pressure load of 0.1 bars. On the other hand, the hardness test showed that the swaged sample has the highest hardness value among all samples.

  19. Comparison of the heat treatment response of SSM-HPDC 6082 and 6004 wrought alloys with A356 and F357 casting alloys

    CSIR Research Space (South Africa)

    Müller, H

    2011-06-01

    Full Text Available advantages, including a faster artificial aging response, higher strength for comparable Mg contents and less sensitivity to prior natural aging on peak strength. However, over-aging occurs earlier in the casting alloys than in the wrought alloys....

  20. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on NASA 2B-11 alloy

    Science.gov (United States)

    Miner, R. V., Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks, and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11.

  1. Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys.

    Science.gov (United States)

    Chen, Hao; Sago, Alan; West, Shari; Farina, Jeff; Eckert, John; Broadley, Mark

    2011-01-01

    We present a comparative analysis between biocompatibility test results of wrought and Metal Injection Molded (MIM) ASTM F562-02 UNS R30035 (MP35N) and F1537 UNS R31538 (CCM) alloy samples that have undergone the same generic orthopedic implant's mechanical, chemical surface pre-treatment, and a designed pre-testing sample preparation method. Because the biocompatibility properties resulting from this new MIM cobalt alloy process are not well understood, we conducted tests to evaluate cytotoxicity (in vitro), hemolysis (in vitro), toxicity effects (in vivo), tissue irritation level (in vivo), and pyrogenicity count (in vitro) on such samples. We show that our developed MIM MP35N and CCM materials and treatment processes are biocompatible, and that both the MIM and wrought samples, although somewhat different in microstructure and surface, do not show significant differences in biocompatibility.

  2. Proiectul MagForge: matriterea inchisa a aliajelor de magneziu MagForge project: die-closed forging of magnesium alloys

    NARCIS (Netherlands)

    Badoi, I.; Sillekens, W.H.; Chevaleyre, F.

    2009-01-01

    Article present die-closed particularities of wrought magnesium alloys: deformation mechanisms, anisotropy, strain rate and flow stress. Also, are presented information’s regarding to technological parameters and indicated equipments (furnaces, presses) for heating billets, die-closed and trimming

  3. Multi-functional magnesium alloys containing interstitial oxygen atoms

    OpenAIRE

    H. Kang; Choi, H. J.; Kang, S W; Shin, S. E.; G. S. Choi; D. H. Bae

    2016-01-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720??C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding ch...

  4. Magnesium Diecasting Alloys for High Temperature Applications

    Science.gov (United States)

    Pekguleryuz, Mihriban O.; Kaya, A. Arslan

    New growth area for automotive use of magnesium is powertrain applications such as the transmission case and engine block. These applications see service conditions in the temperature range of 150-200C under 50-70 MPa of tensile and compressive loads. In addition, metallurgical stability, fatigue resistance, corrosion resistance and castability requirements need to be met. A decade of research and development has resulted in a number of creep- resistant magnesium alloys that are potential candidates for elevated-temperature automotive applications. These alloys are mostly based on rare-earth and alkaline earth element additions to magnesium. This paper gives an overview of the various magnesium alloy systems for use in elevated-temperature applications.

  5. Semi-solid process of 2024 wrought aluminum alloy by strain induced melt activation

    Directory of Open Access Journals (Sweden)

    Surachai Numsarapatnuk

    2013-10-01

    Full Text Available The aim of this study is to develop a production process of a fine globular structure feedstock of the 2024 aluminumalloy suitable for subsequent semi-solid forming. The 2024 wrought aluminum alloy was first annealed to reduce the effect ofwork hardening. Then, strain was induced in the alloy by cold compression. After that the microstructural evolution duringpartial melting was investigated. The samples were subjected to full annealing at 415°C for 3 hrs prior to cold compression of40% reduction of area (RA with 3 mm/min strain rate. After that samples were partially melted at 620°C with varying holdingtime from 0 to 60 min followed by water quenching. The grain size and the average grain diameter of solid grains weremeasured using the linear intercept method. The globularization was interpreted in terms of shape factor. Liquid fraction andthe distribution of the eutectic liquid was also investigated. It was found that during partial melting, the globular morphologywas formed by the liquid wetting and fragmentation of high angle boundaries of recrystallized grains. The suitable semi-solidmicrostructure was obtained from a condition of full annealing, 40% cold working and partial melting at 620°C for 6 minholding time. The near globular grains obtained in the range of 0-60 min consisted of uniform spheroid grains with an averagegrain diameter ranged from 73 to 121 m, quenched liquid fraction was approximately 13–27% and the shape factor was greaterthan 0.6. At a holding time of less than 6 min, grain coarsening was dominant by the immigration of high-angle grainboundaries. At a longer holding time, liquid fraction increased and Ostwald ripening was dominant. The coarsening rateconstant for the 2024 Al alloy was 400.36 mm3.s-1. At a soaking time of 60 min, it was found that a minimum diameter differencewas 1.06% with coarsening index n=3 in a power law equation. The non-dendritic slug of 2024 alloy was rapid compressedinto a disc with 90%RA

  6. Development of creep resistant magnesium diecasting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pekguleryuz, M.O. [Noranda Technol. Center, Que. (Canada)

    2000-07-01

    The most economic use of magnesium in the automotive industry presently is in diecast applications because of the high productivity of the diecasting process that upsets the relatively high cost of the magnesium metal. The current commercial magnesium alloys developed for diecasting applications fall into two classes. The first group is based on the Mg-Al system and the Mg-Al-Zn systems. These alloys have been developed for good room temperature strength and/or ductility but do not exhibit good creep resistance. The second group of alloys has been developed for improved elevated-temperature performance and are based on the Mg-Al-RE and Mg-Al-Si systems. These second group alloys offer either borderline improvement in creep resistance (Mg-Al-Si) or have cost or other disadvantages despite the good creep resistance (Mg- Al-RE).

  7. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    OpenAIRE

    Ivana Škugor Rončević; Mirjana Metikoš-Huković; Marijo Buzuk; Nives Vladislavić

    2016-01-01

    The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetal...

  8. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    Science.gov (United States)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  9. Discontinuous Dynamic Recrystallization during Accumulative Back Extrusion of a Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    S.M. Fatemi-Varzaneh

    2013-12-01

    Full Text Available The study of nucleation mechanism of new grains during severe plastic deformation of magnesium alloys is of great importance to control the characteristics of final microstructures.  To investigate the role of discontinuous recrystallization, a wrought AZ31 magnesium alloy was deformed by accumulative back extrusion process at 330 °C.  The obtained microstructures were studied using optical and field emission microscopy as well as electron back scattered diffraction techniques.  The results demonstrated that the fine and ultrafine grains formed along the prior grain boundaries yielding a bimodal structure.  The EBSD analysis showed that the new grains exhibit a similar basal texture to deformed grains, which may confirm the operation of strain induced boundary migration mechanism.

  10. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)

    1992-12-31

    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  11. Texture-based formability prediction for Mg wrought alloys ZE10 and AZ31

    Science.gov (United States)

    Steglich, D.; Jeong, Y.

    2017-10-01

    A viscoplastic self-consistent crystal plasticity model was employed to study the formability of two magnesium sheet alloys, i.e., AZ31 and ZE10 at 200 °C. The flow stress-strain curves obtained by uniaxial tension tests at various strain rates and the crystallographic texture were used to determine the model parameters. The crystal plasticity model was incorporated with the Marciniak-Kuczyński model in order to address the forming limits of the magnesium sheets. Model predictions were matched with the experimental data obtained by Nakajima tests by tuning the respective parameters. The model was further applied to quantify the effect of the initial crystallographic texture on the formability. Virtual textures representing realistic outcome from mechanical working (rolling, extrusion) were generated. The respective effects on the formability were quantified. The resulting forming limit diagrams demonstrate that the variations of crystallographic texture can either lead to an improvement or to a detrimental reduction of the forming strain in particular in stretch-forming operations.

  12. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  13. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning

  14. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    Science.gov (United States)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  15. Wettability of magnesium based alloys

    Science.gov (United States)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  16. Thixomolded magnesium alloys: Strategic product innovation in automobiles

    Science.gov (United States)

    D'Errico, F.; Rivolta, B.; Gerosa, R.; Perricone, G.

    2008-11-01

    The research on magnesium alloys for structural lightweight applications is today at an embryonic stage, but these alloys offer great potential. Thixomolding of magnesium alloys for automotive applications is promising since the process can be used to manufacture net-shape parts cost-effectively and with high reliability and repeatability.

  17. Corrosion fatigue of magnesium alloys in oil

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, A.; Haddad, J. [Sami Shamoon College of Engineering, Corrosion Research Center, P.O.B. 45, Beer-Sheva 84100 (Israel); Medlinsky, O. [N.Z.M-Israel Chevron Texaco Agency (Israel)

    2004-07-01

    Today we are facing an era which demands us to think about the future of our planet. On one hand we need to stabilize the earth resources. On the other hand we need to continue to develop the transportation use by aircraft, ships, cars and trains. In order to accomplish this mission we must consider the use of light materials. Saving fuel consumption is becoming more important due to concern for the global environment and the need for resource and energy conservation. Therefore the investigation of the light materials, such as the magnesium, and their environmental behavior is very important. One of the most commented environments in the automobile industrial, and in any industrial, is oil. Oil is used almost in every metal moving part. Therefore, the investigation of oil influence on the metal is crucial. The automobile burning engine increases the temperature of all the attached components to about 90 deg. C. This high temperature must be considered if we want to investigate the real condition which the magnesium alloy is facing. In order to use magnesium alloys in the automotive industry for items such as wheels, gearbox housing and more, the fatigue phenomenon must be investigated. Understanding this phenomenon will increase the magnesium consumption, In addition, the environmental influence in formation is a main factor of the specimen fatigue life. Until now the fatigue phenomenon and the corrosion problems of magnesium alloys received separate treatment. However, in true active conditions, mechanicals and corrosive process are working together. The combination between the attack of environment, high temperature and dynamic cycle stress has been named corrosion fatigue. The result of these processes we can ascertained from the stress corrosion cracking. Today the most commercial magnesium alloy in die casting industry is AZ91D [9% Aluminum,1% Zinc] which has an excellent mechanicals property. Another magnesium alloy is AM50 [5% Aluminum, 0.3% Manganese] which

  18. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  19. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khaleel, Mohammad [Qatar Foundation Research adn Development (Qatar); Ahzi, Said [Univ. of Strasbourg (France)

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures, such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.

  20. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  1. Hot workability of magnesium alloys

    Science.gov (United States)

    Mwembela, Aaron Absalom

    For the alloy AZ91 (Mg-9.OAl-0.7Zn-0.13Mn) die cast specimens were subjected to torsion testing at 150, 180, 240, 300, 420 and 450°C at 0.05 0.5 and 5.0 s--1 The as-cast specimens exhibited hot shortness at 360°C and above; however in that domain, after prior thermomechanical processing (TMP) at 300°C, they showed much improved properties (which were reported along with as-cast properties at 300°C and below). For AZ31-Mn (Mg-3.2Al-1-1Zn-0.34Mn), AZ31 (Mg-2-8Al-0-88Zn-0.01Mn), AZ63 (Mg-5-5Al-2.7Zn-0.34Mn) and ZK60 (Mg-5.7Zn-0.65Zr-O-O1A]), the specimens were subjected to hot torsion testing in the range 180 to 450°C and 0.01, 0.1, and 1.0 s--1. In the temperature range below 300°C flow curves rise to a peak with failure occurring immediately thereafter. Above 300°C the flow curves exhibited a peak and a gradual decline towards steady state. The temperature and strain rate dependence of the strength is described by a sinh-Arrhenius equation with QHW between 125 and 144 kJ/mol; this indicates control by climb in comparison with creep in the range 200--400°C. The alloy strength and activation energy declined in the order AZ63, AZ31-Mn AZ91, AZ31 and ZK60, while ductility increased with decreasing strength. In working of Mg alloys from 150 to 450°C, the flow curves harden to a peak and work soften to a steady state regime above 300°C. At temperatures below 300°C, twinning is observed initially to bring grains into more suitable slip orientations. At high T a substructure develops due to basal and prismatic slip, Forming cells of augmented misorientation first near the grain boundaries and later towards the grain cores. Near the peak, new grains appear along the old boundaries (mantle) as a result of dynamic recrystallization DRX but not in the core of the initial grains. As T rises, the new grains are larger and the mantle broader, enhanced DRX results in higher ductility. At intermediate T, shear bands form through alignment of mantle zones resulting in

  2. Grain refinement of AZ31 magnesium alloy by electromagnetic ...

    Indian Academy of Sciences (India)

    The effects of electromagnetic stirring and Al4C3 grain refiner on the grain refinement of semicontinuously cast AZ31 magnesium alloy were discussed in this investigation. The results indicate that electromagnetic stirring has an effective refining effect on the grain size of AZ31 magnesium alloy under the effect of Al4C3 ...

  3. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  4. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2017-11-01

    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  5. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ivana Škugor Rončević

    2016-12-01

    Full Text Available The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetallic compound. To improve the corrosion resistance, it is necessary to find an effective protection method for the alloy surface. Knowing and predicting electrochemical processes is an essential for the design and optimization of protective coatings on magnesium and its alloys. In this work, the formations of nickel protective coatings on the magnesium AZ91D alloy surface by electrodeposition and chemical deposition, are presented. For this purpose, environmentally friendly electrolytes were used. The corrosion resistance of the protected alloy was determined in chloride medium using appropriate electrochemical techniques. Characterization of the surface was performed with highly sophisticated surface-analytical methods.

  6. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  7. Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =

    Science.gov (United States)

    Zhao, Qinfu

    Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of

  8. Numerical Simulation of the Upward Continuous Casting of Magnesium Alloys

    OpenAIRE

    Landaberea, Aitor; Pedrós, Pablo; Anglada, Eva; Garmendia, Iñaki

    2005-01-01

    The continuous casting of magnesium alloys in vertical upward direction is a novel technology which can be employed for the production of semi-finished materials circumventing the main disadvantages of using conventional casting processes since the risks of burning and explosion are practically eliminated. The present investigation deals with the simulation of the upward continuous casting of round billets of magnesium alloys. The equations for the flow field with heat transfer are numericall...

  9. Casting Porosity-Free Grain Refined Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schwam, David [Case Western Reserve University

    2013-08-12

    The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings. 

  10. Applicability of existing magnesium alloys as biomedical implant materials

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.; Mannens, R.G.T.M.; Werkhoven, R.J.

    2009-01-01

    Being biocompatible and biodegradable, magnesium alloys are considered as the new generation biomedical implant materials, such as for stents, bone fixtures, plates and screws. A major drawback is the poor chemical stability of metallic magnesium; it corrodes at a pace that is too high for most

  11. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  12. Surface characterization and cytotoxicity response of biodegradable magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pompa, Luis; Rahman, Zia Ur; Munoz, Edgar; Haider, Waseem, E-mail: haiderw@utpa.edu

    2015-04-01

    Magnesium alloys have raised an immense amount of interest to many researchers because of their evolution as a new kind of third generation materials. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium alloys experience a natural phenomenon to biodegrade in aqueous solutions due to its corrosion activity, which is excellent for orthopedic and cardiovascular applications. However, a major concern with such alloys is fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of biodegradable implants. In this investigation, three different grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium based bio-assay, MTS. - Highlights: • Micro-textured features formed after the anodization of magnesium alloys. • Contact angle increased and surface free energy decreased by anodization. • Corrosion rate increased for anodized surfaces compared to untreated samples. • Cell viability was greater than 75% implying the cytocompatibility of Mg alloys.

  13. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...

  14. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  15. Selective Laser Melting of Magnesium and Magnesium Alloys

    Science.gov (United States)

    Gieseke, Matthias; Noelke, Christian; Kaierle, Stefan; Wesling, Volker; Haferkamp, Heinz

    Selective Laser Melting (SLM) offers the possibility to create three dimensional parts by having full freedom of design. Therefore prototypes can be produced faster and conventionally manufactured parts can be shaped individually, including an optimized design regarding potential loads and parts weight. The manufacturing of biocompatible metals like 316L and TiA16V4 is already industrially established. Because of the corrosive and mechanical properties of magnesium and the advantages of the SLM process, using magnesium is of great interest for manufacturing individual biodegradable implants. Recent investigations on SLM of magnesium have not led to successful operation so far. Due to the low vaporizing temperature, manufacturing non-porous and three dimensional parts from magnesium was not possible yet. Following a new strategy, using an industrial SLM system with an overpressure building chamber, investigations on SLM of magnesium are now carried out in order to overcome these difficulties and produce fully dense three dimensional parts.

  16. Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples

    Science.gov (United States)

    Campanella, B.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Sorrentino, F.; Palleschi, V.

    2017-08-01

    Every year throughout the world > 50 million vehicles reach the end of their life, producing millions of tons of automotive waste. The current strategies for the separation of the non-ferrous waste fraction, contain mainly aluminum, magnesium, zinc and copper alloys, involve high investment and operational costs, and pose environmental concerns. The European project SHREDDERSORT, in which our research group was actively involved, aimed to overcome this issue by developing a new dry sorting technology for the shredding of non-ferrous automotive wastes. This work represents one step of the complex SHREDDERSORT project, dedicated to the development of a strategy based on Laser Induced Breakdown Spectroscopy (LIBS) for the sorting of light alloys. LIBS was here applied in laboratory for the analysis of stationary aluminum shredder samples. To process the LIBS spectra a methodological approach based on artificial neural networks was used. Although separation could in principle be based on simple emission line ratios, the neural networks approach enables more reproducible results, which can accommodate the unavoidable signal variations due to the low intrinsic reproducibility of the LIBS systems. The neural network separated samples into different clusters and estimates their elemental concentrations.

  17. Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M. Bobby [James Cook University, Townsville (Australia)

    2016-04-15

    Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.

  18. In vitro and in vivo studies on biodegradable magnesium alloy

    Directory of Open Access Journals (Sweden)

    Lida Hou

    2014-10-01

    Full Text Available The microstructure, mechanical property, electrochemical behavior and biocompatibility of magnesium alloy (BioDe MSM™ were studied in the present work. The experimental results demonstrated that grain refining induced by extrusion improves the alloy strength significantly from 162 MPa for the as-cast alloy to 241 MPa for the as-extruded one. The anticorrosion properties of the as-extruded alloy also increased. Furthermore, the hemolysis ratio was decreased from 4.7% for the as-cast alloy to 2.9% for the as-extruded one, both below 5%. BioDe MSM™ alloy shows good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the New Zealand rabbit, respectively, and there are no abnormalities after short-term implantation. In vivo observation indicated that the corrosion rate of this alloy varies with different implantation positions, with higher degradation rate in the femur than in the muscle.

  19. Magnesium alloys as implant materials--principles of property design for Mg-RE alloys.

    Science.gov (United States)

    Hort, N; Huang, Y; Fechner, D; Störmer, M; Blawert, C; Witte, F; Vogt, C; Drücker, H; Willumeit, R; Kainer, K U; Feyerabend, F

    2010-05-01

    Magnesium alloys have attracted increasing interest in the past years due to their potential as implant materials. This interest is based on the fact that magnesium and its alloys are degradable during their time of service in the human body. Moreover magnesium alloys offer a property profile that is very close or even similar to that of human bone. The chemical composition triggers the resulting microstructure and features of degradation. In addition, the entire manufacturing route has an influence on the morphology of the microstructure after processing. Therefore the composition and the manufacturing route have to be chosen carefully with regard to the requirements of an application. This paper discusses the influence of composition and heat treatments on the microstructure, mechanical properties and corrosion behaviour of cast Mg-Gd alloys. Recommendations are given for the design of future degradable magnesium based implant materials. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    Full Text Available In the analytical review of the literature the main stages of development of biodegradable magnesium alloys in surgery and traumatology were discussed. The analysis revealed the main problems: there is no way to control the speed of the biological resorption alloys, the effects of products of magnesium degradation on the tissues and the organism in general are not studied, there is no information on the characteristics of the regeneration of bone tissue when implanted magnesium implanted magnesium alloys Materials for osteosynthesis with metal clamps made of steel X18H9T are used in 25,0-52,2% of cases, the corrosion of fasteners reaches 18-21%. Corrosion of the metal clips leads to the increase of the concentration of iron, chromium, nickel and titanium in the surrounding tissue. Electrochemical processes in metallic implants occurs due to their structural and chemical inhomogeneous. The microstructure of stainless steel is presented by differently oriented grains. Therefore, the question remains relevant to finding biodegradable materials suitable for implants for osteosynthesis, which could be completely metabolized by the organism, without causing of the pathological effects on the surrounding tissue and the body. The property of magnesium metal dissolved in the tissues of a living organism is known since the 19th century. Payr suggested the use of magnesium metal needles for the treatment of angiomas, in order to achieve thrombosis surrounding the tumor. In 1937 Lambotte made a post in the French Surgical Academy on the application of the osteosynthesis of the shin bone clamps with alloy Dow-metal (magnesium - 92% Aluminum - 8% + traces of manganese, made in the form of loops and screws. In 1938, Earl D. Mc.Braid and published their positive experience with plates and screws made of material similar in composition to the Dow-metal for osteosynthesis of fractures of the arm and forearm bones. Magnesium alloys may be used as a material for

  1. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review

    Directory of Open Access Journals (Sweden)

    Vyasaraj Manakari

    2016-12-01

    Full Text Available Magnesium-based materials are used primarily in developing lightweight structures owing to their lower density. Further, being biocompatible they offer potential for use as bioresorbable materials for degradable bone replacement implants. The design and manufacture of complex shaped components made of magnesium with good quality are in high demand in the automotive, aerospace, and biomedical areas. Selective laser melting (SLM is becoming a powerful additive manufacturing technology, enabling the manufacture of customized, complex metallic designs. This article reviews the recent progress in the SLM of magnesium based materials. Effects of SLM process parameters and powder properties on the processing and densification of the magnesium alloys are discussed in detail. The microstructure and metallurgical defects encountered in the SLM processed parts are described. Applications of SLM for potential biomedical applications in magnesium alloys are also addressed. Finally, the paper summarizes the findings from this review together with some proposed future challenges for advancing the knowledge in the SLM processing of magnesium alloy powders.

  2. Microstructure of MCMgAl12Zn1 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Dobrzański L. A.

    2007-01-01

    Full Text Available In this paper is presented the structure of the cast magnesium alloys as cast state and after heat treatment cooled with different cooling rate, depending on the cooling medium (furnace, water, air. For investigations samples in shape of 250x150x25 mm plates were used. The structure have been study in the light microscope, scanning electron microscope equipped with an electron back scattering facility. The effects of the addition of Al on the microstructure were also studied. In the analysed alloys a structure of α solid solution and fragile phase β(Mg17Al12 occurred mainly on grain borders as well as eutectic and phase with Mn, Fe and Si. Investigation are carried out for the reason of chemical composition influence and precipitation processes influence to the structure and mechanical properties of the magnesium cast alloys with different chemical composition in as cast alloys and after heat treatment.

  3. Mechanical properties and structure of magnesium alloy AS31

    Directory of Open Access Journals (Sweden)

    A. Hanus

    2008-07-01

    Full Text Available Contemporary materials should possess high mechanical properties, physical and chemical, as well as technological ones, to ensure long and reliable use. The non-ferrous metals alloys used nowadays, including the magnesium alloys, meet the above-mentioned requirements and expectations regarding the contemporary materials.Magnesium alloys are primarily used in aeronautical and automobile industry in wide variety of structural characteristics because of their favorable combination of tensile strength (160 to 365 MPa, elastic modulus (45 GPa, and low density (1 740 kg/m3, which is two-thirds that of aluminum. Magnesium alloys have high strength-to-weight ratio (tensile strength/density, comparable to those of other structural metals. [1-6]Knowledge of the relaxation properties of metal materials at high temperatures is necessary for the verification of susceptibility of castings to the creation of defects during the production process. Temperature limits of materials where highest tension values are generated may be detected with tensile tests under high temperatures. The generated tensions in the casting are a cause of the creation and development of defects. At acoustic emission (hereinafter called the "AE" use, tensile tests at high temperatures may, among other things, be used for analysis of the AE signal sources and set, in more detail, the temperature limit of elastic-plastic deformations existence in the material under examination. The results of the temperature drop where tension at casting cooling is generated or its release at heating are basic data for controlled cooling mode (and temperature of casting knocking out of the form as well as necessary for the thermal mode for the casting tension reduction. [7-9]Knowledge of elastic-plastic properties at elevated temperatures is often important for complex evaluation of magnesium alloys. Objective of the work was focused on determination of changes of elastic-plastic properties of magnesium

  4. Modified AZ80 magnesium alloys for biomedical applications

    NARCIS (Netherlands)

    Erinc, M.; Zhang, X.; Sillekens, W.H.

    2010-01-01

    Magnesium and its alloys are light weight, biodegradable materials. They can be used as metal implants which maintain strength and integrity for the time of recovery, followed by natural dissolution in the body preventing the necessity of implant removal. In addition to the general biocompatibility

  5. Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.; Sergienko, V. I. [Institute of Chemistry, Vladivostok (Russian Federation)

    2017-06-15

    The MA8 alloy (formula Mg-Mn-Ce) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

  6. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  7. Grain refinement of AZ31 magnesium alloy by electromagnetic ...

    Indian Academy of Sciences (India)

    cess are discussed; furthermore, effect of holding time on the refinement of AZ31 magnesium alloy was investigated. 2. Experimental. Al4C3 grain refiner was synthesized by powder metallurgy. The raw materials included aluminum powder (99·8% pure,. 50 μm in diameter), graphite powder (99·6% pure, 50 μm in diameter) ...

  8. Fabrication and corrosion resistance of superhydrophobic magnesium alloy

    Science.gov (United States)

    Feng, Libang; Zhu, Yali; Fan, Weibo; Wang, Yanping; Qiang, Xiaohu; Liu, Yanhua

    2015-08-01

    A superhydrophobic magnesium alloy (AZ91) is successfully fabricated by sulfuric acid etching, AgNO3 treatment, and dodecyl mercaptan (DM) modification. The effect of the fabrication procedure, the concentration and treatment time of sulfuric acid, AgNO3, and DM on morphology, phase structure, surface wettability, and surface composition of the AZ91 is investigated in detail. Consequently, the optimal treatment parameters are selected, and the superhydrophobic magnesium alloy with a water contact angle of 154° and a sliding angle of 5° is fabricated. The acid etching endows the AZ91 surface with rough structure while the AgNO3 treatment results in more protrusions and grooves. Meanwhile, the long hydrophobic alkyl chains are self-assembled onto the rough AZ91 surface upon DM modification. As a result, the multilayer of netlike surface with protrusions and grooves together with the coral-like structure is obtained. Additionally, the magnesium alloy with higher water contact angle has better corrosion resistance, while the magnesium alloy with the superhydrophobic property has the best corrosion resistance.

  9. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  10. A Survey on Friction Stir Welding Of Dissimilar Magnesium Alloys

    Science.gov (United States)

    Unnikrishnan, M. A.; Raja, Dhas. J. Edwin

    2017-10-01

    There is a consistent demand for superior materials in every industry. The areas on demand are automobile and aerospace sectors in major.. The most commonly used material in these fields is Aluminium.Though it possess all the properties up to some extent constant demand is pushing for alternate materials. Dissimilar alloys have been a relatively new approach towards these fields.. Friction stir welding dissimilar alloys is a big leap in Automobile sector. In this paper a detailed review of Friction stir welding of Dissimilar Magnesium alloys has been done. This work will serve as a reference to subsequent researchers.

  11. Metal Forming of Lightweight Magnesium Alloys for Aviation Applications

    Directory of Open Access Journals (Sweden)

    Śliwa R.E.

    2017-09-01

    Full Text Available The work presents an analysis of selected magnesium alloys as structural materials to be used in production of aircraft parts as well as their technological parameters in some manufacturing processes. Upsetting test, backward extrusion and Kobo extrusion of complex cross-sectional profiles and forging process were realized using magnesium alloys AZ31, AZ61, AZ80, WE 43 and Mg alloy with Li for production of thin - walled aircraft profiles and forged aviation parts. The range of temperatures and extrusion rate for the manufacturing these profiles were determined. Tests also covered the analysis of microstructure of Mg alloys in the initial state as well as after the extrusion process. It has been proved that the proper choice of parameters in the case of a specific profile extruded from magnesium alloys allows the manufacturing of products of complex cross-sections and the quality required in aerospace industry. This has been demonstrated on the examples of complex cross-sectional profiles using elements of varied wall thickness and examples of forged aviation parts: aircraft wheel hub and helicopter lever for control system.

  12. R-HPDC of magnesium alloys

    CSIR Research Space (South Africa)

    Curle, UA

    2013-01-01

    Full Text Available liquid segregation is observed in the as-cast microstructure for all three alloys. Minor alloy additions of Mn, in composition specifications, results in the formation of Al8Mn5 intermetallic phase particles dispersed throughout the microstructure. All...

  13. Influence of second phase particles on fracture toughness in AZ31 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Somekawa, H. [Dept. of Metallurgy and Materials Science, Osaka Prefecture Univ., Sakai (Japan); Takara, A.; Nishikawa, Y. [Matsushita Electric Industrial Co., Ltd., Osaka (Japan); Higashi, K. [Dept. of Metallurgy and Materials Science, Osaka Prefecture Univ., Sakai (Japan)

    2004-07-01

    Three kinds of thin AZ31 wrought magnesium alloys sheets were used in order to investigate the influence of the second phase particles on fracture toughness. From the theoretical model, the ratio of {lambda}{sub p}/d{sub p} would be estimated 5 {proportional_to} 6. On the other hand, from the microstructural observation, average particle spacing on each material was sample A: 13.1 {mu}m, sample B: 14.1, and sample C: 12 {mu}. In addition, average particle size on each sample was sample A: 2.1, sample B: 1.9, and sample C: 2.3 {mu}m. Therefore, the ratio of {lambda}{sub p}/d{sub p} calculated from fracture surface observation would be predicted 6 {proportional_to} 7. In comparison with the result of the prediction by theoretical analysis was in good agreement with the result of fracture toughness observation. It was found that the variation in plane-strain fracture toughness on AZ31 were affected by both of particle spacing and particle size. (orig.)

  14. Processing aspects of magnesium alloy stent tube

    NARCIS (Netherlands)

    Werkhoven, R.J.; Sillekens, W.H.; Lieshout, J.B.J.M. van

    2011-01-01

    Biomedical applications are an emerging field of interest for magnesium technology, envisioning biodegradable implants that resorb in the human body after having cured a particular medical condition (such as artery clogging or bone fractures). This challenges research in a sense that the materials

  15. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Sravya Tekumalla

    2014-12-01

    Full Text Available Magnesium-rare earth based alloys are increasingly being investigated due to the formation of highly stable strengthening phases, activation of additional deformation modes and improvement in mechanical properties. Several investigations have been done to study the effect of rare earths when they are alloyed to pure magnesium and other Mg alloys. In this review, the mechanical properties of the previously investigated different magnesium-rare earth based binary alloys, ternary alloys and other higher alloys with more than three alloying elements are presented.

  16. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications.

    Science.gov (United States)

    Bowen, Patrick K; Seitz, Jan-Marten; Guillory, Roger J; Braykovich, Jacob P; Zhao, Shan; Goldman, Jeremy; Drelich, Jaroslaw W

    2017-01-27

    Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0.19-0.27%) were observed. Intergranular corrosion was observed during residence of Zn-Al alloys in the murine aorta, suggesting a different corrosion mechanism than that of pure zinc. This mode of failure needs to be avoided for stent applications because the intergranular corrosion caused cracking and fragmentation of the implants, although the composition of corrosion products was roughly identical between non- and Al-containing materials. In spite of differences in corrosion mechanisms, the cross-sectional reduction of metals in murine aorta was nearly identical at 30-40% and 40-50% after 4.5 and 6 months, respectively, for pure Zn and Zn-Al alloys. Histopathological analysis and evaluation of arterial tissue compatibility around Zn-Al alloys failed to identify areas of necrosis, though both chronic and acute inflammatory indications were present. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  17. Thermal spraying on the magnesium alloy AZ91

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, U.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The results of this investigations show, that thermal sprayed coatings can improve the surface properties of magnesium base alloys. Aluminium coatings can improve corrosion resistance, whereas wear resistance can significantly be improved with NiCrFeSiB and NiAl coatings. When materials are coated which are sensitive to contact corrosion then the density of the layer is the most important property. In this respect HVOF spaying seems to be the preferred process for producing protective coatings on magnesium substrates. (orig.)

  18. HOW TO MAKE MAGNESIUM ALLOYS BE RESISTANT TO OPERATIONAL RISKS

    Directory of Open Access Journals (Sweden)

    N. M. Chigrinova

    2016-01-01

    Full Text Available The paper studies regularities and mechanisms of structure and phase formation in the surface layers of magnesium alloys when they are processed by method of micro-arc oxidation [MAO]. It has been determined that the same specific features of structure formation, namely: existence of a thin dense inner sublayer and a thicker outer sublayer with developed porosity are common for all types of coatings on the surface of magnesium and aluminum alloys. Such structural state of a protective coating can not be considered as a guaranteed protection against operational impacts, taking into account the fields of their primary application that is aviation construction, automotive construction, instrumentation, building construction, etc. The paper has analyzed the effect of alkaline electrolytes with varying chemical composition due to additions of sodium fluoride or potassium on the structure and properties of these alloys as well as on the level of basic performance characteristics of the layers formed in such electrolytes. On the basis of the analysis a conclusion has been made that it is possible to extend their life-span under operational conditions. It has been revealed that the existing techniques and methods for process control of MAO aluminum and magnesium alloys, particularly processing modes and technological equipment capacity determine a nature of structure formation and changes in a phase composition of the formed coatings.

  19. Processing Aspects of Magnesium Alloy Stent Tube

    Science.gov (United States)

    Werkhoven, R. J.; Sillekens, W. H.; van Lieshout, J. B. J. M.

    Biomedical applications are an emerging field of interest for magnesium technology, envisioning biodegradable implants that resorb in the human body after having cured a particular medical condition (such as artery clogging or bone fractures). This challenges research in a sense that the materials to be used need to dissolve in vivo in a controlled fashion without leaving harmful remainders and while maintaining sufficient strength and other (mechanical) attributes as long as necessary.

  20. Alloy Development, Manufacturing and Design for Magnesium Applications

    Science.gov (United States)

    Luo, Alan A.

    Materials, manufacturing and design are critical pillars in lightweight structures. As the lightest structural metal, magnesium has emerged as a promising structural material for lightweight applications in automotive and other transportation industries. This talk presents examples of magnesium alloy development using phase equilibria calculations and experimental validation. This talk will also summarize the latest process innovations in magnesium manufacturing (casting, forming and joining) for structural applications. Process simulation and multi-scale microstructure modeling techniques are used to develop and optimize these manufacturing processes for automotive lightweighting. Engineering design is a system optimization and iteration process that combines material properties and manufacturing processes to meet product requirements at the lowest mass and/or cost. Future trends in multi-material applications and the integrated computational materials engineering (ICME) are also discussed.

  1. Thermal analytical investigations of the magnesium alloy AZ91

    Directory of Open Access Journals (Sweden)

    K.N. Braszczyńska - Malik

    2007-04-01

    Full Text Available The results of thermal derivative analysis (TDA, differential scanning calorimetric (DSC measurements and microstructure investigations of commercial AZ91 magnesium alloy are presented. The performed examinations allowed to determine the microstructure after solidification process and also precipitation process during continuous heating of supersaturated solid solution. The α-phase and α+γ semi-divorced eutectic were observed in as-cast material, whereas both discontinuous and continuous precipitates of γ phase were revealed after heating supersaturated AZ91 alloy.

  2. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  3. Small Fatigue Crack Growth Observations in an Extruded Magnesium Alloy

    Science.gov (United States)

    Bernard, J. D.; Jordon, J. B.; Horstemeyer, M. F.

    The purpose of this paper is to quantify the microstructurally small/physically small crack growth behavior in an extruded AZ61 magnesium alloy, Fully-reversed, interrupted load control tests were conducted on notched specimens that were taken from a magnesium alloy extrusion, In order to measure crack growth, replicas of the notch surface were made using a two-part siliconrubber compound at periodic cyclic intervals, Scanning electron microscopy analysis of the replica surfaces revealed multi site crack initiation and subsequent crack coalescence, The crack growth behavior of the small fatigue cracks was shown to have a strong dependence on the material microstructure as the crack was submitted to a tortuous growth path along grain boundaries and crystallographic slip planes, A microstructurally dependent crack growth model that was previously developed for FCC metals was further extended here to HCP metals.

  4. Thixoforming of magnesium alloys and application to automotive industry

    OpenAIRE

    Fuganti, Antonio; Cordoni, Marta

    2013-01-01

    The use of magnesium alloys in the automtive field is increasing due to their lightness. At present most widespread applications regard non structural components manufactured by high pressure die casting. New forming technologies are now growing aimed at producing structural components which have to meet more severe targets: thixoforming seems to be the most attractive. In this near-net shape process the metal in the semi solid state fills the die with a laminar flow, preventing any gas entra...

  5. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  6. Notch sensitivity of cast AZ31 magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Estrin, Y.; Zúberová, Z.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 88-91 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2005. Terchová - Biely Potok, 05.09.2005-07.09.2005] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : notch sensitivity * magnesium alloy * fatigue lifetime Subject RIV: JG - Metallurgy

  7. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-04-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  8. Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn Additively Manufactured by Laser Beam Melting in Powder Bed

    Directory of Open Access Journals (Sweden)

    Michael Cornelius Hermann Karg

    2017-01-01

    Full Text Available Additive manufacturing is especially suitable for complex-shaped 3D parts with integrated and optimized functionality realized by filigree geometries. Such designs benefit from low safety factors in mechanical layout. This demands ductile materials that reduce stress peaks by predictable plastic deformation instead of failure. Al–Cu wrought alloys are established materials meeting this requirement. Additionally, they provide high specific strengths. As the designation “Wrought Alloys” implies, they are intended for manufacturing by hot or cold working. When cast or welded, they are prone to solidification cracks. Al–Si fillers can alleviate this, but impair ductility. Being closely related to welding, Laser Beam Melting in Powder Bed (LBM of Al–Cu wrought alloys like EN AW-2219 can be considered challenging. In LBM of aluminium alloys, only easily-weldable Al–Si casting alloys have succeeded commercially today. This article discusses the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography. Load direction was varied relative to LBM build-up direction. T6 heat treatment was applied to half of the samples. Pronounced anisotropy was observed. Remarkably, elongation at break of T6 specimens loaded along the build-up direction exceeded the values from literature for conventionally manufactured EN AW-2219 by a factor of two.

  9. Squeeze-casting of magnesium alloys; Pressgiessen (Squeeze-Casting) von Magnesium-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kainer, K.U. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik; Boehm, E.

    1995-12-31

    The mechanical properties of squeeze castings are superior to other castings. Usually the properties are isotropic due to the homogenity of the microstructure. For these reasons squeeze castings are wellsuited for safety parts. It is possible to use conventional casting alloys, with limited improvements compared to other casting techniques, as well as conventional wrought or newly developed alloys, which are usually not castable, for squeeze-casting. The production of composite materials by infiltration of porous preforms of fibres or particles is possible. The properties of a casting can be locally improved using this technique. Squeeze-casting needs more machinery than sand- or diecasting. Compared to high pressure diecasting, the machinery is compareable, but the effort depends on the geometrie of the cast part. (orig.) [Deutsch] Im Squeeze-Cast-Verfahren hergestellte Leichtmetallbauteile zeichnen sich durch verbesserte mechanische Eigenschaften gegenueber durch andere Giessverfahren hergestellte Bauteile aus. Insbesondere die Ermuedungsfestigkeit wird durch den homogenen, isotropen, nahezu fehlerfreien Gefuegeaufbau verbessert. Aus diesen Gruenden sind Squeeze-Cast-Teile besonders fuer Sicherheitsanwendungen geeignet. Es koennen sowohl konventionelle Gusslegierungen, mit begrenzten Verbesserungen gegenueber anderen Giessverfahren, als auch klassische Knet- sowie neu entwickelte Legierungen vergossen werden, welche mit Hilfe anderer Giessverfahren nur eingeschraenkt verarbeitbar sind. Die Herstellung von Verbundwerkstoffen durch Infiltration poroeser Faser- oder Partikelformkoerper, sogenannter Preforms, ist moeglich. Hierdurch koennen die Eigenschaften eines Bauteils lokal erheblich verbessert werden. Das Squeeze-Cast-Verfahren benoetigt gegenueber Sand- und Kokillenguss einen groesseren maschinellen Aufwand. Im Vergleich zum Druckguss ist der Aufwand etwa gleich, jedoch von der Geometrie des Gussstueckes abhaengig. (orig.)

  10. Present Development Status of Anti-creep Magnesium Rare-Earth Alloys

    Science.gov (United States)

    Gui, Yunwei; Li, Quanan; Chen, Xiaoya

    2017-09-01

    The research status of creep resistance of rare earth magnesium alloy at home and abroad is reviewed, and the mechanism of high temperature creep resistance and the way of improving the creep resistance of magnesium alloy were also discussed. The problems of high temperature resistance and creep resistance of cast magnesium alloy are pointed out, and its future development direction is forecasted. The purpose of this paper is to provide the idea and basis for the development of creep resistant and heat resistant magnesium alloy.

  11. Microstructure and Thermomechanical Properties of Magnesium Alloys Castings

    Directory of Open Access Journals (Sweden)

    P. Lichý

    2012-04-01

    Full Text Available Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc., through exterior parts (wheels particularly of sporting models, up to driving (engine blocks and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type, and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr. These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation. From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.

  12. Electrochemical properties of fine-grained AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hadzima, Branislav; Bukovina, Michal [Univ. of Zilina (Slovakia). Dept. of Materials Engineering; Janecek, Milos; Kral, Robert [Charles Univ., Dept. of Physics of Materials, Prague (Czech Republic)

    2009-09-15

    The influence of equal channel angular pressing (ECAP) on the microstructure changes of magnesium alloy AZ31 was investigated. The microstructure changes were correlated with electrochemical characteristics of the surface. Eight passes of ECAP resulted in significant grain refinement (factor 100) of the initial squeeze-cast (SC) alloy. The influence of microstructure changes on electrochemical properties of the surface was evaluated using electrochemical impedance spectroscopy. The variation of electrochemical characteristics of the surface of the SC and ECAP alloy was determined after 3 and 7-day exposure in the corrosion solution of 0.1 M NaCl. The fine-grained deformed structure after ECAP was found to have significantly higher charge transfer resistance as compared to the squeeze-cast material. (orig.)

  13. Magnesium Alloys for Bioabsorbable Stents: A Feasibility Assessment

    Science.gov (United States)

    Deng, Charles Z.; Radhakrishnan, Rajesh; Larsen, Steve R.; Boismer, Dennis A.; Stinson, Jon S.; Hotchkiss, Adrienne K.; Petersen, Eric M.; Weber, Jan; Scheuermann, Torsten

    Today, stent designs consist of permanent metal alloy scaffolds which hold arteries open after percutaneous coronary intervention (PCI) to maintain arterial blood flow. Bioabsorbable stents are being investigated as an alternate for permanent stents, that disintegrate and dissolve in the body. In this article, we profile magnesium (Mg) alloy as a candidate for bioabsorbable stent material, and discuss aspects of its properties and challenges. Experimental data are generated in effort to draw correlations between in vivo vessel absorption and in vitro degradation, and to provide an overview of alloy mechanical properties, stent designs, and electrochemical behaviors. Preclinical porcine coronary model test results exhibit early on-set and rapid corrosion presenting a challenge to researchers to establish material design concepts that balance degradation time, duration for need of scaffolding, and healing.

  14. Development of a Ballistic Specification for Magnesium Alloy AZ31B

    National Research Council Canada - National Science Library

    Jones, Tyrone L; DeLorme, Richard D

    2008-01-01

    .... The magnesium alloy plates were parametrically compared with the minimum performance requirements of aluminum alloy 5083-H131 temper rolled plate using various armor-piercing and fragment-simulating projectiles (FSPs...

  15. A Model for Gas Microporosity in Aluminum and Magnesium Alloys

    Science.gov (United States)

    Felicelli, Sergio D.; Wang, Liang; Pita, Claudio M.; Escobar de Obaldia, Enrique

    2009-04-01

    A quantitative prediction of the amount of gas microporosity in aluminum and magnesium-alloy castings is performed with a continuum model of dendritic solidification. The distribution of the pore volume fraction and pore size is calculated from a set of conservation equations that solves the transport phenomena during solidification at the macroscale and the hydrogen diffusion into the pores at the microscale. A technique based on a pseudo-alloy solute that is transported by the melt is used to determine the potential sites of pore growth, subject to considerations of mechanical and thermodynamic equilibrium. The modeling results for aluminum alloy A356 are found to agree well with published studies. In view of the limited availability of experimental data for Mg-alloy gravity-poured castings, the formation of porosity in AZ91 is studied qualitatively, assuming that casting conditions are similar to A356. In particular, the minimum initial hydrogen content that leads to the formation of gas porosity was compared for both alloys. It is found that the initial hydrogen content necessary for forming porosity is much higher in AZ91 than in A356. This is attributed to significant differences in the solubility of the hydrogen in both alloys.

  16. Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Md. Imran Khan

    2014-01-01

    Full Text Available The effect of cooling rate on microstructure and microsegregation of three commercially important magnesium alloys was investigated using Wedge (V-shaped castings of AZ91D, AM60B, and AE44 alloys. Thermocouples were distributed to measure the cooling rate at six different locations of the wedge casts. Solute redistribution profiles were drawn based on the chemical composition analysis obtained by EDS/WDS analysis. Microstructural and morphological features such as dendrite arm spacing and secondary phase particle size were analyzed using both optical and scanning electron microscopes. Dendritic arm spacing and secondary phase particle size showed an increasing trend with decreasing cooling rate for the three alloys. Area percentage of secondary phase particles decreased with decreasing cooling rate for AE44 alloy. The trend was different for AZ91D and AM60B alloys, for both alloys, area percentage of β-Mg17Al12 increased with decreasing cooling rate up to location 4 and then decreased slightly. The tendency for microsegregation was more severe at slower cooling rates, possibly due to prolonged back diffusion. At slower cooling rate, the minimum concentration of aluminum at the dendritic core was lower compared to faster cooled locations. The segregation deviation parameter and the partition coefficient were calculated from the experimentally obtained data.

  17. Irradiation and thermal effects on the tensile properties of Inconel alloy 718. [Wrought and weld-deposited

    Energy Technology Data Exchange (ETDEWEB)

    Ward, A.L.; Steichen, J.M.; Knecht, R.L.

    1976-01-01

    The effects of neutron irradiation and out-of-flux aging on the tensile properties of wrought and weld-deposited Inconel 718 were investigated following fast-reactor (EBR-II) irradiation to total fluences ranging from 0.55 x 10/sup 22/ cm/sup 2/ (approximately 400/sup 0/C) to 6.6 x 10/sup 22/ n/cm/sup 2/ (649/sup 0/C) and thermal exposure at 538/sup 0/C and 649/sup 0/C for durations to 10,000 hours. Classical irradiation hardening is exhibited by this very strong material following irradiation at low temperature (approximately 400/sup 0/C) to relatively low fluence (approximately 10/sup 22/ n/cm/sup 2/) and also at high temperature when very high fluence (6.6 x 10/sub 22/n/cm/sup 2/) is accumulated. At test temperatures less that 538/sup 0/C, ductility losses arising from helium embrittlement are evident for all irradiation conditions and at high fluences are so severe as to restrict the strength to lower than expected values. Low postirradiation strength, compared to that following out-of-flux aging for equivalent durations, suggests that irradiation accelerates the thermal overaging process at 538/sup 0/C. At 649/sup 0/C, the results are obscured by embrittlement and coincident limitations on strain hardenability. 8 fig.

  18. Metal Injection Molding (MIM of Magnesium and Its Alloys

    Directory of Open Access Journals (Sweden)

    Martin Wolff

    2016-05-01

    Full Text Available Current research has highlighted that magnesium and its alloys as biodegradable material are highly suitable for biomedical applications. The new material fully degrades into nontoxic elements and offers material properties matching those of human bone tissue. As biomedical implants are rather small and complex in shape, the metal injection molding (MIM technique seems to be well suited for the near net shape mass production of such parts. Furthermore, MIM of Mg-alloys is of high interest in further technical fields. This study focusses on the performance of MIM-processing of magnesium alloy powders. It includes Mg-specific development of powder blending, feedstock preparation, injection molding, solvent and thermal debinding and final sintering. Even though Mg is a highly oxygen-affine material forming a stable oxide layer on each particle surface, the material can be sintered to nearly dense parts, providing mechanical properties matching those of as cast material. An ultimate tensile strength of 142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa and 8% elongation at fracture could be achieved using novel organic polymer binders for the feedstock preparation. Thus, first implant demonstrator parts could be successfully produced by the MIM technique.

  19. Chemical conversion coating for protecting magnesium alloys from corrosion

    Science.gov (United States)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  20. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  1. Forming of magnesium alloy microtubes in the fabrication of biodegradable stents

    NARCIS (Netherlands)

    Wang, L.; Fang, G.; Qian, L.; Leeflang, M.A.; Duszczyk, J.; Zhou, J.

    2014-01-01

    Magnesium alloys have, in recent years, been recognized as highly promising biodegradable materials, especially for vascular stent applications. Forming of magnesium alloys into high-precision thin-wall tubes has however presented a technological barrier in the fabrication of vascular stents,

  2. Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zaleski Radosław

    2015-12-01

    Full Text Available The effect of roller burnishing on Vickers’ hardness and positron lifetimes in the AZ91HP magnesium alloy was studied. The microhardness increases with an increase in the burnishing force and with a decrease in the feed. The comparison of various methods of analysis of positron annihilation lifetime (PAL spectra allowed identification of two components, which are related to solute-vacancy complexes and vacancy clusters, respectively. It was found that the increase in microhardness was related to the increase in the concentration of vacancy clusters.

  3. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    Science.gov (United States)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  4. Forming of magnesium alloy microtubes in the fabrication of biodegradable stents

    OpenAIRE

    Wang, Lixiao; Fang, Gang; Qian, Lingyun; Leeflang, Sander; Duszczyk, Jurek; Jie ZHOU

    2014-01-01

    Magnesium alloys have, in recent years, been recognized as highly promising biodegradable materials, especially for vascular stent applications. Forming of magnesium alloys into high-precision thin-wall tubes has however presented a technological barrier in the fabrication of vascular stents, because of the poor workability of magnesium at room temperature. In the present study, the forming processes, i.e., hot indirect extrusion and multi-pass cold drawing were used to fabricate seamless mic...

  5. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  6. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    the corrosion resistance of the alloy. The cleaning efficiency of the three acids used and the corrosion protection mechanisms were found to be remarkably different. Best corrosion results were obtained with nitric acid, followed closely by phosphoric acid. Only the sulphuric acid failed more or less when......Surface contaminants as a result of thermo-mechanical processing of magnesium alloys, e.g. sheet rolling, can have a negative effect on the corrosion resistance of magnesium alloys. Especially contaminants such as Fe, Ni and Cu, left on the surface of magnesium alloys result in the formation...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...

  7. Corrosion Protection and Surface Treatment of Magnesium Alloys Used for Orthopedic Applications

    Directory of Open Access Journals (Sweden)

    Nabil Nassif

    2013-01-01

    Full Text Available An overview is reported about the history of prevailing magnesium alloys as orthopedic biodegradable materials. Important features of the effect of alloying additions, along with surface treatments for corrosion protection of magnesium alloys, are described. Hydroxyapatite (HA, the promising coat deposited by different direct and electrochemical methods to tailor corrosion resistance and biocompatibility, is discussed. Surface modifications, such as microarc oxidation or anodization which lead to nanostructures fabricated to provide better adhesion for HA coatings, are presented.

  8. Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures

    Science.gov (United States)

    Mo, Ning; Tan, Qiyang; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2017-11-01

    Based on previously published work on binary Mg alloys by Abaspour et al. and on the magnesium (Mg)-6gadolinium (Gd)-2zinc (Zn)-0.6zirconium (Zr) (wt pct) alloy reported by Nie et al., a number of new lower-cost Mg-3Gd-2calcium (Ca) (wt pct)-based creep-resistant magnesium alloys were developed by replacing part of the Gd with Ca. After solution treatment at 793 K (520 °C), the Ca-containing alloys exhibited an increased strength and a reduced stress relaxation at 453 K (180 °C) compared with the Mg-6Gd-2Zn-0.6Zr (wt pct) alloy. This work indicates that the replacement of Gd with Ca is a promising approach to develop lower-cost Mg alloys with an improved creep resistance. The results support the hypothesis that the short-range order of solutes governs the creep behavior of magnesium alloys.

  9. Magnesium alloys as a biomaterial for degradable craniofacial screws.

    Science.gov (United States)

    Henderson, Sarah E; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L; Chou, Da-Tren; Kumta, Prashant N; Almarza, Alejandro J

    2014-05-01

    Recently, magnesium (Mg) alloys have received significant attention as potential biomaterials for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available pure Mg and alloy AZ31 in vivo in a rabbit mandible. First, Mg and AZ31 screws were compared to stainless steel screws in an in vitro pull-out test and determined to have a similar holding strength (∼40N). A finite-element model of the screw was created using the pull-out test data, and this model can be used for future Mg alloy screw design. Then, Mg and AZ31 screws were implanted for 4, 8 and 12weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12weeks. Microcomputed tomography was used to assess bone remodeling and Mg/AZ31 degradation, both visually and qualitatively through volume fraction measurements for all time points. Histological analysis was also completed for the Mg and AZ31 at 12weeks. The results showed that craniofacial bone remodeling occurred around both Mg and AZ31 screws. Pure Mg had a different degradation profile than AZ31; however, bone growth occurred around both screw types. The degradation rate of both Mg and AZ31 screws in the bone marrow space and the muscle were faster than in the cortical bone space at 12weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg alloys for craniofacial applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Magnesium alloy AZ63A reinforcement by alloying with gallium and using high-disperse ZrO2 particles

    Directory of Open Access Journals (Sweden)

    J. Khokhlova

    2016-12-01

    Full Text Available The aim of this work was to obtain an experimental magnesium alloy by remelting standard AZ63A alloy with addition of gallium ligatures and ZrO2 particles. This allowed reinforcement of alloy and increase its hardness and Young's modulus. The chemical analysis of this alloy shows two types of structures which are evenly distributed in volume. Thus we can conclude that reinforcing effect is the result of formation of intermetallic phase Mg5-Ga2.

  11. Calcium orthophosphate coatings on magnesium and its biodegradable alloys.

    Science.gov (United States)

    Dorozhkin, Sergey V

    2014-07-01

    Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. CYCLIC FATIGUE RESISTANCE OF AZ91 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Aneta Němcová

    2009-11-01

    Full Text Available The paper deals with determination of principal mechanical properties and the investigation of fatigue behaviour of AZ91 magnesium alloy. The experimental material was made by squeeze casting technique and heat treated to obtain T4 state (solution annealing, when hard, brittle Mg17Al12 intermetallic phase is dissolved. The basic mechanical properties (Young’s modulus, ultimate tensile strength, yield strength, elongation to fracture and reduction of area were determined by static tensile test. Furthermore, fatigue parameters were investigated. The S-N curve on the basis of smooth test bars tested under symmetrical push-pull loading at room temperature was evaluated. The measured data were subsequently used for fitting with suitable regression functions (Kohout & Věchet and Stromeyer for determination of the fatigue parameters. Fatigue limit sigma-c of the studied alloy for 108 cycles is approaching 50 MPa. In addition, the fracture surfaces were observed by scanning electron microscopy. The failure analysis proved that the striations were observed in fatigue crack propagation area and in the area of static fracture was observed the transgranular ductile fracture. The structure of the studied alloy in the basic state and after heat treatment was observed by light and scanning electron microscopy.

  13. Thermographic Study of Chip Temperature in High-Speed Dry Milling Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kuczmaszewski Józef

    2016-06-01

    Full Text Available This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.

  14. The Potential of Magnesium Alloys as Bioabsorbable/ Biodegradable Implants for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    F. Živić

    2014-03-01

    Full Text Available The potential of magnesium alloys as bioabsorbable / biodegradable implants for biomedical applications has been extensively studied as emerging direction. This paper gives a review of current topics in this field. Research activities related to biomedical magnesium alloys have been pursued in two main directions, orthopedic and cardiovascular implants, by investigating different aspects of alloying system design, novel structures, degradation rate control, and surface modification methods. Magnesium alloys are currently considered for applications as load-bearing implant devices such as plates, screws and pins for repairing bone fracture. Highly important direction of research is degradable coronary stents. Degradable vessel stents promote stable vessel regeneration, unlike permanent stents. Different combinations of alloying elements have been investigated in order to decrease corrosion rate.Tribological issues are also important for understanding of different phenomenon related to prolongation of Mg alloys corrosion degradation time/rate, such as tribocorrosion, corrosion fatigue, and fatigue crack growth behavior.

  15. Sol-Gel Coating on Magnesium Alloy and Its Evaluation of Corrosion Resistance

    National Research Council Canada - National Science Library

    Hitonori SATO; Shinji HIRAI; Kazuyoshi SHIMAKAGE; Kenji WADA

    2003-01-01

    .... In comparisons between the composite films prepared by repeating three dip-coatings and an anodic oxide film of magnesium alloy, the acidic corrosion resistances of these films to various acids...

  16. Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness

    OpenAIRE

    Asif Baloch; M. Bobby Kannan

    2017-01-01

    In this study, polyaniline was coated on AZ91 magnesium alloy using an electropolymerisation technique, and the effect of corrosiveness of the coating electrolytes on the polymerisation and the coating performance were evaluated. Two electrolytes, i.e., aniline + sodium salicylate (PASS) and aniline + potassium hydroxide (PAPH), with different corrosiveness, were used for polyaniline coating on AZ91 magnesium alloy. Potentiodynamic polarisation results suggested that salicylic acid (C7H5NaO3)...

  17. Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.

    Science.gov (United States)

    Ishizaki, Takahiro; Sakamoto, Michiru

    2011-03-15

    The design of color-tuned magnesium alloy with anticorrosive properties and damping capacity was created by means of a simple and inexpensive method. The vertically self-aligned nano- and microsheets were formed on magnesium alloy AZ31 by a chemical-free immersion process in ultrapure water at a temperature of 120 °C, resulting in the color expression. The color changed from silver with metallic luster to some specific colors such as orange, green, and orchid, depending on the immersion time. The color-tuned magnesium alloy showed anticorrosive performance and damping capacity. In addition, the colored surface with minute surface textures was modified with n-octadecyltrimethoxysilane (ODS), leading to the formation of color-tuned superhydrophobic surfaces. The corrosion resistance of the color-tuned superhydrophobic magnesium alloy was also investigated using electrochemical potentiodynamic measurements. Moreover, the color-tuned superhydrophobic magnesium alloy showed high hydrophobicity not just for pure water but also for corrosive liquids, such as acidic, basic, and some aqueous salt solutions. In addition, the American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the color-tuned superhydrophobic film to the magnesium alloy surface.

  18. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  19. A review on the effect of welding on the corrosion of magnesium alloys

    Science.gov (United States)

    Mohamed, N. S.; Alias, J.

    2017-10-01

    Welding is an important joining technique for lightweight alloys with their increasing applications in aerospace, aircraft, automotive, electronics and other industries. The applications of lightweight alloys particularly magnesium alloys increased rapidly due to their beneficial properties such as low density, high strength-to-mass ratio, good dimensional stability, electromagnetic shielding and good recyclability. The effect of welding on the corrosion of magnesium alloys are reviewed in this paper, which closely related to the developed microstructure by the welding process. The paper focuses particularly on friction stir and laser welding. The basic principles of friction stir and laser welding are discussed, to present the likelihood of defects which significantly affect the corrosion of magnesium alloy. The finding in corrosion demonstrated the morphology of corrosion occurrence on each welded region, and observation on the potential and current values are also included.

  20. Lattice softening in body-centered-cubic lithium-magnesium alloys

    Science.gov (United States)

    Winter, I. S.; Tsuru, T.; Chrzan, D. C.

    2017-08-01

    A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.

  1. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  2. In vitro biocompatibility and endothelialization of novel magnesium-rare Earth alloys for improved stent applications.

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    Full Text Available Magnesium (Mg based alloys are the most advanced cardiovascular stent materials. This new generation of stent scaffold is currently under clinical evaluation with encouraging outcomes. All these Mg alloys contain a certain amount of rare earth (RE elements though the exact composition is not yet disclosed. RE alloying can usually enhance the mechanical strength of different metal alloys but their toxicity might be an issue for medical applications. It is still unclear how RE elements will affect the magnesium (Mg alloys intended for stent materials as a whole. In this study, we evaluated MgZnCaY-1RE, MgZnCaY-2RE, MgYZr-1RE, and MgZnYZr-1RE alloys for cardiovascular stents applications regarding their mechanical strength, corrosion resistance, hemolysis, platelet adhesion/activation, and endothelial biocompatibility. The mechanical properties of all alloys were significantly improved. Potentiodynamic polarization showed that the corrosion resistance of four alloys was at least 3-10 times higher than that of pure Mg control. Hemolysis test revealed that all the materials were non-hemolytic while little to moderate platelet adhesion was found on all materials surface. No significant cytotoxicity was observed in human aorta endothelial cells cultured with magnesium alloy extract solution for up to seven days. Direct endothelialization test showed that all the alloys possess significantly better capability to sustain endothelial cell attachment and growth. The results demonstrated the promising potential of these alloys for stent material applications in the future.

  3. In Vitro Biocompatibility and Endothelialization of Novel Magnesium-Rare Earth Alloys for Improved Stent Applications

    Science.gov (United States)

    Zhao, Nan; Watson, Nevija; Xu, Zhigang; Chen, Yongjun; Waterman, Jenora; Sankar, Jagannathan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) based alloys are the most advanced cardiovascular stent materials. This new generation of stent scaffold is currently under clinical evaluation with encouraging outcomes. All these Mg alloys contain a certain amount of rare earth (RE) elements though the exact composition is not yet disclosed. RE alloying can usually enhance the mechanical strength of different metal alloys but their toxicity might be an issue for medical applications. It is still unclear how RE elements will affect the magnesium (Mg) alloys intended for stent materials as a whole. In this study, we evaluated MgZnCaY-1RE, MgZnCaY-2RE, MgYZr-1RE, and MgZnYZr-1RE alloys for cardiovascular stents applications regarding their mechanical strength, corrosion resistance, hemolysis, platelet adhesion/activation, and endothelial biocompatibility. The mechanical properties of all alloys were significantly improved. Potentiodynamic polarization showed that the corrosion resistance of four alloys was at least 3–10 times higher than that of pure Mg control. Hemolysis test revealed that all the materials were non-hemolytic while little to moderate platelet adhesion was found on all materials surface. No significant cytotoxicity was observed in human aorta endothelial cells cultured with magnesium alloy extract solution for up to seven days. Direct endothelialization test showed that all the alloys possess significantly better capability to sustain endothelial cell attachment and growth. The results demonstrated the promising potential of these alloys for stent material applications in the future. PMID:24921251

  4. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    Science.gov (United States)

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    Science.gov (United States)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  6. Effects of organic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2010-01-01

    Organic acids were used to clean AZ31 magnesium alloy sheet and the effect of the cleaning processes on the surface condition and corrosion performance of the alloy was investigated. Organic acid cleanings reduced the surface impurities and enhanced the corrosion resistance. Removal of at least 4...

  7. Fatigue behavior of the magnesium alloy ZK60 in high cycle fatigue

    NARCIS (Netherlands)

    Constantinescu, D.M.; Moldovan, P.; Sillekens, W.H.; Sandu, M.; Apostol, D.A.; Miron, M.C.

    2009-01-01

    Not too much information is available in the literature for establishing fatigue properties of magnesium alloys. A compilation of existing fatigue and fatigue crack growth data of different Mg-alloys has been published by ASM International. One can underline that fatigue properties of some of the

  8. Forming of magnesium alloy microtubes in the fabrication of biodegradable stents

    Directory of Open Access Journals (Sweden)

    Lixiao Wang

    2014-10-01

    Full Text Available Magnesium alloys have, in recent years, been recognized as highly promising biodegradable materials, especially for vascular stent applications. Forming of magnesium alloys into high-precision thin-wall tubes has however presented a technological barrier in the fabrication of vascular stents, because of the poor workability of magnesium at room temperature. In the present study, the forming processes, i.e., hot indirect extrusion and multi-pass cold drawing were used to fabricate seamless microtubes of a magnesium alloy. The magnesium alloy ZM21 was selected as a representative biomaterial for biodegradable stent applications. Microtubes with an outside diameter of 2.9 mm and a wall thickness of 0.2 mm were successfully produced at the fourth pass of cold drawing without inter-pass annealing. Dimensional evaluation showed that multi-pass cold drawing was effective in correcting dimensional non-uniformity arising from hot indirect extrusion. Examinations of the microstructures of microtubes revealed the generation of a large number of twins as a result of accumulated work hardening at the third and fourth passes of cold drawing, corresponding to the significantly raised forming forces. The work demonstrated the viability of the forming process route selected for the fabrication of biodegradable magnesium alloy microtubes.

  9. A Review: Effect of Friction Stir Welding on Microstructure and Mechanical Properties of Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Yajie Li

    2017-11-01

    Full Text Available Friction stir welding (FSW is well recognized as a very practical technology for joining magnesium alloys. Although, a large amount of progress have been made on the FSW of magnesium alloys, it should be emphasized that many challenges still remain in joining magnesium using FSW. In this article, we briefly review the background of friction stir welding of magnesium alloys, and then focus on the effects of the friction stir welding on the macrostructure, microstructure evolution, texture distribution, and the mechanical properties of the welding joints. The macro-defects in welds and their relationship to the welding parameters such as welding speed, rotation speed, and axial force were also discussed. The review concluded with some suggested methods improvement and future challenges related to FSW of magnesium alloys. The purpose of the present review paper is to fully understand the relationships between the microstructure and the properties, and then establish a global, state-of-the-art FSW of magnesium alloys.

  10. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  11. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Science.gov (United States)

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  12. Insight of magnesium alloys and composites for orthopedic implant applications – a review

    Directory of Open Access Journals (Sweden)

    R Radha

    2017-09-01

    Full Text Available Magnesium (Mg and its alloys have been widely researched for orthopedic applications recently. Mg alloys have stupendous advantages over the commercially available stainless steel, Co-Cr-Ni alloy and titanium implants. Till date, extensive mechanical, in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying, processing conditions, surface modification etc. This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements, reinforcements and processing techniques. It also highlights the status and progress of research in to (i the selection of nutrient elements for alloying, reinforcement and its effects (ii type of Mg alloy system (binary, ternary and quaternary and composites (iii grain refinement for strengthening through severe plastic deformation techniques. Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.

  13. Mg-Al-RE Magnesium Alloys for High-Pressure Die-Casting

    Directory of Open Access Journals (Sweden)

    Braszczyńska-Malik K.N.

    2014-06-01

    Full Text Available Experimental Mg-Al-RE type magnesium alloys for high-pressure die-casting are presented. Alloys based on the commercial AM50 magnesium alloy with 1, 3 and 5 mass % of rare earth elements were fabricated in a foundry and cast in cold chamber die-casting machines. The obtained experimental casts have good quality surfaces and microstructure consisting of an α(Mg-phase, Al11RE3, Al10RE2Mn7 intermetallic compound and small amount of α+γ eutectic and Al2RE phases.

  14. Finite Element Based Physical Chemical Modeling of Corrosion in Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Venkatesh Vijayaraghavan

    2017-03-01

    Full Text Available Magnesium alloys have found widespread applications in diverse fields such as aerospace, automotive, bio-medical and electronics industries due to its relatively high strength-to-weight ratio. However, stress corrosion cracking of these alloys severely restricts their applications in several novel technologies. Hence, it will be useful to identify the corrosion mechanics of magnesium alloys under external stresses as it can provide further insights on design of these alloys for critical applications. In the present study, the corrosion mechanics of a commonly used magnesium alloy, AZ31, is studied using finite element simulation with a modified constitutive material damage model. The data obtained from the finite element modeling were further used to formulate a mathematical model using computational intelligence algorithm. Sensitivity and parametric analysis of the derived model further corroborated the mechanical response of the alloy in line with the corrosion physics. The proposed approach is anticipated to be useful for materials engineers for optimizing the design criteria for magnesium alloys catered for high temperature applications.

  15. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Zhen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Liu, Xiaoli [School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Huang, Tao [Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Xi, TingFei, E-mail: xitingfei@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Biomedical Engineering Research Center, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China); Zheng, Yufeng [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057 (China)

    2015-01-01

    Good hemocompatibility and cell compatibility are essential requirements for coronary stents, especially for biodegradable magnesium alloy stents, which could change the in situ environment after implanted. In this work, the effects of magnesium ion concentration and pH value on the hemolysis and cytotoxicity have been evaluated. Solution with different Mg{sup 2+} concentration gradients and pH values of normal saline and cell culture media DMEM adjusted by MgCl{sub 2} and NaOH respectively were tested for the hemolysis and cell viability. Results show that even when the concentration of Mg{sup 2+} reaches 1000 μg/mL, it has little destructive effect on erythrocyte, and the high pH value over 11 caused by the degradation is the real reason for the high hemolysis ratio. Low concentrations of Mg{sup 2+} (< 100 μg/mL) cause no cytotoxicity to L929 cells, of which the cell viability is above 80%, while high concentrations of Mg{sup 2+} (> 300 μg/mL) could induce obvious death of the L929 cells. The pH of the extract plays a synergetic effect on cytotoxicity, due to the buffer action of the cell culture medium. To validate this conclusion, commercial pure Mg using normal saline and PBS as extract was tested with the measurement of pH and Mg{sup 2+} concentration. Pure Mg leads to a higher hemolysis ratio in normal saline (47.76%) than in buffered solution (4.38%) with different pH values and low concentration of Mg{sup 2+}. The Mg extract culture media caused no cytotoxicity, with pH = 8.44 and 47.80 μg/mL Mg{sup 2+}. It is suggested that buffered solution and dynamic condition should be adopted in the hemolysis evaluation. - Highlights: • Mg{sup 2+} and pH have been tested for hemolysis and cytotoxicity of biomedical Mg. • Even 1000 μg/ml Mg{sup 2+} cannot cause hemolysis, but hemolysis reaches 53.8% when pH > 11. • Mg{sup 2+} > 300 μg/mL induces death of L929 and slight alkaline improves the proliferation. • Pure Mg in normal saline induces high

  16. Study on vertical mandibular distraction osteogenesis using magnesium alloy on canine

    Directory of Open Access Journals (Sweden)

    Chengyue Wang

    2014-10-01

    Full Text Available The bone formation feasibility by a novel magnesium alloy device was evaluated using a canine vertical mandibular distraction osteogenesis (DO model. Osteotomies were performed in the area where last 3 star׳s teeth of left mandibular were pulled out before 3 months. Both AZ31 magnesium alloy (n=6 and 316L stainless steel (n=6 distraction devices were implanted. The distraction osteogenesis was carried out with a latency of 5 days after mandibular osteotomy. Distraction proceeded at a rate of 0.3 mm/8 h for 7 days and followed by 4 weeks of consolidations. The evaluations were conducted by scanning electron microscopy (SEM and histological examinations. There were osteoblasts and trabecular bones formations manifestly in both groups. There was no significant difference in the bone mineral density between the two groups. The surface of the magnesium alloy was much more cracked and uneven, resulting from the surface pitting corrosion. The crew nails were closely combined with the surrounding bone tissue. AZ31 magnesium alloy exhibited a certain degradation rate in mandibular and did not post a negative effect on the kidney and liver. The observations in magnesium alloys group is consistent with the stainless steel group.

  17. A new method for grain refinement in magnesium alloy: High speed extrusion machining

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yao, E-mail: liuyao@ustb.edu.cn [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Songlin [China Electric Power Research Institute, State Grid Corporation of China, Beijing 100192 (China); Dai, Lanhong [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, Beijing 100190 (China)

    2016-01-10

    Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM.

  18. Study on fluidity of squeeze cast AZ91D magnesium alloy with different wall thicknesses

    Directory of Open Access Journals (Sweden)

    Chen Yun

    2014-03-01

    Full Text Available Rectangular cross-section specimens with different section thicknesses were prepared to study the influences of pouring temperature, mould temperature and squeeze velocity on the fluidity of squeeze cast AZ91D magnesium alloy by means of orthogonal test design method. The results show that pouring temperature, mould temperature and squeeze velocity can significantly affect the fluidity of magnesium alloy specimens with wall thickness no more than 4 mm, and the pouring temperature is the most influential factor on the fluidity of specimens with wall thickness of 1, 2 and 3 mm, while mould temperature is the one for specimens with wall thickness of 4 mm. Increasing pouring temperature between 700 °C and 750 °C is beneficial to the fluidity of AZ91D magnesium alloy, and increasing mould temperature significantly enhances the filling ability of thick (3 and 4 mm section castings. The fluidity of squeeze cast magnesium alloy increases with the increase of wall thickness. It is not recommended to produce magnesium alloy casting with wall thickness of smaller than 3 mm by squeeze cast process due to the poor fluidity. The software DPS was used to generate the regression model, and linear regression equations of the fluidity of squeeze cast AZ91D with different wall thicknesses are obtained using the test results.

  19. Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Willbold, E. [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany); Kaya, A.A. [Mugla University, Engineering Faculty, Metallurgy and Materials Engineering Department, Mugla (Turkey); Kaya, R.A. [MedicalPark Hospital, Kueltuer Sok No:1, 34160 Bahcelievler, Istanbul (Turkey); Beckmann, F. [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str.1, D - 21502 Geesthacht (Germany); Witte, F., E-mail: witte.frank@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, D - 30625 Hannover (Germany)

    2011-12-15

    The corrosion of biodegradable materials is a crucial issue in implant development. Among other materials, magnesium and magnesium based alloys are one of the most promising candidates. Since the corrosion of biodegradable materials depends on different physiological parameters like pH or ion concentrations, the corrosion might be different in different biological environments. To investigate this issue, we produced screws from magnesium alloy AZ31 and implanted them into the hip bone of 14 sheep. After 3 and 6 months, the screws were explanted and analyzed with synchrotron-radiation based micro-computed tomography and hard tissue histology. We found considerable differences in the corrosion behavior of the magnesium screws with respect to its original tissue location. However, we could detect a normal immunological tissue response.

  20. Hardness evolution of AZ80 magnesium alloy processed by HPT at different temperatures

    Directory of Open Access Journals (Sweden)

    Saad A. Alsubaie

    2017-10-01

    Full Text Available Discs of an extruded AZ80 magnesium alloy were processed by high-pressure torsion (HPT using 6.0 GPa up to 10 turns at different temperatures (296 K and 473 K. The disc surfaces and cross-sectional planes were examined before and after processing using scanning electron microscopy (SEM and Vickers microhardness (Hv. The microhardness results at the surface show differences in the strength of the material as a function of distance from the disc centres up to saturation, as well as a function of distance from the bottom to the surface in the cross-sectional plane. This study analyses the effect of processing temperature on the evolution of microhardness in the AZ80 magnesium alloy processed by high-pressure torsion. Keywords: Hardness, High-pressure torsion, Magnesium alloy, Severe plastic deformation

  1. Composite Coatings Combining PEO Layer and EPD Layer on Magnesium Alloy

    Science.gov (United States)

    Jiang, Yongfeng; Bao, Yefeng; Yang, Ke

    Protective composite coatings were prepared combining plasma electrolytic oxidation (PEO) treatment and cathodic electrophoretic deposition on magnesium alloy AZ91D. The corrosion protection of composite coatings were evaluated using potentiodynamic polarization measurements in 3.5% NaCl solution, copper accelerated acetate salt spray (CASS) test and immersion test in acid solution. The adhesion of composite coatings was evaluated using cross-cut test and pull-off test. It is indicated that the corrosion resistance of magnesium alloy AZ91D with the composite coatings is improved obviously compared to it merely with PEO coating and it is also shown that pitting corrosion of PEO coating on magnesium alloy is decreased with EPD post-treatment. The adhesion of composite coatings could be up to 11.3 N/mm2 in quantitative method due to the interlocking effect of organic layer in pores of PEO layer.

  2. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  3. The new foundry line for magnesium alloys high-pressure die-casting

    Directory of Open Access Journals (Sweden)

    K.N Braszczyńska-Malik

    2008-04-01

    Full Text Available The new foundry line for high-pressure die-casting of magnesium alloys constructed in the “SILUM” Foundry (Opojowice, Poland is described. In the process cold chamber die-casting machines are used. The experimental casts and the radiators fabricated using the new cold chamber die-casting line are presented as the final results. The new production line allows to obtain good quality magnesium casts.

  4. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid

    Science.gov (United States)

    Wang, Fengwu; Cai, Shu; Shen, Sibo; Yu, Nian; Zhang, Feiyang; Ling, Rui; Li, Yue; Xu, Guohua

    2017-09-01

    In order to decrease the corrosion rate and improve the bioactivity of magnesium alloy, phytic acid/saline hybrid coatings were synthesized on AZ31 magnesium alloys by sol-gel dip-coating method. It was found that the mole ratio of phytic acid to γ-APS had a great influence on coating morphology and the corresponding corrosion resistance of the coated magnesium alloys. When the mole ratio of phytic acid to γ-APS was 1:1, the obtained hybrid coating was integral and without cracks, which was ascribed to the strong chelate capability of phytic acid and Si-O-Si network derived from silane. Electrochemical test result indicated that the corrosion resistance of the coated magnesium alloy was about 27 times larger than that of the naked counterpart. In parallel, immersion test showed that the phytic acid/silane hybrid coating could induce CaP-mineralized product deposition, which offered another protection for magnesium alloy.

  5. Current status and manufacturing technologies of magnesium alloy parts in Japanese home electronics

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Y.; Takara, A. [Corporate Production Engineering Div., Matsushita Electric Industrial Co., Ltd., Osaka (Japan)

    2003-07-01

    The Japanese home electronics market has demanded that the newer products must be smaller, thinner and lighter. The use of magnesium alloys for Japanese home electronics has increased since the latter half of the 1990's. Magnesium alloys have been used mainly for the outer cases of portable electric products, because of their lightness and rigidness. Magnesium is also a promising material from the viewpoint of recycling. Magnesium alloy parts have been mass-produced for the outer cases of portable home electronics, such as, mini-disc player, notebook type personal computer or cell phone. The parts have the characteristics of high quality in appearance and thin walled, complicated shape with rib or boss. Most of them are formed by die-casting or injection molding technologies. After casting, the parts are treated precise machining to clear minute surface cracks or voids. Subsequently, they are operated anti-corrosion treatment and spray coating. Recycling have already carried out for magnesium alloy scraps to be cast again. Paint stripping before remelting is performed by alkali solutions or sandblast techniques for coated scraps. Finally, the development of promising press forming technologies is also introduced. (orig.)

  6. Biodegradable surgical implants based on magnesium alloys - A review of current research

    Energy Technology Data Exchange (ETDEWEB)

    Seal, C K; Hodgson, M A [School of Engineering, University of Auckland, 20 Symonds St., Auckland 1010 (New Zealand); Vince, K, E-mail: c.seal@auckland.ac.nz [Department of Orthopaedic Surgery, Level 7, Auckland City Hospital (New Zealand)

    2009-08-15

    There is considerable interest in the potential of magnesium alloys to be used in place of existing materials for surgical implants. Of particular interest is the possibility of using magnesium implants to act as both scaffolding on which new bone can grow, and as fixtures to hold together bone long enough to allow natural healing to take place. Magnesium is particularly desirable in this type of application as it is bio-compatible, and it has a modulus of elasticity closer to bone than currently used materials. Another major advantage of using magnesium as a surgical implant is in its ability to biodegrade in situ. This in turn means that the implant need not remain in the body without needing extra surgery to remove it. This paper presents a review of current research into magnesium based surgical implants.

  7. Resistance of WE43 and ZRE1 Magnesium Alloys to Gas Corrosion

    Directory of Open Access Journals (Sweden)

    Przeliorz R.

    2017-06-01

    Full Text Available In spite of the fact that in most applications, magnesium alloys are intended for operation in environments with room temperature, these alloys are subject to elevated temperature and oxidizing atmosphere in various stages of preparation (casting, welding, thermal treatment. At present, the studies focus on development of alloys with magnesium matrix, intended for plastic forming. The paper presents results of studies on oxidation rate of WE43 and ZRE1 magnesium foundry alloys in dry and humidified atmosphere of N2+1%O2. Measurements of the oxidation rate were carried out using a Setaram thermobalance in the temperature range of 350-480°C. Corrosion products were analyzed by SEM-SEI, BSE and EDS. It was found that the oxide layer on the WE43 alloy has a very good resistance to oxidation. The high protective properties of the layer should be attributed to the presence of yttrium in this alloy. On the other hand, a porous, two-layer scale with a low adhesion to the substrate forms on the ZRE1 alloy. The increase in the sample mass in dry gas is lower than that in humidified gas.

  8. Study on the isothermal forging process of MB26 magnesium alloy adaptor

    Directory of Open Access Journals (Sweden)

    Xu Wenchen

    2015-01-01

    Full Text Available The isothermal forging process is an effective method to manufacture complex-shaped components of hard-to-work materials, such as magnesium alloys. This study investigates the isothermal forging process of an MB26 magnesium alloy adaptor with three branches. The results show that two-step forging process is appropriate to form the adaptor forging, which not only improves the filling quality but also reduces the forging load compared with one-step forging process. Moreover, the flow line is distributed along the contour of the complex-shaped adaptor forging.

  9. Influence of Cryogenic Temperatures on the Microstructure and Mechanical Properties of Magnesium Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Hajo Dieringa

    2017-01-01

    Full Text Available Magnesium alloys have been used in the automotive industry and 3C (computer, communication, and consumer electronics for many years. Their room temperature properties combined with their low density offer a wide range of applications, especially when processed by High Pressure Die Casting (HPDC. The use of magnesium alloys at higher temperatures is well-studied; special creep resistant alloys containing the rare earth elements silver or yttrium are needed. However, when it comes to very low temperatures, only a few studies have been performed to determine the property-microstructure relationship. The possible fields of application at low temperatures are aerospace and satellite parts and tanks for liquefied gases. This review shall not only examine mechanical properties at low temperatures, but also the permanent effects of cyclic or long-lasting cryogenic treatment on the microstructure and mechanical properties. It was found that cryogenic treatment is able to influence the precipitate concentration and grain orientation in some magnesium alloys. Reduction in the number of brittle phases is improving ductility in some cases. It is well-known that high speed tool steels, in particular, can be influenced by cryogenic treatment. Whether this is possible with magnesium alloys and what the mechanisms are shall be reviewed.

  10. Sheet texture modification in magnesium-based alloys by selective rare earth alloying

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University, D-52056 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University, D-52056 Aachen (Germany)

    2011-04-25

    Research highlights: {yields} Different RE elements gave distinct microstructures and imparted different properties. {yields} Gd demonstrated the highest potential to modify the sheet texture of rolled Mg. {yields} Gd yielded excellent mechanical properties despite a coarse-grained microstructure. {yields} RE alloying seems to promote the hard deformation mechanisms in Mg. {yields} Indications of PSN were found in the annealed microstructures of rolled sheets. - Abstract: The current study examines the influence of select rare earth elements; Gd, Nd, Ce, La and mischmetal (MM) on the sheet texture modification during warm rolling and annealing of a ZEK100 magnesium alloy, and the resulting formability and anisotropy during subsequent tensile testing at room temperature. It was found that all the investigated RE elements led to weak sheet textures and hence promoted enhanced ductility and reduced anisotropy over conventional Mg sheet. Gd was of a particular interest because it gave rise to a desired Mg sheet texture despite its coarsest grain size resulting in promising mechanical properties. It is suggested that solute related effects on the grain boundary migration and the relative strengths of different deformation mechanisms are responsible for altering the common concepts of recrystallization and grain growth during annealing, and the activation scenarios of slip and twinning during deformation.

  11. Quantitative procedure for evaluation of microstructure of cast Mg-Al-Ca-Sr magnesium alloy

    Directory of Open Access Journals (Sweden)

    T. Rzychoń

    2010-01-01

    Full Text Available In this paper the microstructural characterization of ingot MRI-230D magnesium alloy and quantitative procedure for evaluation of microstructure are presented. The optical and scanning electron microscopy were used to study the morphology of microstructural compounds in this alloy. The X-ray diffraction was used to determination of phase composition. The as-cast microstructure of MRI-230D magnesium alloy containing aluminum, calcium and strontium consists of the dendritic α-Mg and such intermetallic compounds as: Al2Ca, Al4Sr and AlxMny. In the purpose quantitative description of microstructure semi-automatic procedures using Met-Ilo image analysis were developed. Prepared semi-automatic procedures allow a fast determination of phase content in MRI-230D alloy using light microscopy and will be useful in the quality control of MRI-230D ingots.

  12. Microstructure and mechanical properties of Mg-6Al magnesium alloy with yttrium and neodymium

    Directory of Open Access Journals (Sweden)

    Chen Jun

    2009-05-01

    Full Text Available The effects of rare earth (RE elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated. The results show that a proper level of RE elements can obviously refi ne the microstructure of Mg-6Al magnesium alloys, reduce the quantity of β-Mg17Al12 phase and form Al2Y and Al2Nd phases. The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃. When the content of RE elements is up to 1.8%, the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa, respectively. The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain refi ning strengthening and the dispersion strengthening.

  13. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    Science.gov (United States)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  14. High Pressure Die Casting of Aluminium and Magnesium Alloys: Grain Structure and Segregation Characteristics

    OpenAIRE

    Laukli, Hans Ivar

    2004-01-01

    Cold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings. The investi...

  15. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  16. Mechanical properties of homogenized twin-roll cast and conventionally cast AZ31 magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mariia Zimina

    2015-02-01

    Full Text Available The improvement of mechanical properties of magnesium alloys nowadays is very important, because of the variety of industrial applications. For this goal, the number of casting techniques and further treatments were developed. Among the continuous casting techniques, which allow producing long strips of the alloys, is twin-roll casting. Using this process one can get the magnesium alloy with finest microstructure and higher specific strength. In this paper the comparison of tensile properties of conventionally cast and twin-roll cast AZ31 magnesium alloys was made. Tensile tests were carried out with constant strain rate 10-3 s-1 at temperatures ranging from 100 to 300 °C. Both materials were tested in as-cast state and after homogenization treatment at 450 °C for 10 hours. The investigation showed that there are no significant changes in ductility of AZ31 conventionally cast alloy even after heat treatment, while the ductility of twin-roll cast alloy increases.

  17. Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kai Kerber

    2012-12-01

    Full Text Available In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys’ mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations.

  18. Biodegradable Behaviors of Ultrafine-Grained ZE41A Magnesium Alloy in DMEM Solution

    Directory of Open Access Journals (Sweden)

    Jinghua Jiang

    2015-12-01

    Full Text Available The main limitation to the clinical application of magnesium alloys is their too-fast degradation rate in the physiological environment. Bio-corrosion behaviors of the ZE41A magnesium alloy processed by multi-pass equal channel angular pressing (ECAP were investigated in Dulbecco's Modified Eagle Medium (DMEM solution, in order to tailor the effect of grain ultrafining on the biodegradation rate of the alloy implant. Hydrogen evolution tests indicated that a large number of ECAP passes decreased the stable corrosion rate of the alloy after the initial incubation period. Potentiodynamic polarization curves showed that more ECAP passes made the corrosion potential nobler and the corrosion tendency lower. Corroded surfaces of the ECAPed alloy indicated a higher resistance toward localized corrosion due to the homogeneous redistribution of broken second phases on the ultrafine-grained Mg matrix. It suggests that grain ultrafining can decrease the biodegradable rate of the magnesium alloy-containing rare-earth elements and tailor the lifetime of the biodegradable material.

  19. Metallographic Technique for Lithium and its Alloys with Aluminum and Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. B.; Vescovi, S.

    1952-03-31

    Studies on the properties of lithium and its alloys have indicated the need to develop suitable metallographic techniques for proper interpretation of their microstructures. Very little information could be found in the literature on the metallography of lithium and lithium-bearing alloys. This report gives a detailed description of the techniques that were develped and used to prepare lithium and lithium alloys for examination, and the evaluation of their microsttructures. The work has been centered on lithium metal, on cast aluminum-lithium alloys containing up to 10 w/o lithium, and on extruded, annealed, and solution-quenched alloys of 7 w/o and 10 w/o lithium content. A group of magnesium-lithium alloys with 10, 20, and 30 w/o nominal lithium was also investigated.

  20. Impact and Energy Dissipation Characteristics of Squeeze and Die Cast Magnesium Alloy AM60

    Science.gov (United States)

    DiCecco, Sante; Hu, Henry; Altenhof, William

    High-pressure die cast (HPDC) magnesium alloy AM60 is recognized for its versatility in the manufacturing of weight sensitive components of relatively thin cross section. To further expand practical applications of the alloy, squeeze casting has been proposed to allow for thicker castings. In this study, AM60 alloy specimens of 10mm thickness were squeeze cast using a hydraulic press with an applied pressure of 60 MPa. Fracture energies, following a Charpy Impact Testing protocol, of the squeeze cast specimens were characterized in comparison with the HPDC counterparts using both experimental and numerical techniques. The experimental results show the squeeze cast alloy absorbing approximately 46.2% more energy during impact than its HPDC counterpart. Scanning electron microscopy fractography reveals the favourable quasi-cleavage fracture mode of the squeeze cast alloy AM60, relative to the decohesive rupture fracture mode present in the die cast alloy.

  1. Heat resistant magnesium alloys for automotive powertrain applications

    Energy Technology Data Exchange (ETDEWEB)

    Anyanwu, I.A.; Gokan, Y.; Nozawa, S.; Kamado, S.; Kojima, Y. [Dept. of Mechanical Engineering, Nagaoka Univ. of Technology, Nagaoka, Niigata (Japan); Takeda, S.; Ishida, T. [Ahresty Corp., Magnesium Products Mfg. Div., Tochigi (Japan)

    2003-07-01

    The suitability of new Mg-Zn-Al-Ca-RE alloys for automotive power train applications are evaluated. Zinc and aluminum contents of the alloys were systematically varied in order to determine alloys with a combination of good diecasting characteristics and high heat resistance. Addition of large amounts of zinc to the alloys results in the formation of intermetallic compounds that crystallize at lower temperatures relative to the matrix, and consequently, fluidity is improved, but hot tearing occurs during diecasting. However, one of the new alloys, Mg-0.5%Zn-6%Al-1%Ca-3%RE alloy is found to exhibit good diecastability and comparable heat resistance with the conventional aluminum alloy, ADC12 that is currently used for diecasting of automotive powertrain parts. (orig.)

  2. Solution Hardening in Aluminium-Magnesium Alloys : A Nuclear Magnetic Resonance and Transmission Electron Microscopic Study

    NARCIS (Netherlands)

    Schlagowski, U.; Kanert, O.; Hosson, J.Th.M. De; Boom, G.

    1988-01-01

    Pulsed nuclear magnetic resonance techniques as well as transmission electron microscopy have been applied to study dislocation motion in aluminium magnesium alloys (0.2-1.6 at.% Mg). The spin lattice relaxation rate in the rotating frame of 27Al has been been measured at 77 K as a function of

  3. Microstructure of high-pressure die-casting AM50 magnesium alloy

    OpenAIRE

    Dabrowski, R.; K.N. Braszczynska -Malik; Braszczynski, J.

    2009-01-01

    Microstructure analyses of high-pressure die-casting AM50 magnesium alloy are presented. Investigated pressure casting wasproduced on a cold chamber die-casting machine with locking force at 1100 tones in “FINNVEDEN Metal Structures”. Light microscopyand X-ray phase analysis techniques were used to characterize the obtained material. In microstructure, an

  4. Microstructure of high-pressure die-casting AM50 magnesium alloy

    Directory of Open Access Journals (Sweden)

    R. Dabrowski

    2009-04-01

    Full Text Available Microstructure analyses of high-pressure die-casting AM50 magnesium alloy are presented. Investigated pressure casting wasproduced on a cold chamber die-casting machine with locking force at 1100 tones in “FINNVEDEN Metal Structures”. Light microscopyand X-ray phase analysis techniques were used to characterize the obtained material. In microstructure, an

  5. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry ...

  6. Compression Deformation Behavior of AZ81 Magnesium Alloy at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoping Luo

    2014-01-01

    Full Text Available The hot deformation behavior of an AZ81 magnesium alloy was investigated by hot compressive testing on a Gleeble-1500 thermal mechanical simulator in the temperature range from 200 to 400°C and in the strain rate range of 0.001–5 s−1. The relationships among flow stress, strain rate, and deformation temperature were analyzed, and the deformation activation energy and stress exponent were calculated. The microstructure evolution of the AZ81 magnesium alloy under high deformation was examined. The results indicated that the maximum value of the flow stress increased with the decrease of deformation temperature and the increase of strain rate. When the deformation temperature is constant, the flow stress of the AZ81 magnesium alloy increases with the increase of strain rate, which can be demonstrated by a Zener-Hollomon parameter in a hyperbolic-sine-type equation with a hot compression deformation activation energy of 176.01 KJ/mol and basic hot deformation material factors A, n, and a in the analytical expression of the AZ81 magnesium alloy flow stress of 3.21227×1014 s−1, 7.85, and 0.00866 MPa, respectively.

  7. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    Science.gov (United States)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  8. Corrosion protection of AM60B magnesium alloy by application of ...

    Indian Academy of Sciences (India)

    Cerium–vanadium (Ce–V) conversion coating was proposed as a new pretreatment for application of electroless Ni–P coating on AM60B magnesium alloy to replace the traditional chromium oxide pretreatment. Morphology and chemical composition of the conversion coating were investigated. The subsequent Ni–P ...

  9. Extension twin variant selection during uniaxial compression of a magnesium alloy

    DEFF Research Database (Denmark)

    Pei, Y.; Godfrey, A.; Jiang, J.

    2012-01-01

    Samples of the magnesium alloy AZ31 have been deformed by compression to strains of 5% and 10% and microstructural observations made to investigate the activation of specific {1 0 1¯ 2} extension twin variants. The twinning has been analyzed on a grain-by-grain basis for more than 260 grains...

  10. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  11. A two-step superplastic forging forming of semi-continuously cast AZ70 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Pan Wang

    2015-03-01

    Full Text Available A two-step technology combined forging with superplastic forming has been developed to enhance the forgeability of semi-continuously cast AZ70 magnesium alloy and realize the application of the as-cast magnesium alloy in large deformation bullet shell. In the first step, fine-grained microstructure preforms that are suitable for superplastic forming were obtained by reasonably designing the size of the initial blanks with the specific height-to-diameter ratio, upsetting the blanks and subsequent annealing. In the second step, the heat treated preforms were forged into the end products at the superplastic conditions. The end products exhibit high quality surface and satisfied microstructure. Consequently, this forming technology that not only avoids complicating the material preparation but also utilizes higher strain rate superplastic provides a near net-shaped novel method on magnesium forging forming technology using as-cast billet.

  12. Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, J.P. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ont., N6A 5B9 (Canada); Wood, J.T. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ont., N6A 5B9 (Canada)]. E-mail: jwood@eng.uwo.ca; Klassen, R.J. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ont., N6A 5B9 (Canada); Maire, E. [GEMPPM Laboratory, INSA de Lyon, 20 Avenue A. Einstein, 69621 Villeurbanne (France); Berkmortel, R. [Meridian Technologies Inc., 25 MacNab Avenue, Strathroy, Ont., N7G 4H6 (Canada); Wang, G. [Meridian Technologies Inc., 25 MacNab Avenue, Strathroy, Ont., N7G 4H6 (Canada)

    2005-03-25

    A die-cast magnesium alloy was examined with the use of X-ray tomography. Five tensile samples cut from different locations of a thin-walled, high-pressure magnesium die-casting were analyzed. The size and locations of pores in each sample were obtained from the X-ray tomography data. A critical local strain model was used to predict the fracture properties of the tensile samples. The validity of the model was exhibited by comparison of the predicted results with results from tensile tests. The location of the plane of fracture, the fracture strain, and the fracture stress were predicted to within 8%, 22%, and 11% accuracy, respectively. It was concluded that the local areal fraction of porosity is the primary factor in determining the tensile properties of the magnesium alloy specimens.

  13. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Alan A [The Ohio State Univ., Columbus, OH (United States); Zhao, Ji-Cheng [The Ohio State Univ., Columbus, OH (United States); Riggi, Adrienne [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Joost, William [US Dept. of Energy, Washington, DC (United States)

    2017-10-02

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide large amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.

  14. SHOT PEENING INFLUENCE ON CORROSION RESISTANCE OF AE21 MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Branislav Hadzima

    2010-12-01

    Full Text Available Evaluation of the electrochemical characteristics of the AE21 magnesium alloy is presented in the article. The surfaces of tested alloys were treated by grinding and grinding followed by sodium bicarbonate shot-peening. The specimens were evaluated by electrochemical impedance spectroscopy method in combination with exposure tests in 0.1 NaCl solution. The exposition times were from 5 minutes to 168 hours. The measured data were analysed using equivalent circuits and polarization resistances of the various corrosion systems were determined. Results of the electrochemical measurements are complemented by metallographical evaluation of the tested alloy.

  15. Magnesium alloys (WE43 and ZE41) characterisation for laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, Sorin; Sallamand, Pierre; Grevey, Dominique; Lambertin, Michel

    2004-06-30

    One of the most important parameters in laser treatment is the quantity of beam energy absorbed by the substrate. Despite its important role played in laser processes, this factor is rarely available for the laser sources wavelengths and at high temperatures reached during such treatments. A series of experiments were carried out in order to characterise, from this point of view, two types of magnesium alloys, WE43 and ZE41, often used in laser applications (cladding, alloying, welding, etc.). The results represent an important step in order to understand Mg-alloys behaviour under laser beam action.

  16. Research activities of biomedical magnesium alloys in China

    Science.gov (United States)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  17. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  18. Enhanced Corrosion Resistance and Biocompatibility of Magnesium Alloy by Mg-Al-Layered Double Hydroxide.

    Science.gov (United States)

    Peng, Feng; Li, Hua; Wang, Donghui; Tian, Peng; Tian, Yaxin; Yuan, Guangyin; Xu, Demin; Liu, Xuanyong

    2016-12-28

    Magnesium (Mg) and its alloys have been suggested as revolutionary biodegradable materials. However, fast degradation hinders its clinic application. To improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), magnesium-aluminum-layered double hydroxide (Mg-Al LDH) was successfully introduced into Mg(OH) 2 coating by hydrothermal treatment. The anions in the interlayer of Mg-Al LDH can be replaced by chloride ions, resulting in a relatively low chloride ion concentration near the surface of the coating. The favorable corrosion resistance of the coating was proved by polarization curves and hydrogen collection test. The Mg-Al LDH significantly promoted cell adhesion, migration and proliferation in vitro. In addition, the coating almost fulfilled the request of the clinical application in the hemolysis ratio test. Finally, in vivo results indicated that the coating offered the greatest long-lasting protection from corrosion and triggered the mildest inflammation comparing to the pure Mg(OH) 2 coatings and untreated magnesium alloy. Mg(OH) 2 coating containing Mg-Al LDH in the present study shows a promising application in improving anticorrosion and biocompatibility of Mg alloys, and might act as a platform for a further modification of Mg alloys ascribed to its special layer structure.

  19. Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys

    Science.gov (United States)

    Sachdeva, Deepika; Tiwari, Shashank; Sundarraj, Suresh; Luo, Alan A.

    2010-12-01

    Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.

  20. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?

    Science.gov (United States)

    Heublein, B; Rohde, R; Kaese, V; Niemeyer, M; Hartung, W; Haverich, A

    2003-01-01

    Objectives: To develop and test a new concept of the degradation kinetics of newly developed coronary stents consisting of magnesium alloys. Methods: Design of a coronary stent prototype consisting of the non-commercial magnesium based alloy AE21 (containing 2% aluminium and 1% rare earths) with an expected 50% loss of mass within six months. Eleven domestic pigs underwent coronary implantation of 20 stents (overstretch injury). Results: No stent caused major problems during implantation or showed signs of initial breakage in the histological evaluation. There were no thromboembolic events. Quantitative angiography at follow up showed a significant (p alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants. PMID:12748224

  1. Factors Influencing Plasma Electrolytic Oxidation(PEO) Coatings on Magnesium Alloys: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Gunchoo [KISTI ReSEAT Program, Daejon (Korea, Republic of)

    2017-05-15

    Magnesium alloys, which possess excellent specific strength and castability, are highly susceptible to corrosion. Although anodizing is widely used to resolve this problem, it requires toxic electrolytes and produces relatively thin and weak surface coatings. Recently, plasma electrolytic oxidation (PEO) has emerged as an alternative to anodizing. Although it is derived from conventional anodizing, it uses eco-friendly electrolytes and forms thicker, denser, and harder coatings on the surface of magnesium alloys. However, PEO is a complex process involving physical, chemical, and electrochemical reactions, and it is influenced by various factors such as the alloy substrate composition, electrolyte/additive composition, and the electrical variables including the mode of power supply, applied voltage/current density, frequency, and duty cycle. In this article, the detailed effects of these parameters on the microstructure and properties of the PEO coatings are reviewed, and methods of improving the coatings are proposed.

  2. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease.

    Science.gov (United States)

    Campos, Carlos M; Muramatsu, Takashi; Iqbal, Javaid; Zhang, Ya-Jun; Onuma, Yoshinobu; Garcia-Garcia, Hector M; Haude, Michael; Lemos, Pedro A; Warnack, Boris; Serruys, Patrick W

    2013-12-16

    The introduction of metallic drug-eluting stents has reduced the risk of restenosis and widened the indications of percutaneous coronary intervention in treatment of coronary artery disease. However, this medical device can induce hypersensitive reaction that interferes with the endothelialization and healing process resulting in late persistent or acquired malapposition of the permanent metallic implant. Delayed endotheliaization and malapposition may lead to late and very late stent thrombosis. Bioresorbable scaffolds (BRS) have been introduced to potentially overcome these limitations, as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. Magnesium is an essential mineral needed for a variety of physiological functions in the human body and its bioresorbable alloy has the strength-to-weight ratio comparable with that of strong aluminum alloys and alloy steels. The aim of this review is to present the new developments in Magnesium BRS technology, to describe its clinical application and to discuss the future prospects of this innovative therapy.

  3. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    TECS

    vibration load resistance, fine processing or machinability, little dimensional change, etc. Its highest advantage is sought in marine applications (Jiang et al 2004). Magne- sium alloy Y1 contains Al and Zn as alloying elements. Due to these elements, Y1 finds marine applications like side panels, floor plates, moldings, ship ...

  4. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal.

    Science.gov (United States)

    Willbold, Elmar; Kalla, Katharina; Bartsch, Ivonne; Bobe, Katharina; Brauneis, Maria; Remennik, Sergei; Shechtman, Dan; Nellesen, Jens; Tillmann, Wolfgang; Vogt, Carla; Witte, Frank

    2013-11-01

    Biodegradable magnesium-based alloys are very promising materials for temporary implants. However, the clinical use of magnesium-based alloys is often limited by rapid corrosion and by insufficient mechanical stability. Here we investigated RS66, a magnesium-based alloy with extraordinary physicochemical properties of high tensile strength combined with a high ductility and a homogeneous grain size of ~1 μm which was obtained by rapid solidification processing and reciprocal extrusion. Using a series of in vitro and in vivo experiments, we analyzed the biodegradation behavior and the biocompatibility of this alloy. In vitro, RS66 had no cytotoxic effects in physiological concentrations on the viability and the proliferation of primary human osteoblasts. In vivo, RS66 cylinders were implanted into femur condyles, under the skin and in the muscle of adult rabbits and were monitored for 1, 2, 3, 4 and 8 weeks. After explantation, the RS66 cylinders were first analyzed by microtomography to determine the remaining RS66 alloy and calculate the corrosion rates. Then, the implantation sites were examined histologically for healing processes and foreign body reactions. We found that RS66 was corroded fastest subcutaneously followed by intramuscular and bony implantation of the samples. No clinical harm with transient gas cavities during the first 6 weeks in subcutaneous and intramuscular implantation sites was observed. No gas cavities were formed around the implantation site in bone. The corrosion rates in the different anatomical locations correlated well with the local blood flow prior to implantation. A normal foreign body reaction occurred in all tissues. Interestingly, no enhanced bone formation could be observed around the corroding samples in the condyles. These data show that RS66 is biocompatible, and due to its interesting physicochemical properties, this magnesium alloy is a promising material for biodegradable implants. Copyright © 2013 Acta Materialia Inc

  5. Surface Characteristics and High Cycle Fatigue Performance of Shot Peened Magnesium Alloy ZK60

    Directory of Open Access Journals (Sweden)

    Jie Dong

    2011-01-01

    Full Text Available The current work investigated the effect of shot peening (SP on high cycle fatigue (HCF behavior of the hot-extruded ZK60 magnesium alloy. SP can significantly improve the fatigue life of the ZK60 alloy. After SP at the optimum Almen intensities, the fatigue strength at 107 cycles in the as-extruded (referred to as ZK60 and the T5 aging-treated (referred to as ZK60-T5 alloys increased from 140 and 150 MPa to 180 and 195 MPa, respectively. SP led to a subsurface fatigue crack nucleation in both ZK60 and ZK60-T5 alloys. The mechanism by which the compressive residual stress induced by shot peening results in the improvement of fatigue performance for ZK60 and ZK60-T5 alloys was discussed.

  6. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys.

    Science.gov (United States)

    Nguyen, T Y; Cipriano, A F; Guan, Ren-Guo; Zhao, Zhan-Yong; Liu, Huinan

    2015-09-01

    Magnesium (Mg) alloy is an attractive class of metallic biomaterial for cardiovascular applications due to its biodegradability and mechanical properties. In this study, we investigated the degradation in blood, thrombogenicity, and cytocompatibility of Magnesium-Zinc-Strontium (Mg-Zn-Sr) alloys, specifically four Mg-4 wt % Zn-xSr (x = 0.15, 0.5, 1, and 1.5 wt %) alloys, together with pure Mg control and relevant reference materials for cardiovascular applications. Human whole blood and platelet rich plasma (PRP) were used as the incubation media to investigate the degradation behavior of the Mg-Zn-Sr alloys. The results showed that the PRP had a greater pH increase and greater concentration of Mg(2+) ions when compared with whole blood after 2 h of incubation with the same respective Mg alloys, suggesting that the Mg alloys degraded faster in PRP than in whole blood. The Mg alloy with 4 wt % Zn and 0.15 wt % Sr (named as ZSr41A) was identified as the most promising alloy for cardiovascular stent applications, because it showed slower degradation and less thrombogenicity, as indicated by the lower concentrations of Mg(2+) ions released and less deposition of platelets. Additionally, ZSr41 alloys were cytocompatible with fibroblasts in direct exposure culture in which the cells adhered and proliferated around the samples, with no statistical difference in cell adhesion density compared with the blank reference. Future studies on the ZSr41 alloys are necessary to investigate their direct interactions with other important cells in cardiovascular system, such as vascular endothelial cells and smooth muscle cells. © 2015 Wiley Periodicals, Inc.

  7. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  8. Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures

    Directory of Open Access Journals (Sweden)

    Mahmood Fatemi

    2015-12-01

    Full Text Available A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including idifficult processing at low temperatures, ii high temperature processing and the occurrence ofdynamic recrystallization and grain growth processes, and iii a combined effect of grain refinementand crystallographic texture changes. Reviewing the published results indicate that there are twopotential difficulties with severe deformation of magnesium alloys. First, it is very hard to achievehomogeneous ultrafined microstructure with initial coarse grains. The second is the dependency ofmicrostructure development on the initial grain size and on the imposed strain level. It was clarifiedthat different grain refining mechanisms may be contributed along the course of multi-pass severedeformation. It was clarified that discontinuous recrystallization takes places during the first stages ofdeformation, whereas continuous refinement of the recrystallized grain may be realized at consecutivepasses. Shear band formation as well as twinning were demonstrated to play a significant role in grainrefinement of magnesium alloy. Also, the higher the processing temperature employed the morehomogeneous microstructure may be achieved with higher share of low angle grain boundaries.

  9. The forming process of magnesium alloy for Japanese home electric components

    Energy Technology Data Exchange (ETDEWEB)

    Takara, A. [Matsushita Electric Industrial Co., Kadoma, Osaka (Japan); Higashi, K. [Osaka Prefecture Univ., Sakai, Osaka (Japan)

    2005-07-01

    Magnesium alloys have replaced resins as a material for the components of electronic products such as cell phone and notebook personal computer mainly, because of their lightness and rigidity. Thin walls, a complicated shape, and high appearance quality are all needed in the external parts. Die-casting and injection molding are the main method of manufacturing magnesium alloy parts. The optimal cast conditions and mold design have been investigated in order that a few defects such as surface cracks and mold cavities in casting parts would be reduced. Instead of cast, plastic forming technologies such as warm drawing and hot forging have been developed to form thinner walls and less defects. Plastic formability of magnesium alloy in hot working is dependent on a grain size of material. The material with fine grains has advantage of being formed at high strain rate. The characteristics of forming processes of magnesium parts for Japanese home electric appliances are compared in the viewpoint of quality, cost, and productivity. (orig.)

  10. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weizbauer, Andreas, E-mail: weizbauer.andreas@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Werle, Peter [ABB AG, Trafoweg 4, 06112 Halle (Germany); Hegermann, Jan [Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover (Germany); Willbold, Elmar [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Eifler, Rainer [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Windhagen, Henning [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); Reifenrath, Janin [Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover (Germany); Waizy, Hazibullah [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany)

    2014-08-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly.

  11. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  12. In vivo testing of a bioabsorbable magnesium alloy serving as total ossicular replacement prostheses.

    Science.gov (United States)

    Lensing, Rebecca; Behrens, Peter; Müller, Peter Paul; Lenarz, Thomas; Stieve, Martin

    2014-01-01

    Magnesium alloys have been investigated in different fields of medicine and represent a promising biomaterial for implants due to characteristics like bioabsorbability and osteoinduction. The objective of this study was to evaluate the usability of magnesium as implant material in middle ear surgery. Magnesium implants were placed into the right middle ear of eighteen New Zealand White rabbits. Nine animals were euthanized after four weeks and nine animals after three month. The petrous bones were removed and embedded in epoxy resin. The specimens were then polished, stained and evaluated with the aid of a light microscope. The histological examination revealed a good biocompatibility. After four weeks, a beginning corrosion of the implant's surface and low amount of trabecular bone formation in the area of the stapes base plate was observed. A considerable degradation of implants and obvious bone formation was found three month after implantation. The magnesium alloy used in the present study partly corroded too fast, so that a complete bone reconstruction could not be established in time. The increased osteoinduction on the stapes base plate resulted in a tight bone-implant bonding. Thus, a promising application of magnesium could be a coating of biomaterials in order to improve the bony integration of implants.

  13. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    Science.gov (United States)

    2016-09-01

    during friction stir welding [25] and may be suited for heating Al-Mg alloys in the context of this study. LED arrays can be finely tuned and controlled...25] B. Baker et. al, "Use of High-Power diode Laser Arrays for Pre- and Post- Weld Heating During Friction Stir Welding of Steels," in Friction ...strength prior to welding , but lower yield strength than 5XXX series Al-Mg alloys following welding . This makes 5XXX series Al-Mg alloys the more

  14. Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications

    Directory of Open Access Journals (Sweden)

    Emily K. Brooks

    2017-09-01

    Full Text Available Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ, Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS, and Mg–2% Sr (MS, were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release and changes in media pH were tracked over a 28 day time period. Scanning electron microscopy (SEM of alloy microstructure was performed to help interpret the results of the electrochemical testing. Results indicate that corrosion resistance of the alloys is as follows: MCZ > MCZS > MS.

  15. Biodegradable Orthopedic Magnesium-Calcium (MgCa Alloys, Processing, and Corrosion Performance

    Directory of Open Access Journals (Sweden)

    Yuebin Guo

    2012-01-01

    Full Text Available Magnesium-Calcium (Mg-Ca alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the key issue facing a biodegradable Mg-Ca implant is the fast corrosion in the human body environment. The ability to adjust degradation rate of Mg-Ca alloys is critical for the successful development of biodegradable orthopedic implants. This paper focuses on the functions and requirements of bone implants and critical issues of current implant biomaterials. Microstructures and mechanical properties of Mg-Ca alloys, and the unique properties of novel magnesium-calcium implant materials have been reviewed. Various manufacturing techniques to process Mg-Ca based alloys have been analyzed regarding their impacts on implant performance. Corrosion performance of Mg-Ca alloys processed by different manufacturing techniques was compared. In addition, the societal and economical impacts of developing biodegradable orthopedic implants have been emphasized.

  16. Corrosion of experimental magnesium alloys in blood and PBS: A gravimetric and microscopic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Schille, Ch., E-mail: Christine.Schille@med.uni-tuebingen.de [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Braun, M.; Wendel, H.P. [University Hospital Tuebingen, Div. Congenital and Paediatric Cardiac Surgery, University Children' s Hospital, Tuebingen, Germany, Calwerstr. 7/1, D-72076 Tuebingen (Germany); Scheideler, L. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany); Hort, N. [GKSS Research Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Reichel, H.-P. [Weissensee Company, Buergermeister-Ebert-Str. 30-32, D-36124 Eichenzell (Germany); Schweizer, E.; Geis-Gerstorfer, J. [University Hospital Tuebingen, Center for Dentistry, Oral Medicine and Maxillofacial Surgery, Section Medical Materials and Technology, Osianderstr. 2-8, D-72076 Tuebingen (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Corrosion of eight Mg-based Biomaterials was tested in saline and human blood. Black-Right-Pointing-Pointer Corrosion behaviour in physiological saline and in blood was entirely different. Black-Right-Pointing-Pointer Al and Zn had the highest influence on corrosion behaviour in both electrolytes. Black-Right-Pointing-Pointer MgAl9 and MgAl9Zn1 showed least corrosion in human whole blood. Black-Right-Pointing-Pointer Tests in buffered corrosion media are not sufficient to predict corrosion in vivo. - Abstract: Corrosion tests for medical materials are often performed in simulated body fluids (SBF). When SBF are used for corrosion measurement, the open question is, how well they match the conditions in the human body. The aim of the study was to compare the corrosion behaviour of different experimental magnesium alloys in human whole blood and PBS{sup minus} (phosphate buffered saline w/o Ca and Mg) as a simulated body fluid by gravimetric weight measurements and microscopic evaluation. Eight different experimental magnesium alloys, containing neither Mn nor other additives, were manufactured. With these alloys, a static immersion test in PBS{sup minus} and a dynamic test using the Chandler-loop model with human whole blood over 6 h were performed. During the static immersion test, the samples were weighed every hour. During the dynamic test, the specimens were weighed before and after the 6 h incubation period in the Chandler-loop. From both tests, the total mass change was calculated for each alloy and the values were compared. Additionally, microscopic pictures from the samples were taken at the end of the test period. All alloys showed different corrosion behaviour in both tests, especially the alloys with high aluminium content, MgAl9 and MgAl9Zn1. Generally, alloys in PBS showed a weight gain due to generation of a microscopically visible corrosion layer, while in the blood test system a more or less distinct weight

  17. Fatigue behaviour of welded joints from magnesium alloy (AZ31) according to the local strain concept

    Energy Technology Data Exchange (ETDEWEB)

    Karakas, Oe.; Guelsoez, A. [Engineering Faculty, Department of Mechanical Engineering, University Pamukkale, Denizli (Turkey); Kaufmann, H.; Sonsino, C.M. [Fraunhofer - Institute for Structural Durability and System Reliability, LBF, Darmstadt (Germany)

    2010-02-15

    In the present study, the results of fatigue tests with the magnesium alloy AZ31 (ISO-MgAl3Zn1) in the material states base metal, heat affected zone and weld metal obtained under strain control at room temperature within a range from 2.10{sup 2} to 5 .10 {sup 6} cycles are presented. The fatigue behaviour was characterized by the Coffin-Manson-Basquin equations and the stress - strain behaviour by the Ramberg-Osgood equation. The data can be used to assess welded magnesium joints according to the local strain concept. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  19. Magnesium

    Science.gov (United States)

    ... in the body, including regulating muscle and nerve function, blood sugar levels, and blood pressure and making protein , bone, and DNA . How much magnesium do I need? The amount of magnesium you ...

  20. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  1. RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy

    Science.gov (United States)

    Cao, Lin; Wang, Lina; Fan, Lingying; Xiao, Wenjun; Lin, Bingpeng; Xu, Yimeng; Liang, Jun; Cao, Baocheng

    2017-01-01

    Magnesium alloys as biodegradable metal implants have received a lot of interest in biomedical applications. However, magnesium alloys have extremely high corrosion rates a in physiological environment, which have limited their application in the orthopedic field. In this study, calcium phosphate compounds (Ca–P) coating was prepared by arginine–glycine–aspartic acid–cysteine (RGDC) peptide-induced mineralization in 1.5 simulated body fluid (SBF) to improve the corrosion resistance and biocompatibility of the AZ31 magnesium alloys. The adhesion of Ca–P coating to the AZ31 substrates was evaluated by a scratch test. Corrosion resistance and cytocompatibility of the Ca–P coating were investigated. The results showed that the RGDC could effectively promote the nucleation and crystallization of the Ca–P coating and the Ca–P coating had poor adhesion to the AZ31 substrates. The corrosion resistance and biocompatibility of the biomimetic Ca–P coating Mg alloys were greatly improved compared with that of the uncoated sample. PMID:28772717

  2. The initial stage of surface modification of magnesium alloys by high intensity pulse ions beam

    Energy Technology Data Exchange (ETDEWEB)

    Li, P. [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Liu, Z.H. [Taiyuan Iron and Steel Company, Taiyuan 030003 (China); Zhang, Z.P., E-mail: zhangzp01@tisco.com.cn [Taiyuan Iron and Steel Company, Taiyuan 030003 (China)

    2016-06-15

    Highlights: • The behavior of Mg{sub 17}Al{sub 12} phase in Mg alloy under the influence of ablation plasma was simulated by MD. • The effects of Mg{sub 17}Al{sub 12} precipitation on the surface roughness were studied. • The relationship between the depth and mean standard err of the precipitation atoms was found. - Abstract: The initial stage of high intensity pulsed ion beam irradiated magnesium alloys was studied by MD simulation. Specimens containing Mg{sub 17}Al{sub 12} precipitation were modeled to investigate the evolution of magnesium alloys during several picoseconds after a high-energy ion impacting. It was found that the Mg{sub 17}Al{sub 12} precipitation has little effects on the kinetic energy evolution in the heat zone, but considerable effects on strength of kinetic energy peak moving to the deep matrix and on the surface morphology of the magnesium alloy at thermal equilibrium state. The thickness of the heat zone is independent on the temperature of surface region.

  3. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au; Liyanaarachchi, S.

    2013-10-01

    The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity. - Highlights: • A hybrid coating (CaP + PLA) was applied on a magnesium-based alloy. • The hybrid coating enhanced the in vitro degradation resistance of the alloy. • Localized degradation resistance was also improved by the hybrid coating.

  4. Direct-reading spectrochemical analysis of magnesium alloys; Analisis espectroquimico de lectura directa de aleaciones de magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Roca Adell, M.

    1964-07-01

    A Quantometer has been applied to the determination of aluminum, berylium, calcium, iron, silicon and zinc in magnesium alloys Magnox, after the conversion of the samples to the oxide. For the aluminum, whose concentration is relatively high, the conducting briquets technique with an interrupted discharge is employed, using the magnesium as the internal standard. For the other elements a total burning method with direct current arc is employed, using also the magnesium as the internal standard. (Author) 7 refs.

  5. International research cooperation in fiscal 1997. Report on the development of novel magnesium alloy-base ultralight materials; 1997 nendo kokusai kenkyu kyoryoku jigyo. Magnesium gokin ni yoru chokeiryo shinzairyo no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development are conducted for the improvement of magnesium alloy characteristics and for the realization of energy and cost saving in the manufacturing process of the said alloys. Concerning manufacturing techniques for high-performance magnesium materials which are among the existing alloys, researches are conducted about the development of superplastic magnesium alloys, development of heat-resistant magnesium alloys, pulverizing techniques and the experimental construction of equipment therefor, safety of magnesium powder, high-precision strain control, processing for enhanced strength and superplasticity, and heat treatment and surface treatment technologies. In the efforts for developing technologies for manufacturing ultrahigh-performance magnesium materials which are novel alloys, researches are conducted concerning the manufacture of amorphous magnesium alloys and methods for evaluating the characteristics thereof, manufacture of amorphous magnesium alloys by a liquid-aided rapid cooling method and the characteristics of the products, and methods for forming the alloys into wires. The developed magnesium materials are tested for strength, resistance to corrosion, etc., and environmental impacts and friendliness toward environments that will eventually affect the life cycle of the new materials are discussed. 45 refs., 91 figs., 21 tabs.

  6. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  7. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    Directory of Open Access Journals (Sweden)

    Yongseok Jang

    2014-08-01

    Full Text Available The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3− and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDX and X-ray diffraction (XRD. Electrochemical impedance spectroscopy (EIS was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  8. Influence of processing on microstructure and mechanical properties of magnesium alloy AZ91

    Directory of Open Access Journals (Sweden)

    Libor Pantělejev

    2016-06-01

    Full Text Available This paper deals with differences of mechanical characteristics and fracture surface morphology of AZ91 magnesium alloy in extruded state and after subsequent equal channel angular pressing (ECAP. According to the results, the tensile properties were not controlled by grain size only as values of the tensile strength and 0.2 proof stress were similar for both alloys despite having average grain size 15.9 μm for the extruded alloy and 1.2 μm for the ECAPed alloy. In contrast, microhardness seemed to be dependnt solely on the grain size. Fractographic analysis has shown changes in the damage mode from quasi-cleavage fracture in extruded state to rather ductile fracture with dimple morphology in exECAPed state during tensile loading.

  9. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: alsamman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, 52056 Aachen (Germany)

    2013-01-10

    Conventional magnesium alloy Mg-1Zn-0.4Zr and a modified version of the same alloy containing Nd-based rare earth mischmetal and Y were extruded at 400 Degree-Sign C to study dynamic recrystallization and its role in the microstructure and texture development. Second phase particles in the modified alloy seemed to generate new orientations other than the deformed orientation. Although this occurred within small volume fraction of the material, the respective recrystallizing grains grew up to considerable sizes consuming larger volumes of the extruded microstructure and dominating the bulk texture. The consequent mechanical behavior tested in plane strain compression at room temperature demonstrated improved strain hardening behavior and enhanced ambient formability relative to the conventional alloy due to well-scattered texture and prolonged activity of basal slip within a large volume of the deformed microstructure.

  10. Transition in Deformation Mechanism of AZ31 Magnesium Alloy during High-Temperature Tensile Deformation

    Directory of Open Access Journals (Sweden)

    Masafumi Noda

    2011-01-01

    Full Text Available Magnesium alloys can be used for reducing the weight of various structural products, because of their high specific strength. They have attracted considerable attention as materials with a reduced environmental load, since they help to save both resources and energy. In order to use Mg alloys for manufacturing vehicles, it is important to investigate the deformation mechanism and transition point for optimizing the material and vehicle design. In this study, we investigated the transition of the deformation mechanism during the high-temperature uniaxial tensile deformation of the AZ31 Mg alloy. At a test temperature of 523 K and an initial strain rate of 3×10−3 s-1, the AZ31 Mg alloy (mean grain size: ~5 μm exhibited stable deformation behavior and the deformation mechanism changed to one dominated by grain boundary sliding.

  11. Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets

    Directory of Open Access Journals (Sweden)

    Qingshan Yang

    2014-03-01

    Full Text Available The microstructural evolution and mechanical behavior of Mg–Mn–Ce magnesium alloy were investigated in the present study. Mg alloy was prepared with metal model casting method and subsequently hot extruded at 703 K with the reduction ratio of 101:1. The grains were dynamically recrystallized after the extrusion process. Moreover, the (0002 pole figure of Mg–Mn–Ce alloy developed a splitting of pronounced basal texture. The mechanical properties were different due to different angles between c-axis and loading direction (0°, 45° and 90° in the tensile tests. This significantly induces an asymmetry in the yield behavior. The Mg–Mn–Ce alloy exhibits a classical dimple structure as a result of slip accumulation and ductile tear.

  12. Research Progress in Friction Welding of Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    YOU Guo-qiang

    2018-01-01

    Full Text Available The basic principles and features of friction welding were introduced.The research progresses in friction welding of Mg alloys were reviewed. The process, joining mechanism, microstructure and mechanical properties of Mg-Mg similar and Mg-Al dissimilar friction welded joints were primarily discussed. Meanwhile, the current problems were analyzed. It was pointed out that the temperature field, stress-strain field and plastic flow during the friction welding process of Mg alloys require further investigation. Furthermore, the future development should focus on the optimization of process and intermediate layer to obtain high quality joints.

  13. Fatigue and Fracture Characterization of HPDC AM6OB Magnesium Alloy at Cold Temperature

    Science.gov (United States)

    Nur Hossain, Md.; Taheri, Farid

    2011-12-01

    An investigation of the fatigue and fracture characterization of the high pressure die cast (HPDC) AM60B magnesium alloy at -40 °C temperature was conducted by means of the constant load amplitude fatigue test. The results demonstrated that low temperature had a significant influence on alloy's fatigue life; the life increased at -40 °C temperature as compared to that at room temperature. The fracture surfaces of the tested specimens were observed under a scanning electron microscope (SEM) to further understand the fracture phenomenon at low temperature.

  14. Fatigue Crack Growth Mechanisms in High-Pressure Die-Cast Magnesium Alloys

    Science.gov (United States)

    El Kadiri, Haitham; Horstemeyer, M. F.; Jordon, J. B.; Xue, Yibin

    2008-01-01

    Microstructure-affected micromechanisms of fatigue crack growth operating near the limit plasticity regime were experimentally identified for the four main commercial high-pressure die-cast (HPDC) magnesium alloys: AM50, AM60, AZ91, and AE44. These fatigue micromechanisms manifested by the concomitant effects of casting pores, interdendritic Al-rich solid solution layer, β-phase particles, Mn-rich inclusions, rare earth-rich intermetallics, dendrite cell size, and surface segregation phenomena. These concomitant mechanisms clearly delineated the fatigue durability observed for the AM50, AM60, AZ91, and AE44 Mg alloys in both the low- and high-cycle fatigue regimes.

  15. Structure and Properties Investigation of MCMgAl12Zn1 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2013-03-01

    Full Text Available This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength and grain size are shifting with an increasing cooling rate.

  16. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    Science.gov (United States)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  17. Durability of AZ31 magnesium biodegradable alloys polydopamine aided: Part 1

    Directory of Open Access Journals (Sweden)

    Tullio Monetta

    2017-12-01

    Full Text Available The use of magnesium alloys, as a biodegradable medical device, is an interesting challenge for the biomaterials field. Its rapid degradation and the release of hydrogen, when exposed to biological fluids, are the main drawbacks for clinical applications. In this work, a coating made of polydopamine (PDOPA, is used as an intermediate layer to decrease the degradation rate of AZ31 magnesium alloy/polymeric coating system, when exposed to Hank's solution. Experimental results highlighted: (i the formation of a thin PDOPA layer, (ii an increased adhesion in the organic coating/metallic substrate system, (iii a decrease of two orders of magnitude of the corrosion rate when the PDOPA film is used together with an external organic coating, (iv the efficacy in the use of PDODA due to the synergistic effect of both, physical and chemical, interactions between the PDOPA layer and the organic coating.

  18. Investigation of Stress Corrosion Cracking in Magnesium Alloys by Quantitative Fractography Methods

    Directory of Open Access Journals (Sweden)

    Sozańska M.

    2017-06-01

    Full Text Available The article shows that the use of quantitative fracture description may lead to significant progress in research on the phenomenon of stress corrosion cracking of the WE43 magnesium alloy. Tests were carried out on samples in air, and after hydrogenation in 0.1 M Na2SO4 with cathodic polarization. Fracture surfaces were analyzed after different variants of the Slow Strain Rate Test. It was demonstrated that the parameters for quantitative evaluation of fracture surface microcracks can be closely linked with the susceptibility of the WE43 magnesium alloy operating under complex state of the mechanical load in corrosive environments. The final result of the study was the determination of the quantitative relationship between Slow Strain Rate Test parameters, the mechanical properties, and the parameters of the quantitative evaluation of fracture surface (microcracks.

  19. Modeling of anisotropic and asymmetric behaviour of magnesium alloys at elevated temperature coupled with ductile damage

    Science.gov (United States)

    Zhang, K.; Badreddine, H.; Labergere, C.; Saanouni, K.

    2017-09-01

    Poor formability of Magnesium alloys at room temperature is due to their Hexagonal Closed Packed (HCP) crystal structure. These materials also have a pronounced Strength Differential (SD) effect. In the present work, an improved constitutive model of thermo-elasto-Dviscoplasticity with mixed nonlinear isotropic and kinematic hardening strongly coupled with isotropic ductile damage is developed. The induced anisotropy as well as tension compression asymmetry are carefully considered including their interaction with thermal effects. The numerical implementation of the developed model into ABAQUS/Explicit FE is made through the user subroutine VUMAT. The proposed model is used to simulate material responses of AZ31 Magnesium alloy during sheet metal forming processes at elevated temperature.

  20. Hammer forging process of lever drop forging from AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Gontarz

    2013-07-01

    Full Text Available The results of theoretical and experimental analysis of hammer forging process of lever drop forging from AZ31 magnesium alloy are presented in this paper. In order to design a process guaranteeing obtaining a proper product, numerous simulations were made, in which material flow kinematics, strain and damage criterion distributions and forging energy were analyzed. On the basis of the obtained results, the analysis of limiting phenomena, which could appear during the process, was made. Experimental tests in industrial conditions according to designed technology were carried out. Good quality of drop forgings were obtained. On the basis of conducted research, it was stated that hammer forging of lever drop forging from AZ31 magnesium alloy is possible.

  1. Microstructure and corrosion characteristics of laser-alloyed magnesium alloy AZ91D with Al–Si powder

    Directory of Open Access Journals (Sweden)

    Ming Qian, Da Li and Chang Jin

    2008-01-01

    Full Text Available Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and x-ray diffraction (XRD analysis revealed that intermetallic compounds (IMCs of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure.

  2. The role of advanced corrosion research methods for magnesium alloys in automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, A.; Haddad, J. [Sami Shamoon College of Engineering, Corrosion Research Center, P.O.B. 45, Beer-Sheva 84100 (Israel); Gutman, E.M. [Dept. of Materials Engineering, Ben-Gurion University of the Negev, P.O.B.653, Beer-Sheva 84105 (Israel)

    2004-07-01

    The guide direction today is reduction of vehicle weight and saving of fuel consumption. Magnesium is the lightest of all the commonly used metals and is very attractive for applications in automotive industry. However, environmentally assisted fracture significantly decreases the fatigue and creep resistance, mechanical stability and durability of high-strength Mg alloys. For example, such magnesium applications as wheels, transmission housings, pedals, etc. require good fatigue resistance in corrosive atmosphere. In order to produce parts for the automotive industry it is necessary to develop alloys with formability and durability in active environments. Until recently, corrosion resistance and creep resistance have been considered to be the main issues for long-term durability, reliability and applicability of Mg-based structural materials. These problems traditionally have been separated as corrosion behavior in non-stressed states and creep in non-corrosive conditions. In recent years the importance of environmental effects in many types of fracture processes has been recognized and it seems worthwhile therefore to examine more closely the role of environment in creep rupture as combined stress-environmental effects. So, the investigation of environmental assisted creep is very important as a tool to discover a mechanism of processes going in the tip of a crack and as the phenomenon very influencing mechanical stability of alloys in real service conditions. However, mechanical and corrosion processes develop simultaneously in real environment conditions, and inevitably lead to the appearance of new synergistic effects which significantly reduce the lifetime of Mg-alloys. Corrosive environment (3.5% NaCl) significantly decreases fatigue life of die-cast and extruded Mg-alloys (AZ91D, AM50, AZ31, etc.). Extruded alloys show a higher sensitivity to the action of NaCl solution in comparison with die-cast alloys; however, their corrosion fatigue life is longer than

  3. Development of Rolling Schedules for Equal Channel Angular Extrusion (ECAE)-Processed AZ31 Magnesium Alloy

    Science.gov (United States)

    2016-04-01

    on metal- ceramic composite assemblies to reduce back-face penetration, wherein often aluminum is used as the metal component. Depending on its...10 μm) magnesium alloy matrix . Furthermore, the as-rolled microstructure is banded, containing alternating layers of coarser and finer grains. These...ability to fabricate sheet material from the ECAE plates strongly depends on their initial texture. Moreover, texture A produces greater asymmetry in the

  4. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    Science.gov (United States)

    2014-01-13

    University of California - Los Angeles Office of Contract and Grant Administration 11000 Kinross Avenue, Suite 102 Los Angeles, CA 90095 -1406...Wollersheim, and R. Wurschum. Acta Mater. 49, 737 (2001). 2. Y. Champion, C. Langlois, S. Guerin -Mailly, P. Langlois, J.-L. Bonnentien, and M.J. Hytch...Angeles, Los Angeles, CA 90095 Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

  5. Modeling studies on divorced eutectic formation of high pressure die cast magnesium alloy

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2018-01-01

    Full Text Available The morphology and content of the divorced eutectic in the microstructure of high pressure die casting (HPDC magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA (Cellular Automaton model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs (Externally Solidified Crystals which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg17Al12 phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.

  6. Residual stresses of a magnesium alloy (AZ31 welded by the friction stir welding processes

    Directory of Open Access Journals (Sweden)

    Kouadri-Henni A.

    2016-01-01

    Full Text Available The objective of this study was to evaluate the residual stresses of FSW welding magnesium alloys (AZ31. The results show that the FSW processes lead to the formation of several distinct zones with differing mechanical properties. The residual stresses evolution have been explained by the heterogeneous modifications of the microstructure particularly a marked decrease in the grain size, a high modification of the crystallographic texture and the different anisotropic properties resulting from plasticity induced by the FSW process.

  7. Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy

    OpenAIRE

    Gontarz, A.

    2014-01-01

    The results of theoretical analysis and experimental tests of hammer forging process of rim part from AZ31 magnesium alloy are presented in this paper. On the basis of numerical simulation results, the analysis of limiting phenomena was made. These phenomena include: possibility of overlapping presence, not filling of die impression, overheating of material and cracks. The results of theoretical analysis provided the support for planning of experimental tests in industrial conditions. Forging...

  8. Hammer forging process of lever drop forging from AZ31 magnesium alloy

    OpenAIRE

    Gontarz, A.; Z. Pater; K. Drozdowski

    2013-01-01

    The results of theoretical and experimental analysis of hammer forging process of lever drop forging from AZ31 magnesium alloy are presented in this paper. In order to design a process guaranteeing obtaining a proper product, numerous simulations were made, in which material flow kinematics, strain and damage criterion distributions and forging energy were analyzed. On the basis of the obtained results, the analysis of limiting phenomena, which could appear during the process, was made. Exper...

  9. One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance

    Science.gov (United States)

    Feng, Libang; Zhu, Yali; Wang, Jing; Shi, Xueting

    2017-11-01

    Superhydrophobic surfaces can exhibit anti-corrosion, anti-fogging, and self-cleaning performance due to their high water repellence. It is significant for industrial fabricating of superhydrophobic surface with a simple and environment-friendly method. Herein, a facile, environment-friendly, and cost-effective one-step hydrothermal route is proposed to fabricate the superhydrophobic surface on magnesium alloy. The as-prepared superhydrophobic magnesium alloy surface presents the rough and hierarchical micro/nano- structure grafted with long hydrophobic alkyl chains via covalent bonds. Both electrochemical corrosion test and long term immersion in 3.5 wt.% of NaCl solution demonstrate that the superhydrophobic surface greatly improves the corrosion resistance of magnesium alloy. Meanwhile, the superhydrophobic magnesium alloy exhibits excellent self-cleaning performance. It is supposed that this facile method and remarkable properties of resultant superhydrophobic magnesium alloys have a promising future in expanding the application of magnesium alloys.

  10. Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy.

    Science.gov (United States)

    Wong, Hoi Man; Zhao, Ying; Leung, Frankie K L; Xi, Tingfei; Zhang, Zhixiong; Zheng, Yufeng; Wu, Shuilin; Luk, Keith D K; Cheung, Kenneth M C; Chu, Paul K; Yeung, Kelvin W K

    2017-04-01

    To achieve enhanced biological response and controlled degradation of magnesium alloy, a modified biodegradable polymer coating called polycaprolactone (PCL) is fabricated by a thermal approach in which the heat treatment neither alters the chemical composition of the PCL membrane nor the rate of magnesium ion release, pH value, or weight loss, compared with the untreated sample. The changes in the crystallinity, hydrophilicity, and oxygen content of heat-treated PCL coating not only improve the mechanical adhesion strength between the coating and magnesium substrate but also enhance the biological properties. Moreover, the thermally modified sample can lead to higher spreading and elongation of osteoblasts, due to the enhanced hydrophilicity and CO to CO functional group ratio. In the analyses of microcomputed tomography from one to four weeks postoperation, the total volume of new bone formation on the heat-treated sample is 10%-35% and 70%-90% higher than that of the untreated and uncoated controls, respectively. Surprisingly, the indentation modulus of the newly formed bone adjacent to the heat-treated sample is ≈20% higher than that of both controls. These promising results reveal the clinical potential of the modified PCL coating on magnesium alloy in orthopedic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan, E-mail: liuyan2000@jlu.edu.cn [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning [Key Laboratory for Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. Black-Right-Pointing-Pointer The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. Black-Right-Pointing-Pointer The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO{sub 2} were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The CeO{sub 2} films fabricated with 20-min immersion yield a water contact angle of 137.5 {+-} 2 Degree-Sign , while 20-min DTS treatment on top of CeO{sub 2} can further enhance the water contact angle to 146.7 {+-} 2 Degree-Sign . Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  12. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  13. Environmental friendly anodizing of AZ91D magnesium alloy in alkaline borate-benzoate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Department of Chemistry, Tianshui Normal University, Tianshui 741000 (China); Wei Zhongling [Magnesium Technology Co., Ltd., Chinese Academy of Sciences, Jiaxing 314051 (China); Yang Fuwei [Department of Chemistry, Tianshui Normal University, Tianshui 741000 (China); Zhang Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Key Laboratory for Light Alloy Materials Technology, Jiaxing 314051 (China)

    2011-06-02

    Highlights: > Environmental friendly PEO technology for AZ91 magnesium alloy is developed. > NaBz is used as new additive and it is low-cost and environmental friendly. > The effect of NaBz additive on the properties of the anodized film was studied. > Anodized film with excellent corrosion resistance is obtained. > The forming mechanism of anodized film in the presence of NaBz is approached. - Abstract: A kind of environmental friendly anodizing routine for AZ91D magnesium alloy, based on an alkaline borate-sodium benzoate electrolyte (NaBz) was studied. The effect of NaBz on the properties of the anodized film was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), respectively. The results showed that the anodizing process, surface morphology, thickness, phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of NaBz. In the presence of adequate NaBz, a thick, compact and smoothing anodized film with excellent corrosion resistance was produced. Moreover, the forming mechanism of the anodized film in the presence of NaBz additive was also approached, which was a suppression of arc discharge process by the adsorption of Bz{sup -} on the surface of magnesium alloy substrate.

  14. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  15. Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Wan, L.; Guo, Z. H.; Sun, C. Y.; Yang, D. J.; Zhang, Q. D.; Li, Y. L.

    2017-02-01

    Isothermal compression experiment of AZ80 magnesium alloy was conducted by Gleeble thermo-mechanical simulator in order to quantitatively investigate the work hardening (WH), strain rate sensitivity (SRS) and temperature sensitivity (TS) during hot processing of magnesium alloys. The WH, SRS and TS were described by Zener-Hollomon parameter (Z) coupling of deformation parameters. The relationships between WH rate and true strain as well as true stress were derived from Kocks-Mecking dislocation model and validated by our measurement data. The slope defined through the linear relationship of WH rate and true stress was only related to the annihilation coefficient Ω. Obvious WH behavior could be exhibited at a higher Z condition. Furthermore, we have identified the correlation between the microstructural evolution including β-Mg17Al12 precipitation and the SRS and TS variations. Intensive dynamic recrystallization and homogeneous distribution of β-Mg17Al12 precipitates resulted in greater SRS coefficient at higher temperature. The deformation heat effect and β-Mg17Al12 precipitate content can be regarded as the major factors determining the TS behavior. At low Z condition, the SRS becomes stronger, in contrast to the variation of TS. The optimum hot processing window was validated based on the established SRS and TS values distribution maps for AZ80 magnesium alloy.

  16. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system.

    Directory of Open Access Journals (Sweden)

    Lumei Liu

    Full Text Available Magnesium (Mg-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys' surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1 physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2 secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3 Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion.

  17. Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy

    Science.gov (United States)

    Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.

    2008-12-01

    To reduce fuel consumption and greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications due to their low density, high specific strength and stiffness, and other attractive traits. Structural applications of magnesium components require low-cycle fatigue (LCF) behavior, since cyclic loading or thermal stresses are often encountered. The aim of this article was to study the cyclic deformation characteristics and evaluate LCF behavior of a recently developed AM30 extruded magnesium alloy. This alloy exhibited a strong cyclic hardening characteristic, with a cyclic strain-hardening exponent of 0.33 compared to the monotonic strain-hardening exponent of 0.15. With increasing total strain amplitude, both plastic strain amplitude and mean stress increased and fatigue life decreased. A significant difference between the tensile and compressive yield stresses occurred, leading to asymmetric hysteresis loops at high strain amplitudes due to twinning in compression and subsequent detwinning in tension. A noticeable change in the modulus was observed due to the pseudoelastic behavior of this alloy. The Coffin-Manson law and Basquin equation could be used to describe the fatigue life. At low strain ratios the alloy showed strong cyclic hardening, which became less significant as the strain ratio increased. The lower the strain ratio, the lower the stress amplitude and mean stress but the higher the plastic strain amplitude, corresponding to a longer fatigue life. Fatigue life also increased with increasing strain rate. Fatigue crack initiation occurred from the specimen surface and crack propagation was mainly characterized by striation-like features. Multiple initiation sites at the specimen surface were observed at higher strain amplitudes.

  18. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy.

    Science.gov (United States)

    Xu, Liping; Pan, Feng; Yu, Guoning; Yang, Lei; Zhang, Erlin; Yang, Ke

    2009-03-01

    Magnesium has shown potential application as a bio-absorbable biomaterial, such as for bone screws and plates. In order to improve the surface bioactivity, a calcium phosphate was coated on a magnesium alloy by a phosphating process (Ca-P coating). The surface characterization showed that a porous and netlike CaHPO(4).2H(2)O layer with small amounts of Mg(2+) and Zn(2+) was formed on the surface of the Mg alloy. Cells L929 showed significantly good adherence and significantly high growth rate and proliferation characteristics on the Ca-P coated magnesium alloy (p<0.05) in in-vitro cell experiments, demonstrating that the surface cytocompatibility of magnesium was significantly improved by the Ca-P coating. In vivo implantations of the Ca-P coated and the naked alloy rods were carried out to investigate the bone response at the early stage. Both routine pathological examination and immunohistochemical analysis demonstrated that the Ca-P coating provided magnesium with a significantly good surface bioactivity (p<0.05) and promoted early bone growth at the implant/bone interface. It was suggested that the Ca-P coating might be an effective method to improve the surface bioactivity of magnesium alloy.

  19. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.N.; Prokopenko, G.I. [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd. UA, -03142, Kyiv (Ukraine); Mordyuk, B.N., E-mail: mordyuk@imp.kiev.ua [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd. UA, -03142, Kyiv (Ukraine); Vasylyev, M.A. [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd. UA, -03142, Kyiv (Ukraine); Voloshko, S.M. [National Technical University “Kyiv Polytechnic Institute”, 37 Peremohy AvenueUA-03056, Kyiv (Ukraine); Skorodzievski, V.S.; Filatova, V.S. [Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky blvd. UA, -03142, Kyiv (Ukraine)

    2016-01-01

    In this work, biomedical Co-28Cr-6Mo alloy is subjected to ultrasonic impact treatment (UIT). XRD, TEM and SAED analyses show that the plastic deformation induced by the UIT process results in a complex microstructural formation in surface layer of Co-28Cr-6Mo alloy. The peculiar feature observed in the alloy structure by TEM is the formation of Lomer-Cottrell locks originated by simultaneous sliding of Shockley partial dislocations in intersecting planes. At the beginning of the UIT process (till the strain extent e ≈ 0.2), dislocation pile-ups are gathered in front of the Lomer-Cottrell locks stimulating the formation of a great number of chaotic stacking faults (SFs) packets (incompletely transformed martensite), which are predominant with regard to the occurrence of ε-martensite and micro-twins. The incompletely transformed martensite hinders the shear translation through the twin boundaries and suppresses grain subdivision in surface layer of Co-28Cr-6Mo alloy at the UIT process used. On-going deformation to e ≈ 0.4 leads to further modification of microstructure in the micron-scale γ-grains, which consists of numerous Lomer-Cottrell locks, chaotic subtraction SFs, intersected nano-twins and fine lathes of ε-martensite with average size of approx. 50–100 nm. The observed structural features (at e ≈ 0.4) allow adequately explaining noticeable increase in microhardness without any cracks/cleavages in surface layer. Enhanced corrosion resistance of Co-28Cr-6Mo alloy, which manifests itself with less negative corrosion potential and lower corrosion and passivity currents in potentiodynamic curve, is promoted by the UIT induced oxide films and the following structural features: the CSL type of γ/ε interfacial boundaries, uniformly distributed fine carbides, and high fraction of the grains oriented with close packed (111)γ and (0002)ε planes parallel to the surface of the UIT-processed specimen. - Highlights: • Modified surface layers were formed in

  20. Plasma brazing of magnesium- and aluminium-alloys; Plasmaloeten von Magnesium- und Aluminiumlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Ernst, F.; Roesing, J. [RWTH Aachen (Germany)

    2007-07-01

    The increasing demand for light metals in all fields of industry necessitates the further development of economically efficient and ecologically acceptable brazed joints. Plasma brazing is an interesting alternative to established technologies as it offers the possibility of joining Mg and Al alloys with a thick oxide layer without fluxes and with comparatively low thermal stress of the base material. (orig.)

  1. In vivo corrosion and corrosion protection of magnesium alloy LAE442.

    Science.gov (United States)

    Witte, F; Fischer, J; Nellesen, J; Vogt, C; Vogt, J; Donath, T; Beckmann, F

    2010-05-01

    The aim of this study was to investigate whether the extruded magnesium alloy LAE442 reacts in vivo with an appropriate host response and to investigate how an additional magnesium fluoride (MgF(2)) coating influences the in vivo corrosion rate. Forty cylinders were machined from extruded LAE442 and 20 of these were coated additionally with MgF(2) and implanted into the medial femur condyle of adult rabbits. Synchrotron-radiation-based X-ray computed micro-tomography (SRmicroCT) was used to quantitatively analyse corrosion non-destructively in vivo and comparisons were made to magnesium degradation rates based on area measurements of the remaining metal on uncalcified sections. Blood concentrations of the alloying elements were measured below toxicological limits. The MgF(2) layer was no longer detected after 4 weeks of implantation by particle-induced gamma emission, and the MgF(2) coating reduced the blood content of alloying elements during the first 6 weeks of implantation with no elevated fluoride concentration in the adjacent bone. Histopathological examinations of liver showed in 9 out of 40 cases minimal infiltrations of heterophil granulocytes of unknown origin (5 LAE442, 4 LAE442+MgF(2)). The kidneys were mainly regular in structure. The synovial tissue showed a granular cell infiltration as a temporary observation in the LAE442+MgF(2) group after 2 weeks. No subcutaneous gas cavities were observed clinically and on postoperative X-rays in all animals. All specimens were scanned by SRmicroCT at 2, 4, 6 and 12 weeks postoperatively before uncalcified sections were performed. All magnesium implants have been observed in direct bone contact and without a fibrous capsule. Localized pitting corrosion occurred in coated and uncoated magnesium implants. This study shows that the extruded magnesium alloy LAE442 provides low corrosion rates and reacts in vivo with an acceptable host response. The in vivo corrosion rate can be further reduced by additional MgF(2

  2. Metallurgical Joining of Magnesium Alloys by the FSW Process

    OpenAIRE

    Tomáš Kupec; Ivana Hlavačová; Milan Turňa

    2012-01-01

    This paper deals with welding AZ 31Mg alloy by FSW (Friction Stir Welding) technology. Welds were fabricated with new equipment supplied from China for VUZ-PI Bratislava (Welding Research Institute — Industrial Institute). Welding parameters and conditions were proposed and tested. Joint quality was assessed by optical microscopy and microhardness measurements. The fabricated joints were sound, apart from minor inhomogeneities (cracks). It is considered that after certain adaptations of the w...

  3. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys

    Science.gov (United States)

    Surmeneva, M. A.; Vladescu, A.; Cotrut, C. M.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Elkin, B.; Oehr, C.; Surmenev, R. A.

    2018-01-01

    In this paper, parylene C coating with the thickness of 2 μm was deposited on different magnesium alloy substrates (AZ31, WE43 and AZ91). The structure and phase composition of parylene C coating was analysed by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). In addition, extensive surface characterization was done using atomic force microscopy. The corrosion performance of polymer-coated magnesium alloys was investigated by electrochemical measurements in Hanks' balanced salts solution that simulates bodily fluids at 37 ± 0.5 °C. The depth-dependent mechanical properties including Young's modulus and nanohardness of parylene C films were investigated using nanoindentation technique. The effect of the penetration depth on the properties on nano- and microscale level have been described in detail. The percentage of elastic recovery was used to characterize the elastic properties of the polymeric coatings. The results of XRD showed (020) preferred orientation of the monoclinic unit cell of the alpha phase of parylene C. The parylene C revealed a semicrystalline structure with nanocrystalline blocks of 4.9 nm. The parylene C film shows a uniform surface morphology with a higher roughness level at micro and nanoscales compared to magnesium alloy surfaces. All of the uncoated substrates exhibited a low corrosion resistance compared to the coated samples, indicating that the corrosion resistance of the magnesium alloys could be improved by parylene C coating. The resulting average nanohardness and Young's modulus of the parylene C coatings deposited onto different substrates were in the range of 0.18-0.25 GPa and 4.19-5.14 GPa, respectively. Furthermore, a higher percentage of elastic recovery of the polymer coating indicated a higher elasticity as compared to the magnesium alloy surface. The polymer coating has revealed the ability to recover elastically. Therefore, parylene C coating can not only improve corrosion resistance, but also

  4. Low cycle fatigue properties and an energy-based approach for as-extruded AZ31 magnesium alloy

    Science.gov (United States)

    Kwon, S. H.; Song, K. S.; Shin, K. S.; Kwun, S. I.

    2011-04-01

    Low cycle fatigue tests were conducted to investigate the cyclic deformation behavior and the energy-based criterion of AZ31 magnesium alloy. The alloy exhibited an asymmetric hysteresis loop due to the twinning and detwinning effect. The cyclic stress responses showed cyclic hardening at all total strain amplitudes. To evaluate the plastic strain energy, the Halford-Morrow equation and a modified equation for magnesium alloy were compared. The effect of twinning on the total plastic strain energy dissipated during fatigue life was discussed. The variations of the twin and dislocation densities were also investigated using optical microscopy and transmission electron microscopy, respectively.

  5. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    Science.gov (United States)

    2013-11-01

    alloys are based on a rather small group of alloying elements, there are often limited differences between them in properties (strength, corrosion...the first year of the project. 2. Introduction To date, the majority of Mg alloys have used a rather small group of alloying elements (such as...and subsequently processed using Equal Channel Angular Extrusion ( ECAE ) in an attempt to obtain ultra-fine-grained samples. Detailed evaluation of

  6. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  7. Biomechanical characteristics of bioabsorbable magnesium-based (MgYREZr-alloy) interference screws with different threads.

    Science.gov (United States)

    Ezechieli, Marco; Ettinger, Max; König, Carolin; Weizbauer, Andreas; Helmecke, Patrick; Schavan, Robert; Lucas, Arne; Windhagen, Henning; Becher, Christoph

    2016-12-01

    Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength. Five magnesium (MgYREZr-alloy) screws were tested per group. Three different groups with variable thread designs (Designs 1, 2, and 3) were produced and compared with the commercially available bioabsorbable Bioacryl rapid polylactic-co-glycolic acid screw Milagro(®). In vitro testing was performed in synthetic bone using artificial ligament fixed by an interference screw. The constructs were pretensioned with a constant load of 60 N for 30 s followed by 500 cycles between 60 N and 250 N at 1 Hz. Construct displacements between the 1st and 20th and the 21st and 500th cycles were recorded. After a 30 s break, a maximum load to failure test was performed at 1 mm/s measuring the maximum pull-out force. The maximum loads to failure of all three types of magnesium interference screws (Design 1: 1,092 ± 133.7 N; Design 2: 1,014 ± 103.3 N; Design 3: 1,001 ± 124 N) were significantly larger than that of the bioabsorbable Milagro(®) interference screw (786.8 ± 62.5 N) (p magnesium screw Design 1. Except for a significant difference between Designs 1 and 2, there were no further significant differences among the four groups in displacement after the 20th cycle. Biomechanical testing showed higher pull-out forces for magnesium compared with a commercial polymer screw. Hence, they suggest better stability and are a potential alternative. The thread geometry does not significantly influence the stability provided by the magnesium implants. This study shows the first promising

  8. Metallurgical Joining of Magnesium Alloys by the FSW Process

    Directory of Open Access Journals (Sweden)

    Tomáš Kupec

    2012-01-01

    Full Text Available This paper deals with welding AZ 31Mg alloy by FSW (Friction Stir Welding technology. Welds were fabricated with new equipment supplied from China for VUZ-PI Bratislava (Welding Research Institute — Industrial Institute. Welding parameters and conditions were proposed and tested. Joint quality was assessed by optical microscopy and microhardness measurements. The fabricated joints were sound, apart from minor inhomogeneities (cracks. It is considered that after certain adaptations of the welding parameters, and perhaps also of the welding tool, that this equipment will be capable of producing welded joints of excellent quality that can compete with any fusion welding technologies, including concentrated power sources.

  9. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy.

    Science.gov (United States)

    Petrov, Yu N; Prokopenko, G I; Mordyuk, B N; Vasylyev, M A; Voloshko, S M; Skorodzievski, V S; Filatova, V S

    2016-01-01

    In this work, biomedical Co-28Cr-6Mo alloy is subjected to ultrasonic impact treatment (UIT). XRD, TEM and SAED analyses show that the plastic deformation induced by the UIT process results in a complex microstructural formation in surface layer of Co-28Cr-6Mo alloy. The peculiar feature observed in the alloy structure by TEM is the formation of Lomer-Cottrell locks originated by simultaneous sliding of Shockley partial dislocations in intersecting planes. At the beginning of the UIT process (till the strain extent e ≈ 0.2), dislocation pile-ups are gathered in front of the Lomer-Cottrell locks stimulating the formation of a great number of chaotic stacking faults (SFs) packets (incompletely transformed martensite), which are predominant with regard to the occurrence of ε-martensite and micro-twins. The incompletely transformed martensite hinders the shear translation through the twin boundaries and suppresses grain subdivision in surface layer of Co-28Cr-6Mo alloy at the UIT process used. On-going deformation to e ≈ 0.4 leads to further modification of microstructure in the micron-scale γ-grains, which consists of numerous Lomer-Cottrell locks, chaotic subtraction SFs, intersected nano-twins and fine lathes of ε-martensite with average size of approx. 50-100 nm. The observed structural features (at e ≈ 0.4) allow adequately explaining noticeable increase in microhardness without any cracks/cleavages in surface layer. Enhanced corrosion resistance of Co-28Cr-6Mo alloy, which manifests itself with less negative corrosion potential and lower corrosion and passivity currents in potentiodynamic curve, is promoted by the UIT induced oxide films and the following structural features: the CSL type of γ/ε interfacial boundaries, uniformly distributed fine carbides, and high fraction of the grains oriented with close packed (111)γ and (0002)ε planes parallel to the surface of the UIT-processed specimen. Copyright © 2015. Published by Elsevier B.V.

  10. Mechanical Properties of Magnesium Alloys Produced by the Heated Mold Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Okayasu M.

    2016-12-01

    Full Text Available Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC, was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the conventional gravity casting process (GC, and especially excellent mechanical properties were obtained for the Mg97Y2Zn1-HMC alloy. This was because of the fine-grained structure composed of the α-Mg phases with the interdendritic LPSO phase. Such mechanical properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12, made by the GC process. Moreover, the tensile properties (σUTS and εf and fatigue properties of the Mg97Y2Zn1-HMC alloy were about 1.5 times higher than that for the commercial Mg90Al9Zn1-GC alloy (AZ91. The high correlation rate between tensile properties and fatigue strength (endurance limit: σl was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed, and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO. This was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, micro-cracks were observed on the sample surface, and amount of micro-cracks (density could be a parameter to determine the severity of the internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.

  11. Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-04-01

    Full Text Available The effect of Gd/Al ratio on the properties of as-cast Mg-Gd-Al-Zn alloys was investigated by changing the chemical composition from that of AZ61 to GZ61. At the ratio of 1, the Al2Gd phase becomes predominant and Mg17Al12 is hardly seen in the microstructure. As a potent inoculant, the Al2Gd phase resulted in intense grain refinement and enhancement of strength, ductility and toughness. For instance, the tensile strength and elongation to failure of Mg-3Gd-3Al-1Zn alloy were enhanced by ~4% and 180% compared with those of AZ61 alloy, respectively. However, at high Gd/Al ratios, the Al2Gd phase was replaced by (Mg,Al3Gd and Mg5Gd phases and very large grain sizes were achieved, which led to poor tensile properties and the appearance of cleavage facets on the fracture surfaces. Therefore, it can be deduced that the presence of Gd and Al, in appropriate amounts to reach Gd/Al ratio of ~ 1, is required for the achievement of grain refinement, good ductility, high strength, and the appearance of ductile fracture surfaces in the Mg-Gd-Al-Zn system. Conclusively, the Mg-Gd-Al-Zn alloys can be considered as a new class of structural magnesium alloy and it is superior to both AZ (Mg-Al-Zn and GZ (Mg-Gd-Zn series of alloys.

  12. Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models

    Directory of Open Access Journals (Sweden)

    Shiying Zhang

    2017-06-01

    Full Text Available In this work, the biodegradable and histocompatibility properties of pure Mg and ZK60 alloy were investigated as new temporary implants for urinary applications. The corrosion mechanism in artificial urine was proposed using electrochemical impedance spectroscopy and potentiodynamic polarization tests. The corrosion potential of pure magnesium and ZK60 alloy were −1820 and −1561 mV, respectively, and the corrosion current densities were 59.66 ± 6.41 and 41.94 ± 0.53 μA cm−2, respectively. The in vitro degradation rates for pure Mg and ZK60 alloy in artificial urine were 0.382 and 1.023 mm/y, respectively, determined from immersion tests. The ZK60 alloy degraded faster than the pure Mg in both artificial urine and in rat bladders (the implants of both samples are ø 3 mm × 5 mm. Histocompatibility evaluations showed good histocompatibility for the pure Mg and ZK60 alloy during the 3 weeks post-implantation in rat bladders, and no harm was observed in the bladder, liver and kidney tissues. The results provide key information on the degradation properties and corrosion mechanism of pure Mg and ZK60 alloy in the urinary system.

  13. Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-06-01

    Full Text Available Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries. These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding, leading to the improvement of creep properties. Based on this point, adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys. The present investigation, however, shows that the creep properties of binary Mg–Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg2Sn at grain boundaries. That means other possible mechanisms function to affect the creep response. It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries. Based on this observation, new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg–Sn alloys.

  14. Diffusion Bonding Behavior and Characterization of Joints Made Between 316L Stainless Steel Alloy and AZ31 Magnesium Alloy

    Science.gov (United States)

    Elthalabawy, Waled Mohamed

    The 316L austenitic stainless steel and AZ31 magnesium alloy have physical and mechanical properties which makes these alloys suitable in a number of high technology based industries such as the aerospace and automotive sectors. However, for these alloys to be used in engineering applications, components must be fabricated and joined successfully. The differences in the physical and metallurgical properties between these two alloys prevents the use of conventional fusion welding processes commonly employed in aerospace and transport industry. Therefore, alternative techniques need to be developed and diffusion bonding technology is a process that has considerable potential to join these two dissimilar alloys. In this research work both solid-state and transient liquid phase (TLP) bonding processes were applied. The solid-state bonding of 316L steel to AZ31 magnesium alloy was possible at a bonding temperature of 550°C for 120 minutes using a pressure of 1.3 MPa. The interface characterization of the joint showed a thin intermetallic zone rich in Fe-Al was responsible for providing a metallurgical bond. However, low joint shear strengths were recorded and this was attributed to the poor surface to surface contact. The macro-deformation of the AZ31 alloy prevented the use of higher bonding pressures and longer bonding times. In order to overcome these problems, the TLP bonding process was implemented using pure Cu and Ni foils as interlayers which produced a eutectic phase at the bonding temperature. This research identified the bonding mechanism through microstructural and differential scanning calorimetry investigations. The microstructural characterization of the TLP joints identified intermetallics which became concentrated along the 316L steel/AZ31 bond interface due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The size and concentration of the intermetallics had a noticeable effect on the final joint

  15. Effects of surface treatments and bonding types on the interfacial behavior of fiber metal laminate based on magnesium alloy

    Science.gov (United States)

    Zhang, Xi; Ma, Quanyang; Dai, Yu; Hu, Faping; Liu, Gang; Xu, Zouyuan; Wei, Guobing; Xu, Tiancai; Zeng, Qingwen; Xie, Weidong

    2018-01-01

    Fiber metal laminates based on magnesium alloys (MgFML) with different surface treatments and different bonding types were tested and analyzed. By using dynamic contact angle measurement and scanning electron microscopy (SEM), it was found that phosphating treatment can significantly improve the surface energy and wettability of magnesium alloy, and the surface energy of phosphated magnesium alloy was approximately 50% higher than that of abraded-only magnesium alloy. The single cantilever beam (SCB) test showed that the interfacial fracture energies of directly bonded MgFMLs based on abraded-only magnesium and abraded + phosphated magnesium were 650 J/m2 and 1030 J/m2, respectively, whereas the interfacial fracture energies of indirectly bonded MgFMLs were 1650 J/m2 and 2260 J/m2, respectively. Phosphating treatment and modified polypropylene interleaf were observed to improve the tensile strength and interfacial fracture toughness of MgFML. In addition, the rougher surface was more conducive to enhance the bonding strength and interfacial fracture toughness of MgFML.

  16. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  17. Thermal Conductivity of Magnesium Alloys in the Temperature Range from -125 °C to 400 °C

    Science.gov (United States)

    Lee, Sanghyun; Ham, Hye Jeong; Kwon, Su Yong; Kim, Sok Won; Suh, Chang Min

    2013-12-01

    Magnesium alloys have been widely used in recent years as lightweight structural materials in the manufacturing of automobiles, airplanes, and portable computers. Magnesium alloys have extremely low density (as low as 1738 kg · m-3) and high rigidity, which makes them suitable for such applications. In this study, the thermal conductivity of two different magnesium alloys made by twin-roll casting was investigated using the laser-flash technique and differential scanning calorimetry for thermal diffusivity and specific heat capacity measurements, respectively. The thermal diffusivity of the magnesium alloys, AZ31 and AZ61, was measured over the temperature range from -125 °C to 400 °C. The alloys AZ31 and AZ61 are composed of magnesium, aluminum, and zinc. The thermal conductivity gradually increased with temperature. The densities of AZ31 and AZ61 were 1754 kg · m-3 and 1777 kg · m-3, respectively. The thermal conductivity of AZ31 was about 25 % higher than that of AZ61, and this is attributed to the amount of precipitation.

  18. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  19. Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko [Kogakuin University, Tokyo (Japan)

    2016-06-15

    The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in 0.5 mol dm{sup -3} Na{sub 3}PO{sub 4} solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase Al2Ca. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of Al2Ca phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range 30 - 40 μm. The heat resistant phase of Al{sub 2}Ca was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

  20. Dual-phase nanostructuring as a route to high-strength magnesium alloys

    Science.gov (United States)

    Wu, Ge; Chan, Ka-Cheung; Zhu, Linli; Sun, Ligang; Lu, Jian

    2017-04-01

    It is not easy to fabricate materials that exhibit their theoretical ‘ideal’ strength. Most methods of producing stronger materials are based on controlling defects to impede the motion of dislocations, but such methods have their limitations. For example, industrial single-phase nanocrystalline alloys and single-phase metallic glasses can be very strong, but they typically soften at relatively low strains (less than two per cent) because of, respectively, the reverse Hall-Petch effect and shear-band formation. Here we describe an approach that combines the strengthening benefits of nanocrystallinity with those of amorphization to produce a dual-phase material that exhibits near-ideal strength at room temperature and without sample size effects. Our magnesium-alloy system consists of nanocrystalline cores embedded in amorphous glassy shells, and the strength of the resulting dual-phase material is a near-ideal 3.3 gigapascals—making this the strongest magnesium-alloy thin film yet achieved. We propose a mechanism, supported by constitutive modelling, in which the crystalline phase (consisting of almost-dislocation-free grains of around six nanometres in diameter) blocks the propagation of localized shear bands when under strain; moreover, within any shear bands that do appear, embedded crystalline grains divide and rotate, contributing to hardening and countering the softening effect of the shear band.

  1. Formation of Structure and Properties in Casting Processes on the Example of AZ91 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Augustyn B.

    2014-06-01

    Full Text Available Contemporary materials engineering requires the use of materials characterised by high mechanical properties, as these precisely properties determine the choice of material for parts of machinery and equipment. Owing to these properties it is possible to reduce the weight and, consequently, the consumption of both material and energy. Trying to meet these expectations, the designers are increasingly looking for solutions in the application of magnesium alloys as materials offering a very beneficial strength-to-weight ratio. However, besides alloying elements, the properties are to a great extent shaped by the solidification conditions and related structure. The process of structure formation depends on the choice of casting method forced by the specific properties of casting or by the specific intended use of final product. The article presents a comparison of AZ91 magnesium alloys processed by different casting technologies. A short characteristic was offered for materials processed by the traditional semi-continuous casting process, which uses the solidification rates comprised in a range of 5 - 20°C/s, and for materials made in the process of Rapid Solidification, where the solidification rate can reach 106 °C/s. As a result of the casting process, a feedstock in the form of billets and thin strips was obtained and was subjected next to the process of plastic forming. The article presents the results of structural analysis of the final product. The mechanical properties of the ø7 mm extruded rods were also evaluated and compared.

  2. Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    FANG Zhi-hao

    2017-12-01

    Full Text Available The AZ91D magnesium alloy samples were scanned by millisecond pulse Nd:YAG laser under high pure argon protection. The surface morphology, microstructure and composition of the treated magnesium alloy were studied by X-ray diffraction, optical microscopy, scanning electron microscopy, atomic force microscopy. In addition, the corrosion surface which was corroded using simulated body fluid and the mass fraction of 3.5%NaCl solution was observed and material corrosion rate was calculated. The results show that, at the same corrosion time, compared with the untreated samples, the surface corrosion resistance is improved by the enrichment of Al at the irradiated surface by the joint effect of the combination of refined homogeneous microstructure of α-Mg phase and β-Mg17Al12 phase and the selective vaporization and the chemical composition of base metal in the laser-treated AZ91D alloy; the solidification equation is obtained by calculating the relation between the size of the dendrite cell and the cooling rate in laser melting zone.

  3. Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Carlos M. Campos

    2013-12-01

    Full Text Available The introduction of metallic drug-eluting stents has reduced the risk of restenosis and widened the indications of percutaneous coronary intervention in treatment of coronary artery disease. However, this medical device can induce hypersensitive reaction that interferes with the endothelialization and healing process resulting in late persistent or acquired malapposition of the permanent metallic implant. Delayed endotheliaization and malapposition may lead to late and very late stent thrombosis. Bioresorbable scaffolds (BRS have been introduced to potentially overcome these limitations, as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. Magnesium is an essential mineral needed for a variety of physiological functions in the human body and its bioresorbable alloy has the strength-to-weight ratio comparable with that of strong aluminum alloys and alloy steels. The aim of this review is to present the new developments in Magnesium BRS technology, to describe its clinical application and to discuss the future prospects of this innovative therapy.

  4. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Asqardoust, Sh.; Zarei-Hanzaki, A. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Fatemi, S.M., E-mail: mfatemi@ut.ac.ir [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Moradjoy-Hamedani, M. [School of Metallurgical & Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-06-05

    Magnesium alloys containing RE elements (WE grade) are considered as potential materials for high temperature structural applications. To this end, it is crucial to study the flow behavior and the microstructural evolution of these alloys at high temperatures. In present work, the hot compression testing was employed to investigate the deformation behavior of a rolled WE54 magnesium alloy at elevated temperatures. The experimental material failed to deform to target strain of 0.6 at 250 and 300 °C, while the straining was successfully performed at 350 °C. A flow softening was observed at 350 °C, which was related to the depletion of RE strengthener elements, particularly Y atoms, from the solid solution and dynamic precipitation of β phases. It was suggested that the Zener pinning effect of the latter precipitates might retard the occurrence of dynamic recrystallization. As the temperature increased to 450 and 500 °C, the RE elements dissolved in the matrix and thus dynamic recrystallization could considerably progress in the microstructure. The comparative study of specimens cut along transverse ad normal direction (TD and ND specimens) implied that the presence of RE elements might effectively reduce the yield anisotropy in WE54 rolled alloy. Microstructural observations indicated a higher fraction of dynamically-recrystallized grains for the ND specimens. This was discussed relying on the different shares of deformation mechanism during compressing the TD and ND specimens. - Highlights: • Deformation behavior of a high Zr WE alloy was addressed at low strain rate. • Dynamic precipitation was realized at 350 °C. • The occurrence of DRX was retarded due to Zener pinning effect. • A higher DRX fraction was obtained in ND specimens comparing with TD ones.

  5. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  6. Simulation of complex magnesium alloy texture using the axial component fit method with central normal distributions

    Science.gov (United States)

    Ivanova, T. M.; Serebryany, V. N.

    2017-12-01

    The component fit method in quantitative texture analysis assumes that the texture of the polycrystalline sample can be represented by a superposition of weighted standard distributions those are characterized by position in the orientation space, shape and sharpness of the scattering. The components of the peak and axial shapes are usually used. It is known that an axial texture develops in materials subjected to direct pressing. In this paper we considered the possibility of modelling a texture of a magnesium sample subjected to equal-channel angular pressing with axial components only. The results obtained make it possible to conclude that ECAP is also a process leading to the appearance of an axial texture in magnesium alloys.

  7. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    Energy Technology Data Exchange (ETDEWEB)

    Li, M. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Cheng, Y., E-mail: chengyan@pku.edu.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Zhang, X.; Xi, T.F. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Wei, S.C. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100871 (China)

    2012-01-15

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 {+-} 1 Degree-Sign C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  8. Correlation Between Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate Rolling

    Science.gov (United States)

    Chen, Jihua; Chen, Guanqing; Yan, Hongge; Su, Bin; Gong, Xiaole; Zhou, Bo

    2017-10-01

    Microstructure and corrosion resistance in Hank's solution of four magnesium alloys (pure Mg, ZK60, Mg-4Zn and Mg-4Zn-0.3Ca) prepared by high strain rate rolling (HSRR) and conventional rolling (CR) are comparatively investigated. The HSRR alloy exhibits better bio-corrosion resistance than the CR alloy. The HSRR ZK60 alloy has finer grains, higher dynamic recrystallization (DRX) extent, lower twin fraction, coarser residual second-phase particles, finer and denser nanometer β 1 precipitates, lower residual compressive stress and stronger basal texture than the CR alloy. The average corrosion rate of the HSRR ZK60 sheet after 90-day immersion in Hank's solution is 0.17 mg cm-2 d-1, about 19% lower than that of the CR sheet. Its corrosion current density is 30.9 μA/cm2, about 45% lower than that of the CR sheet. Bio-corrosion resistance enhancement by HSRR can be mainly ascribe to the reduced grain size, the relatively adequate DRX, non-twinning, the coarser residual second-phase particles, the finer and denser nanometer precipitates and the slightly stronger (0001) texture.

  9. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing.

    Science.gov (United States)

    Walker, Jemimah; Shadanbaz, Shaylin; Kirkland, Nicholas T; Stace, Edward; Woodfield, Tim; Staiger, Mark P; Dias, George J

    2012-05-01

    Magnesium (Mg) and its alloys have been proposed as degradable replacements to commonly used orthopedic biomaterials such as titanium alloys and stainless steel. However, the corrosion of Mg in a physiological environment remains a difficult characteristic to accurately assess with in vitro methods. The aim of this study was to identify a simple in vitro immersion test that could provide corrosion rates similar to those observed in vivo. Pure Mg and five alloys (AZ31, Mg-0.8Ca, Mg-1Zn, Mg-1Mn, Mg-1.34Ca-3Zn) were immersed in either Earle's balanced salt solution (EBSS), minimum essential medium (MEM), or MEM-containing 40 g/L bovine serum albumin (MEMp) for 7, 14, or 21 days before removal and assessment of corrosion by weight loss. This in vitro data was compared to in vivo corrosion rates of the same materials implanted in a subcutaneous environment in Lewis rats for equivalent time points. The results suggested that, for the alloys investigated, the EBSS buffered with sodium bicarbonate provides a rate of degradation comparable to those observed in vivo. In contrast, the addition of components such as (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), vitamins, amino acids, and albumin significantly increased corrosion rates. Based on these findings, it is proposed that with this in vitro protocol, immersion of Mg alloys in EBSS can be used as a predictor of in vivo corrosion. Copyright © 2012 Wiley Periodicals, Inc.

  10. Texture and microstructure development during hot deformation of ME20 magnesium alloy: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Al-Samman, T., E-mail: alsamman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany); Mu, S.; Gottstein, G. [Institut fuer Metallkunde und Metallphysik, RWTH-Aachen University, 52056 Aachen (Germany)

    2011-10-15

    Highlights: {yields} Second phase precipitates in ME20 hindered activation of tensile twinning at 300 deg. C. {yields} New off-basal sheet texture during c-axis compression at low Z conditions. {yields} Ce amplifies the role of pyramidal -slip over prismatic slip at 0.3T{sub m}. {yields} Prismatic slip becomes equally important to deformation at 0.6T{sub m}. {yields} Accurate texture predictions using a cluster-type Taylor model with grain interaction. - Abstract: The influence of deformation conditions and starting texture on the microstructure and texture evolution during hot deformation of a commercial rare earth (RE)-containing magnesium alloy sheet ME20 was investigated and compared with a conventional Mg sheet alloy AZ31. For all the investigated conditions, the two alloys revealed obvious distinctions in the flow behavior and the development of texture and microstructure, which was primarily attributed to the different chemistry of the two alloys. The presence of precipitates in the fine microstructure of the ME20 sheet considerably increased the recrystallization temperature and suppressed tensile twinning. This gave rise to an uncommon Mg texture development during deformation. Texture simulation using an advanced cluster-type Taylor approach with consideration of grain interaction was employed to correlate the unique texture development in the ME20 alloy with the activation scenarios of different deformation modes.

  11. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag.

    Science.gov (United States)

    Chartier, D; Muzeau, B; Stefan, L; Sanchez-Canet, J; Monguillon, C

    2017-03-15

    Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of Yttrium Addition on Texture Development in a Cast Mg-Al-Y Magnesium Alloy During Compression

    Science.gov (United States)

    Tahreen, N.; Chen, D. L.; Nouri, M.; Li, D. Y.

    Magnesium is increasingly used in the automotive and aerospace industries to reduce vehicle weight and fuel consumption. Alloying with rare-earth (RE) elements is considered as an important tool for magnesium to achieve superior properties via texture randomization. The present study was aimed to identify the inter-relationship among the texture evolution, yttrium content and deformation behavior in a cast Mg-Al-Y alloy in compression. A weak and random texture was present in the Y-containing cast magnesium alloy. Increasing Y content reduced the extent of twinning and enhanced the slip deformation mode. Despite a slight decrease in the yield strength and ultimate compressive strength, increasing Y content by 0.3% and lowering Al content by 2% resulted in a significantly increased fracture strain. The compression deformation led to the formation of { \\bar 12\\bar 10} and { 01\\bar 10} texture components.

  13. Standard practice for ultrasonic testing of wrought products

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2013-01-01

    1.1 Purpose—This practice establishes the minimum requirements for ultrasonic examination of wrought products. Note 1—This standard was adopted to replace MIL-STD-2154, 30 Sept. 1982. This standard is intended to be used for the same applications as the document which it replaced. Users should carefully review its requirements when considering its use for new, or different applications, or both. 1.2 Application—This practice is applicable for examination of materials such as, wrought metals and wrought metal products. 1.2.1 Wrought Aluminum Alloy Products—Examination shall be in accordance with Practice B 594. 1.3 Acceptance Class—When examination is performed in accordance with this practice, engineering drawings, specifications, or other applicable documents shall indicate the acceptance criteria. Five ultrasonic acceptance classes are defined in Table 1. One or more of these classes may be used to establish the acceptance criteria or additional or alternate criteria may be specified. 1.4 Ord...

  14. Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, K. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Chmelik, F. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)]. E-mail: chmelik@met.mff.cuni.cz; Janecek, M. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Hadzima, B. [Department of Materials Engineering, University of Zilina, Vel' ky diel, 010 26 Zilina (Slovakia); Trojanova, Z. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Lukac, P. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2006-12-15

    Microstructure changes in an AM60 magnesium alloy were monitored using the acoustic emission (AE) technique during tensile tests in the temperature range from 20 to 300 deg. C. The correlation of the AE signal and the deformation processes is discussed. It is shown, using transmission electron and light microscopy, that the character of the AE response is associated with various modes of mechanical twinning at lower temperatures, whereas at higher temperatures also the influence of non-basal dislocations on the AE response must be taken into account.

  15. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Horstemeyer, Mark R. [Mississippi State Univ., Mississippi State, MS (United States); Chaudhuri, Santanu [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  16. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    Science.gov (United States)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  17. Electromagnetic field simulation and crack analysis of electromagnetic forming of Magnesium alloy tube

    OpenAIRE

    Wang, Z. F.; Piao, F. X.; Wang, Z.Y.; Cui, J.Z.; Ma, M. X.

    2011-01-01

    The AZ31 magnesium alloy tube was used for electromagnetic forming experiment of three kinds of input voltages. The stress-strain state of tube forming was analyzed. It was shown that the cause of oblique crack of tube was σr of axial inhomogeneous distribution and σz, and the cause of longitudinal crack was σr and σè of inhomogeneous distribution in circumferential direction. Moreover, the electromagnetic field and force field during electromagnetic forming was simulated by ANSYS software. T...

  18. Structure and Properties of "Magnesium Alloy - Carbon Nanotubes" Nanocomposite and their Optimization Using Design of Experiments

    Science.gov (United States)

    Soltani, M.; Shamanian, M.; Niroumand, B.

    2017-07-01

    A nanocomposite obtained by introduction of carbon nanotubes into the surface layer of magnesium alloy AZ31B by the method of friction stir processing is studied. Dependences of the hardness and wear resistance on the speed of motion of the friction tool, the speed of rotation of the friction head, the number of passes of the tool and the relative content of carbon nanotubes in the layer are determined. The method of design of experiment is used to find the optimum modes for production of a nanocomposite with high hardness and wear resistance.

  19. Microstructural Characterization of a Magnesium Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Florina Diana Dumitru

    2014-07-01

    Full Text Available Samples of as-extruded ZK60 magnesium alloy were subjected to 6 passes of equal-channel angular pressing (ECAP following route A. The processing temperature was decreased with the number of passes. The structural evolution of the deformed samples was analyzed using Electron Backscattered Diffraction (EBSD and X-Ray Diffraction. The grain boundary misorientation distribution showed a reduction in the grain size accompanied bya large proportion of high angle grain boundaries and the presence of recrystallization processes. XRD results showed that with the increment of the applied strain the peaks presented a slight variation of the angles.

  20. Nonlinear dynamics of deformation bands in aluminum-magnesium alloy in the creep test

    Science.gov (United States)

    Shibkov, A. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.

    2017-10-01

    Various types of plastic instabilities that emerge in intermittent creep have been studied experimentally for AlMg6 aluminum-magnesium alloy. It has been shown that intermittent creep exhibits threshold dynamics. The deformation step on the creep curve of amplitude is 1-6% and begins when the rate of the preceding continuous creep attains a certain critical value. In the course of evolution of the step, the strain rate varies in the interval that spans more than two orders of magnitude, and transitions occur between different dynamic regimes of type A and B characterized by different stress drop regularity levels in the force response. Nonlinear aspects of the deformation behavior of the alloy in the intermittent creep conditions are considered.

  1. Endothelialization of Novel Magnesium-Rare Earth Alloys with Fluoride and Collagen Coating

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2014-03-01

    Full Text Available Magnesium (Mg alloys are promising scaffolds for the next generation of cardiovascular stents because of their better biocompatibility and biodegradation compared to traditional metals. However, insufficient mechanical strength and high degradation rate are still the two main limitations for Mg materials. Hydrofluoric acid (HF treatment and collagen coating were used in this research to improve the endothelialization of two rare earth-based Mg alloys. Results demonstrated that a nanoporous film structure of fluoride with thickness of ~20 µm was formed on the Mg material surface, which improved the corrosion resistance. Primary human coronary artery endothelial cells (HCAECs had much better attachment, spreading, growth and proliferation (the process of endothelialization on HF-treated Mg materials compared to bare- or collagen-coated ones.

  2. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.

    Science.gov (United States)

    de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N

    2018-02-01

    In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of damage evolution in an AM60 magnesium alloy by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Waters, A.; Green, R.E.; Martz, H.; Dolan, K.; Horstemeyer, M.; Derrill, R.

    1999-06-16

    Lawrence Livermore National Lab and Sandia National Laboratories, CA are collaborating on the development of new techniques to study damage evolution and growth in material specimens subjected to mechanical loading. These techniques include metallography, radiography, computed tomography (CT) and modeling. The material specimens being studied include cast magnesium and aluminum alloys, and forged stainless steel. The authors concentrate on characterizing monotonically loaded Mg alloy specimens using CT. Several notched tensile specimens were uniaxially loaded to different percentages of the failure load. Specimens were initially characterized by radiography and computed tomography to determine the preloaded state. Subsequent CT scans were performed after the samples were loaded to different percentages of the load failure. The CT volumetric data are being used to measure void size, distribution and orientation in all three dimensions nondestructively to determine the effect of void growth on the mechanical behavior of the materials.

  4. Structure and Properties Investigation of MCMgAl12Zn1 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2013-01-01

    Full Text Available This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 castmagnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. Theapparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength and grain size are shifting with an increasing cooling rate.

  5. Influence of temperature on oxidation behaviour of ZE41 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.D., E-mail: mariadolores.lopez@urjc.e [Dpto. de Ciencia e Ingenieria de Materiales, Universidad Rey Juan Carlos, 28933 Mostoles (Spain); Munez, C.J. [Dpto. de Ciencia e Ingenieria de Materiales, Universidad Rey Juan Carlos, 28933 Mostoles (Spain); Carboneras, M. [Dpto. de Ciencia e Ingenieria de Materiales, Universidad Rey Juan Carlos, 28933 Mostoles (Spain); Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, 28040 Madrid (Spain); Rodrigo, P.; Escalera, M.D.; Otero, E. [Dpto. de Ciencia e Ingenieria de Materiales, Universidad Rey Juan Carlos, 28933 Mostoles (Spain)

    2010-02-18

    The influence of temperature on the oxidation behaviour of commercial ZE41 magnesium alloy has been studied. Thermogravimetric tests were carried out to determine the oxidation kinetics in the 350-500 {sup o}C range. Morphology and growth of the oxidation films were analysed by Scanning Electronic Microscopy (SEM), Energy Dispersive X-Ray Spectrometry (EDS) and X-Ray Diffraction (XRD). It was found that the oxidation kinetics initially follow a parabolic law, following a linear law for higher exposure times. Results also showed that the protective nature of the oxide layer depends on the oxidation temperature. At temperatures in the range of 350-450 {sup o}C the ZE41 alloy is covered by a protective oxide layer, very thin and compact, whereas the oxide layer formed at 500 {sup o}C exhibits a non-protective nature, showing an 'oxide sponges' morphology.

  6. Microstructure Evolution of Mg-Gd-Y-Zn-Zr Magnesium Alloy During Partial Remelting

    Directory of Open Access Journals (Sweden)

    Jianquan TAO

    2014-12-01

    Full Text Available The article deals with the research on the microstructure evolution of Mg-Gd-Y-Zn-Zr magnesium alloy through partial remelting process. It aims at finding out what effects the microstructure of semi-solid Mg-Gd-Y-Zn-Zr alloy will result in under different remelting temperatures and holding times. Based on the results, if to raise the remelting temperature and to prolong the holding time, the size of solid grain will tend to expand and its spheroidization degree also begins to show improvement. In addition, the grain shows tendency of coarsening when the holding time increases. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6483

  7. Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    A. Gontarz

    2014-10-01

    Full Text Available The results of theoretical analysis and experimental tests of hammer forging process of rim part from AZ31 magnesium alloy are presented in this paper. On the basis of numerical simulation results, the analysis of limiting phenomena was made. These phenomena include: possibility of overlapping presence, not filling of die impression, overheating of material and cracks. The results of theoretical analysis provided the support for planning of experimental tests in industrial conditions. Forging tests were conducted in one of Polish forming plants, applying steam-air hammer of blow energy 63 kJ. On the basis of experimental verification, it was stated that it is possible to obtain rim forging from AZ31 alloy of assumed quality in the hammer forging process.

  8. Dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during in vitro and in vivo degradations

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Tan Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Xu Wenli; Zhang Bingchun [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-12-15

    Surface modification can be an effective way to control the biodegradation behavior of magnesium alloys and even improve their biological properties. Much attention has been paid to the initial protection ability and biological properties of magnesium alloys coating. In this work, the dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during the degradations in vitro and in vivo, including hemolysis, mechanical loading capability and implantation in animals, were investigated. The hemolytic rates of the alloy with and without coating were all declined to be lower than 5% after more than 20 days immersion in PBS, though an increase happened to the alloy at the early immersion of 3-7 days. Reduction of the mechanical loading capacity was gradually evolved for the coated alloy and the peak load retention of 85% was still maintained after 120 days degradation. The in vivo implantation indicated that the Ca-P coated AZ31B alloy showed a more suitable time dependent degradation behavior which was favorable for growth of the new tissue and the healing dynamics of bones, making it a promising choice for medical application.

  9. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    Science.gov (United States)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  10. Microstructure and tensile properties of thixo-diecast AZ91D magnesium alloy

    Directory of Open Access Journals (Sweden)

    Ai Xiulan

    2013-09-01

    Full Text Available The thixo-diecasting (TDC process is the combination of semi-solid billet preparation technology and die casting technology. The TDC process not only keeps the characteristics of thixo-forming but also has high efficiency and low cost. In the present work, the microstructures and mechanical properties of an AZ91D magnesium alloy prepared by the thixo-diecasting (TDC process were characterized in as-cast condition. The TDC alloy produced exhibits a unique microstructure containing α-Mg solid solution and β-Mg17Al12 intermetallic compound, and there are some small droplets and a small gray globule with eutectic structure in the primary α-Mg grains. The ultimate tensile strength and elongation of the TDC alloy also increase in comparison with other processes, such as thixocasting. Fracture surface observation shows that a crack mainly originates from the brittle fracture of the eutectic phases. The deformation of ductile α-Mg phase provides the TDC alloy with the main strain.

  11. Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloys

    Directory of Open Access Journals (Sweden)

    Mohedano, Marta

    2014-03-01

    Full Text Available Electrochemical and gravimetric measurements were used to examine the effects of neodymium and gadolinium additions on the galvanic corrosion behaviour of AM50 and AZ91D magnesium alloys coupled to A 570 Gr 36 carbon steel and AA2011-AA6082 aluminium alloys. Rare earth modified alloys showed Al2Nd/Al2Gd and Al-Mn-Nd/Al-Mn-Gd intermetallics, reduced area fraction of β-Mg17Al12 phase and increased corrosion resistance due to increased surface passivity and suppression of micro-galvanic couples. Neodymium and gadolinium additions improved the galvanic corrosion resistance of AM50 alloy, but were less effective in case of the AZ91D alloy. The AA6082 alloy was the most compatible material and the AA2011 alloy was the least compatible.Se emplearon medidas electroquímicas y gravimétricas para examinar el efecto de la adición de neodimio y gadolinio en el comportamiento a la corrosión galvánica de las aleaciones AM50 y AZ91D en contacto con acero al carbono A 570 Gr 36 y aleaciones de aluminio AA2011 y AA6082. Las aleaciones modificadas con tierras raras mostraron intermetálicos Al2Nd/Al2Gd y Al-Mn-Nd/Al-Mn-Gd, menor fracción de fase β-Mg17Al12 y un incremento de la resistencia a la corrosión debido al aumento de la pasividad de la superficie y a la eliminación de micro pares galvánicos. Las adiciones de neodimio y gadolinio mejoraron la resistencia a la corrosión galvánica de la aleación AM50, pero fueron menos efectivas en el caso de la aleación AZ91D. La aleación AA6082 fue el material más compatible y la aleación AA2011 el menos compatible.

  12. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosch, Timothy [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  13. Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.

    Science.gov (United States)

    Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong

    2016-03-01

    In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  15. Effects of processing parameters on microstructure of semi-solid magnesium alloy

    Directory of Open Access Journals (Sweden)

    Shusen WU

    2004-08-01

    Full Text Available In this paper, the effects of pouring temperature of magnesium melt, preheating temperature of the barrel of the screw mixer, and shear rate on the solidified microstructures of semi-solid slurry were investigated by a mechanical stirring semi-solid process. The appropriate processing parameters of slurry preparation were obtained, and the mold filling ability of semi-solid slurry for thin-walled casting was examined. Results indicate that the solid volume fraction of non-dendritic mi-crostructure increases with a decrease in pouring temperature of magnesium melt and the barrel preheating temperature of the screw mixer. Also the grain size of primary a-phase is reduced. Furthermore, the solid volume fraction of semi-solid non-dendritic structure decreases with an increase of shear rate. The fine and round granular microstructure with 30一50 Nm insize of semi-solid AZ91D magnesium alloy was presented. Finally, a 1.0 mm thin-walled casting with a clear contour and good soundness was successfully made by semi-solid rheo-diecasting.

  16. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo.

    Science.gov (United States)

    Jiang, Hongfeng; Wang, Jingbo; Chen, Minfang; Liu, Debao

    2017-06-01

    To explore the biodegradable characteristics and biological properties, which could promote new bone formation, of MgF2 coated magnesium alloy (Mg-3wt%Zn-0.5wt%Zr) in rabbits. Magnesium alloy with MgF2 coating was made and the MgF2/Mg-Zn-Zr was implanted in the femoral condyle of rabbits. Twelve healthy adult Japanese white rabbits in weight of 2.8-3.2kg were averagely divided into A(Mg-Zn-Zr) group and B(MgF2/MgZn-Zr) group. Indexes such as microstructural evolution, SEM scan, X-ray, Micro-CT and mechanical properties were observed and detected at 1th day, 2th, 4th, 8th, 12th, 24th week after implantation. Low-density regions occurred around the cancellous bone, and the regions gradually expanded during the 12weeks after implantation. The implant was gradually absorbed from 12 to 24weeks. The density of surrounding cancellous bone increased compared with the 12th week data. The degradation rate of B group was lower than that of A group (Pmagnesium ions. The biological properties of the coating itself presented good biocompatibility and bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dynamic recrystallization behavior of AZ31 magnesium alloy processed by alternate forward extrusion

    Science.gov (United States)

    Li, Feng; Liu, Yang; Li, Xu-Bo

    2017-09-01

    One of the important factors that affect the microstructure and properties of extruded products is recrystallization behavior. Alternate forward extrusion (AFE) is a new type of metal extrusion process with strong potential. In this paper, we carried out the AFE process experiments of as-cast AZ31 magnesium alloy and obtained extrusion bar whose microstructure and deformation mechanism were analyzed by means of optical microscopy, electron backscattered diffraction and transmission electron microscopy. The experimental results indicated that homogeneous fine-grained structure with mean grain size of 3.91 μm was obtained after AFE at 573 K. The dominant reason of grain refinement was considered the dynamic recrystallization (DRX) induced by strain localization and shear plastic deformation. In the 573-673 K range, the yield strength, tensile strength and elongation of the composite mechanical properties are reduced accordingly with the increase of the forming temperature. Shown as in relevant statistics, the proportion of the large-angle grain boundaries decreased significantly. The above results provide an important scientific basis of the scheme formulation and active control on microstructure and property for AZ31 magnesium alloy AFE process.

  18. Influence of Friction Stir Welding on Mechanical Properties of Butt Joints of AZ61 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Seung-Ju Sun

    2017-01-01

    Full Text Available In this study, the effect of heat input on the mechanical properties and fracture behaviors of AZ61 magnesium alloy joints has been studied. Magnesium alloy AZ61 plates with thickness of 5 mm were welded at different ratios of tool rotational speed to welding speed (ω/ν. The average ultimate tensile strength of all weld conditions satisfying a ω/ν ratio of 3 reached 100% of the strength of the base material. Fractures occurred at the interface between the thermomechanical affected zone at advancing side and the stir zone in all welded specimens. From the scanning electron microscope and electron backscatter diffraction analysis, it was determined that the interface between the thermomechanical affected zone and the stir zone, which is the region where the grain orientation changes, was the weakest part; the advancing side region was relatively weaker than the retreating side region because the grain orientation change occurred more dramatically in the advancing side region.

  19. Microstructure and Properties of Magnesium Alloy Mg-1Zn-1Ca (ZX11)

    Science.gov (United States)

    Katsarou, L.; Suresh, K.; Rao, K. P.; Hort, N.; Blawert, C.; Mendis, C. L.; Dieringa, H.

    In recent years, some magnesium alloy systems have received attention to serve as potential materials for orthopedic implants due to their biocompatibility and biodegradability. Besides acceptable mechanical strength and corrosion rate, also non-toxicity is an important criterion in the development of these degradable magnesium alloys. Zinc and calcium are essential micro-nutrients in the body, therefore are not expected to be harmful, and positively influence strength by grain refinement and age hardening. To identify biomedical as well as other applications, the as-cast Mg-1Zn-1Ca (ZX11) material was tested for standard corrosion resistance as well as compression and creep strength, also at elevated temperatures. Microstructural investigations complete the determination of relevant characteristics for the use of ZX11. Grain size reduction is observed along the radius of the cylinder and SEM-EDX analysis reveals Mg2Ca and Mg6Ca2Zn3 phases have formed on the grain boundaries. Dislocation climbing seems to be the rate controlling deformation mechanism for creep. Compression strength increases with temperature gradually increased up to 100 °C, plateaus between 100 and 175 °C and decreases after that. Acceptable corrosion properties have been observed.

  20. Corrosion Behaviour of Heat-Treated Aluminum-Magnesium Alloy in Chloride and EXCO Environments

    Directory of Open Access Journals (Sweden)

    S. O. Adeosun

    2012-01-01

    Full Text Available Machines designed to operate in marine environment are generally vulnerable to failure by corrosion. It is therefore imperative that the corrosion susceptibility of such facilities is evaluated with a view to establishing mechanism for its mitigation. In this study, the corrosion behaviour of as-cast and retrogression-reagion (RRA specimens of aluminum alloy containing 0.4–2.0 percent magnesium additions in NaCl, FeCl3, and EXCO solutions was investigated. The corrosion simulation processes involved gravimetric and electrochemical techniques. Results show substantial inducement of Mg2Si precipitates at a relatively higher magnesium addition, 1.2–2.0 percent, giving rise to increased attack. This phenomenon is predicated on the nature of the Mg2Si crystals being anodic relative to the alloy matrix which easily dissolved under attack by chemical constituents. Formation of Mg2Si intermetallic without corresponding appropriate oxides like SiO2 and MgO, which protect the precipitates from galvanic coupling with the matrix, accentuates susceptibility to corrosion.

  1. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wu Wei [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Gastaldi, Dario, E-mail: dario.gastaldi@polimi.it [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Yang Ke; Tan Lili [Division of Specialized Materials and Devices, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Petrini, Lorenza; Migliavacca, Francesco [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy)

    2011-12-15

    Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

  2. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU

    2016-09-01

    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9132

  3. Deformation and spallation of a magnesium alloy under high strain rate loading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Lu, L.; Li, C.; Xiao, X. H.; Zhou, X. M.; Zhu, J.; Luo, S. N.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolve three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.

  4. Ballistic and Corrosion Analysis of New Military-Grade Magnesium Alloys AMX602 and ZAXE1711 For Armor Applications

    Science.gov (United States)

    2012-02-01

    17. ASTM G 97-97. Standard Test Method for Laboratory Evaluation of Magnesium Sacrificial Anode Test Specimens for Underground Applications. Annu...shows chemical compositions of AMX602 alloy powders prepared by SWAP. The calcium (Ca) is necessary because it promotes the noncombustive properties...material to resist corrosion. The potential is usually ranged from cathodic to anodic potentials through the OCP for a given alloy. The resulting

  5. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  6. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Minárik, Peter; Král, Robert; Pešička, Josef [Charles University, Department of Physics of Materials, Prague (Czech Republic); Daniš, Stanislav [Charles University, Department Condensed Matter Physics, Prague (Czech Republic); Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz [Charles University, Department of Physics of Materials, Prague (Czech Republic)

    2016-02-15

    The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.

  7. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys.

    Directory of Open Access Journals (Sweden)

    Hossein Maleki-Ghaleh

    Full Text Available In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.

  8. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  9. Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weidan; Han, Junjie [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xuan; Li, Mei [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Tan, Lili [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Yu [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-12-15

    Highlights: • A non-toxic Mg-based alloy system with nutrient elements Si, Sr, Ca is proposed. • Properties improved due to morphology of coarse Mg{sub 2}Si change into small polygon. • Fewer, finer and homogenized Mg{sub 2}Si particles are obtained after anneal-treated. • Cytocompatibility results indicate a potential application in orthopedic. - Abstract: Magnesium has been widely studied as a biodegradable material, where its mechanical property and biocompatibility make it preferred candidate for orthopedic implant. Proper alloying can further improve the properties of Mg. First and foremost, to guarantee the biosafety for biomedical application, the alloying element should be toxic free. To address this point, nutrient elements including Si, Sr and Ca were selected due to their biological functions in human body, especially in bone regeneration and repair. In this study, 0.5–1.0 wt% Sr and Ca were used to refine and modify the morphology of coarse Mg{sub 2}Si in Mg-1.38wt% Si to obtain an uniform microstructure. Microstructure, mechanical and degradation properties of as-cast and homogenizing-annealed quaternary Mg-1.38Si-xSr-yCa (x, y = 0.5–1 wt%) alloys were investigated by optical microscopy, scanning electronic microscopy, X-ray diffraction, tensile and electrochemical measurement. Addition of Sr and Ca element cause a morphological change in Mg{sub 2}Si particles from coarse Chinese script shape to small polygonal type. The presences of intermetallic phases, such as Mg{sub 2}Si, CaMgSi and Mg{sub 17}Sr{sub 2}, were confirmed in quaternary alloys, of which content was applied to interpret the results for the quaternary system. Compared with the as-cast state, fewer, finer and homogenized microstructure were observed after an anneal heat treatment under 500 °C. The mechanical properties were improved with increase of Ca and Sr additions, which was related to the evolution of the microstructure and second phases, however, also causing an

  10. Corrosion studies of modified organosilane coated magnesium-yttrium alloy in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dingchuan [College of Engineering, University of Cincinnati, OH 45221 (United States); Tan Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45221 (United States); Schulz, Mark J. [College of Engineering, University of Cincinnati, OH 45221 (United States); Vanooij, William J. [College of Engineering, University of Cincinnati, OH 45221 (United States); ECOSIL Technologies LLC, Fairfield, OH 45014 (United States); Sankar, Jagannathan [Biomedical Engineering Program, College of Engineering, North Carolina A and T State University, NC 27411 (United States); Yun Yeoheung, E-mail: yyun@ncat.edu [College of Engineering, University of Cincinnati, OH 45221 (United States); Biomedical Engineering Program, College of Engineering, North Carolina A and T State University, NC 27411 (United States); Dong Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45221 (United States)

    2012-07-01

    Magnesium (Mg) and its alloys have numerous potential applications as biodegradable implants, but the fast degradation rate of Mg alloys at the initial implanted stage could be a problem. This paper describes the modification of the water-based bis-[triethoxysilyl] ethane (BTSE) silane applied to the surface of magnesium-yttrium (Mg-4Y) to increase its corrosion resistance. Surface characterization by SEM, FTIR, and EDX showed that the hydrolysis and condensation of the silane resulted in a covalent bonding to the Mg-4Y surface. Corrosion behavior of the uncoated and coated Mg-4Y alloy was evaluated in different environments by using a novel self-developed corrosion probe. Based on the electrochemical results of DC polarization and electrochemical impedance spectroscopy (EIS), we conclude that the epoxy-modified BTSE silane coating successfully increases the corrosion resistance at the initial stage of implantation. The corrosion rates in the flesh of dead mice environments such as body cavity and subcutaneous tissue of the mice were lower than the corrosion rates in in vitro environments. - Highlights: Black-Right-Pointing-Pointer Modified silane was used on Mg-4Y for biological applications. Black-Right-Pointing-Pointer Modified silane-treated Mg-4Y increased its corrosion resistance in both In Vitro and In Vivo environments. Black-Right-Pointing-Pointer In Vitro testing environment is not consistent with In Vivo animal environment. Black-Right-Pointing-Pointer The modified silane mixture protecting mechanisms and its biocompatibility were discussed. Black-Right-Pointing-Pointer A novel three-electrode corrosion-monitoring probe was developed for realizing this work's In Vivo testing goals.

  11. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  12. Effects of self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane and dopamine on the corrosion behaviors and biocompatibility of a magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: swjtupcj@163.com [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Hou, Yu; Wang, Ya-Nan [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Liu, Tao; Hou, Yan-Hua; Zhu, Yu-Fu; Ye, Wei; Wang, Ling-Ren [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-10-01

    Magnesium based alloys are attracting tremendous interests as the novel biodegradable metallic biomaterials. However, the rapid in vivo degradation and the limited surface biocompatibility restrict their clinical applications. Surface modification represents one of the important approaches to control the corrosion rate of Mg based alloys and to enhance the biocompatibility. In the present study, in order to improve the corrosion resistance and surface biocompatibility, magnesium alloy (AZ31B) was modified by the alkali heating treatment followed by the self-assembly of 3-phosphonopropionic acid, 3-aminopropyltrimethoxysilane (APTMS) and dopamine, respectively. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicated that the molecules were successfully immobilized on the magnesium alloy surface by the self-assembly. An excellent hydrophilic surface was obtained after the alkali heating treatment and the water contact angle increased to some degree after the self-assembly of dopamine, APTMS and 3-phosphonopropionic acid, however, the hydrophilicity of the modified samples was better than that of the pristine magnesium substrate. Due to the formation of the passivation layer after the alkali heating treatment, the corrosion resistance of the magnesium alloy was obviously improved. The corrosion rate further decreased to varying degrees after the self-assembly surface modification. The blood compatibility of the pristine magnesium was significantly improved after the surface modification. The hemolysis rate was reduced from 56% of the blank magnesium alloy to 18% of the alkali heating treated sample and the values were further reduced to about 10% of dopamine-modified sample and 7% of APTMS-modified sample. The hemolysis rate was below 5% for the 3-phosphonopropionic acid modified sample. As compared to the pristine magnesium alloy, fewer platelets were attached and activated on the

  13. DEALLOYING, MICROSTRUCTURE AND THE CORROSION/PROTECTION OF CAST MAGNESIUM ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Sieradzki, Karl; Aiello, Ashlee; McCue, Ian

    2017-12-15

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosion behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying

  14. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  15. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglong [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Xin Yunchang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tsinghua University, Shenzhen Graduate School, Shenzhen 518055 (China); Tian Xiubo [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); State Key Laboratory of Welding Production Technology, School of Materials Science and Engineering, Harbin Institute of Technology, 15001 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: paul.chu@cityu.edu.hk

    2007-12-03

    Due to the good biocompatibility and tensile yield strength, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to investigate the corrosion behavior of surgical AZ91 magnesium alloy treated by aluminum, zirconium, and titanium plasma immersion ion implantation and deposition (PIII and D) at 10 kV in artificial physiological fluids. The surface layers show a characteristic intermixed layer and the outer surface are mainly composed of aluminum, zirconium or titanium oxide with a lesser amount of magnesium oxide. Comparing the three sets of samples, aluminum PIII and D significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP.

  16. Solidification, growth mechanisms, and associated properties of aluminum-silicon and magnesium lightweight casting alloys

    Science.gov (United States)

    Hosch, Timothy Al

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  17. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  18. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS.

    Science.gov (United States)

    Zhao, Daoli; Wang, Tingting; Nahan, Keaton; Guo, Xuefei; Zhang, Zhanping; Dong, Zhongyun; Chen, Shuna; Chou, Da-Tren; Hong, Daeho; Kumta, Prashant N; Heineman, William R

    2017-03-01

    The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H2 with an electrochemical H2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH)2, MgO, MgCO3 and Mg3(PO4)2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby avoid the need

  19. Magnesium-Nickel alloy for hydrogen storage produced by melt spinning followed by cold rolling

    Directory of Open Access Journals (Sweden)

    Daniel Rodrigo Leiva

    2012-10-01

    Full Text Available Severe plastic deformation routes (SPD have been shown to be attractive for short time preparation of magnesium alloys for hydrogen storage, generating refined microstructures and interesting hydrogen storage properties when compared to the same materials processed by high-energy ball milling (HEBM, but with the benefit of higher air resistance. In this study, we present results of a new processing route for Mg alloys for hydrogen storage: rapid solidification followed by cold work. A Mg97Ni3 alloy was processed by melt spinning (MS and by extensive cold rolling (CR. Submitting Mg97Ni3 ribbons between steel plates to cold rolling has shown to be a viable procedure, producing a thin cold welded foil, with little material waste. The as-processed material presents a high level of [002] fiber texture, a sub microcrystalline grain structure with a high density of defects, and also a fine dispersion of Mg2Ni nanoparticles. This refined microstructure allied to the developed texture resulted in enhanced activation and H-sorption kinetics properties.

  20. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  1. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  2. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application.

    Science.gov (United States)

    Xiong, Ying; Hu, Qiang; Song, Renguo; Hu, Xiaxia

    2017-06-01

    A composite bio-coating was fabricated on AZ80 magnesium (Mg) alloy by using micro-arc oxidation (MAO) under the pretreatment of laser shock peening (LSP) in order to improve the bio-corrosion resistance and the mechanical integrity. LSP treatment could induce grain refinement and compressive residual stress field on the surface of material. MAO bio-coating was grown in alkaline electrolyte with hydroxyapatite (HA, Ca10(PO4)6(OH)2) to improve the biological properties of the material. The microstructure, element and phase composition for untreated based material (BM) and treated samples (LSP layer, MAO bio-coating and LSP/MAO composite bio-coating) were investigated by transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical tests and slow strain rate tensile (SSRT) tests were used to evaluate the corrosion resistance and the stress corrosion susceptibility in simulated body fluid (SBF). The results indicated that LSP/MAO composite bio-coating can not only improve the corrosion resistance of Mg alloy substrate evidently but also increase the mechanical properties in SBF compared to LSP layer and MAO bio-coating. Mg alloy treated by LSP/MAO composite technique should be better suited as biodegradable orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Microstructural developments and mechanical properties of friction stir welding of AZ91D magnesium alloy plates

    Directory of Open Access Journals (Sweden)

    Nagabhushan Kumar Kadigithala

    2017-06-01

    Full Text Available Friction stir welding (FSW is an efficient technique which can be used particularly for magnesium and aluminum alloys that are difficult to fusion weld. In this work AZ91D Mg alloy plates 3mm thick were friction stir welded at different process variables such as rotational speed and welding speed. The range of rotational speeds varied from 1025 to 1525 rpm, and the welding speed varied from 25 to 75 mm/min. Good quality welds were obtained under 1025 rpm of rotational speed with the welding speeds range from 25 to 75 mm/min. The microstructure of the AZ91D alloy consists of primary α-phase, eutectic α-phase and eutectic β (Mg17Al12 phase in the received condition (gravity die cast. The original dendrite grain structure completely disappeared and was transformed to fine equiaxed grains in stir zone (SZ. It was observed that there was a slight increase in hardness in SZ, because of fine recrystallized grain structure. The transverse tensile test results of weld specimens indicated constant strength irrespective of traveling speed. Fractrographic analysis of the friction stir welded specimens showed the brittle failure.

  4. EBSD-assisted fractographic analysis of crack paths in magnesium alloy

    Directory of Open Access Journals (Sweden)

    S. Takaya

    2015-10-01

    Full Text Available Magnesium (Mg alloys are attractive as structural materials due to their light weight and high specific strength. It is well known that Mg alloy has hexagonal close-packed (HCP structure and only basal slip or twinning can operate during plastic deformation because critical resolved shear stresses of the other slip systems such as pyramidal or prismatic slips are much higher than the basal slip. Thus sometimes characteristic fracture surfaces are formed during stress corrosion cracking (SCC or fatigue crack propagation (FCP in Mg alloys, where many parallel lines are formed. These lines are different from so-called fatigue striations, because they are formed even under sustained load condition of SCC. Consequently, electron back scattered diffraction (EBSD technique was applied on the fracture surface, and the formation mechanism of parallel lines was investigated. EBSD-assisted fractography had revealed that the characteristic parallel lines were formed due to the operation of basal slips, not twining. It is considered that hydrogen-enhanced localized plasticity (HELP mechanism had been activated under corrosive environment

  5. In vitro and in vivo degradation and mechanical properties of ZEK100 magnesium alloy coated with alginate, chitosan and mechano-growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hong; Zhang, Meng; Zhao, Jin [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Gao, Lilan, E-mail: gaolilan780921@163.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Tianjin Key Laboratory for Control Theory & Applications in Complicated Industry Systems, School of Mechanical Engineering, Tianjin University of Technology, Tianjin (China); Li, Mingshuo [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2016-06-01

    The biocompatibility, ultimate loading capacity and biodegradability of magnesium alloy make it an ideal candidate in biomedical fields. Fabrications of multilayered coatings carrying sodium alginate (ALG), chitosan (CHI) and mechano-growth factor (MGF) on fluoride-pretreated ZEK100 magnesium alloy have been obtained via layer by layer (LBL) to reduce the degradation rate of magnesium alloy in this study. The modified surfaces of ZEK100 substrates were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and CARE EUT-1020 tester. Results reveal that multilayer-coated magnesium alloy can be successfully obtained with smooth surface morphology, and the mechanical properties of coated samples are almost the same as those of uncoated samples. However, the fatigue life of coated ZEK100 is slightly larger than that of uncoated samples after 1 day of immersion. By comparing the degradation of uncoated and multilayer-coated ZEK100 samples in vitro and in vivo, respectively, it is found that the degradation rate of ZEK100 samples can be inhibited by LBL modification on the surface of the sample; and the corrosion rate in vivo is lower than that in vitro, which help solve the rapid degradation problem of magnesium alloy. In terms of the visible symptom of tissues in the left femur medullary cavity and material responses on the surface, multilayer-coated ZEK100 magnesium alloy has a good biocompatibility. These results indicate that multilayer-coated ZEK100 may be a promising material for bone tissue repair. - Highlights: • The fabrications of multilayered coatings were successfully obtained via layer by layer. • Surface modification has little effect on the mechanical properties of magnesium alloy. • Surface modification can reduce the corrosion rate of magnesium alloy. • Corrosion rate in vivo is lower than that in vitro. • Multilayer-coated ZEK100 magnesium alloy has a good biocompatibility.

  6. The Influence of Deformation Mechanisms on Rupture of AZ31B Magnesium Alloy Sheet at Elevated Temperatures

    Science.gov (United States)

    Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Carter, Jon T.; Hector, Louis G.; Taleff, Eric M.

    Gas-pressure bulge tests were conducted on Mg alloy AZ31B wrought sheet until rupture at temperatures from 250 to 450°C. The rupture orientation was observed to change with forming pressure, which controls the forming strain rate, at 350 to 450°C. This phenomenon is a result of associated changes in the mechanisms of plastic deformation. At slow strain rates (≤ 3 × 10-2 s-1), cavity interlinkage associated with grain boundary sliding (GBS) creep induced rupture along the sheet rolling direction (RD). At fast strain rates (≥ 3 × 10-2 s-1), flow localization (necking) associated with dislocation-climb-controlled (DC) creep induced rupture along the long-transverse direction (LTD), a result of mild planar anisotropy. Biaxial bulge specimens tested at 250 to 300°C ruptured explosively, hence preventing any further analysis.

  7. Effect of strain rate on the mechanical properties of magnesium alloy AMX602

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J. [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States); Kondoh, K. [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaragi, Osaka 567-0047 (Japan); Jones, T.L. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Mathaudhu, S.N. [Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521 (United States); Kecskes, L.J. [WMRD, US Army Research Laboratory, 4600 Deer Creek Loop, MD 21005-5069 (United States); Wei, Q., E-mail: qwei@uncc.edu [Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223-0001 (United States)

    2016-01-01

    In the present work, the effect of strain rate on the mechanical properties, particularly the plastic deformation behavior of a magnesium alloy, AMX602 (Mg–6%Al–0.5%Mn–2%Ca; all wt%), fabricated by powder metallurgy, has been investigated under both quasi-static (strain rate 1×10{sup −3} s{sup −1}) and dynamic (strain rate 4×10{sup 3} s{sup −1}) compressive loading. The alloyed powder was extruded at three different temperatures. The microstructure of the alloy was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that AMX602 exhibits an impressive mechanical behavior but with a slight anisotropy along different directions in both strength and compressive ductility (or malleability). The strength was found to be nearly independent of the extrusion temperature, particularly, under dynamic loading. Nanoindentation strain rate jump test reveals a strain rate sensitivity of ~0.018 to ~0.015, depending on the extrusion temperature. Sub-micrometer-scale particles of the intermetallic compound Al{sub 2}Ca were found with sizes ranging from ~100 nm to ~1.0 μm. These intermetallic particles are believed to have precipitated out during the extrusion process. They contribute to the formation of the ultrafine equiaxed grains which, in turn, help to improve the strength of the alloy by acting as barriers to dislocation motion. Adiabatic shear bands (ASBs) were observed in the dynamically loaded samples, the propagation of which eventually leads to final fracture of the specimens.

  8. HIGH STRAIN RATE BEHAVIOUR OF AN AZ31 + 0.5 Ca MAGNESIUM ALLOY

    Directory of Open Access Journals (Sweden)

    Josef Pešička

    2012-01-01

    Full Text Available The paper reports behaviour of magnesium alloy AZ31 (nominal composition 3 % Al - 1 % Zn – balance Mg with an addition of 0.5 wt. % Ca at high strain rates. Samples were prepared by the squeeze cast technology. Dynamic compression Hopkinson tests were performed at room temperature with impact velocities ranging from 11.2 to 21.9 m.s-1. A rapid increase of the flow stress and the strain rate sensitivity was observed at high strain rates. Transmission electron microscopy showed extremely high dislocation density and mechanical twins of two types. Adiabatic shear banding is discussed as the reason for the observed behaviour at high strain rates.

  9. Modeling of deformation behavior and texture evolution in magnesium alloy using the intermediate $\\phi$-model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng; Ahzi, Said; M' Guil, S. M.; Wen, Wei; Lavender, Curt A.; Khaleel, Mohammad A.

    2014-01-06

    The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediate $\\phi$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.

  10. Mechanical properties of high-pressure die-casting AZ91 magnesium alloy

    Directory of Open Access Journals (Sweden)

    K.N. Braszczyńska-Malik

    2008-12-01

    Full Text Available Results of mechanical properties of high-pressure die-casting AZ91 magnesium alloy are presented. Performed examinations allowed to determine influence of plunger velocity in the first and second stage and intensification pressure on the ultimate tensile strength (UTS, yield strength (YS, elongation (A5 and Agt, Brinell hardness (HB and impact strength (IS of samples cast on 320 tone cold chamber machine. Obtained results revealed the highest properties at median used parameters and also the most powerful effect of plunger velocity in the first stage. The maximum values of mechanical properties obtained from the performed experiments were: UTS 250 MPa, YS 160 MPa, A5 7%, 70 HB, IS 7 J.

  11. Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy

    Science.gov (United States)

    Tkacz, Jakub; Minda, Jozef; Fintová, Stanislava; Wasserbauer, Jaromír

    2016-01-01

    Linear polarization is a potentiodynamic method used for electrochemical characterization of materials. Obtained values of corrosion potential and corrosion current density offer information about material behavior in corrosion environments from the thermodynamic and kinetic points of view, respectively. The present study offers a comparison of applications of the linear polarization method (from −100 mV to +200 mV vs. EOCP), the cathodic polarization of the specimen (−100 mV vs. EOCP), and the anodic polarization of the specimen (+100 mV vs. EOCP), and a discussion of the differences in the obtained values of the electrochemical characteristics of cast AZ91 magnesium alloy. The corrosion current density obtained by cathodic polarization was similar to the corrosion current density obtained by linear polarization, while a lower value was obtained by anodic polarization. Signs of corrosion attack were observed only in the case of linear polarization including cathodic and anodic polarization of the specimen. PMID:28774046

  12. Initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.; Shan, D.; Han, E. [Chinese Academy of Sciences, Environmental Corrosion Center, Inst. of Metal Research, Shenyang (China)

    2006-04-15

    The pretreatment processes and initial deposition mechanism of electroless nickel plating on AZ91D magnesium alloy were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The results showed that alkaline cleaning could remove the greases and oils from the substrate surface. Acid etching could wipe off the metal chippings and oxides. The hydrofluoric acid activating process which could improve the adhesion of coating to substrate played a key role in the subsequent process of electroless nickel plating. The nickel coating was deposited preferentially on the primary {alpha} phase and then spread to the eutectic {alpha} phase and {beta} phase. The nickel initially nucleated on the primary {alpha} phase by a replacement reaction, then grew depending on the autocatalysis function of nickel. The coating on the {beta} phase displayed better adhesion than that on the {alpha} phase due to the nails fixing effect. (author)

  13. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Roodposhti, Peiman Shahbeigi, E-mail: pshahbe@ncsu.edu [North Carolina State University (United States); University of Connecticut (United States); Sarkar, Apu; Murty, Korukonda Linga [North Carolina State University (United States); Brody, Harold [University of Connecticut (United States); Scattergood, Ronald [North Carolina State University (United States)

    2016-07-04

    High temperature tensile creep tests were conducted on AZ31 Magnesium alloy at low stress range of 1–13 MPa to clarify the existence of grain boundary sliding (GBS) mechanism during creep deformation. Experimental data within the GBS regime shows the stress exponent is ~2 and the activation energy value is close to that for grain boundary diffusion. Analyses of the fracture surface of the sample revealed that the GBS provides many stress concentrated sites for diffusional cavities formation and leads to premature failure. Scanning electron microscopy images show the appearances of both ductile and brittle type fracture mechanism. X-ray diffraction line profile analysis (based on Williamson-Hall technique) shows a reduction in dislocation density due to dynamic recovery (DRV). A correlation between experimental data and Langdon's model for GBS was also demonstrated.

  14. Microstructure and Texture Evolution in a Magnesium Alloy During Extrusion at Various Extrusion Speeds

    Science.gov (United States)

    Ma, Q.; Horstemeyer, S. J.; Li, B.; McClelland, Z.; Wang, P. T.; Horstemeyer, M. F.

    An AM30 magnesium alloy was extruded by using a lab-scale flat die at 450 °C and various ram speeds: 5 mm/min, 10 mm/min, 20 mm/min, 30 mm/min, and 50 mm/min, respectively. Microstructure and texture in the representative locations inside the die and the extrudate of the AM30 at different ram speeds were examined by electron backscatter diffraction (EBSD). Significant dynamic recrystallization (DRX) occurred inside the die, whereas static recrystallization (SRX) took over in the extrudate outside the die. Profuse { 10\\bar 12} DRX and SRX led to different microstructure evolution at different extrusion speeds. Possible mechanisms that govern the DRX and the SRX were analyzed.

  15. Effect of rolling temperature of the magnesium alloy AZ31B formability; Efeito da temperatura de laminacao na deformabilidade da liga de magnesio AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Catorceno, L.L.C.; Zimmermann, A.J.O.; Padilha, A.F., E-mail: litzy.catorceno@poli.usp.b [Universidade de Sao Paulo (DEMM/EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The magnesium alloy AZ31B presents an interesting set of properties, which makes it potential candidate for applications in automotive and aeronautics. The main limitation of magnesium alloys is the low capacity of plastic forming at room temperature. The main motivation of this project is to understand and control the microstructure and crystallographic texture of magnesium alloys, to improve their formability. The effect of rolling temperature on the formability of the alloy was studied in this stage of the project. The alloy in the form of annealed and recrystallized sheets (2 mm thick) was deformed by rolling at four different temperatures: 25, 100, 200 and 250 deg C. The microstructural characterization was achieved using several complementary techniques of microstructural analysis, such as optical microscopy, scanning electron microscopy, X-ray analysis by energy dispersive, X-ray diffraction and microhardness. Results about the effect of rolling temperature on the alloy formability were presented and discussed. (author)

  16. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  17. Effect of surface nanocrystallization on the microstructural and corrosion characteristics of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Laleh, M., E-mail: laleh.m.1992@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Kargar, Farzad, E-mail: farzad.kargar@gmail.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: > Nanostructured surface layers were produced on AZ91D magnesium alloy by using SMAT. > Thickness of the deformed layer increased with increasing of the balls size. > Top surface microhardness for all of the SMATed samples increased significantly. > SMAT increased the surface roughness; increase in balls diameter increased the roughness. > SMAT using 2 mm balls increased the corrosion resistance significantly. - Abstract: Surface distinct deformed layers with thicknesses up to 150 {mu}m, with grain size in the top most surface is in the nanometer scale, were produced on AZ91D magnesium alloy using surface mechanical attrition treatment (SMAT). Effects of different ball size on the properties of the SMATed samples were investigated. The microstructural, grain size, hardness and roughness features of the treated surfaces were characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indenter and digital roughness meter, respectively. Corrosion behavior of the samples was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. It is found that the ball diameter does not have a significant effect on the top surface grain size, but the thickness of the deformed layer increases with increase of ball size, from 50 {mu}m for 2 mm balls to 150 {mu}m for 5 mm balls. For all of the SMATed samples, the top surface microhardness value increased significantly and did not show any obvious change for samples treated with different balls. Corrosion studies show that the corrosion resistance of the sample treated with 2 mm balls is higher than that of those treated with 3 mm and 5 mm balls. This can be mainly attributed to the surface roughness and defects density of the samples, which are higher for the SMATed samples with 3 mm and 5 mm balls compared with that of sample SMATed with 2 mm balls.

  18. Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60

    Science.gov (United States)

    Sharifi, P.; Fan, Y.; Anaraki, H. B.; Banerjee, A.; Sadayappan, K.; Wood, J. T.

    2016-10-01

    With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness via established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.

  19. On numerical modeling of low-head direct chill ingot caster for magnesium alloy AZ31

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2014-12-01

    Full Text Available A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head (LH vertical Direct Chill (DC rolling ingot caster for the common magnesium alloy AZ31. The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach. Following the aluminum/magnesium DC casting industrial practices, the LH mold is taken as 30 mm with a hot top of 60 mm. The previously verified in-house code has been modified to model the present casting process. Important quantitative results are obtained for four casting speeds, for three inlet melt pouring temperatures (superheats and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster. The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations. Specifically, the temperature and velocity fields, sump depth and sump profiles, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.

  20. Energy investigations on the mechanical properties of magnesium alloyed by X = C, B, N, O and vacancy

    KAUST Repository

    Wu, Xiaozhi

    2013-10-25

    The generalized stacking fault (GSF) energies and surface energies of magnesium and its alloys with alloying atoms X = C, B, N, O and vacancy have been investigated using the first-principles methods. It is found that the predominant reducing effects of the alloying atoms and vacancy on the stacking fault energy are resulted from the position of them in the 1st layer near the slip plane. The stacking fault energies are nearly the same as the pure magnesium while the alloying atoms and vacancy are placed in the 2nd, 3rd, 4th, 5th and 6th layers. It has been shown that O strongly reduces the GSF energy of Mg. The alloying atoms C, B and N increase the surface energy, but O and vacancy reduce the surface energy of Mg. The ductilities of Mg and Mg alloys have been discussed based on the Rice criterion by using the ratio between surface energy and unstable stacking fault energy. © 2013 Higher Education Press and Springer-Verlag Berlin Heidelberg.

  1. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au

    2012-09-30

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: Black-Right-Pointing-Pointer Polylactic acid (PLA) was coated on a magnesium-based alloy. Black-Right-Pointing-Pointer PLA coating enhanced the in vitro degradation resistance of the alloy. Black-Right-Pointing-Pointer Increase in the PLA coating thickness improved the alloy degradation resistance. Black-Right-Pointing-Pointer Thin film PLA coating exhibited both good degradation resistance and adhesion.

  2. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.

    Science.gov (United States)

    Hansi, Christopher; Arab, Amina; Rzany, Alexander; Ahrens, Ingo; Bode, Christoph; Hehrlein, Christoph

    2009-03-01

    Coronary stenting is considered to be the gold standard of percutaneous coronary interventions, because stents are able to reduce early and late elastic recoil (negative remodeling) and restenosis in comparison with balloon angioplasty alone. It is known that stent thrombogenicity and neointimal formation are determined by the surface characteristics of the stent platform, electrochemical features of the stent surface, and the degree of degradation after implantation. Metallic stents coated with amorphous silicon carbide and biodegradable stents made of magnesium alloy have been introduced clinically, but there are no data available comparing the biocompatibility of these novel stent materials with conventional stents. We demonstrate simple and reproducible in vitro methods assessing the rate of platelet adhesion and thrombus activation for biocompatibility tests of different stent surfaces. We show that amorphous silicon carbide and magnesium alloy stent surfaces markedly lower the rate of platelet adhesion and platelet/fibrin activation when compared with uncoated stainless steel or cobalt chromium alloy surfaces. Semiconductor materials on the stent surface reduce platelet and fibrin activation by increasing the critical electron gap to greater than 0.9 eV resulting in a lower electron transfer out of the stent material. Passive stent coatings with specific semiconducting properties such as amorphous silicon carbide or magnesium alloy reduce thrombogenicity and may improve biocompatibility of a stent platform.

  3. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  4. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    Science.gov (United States)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  5. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.

    Science.gov (United States)

    Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina

    2017-01-15

    Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable

  6. ZM-21 magnesium alloy corrosion properties and cryogenic to elevated temperature mechanical properties

    Science.gov (United States)

    Montana, J. W.; Nelson, E. E.

    1972-01-01

    The mechanical properties of bare ZM-21 magnesium alloy flat tensile specimens were determined for test temperatures of +400 F, +300 F, +200 F, +80 F, 0 F, -100 F, -200 F, and -320 F. The ultimate tensile and yield strengths of the material increased with decreasing temperature with a corresponding reduction in elongation values. Stress corrosion tests performed under: (1) MSFC atmospheric conditions; (2) 95% relative humidity; and (3) submerged in 100 ppm chloride solution for 8 weeks indicated that the alloy is not susceptible to stress corrosion. The corrosion tests indicated that the material is susceptible to attack by crevice corrosion in high humidity and chemical type attack by chloride solution. Atmospheric conditions at MSFC did not produce any adverse effects on the material, probably due to the rapid formation of a protective oxide coating. In both the mechanical properties and the stress corrosion evaluations the test specimens which were cut transverse to the rolling direction had superior properties when compared to the longitudinal properties.

  7. A Revisited Study of the Processing Map and Optimized Workability of AZ61 Magnesium Alloy

    Science.gov (United States)

    Zhou, X.; Liu, R. R.; Zhou, H. T.; Jiang, W. X.

    2017-05-01

    The hot deformation behavior of AZ61 magnesium alloy was studied by hot compression testing in the temperature range from 250 to 400 °C with strain rates from 10-3 to 1 s-1. Typical flow stress/true strain curves with the features of dynamic recrystallization (DRX) have been obtained. According to the flow stress curves, the processing maps were constructed via the dynamic material model (DMM). The maps exhibit a domain of DRX at temperatures between 330 and 370 °C and strain rates ranging from 10-3 to 10-2 s-1. The corresponding extrusion deformation was carried out in this DRX region. Gleeble 3500, optical microscopy (OM) and transmission electron microscopy (TEM) were used to characterize the microstructure evolution. The microstructure detection of this DRX region shows that the average grain size decreases with decreasing extrusion temperature. TEM observation further indicated that there are irregularly shaped subgrains with a high dislocation density, a dislocation network, the feature of dislocation pileup and an appearance of twin formation in the alloy hot-extruded using the parameters determined by our constructed processing maps.

  8. Numerical Simulation and Experiment Study on Extrusion of AZ31 Magnesium Alloy Tube

    Directory of Open Access Journals (Sweden)

    SUN Ying-di

    2017-06-01

    Full Text Available The extrusion process of typical AZ31 magnesium alloy tube was simulated by using the constitutive model of AZ31 alloys and ALE-based HyperXtrude software. The changes of stress distribution and velocity distribution were analyzed under different conditions, through the adjustment of three structural parameters, including the height, big round corner and gradient of weld chamber. The results show that the pressure near the work zone in the weld chamber decrease with the increase of the height of weld chamber, the maximum value and average value of the pressure in the weld chamber are decreasing with the increase of big round corner of weld chamber, and the pressure in the port holes and weld chamber increases with the increase of the gradient of weld chamber. The minimum variance of metal flow rate is achieved in the height of weld chamber with 16mm, big round corner with 18mm and gradient of weld chamber with 15°. The optimized structure alleviates the issues of stress concentration and non-homogeneous flowing velocity. The final die is proved to be capable of producing the qualified products and the microstructure after extrusion is uniform and fine.

  9. Analysis of formability of Ca-added magnesium alloy sheets at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Jong; Lee, Young-Seon; Kim, Daeyong, E-mail: daeyong@kims.re.kr

    2016-03-15

    The formability of sheets of the Ca-added magnesium alloy AZX311 was analyzed. The parameters affecting the sheet formability, such as the strain-hardening rate and the strain-rate sensitivity, did not seem to be higher in the alloy AZX311 at temperatures of room temperature (RT) and 200 °C. In addition, the critical stress for fracture at RT was lower in AZX311 than in AZ31. However, AZX311 exhibited higher stretchability and formability at low temperatures than AZ31. Electron back-scattered diffraction microscopy revealed that AZX311 had a weaker basal texture as well as broadened basal poles along the transverse direction. Polycrystal plasticity simulations confirmed that this weaker basal texture increases the activity of basal slip over thickness strain, resulting in the higher formability of AZX311. - Highlights: • A weak basal texture with broadening basal poles along the TD in AZX311 • Lower critical stress for fracture at RT in AZX311 than in AZ31 • Lower strain-hardening rates at low temperatures in the AZX311 than in the AZ31 • Higher formability at low temperatures in AZX311 because of the weak basal texture.

  10. Dynamic tensile behavior of AZ31B magnesium alloy at ultra-high strain rates

    Directory of Open Access Journals (Sweden)

    Geng Changjian

    2015-04-01

    Full Text Available The samples having {0001} parallel to extruding direction (ED present a typical true stress–true strain curve with concave-down shape under tension at low strain rate. Ultra-rapid tensile tests were conducted at room temperature on a textured AZ31B magnesium alloy. The dynamic tensile behavior was investigated. The results show that at ultra-high strain rates of 1.93 × 102 s−1 and 1.70 × 103 s−1, the alloy behaves with a linear stress–strain response in most strain range and exhibits a brittle fracture. In this case, {10-12}  extension twinning is basic deformation mode. The brittleness is due to the macroscopic viscosity at ultra-high strain rate, for which the external critical shear stress rapidly gets high to result in a cleavage fracture before large amounts of dislocations are activated. Because {10-12} tension twinning, {10-11} compressive twinning, basal slip, prismatic slip and pyramidal slip have different critical shear stresses (CRSS, their contributions to the degree of deformation are very differential. In addition, Schmid factor plays an important role in the activity of various deformation modes and it is the key factor for the samples with different strain rates exhibit various mechanical behavior under dynamic tensile loading.

  11. Sealing of PEO Coated AZ91 Magnesium Alloy Using La-Based Solutions

    Directory of Open Access Journals (Sweden)

    Luca Pezzato

    2017-01-01

    Full Text Available In this work, solutions containing lanthanum salts were used for a post-treatment of sealing to increase the corrosion resistance of PEO coated AZ91 alloy. PEO coatings were produced on samples of AZ91 magnesium alloy using an alkaline solution containing sodium hydroxide, sodium phosphates, and sodium silicates. The sealing treatment was performed in a solution containing 12 g/L of La(NO33 at pH 4 at different temperatures and for different treatment times. Potentiodynamic polarization test, an EIS test, showed that the sealing treatment with solution containing lanthanum nitrate caused a remarkable increase in the corrosion resistance. The corrosion behavior was correlated with the surface morphology and elemental composition evaluated with scanning electron microscope (SEM, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. In particular, the sealing treatment at 50°C for 30 min resulted in being the most promising to increase the corrosion properties of PEO treated samples because of the formation of a homogeneous sealing layer, mainly composed of La(OH3.

  12. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    Directory of Open Access Journals (Sweden)

    Lia Maria Carlotti Zarpelon

    2008-03-01

    Full Text Available The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7 metal hydride alloys has been carried out using scanning electron microscopy (SEM, energy dispersive X ray analysis (EDX and X ray diffraction analysis (XRD. The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni in the matrix phase was 1:5 (LaNi5-type structure. Magnesium was detected only in two other phases present. A grey phase revealed 11 at.% Mg and the concentration ratios of other elements indicated the composition to be close to PrMgNi4. A dark phase was very heterogeneous in composition, attributed to the as-cast state of these alloys. The phases identified by XRD analysis in the La0.7Mg0.3Al0.3Mn0.4Co 0.5Ni3.8 alloy were: La(Ni,Co5, LaAl(Ni,Co4, La2(Ni,Co7 and AlMn(Ni,Co2. Praseodymium favors the formation of a phase with a PuNi3-type structure. Cobalt substituted Ni in the structures and yielded phases of the type: Pr(Ni,Co5 and Pr(Ni,Co3.

  13. An in vivo model to assess magnesium alloys and their biological effect on human bone marrow stromal cells.

    Science.gov (United States)

    Yoshizawa, Sayuri; Chaya, Amy; Verdelis, Kostas; Bilodeau, Elizabeth A; Sfeir, Charles

    2015-12-01

    Magnesium (Mg) alloys have many unique qualities which make them ideal candidates for bone fixation devices, including biocompatibility and degradation in vivo. Despite a rise in Mg alloy production and research, there remains no standardized system to assess their degradation or biological effect on human stem cells in vivo. In this study, we developed a novel in vivo model to assess Mg alloys for craniofacial and orthopedic applications. Our model consists of a collagen sponge seeded with human bone marrow stromal cells (hBMSCs) around a central Mg alloy rod. These scaffolds were implanted subcutaneously in mice and analyzed after eight weeks. Alloy degradation and biological effect were determined by microcomputed tomography (microCT), histological staining, and immunohistochemistry (IHC). MicroCT showed greater volume loss for pure Mg compared to AZ31 after eight weeks in vivo. Histological analysis showed that hBMSCs were retained around the Mg implants after 8 weeks. Furthermore, immunohistochemistry showed the expression of dentin matrix protein 1 and osteopontin around both pure Mg and AZ31 with implanted hBMSCs. In addition, histological sections showed a thin mineral layer around all degrading alloys at the alloy-tissue interface. In conclusion, our data show that degrading pure Mg and AZ31 implants are cytocompatible and do not inhibit the osteogenic property of hBMSCs in vivo. These results demonstrate that this model can be used to efficiently assess the biological effect of corroding Mg alloys in vivo. Importantly, this model may be modified to accommodate additional cell types and clinical applications. Magnesium (Mg) alloys have been investigated as ideal candidates for bone fixation devices due to high biocompatibility and degradation in vivo, and there is a growing need of establishing an efficient in vivo material screening system. In this study, we assessed degradation rate and biological effect of Mg alloys by transplanting Mg alloy rod with

  14. Effect of isothermal heat treatment on semi-solid microstructure of AZ91D magnesium alloy containing rare earth Gd

    Directory of Open Access Journals (Sweden)

    Yong Hu

    2015-01-01

    Full Text Available The AZ91D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91D magnesium alloy, and the optimum semi-solid AZ91D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the “entrapped liquid” pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later.

  15. Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys

    Directory of Open Access Journals (Sweden)

    Liuwei Zheng

    2016-06-01

    Full Text Available To improve the homogeneity and rolling formability of as-cast AZ91 magnesium, the effects of pre-homogenizing treatment on microstructure evolution, deformation mechanism, mechanical properties and tensile fracture morphology of hot-rolled AZ91 magnesium alloy were studied. The results showed that the amount of coarse β-Mg17Al12 phase decreases dramatically, being distributed along the grain boundaries as small strips after homogenizing. Twining plays a dominant role in the deformation mechanism of AZ91 alloys in the experimental condition, while dynamic recrystallization (DRX considerably occurred in homogenized-rolled alloys, contributed to microstructure uniformity and β-Mg17Al12 phase precipitated refinement. The tensile strength of homogenized-rolled AZ91 alloys increases dramatically with elongation declining slightly in contrast to homogenized alloys. The fracture surface of homogenized-rolled specimen exhibits more ductile fracture with the manifestation of a large amount of dimples distributing higher density in matrix, while the micro cracks are prone to initiate around the Mg/Mg17Al12 phase interface and grain boundaries owing to the fragile interface bonding of two phases.

  16. In Vivo Corrosion of Two Novel Magnesium Alloys ZEK100 and AX30 and Their Mechanical Suitability as Biodegradable Implants

    Directory of Open Access Journals (Sweden)

    Andrea Meyer-Lindenberg

    2011-06-01

    Full Text Available In magnesium alloys, the components used modify the alloy properties. For magnesium implants in contact with bone, rare earths alloys are commonly examined. These were shown to have a higher corrosion resistance than other alloys and a high mechanical strength, but their exact composition is hard to predict. Therefore a reduction of their content could be favorable. The alloys ZEK100 and AX30 have a reduced content or contain no rare earths at all. The aim of the study was to investigate their in vivo degradation and to assess the suitability of the in vivo µCT for the examination of their corrosion. Implants were inserted in rabbit tibiae. Clinical examinations, X-rays and in vivo µCT scans were done regularly. Afterwards implants were analyzed with REM, electron dispersive X-ray (EDX, weighing and mechanical testing. The in vivo µCT is of great advantage, because it allows a quantification of the corrosion rate and qualitative 3D assessment of the corrosion morphology. The location of the implant has a remarkable effect on the corrosion rate. Due to its mechanical characteristics and its corrosion behavior, ZEK100 was judged to be suitable, while AX30, which displays favorable degradation behavior, has too little mechanical strength for applications in weight bearing bones.

  17. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

    Science.gov (United States)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-06-01

    We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na2SiO3, KF and NaH2PO4·2H2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  18. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sahu

    2015-03-01

    Full Text Available The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis (GRA. The considered process parameters are welding speed, tool rotation speed, shoulder diameter and plunging depth. The experiments were carried out by using Taguchi's L18 factorial design of experiment. The processes parameters were optimized and ranked the parameters based on the GRA. The percentage influence of each process parameter on the weld quality was also quantified. A validation experimental run was conducted using optimal process condition, which was obtained from the analysis, to show the improvement in mechanical properties of the joint. This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.

  19. Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2016-09-01

    Full Text Available This study investigated the influence of cerium nitrate in vanadate solutions on the properties of Ce–V conversion coatings on AZ31 magnesium alloys, and evaluated the self-healing behavior of the Ce–V conversion coating for AZ31 magnesium alloy. The results showed that the additions of cerium nitrate prevented pentavalent vanadium from reducing to tetravalent vanadium in the coatings during conversion reaction process. Adding appropriate cerium nitrate to vanadate solution led to a thicker coating with a more compact CeVO4 layer. The corrosion behavior of the Ce–V conversion coating was investigated by the electrochemical tests and the scratch immersion test in 3.5 wt.% NaCl solution. The self-healing ability of the coating was confirmed from all tests. The surface analysis revealed that the self-healing effect of the Ce–V conversion coating was only provided by the release and migration of vanadium compounds.

  20. Radiation protection considerations of the use of thoriated magnesium alloys in aircrafts; Strahlenschutzaspekte der Verwendung thoriumhaltiger Magnesiumlegierungen in Luftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Schirmer, A.; Kersting, M.; Warnecke, U. [Bundesamt fuer Infrastruktur, Umweltschutz und Dienstleistungen der Bundeswehr, Munster (Germany). Strahlenmessstelle der Bundeswehr; Strobach, L. [Militaerhistorisches Museum Flugplatz Berlin-Gatow, Berlin (Germany)

    2016-07-01

    For the improvement of high-temperature properties of Magnesium light-weight alloys for the construction of aircraft engines, research in the US and UK focussed also on Thorium as a constituent. As a result, large components of aircraft jet and shaft engines were made of Thorium-Magnesium alloys. Here the results of dose rate measurements are presented, which were performed by the Bundeswehr over decades. It shows up that type specific maximum values of the dose rate can be specified. In additional measurements the compiled data of the dose H{sub x} (photon-equivalent dose) are related to current dose quantity (H*(10)). Using conservative values for the occupational dwell time near these engines the maximum annual dose for external exposure is estimated below 2 mSv. Dose contributions due to incorporation have not to be considered, since the work does not involve the formation of inhalable dust or smoke.

  1. Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ruizhen; Yang, Xiongbo; Zhang, Xuming; Wang, Mei; Li, Penghui; Zhao, Ying; Wu, Guosong; Chu, Paul K., E-mail: paul.chu@cityu.edu.hk

    2013-12-01

    Plasma immersion ion implantation (PIII) is conducted to improve the intrinsically poor corrosion properties of biodegradable AZ31 magnesium alloy in the physiological environment. Carbon dioxide is implanted into the samples and X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize the materials. The corrosion properties are systematically studied by potentiodynamic polarization tests in two simulated physiological environments, namely simulated body fluids and cell culture medium. The plasma-implanted materials exhibit a lower initial corrosion rate. Being a gaseous ion PIII technique, conformal ion implantation into an object with a complex shape such as an orthopedic implant can be easily accomplished and CO{sub 2} PIII is a potential method to improve the biological properties of magnesium and its alloys in clinical applications.

  2. Mathematical Modeling of the Twin Roll Casting Process for AZ31 Magnesium Alloy - Effect of Set-Back Distance

    Science.gov (United States)

    Hadadzadeh, Amir; Wells, Mary; Essadiqi, Elhachmi

    A 2-D coupled thermal-fluid-stress model was developed and used to simulate the twin roll casting (TRC) of an AZ31 magnesium alloy using the commercial software package, ALSIM. The model was used to predict the fluid flow, temperature distribution and mechanical behavior of AZ31 magnesium alloy in the roll bite. An important parameter in controlling the TRC process is the set-back distance; the distance between the nozzle entry to the kissing point of the rolls. There are two approaches to increase the set-back: 1) increasing the entry thickness and 2) decreasing the final strip thickness. In this study the effect of set-back distance and casting speed on the thermo-mechanical behavior of the strip during TRC has been studied. The thermo-mechanical behavior of the strip has a significant effect on the final quality as defect formation depends on such behavior.

  3. Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    Ugender Singarapu

    2015-12-01

    Full Text Available In this investigation, the effect of friction stir welding (FSW parameters such as tool material rotational speed, and welding speed on the mechanical properties of tensile strength, hardness and impact energy of magnesium alloy AZ31B was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA, was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that rotational speed (RS and traverse speed (TS are the most significant factors, followed by tool material (TM, in deciding the mechanical properties of friction stir processed magnesium alloy. In addition, mathematical models were developed to establish relationship between different process variables and mechanical properties.

  4. Combination of Cooling Curve and Micro-Chemical Phase Analysis of Rapidly Quenched Magnesium AM60B Alloy

    Science.gov (United States)

    Marchwica, P. C.; Gesing, A. J.; Sokolowski, J. H.; Blawert, C.; Jekl, J.; Berkmortel, R.

    Macro test samples of magnesium alloy AM60B were melted and quenched at maximum instantaneous cooling rates ranging from -5°C/s to -500°C/s and the resultant cooling curves were analyzed. Characteristic reactions on these curves corresponding to formation of individual phases were identified with the aid of literature data as well as metallographic and micro-chemical analysis. The results indicate that these phases, their size and location in the micro structure, their chemistry and their relative proportions all change in response to the increase in the cooling rate. These rapid cooling rates are typical of real industrial solidification processes such as die casting. These findings can be used to improve future computer models of casting solidification processes for magnesium and for other alloys.

  5. Analysis of the microstructure and deformation mechanisms by compression along normal direction in a rolled AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dewen [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Liu, Tianmo, E-mail: tmliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chen, Huicong; Shi, Dongfeng; Ran, Chunhua; Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-04-13

    The twinning and slipping modes of a rolled AZ31 magnesium alloy sheet were investigated through in situ compressive tests. A method based on scanning electron microscopy and electron backscattered diffraction measurements was used to identify activated twinning and slip systems. {10-12} tensile twins were present, but only occasionally. Contraction twins were not observed. Post deformation examination revealed the dominance of pyramidal slip.

  6. Simulation of Flow Stress Characteristic During Two-stage Hot Deformation Process in AZ31B Magnesium Alloy

    OpenAIRE

    Deng, Xiaohu; Hu, Xiaodong; Zhao, Hongyang; Ju, Dongying

    2017-01-01

    A 2-D CA model has been developed to simulate two-stage hot deformation processing of magnesium (Mg) alloy. Based on the fact that Mg has an HCP crystal structure with six-fold symmetry, the model employs hexagonal CA lattice. The physically-based model has integrated the effects of individual metallurgical phenomena related with the hot deformation, including dynamic recrystallization (DRX), static recovery, static recrystallization (SRX), meta-dynamic recrystallization (MDRX) and grain grow...

  7. The effects of homogenization treatment on wear resistance of AZ61 magnesium alloy fabricated by extrusion-shear process

    Science.gov (United States)

    Hu, H.-J.; Ying, Y.-L.; OU, Z.-W.; Wang, X.-Q.

    2017-12-01

    Wear resistance of extrusion shear-processed AZ61 magnesium samples with as-cast state and homogenization treatment state has been studied by wear tests using pin-on-disc experiments under dry sliding conditions. Wear rates and friction coefficients between AZ61 magnesium alloy and GCr15 steel have been used to evaluate wear resistances of AZ61 magnesium alloys, and obtained from dry sliding with different frequencies and loads. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to analyze microstructures before and after the wear tests to find the wear mechanisms of AZ61 magnesium samples with as-cast state and homogenization treatment state. The wear resistances of the homogeneous state samples prepared by extrusion-shear process are close to those of as cast state, which are due to the little differences of microstructures. In addition, the wear mechanisms change from mild wear to severe wear with rise of exerted loads and reciprocating frequencies.

  8. One step phase separation process to fabricate superhydrophobic PVC films and its corrosion prevention for AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Na; Li, Jicheng; Bai, Ningning; Xu, Lan; Li, Qing, E-mail: liqingswu@163.com

    2016-07-15

    Graphical abstract: - Highlights: • Independent superhydrophobic polyvinyl chloride (PVC) film was prepared by phase separation process. • The superhydrophobic PVC film showed excellent stability in acid, alkali and salt corrosive solutions. • This film was prepared on magnesium surface protecting it from corrosion. • This method was simple and universal. - Abstract: A one step, simple fabrication method to prepare independent superhydrophobic polyvinyl chloride (PVC) coating is reported in this paper. The rough surface structure and low surface energy could be simply obtained only by a phase separation process. The independent PVC superhydrophobic film was also applied on AZ91D magnesium alloy. Scanning electron microscopy (SEM), water contact angle measurements, electrochemical test and adhesion tests have been performed to characterize the surface morphology, wettability, anti-corrosion and adhesion strength of independent PVC film and superhydrophobic magnesium alloy respectively. The results indicated that whether it was the PVC film or superhydrophobic magnesium, they show static contact angles higher than 150°, excellent anti-corrosion effect and adhesion strength. We believed that the presented method could provide a straightforward and simple route to fabricate low-cost and anti-corrosion coating on various substrate materials. Moreover, this one step process may find potential application in the field of industry because of its simplicity and universality.

  9. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys.

    Science.gov (United States)

    Kunjukunju, Sangeetha; Roy, Abhijit; Ramanathan, Madhumati; Lee, Boeun; Candiello, Joe E; Kumta, Prashant N

    2013-11-01

    The development of polyelectrolyte multilayered coatings on magnesium alloy substrates that can be used for controlled delivery of growth factors and required biomolecules from the surface of these degradable implants could have a significant impact in the field of bone tissue regeneration. The current work reports on the fabrication of multilayered coatings of alginate and poly-L-lysine on alkaline- and fluoride-pretreated AZ31 substrates using a layer-by-layer (LbL) technique under physiological conditions. Furthermore, these coatings were surface functionalized by chemical cross-linking and fibronectin immobilization, and the resultant changes in surface properties have been shown to influence the cellular activity of these multilayered films. The physicochemical characteristics of these coated substrates have been investigated using attenuated total reflectance Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cytocompatibility studies using MC3T3-E1 osteoblasts show that the fluoride-pretreated, cross-linked and fibronectin-immobilized LbL-coated substrates are more bioactive and less cytotoxic than the hydroxide-pretreated, cross-linked and fibronectin-immobilized LbL-coated samples. The in vitro degradation results show that the multilayered coatings of these natural polysaccharide- and synthetic polyamino acid-based polyelectrolytes do not alter the degradation kinetics of the substrates; however, the pretreatment conditions have a significant impact on the overall coating degradation behavior. These preliminary results collectively show the potential use of LbL coatings on magnesium-based degradable scaffolds to improve their surface bioactivity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Chowdhury, S. Ghosh [CSIR National Metallurgical Laboratory, MST Division, Jamshedpur 831007 (India)

    2010-06-15

    Over recent years there have been a remarkable number of studies dealing with compression of magnesium. A literature search, however, shows a noticeably less number of papers concerned with tension and a very few papers comparing both modes, systematically, in one study. The current investigation reports the anisotropic deformation behavior and concomitant texture and microstructure evolution investigated in uniaxial tension and compression tests in two sample directions performed on an extruded commercial magnesium alloy AZ31 at different Z conditions. For specimens with the loading direction parallel to the extrusion axis, the tension-compression strength anisotropy was pronounced at high Z conditions. Loading at 45{sup o} from the extrusion axis yielded a tension-compression strength behavior that was close to isotropic. During tensile loading along the extrusion direction the extrusion texture resists twinning and favors prismatic slip (contrary to compression). This renders the shape change maximum in the basal plane and equal to zero along the c-axis, which resulted in the orientation of individual grains remaining virtually intact during all tension tests at different Z conditions. For the other investigated sample direction, straining was accommodated along the c-axis, which was associated with a lattice rotation, and thus, a change of crystal orientation. Uniaxial compression at a low Z condition (400 deg. C/10{sup -4} s{sup -1}) yielded a desired texture degeneration, which was explained on the basis of a more homogeneous partitioning of slip systems that reduces anisotropy and enhanced dynamic recrystallization (DRX), which counteracts the strong deformation texture. The critical strains for the nucleation of DRX in tensiled specimens at the highest investigated Z condition (200 deg. C/10{sup -2} s{sup -1}) were found to range between 4% and 5.6%.

  11. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, S.F., E-mail: zhangshufang790314@sina.com [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Yang, N.; Yao, L.J.; He, F.X.; Zhou, Y.P.; Xu, X.; Chang, L.; Bai, S.J. [School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer 8-HQ can promote the coating formation and change the coating color. Black-Right-Pointing-Pointer 8-HQ can increase the coating thickness and decrease the pore size. Black-Right-Pointing-Pointer Insoluble Mg(HQ){sub 2} is formed in anodic coatings in an alkaline solution with 8-HQ. Black-Right-Pointing-Pointer 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ){sub 2} and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na{sub 2}SiO{sub 3} with 2 g/L 8-HQ.

  12. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique

    Energy Technology Data Exchange (ETDEWEB)

    Cai Kaiyong, E-mail: Kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sui Xiaojing; Hu Yan [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Zhao Li [China National Centre for Biotechnology Development, No. 16, Xi Si Huan Zhong Lu, Haidian District, Beijing 100036 (China); Lai Min; Luo Zhong; Liu Peng; Yang Weihu [Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2011-12-01

    To improve the corrosion resistance of magnesium alloy, we reported a novel approach for the fabrication of anticorrosive multilayers onto AZ91D substrates. The multilayers were composed of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS) and 8-hydroxyquinoline (8HQ). They were deposited onto AZ91D substrates via a spin-assisted layer-by-layer (LbL) technique. The multilayered structure was stabilized with glutaraldehyde (GA) as crossing linker. It was confirmed by Fourier transform infrared spectroscopy (FT-IR). Surface morphologies and elemental compositions of the formed anticorrosive multilayers were characterized with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The corrosion performance of the multilayer coated AZ91D substrates was characterized by hydrogen evolution. The results of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements suggested that the multilayered coating improved the corrosion resistance of AZ91D substrates. In vitro study revealed that the multilayered coating was cytocompatible. The study provides a potential alternative for the fabrication of corrosion resistant magnesium alloy-based implants. Highlights: {yields} Corrosion protective multilayers have been constructed onto AZ91D substrates via layer by layer technique. {yields} The multilayered structured containing 8-hydroxyquinoline highly improves the corrosion resistance of AZ91D substrates. {yields} The novel multilayered coating is potentially important for developing corrosion resistant magnesium alloy-based implants.

  13. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  14. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  15. Effect of copper content on the properties of electroless Ni–Cu–P coatings prepared on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Junjun [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xudong, E-mail: xdwang@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Tian, Zhiyong [China Special Equipment Inspection and Research Institute, Beijing 100013 (China); Yuan, Ming; Ma, Xijuan [Shandong Aerospace Electro-technology Institute, Yantai 264670 (China)

    2015-11-30

    Highlights: • Electroless Ni–Cu–P coatings were obtained on ZK61M magnesium alloys. • The crystallinity and compactness increases with the increasing of copper content. • The introduction of copper element in the coatings contributes to the formation of passivation film. • The coatings with higher corrosion resistance were obtained from the solution with a higher CuSO{sub 4} concentration. - Abstract: The Ni–Cu–P coatings were obtained by electroless plating method on ZK61M magnesium alloys. The effect of copper content on the properties of electroless Ni–Cu–P coatings on magnesium alloys was further studied. The coatings surface and cross-section morphologies were observed with scanning electron microscope. The crystal structure and corrosion resistance of Ni–Cu–P coatings were evaluated by X-ray diffractometer and electrochemical tests. The experimental results showed that the Ni–Cu–P coatings were uniform and compact, and the corrosion resistance of these coatings was superior to Ni–P coatings owing to the introduction of copper. The crystallinity and compactness of the Ni–Cu–P coatings gradually enhanced with the increasing of copper content in the coatings. The introduction of copper element in the Ni–Cu–P coatings contributes to the formation of passivation film. The Ni–Cu–P coatings with higher corrosion resistance were obtained from the solution with a higher CuSO{sub 4} concentration.

  16. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution.

    Science.gov (United States)

    Hadzima, Branislav; Mhaede, Mansour; Pastorek, Filip

    2014-05-01

    Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l(-1) of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

  17. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  18. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  19. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy.

    Science.gov (United States)

    Chai, Hongwei; Guo, Lei; Wang, Xiantao; Gao, Xiaoyu; Liu, Kui; Fu, Yuping; Guan, Junlin; Tan, Lili; Yang, Ke

    2012-02-01

    Magnesium (Mg) alloys have been demonstrated to be potential orthopedic implants due to their biodegradability in vivo. To enhance its corrosion resistance and improve its osteogenesis, β-tricalcium phosphate (β-TCP) was coated on a Mg alloy (Mg-3AI-1Zn) by phosphating process. In vitro, the human osteosarcoma cell line (SaOS-2) showed significantly good adherence and proliferation on the surface of the β-TCP coated Mg alloy after 24-h incubation. The growth factor bone morphogenetic protein 2 (BMP-2) was highly expressed in SaOS-2 cultured with the β-TCP coated Mg alloy by Western blot analysis (p < 0.05). In vivo, the newborn bone at the implant/bone interface was formed at week 1 and matured at week 4 postimplantation. Villous tissue was found at the implant/bone interface at week 12 postimplantation. The contents of phosphorus and calcium on the surface of the β-TCP coated Mg alloy were decreased at week 4 and week 12 postimplantation, respectively. Immunohistochemical analysis of the experiment results demonstrated that the β-TCP coated Mg alloy implants provided a high BMP-2 expression during the first 4 weeks postimplantation. Compared with the naked Mg alloy which was degraded for 33% in vivo, only 17% of the β-TCP coated Mg alloy was degraded at week 12 postimplantation (p < 0.05). The in vitro cell tests showed that the β-TCP coating provided the Mg alloy with a significantly better surface cytocompatibility, and in vivo results also confirmed that the β-TCP coating exhibited greatly improved osteoconductivity and osteogenesis in the early 12 weeks postoperation period. Moreover, in vivo experiment demonstrated that the β-TCP coating layer could slow down the degradation of the naked Mg alloy at the early stage of implantation. Copyright © 2011 Wiley Periodicals, Inc.

  20. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  1. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.

    Science.gov (United States)

    Xu, Wei; Yagoshi, Kai; Koga, Yuki; Sasaki, Makoto; Niidome, Takuro

    2018-03-01

    Magnesium (Mg) alloy-based bioresorbable scaffolds (BRSs) are attracting interest as next-generation stents. However, because medical Mg alloy materials degrade relatively quickly in physiological media, surface corrosion protection via biodegradable polymer coatings is important for clinical applications. Herein, the influence of biodegradable polymer coatings on the BRS corrosion was investigated. First, elution of the drug sirolimus (SRL) from various biodegradable polymers was estimated, including poly(d,l-lactic acid) (PDLLA), poly(d,l-lactic acid-co-ε-caprolactone) (PLCL) and poly(ε-caprolactone) (PCL). Among these, the PDLLA polymer exhibited the slowest release and the best character as a drug reservoir because of its slow degradation rate and semi-glass state in a biological environment. However, the corrosion rate of the PDLLA-coated Mg alloy (AZ31)-based platform was as rapid as the non-coated platform, while critical defects, cracking and desorption were observed in the PDLLA layer. Coatings comprising PCL and PLCL exhibited a prolonged platform corrosion resistance compared with that of PDLLA. To combine the advantages of each polymer, therefore, a pre-coating of PCL or PLCL was applied to the interface between the platform and the external SRL-loaded PDLLA layer. This layering exhibited an enhanced platform corrosion resistance, and will be an important foundational procedure for the development of a coronary scaffold comprising magnesium alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Tan, Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Badve, Aditya [Business and Biology, The University of North Carolina at Chapel Hill, NC 27514 (United States); Dong, Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45211 (United States); Park, Chanhee; Kim, Cheol Sang [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC, 27411 (United States)

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. - Highlights: • Effects of plasma electrolytic oxidation on AZ31 in vitro and in vivo • Retardation of degradation via plasma electrolytic oxidation in vitro and in vivo • Differentiation of in vitro and in vivo corrosion types and products.

  3. Investigation of Carboxylic Acid-Neodymium Conversion Films on Magnesium Alloy

    Science.gov (United States)

    Cui, Xiufang; Liu, Zhe; Lin, Lili; Jin, Guo; Wang, Haidou; Xu, Binshi

    2015-01-01

    The new carboxylic acid-neodymium anhydrous conversion films were successfully prepared and applied on the AZ91D magnesium alloy surface by taking absolute ethyl alcohol as solvent and four kinds of soluble carboxylic acid as activators. The corrosion resistance of the coating was measured by potentiodynamic polarization test in 3.5 wt.% NaCl solution in pH 7.0. The morphology, structure, and constituents of the coating were observed by scanning electron microscope, energy dispersivespectrum, x-ray photoelectron spectrum, and Fourier infrared spectrometer. Results show that corrosion resistance properties of samples coated with four different anhydrous conversion films were improved obviously. The corrosion potential increased, corrosion current density decreased, and polarization resistance increased. Among these four kinds of conversion films the one added with phytic exhibits the best corrosion resistant property. The mechanism of anhydrous-neodymium conversion film formation is also analyzed in this paper. It reveals that the gadolinium conversion coating is mainly composed of stable Nd2O3, MgO, Mg(OH)2, and carboxylate of Nd. And that the sample surface is rich in organic functional groups.

  4. Evolution of texture in an ultrafine and nano grained magnesium alloy

    Directory of Open Access Journals (Sweden)

    S.M. Fatemi

    2015-06-01

    Full Text Available The evolution of texture was discussed during the formation of ultra-fine and nano grains in a magnesium alloy severely deformed through accumulative back extrusion (ABE. The microstructure and texture obtained after applying multiple deformation passes at temperatures of 100 and 250°C were characterized. The results showed that after single ABE pass at 100°C an ultrafine/nano grained microstructure was obtained, while the initial texture was completely replaced by a new fiber basal texture, inclined at 40°C to the transverse direction. As the processing temperature increased to 250°C, the obtained texture intensities were strengthened, though the c-axis of crystals gradually rotated towards the transverse direction and a fiber texture parallel to normal direction was developed. Moreover, repetitive ABE was associated with the tendency of the basal plane to lie parallel to TD, while the orientation of the prismatic planes showed a random distribution around ND. After eight passes, the most noticeable texture obtained included the fiber basal texture oriented almost parallel to the transverse direction, and perpendicular to the ED and parallel to the ND. The maximum texture intensity decreased as the number of passes increased, which is attributed to strain path change involved during each consecutive ABE pass, as well as promoted the contribution of non-basal slip systems.

  5. Microscale plastic strain heterogeneity in slip dominated deformation of magnesium alloy containing rare earth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Department of Materials Engineering, The University of British Columbia, Vancouver, BC, Canada V6T1Z4 (Canada); Laboratoire de Science et Ingénierie des Matériaux et Procédés (SIMaP), Groupe GPM2, Domaine Universitaire, 101 rue de la physique, 38402 Saint Martin d’Hères (France); Sinclair, Chad W. [Department of Materials Engineering, The University of British Columbia, Vancouver, BC, Canada V6T1Z4 (Canada); Lebensohn, Ricardo A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2014-05-01

    The propensity for the magnesium alloy ZEK100 to develop large microscale plastic strain heterogeneity has been quantified and correlated to microstructure using a combination of experiments and simulations. Conditions were specifically selected where deformation is dominated by slip rather than twinning. Digital image correlation measurements of intragranular plastic strain heterogeneity have revealed plastic strains as large as 5 times the macroscopic tensile strain. This strain amplification was found to be neither spatially correlated nor correlated with crystal orientation. Large local strains were, however, found to be statistically linked to proximity to grain boundaries. This suggests the importance of interactions between neighboring grains. To investigate this further full-field viscoplastic Fast Fourier Transform (VPFFT) crystal plasticity simulations were performed on synthetic microstructures representative of the material studied experimentally. It was found that both the macroscopic stress–strain response as well as the local plastic strain distribution could be well reproduced when the anisotropy in ‘hardness’ of the basal and non-basal slip systems was sufficiently high. Strain amplification was found to occur, in this case, to slip in regions of high basal slip activity adjacent to regions of high non-basal slip activity.

  6. Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system

    Directory of Open Access Journals (Sweden)

    Mainul Hasan

    2015-12-01

    Full Text Available A 3-D numerical simulation of an industrial-sized slab caster for magnesium alloy AZ91 has been carried out for the steady state operational phase of the caster. The simulated model consists of an open-top melt delivery system fitted with a porous filter near the hot-top. The melt flow through the porous filter was modeled on the basis of Brinkmann-Forchimier-Extended non-Darcy model for turbulent flow. An in-house 3-D CFD code was modified to account for the melt flow through the porous filter. Results are obtained for four casting speeds namely, 40, 60, 80, and 100 mm/min. The metal-mold contact region as well as the convective heat transfer coefficient at the mold wall were also varied. In addition to the above, the Darcy number for the porous media was also changed. All parametric studies were performed for a fixed inlet melt superheat of 64 °C. The results are presented pictorially in the form of temperature and velocity fields. The sump depth, mushy region thickness, solid shell thickness at the exit of the mold and axial temperature profiles are also presented and correlated with the casting speed through regression analysis.

  7. Study of twinning behaviors of rolled AZ31 magnesium alloy by interrupted in situ compressive tests

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dewen [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Liu, Tianmo, E-mail: tmliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Shi, Dongfeng; Chen, Huicong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chen, Hongbing [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); College of Engineering and Technology, Southwest University, Chongqing 400716 (China)

    2016-01-20

    In this paper rolled AZ31 magnesium alloy was deformed by interrupted in situ compressive tests. Compressive and re-compressive tests were conducted along rolling direction (RD). It is discovered that the yield strength of re-compression is enhanced due to grain refinement by {10–12} tensile twins. Twinning activation and evolution are evidenced by electron backscatter diffraction. Correlations with grain orientation and boundary misorientation are observed in the region of twins that arise at grain boundaries. The distributions of grain boundary misorientation associated with twin nucleation are mapped. It is found that nucleation of twin is mainly controlled by the initial texture, and is more easy at low misorientation grain boundaries. The growth of twins depend on two modes: the thickening of the existing twin lamellae and new twins is nucleated at grain boundary. With increasing compressive strain, the growth and coalescence of twins eventually encompassed the whole grain. Meanwhile, the basal texture is weaker after compression due to the propagation and coalescence of tensile twins.

  8. Failure behavior of high pressure die casting AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Xiong, S.M. [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China); Guo, Z., E-mail: zhipeng_guo@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-08-30

    The failure behavior of high pressure die casting AZ91D magnesium alloy during both tensile and fatigue tests was studied in situ by using scanning electron microscope. Attention was focused on the role of microstructure played in crack initiation and propagation. Results showed that the defects in castings, including gas pore, shrinkage pore and defect band, were the crack initiation sources. In tensile test, the crack propagated in a combination of intergranular and transgranular modes, and the specimen fractured by connecting defects at the section with minimum effective force bearing area. In fatigue test, the crack propagated in a transgranular mode at specific crystalline planes. When the crack was in contact with the β-phase, the crack would pass through, and fracture the network β-phase, whereas bypass the island β-phase by detaching it from the surrounding α-Mg grains. Besides, defects in front of the crack would act as the secondary crack initiation sources, from which new cracks would initiate and propagate. With the propagation of the fatigue crack, the actual maximum cyclic stress would increase to the fracture stress of the left cross section and lead to the final fracture of the specimen.

  9. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  10. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The negative-difference effect during the localized corrosion of magnesium and of the AZ91HP alloy

    Directory of Open Access Journals (Sweden)

    Weber Cristina R.

    2003-01-01

    Full Text Available Galvanostatic tests with pure magnesium and with the AZ91HP alloy were performed in NaCl solutions, and the volume of hydrogen evolved during the tests was measured. In order to examine the negative-difference effect, a concept was developed to separate the hydrogen evolution (H.E. on the passive surface and the H.E. inside the pits. An analysis of the volumetric data showed that the current density of H.E. inside the pits is much higher for Mg than for the AZ91HP alloy. With the assumption, that the ratio between the hydrogen reduction rate and the rate of the anodic metal dissolution, expressed by the factor k, does not change with the polarization, a k value of ca. 0.5 for pure Mg was found, while for the AZ91HP alloy this value was only ca. 0.3.

  12. Effect of Gas Pores on Mechanical Properties of High-Pressure Die-Casting AM50 Magnesium Alloy.

    Science.gov (United States)

    Jiang, Wei; Cao, Zhanyi; Liu, Liping; Jiang, Bo

    2016-08-01

    High-pressure die-casting (HPDC) AM50 tensile specimens were used to investigate characteristics of gas pores and its effect on mechanical properties of HPDC AM50 magnesium alloy. Combining microstructure morphology gained from optical microscopy, scanning electron microscopy (SEM), and three-dimensional (3D) reconstruction with the experimental data from uniaxial tensile testing, we pursued the relationship between gas pores and the mechanical properties of HPDC AM50 Mg alloy. Results indicate that comparing with 3D reconstruction models, 2D images like optical metallography images and SEM images have one-sidedness. Furthermore, the size and maximum areal fraction of gas pores have negative effects on the mechanical properties of HPDC AM50 Mg alloy. With increase of the maximum size of gas pores in the specimen, the ultimate tensile strength (UTS) and elongation decrease. In addition, with the maximum areal fraction becoming larger, both the UTS and elongation decrease linearly.

  13. Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents

    Science.gov (United States)

    Sheggaf, Z. M.; Ahmad, R.; Asmael, M. B. A.; Elaswad, A. M. M.

    2017-11-01

    The influence of praseodymium (Pr) content on the solidification characteristics, microstructure, and mechanical properties of ZRE1 magnesium (Mg) cast alloy was investigated. The obtained solidification parameters showed that Pr strongly affected the solidification time, leading to refinement of the microstructure of the alloys. When the freezing time was reduced to approximately 52 s, the grain size decreased by 12%. Mg12Zn (Ce,Pr) was formed as a new phase upon the addition of Pr and was detected via X-ray diffraction analysis. The addition of Pr led to a substantial improvement in mechanical properties, which was attributed to the formation of intermetallic compounds; the ultimate tensile strength and yield strength increased by approximately 10% and 13%, respectively. Pr addition also refined the microstructure, and the hardness was recovered. The results herein demonstrate that the mechanical properties of Mg alloys are strongly influenced by their microstructure characteristics, including the grain size, volume fraction, and distribution of intermetallic phases.

  14. Surface characteristics and corrosion resistance of biodegradable magnesium alloy ZK60 modified by Fe ion implantation and deposition

    Directory of Open Access Journals (Sweden)

    Yang Zheng

    2014-10-01

    Full Text Available The ZK60 magnesium alloy has been modified by Fe ion implantation and deposition with a metal vapor vacuum arc plasma source. The surface morphology, phase constituent and elemental distribution are determined by scanning electron microscopy, transmission electron microscopy, X-ray diffractometer and Auger electron spectroscopy. The results show that Fe thin film is deposited on ZK60 alloy and the corresponding thickness increases from 2.73 μm to 6.36 μm with increasing deposition time. A transition layer mainly composed of Mg, Fe and O elements is formed between Fe thin film and ZK60 substrate. The potentiodynamic polarization tests reveal that a high corrosion potential and a low corrosion current density are detected for the Fe deposited ZK60 alloy, indicating the improvement of corrosion resistance. The tensile deformation test indicates that the Fe deposited film on the ZK60 substrate can sustain 1% tensile strain without any cracks.

  15. A kinematic hardening constitutive model for the uniaxial cyclic stress–strain response of magnesium sheet alloys at room temperature

    Science.gov (United States)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension–compression–tension (T–C–T) and compression–tension (C–T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  16. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.

    Science.gov (United States)

    Hakimi, O; Aghion, E; Goldman, J

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2014-10-01

    Full Text Available A novel poly-lactic acid (PLA based biocomposite reinforced with unidirectional high-strength magnesium alloy (Mg-alloy wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method (FEM, respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached 20 vol%, the impact strength of the composite could achieve 93.4 kJ/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation. Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.

  18. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    Science.gov (United States)

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  19. Local plastic strain inhomogeneity in a ZEK100 Mg alloy

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available Magnesium alloys have great potential for lightweighting applications in the transportation industry. It is known, however, that Mg and Mg-alloys exhibit large plastic strain heterogeneity. Such heterogeneity is important both from the perspective of formability and fracture if such sheet materials are to be stamped. Also, such observations are important for our fundamental understanding of how plasticity spreads in such materials. In this work we have sought to couple together local plastic strain measurements using digital image correlation with full-field crystal plasticity simulations with the idea of identifying and quantifying the plastic strain heterogeneity. A recently developed ZEK-100 alloy has been studied, as this alloy has shown promise as a wrought sheet product.

  20. Wetting Behavior of Molten AZ61 Magnesium Alloy on Two Different Steel Plates Under the Cold Metal Transfer Condition

    Directory of Open Access Journals (Sweden)

    ZENG Cheng-zong

    2017-04-01

    Full Text Available The wetting behavior and interfacial microstructures of molten magnesium AZ61 alloy on the surface of two different Q235 and galvanized steel plates under the condition of cold metal transfer were investigated by using dynamic sessile drop method. The results show that the wetting behavior is closely related to the wire feed speed. Al-Fe intermetallic layer was observed whether the substrate is Q235 steel or galvanized steel, and the formation of Al-Fe intermetallic layer should satisfy the thermodynamic condition of such Mg-Al/Fe system. The wettability of molten AZ61 magnesium alloy is improved with the increase of wire feed speed whether on Q235 steel surface or on galvanized steel surface, good wettability on Q235 steel surface is due to severe interface reaction when wire feed speed increases, good wettability on galvanized steel surface is attributed to the aggravating zinc volatilization. When the wire feed speed is ≤10.5m·min-1, the wettability of Mg alloy on Q235 steel plate is better than on galvanized steel plate. However, Zn vapor will result in instability for metal transfer process.

  1. Numerical simulation of early stages of oxide formation in molten aluminium magnesium alloys in a reverberatory furnace

    Science.gov (United States)

    Kanti De, Anindya; Mukhopadhyay, Achintya; Sen, Swarnendu; Puri, Ishwar K.

    2004-05-01

    A significant amount of aluminium is processed by melting aluminium scrap that contains small amounts of magnesium. A major drawback of aluminium production in secondary melt furnaces is the formation of dross or aluminium oxide by the oxidation of the molten metal. Since aluminium scrap forms a major source of the metal in secondary aluminium processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage of oxidation of an Al-Mg alloy during which primarily the oxidation of magnesium to its oxide occurs. Our model simulates the process in an aluminium melting furnace and considers metal oxidation to be diffusion limited. The phenomenon is assumed to be one-dimensional and the reaction of Al/Mg with O2 to be infinitely fast. We are able to obtain a closed form analytical solution of the evaporation rate and the amount of oxide that is formed. We find that the evaporation of the metal vapour and its oxidation depend on the furnace size, melt composition, melt temperature, gas temperature and oxygen concentration in the gas. Oxide formation decreases with increasing furnace height and with decreasing oxygen concentration and melt temperature. Dross formation is weakly dependent on the ambient temperature and alloy composition. The results indicate that there are essentially two parameters, namely, the equivalence ratio of the fuel-air mixture (which controls the ambient oxygen concentration) and the melt temperature that can be manipulated to influence oxide formation in practical furnaces.

  2. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.

    Science.gov (United States)

    Törne, Karin; Örnberg, Andreas; Weissenrieder, Jonas

    2017-01-15

    During implantation load-bearing devices experience stress that may influence its mechanical and corrosion profile and potentially lead to premature rupture. The susceptibility to stress corrosion cracking (SCC) of the Mg-Al alloy AZ61 and Zn was studied in simulated body fluid (m-SBF) and whole blood by slow strain rate (SSR) testing in combination with electrochemical impedance spectroscopy (EIS) and further ex situ analysis including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. AZ61 was found to be highly susceptible to SCC. EIS analysis show that although the majority of cracking occurred during the apparent plastic straining, cracking initiation occurs already in the elastic region at ∼50% of the ultimate tensile strength (UTS). Shifts in EIS phase angle and open circuit potential can be used to detect the onset of SCC. Zinc demonstrated a highly ductile behavior with limited susceptibility to SCC. No significant decrease in UTS was observed in m-SBF but a decrease in time to failure by ∼25% compared to reference samples indicates some effect on the mechanical properties during the ductile straining. The formation of micro cracks, ∼10μm deep, was indicated by the EIS analysis and later confirmed by ex situ SEM. The results of SSR analysis of zinc in whole blood showed a reduced effect compared to m-SBF and no cracks were detected. It appears that formation of an organic surface layer protects the corroding surface from cracking. These results highlight the importance of considering the effect of biological species on the degradation of implants in the clinical situation. Strain may deteriorate the corrosion properties of metallic implants drastically. We study the influence of load on the corrosion properties of a magnesium alloy and zinc by a combination of electrochemical impedance spectroscopy (EIS) and slow strain rate analysis. This combination of techniques has previously not been used for studying degradation in

  3. Effect of Magnesium Addition on the Cell Structure of Foams Produced From Re-melted Aluminum Alloy Scrap

    Science.gov (United States)

    Vinod-Kumar, G. S.; Heim, K.; Jerry, J.; Garcia-Moreno, F.; Kennedy, A. R.; Banhart, J.

    2017-10-01

    Closed-cell foams were produced from re-melted aluminum alloy scrap that contained 0.13 wt pct Mg magnesium in the as-received state and higher levels after adding 1, 2, or 5 wt pct Mg. The excess Mg gave rise to the fragmentation of long oxide filaments present in the scrap alloy into smaller filaments and improved its distribution and wetting by the Al matrix. Foaming the re-melted scrap alloy containing 1, 2, and 5 wt pct Mg excess showed stability and good expansion in comparison to the scrap alloy containing 0.13 wt pct Mg only, but the cells became non-equiaxed when the Mg concentration was high (≥2 wt pct excess) due to cell wall rupture during solidification. Compressibility and energy absorption behavior were studied for scrap alloy foams containing 1 wt pct Mg excess, which is the optimum level to obtain good expansion, stability, and uniform cell size. Foams with densities in the range of 0.2 to 0.4 g cm-1 produced by holding at the foaming temperature for different times were used for the investigation. A uniform cell structure led to flatter stress plateaus, higher energy absorption efficiencies, and reduced "knockdown" in strength compared with commercial foams made by gas bubbling. The mechanical performance found is comparable to that of commercial foams made by a similar method but the expected costs are lower.

  4. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    Science.gov (United States)

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Structural and electrochemical behavior of sol-gel ZrO{sub 2} ceramic film on chemically pre-treated AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Qing [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: liqingd@swu.edu.cn; Chen Bo; Xu Shuqiang; Gao Hui; Zhang Liang; Liu Chao [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2009-06-10

    In the present investigation sol-gel-based ZrO{sub 2} ceramic film was obtained using zirconium acetate as the precursor material. The film was deposited on AZ91D magnesium alloy by a dip-coating technique. An uniform stannate conversion coating as chemical pretreatment was employed as an intermediate layer prior to deposition of the ZrO{sub 2} film in order to provide advantage for the formation of sol-gel-based ZrO{sub 2} layer. The corrosion properties, structure, composition and morphology of these coatings on AZ91D magnesium alloy were studied by potentiodynamic polarization tests, EIS, XRD, SEM, respectively. According to the electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environment-friendly surface treatment.

  6. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  7. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    Science.gov (United States)

    Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu

    2016-12-01

    Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic 'lotus leaf' hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7-9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured 'over growth' oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from -1.521 V of the bare magnesium to -1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the other metal materials.

  8. Development of a new biodegradable operative clip made of a magnesium alloy: Evaluation of its safety and tolerability for canine cholecystectomy.

    Science.gov (United States)

    Yoshida, Toshihiko; Fukumoto, Takumi; Urade, Takeshi; Kido, Masahiro; Toyama, Hirochika; Asari, Sadaki; Ajiki, Tetsuo; Ikeo, Naoko; Mukai, Toshiji; Ku, Yonson

    2017-06-01

    Operative clips used to ligate vessels in abdominal operation usually are made of titanium. They remain in the body permanently and form metallic artifacts in computed tomography images, which impair accurate diagnosis. Although biodegradable magnesium instruments have been developed in other fields, the physical properties necessary for operative clips differ from those of other instruments. We developed a biodegradable magnesium-zinc-calcium alloy clip with good biologic compatibility and enough clamping capability as an operative clip. In this study, we verified the safety and tolerability of this clip for use in canine cholecystectomy. Nine female beagles were used. We performed cholecystectomy and ligated the cystic duct by magnesium alloy or titanium clips. The chronologic change of clips and artifact formation were compared at 1, 4, 12, 18, and 24 weeks postoperative by computed tomography. The animals were killed at the end of the observation period, and the clips were removed to evaluate their biodegradability. We also evaluated their effect on the living body by blood biochemistry data. The magnesium alloy clip formed much fewer artifacts than the titanium clip, and it was almost absorbed at 6 months postoperative. There were no postoperative complications and no elevation of constituent elements such as magnesium, calcium, and zinc during the observation period in both groups. The novel magnesium alloy clip demonstrated sufficient sealing capability for the cystic duct and proper biodegradability in canine models. The magnesium alloy clip revealed much fewer metallic artifacts in CT than the conventional titanium clip. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hakimi, O.; Aghion, E. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Goldman, J., E-mail: jgoldman@mtu.edu [Biomedical Engineering Department, Michigan Technological University, Houghton, MI, 49931 (United States)

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg–6%Nd–2%Y–0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd{sub 2}O{sub 3} content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. - Highlights: • Here we have evaluated the corrosion resistance of a novel Mg alloy (EW62). • Rapid solidification reduces the hydrogen gas evolution and hydrogen embrittlement. • Rapid solidification increases the stress corrosion cracking resistance of EW62. • Improvement is due to enrichment with supersaturated Nd in the external oxide film. • Rapidly solidified and extruded EW62 may serve as a biodegradable medical implant.

  10. Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls.

    Science.gov (United States)

    Filli, Lukas; Luechinger, Roger; Frauenfelder, Thomas; Beck, Stefan; Guggenberger, Roman; Farshad-Amacker, Nadja; Andreisek, Gustav

    2015-06-01

    To evaluate metal artifacts induced by biodegradable magnesium--a new class of degradable biomaterial that is beginning to enter the orthopedic routine--on CT and MRI compared to standard titanium and steel controls. Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests. In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019-0.021) and CT (p = 0.003-0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003-0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant. Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel.

  11. Influence of the β-Mg17Al12 Phase Morphology on the Corrosion Properties Of Az91hp Magnesium Alloy

    Science.gov (United States)

    Guo, Lingling; Zhang, Jumei

    2017-09-01

    The morphology of β-Mg17Al12 phase and corrosion behavior of AZ91HP magnesium alloy after spheroidizing treatment were investigated by optical microcope electrochemical and immersion tests in 3.5% NaCl at 25°C. The results show that the coarse divorced eutectic phase of AZ91HP cast magnesium alloy dissolve into Mg matrix during the isothermal process at 415°C, and the lameller β phase precipitated from magnesium solid solution as perlite-type precipitation during the slowly cooling. Next, the spheroidizing treatment at different temperatures for 20h was carried out, and the lameller β phase were spheroridizing by dissolved themselves. After spheroidizing treatment at 300°C for 20h, many small granular β phase are scattering within the magnesium matrix. The corrosion properties of AZ91HP magnesium alloy in 3.5% NaCl decreased obviously after spheroidizing treatment, the polarization measurement of the alloy can be up to -1.412V from -1.56V of the cast. The β-Mg17Al12 phase act as a corrosion barrier and hinder corrosion propagation, if the second phase is in the form of a spherical morphology.

  12. Surface morphology, microstructure and properties of as-cast AZ31 magnesium alloy irradiated by high intensity pulsed ion beams

    Science.gov (United States)

    Ma, Xuesong; Zhang, Gang; Wang, Guotian; Zhu, Guoliang; Zhou, Wei; Wang, Jun; Sun, Baode

    2014-08-01

    High intensity pulsed ion beam (HIPIB) irradiation was performed as surface modification to improve the properties of as-cast AZ31 magnesium (Mg) alloys. The surface morphology and microstructure of the irradiated Mg alloys were characterized and their microhardness, wear resistance and corrosion resistance before and after HIPIB irradiation were measured. The results show that the formation of crater on the surface was attributed to the particles impacted from the irradiated cathode material. HIPIB irradiation resulted in more vacancy defects on the surface of the material. Moreover, new dislocations were generated by the reaction between vacancies, and the dislocation configuration was also changed. These variations caused by the HIPIB are beneficial for improving the material properties. After 10 shots of irradiation, the average microhardness increased by 27.1% but the wear rate decreased by 38.5%. The corrosion rate was reduced by 24.8% according to the salt spray corrosion experiment.

  13. Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys.

    Science.gov (United States)

    Tan, Cui; Zhang, Xiaoxu; Li, Qing

    2017-08-28

    Two major problems with magnesium (Mg) alloy biomaterials are the poor corrosion resistance and infection associated with implantation. In this study, a novel calcium phosphate (CaP)/tetracycline (TC) composite coating for Mg implants that can both improve the corrosion resistance of Mg and release a drug in a durable way is reported. Scanning electron microscope (SEM) images showed that TC additives make the CaP coating more compact and uniform. Electrochemical tests indicated CaP/TC coatings can provide excellent corrosion protection for Mg alloy substrates. Besides, TC additives can also provide effective prevention of bone infection and inflammation due to its broad-spectrum antibacterial properties. The one-step hydrothermal process reported here greatly simplified the multi-step fabrication of smart coatings reported previously.

  14. Effects of Variations in Salt-Spray Conditions on the Corrosion Mechanisms of an AE44 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Holly J. Martin

    2010-01-01

    Full Text Available The understanding of how corrosion affects magnesium alloys is of utmost importance as the automotive and aerospace industries have become interested in the use of these lightweight alloys. However, the standardized salt-spray test does not produce adequate corrosion results when compared with field data, due to the lack of multiple exposure environments. This research explored four test combinations through three sets of cycles to determine how the corrosion mechanisms of pitting, intergranular corrosion, and general corrosion were affected by the environment. Of the four test combinations, Humidity-Drying was the least corrosive, while the most corrosive test condition was Salt Spray-Humidity-Drying. The differences in corrosivity of the test conditions are due to the various reactions needed to cause corrosion, including the presence of chloride ions to cause pit nucleation, the presence of humidity to cause galvanic corrosion, and the drying phase which trapped chloride ions beneath the corrosion by-products.

  15. Simulation of Flow Stress Characteristic During Two-stage Hot Deformation Process in AZ31B Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    DENG Xiaohu

    2017-06-01

    Full Text Available A 2-D CA model has been developed to simulate two-stage hot deformation processing of magnesium (Mg alloy. Based on the fact that Mg has an HCP crystal structure with six-fold symmetry, the model employs hexagonal CA lattice. The physically-based model has integrated the effects of individual metallurgical phenomena related with the hot deformation, including dynamic recrystallization (DRX, static recovery, static recrystallization (SRX, meta-dynamic recrystallization (MDRX and grain growth, etc. The model is validated by simulating single-stage and two-stage hot compression tests of AZ31B. The effects of temperature, strain rate, the interval and pre-strain on stress-strain curves are investigated. The calculated results are compared with the available experimental findings in AZ31B Mg alloy, and the simulated results agree well with the experimental results and theoretical models.

  16. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Tian, Peng; Xu, Demin; Liu, Xuanyong

    2016-05-01

    The rapid degradation of magnesium-based implants in physiological environments in vivo not only will quickly deteriorate their mechanical strengths but will also lead to a severe change of the micro-environment around the implants, which may cause the final failure of magnesium-based implants. In this work, a polycaprolactone (PCL) layer was prepared to seal the plasma electrolytic oxidization coating (PEO) to form a PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy, followed by further surface functionalization with polydopamine. The in vitro degradation behaviors of the bare AZ31 alloy and coated samples were evaluated in a simulated body fluid (SBF) using the potentiodynamic polarization curve test and the static immersion test. The bioactivity of the samples was investigated using the SBF soaking test. The cytocompatibility of all samples was evaluated using the cytotoxicity test and analysis of the adhesion and proliferation of osteoblast cells (MC3T3-E1) directly cultivated on the sample surface. The results showed that the PCL layer successfully sealed the pores of the PEO coating, and then the polydopamine layer formed on its surface. The in vitro degradation tests showed that the PEO/PCL composite coating improved the corrosion resistance of the AZ31 alloy in SBF with a more positive corrosion potential and a lower corrosion current density. Due to the protection of the PEO/PCL composite coating, the surrounding environment showed nearly no influence on the degradation of the coated sample, which led to no obvious local alkalization and hydrogen evolution. Moreover, compared with the AZ31 alloy and PEO coating, the PEO/PCL composite coating was more suitable for cell adhesion and proliferation. After further surface functionalization by polydopamine, the corrosion resistance of the composite coating was maintained, while its bioactivity was significantly enhanced with a large amount of hydroxyapatite (HA) formed on its surface after

  17. The effects of alloying elements on microstructures and mechanical properties of tungsten inert gas welded AZ80 magnesium alloys joint

    Science.gov (United States)

    Li, Hui; Zhang, Jiansheng; Ding, Rongrong

    2017-11-01

    The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.

  18. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Tümer, N; Li, Y; Amin Yavari, S; Zadpoor, A A

    2018-02-22

    Magnesium and its alloys have the intrinsic capability of degrading over time in vivo without leaving toxic degradation products. They are therefore suitable for use as biodegradable scaffolds that are replaced by the regenerated tissues. One of the main concerns for such applications, particularly in load-bearing areas, is the sufficient mechanical integrity of the scaffold before sufficient volumes of de novo tissue is generated. In the majority of the previous studies on the effects of biodegradation on the mechanical properties of porous biomaterials, the change in the elastic modulus has been studied. In this study, variations in the static and fatigue mechanical behavior of porous structures made of two different Mg alloys (AZ63 and M2) over different dissolution times (6 h, 12 h, and 24 h) have been investigated. The results showed an increase in the mechanical properties obtained from stress-strain curve (elastic modulus, yield stress, plateau stress, and energy absorption) after 6-12 h and a sharp decrease after 24 h. The initial increase in the mechanical properties may be attributed to the accumulation of corrosion products in the pores of the porous structure before degradation has considerably proceeded. The effects of mineral deposition was more pronounced for the elastic modulus as compared to other mechanical properties. That may be due to insufficient integration of the deposited particles in the structure of the magnesium alloys. While the bonding of the parts being combined in a composite-like material is of great importance in determining its yield stress, the effects of bonding strength of both parts is much lower in determining the elastic modulus. The results of the current study also showed that the dissolution rates of the studied Mg alloys were too high for direct use in human body. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  19. Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles

    Science.gov (United States)

    Xiao, L.; Liu, L.; Zhou, Y.; Esmaeili, S.

    2010-03-01

    A comparison of microstructural features in resistance spot welds of two AZ31 magnesium (Mg) alloys, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), with the same sheet thickness and welding conditions, was performed via optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). These alloys have similar chemical composition but different sizes of second-phase particles due to manufacturing process differences. Both columnar and equiaxed dendritic structures were observed in the weld fusion zones of these AZ31 SA and SB alloys. However, columnar dendritic grains were well developed and the width of the columnar dendritic zone (CDZ) was much larger in the SB alloy. In contrast, columnar grains were restricted within narrow strip regions, and equiaxed grains were promoted in the SA alloy. Microstructural examination showed that the as-received Mg alloys contained two sizes of Al8Mn5 second-phase particles. Submicron Al8Mn5 particles of 0.09 to 0.4 μm in length occured in both SA and SB alloys; however, larger Al8Mn5 particles of 4 to 10 μm in length were observed only in the SA alloy. The welding process did not have a great effect on the populations of Al8Mn5 particles in these AZ31 welds. The earlier columnar-equiaxed transition (CET) is believed to be related to the pre-existence of the coarse Al8Mn5 intermetallic phases in the SA alloy as an inoculant of α-Mg heterogeneous nucleation. This was revealed by the presence of Al8Mn5 particles at the origin of some equiaxed dendrites. Finally, the columnar grains of the SB alloy, which did not contain coarse second-phase particles, were efficiently restrained and equiaxed grains were found to be promoted by adding 10 μm-long Mn particles into the fusion zone during resistance spot welding (RSW).

  20. Thermodynamic investigation of the effect of alkali metal impuries on the processing of aluminum and magnesium alloys

    Science.gov (United States)

    Zhang, Shengjun

    2006-12-01

    Aluminum and magnesium alloys are widely used in the automobile and aerospace industries as structural materials due to their light weight, high specific strength and good formability. However, they suffer from the poor hot rolling characteristics due to undesired impurities like calcium, potassium, lithium and sodium. They increase the hydrogen solubility in the melt and promote the formation of porosity in aluminum castings. During fabrication of aluminum alloys, they cause the hot-shortness and embrittlement due to cracking. They also led to "blue haze" corrosion which promotes the discoloration of aluminum under humid condition. The removal of these elements increases overall melt loss of aluminum alloys when aluminum products are remelted and recast. Na is one of the common impurities in the Al and Mg alloys. In industry, primary Al is produced by the Hall-Heroult process, through the electrolysis of the mixture of molten alumina and cryolite (Al2O3+Na 3AlF6), the latter being added to lower the melting point. Therefore, Al inevitably contains some Na (>0.002%) without further treatment. The Na content in Al is influenced by the thermodynamics and kinetics of the electrolysis. Similarly, in the electrolytic production and subsequent processing of Mg, Mg is commonly in contact with molten salt mixtures of NaCl and MgCl 2. Consequently, 2--20 wt. ppm Na is often found in Mg alloys. Besides originating from the industrial production process, Na can be introduced in laboratory experiments from alumina crucibles by the reaction between the molten Al-Mg alloys and the Na2O impurity in the alumina crucible. The trace element K plays a similar role in Al alloys although it is seldom discussed. No systematic theoretic research has been carried out to investigate the behavior of these impurities during the processing of aluminum alloys. The thermodynamic description of the Al-Ca-K-Li-Mg-Na system is needed to understand the effects of Ca, K, Li and Na on phase stability

  1. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    Energy Technology Data Exchange (ETDEWEB)

    White, Leon; Koo, Youngmi [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Neralla, Sudheer [Jet-Hot LLC, Burlington, NC 27215 (United States); Sankar, Jagannathan [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-06-15

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na{sub 2}SiO{sub 3}, KF and NaH{sub 2}PO{sub 4}·2H{sub 2}O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  2. Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Novy, Frantisek; Skorik, Viktor [Zilina Univ. (Slovakia). Dept. of Materials Engineering; Janecek, Milos [Charles Univ., Prague (Czech Republic). Dept. of Physics of Materials; Mueller, Julia; Wagner, Lothar [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Materials Science and Technology

    2009-03-15

    The very high cycle fatigue properties of extruded AZ31, AZ80, and ZK60 magnesium alloys were investigated. Fatigue tests were performed at ultrasonic cyclic frequency and at a load ratio of R = -1 at ambient temperature using smooth electropolished specimens. Fatigue failures were observed at lifetimes above 10{sup 9} cycles. The fatigue life was found to increase with decreasing stress amplitude. The fracture surfaces and fracture profiles of selected specimens cycled until failure were examined. The purpose of the study was to determine the role of the microstructure on the fatigue crack nucleation and growth. Furthermore, the fatigue properties were discussed on the basis of microstructure and the presence of inclusions which are known as crack initiation sites. In AZ31 and AZ80 alloys only surface-induced fatigue cracks were observed. On the other hand, in the ZK60 alloy both surface- and interior-induced fatigue cracks were observed. Both mechanisms operate in the ZK60 also at a lifetime of around 10{sup 1}0 cycles. Interior-induced fatigue cracks were accompanied by clear fish-eye marks on the fracture surfaces of the ZK60 alloy. (orig.)

  3. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-10-15

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg{sup 2+} ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg{sup 2+} ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg{sup 2+} ions. • The coating improved the stabilization of Mg alkalization behavior.

  4. Magnesium alloys: A stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations.

    Science.gov (United States)

    Willbold, Elmar; Weizbauer, Andreas; Loos, Anneke; Seitz, Jan-Marten; Angrisani, Nina; Windhagen, Henning; Reifenrath, Janin

    2017-01-01

    The first degradable implant made of a magnesium alloy, a compression screw, was launched to the clinical market in March 2013. Many different complex considerations are required for the marketing authorization of degradable implant materials. This review gives an overview of existing and proposed standards for implant testing for marketing approval. Furthermore, different common in vitro and in vivo testing methods are discussed. In some cases, animal tests are inevitable to investigate the biological safety of a novel medical material. The choice of an appropriate animal model is as important as subsequent histological examination. Furthermore, this review focuses on the results of various mechanical tests to investigate the stability of implants for temporary use. All the above aspects are examined in the context of development and testing of magnesium-based biomaterials and their progress them from bench to bedside. A brief history of the first market launch of a magnesium-based degradable implant is given. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 329-347, 2017. © 2016 Wiley Periodicals, Inc.

  5. Development of Zirconium-based Conversion Coatings for the Pretreatment of AZ91D Magnesium Alloy Prior to Electrocoating

    Science.gov (United States)

    Reck, James; Wang, Yar-Ming; Kuo, Hong-Hsiang Harry

    This work examines the use of hexafluorozirconic acid based solutions at concentrations from 0.025 M to 0.100 M and pH values of 2.0 to 4.0 for the creation of a zirconia-based conversion coating less than 1 micron thick to protect magnesium alloy AZ91D. Similar coatings have been found to give excellent protection for steel and aluminum alloys, but little research has been conducted on its application to magnesium. Work was performed to gain an understanding of the film formation mechanisms and related kinetics using x-ray photo-electron spectroscopy, scanning electron microscopy, and open circuit potential monitoring techniques. A design of experiments approach was taken to determine the effects of acid concentration, pH, and soak time on the corrosion properties both as-deposited and with an application of electrocoat. It was found that the application of the zirconia-based coating significantly increased corrosion resistance, and allowed for an acceptable e-coat application with excellent adherence.

  6. Mesoscale Modeling and Validation of Texture Evolution during Asymmetric Rooling and Static Recrystallization of Magnesium Alloy AZ31B

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL; Stoica, Grigoreta M [ORNL; Muralidharan, Govindarajan [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Specht, Eliot D [ORNL; Kenik, Edward A [ORNL; Muth, Thomas R [ORNL

    2012-01-01

    The focus of the present research is to develop an integrated deformation and recrystallization model for magnesium alloys at the microstructural length scale. It is known that in magnesium alloys nucleation of recrystallized grains occurs at various microstructural inhomogeneities such as twins and localized deformation bands. However, there is a need to develop models that can predict the evolution of the grain structure and texture developed during recrystallization and grain growth, especially when the deformation process follows a complicated deformation path such as in asymmetric rolling. The deformation model is based on a crystal plasticity approach implemented at the length scale of the microstructure that includes deformation mechanisms based on dislocation slip and twinning. The recrystallization simulation is based on a Monte Carlo technique that operates on the output of the deformation simulations. The nucleation criterion during recrystallization is based on the local stored energy and the Monte Carlo technique is used to simulate the growth of the nuclei due to local stored energy differences and curvature. The model predictions are compared with experimental data obtained through electron backscatter analysis and neutron diffraction.

  7. Effect of copper content on the properties of electroless Ni-Cu-P coatings prepared on magnesium alloys

    Science.gov (United States)

    Liu, Junjun; Wang, Xudong; Tian, Zhiyong; Yuan, Ming; Ma, Xijuan

    2015-11-01

    The Ni-Cu-P coatings were obtained by electroless plating method on ZK61M magnesium alloys. The effect of copper content on the properties of electroless Ni-Cu-P coatings on magnesium alloys was further studied. The coatings surface and cross-section morphologies were observed with scanning electron microscope. The crystal structure and corrosion resistance of Ni-Cu-P coatings were evaluated by X-ray diffractometer and electrochemical tests. The experimental results showed that the Ni-Cu-P coatings were uniform and compact, and the corrosion resistance of these coatings was superior to Ni-P coatings owing to the introduction of copper. The crystallinity and compactness of the Ni-Cu-P coatings gradually enhanced with the increasing of copper content in the coatings. The introduction of copper element in the Ni-Cu-P coatings contributes to the formation of passivation film. The Ni-Cu-P coatings with higher corrosion resistance were obtained from the solution with a higher CuSO4 concentration.

  8. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  9. The technology of preparing green coating by conducting micro-arc oxidation on AZ91D magnesium alloy

    Directory of Open Access Journals (Sweden)

    Wang Sheng

    2016-12-01

    Full Text Available Micro-arc oxidation was applied to AZ91D magnesium alloy by taking K2Cr2O7 as the colouring salt in the silicate system. It was shown that the green coating obtained through performing micro-arc oxidation on magnesium alloy consisted of Mg, Mg2SiO4, MgO, and MgCr2O4 based on analysis of X-ray diffraction (XRD, and scanning electron microscopy (SEM. Among which, MgCr2O4 was the colouring salt; there were something in the lamellar, pit, and convex forms found on the surface of the coating. The coating consisted of a porous, and a compact, layer from the outside to the inside. As demonstrated, the colour of the coating depended on the K2Cr2O7 concentration: it became gradually deeper with the addition of K2Cr2O7 and the increasing micro-arc oxidation time. The corrosion resistance and hardness of the green coating were greater than that of the matrix.

  10. A study of deformation twinning in magnesium alloy AZ31B

    Science.gov (United States)

    Majkut, Marta

    Crystals with a hexagonal close-packed crystal structure are inherently anisotropic, and have a limited number of independent slip systems, which lead to strong deformation textures and reduced formability in polycrystalline products. In magnesium (Mg), all of the easy slip systems have a Burgers vector in the direction making twinning necessary for arbitrary shape changes. The most common twinning system which allows extension along the c-axis is {1012}. A good predictor of slip is the global Schmid factor, which resolves the externally applied force onto the slip plane and direction of a crystal. The critically resolved shear stress (CRSS) at which a grain twins is not readily measured by experiment and the CRSS for twin initiation often appears larger than for twin propagation. In polycrystals, twin variants with both low and high Schmid factors have been observed indicating that this Schmid factor is inappropriate to predict twinning and more local effects play an important, though still uncertain role. In this work, experiments were devised to dynamically study extension twinning in a polycrystalline Mg alloy AZ31B with a strong basal rolling texture by tensile deformation parallel to the plate normal. Three-dimensional X-ray diffraction using a synchrotron source was used to map the centre-of-mass positions, orientations, and grain-resolved elastic strain tensors of over 1000 grains in-situ up to a true strain of 1.4%. The majority of twins formed in grains with a high local Schmid factor; however, low-ranked twin variants were common. The average grain-resolved stress did not always select the highest twin variant and resulted in some negative Schmid factors. The internal stress state of parent grains and twinned grains did not differ significantly within the large measurement uncertainties. The misorientations between grains ideally oriented for twinning and their nearest neighbours could not explain cases of no twin activity. Results suggest that the

  11. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  12. Laser offset welding of AZ31B magnesium alloy to 316 stainless steel

    OpenAIRE

    Casalino, G.; Guglielmi, P; LORUSSO, V.D.; MORTELLO, M; PEYRE, P; Sorgente, D.

    2016-01-01

    In this paper, the feasibility of using a fiber laser to perform a dissimilar metal joining was explored. AZ31B magnesium and 316 stainless steel were autogenously joined in butt configuration. The weldability between different materials is often compromised by a large difference in thermal properties and poor metallurgical compatibility. Thus, the beam was focused onto the top surface of the magnesium plate, at a certain distance from the interfaces (offset), and without using any interlayer...

  13. Drawability Studies of Magnesium Alloy Sheets at Elevated Temperature / Badania Tłoczności Blach Ze Stopów Magnezu W Podwyższonej Temperaturze

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2015-12-01

    Full Text Available The paper presents the results of a study of drawability of thin AZ31 magnesium alloy metal sheets. These studies are a continuation of experiences in presenting the characteristics of technological plasticity of strips made of magnesium alloy which have been cast between rolls in vertical and horizontal systems called ‘twin-roll casting’. In the context of previous experiments conducted at the Institute of Material Technology of the Silesian University of Technology in cooperation with the Technical University - Bergakademie Freiberg (Germany, drawability of these strips at elevated temperatures has been comprehensively defined while using forming limit curves. Due to low formability of magnesium alloys at ambient temperature, formability tests - including cup forming tests presented in this paper - have been carried out in heated dies at temperature range of 200°C to 350°C. A modern AutoGrid digital local strain analyzer has been used in the examinations and the method of image analysis of deformed coordination nets has been applied. Quantitative and qualitative impact of deformation temperature upon the drawability effects of AZ31 magnesium alloys products have been evaluated.

  14. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  15. Composite Layers “MgAl Intermetalic Layer / PVD Coating” Obtained On The AZ91D Magnesium Alloy By Different Hybrid Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Smolik J.

    2015-06-01

    Full Text Available Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS, arc evaporation (AE and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.

  16. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  17. Effect of REE on the Phase Composition and Properties of a New Refractory Magnesium Alloy of the Mg - Zn - Zr - REE System

    Science.gov (United States)

    Kablov, E. N.; Volkova, E. F.; Filonova, E. V.

    2017-11-01

    A novel high-strength refractory alloy VMD16 of the Mg - Zn - Zr - REE system is described. The advantages of the alloy with respect to the counterparts are considered. The processes of formation of phase composition and of structural evolution are studied. A fine dispersed subgrain structure is shown to exist in the deformable magnesium alloy. The combination of the specific morphology and topology of the intermetallic phases with their thermal stability provides a high level of strength properties at room and elevated (300 - 350°C) temperatures at a low anisotropy.

  18. Halogen-Free Phosphonate Ionic Liquids as Precursors of Abrasion Resistant Surface Layers on AZ31B Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Tulia Espinosa

    2015-01-01

    Full Text Available Surface coatings formed by immersion in the ionic liquids (ILs 1,3-dimethylimidazolium methylphosphonate (LMP101, 1-ethyl-3-methylimidazolium methylphosphonate (LMP102 and 1-ethyl-3-methylimidazolium ethylphosphonate (LEP102 on magnesium alloy AZ31B at 50 °C have been studied. The purpose of increasing the temperature was to reduce the immersion time, from 14 days at room temperature, to 48 hours at 50 °C. The abrasion resistance of the coated alloy was studied by microscratching under progressively increasing load, and compared with that of the uncoated material. The order of abrasion resistance as a function of the IL is LEP102 > LMP101 > LMP102, which is in agreement with the order obtained for the coatings grown at room temperature. The maximum reduction in penetration depth with respect to the uncovered alloy, of a 44.5%, is obtained for the sample treated with the ethylphosphonate LEP102. However, this reduction is lower than that obtained when the coating is grown at room temperature. This is attributed to the increased thickness and lower adhesion of the coatings obtained at 50 °C, particularly those obtained from methylphosphonate ionic liquids. The results are discussed from SEM-EDX and profilometry.

  19. Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2012-01-01

    Full Text Available AZ91 magnesium alloy hybrid composites reinforced with different hybrid ratios of carbon nanotubes (CNTs and silicon carbide (SiC nanoparticulates were fabricated by semisolid stirring assisted ultrasonic cavitation. The results showed that grains of the matrix in the AZ91/(CNT + SiC composites were obviously refined after adding hybrid CNTs and SiC nanoparticles to the AZ91 alloy, and the room-temperature mechanical properties of AZ91/(CNT + SiC hybrid composites were improved comparing with the unreinforced AZ91 matrix. In addition, the tensile mechanical properties of the AZ91 alloy-based hybrid composites were considerably improved at the mass hybrid ratio of 7 : 3 for CNTs and SiC nanoparticles; in particular, the tensile and yield strength were increased, respectively, by about 45 and 55% after gravity permanent mould casting. The reason for an increase in the room-temperature strength of the hybrid composites should be mainly attributable to the larger hybrid ratio of CNTs and SiC nanoparticles, the coefficient of thermal expansion (CTE mismatch between matrix and hybrid reinforcements, the dispersive strengthening effects (Orowan strengthening, and the grain refining (Hall-Petch effect.

  20. In vitro corrosion and cytocompatibility of ZK60 magnesium alloy coated with hydroxyapatite by a simple chemical conversion process for orthopedic applications.

    Science.gov (United States)

    Wang, Bing; Huang, Ping; Ou, Caiwen; Li, Kaikai; Yan, Biao; Lu, Wei

    2013-12-03

    Magnesium and its alloys--a new class of degradable metallic biomaterials-are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks' immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells.

  1. Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein-2 on magnesium alloys for enhanced corrosion resistance and bone regeneration.

    Science.gov (United States)

    Jiang, Yanan; Wang, Bi; Jia, Zhanrong; Lu, Xiong; Fang, Liming; Wang, Kefeng; Ren, Fuzeng

    2017-10-01

    Magnesium alloys have the great potential to be used as orthopedic implants due to their biodegradability and mechanical resemblance to human cortical bone. However, the rapid degradation in physiological environment with the evolution of hydrogen gas release hinders their clinical applications. In this study, we developed a novel functional and biocompatible coating strategy through polydopamine mediated assembly of hydroxyapatite nanoparticles and growth factor, bone morphogenetic protein-2 (BMP-2), onto the surface of AZ31 Mg alloys. Such functional coating has strong bonding with the substrate and can increase surface hydrophilicity of magnesium alloys. In vitro electrochemical corrosion and hydrogen evolution tests demonstrate that the coating can significantly enhance the corrosion resistance and therefore slow down the degradation of AZ31 Mg alloys. In vitro cell culture reveals that immobilization of HA nanoparticles and BMP-2 can obviously promote cell adhesion and proliferation. Furthermore, in vivo implantation tests indicate that with the synergistic effects of HA nanoparticles and BMP-2, the coating does not cause obvious inflammatory response and can significantly reduce the biodegradation rate of the magnesium alloys and induce the new bone formation adjacent to the implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2750-2761, 2017. © 2017 Wiley Periodicals, Inc.

  2. Formation of Al-alloyed Layer on Magnesium with Use of Casting Techniques

    Directory of Open Access Journals (Sweden)

    Mola R.

    2016-03-01

    Full Text Available Al-enriched layer was formed on a magnesium substrate with use of casting. The magnesium melt was cast into a steel mould with an aluminium insert placed inside. Different conditions of the casting process were applied. The reaction between the molten magnesium and the aluminium piece during casting led to the formation of an Al-enriched surface layer on the magnesium substrate. The thickness of the layer was dependent on the casting conditions. In all fabricated layers the following phases were detected: a solid solution of Mg in Al, Al3Mg2, Mg17Al12 and a solid solution of Mg in Al. When the temperature of the melt and the mould was lower (variant 1 – 670°C and 310°; variant 2 – 680°C and 310°C, respectively the unreacted thin layer of aluminium was observed in the outer zone. Applying higher temperatures of the melt (685°C and the mould (325°C resulted in deep penetration of aluminium into the magnesium substrate. Areas enriched in aluminium were locally observed. The Al-enriched layers composed mainly of Mg-Al intermetallic phases have hardness from 187-256 HV0.1.

  3. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  4. Heat-Transfer Coefficient and In-Cavity Pressure at the Casting-Die Interface during High-Pressure Die Casting of the Magnesium Alloy AZ91D

    Science.gov (United States)

    Hamasaiid, A.; Dour, G.; Dargusch, M. S.; Loulou, T.; Davidson, C.; Savage, G.

    2008-04-01

    The present article deals with the application of a new measurement method to determine the heat-transfer coefficient (HTC) and the heat flux density at the casting-die interface during high-pressure die casting (HPDC) and solidification of the magnesium AZ91D alloy. The main measurements during the trial included velocity and the position of the piston that delivers the metal into the die, the pressure in the die cavity and at the tip of the piston, the alloy surface temperature, and the die temperature at different depths from the surface of the die. The temperature data were analyzed using an inverse method to determine the HTC at the casting-die interface during solidification. This article examines in detail the influence of the piston velocity and in-cavity pressure on heat transfer at the casting-die interface during casting and solidification of the magnesium AZ91D alloy.

  5. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yaming, E-mail: wangyaming@hit.edu.cn [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Hao [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China)

    2016-12-15

    Highlights: • A hydrophobic micro-nano roughness surface on magnesium was fabricated. • Micro-nano structure derives from duplicating ‘over growth’ regions by MAO. • 7–9 μm micro-scale big pores insetting with nano-scale fine pores were fabricated. • Hydrophobicity of micro-nano surface was improved by chemical decoration and stearic treatment. - Abstract: Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic ‘lotus leaf’ hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO{sub 3} aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7–9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured ‘over growth’ oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO{sub 3} and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from −1.521 V of the bare magnesium to −1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily

  6. Electrochemical behavior of magnesium alloys as biodegradable materials in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Ghoneim, A.A., E-mail: Azzaghoneim@gmail.co [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt); Fekry, A.M.; Ameer, M.A. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2010-08-01

    The electrochemical behavior of extruded AZ31E and AZ91E alloys was investigated in Hank's solution at 37 {sup o}C. The behavior of the two alloys was studied with immersion time using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and weight loss tests. It was found that the corrosion resistance of AZ31E alloy is higher than that of AZ91E. Also, the effect of adding different concentrations of a commercial drug called glucosamine sulphate (as inhibitor) to Hank's solution was studied for AZ31E alloy. The corrosion was effectively inhibited by the addition of 0.01 mM glucosamine sulphate that reacts with AZ31E alloy and forms a protective film on its surface. The results were confirmed by surface examination via scanning electron microscope.

  7. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  8. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  9. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    Science.gov (United States)

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  10. Simultaneous multiscale measurements on dynamic deformation of a magnesium alloy with synchrotron x-ray imaging and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Sun, T.; Fezzaa, K.; Gong, X. L.; Luo, S. N.

    2017-07-01

    Dynamic split Hopkinson pressure bar experiments with in situ synchrotron x-ray imaging and diffraction are conducted on a rolled magnesium alloy at high strain rates of ~5500 s-1. High speed multiscale measurements including stress–strain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously, revealing strong anisotropy in deformation across different length scales. {1012} extension twinning induces homogenized strain fields and gives rise to rapid increase in strain hardening rate, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate. During the early stage of plastic deformation, twinning is dominant in dynamic compression, while dislocation motion prevails in quasi-static loading, manifesting a strain-rate dependence of deformation.

  11. Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron x-ray imaging and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Bie, B. X.; Li, Q. H.; Sun, T.; Fezzaa, K.; Gong, X. L.; Luo, S. N.

    2017-06-01

    In situ synchrotron x-ray imaging and diffraction are used to investigate deformation of a rolled magnesium alloy under uniaxial compression at room and elevated temperatures along two different directions. The loading axis (LA) is either perpendicular or parallel to the normal direction, and these two cases are referred to as LA⊥ and LAk loading, respectively. Multiscale measurements including stressestrain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously. Due to initial texture, f1012g extension twinning is predominant in the LA⊥ loading, while dislocation motion prevails in the LAk loading. With increasing temperature, fewer f1012g extension twins are activated in the LA⊥ samples, giving rise to reduced strain homogenization, while pyramidal slip becomes readily activated, leading to more homogeneous deformation for the LAk loading. The difference in the strain hardening rates is attributed to that in strain field homogenization for these two loading directions

  12. Grain size and microhardness evolution during annealing of a magnesium alloy processed by high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Livia Raquel C. Malheiros

    2015-01-01

    Full Text Available High-pressure torsion (HPT was used to impose severe plastic deformation on a magnesium alloy AZ31. The material was processed for 0.5, 1, 2, 3, 5 and 7 turns at room temperature under a pressure of 6.0 GPa. Samples were annealed for 1800 s at temperatures of 373 K, 423 K, 473 K, 573 K and 673 K. Microhardness tests and metallography were used to determine the evolution of strength and grain size as a function of the annealing temperature. The results show that recrystallization takes place at temperatures higher than 423 K. The annealing behavior is independent of the number of turns in HPT.

  13. Study on typical hole defects in AZ91D magnesium alloy prepared by low pressure lost foam casting

    Directory of Open Access Journals (Sweden)

    Li Jiqiang

    2013-07-01

    Full Text Available The hole defects can easily occur in magnesium alloy castings that are prepared by low pressure lost foam casting (LP-LFC process when the process parameters such as vacuum, pouring temperature and filling velocity are not properly selected. In this study, the forming mechanism of the hole defects in AZ91D magnesium castings by LP-LFC process was investigated. The shape, location and surface appearance of the hole defects were observed using optical microscopy and scanning electron microscopy, and the chemical composition on the surface of the holes was analyzed using energy spectrometer. The result indicates that there are two types of hole defects, i.e., the pyrolysis products related hole defects, including concentrative hole and blow hole defects, and slag related hole defects. The concentrative hole and the blow-hole defects were formed either by the liquid-EPS degradation products entrapped in the molten metal under the condition that the pouring temperature is equal to or lower than 730 ℃, or by the hindered transport of EPS pyrolysis products. Some irregular shape hole defects were caused by slag or by coating slough entrapment when the pouring temperature is equal to 750 ℃ and the filling velocity is equal to or greater than 100 mm·s-1. To reduce or eliminate the hole defects, the vacuum and filling velocity must be properly chosen to ensure that the metal front profile exhibits convex shape and in laminar current state, and the pouring temperature should be just high enough to ensure that the molten melt has adequate heat energy to complete the foam pyrolysis and to fully occupy the mould. For AZ91D magnesium castings in this study, the parameters should be 730 ℃ pouring temperature, 0.02-0.03 MPa vacuum and 80 mm·s-1 filling velocity.

  14. Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering

    Directory of Open Access Journals (Sweden)

    A.N. AlHazaa

    2016-04-01

    Full Text Available Transient liquid phase (TLP bonding process was applied to join magnesium alloy AZ31 samples with minimum microstructural changes. The magnesium samples were coated by 5 μm nickel prior to the TLP bonding. Bonding conditions of 8 MPa uniaxial pressure and 520 °C bonding temperature were applied for all bonds at various bonding times. The microstructure across the joint regions was examined as a function of bonding time (5–60 min. Investigating the change in Ni contents was examined by EDS line scan. It was noticed that Ni coating could not be observed by SEM for bonds made at 30 and 60 min due to complete dissolution of the Ni coating. Second phase particles containing Mg2Ni intermetallics were observed by X-ray Photoelectron Spectroscopy (XPS near the joint region. The shear strength of the bonds initially increases with the increase in bonding time till 20 min. On the other hand, with bonding times over 20 min the shear strength decreases. Therefore the optimum bonding time at the conditions applied was concluded to be 20 min.

  15. Influence of die lubricants on pickling and conversion treatment of high-pressure die-cast AM30 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, Carsten; Da Conceicao, Thiago Ferreira; Kainer, Karl Ulrich; Hoeche, Daniel [Corrosion and Magnesium Surface Technology, Institute of Materials Research, Helmholtz-Zentrum Geesthacht - HZG, Max-Planck-Strasse 1, 21502 Geesthacht (Germany); Izquierdo, Patrick; Klose, Stephan G. [Daimler AG, 71059 Sindelfingen (Germany)

    2012-04-15

    The pre-treatment of magnesium-based components plays an important role in surface engineering technology to guarantee good adhesion of the final coating system to the magnesium substrate in order to achieve good corrosion resistance. This paper focuses on the influence of two different die lubricants - one based on mineral oil, the other on siloxane - on the pickling and conversion treatment of an AM30 alloy. The surface conditions after casting, pickling, and conversion treatment were determined by X-ray-induced photoelectron spectroscopy, spark erosion, optical emission spectroscopy, IR spectroscopy, and scanning electron microscopy (including EDX). The influence of the different die lubricants on the result of the pickling treatment in terms of surface morphology and composition was significant. The mineral-oil-based lubricant was found to be removed more easily and uniformly from the surface. Only sufficient removal of the die lubricants can guarantee homogeneous and uniform formation of the conversion coating. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  17. STUDY OF CHIP IGNITION AND CHIP MORPHOLOGY AFTER MILLING OF MAGNESIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2016-12-01

    Full Text Available The paper analyses the impact of specified technological parameters of milling (vc, fz, ap on time to ignition. Stages leading to chip ignition were analysed. Metallographic images of magnesium chip were presented. No significant difference was observed in time to ignition in different chip fractions. Moreover, the surface of chips was free of products of ignition and signs of strong oxidation.

  18. Microstructural Characteristics of High Rate Plastic Deformation in Elektron (trademark) WE43 Magnesium Alloy

    Science.gov (United States)

    2012-04-01

    Davis, † Rick DeLorme, † and Kyu Cho 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...chosen that would induce the least amount of damage. Therefore, waterjet cutting was used to cross-section the deformed samples, Magnesium Technology

  19. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.

    Science.gov (United States)

    Shadanbaz, Shaylin; Dias, George J

    2012-01-01

    Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong-Hwan [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Metal Forming Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Ki Ho; Shin, Young-Chul; Yoon, Duk Jae [Metal Forming Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Kawasaki, Megumi, E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2016-02-15

    Processing through the application of equal-channel angular pressing (ECAP) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. Magnesium has received much attention to date for its lightweight, high strength and excellent elasticity. Mg alloys with addition of CaO is reported to provide the successful casting procedure without usage of greenhouse gas, SF{sub 6}, whereas it is generally used for preventing the oxidation of Mg during casting. In the present investigation, a CaO added AZ31 (AZ31-CaO) magnesium alloy was processed by ECAP at elevated temepratures with a few steps of reduction which result in significant grain refinement to ~ 1.5 μm after 6 passes. Compression testing at room temperature demonstrated the AZ31-CaO alloy after ECAP showed enhanced yield strength more than the as-processed commercial AZ31 alloy while both alloys maintained ductility in spite of significant reduction in grain size. The improved strength in the AZ31-CaO alloy was attributed to the formation of fine Al{sub 2}Ca precipitates which experience breaking-up through ECAP and accelerate the microstructural refinement. Moreover, the preservation of ductility was attributed to the enhancement of strain hardening capability in the AZ31 alloy at room temperature. This study discusses the feasibility of using ECAP to improve both strength and ductility on magnesium alloys by applying the diagram describing the paradox of strength and ductility. - Highlights: • AZ31 and AZ31-CaO magnesium alloys were processed by ECAP up to 6 passes. • AZ31-CaO alloy after ECAP showed improved yield strength without losing ductility. • CaO in AZ31 forms fine Al{sub 2}Ca accelerating microstructural refinement during ECAP. • Feasibility of using ECAP was shown to improve both strength and ductility in Mg.

  1. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Hamouda M. [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Lee, Do Hee [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Chan Hee, E-mail: biochan@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2015-10-01

    Graphical abstract: - Highlights: • Anodizing process was used for the surface modification of AZ31B magnesium alloy. • An appetite-like film was deposited on the surface of AZ31B magnesium alloy. • Ceramic film was investigated by XRD and XPS. • Nano-plates growth are observed though the implemented experimental design. • Significant increase in the substrate hardness and surface roughness was observed. - Abstract: In this study, for the first time, the degradation performance of AZ31B Mg alloy was tuned by an in situ deposition of apatite thin layer within a short time in one step. Using Taguchi method for experimental design, anodization process was designed under control conditions (time and voltage), and simulated body fluid (SBF) was used as the electrolyte to nucleate apatite-like compounds. The coated alloy was characterized through field emission scanning electron microscopy (FE-SEM), EDS, X-ray diffraction and XPS analysis. The results show that the applied voltage has a significant effect on the formation of apatite-like layers. Compared to the uncoated samples, microhardness and surface roughness of the coated samples showed remarkably different values. The potentiodynamic polarization results demonstrate that the polarization resistance of the anodized samples is higher than the substrate polarization resistance, thus improving the alloy corrosion resistant. Based on the experimental results, the proposed nanostructure apatite-like coating can offer a promising way to improve the biocompatibility and degradability properties of the Mg alloy for bone tissue regeneration.

  2. Peculiarities of forming diffusion bimetallic joints of aluminum foam with a monolithic magnesium alloy

    Directory of Open Access Journals (Sweden)

    M. Khokhlov

    2016-12-01

    Full Text Available The work is carried out to determine an optimal method to obtain the welded bimetallic joints of monolithic Mg-alloy with porous Al-alloy using gallium as chemical activator and heating up to 300 °C by two different methods: long-term in vacuum oven and short-term without vacuum by passing of low voltage current. There is no microstructure change in Al-foam but indentation test records the negligible reduction of the mechanical properties. SEM showed the crystallization of two types of Mg5Ga2 and Mg2Ga inter-metallic phases in the wavy uneven diffusion zone on Mg-alloy side with significant increase of micro-hardness and Young's modulus. The narrow depth of the diffusion zone takes place in joints by short-term heating, so this method is more applicable for welding of monolithic and porous alloys at chemical activation using gallium.

  3. Fatigue characteristics of sand-cast AZ91D magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zhenming Li

    2017-03-01

    Full Text Available The fatigue characteristics of the AZ91D-T6 alloy samples taken from engine blocks have been investigated at 20 °C and elevated temperature (150 °C. The fatigue strength and cyclic stress amplitude of the alloy significantly decrease with the increase of the test temperature, although cyclic hardening occurs continuously until failure for both temperatures. With the increase of the temperature, the decreased fatigue life of the alloy tested at the same stress amplitude is mainly attributed to the decreased matrix strength and the increased hysteresis energies. Fatigue failure of the engine blocks made of AZ91D-T6 alloy is mainly controlled by casting defects. For the defect-free specimens, the crack initiation behavior is determined by the single-slip (20 °C and by environment-assisted cyclic slip (150 °C during fatigue, respectively. The low-cycle fatigue lives of the alloy can be predicted using the Coffin-Manson relation and Basquin laws, the three-parameter equation and the energy-based concepts, while the high-cycle fatigue lives of the alloy fitted well with the developed long crack life model and MSF life models.

  4. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin.

    Science.gov (United States)

    Pan, Changjiang; Hu, Youdong; Hou, Yu; Liu, Tao; Lin, Yuebin; Ye, Wei; Hou, Yanhua; Gong, Tao

    2017-01-01

    In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates

  5. In vitro corrosion behavior of magnesium alloy AZ31B-hydroxyapatite metallic matrix composites processed via friction stir processing

    Science.gov (United States)

    Ho, Yee-Hsien

    Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH 2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the present efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount ( 5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure, the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX, XRD, and XPS. The detailed observations will be discussed during presentation.

  6. Life Cycle Assessment of ECO-Magnesium® Alloy Produced by Green Metallurgy EU Project Process Route

    Science.gov (United States)

    D'Errico, Fabrizio; Plaza, Gerardo Garces; Giger, Franz; Kim, Shae K.

    Employing AZ31B Eco-Magnesium® (Eco-Mg) alloy in the European project Green Metallurgy (Green Metallurgy Project) process route provides the lowest carbon footprint since precursor materials. Chips produced from the machining phase can be used directly in the cold compaction step, and followed by direct extrusion to produce fully densified semifinished bars. These materials are of great interest in certain manufacturing sectors as they can impact future market scenarios based on the high rate of recycled material. Specifically, there are two key-points which can be considered sources of improvement: a) Eco-Mg alloys contribute to drastically reduce of the Global Warming Potential (GWP) of the entire process route as recycled chips have been used as feedstock material; b) Eco-Mg are less expensive materials, and therefore of interest to the automobile sectors for cost-driven lightweight components. Using 30% in-situ recycled chips material allows manufacturers to keep the total GWP of semifinished bar produced by the tested process route to about 76.2 kgC02eq per kg of bar.

  7. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  8. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The deformation and acoustic emission of aluminum-magnesium alloy under non-isothermal thermo-mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, S. V.; Plotnikov, V. A., E-mail: plotnikov@phys.asu.ru; Lysikov, M. V. [Altai State University, Barnaul, 656049 (Russian Federation); Kolubaev, E. A., E-mail: eak@ispms.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPa makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.

  10. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhida; Qin, Guoliang, E-mail: glqin@sdu.edu.cn; Wang, Liyuan; Meng, Xiangmeng; Li, Fei

    2015-10-01

    Dissimilar welding of aluminum bars and magnesium bars was produced by the friction welding technique. The interfac