WorldWideScience

Sample records for world nuclear industry

  1. The World Nuclear Industry Status Report 2013

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  2. The World Nuclear Industry Status Report 2004

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  3. The World Nuclear Industry Status Report 2012

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  4. The World Nuclear Industry Status Report: 1992

    International Nuclear Information System (INIS)

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  5. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  6. The world nuclear industry status report 2007

    International Nuclear Information System (INIS)

    Schneider, M.; Froggatt, A.

    2007-11-01

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average lifetime of 40 years

  7. The world nuclear industry status report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  8. The World Nuclear Industry Status Report 2017

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  9. Developing world class leader-managers for the evolving nuclear industry

    International Nuclear Information System (INIS)

    Konettsni, A.L.

    2010-01-01

    The author discusses the problems of educating and training the world-class leaders for nuclear industry. He specifies the leader's characters, emphasizing that common high standards of performance have been the hallmark of the industry for years. Rapid growth in the nuclear industry could diminish the self-discipline that has been developed over decades. He lists the US Naval Nuclear Propulsion Program fundamental principles developed over six decades. The author also dwells on corporate self-motivation, self-control, self-expectancy of optimism and company's image [ru

  10. The World Nuclear Industry Status Report 2015

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Thomas, Steve; Porritt, Jonathon

    2015-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Japan without nuclear power for a full calendar year for the first time since the first commercial nuclear power plant started up in the country 50 years ago. Nuclear plant construction starts plunge from fifteen in 2010 to three in 2014. 62 reactors under construction - five fewer than a year ago - of which at least three-quarters delayed. In 10 of the 14 building countries all projects are delayed, often by years. Five units have been listed as 'under construction' for over 30 years. Share of nuclear power in global electricity mix stable at less than 11% for a third year in a row. AREVA, technically bankrupt, downgraded to 'junk' by Standard and Poor's, sees its share value plunge to a new historic low on 9 July 2015-a value loss of 90 percent since 2007 China, Germany, Japan-three of the world's four largest economies-plus Brazil, India, Mexico, the Netherlands, and Spain, now all generate more electricity from non-hydro renewables than from nuclear power. These eight countries represent more than three billion people or 45 percent of the world's population. In the UK, electricity output from renewable sources, including hydropower, overtook the output from nuclear. Compared to 1997, when the Kyoto Protocol on climate change was signed, in 2014 there was an additional 694 TWh per year of wind power and 185 TWh of solar photovoltaics- each exceeding nuclear's additional 147 TWh

  11. The World Nuclear Industry Status Report 2014

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  12. The World Nuclear Industry Status Report 2016

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Fairlie, Ian; Maltini, Fulcieri; Thomas, Steve; Kaaberger, Tomas

    2016-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Nuclear power generation in the world increased by 1.3%, entirely due to a 31% increase in China. Ten reactors started up in 2015-more than in any other year since 1990-of which eight were in China. Construction on all of them started prior to the Fukushima disaster. Eight construction starts in the world in 2015-to which China contributed six-down from 15 in 2010 of which 10 were in China. No construction starts in the world in the first half of 2016. The number of units under construction is declining for the third year in a row, from 67 reactors at the end of 2013 to 58 by mid-2016, of which 21 are in China. China spent over US$100 billion on renewables in 2015, while investment decisions for six nuclear reactors amounted to US$18 billion. Eight early closure decisions taken in Japan, Sweden, Switzerland, Taiwan and the U.S. Nuclear phase-out announcements in the U.S. (California) and Taiwan. In nine of the 14 building countries all projects are delayed, mostly by several years. Six projects have been listed for over a decade, of which three for over 30 years. China is no exception here, at least 10 of 21 units under construction are delayed. With the exception of United Arab Emirates and Belarus, all potential newcomer countries delayed construction decisions. Chile suspended and Indonesia abandoned nuclear plans. AREVA has accumulated US$11 billion in losses over the past five years. French government decides euro 5.6 billion bailout and breaks up the company. Share value 95 percent below 2007 peak value. State utility EDF struggles with US$ 41.5 billion debt, downgraded by S and P. Chinese utility CGN, EDF partner for Hinkley Point C, loses 60% of its share value

  13. Iodine-129 dose to the world population from the nuclear power industry

    International Nuclear Information System (INIS)

    Kocher, D.C.; Till, J.E.

    1979-01-01

    Because of the 15.7 million-year half life for 129 I and the mobility of iodine in the environment, releases of 129 I result in potential radiological impacts on the entire world population essentially in perpetuity. This paper presents estimates of dose to the world population from releases of 129 I by the world nuclear power industry during the years 1975 to 2020

  14. World atlas of nuclear industry: civil and military

    International Nuclear Information System (INIS)

    Alexandre, Nicolas

    2011-01-01

    Todays, with the energy supplies and global warming concerns, nuclear energy in making a come-back, witness the numerous nuclear programs launched or re-launched in the US, in Europe, China and India. In parallel, on the military side, the deterrence strategy remains in the center of security politics of big powers. This atlas takes stock of the overall issues linked with the nuclear technology: production, civil applications (power generation, medicine etc..), military usages (naval propulsion, weapons). It answers the main questions of this complex world, often dominated by secrecy: who does what in the nuclear domain in France? Is an accident, like the Chernobyl's one, possible today in Europe? What solutions for radioactive wastes? Do we take risks when we export our reactor technologies to Middle-East countries? Are we at the dawn of a new arms rush? What do international agreements foresee in this domain? Taking into account the costs, the hazards and the advantages of nuclear industry, the atlas shows that it is possible to establish solid technical and legal barriers between its civil and military sides. (J.S.)

  15. The nuclear fuel cycle industry. World situation: the place of the French industry

    International Nuclear Information System (INIS)

    Sornein, J.

    1978-01-01

    The decision taken the day following the end of the second world war to create a French industry for the nuclear fuel cycle, the speed and dimension of its development from 1946 to 1966, the strengthening of its acquired knowledge during the following five years, lastly, the fact that, since 1972, it was able to make great strides, will have been in short the fruit of the remarkable continuity of an unfailing political will. Consequently it was possible beyond doubt, as soon as the ineluctable consequences of the oil crisis were evaluated, to give the French nuclear fuel cycle industry the new objectives which will succeed in granting it a foremost dimension on the international scale. In the three branches constituting the base of this industry (natural, enrichment, reprocessing), all these objectives will be reached by 1985. Their realization will permit our country to cover, in all security, not only its domestic needs but also to pursue a policy to sell materials and services for export at competitive prices [fr

  16. Implications of nuclear industry globalization for chinese nuclear industry: opportunities and challenges

    International Nuclear Information System (INIS)

    Guo Zhifeng; Ding Qihua; Wang Zheng

    2014-01-01

    In recent years, globalization of the world nuclear industry has developed into a new phase. Chinese nuclear industry will be inevitably integrated into this trend. Globalization will bring both positive and adverse effects on Chinese nuclear industry. Facing the fierce competition, Chinese companies must rise to many challenges to enter the global nuclear market. And China need to make scientific decisions and take effective measures in various fields of nuclear industry to realized the goal of global development. (authors)

  17. The World Nuclear Industry Status Report 2009. With Particular Emphasis on Economic Issues

    International Nuclear Information System (INIS)

    Schneider, Mycle; Thomas, Steve; Froggatt, Antony; Koplow, Doug; Hazemann, Julie

    2009-08-01

    The World Nuclear Industry Status Report 2009 provides the reader with the basic quantitative and qualitative facts on the nuclear power plants in operation, under construction and in planning phases throughout the world. A detailed overview assesses the economic performance of past and current nuclear projects. As of 1 August 2009 there are 435 nuclear reactors operating in the world, nine less than in 2002. There are 52 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. At the peak of the nuclear industry's growth phase in 1979 there were 233 reactors being built concurrently. Even at the end of 1987, there were still 120 reactors in process. Much has changed. For the first time since commercial use of nuclear energy began in the middle of the 1950's no new nuclear plant was connected to the grid in 2008. In fact, no start-up has been reported for the past two years, since Cernavoda-2 was connected to the grid on 7 August 2007, after 24 years of construction. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States, but as of 1 August 2009 only 144 units were in operation. Today the worldwide operating reactors total 370,000 megawatts (370 GW), about 1,600 MW less than one year ago. In 2007 nuclear power plants generated about 2,600 TWh and provided 14% of the world's electricity. After an unprecedented drop in electricity generation of 2% in 2007, nuclear power plants' output lost another half percentage point in 2008. Nuclear power provided 5.5% of the commercial primary energy production and about 2% of the final energy in the world, and has trended downwards for several years. Twenty-seven of the 31 countries operating nuclear power plants maintained or decreased their share of nuclear power within the electricity mix in 2008 relative to 2007. Four countries (Czech Republic, Lithuania, Romania, Slovakia) increased their share. In addition to the 52 units currently under construction

  18. The World Nuclear Industry Status Report 2010-2011. Nuclear Power in a Post-Fukushima World. 25 years after the Chernobyl accident

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Thomas, Steve; Hazemann, Julie; Mastny, Lisa

    2011-04-01

    The report provides the reader with the basic quantitative and qualitative facts about nuclear power plants in operation, under construction, and in planning phases throughout the world. It assesses the economic performance of past and current nuclear projects and compares their development to that of leading renewable energy sources. An extensive annex provides a country-by-country analysis of nuclear programs around the world. The report also includes the first published overview of reactions to the catastrophe in Japan. But developments even prior to March 11, when the Fukushima crisis began, illustrate that the international nuclear industry has been unable to stop the slow decline of nuclear energy. Not enough new units are coming online, and the world's reactor fleet is aging quickly. Moreover, it is now evident that nuclear power development cannot keep up with the pace of its renewable energy competitors. Annual renewables capacity additions have been outpacing nuclear start-ups for 15 years. In the United States, the share of renewables in new capacity additions skyrocketed from 2 percent in 2004 to 55 percent in 2009, with no new nuclear coming on line. In 2010, for the first time, worldwide cumulated installed capacity of wind turbines (193 GW), small hydro (80 GW, excluding large hydro) biomass and waste-to-energy plants (65 GW), and solar power (43 GW) reached 381 GW, outpacing the installed nuclear capacity of 375 GW prior to the Fukushima disaster. Total investment in renewable energy technologies has been estimated at $243 billion in 2010. As of April 1, 2011, there were 437 nuclear reactors operating in the world-seven fewer than in 2002. The International Atomic Energy Agency (IAEA) currently lists 64 reactors as 'under construction' in 14 countries. By comparison, at the peak of the industry's growth phase in 1979, there were 233 reactors being built concurrently. In 2008, for the first time since the beginning of the nuclear age, no new unit was

  19. Future industrialization of the world and the necessity of nuclear power; how limited are resources?

    International Nuclear Information System (INIS)

    Jovanovic, J.

    1996-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist. Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers i have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half century, but only if breeder nuclear power is widely used throughout the world. In this paper i elaborate on the question of future availability of some basic natural resources. 18 refs. 3 figs. 1 tabs

  20. Russian nuclear industry and the perspectives on the world market

    International Nuclear Information System (INIS)

    Nefedov, G. F.

    2008-01-01

    The development of the NPP capacities in Russia is presented. Federal Target Program 'Development of the Nuclear Power Industry of Russia in 2007-2010 and till 2015' (Government Decree of October 06 2006) is adopted. The scope of financing under the Program till 2015 is €41bill., of which budget financing is €19 bln. The goals are: to launch 10 new NPP units and to start 10 more projects by 2015; to actively promote the Russian nuclear fuel cycle organizations production on the world markets; to expand NPP construction and and operation outside Russia. The institutional reform to meet the goals is presented. NPP with russian VVER projects worldwide are presented

  1. Building public confidence in the world's nuclear industry

    International Nuclear Information System (INIS)

    Duncan, C.D.

    1996-01-01

    Public confidence in the nuclear industry requires two things, which are trust and understanding. Trust is an emotional response based upon an instinctive reaction. Understanding, on the other hand, is an intellectual response based upon facts. To gain public confidence, both of these levels must be communicated and proactive strategies must be implemented to do this. To achieve this objective will require confidence and courage in communication programs. Each company operating in the nuclear sector must be proactive in building its individual reputation and must not retreat from controversy. Similarly, each industry body must continue the Herculean task of building understanding. The nuclear industry has powerful arguments. ICI, BP or Ford did not achieve their licences to operate by keeping their heads down, they achieved their current market positions by building a positive corporate reputation within their respective industrial contexts over many decades. In order to achieve a similar position for the nuclear industry and the companies, their examples must be followed. If it is continued to 'keep the heads down' in the trenches, public opinion will surely bury within it. (G.K.)

  2. World nuclear performance report 2016. A new study by World Nuclear Association

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2016-08-15

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  3. World nuclear performance report 2016. A new study by World Nuclear Association

    International Nuclear Information System (INIS)

    Cobb, Jonathan

    2016-01-01

    A larger number of nuclear power units are under construction than at any other time in the last 25 years, and with another ten new reactors coming online 2015 demonstrated improving new build performance all round. The existing global fleet, totally 439 by year-end, generated roughly 10 % of the world's electricity, making up around one-third of the world's low-carbon electricity supply. Nevertheless, there are challenges ahead for the global nuclear industry. The World Nuclear Association's vision for the future global electricity system consists of a diverse mix of low-carbon technologies - where renewables, nuclear and a fossil fuels work together in harmony to ensure a reliable, affordable and clean energy supply.

  4. The nuclear industry in Canada

    International Nuclear Information System (INIS)

    Anderson, D.; Broughton, W.

    1992-01-01

    The nuclear industry in Canada comprises three identifiable groups: (1) Atomic Energy of Canada Limited (AECL), (2) electrical utilities that use nuclear power plants, (3) private engineering and manufacturing companies. At the end of World War II, AECL was charged with investigating and developing peaceful uses of atomic power. Included in the results is the Canada deuterium uranium (CANDU) reactor, a peculiarly Canadian design. The AECL maintains research capability and operates as the prime nuclear steam supply system supplier. Utilities in three Canadian provinces operate nuclear power plants, New Brunswick, Quebec, and Ontario, with the majority in Ontario. From the beginning of the nuclear program in Canada, private industry has been an important partner to AECL and the utilities, filling roles as manufacturing subcontractors and as component designers. The prime objective of this paper is to illuminate the role of private industry in developing and maintaining a competitive world-class nuclear industry

  5. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  6. Spanish nuclear industry

    International Nuclear Information System (INIS)

    1994-01-01

    In this book published to commemorate the twentieth anniversary of the Spanish Nuclear Society, it is included a report on the Spanish Nuclear Industry. The Spanish Companies and Organizations in nuclear world are: CIEMAT, Empresarios Agrupados, ENRESA, ENUSA, ENDESA, Grupo Iberdrola, LAINSA, INITEC AND TECNATOM. Activities, history and research programs of each of them are included

  7. The world energetic demand, one key challenge for the nuclear industry

    International Nuclear Information System (INIS)

    Graber, U.

    2009-01-01

    A reappraisal of nuclear power is currently underway worldwide , with an increase in the use of nuclear energy for power generation predicted. The reasons for this global renaissance include a growing demand for electric power throughout the world, awareness the our fossil resources are limited,d protection of the environment and the need for further development of various renewable energy technologies to ensure their competitiveness and base-load capability. Leading energy agencies are predicting an increase in nuclear capacity worldwide from the current figure of 370 GW to 415 -833 GW by the year 2030. Numerous countries have decided to build new nuclear power plants or are planning to do so, even countries that have not used nuclear energy in the past. The nuclear industry is rising to this challenge by offering advanced Generation III+reactors, y building up staffing levels and investing in production facilities and the fuel cycle. Standardizing technology, progressively harmonizing safety requirements across national borders and setting un long-term cooperation agreements between vendors and plant operators are options that can help turn the global renaissance of nuclear power into a sustainable success. (Author)

  8. Future Industrialization of the World and the Necessity of Nuclear Power, Part II: How Limited are Resources?

    International Nuclear Information System (INIS)

    Jovanovich, Jovan V.

    1997-01-01

    Will the future world be forever divided into an industrial, developed and 'rich' on one side, and the primitive, undeveloped, and poor on the other? Is an industrial, affluent and sustainable world of 10-15 billion people owning 5-10 billion cars physically possible to exist? Can the world have enough food, minerals and energy to support such a widespread affluence in a sustainable manner? In previous papers I have argued that even without any major breakthroughs in science and technology, an industrialized, sustainable and affluent world can be created within the next half a century to a century, but only if breeder nuclear power is widely used throughout the world. In this paper I elaborate on the question of future availability of some basic natural resources. (author)

  9. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  10. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  11. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  12. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  13. Working in nuclear industry? why not?

    International Nuclear Information System (INIS)

    Brechet, Y.

    2017-01-01

    Today 200 nuclear reactors are being built or scheduled in the world and despite this, nuclear energy in western countries seems to collapse under the weights of prejudices and false ideas. No matter what the opponents say, nuclear energy is safe and clean and is a bringer of jobs. In France nuclear industry is one of a few industrial sectors that have been spared by massive de-industrialization. Nuclear energy as a carbon-free energy, has an important role to play to mitigate climate warming by working with renewable energies to provide a reliable electric power. This future is a new future for nuclear energy as new challenges have to be overcome, for instance nuclear energy has to adapt itself to the intermittency of wind and solar energies, nuclear industry has to be innovative and has to fully appropriate numerical technologies. Nuclear industry is a promising sector that proposes interesting scientific and technical jobs and is also a vital interest for the country. (A.C.)

  14. World interest in nuclear desalination

    International Nuclear Information System (INIS)

    1969-01-01

    Nuclear power will be used in a desalination plant for the first time in a USSR plant now nearing completion. Studies are in progress to expand the concept of linking the power to chemical industries. These and other developing ideas were subjects of keen discussion by world experts at an Agency conference on nuclear desalination in Madrid. (author)

  15. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  16. World supply of nuclear energy

    International Nuclear Information System (INIS)

    Pecqueur, Michel.

    1981-01-01

    At the end of 1980 nuclear energy accounted for 9% of the world production of electricity stemming from 262 power stations, utilising mainly the process of water reactors and representing an installed capacity of 142 GWe. This production, apparently limited, already represents the equivalent of 150 million TOE. The 600 nuclear power stations in service, under construction or ordered represent a total of 450 GWe. In 1985, their production ought to cover 15% of the world requirements of electricity, which corresponds to a doubling of the share of nuclear energy within 6 years. During these recent years, the development of nuclear energy has undergone a significant slowing down and the number of orders for new nuclear power stations has dropped considerably in particular in the United States. Considering the time required and the available industrial capacity, the accumulated capacity which could be installed worlwide by 1990 could attain 530 GWe, equivalent to 650 MTOE covering 24% of the world production of electricity and 7% of the world consumption of primary energy. A determined effort for the end of this century could end up by the installation of 1200 GWe of capacity, generating 1.5 GTOE. The share of nuclear energy would then represent 35% of the production of electricity [fr

  17. The World Nuclear University: Addressing global needs. London, 4 September 2003. Inauguration ceremony, World Nuclear University

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    For some time, there has been a growing awareness of the need for succession planning in the nuclear industry, to ensure that we cultivate a new generation of young people with the proper education and skills to replace the aging nuclear workforce as its members retire. Today's inauguration of the 'World Nuclear University' (WNU) is the most substantive action taken to date to address this need. This is a challenge, because the widespread perception clearly exists that nuclear energy is a dying field. The IAEA, with its constituency of 135 Member States, is hopeful that this will truly become a World Nuclear University. Almost 2 billion people, nearly one third of the population of the planet, remain without access to modern energy supplies - a shortfall that could be addressed, at least in part, by nuclear energy. But any major expansion in the future use of nuclear power will only be feasible if the nuclear industry is successful in developing innovative reactor and fuel cycle technology - as well as operational and regulatory approaches - that effectively address concerns related to cost competitiveness, safety and security, proliferation resistance and waste disposal. And global development needs go well beyond the electricity sector. The IAEA's recognition of these situations underlies our assistance to Member States, through which we try to address areas of high national priority wherever nuclear technology provides the best option for success. A significant part of that effort lies in the development of human capacity - through training and education in how to apply nuclear technology safely and effectively. 'Atoms for Peace' is a vision nearly five decades old, focused on using nuclear science for the advancement of humankind. It is my hope that this 'World Nuclear University' can be an effective instrument towards the achievement of that vision

  18. Privatisation of the UK's nuclear power industry: nuclear's triple challenge

    International Nuclear Information System (INIS)

    Fraser, W.R.I.

    1997-01-01

    At the British Nuclear Congress in December 1996, Lord Fraser of Caryllie, then UK energy minister, set out the three key issues the nuclear industry must tackle for a successful future: (1) increased competition from other energy sources, (2) a growing world market for its skills and (3) a continuing tough regulatory regime. Nuclear power, with electricity generated in the UK rising to 25%, has responded well to competition from other energy sources, and also to the further competition generated by privatisation which has already generated benefits for the public. As other countries with nuclear programmes diversify and upgrade their technology this will create new export opportunities for Britain over and above those already in existence, notably by BNFL in Japan. Other areas that Britain has to offer relate to safety improvements, notably in eastern Europe, and decommissioning, in which Magnox Electric is one of the few operators in the world with experience in decommissioning a full scale commercial reactor. The regulatory framework for the nuclear industry will continue to be as rigorous as ever, but, however the industry is structured, it should be noted that commercial success and continued safe operations are inextricably linked. The industry must operate within the framework of the development of international treaties and agreements in the nuclear field. The Government will continue to take a close interest in the safety, security and prosperity of the nuclear industry, and help Britain as a whole to be a successful and influential player in the international nuclear community. (UK)

  19. World Council of Nuclear Workers

    International Nuclear Information System (INIS)

    Maisseu, Andre

    2007-01-01

    WONUC is an association of Trade Unions, Scientific Societies and Social Organizations of the employees, workers and professionals of the nuclear energy related industries and technologies; integrated by 35 Countries and 1.8 millions members. This paper expose the products and services that WONUC provide for the promotion of peaceful uses of nuclear energy and the result of their work around all the world

  20. Actual state of the nuclear industry in Japan and trends of nuclear development in the world

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Nuclear industry in Japan established a fixed foundation as a large complex system industry by elapsing about forty years since beginning of its development at top of 1930s. For Japan with little energy resources, nuclear power generation is one of essential choices because not only of keeping energy security but also of response to global warming problem such as global warming protection. Then, in order to intend to promote sound development of the nuclear industry in Japan, further upgrading of technology aimed at maintenance and improvement of safety and formation of understanding and agreement of the peoples must be established. Here was introduced a report on actual state of the nuclear industry in Japan in 1997 fiscal year prepared on February, 1999 by the Japan Atomic Industrial Forum. (G.K.)

  1. The World Nuclear University and its Summer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Borysova, Irina [World Nuclear Association - WNA, Summer Institute of the World Nuclear University - WNU, 22a Saint James' s Sq., SW1Y 4JH London (United Kingdom)

    2008-07-01

    The World Nuclear University is a global partnership committed to enhancing international education and leadership in the peaceful applications of nuclear science and technology. The central elements of the WNU partnership are: - The global organizations of the nuclear industry: WNA and WANO; - The inter-governmental nuclear agencies: IAEA and OECD-NEA; - Leading institutions of nuclear learning in some thirty countries. The WNU was inaugurated in 2003 as a non-profit corporation. Operationally, the WNU is a public-private partnership. On the public side, the WNUCC's multinational secretariat is composed mainly of nuclear professionals supplied by governments; the IAEA further assists with financial support for certain WNU activities. On the private side, the nuclear industry provides administrative, logistical and financial support via the WNA. WNU activities fall into six programmatic categories: 1. Facilitate Multinational Academic Cooperation. 2. Build Nuclear Leadership. 3. Foster Policy Consensus on Institutional and Technological Innovation. 4. Enhance Public Understanding. 5. Shape Scientific and Regulatory Consensus on Issues Affecting Nuclear Operations. 6. Strengthen International Workforce Professionalism. This presentation will describe the WNU programmes addressed to young professionals. Among such programmes, the flagship of the WNU is the WNU Summer Institute. This unique six-week course occurs in a different country each year, offering an inspiring career opportunity for some 100 outstanding young nuclear professionals and academics from around the world. The WNU-SI programme combines an extensive series of 'big picture' presentations from world-class experts with daily team-building exercises. In the process, WNU Fellows become part of a global network of future nuclear leaders. Other WNU programmes for younger generation in the nuclear industry will also be briefly covered in this presentation. (author)

  2. The worldwide nuclear industry and its markets

    International Nuclear Information System (INIS)

    Mons, L.

    2000-06-01

    The world nuclear industry has entered a phase of low activity since the beginning of the 90's. The opening of electricity markets to competition, the reserve of part of the public opinion with respect to nuclear energy and the competition of other power production sources explain the lack of dynamism of nuclear markets. In this context of uncertainties, the nuclear sector has started a re-structuration in depth with new strategic trends which will be decisive for the perenniality of the nuclear industry. The front-end of the fuel cycle is disturbed by production over-capacities which lead to strong tensions on prices. The veering of the German and Belgian policies has had strong impacts on the spent fuels reprocessing activity and the reactor construction activity is in decline in Europe and in the US. On the other hand, services are developing with the extension of the service life of nuclear plants and the waste management and dismantling markets are emerging. The main stakes that the occidental nuclear actors have to face today are: improving the competitiveness of nuclear industry, mastering the management of long-living radioactive wastes, proving the safeness of nuclear power, countering the arrival of Asian competitors. In front of these stakes, the nuclear actors have to take initiatives such as: concentration, vertical integration, technological innovation, communication, diversification etc.. This study examines the overall segments of the world nuclear industry. It comprises also a behaviour and strategy analysis of 13 major actors of this sector. (J.S.)

  3. Commissioning of Mochovce 1 - Important achievement of the world's nuclear industry

    International Nuclear Information System (INIS)

    Holy, Robert; Petrech, Rastislav

    1999-01-01

    The nuclear power industry has been recently perceived by the general public as a specific industrial branch stretching its activities far beyond the conventional industrial standard. Similarly, the stage of testing and commissioning of a nuclear power plant is perceived as a specific stage in the plant life-cycle. This is a complicated process not only in technical terms, but in the context of nowadays, it is also one of the key periods in terms of public relations and public acceptance. The stage of commissioning unit 1 of Mochovce Nuclear Power Plant evoked a real communication media war between defenders and opponents of the nuclear industry started early in 1998 in Slovakia, as well as in other, mostly neighbouring countries. It should be noted, however, that the Mochovce plant has never been a technical problem as confirmed a number of international regulatory missions and audits, even though its construction was stopped in early 90's. The result of the war between the opponents and 'nuclear experts' was more or less clear to a thinking human being - a compromise could have been the only result. The compromise which is in fact a victory of the side of technical development, and loss of those lobbying for a nuclear-reactor-free central Europe. This article brings a review of events that accompanied commissioning activities of Mochovce NPP unit I which were important in terms of public relations

  4. Prospects for the world nuclear energy market

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    Over the last few years projections of nuclear power generating capacity growth for the next two decades have progressively decreased. Dwindling load growth, increasing load lead time, costs of delays and high cost inflation, industrial recession, and fuel cycle delays are discussed as the main causes of the setback. The state of the fuel cycle business in the world market is examined and data are presented and discussed for predicted world supply and demand. Nuclear plans and fuel policies and requirements are then examined for individual countries.

  5. World nuclear atlas. A step toward energy transition

    International Nuclear Information System (INIS)

    Lepage, Corinne; Laborde, Xemartin

    2015-01-01

    Illustrated by more than 120 maps and figures, this book proposes an overview of the world nuclear industry, of its development, and of the various strategies chosen within the perspective of energy transition. It proposes an overview of the status of nuclear energy in the world (presentation of the nuclear energy, development during the X X century, uranium production, fuel production and processing, the nuclear reactor industry), addresses the main controversies (health and environmental impact, waste management, opacity of the information, major accidents), the new challenges faced by the nuclear sector (a difficult assessment of huge costs, competition with renewable energies, a competitive environment, a technological uncertainty, transparency and democracy), the solutions chosen by big countries (USA, China, India, Japan, Europe, the German energy transition), and proposes a focus on France which is the only country which chose an all-nuclear strategy (history, nuclear installations, main actors, the myth of the French energy independence, the post-Fukushima French fleet, the case of the Fessenheim reactor, the EPR in question, the challenge of waste storage with the Cigeo project, the debate on the nuclear cost)

  6. Nuclear industry: a young sector of excellence

    International Nuclear Information System (INIS)

    Varin, P.

    2017-01-01

    Nuclear industry is the 3. industrial sector in France and is the good reason why the French energy mix is largely carbon-free. The medium term challenges that faces nuclear industry in this country is first to succeed the extensive refit of nuclear power plants with a view on getting the extension of their operating life and secondly to recruit the skilled staff nuclear industry needs. About 8000 jobs dispatched in the 2500 enterprises that forms the nuclear sector will be available each year up to 2020. The age pyramid shows that numerous retirements are expected in the years to come so the issue of skill and knowledge transfer is looming. 25% of recruitment will be made on the basis of work-study contracts particularly for technical jobs. Concerning recruitment, the nuclear sector is competing with other high-tech sectors like aeronautics or the automobile sector, which make things harder. The image that nuclear industry wants to promote of itself is the image of a young, modern, high-tech industry that appeared less than 50 years ago and whose main purpose is to provide a carbon-free electricity to an avid world. (A.C.)

  7. Status of nuclear power industry in Ukraine

    International Nuclear Information System (INIS)

    Kadenko, I.M.; Vlasenko, M.I.

    2007-01-01

    There are five nuclear power plants and sites (NPPs) with 15 units in operation, 3 units under decommissioning and 1 drastically known as the 'Shelter' object in Ukraine. Ukraine has ambitions plans to develop nuclear industry based on own mineral, human financial resources as well as world wide international cooperation with nuclear countries

  8. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    This document gathers pieces of information from around the world concerning nuclear industry. The most relevant ones are the following. AREVA NP and EDF have created a new society EDVANCE to combine their engineering teams in the fields of reactor core design and construction. The German Constitutional Court considers as illegal the nuclear fuel tax that was implemented in 2010 to balance public finance and fund the remediation of the Ass salt mine. In France on the Tricastin AREVA's site the ATLAS laboratory has opened its doors, it is the laboratory that will perform all the environmental and industrial analyses of this site. In Japan the reactors 3 and 4 of the Takahama power plant have resumed operations. Today 5 nuclear power reactors are operating on Japanese soil. The Indian government has announced its intention to build heavy water cooled nuclear reactors based on an Indian design. 22 reactors are operating in India representing a total of 6780 MW and 5 others are being built. According to the 'SMR Start' consortium public-private partnership contracts have to be promoted in order to launch the small modular reactor (SMR) technology. (A.C.)

  9. The roles of industry for internationalization of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, Jor-Shan; Oda, Takuji; Tanaka, Satoru; Kuno, Yusuke

    2011-01-01

    To meet increasing energy demand and counter climate change, nuclear energy is expected to expand during the next decades in both developed and developing countries. The Fukushima accident in Japan in March 2011 may dampen the expansion, but it would proceed and continue when the Fukushima lessons are learned. This expansion, most visibly in Asian would be accompanied with complex and intractable challenges to global stability and nuclear security, notably, on 'how to reduce security and proliferation concerns if nuclear power is introduce and when used fuel is generated in less stable regions of the world?' The answers to the question may lie in the possibility of multilateral control of nuclear materials and technologies in the nuclear fuel cycle, including the provision of a 'cradle-to-grave' fuel cycle service, presumably by the nuclear industries and their respective governments. This paper evaluates the importance of such industry-government cooperative initiative and explores into the roles which the nuclear industry should play to ensure that the world would not be 'creating proliferation when expanding the application of nuclear power to emerging nuclear countries'. (author)

  10. Recent Movement, Issues and Some Counter plans in Nuclear Industry

    International Nuclear Information System (INIS)

    Lee, S. K.; Lee, J. K.; Cho, C. S.; Lee, C. C.; Park, C. O.

    2007-01-01

    There is no doubt 'Nuclear Energy' is the only source that can ensure the world's steady development in the foreseeable future. Nowadays is definitely what is called 'renaissance of nuclear.' As energy demand and economy increase, and global climate warms, the trend of nuclear dependency will be accelerated further. With 30 reactors being built around the world today, another 35 or more planned to come online during the next 10 years, and over two hundred further back in the pipeline, the global nuclear industry is clearly going forward strongly. Countries are seeking to replace old reactors as well as expand capacity, and an additional 25 countries are either considering or have already decided to make nuclear energy part of their power generation capacity. On the other hand, as current movement of world nuclear field, Korea has faced to one of the most important times since introducing nuclear power. Twenty nuclear power plants are run in Korea i.e. sixteen PWRs and four PHWRs now, and the capability of nuclear power production has been ranked world number six. In spite of this grand appearance, however, the influencing power on world nuclear society is not well matched to its status since it does not have a special hidden card which can appeal and impact on international community. In the era of nuclear renaissance, paradoxically, Korea is not in the situations of optimistic or pessimistic view. Now let's As energy demand and economy increase, and global climate warms, the trend of nuclear dependency will be accelerated further. With 30 reactors being built around the world today, another 35 or more planned to come online during the next 10 years, and over two hundred further back in the pipeline, the global nuclear industry is clearly going forward strongly. Countries are seeking to replace old reactors as well as expand capacity, and an additional 25 countries are either considering or have already decided to make nuclear energy part of their power generation

  11. Current status and future prospects on nuclear industry in Korea

    International Nuclear Information System (INIS)

    Lee, Joongjae

    2006-01-01

    It is ny great pleasure to have this chance of speaking at twenty-first KAIF/KNS Annual Conference, with the subject of the current status and future prospects of nuclear industry in Korea. As you all know, since the start of operation in Obninsk, the former Soviet Union, on June 26th, 1954, nuclear generation in the world has expanded continuously for the past 50 years. In 1973, when the first oil crisis hit the world, there were 147 nuclear power plants in operation, supplying only 0.8% of the world energy demand. About 30 years later, by the end of last year, 443 plants were in operation in 32 countries, supplying about 16% of the world power demand. Nuclear power generation is greatly contributing to the energy security of many countries and preservation of global environments. Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Due to its high energy density and ability to secure fuel supply at a lower cost, in addition to its cleanliness resulting from almost no emission of greenhouse gases, nuclear power generation is the practical alternative for energy security and the prevention of global warming. However, in the rapidly changing 21st century, the nuclear industries of the world, as well as Korea, are facing more challenges than ever before. The political and social disputes on nuclear generation are continuing while we all are facing urgent challenges, including the concerns about the safety of nuclear generation, procuring site to build nuclear power plants, and the improvement of competitiveness. Please allow me to remind you that it is very important for the world's nuclear societies to cooperate together in order to overcome diverse difficulties along our path and to contribute to the development of mankind and preservation of natural environments with nuclear power as a

  12. Paths to a nuclear world with reliable safeguards

    International Nuclear Information System (INIS)

    Zebroski, E.L.

    1978-01-01

    The effectiveness of safeguards in the nuclear industry in reducing proliferation is surveyed. Several basic topics relative to proliferation which are discussed are: (1) ''the recognition that 'proliferation' encompasses at least four different issues which may require distinct approaches and policies;'' (2) ''in the context of the regulatory process by which the perceived risks to society are managed;'' (3) ''in the context of the realistic options and objectives for an attainable world nuclear structure;'' and (4) ''in the perception of the public and of decision-makers of the attainable reduction in risks - and at what costs - and the recognition of the extent to which some costs have already been accrued.'' Options open to the world are: (1) a structured nuclear world, (2) an unstructured nuclear world, or (3) a benign energy world. Current US policy of denial of nuclear energy by indefinite delay is seen as indirectly pointing the US toward option 1 or 3, as the basic cause of American economic decline, and as a root cause of many international tensions resulting from the US decline. Certain alternate approaches to a breeder-type reactor program or to fuel reprocessing which should contribute to a more proliferation-resistant nuclear program are briefly discussed

  13. Nuclear industry after the Fukushima accident

    International Nuclear Information System (INIS)

    Branche, Thomas; Billes-Garabedian, Laurent; Salha, Bernard; Behar, Christophe; Dupuis, Marie-Claude; Labalette, Thibaud; Lagarde, Dominique; Planchais, Bernard; West, Jean-Pierre; Stubler, Jerome; Lancia, Bruno; Machenaud, Herve; Einaudi, Andre; Anglaret, Philippe; Brachet, Yves; Bonnave, Philippe; Knoche, Philippe; Gasquet, Denis

    2013-01-01

    This special dossier about the situation of nuclear industry two years after the Fukushima accident comprises 15 contributions dealing with: the nuclear industry two years after the Fukushima accident (Bernard Salha); a low-carbon electricity at a reasonable cost (Christophe Behar); nuclear engineering has to gain even more efficiency (Thomas Branche); how to dispose off the most radioactive wastes (Marie-Claude Dupuis, Thibaud Labalette); ensuring the continuation for more than 40 years onward (Denis Gasquet); developing and investing in the future (Philippe Knoche); more than just signing contracts (Dominique Lagarde); immersed power plants, an innovative concept (Bernard Planchais); R and D as a source of innovation for safety and performances (Jean-Pierre West); dismantlement, a very long term market (Jerome Stubler, Bruno Lancia); a reference industrial model (Herve Machenaud); recruiting and training (Andre Einaudi); a diversity of modern reactors and a world market in rebirth (Philippe Anglaret); an industrial revolution is necessary (Yves Brachet); contracts adapted to sensible works (Philippe Bonnave)

  14. World atlas of nuclear industry: civil and military; Atlas mondial du nucleaire: Civil et militaire

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, Nicolas

    2011-07-01

    Todays, with the energy supplies and global warming concerns, nuclear energy in making a come-back, witness the numerous nuclear programs launched or re-launched in the US, in Europe, China and India. In parallel, on the military side, the deterrence strategy remains in the center of security politics of big powers. This atlas takes stock of the overall issues linked with the nuclear technology: production, civil applications (power generation, medicine etc..), military usages (naval propulsion, weapons). It answers the main questions of this complex world, often dominated by secrecy: who does what in the nuclear domain in France? Is an accident, like the Chernobyl's one, possible today in Europe? What solutions for radioactive wastes? Do we take risks when we export our reactor technologies to Middle-East countries? Are we at the dawn of a new arms rush? What do international agreements foresee in this domain? Taking into account the costs, the hazards and the advantages of nuclear industry, the atlas shows that it is possible to establish solid technical and legal barriers between its civil and military sides. (J.S.)

  15. Process industry properties in nuclear industry

    International Nuclear Information System (INIS)

    Zheng Hualing

    2005-01-01

    In this article the writer has described the definition of process industry, expounded the fact classifying nuclear industry as process industry, compared the differences between process industry and discrete industry, analysed process industry properties in nuclear industry and their important impact, and proposed enhancing research work on regularity of process industry in nuclear industry. (authors)

  16. The World Nuclear University Summer Institute

    International Nuclear Information System (INIS)

    Rivard, D.; McIntyre, M.

    2007-01-01

    The World Nuclear University (WNU) Summer Institute is a six weeks intensive training program aimed to develop a global leadership in the field of nuclear sciences and technologies. The topics covered include global setting, international regimes, technology innovation and nuclear industry operations. This event has been held annually since 2005. Mark McIntyre and Dominic Rivard attended this activity as a personal initiative. In this paper they will present the WNU and its Summer Institute, share their participation experience and discuss as well of some technical content covered during the Institute, highlighting the benefits this brought to their careers. (author)

  17. World nuclear capacity and fuel cycle requirements 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment for the Lower and Upper Reference case scenarios were obtained from the Office of Integrated Analysis and Forecasting, Energy Information Administration. Most of these projections were developed using the World Integrated Nuclear Evaluation System (WINES) model

  18. Executive brief to federal government 'the Canadian nuclear industry - a national asset'

    International Nuclear Information System (INIS)

    1985-03-01

    Over a period of 40 years Canada has developed a remarkable nuclear industry. In keeping with our mining heritage, we are the world's leading uranium producer, with the highest grade orebodies in existence still waiting to be tapped. In the realm of high technology development, our CANDU reactor is second to none. Year after year Canadian CANDUs dominate the 'top 10' performance records world-wide. The nuclear industry has created direct employment for over 30,000 Canadians. The 'high tech' sectors of the industry are now vigorously seeking export markets for their products and services. As the world recovers from the recent prolonged recession, electricity demand is rising. Once again electricity is the engine of growth. Already utilities are planning to add new generating capacity. Canadian nuclear resources, technology and skilled people are proven and available. By seizing the opportunities which are opening up for us, a properly recognized nuclear industry can make a vital contribution to Canada's economic renewal. This brief has been prepared by the Canadian Nuclear Association (CNA) in response to the challenge issued to Canadians in Finance Minister Michael Wilson's document 'A New Direction for Canada'. This brief responds in terms of the major policy issues and opportunities as seen by the Canadian nuclear industry

  19. The prospects for the world nuclear energy market

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last few years projections of nuclear power generating capacity growth for the next two decades have progressively decreased. Dwindling load growth, increasing load lead time, costs of delays and high cost inflation, industrial recession and fuel cycle delays are discussed as the main causes of the setback. The state of the fuel cycle business in the world market is examined and data are presented and discussed for predicted world supply and demand. Nuclear plans and fuel policies and requirements are then examined for individual countries. (U.K.)

  20. Directory of nuclear power plants in the world, 1985

    International Nuclear Information System (INIS)

    Fujii, Haruo

    1985-01-01

    This book presents technical information and estimates trends of load factors and construction costs of nuclear power plants. Particularly road maps indicating plants are drawn in, which would be practical in visiting them. The data used here are directly confirmed by operators in every part of the world. Therefore, they reflect up-to-date nuclear power developments and its future. This allows wide and exact understanding of world's nuclear power. Chapter 1 presents nuclear power growth around the world and estimates forecasts based on information from electric power companies: nuclear power growths and the growths in the number of reactors around the world, in WOCA (World outside the Centrally Planned Economies Area), in CPEA (Centrally Planned Economies Area) are analyzed in detail. Chapter 2 presents nuclear power plants on maps by country. The maps show exact locations of nuclear power plants with local cities around them, rivers and lakes. For convenience, symbols are given to aid in identifying the types of reactors. Chapter 3 presents general information of nuclear power plants. Also the addresses of operators, all segments of nuclear power supply industries and nuclear organizations are included. For convenience, the index of nuclear power plants is added. Chapter 4 presents technical information, road maps in large scales and photographs of nuclear power plants in the world. The road maps show exact locations of plants. Chapter 5 presents operating experiences, load factors, refuelling and maintenance outages. The trends of data are analyzed both regionally (WOCA, CPEA) and world-widely. Chapter 6 presents trends of construction costs, component costs as percent of total construction costs and direct costs, and construction durations. (J.P.N.)

  1. The new competition in the world market for nuclear reactors

    International Nuclear Information System (INIS)

    Finon, Dominique

    2014-01-01

    The current revival in the world market for nuclear reactors, notwithstanding Fukushima, completes the re-composition of the world's nuclear industry that started in the early 1990's and which has displaced nuclear power's centre of gravity towards Asia. In this new context, the capability to provide full-fledged financing for the buyers and to set up consortia that may include the operator have become major advantages at this stage, relegating to a lower order the ability to supply reactors with a high level of safety. (author)

  2. The rebirth of the US nuclear industry

    International Nuclear Information System (INIS)

    Pitron, G.

    2008-01-01

    Fought during a long time by ecologists but recently rehabilitated by politicians, the US civil nuclear industry has started its comeback in the first power-consuming country of the world. Utilities and industrialists are already in action, and the first cooperation agreements with foreign groups, like EdF or Areva, have been signed. After three decades of stagnation, the US nuclear industry has to re-launch its fuel cycle activities, from the fuel enrichment to the waste management, and the recruitment of a new competent manpower is one of the main concerns. (J.S.)

  3. Establishing a Nuclear Industrial Structure The Spanish Case

    International Nuclear Information System (INIS)

    Palacios, L.

    1989-01-01

    Nuclear industry is nationalistic all over the world. This fact is at first glance rather surprising, since one would guess that the localization drive should start with segments of industry of a less sophisticated nature. The reason probably lies on the fact that nuclear disciplines are new and can be conceived as an easier task for planners than other techniques where industrial relationships are already established. The process of increasing domestic content has important implications and crucial decisions have to be made. A general process of technology transfer has to be assured, investments have to be made in new plant and a sizable number of engineers and technicians has to be trained. Technology transfer in the nuclear field seems to be the practical extent dictated by the availability of raw materials and the economy of scale for some components. Table V lists the content achieved in specific classes of equipment. The process has been successful and has enabled Spanish Industry to be present in the world market. Countries embarking in similar programs have expressed interest in the Spanish process as representative of medium development industry that, by determination and serious work, has achieved an advanced status, overcoming deficiencies that are not normally encountered in more developed societies. Spanish Industry is of course ready to share its experience with interested parties, thus contributing to orient local industries by advising them on the successes achieved as an example to follow, and the mistakes made, to prevent occurrence

  4. An experience in World Nuclear University-Summer Institute 2012

    International Nuclear Information System (INIS)

    Suzilawati Mohd Sarowi

    2013-01-01

    Full-text: World Nuclear University-Summer Institute (WNU-SI) has been held annually since 2005 in Cristchurh College, Oxford, London. This six weeks course is attended by 80-90 young professionals, or fellow from 20-25 countries across the world. The WNU-SI is designed not only to discuss the full spectrum of issues surrounding nuclear energy, but also emphasis on team building, cultural awareness and the development of leadership potential in multinational environment. Interestingly, the mentors play their role base on their experience in leading the nuclear industry throughout the globe. At the end of the course, the participant could understand the most important issues address in the industry with global perspective, experience and learn from practical teamwork internationally. Finally, this course is believed to be a step in developing a worldwide network among the fellows to support each other in their careers. This paper will discuss the experience gained in WNU-SI 2012. (author)

  5. Exporting nuclear engineering and the industry's viewpoint

    International Nuclear Information System (INIS)

    Barthelt, K.

    1986-01-01

    Nuclear energy offers all possibilities to reduce the energy problems in the world which arise with the world-wide increasing population and the energy demand connected with it. The Federal Republic of Germany lives on the exports of refined technical methods which also include nuclear engineering. The exports of nuclear engineering should lead to a technology transfer with guidance and training on an equal basis between the industrial and developing countries. The preconditions of exporting nuclear-technical systems are a well-functioning domestic market and a certain support by the government, especially with regard to giving guarantees for the special exports risks of these big projects. On the other hand, exports are also needed in order to be able to continue providing high-level technology for the domestic market. (UA) [de

  6. The European nuclear industry - an overview

    International Nuclear Information System (INIS)

    Berke, Claus

    1994-01-01

    In his talk, the President of Foratom, Dr. Claus Berke, reviews the present state of the nuclear industry in Europe. The European nuclear park is still the largest of any region in the world. In some countries, there has been a moratorium on new construction in recent years. This has made life for the supplying industry very difficult. One positive side-effect o at has been a significant rationalisation of the industry. In the course of this the previous vertical integration within European states has given place to the creation of important new transnational structures. In his talk, Dr. Berke describes some of the most important facets of the 'Europeanisation' of the industry, both in the area of power-plants and of the nuclear fuel-cycle. He also describes the increasing cooperation between utilities and suppliers in Western Europe and the operators of nuclear power plant in Eastern Europe, which is aimed at introducing a safety culture and an institutional framework in the East as close as possible to that which exists in Western Europe. Dr. Berke concludes that, over the coming years, both economic and environmental arguments will start to reverse the present political opposition, in many European countries, to new building programmes, and that the industry is likely be in a healthier state by the end of the decade

  7. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  8. The future of the nuclear plant industry

    International Nuclear Information System (INIS)

    Franklin, N.L.

    Against the background of world-wide controversy, the future of nuclear power in the United Kingdom is discussed. The various forecasts of electricity demand are considered in relation to the need for long-term planning in the nuclear industry. It is considered that towards the end of the century uranium will be in short supply for technical or political reasons, and that the emphasis would then be on the use of fast reactors (assuming nuclear power to be politically acceptable at that time). A possible UK programme is outlined, and the question of cooperation with other countries is referred to. Thermal reactors for use in the middle term are discussed. The possibilities of export are considered briefly. The effects of world economic recession, public opposition on environmental and other grounds, and the possibility of misuse of nuclear materials are considered. (U.K.)

  9. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  10. The nuclear industry and the NPT: a perspective from Washington

    International Nuclear Information System (INIS)

    Porter, D.J.

    1987-01-01

    Whilst exporting nuclear reactors, the nuclear industry in the United States and other nuclear exporting countries also supports the Non-Proliferation Treaty. The nuclear industry needs the IAEA safeguards and the NPT as these allow the nuclear trade to be conducted in an orderly fashion. Non-sensitive equipment, materials and technology can be made available to other nations which adhere to the NPT. Indeed article IV of the NPT encourages this. Many developing countries do not, however, have the money to pay for the imported technology. This article looks at the current situation in the world where nuclear technology has been, is being, or will be, transferred. (U.K.)

  11. Safe nuclear power for the Third World

    International Nuclear Information System (INIS)

    Johnson, W.R.; Lyon, C.F.; Redick, J.R.

    1989-01-01

    It is clear that using nuclear power for the generation of electricity is one way of reducing the emissions of CO 2 and other gases that contribute to the greenhouse effect. Equally clear is the fact that the reduction can be magnified by converting domestic, commercial, and industrial power-consuming activities from the direct use of fossil fuel sources to electrical energy. A major area for future progress in limiting CO 2 emissions is in the Third World, where population growth and expectations for a higher social and economic standard of living portend vast increases in future energy use. A number of problems come to mind as one contemplates the widespread expansion of nuclear energy use into the Third World. The authors propose a method involving the marriage of two currently evolving concepts by which nuclear electrical generation can be expanded throughout the world in a manner that will address these problems. The idea is to form multinational independent electric generating companies, or nuclear electric companies (NECs), that would design, build, operate, and service a standardized fleet of nuclear power plants. The plants would be of the Integral Fast Reactor (IFR) design, now under development at Argonne National Laboratory, and, in particular, a commercial conceptualization of the IFR sponsored by General Electric Company, the Power Reactor Inherently Safe Module (PRISM)

  12. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    International Nuclear Information System (INIS)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-01-01

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in

  13. The current status of Chinese nuclear power industry and its future

    International Nuclear Information System (INIS)

    Lu Daogang

    2010-01-01

    During the past 30 years, economy of China has being grown strongly. Even in the year 2009, when the world was hit by the financial crisis, China still kept the 8.7% growth rate. GDP of China has reached 4222G USD. This figure makes China to become the third economic giant in the world. All of the world are focusing on the high-speed development of economy in China; meanwhile they also pay much attention on the energy consumption in China. In addition, as one of the policy to keep the stable supply of the energy and to cut off the drain of CO 2 , China now are building more and more nuclear power stations. Many developed countries are very interested in the big market. Some have already joined in the construction of nuclear power stations in China, while some may concern about the supply of the nuclear fuel, as well as nuclear safety in China. The present paper will give a close-up view on China status of the energy, especially the nuclear power industry. It is expected that the international community could have deeper and more complete understanding on the nuclear industry in China, moreover cooperate with China to improve the peace and safe utilization of nuclear energy for the sustainable development of the world. (author)

  14. Knowledge management for nuclear industry operating organizations

    International Nuclear Information System (INIS)

    2006-10-01

    The nuclear energy sector is characterized by lengthy time frames and technical excellence. Early nuclear plants were designed to operate for 40 years but their service life now frequently extends between 50 and 60 years. Decommissioning and decontamination of nuclear plants will also be spread over several years resulting in a life cycle - from cradle to grave - in excess of 100 years, which gives rise to two challenges for the nuclear industry: (1) Retention of existing skills and competencies for a period of over fifty years, particularly in countries where no new nuclear power plants are being planned; and (2) Development of new skills and competencies in the areas of decommissioning and radioactive waste management in many industrialized countries if younger workers cannot continue to be attracted to the nuclear disciplines. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. Typically, these retirees are individuals who can answer questions very easily and who possess tacit knowledge never before extracted from them. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear power plants (NPPs). Therefore, the primary challenge of preserving such knowledge is to determine how best to capture tacit knowledge and transfer it to successors. These problems are exacerbated by the deregulation of energy markets around the world. The nuclear industry is now required to reduce its costs dramatically in order to compete with generators that have different technology life cycle profiles. In many countries, government funding has been dramatically reduced or has disappeared altogether while the profit margins of generators have been severely squeezed. The result has been lower electricity prices but also the loss of expertise as a result of downsizing to reduce salary costs, a loss of

  15. World's energy appetite may crave nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Anderson, T.D.

    1996-01-01

    As scientists come to agree that global warming is a real phenomenon, it may be time to jumpstart the stalled nuclear industry. World population is expected to double by the end of the 21st century, and the lion's share of growth will be in developing nations. open-quotes More people and more economic activity will require more energy,close quotes say William Fulkerson, a senior fellow at the Joint Institute for Energy and the Environment in Knoxville, Tennessee, and Truman D. Anderson, formerly director of planning at Oak Ridge National Laboratory. There are only three viable options to fossil fuel plants, the authors say: nuclear fission, nuclear fusion, and such renewable energy sources as solar and wind. The advantages of nuclear energy are well known, the authors say. open-quotes It emits no greenhouse gases, and potentially it can be expanded almost without limit anywhere in the world, providing the controversies that surround it can be resolved.close quotes However, to garner public acceptance, a new generation of supersafe nuclear reactors, invulnerable to terrorism and conversion to weapons, will need to be developed, the authors say

  16. The World Nuclear University - A pillar of the nuclear renaissance

    International Nuclear Information System (INIS)

    Nigon, Jean-Louis

    2006-01-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the activities of the

  17. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This document gathers pieces of information concerning nuclear industry worldwide. The most relevant are the following ones. China has announced the construction between 2020 and 2025 of the biggest particle accelerator in the world. The Finn government has agreed with the project of a spent fuel storage center, it was the last administrative step before the launching of the construction works. The quality of the steel of the pressure vessel of the Olkiluoto EPR has been assessed by the Finn nuclear safety authority (STUK). The French nuclear safety authority (ASN) has launched a test program for assessing the resistance of the pressure vessel of the Flamanville EPR as a consequence of the recent discovery of defects in the composition of the steel. A robot called SX1 has been designed to measure radiation in a continuous way by strolling about in a nuclear facility. As a consequence of a tense relationship with Russia, the Turkish government has stopped the construction (by Rosatom) of the Akkuyu nuclear plant. The Belgian government and the Electrabel company have signed an agreement for a 10 year extension of the operating life of the Doel 1 and 2 reactors. Chinese authorities have approved the construction of 4 new third generation reactors. (A.C.)

  18. Ranking French nuclear industry on international market

    International Nuclear Information System (INIS)

    Labbe, B.

    1987-01-01

    Based on the success of its own ambitious nuclear power station program, France has been able to export its technology to many parts of the world, providing everything from individual components to complete power stations on a turnkey basis. Industrial partners who regurarly work together have set up the necessary structures to ensure the dovetailing of their activities during joint operations on the foreign market. These structures are matched to the needs of individual clients, and can be dispensed with completely in cases where a sole supplier is involved. Not one single unit under construction has been halted and no contract cancelled after the Chernobyl accident. France, like Japan and the USSR, is pressing on with its nuclear power program. China has ordered two PWR units for Daya Bay, while Britain has decided to construct its first PWR at Sizewell. Although a number of countries have deferred decisions in this field, this has been mainly on financial grounds. The French nuclear power industry has demonstrated its mastery of the technology, which can now be placed at the disposal of countries wishing to build nuclear power units, to improve their existing nuclear capacity, to develop parts of this future-oriented industry, or to supply their power stations with advanced nuclear fuel

  19. Nuclear energy industry in Russia promoting global strategy

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  20. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  1. C. The nuclear industry in Europe

    International Nuclear Information System (INIS)

    1976-01-01

    Most of the European states have made a large commitment to nuclear power. In some aspects, such as fast breeder technology and oxide fuel reprocessing, they clearly lead the rest of the world. The industry is highly competitive, and is able to win contracts over US firms, even though the products offered are basically of US designs. It is also characterised by a large degree of co-operation and dependency amongst member countries. Many developments and services are of a joint nature. To ensure growth in the industry, and reduce foreign involvement, many of the governments have bought large segments of domestic companies, often from US firms. Government agencies themselves have transformed their service departments (such as those involved in the fuel cycle business) so that they now operate under the guise of commercial enterprises. These steps have arisen principally because of the large financial commitments normally associated with nuclear power. As a result of this, and despite the recent economic depression, the nuclear industry in Europe generally appears healthy. It does not seem to be suffering to the same extent from the problems that the industry in the USA is currently facing. Even though some states are experiencing a decrease in the projected rate of growth of energy demand, expectations are that an increasing proportion of energy requirements in most European countries will be met from nuclear power. The industry, both for the construction of generating capacity and fuel cycle services, is anticipating growth and financial profit

  2. Nuclear industry prospects: A Canadian perspective

    International Nuclear Information System (INIS)

    Morden, Reid

    1995-01-01

    Canada, with its proven, safe and versatile CANDU reactor is well poised for the second half-century of nuclear fission. Canada's nuclear pedigree goes back to the turn-of-the-century work of Ernest Rutherford in Montreal. This year, Canada's nuclear industry celebrates the 50th anniversary of the start-up of its first research reactor at Chalk River. Last year, the pioneering work of Bert ram Blockhouse in Physics was honoured with a Nobel Prize. Future international success for the nuclear industry, such as has been achieved here in Korea, depends on continued cooperative and collaborative team work between the public and private sectors, continued strong research and development backing by the government, and new strategic partnerships. The biggest challenge is financing for the emerging markets. The brightness or dimness of future prospects are relative to the intensity of the lessons learned from history. In Canada we have a fairly long nuclear pedigree, It goes back almost a century to 1898, when Ernest Rutherford set up a world centre at McGill University in Montreal for research into the structure of the atom and into radioactivity

  3. World nuclear capacity and fuel cycle requirements, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment

  4. World nuclear generating capacity and uranium requirements to 2005

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The outlook for the world nuclear power industry through 2005 is more positive than some may believe. Installed nuclear electric generating capacity is forecast to grow at an average rate of 2.4 percent per year, and reach 448 gigawatts electric (GWe) by 2005. Consequently, annual world uranium requirements also will grow, reaching over 200 million pounds equivalent U 3 O 8 by 2005. This article presents data and summarizes installed nuclear generating capacity and charts its increase as a function of time through the year 2005. This data is also charted by reactor type as well as reactor status: under construction, planned, or estimated future construction. In a similar fashion, the data is also charted by country and continent. Historical and projected data is also given for capacity factor

  5. Nuclear power industry

    International Nuclear Information System (INIS)

    1999-01-01

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  6. The World Nuclear University - A pillar of the nuclear renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Nigon, Jean-Louis [World Nuclear University Working Groups, Carlton House, 22a St. James' s Square, London SW1Y 4JH (United Kingdom)

    2006-07-01

    The World Nuclear University was founded with the support of four leading international nuclear institutions - two of them inter-governmental organisations (IAEA and OECD/NEA), the other two bodies serving the industry and its operators (WNA and WANO). Inaugurated in September 2003 on the 50. anniversary of President Eisenhower's Atoms for Peace speech, the WNU started working a year later upon the arrival of the first staff members. Today there is a tremendous disparity in the nuclear industry between the pace of the unfolding nuclear renaissance, which is gathering momentum by the day, and the slower pace at which we are educating a new generation of nuclear scientists and engineers. The WNU aims to be instrumental in creating a network of leading institutions of nuclear learning in order to help fill this gap. The emerging worldwide partnership aims to: - Enhance nuclear education amongst its members, - Establish globally accepted standards in academic and professional qualification, and - Elevate the prestige of the nuclear profession. Prior to the establishment of WNU, many leading educational institutions of nuclear learning had already launched cooperation on a regional basis, as follows (country or region/network): United States/NEDHO (Nuclear Engineering Department Head Organization); Canada/UNENE (University Network of Excellence in Nuclear Engineering in Canada); Asia/ANENT (Asian Network for Education in Nuclear Technology); Europe/ENEN (European Nuclear Education Network); Russia/WNU Russian Branch. Thus the WNU can be seen to a certain extent as a 'network of networks', although it should be stressed that many of the current WNU members did not belong to already existing networks. By creating a global network, the WNU avoids the duplication of efforts and limits the total number of staff required. The WNU does not lose sight of the fact, however, that local problems should be solved locally. Ten Working Groups share between them the

  7. Transfer of Knowledge Management Methods and Tools to and from the Nuclear Industry

    International Nuclear Information System (INIS)

    Pasztory, Z.; Gyulay, T.

    2016-01-01

    Full text: The discipline of the knowledge management was firstly introduced in Japan by the leading technology companies like Toyota, Canon, Honda, Mitsubishi, Sharp and others. It means outside the nuclear industry. The nuclear industry organizations including the IAEA started to deal with the knowledge management about ten years later and adapted those approaches, methods and tools developed and used in other industry organizations. After more than fifteen-years of its programmatic existence of the nuclear knowledge management in the IAEA, the trend is turn round in many topics. The nuclear industry organizations have more and more good practices to share with other industries. Meanwhile the world leading companies working in a quickly changing market environment are still developing and using KM practices which can be useful also in the “slowly-changing” nuclear industry environment. In this article we would like to pay attention—through some examples—to the importance of the benchmarking with companies outside the nuclear industry for the further safe and reliable operation of nuclear facilities and to educate and train the next nuclear generation. (author

  8. From the nuclear world, no.5

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    This document gathers information from around the world and concerning nuclear industry. The most relevant is the following. The British government has given its agreement for the construction of 2 EPR by EDF Energy at Hinkley Point. The Hinkley Point project will generate more than 1700 jobs in France. The EPR being built in Finland will operate in 2018. The electrical car is sustainable only in the countries where low-carbon electricity production is important which is the case of France thanks to nuclear energy. In the framework of the ICERR cooperation, 2 research reactors of CEA: Isis (Saclay) and RJH (being built at Cadarache) and their experimental facilities will be used by Slovenia, Tunisia and Morocco through joint research projects. In China 6 AP1000 units will be built on 3 sites in the Yangtze region. China and Turkey have signed an agreement concerning the organisation of nuclear safety authority. In Turkey a site for a 3. nuclear power plant is being selected. (A.C.)

  9. The safety of a nuclear industry in South Australia

    International Nuclear Information System (INIS)

    Higson, D.J.

    2016-01-01

    On 19 March 2015, the South Australian Government established a Royal Commission to consider and analyse the potential of South Australia to further participate in the nuclear fuel cycle, whether through the expansion of the current level of exploration, extraction and milling of uranium (the only parts of the nuclear power industry that are currently allowed in Australia) or by undertaking the conversion and enrichment of materials for the nuclear fuel cycle, the generation of electricity from nuclear fuels and/or the management, storage and disposal of nuclear wastes. This provides a timely opportunity to review the performance of the nuclear industry throughout the world, particularly in the safety of electricity generation and waste management, showing that - despite misconceptions about radiological risks and the significance of the accidents that have occurred - the record of this industry is exceptionally good. The Federal and South Australian State governments both have the policy that uranium mining is acceptable providing it is properly regulated. The success of this policy suggests that it is exactly the policy that should be adopted for all other parts of the nuclear fuel cycle, including the generation of electricity.

  10. The Nuclear Power Institute Programs for Human Resource Development for the Nuclear Industry

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    2014-01-01

    Principal conclusions: 1. NPI is a full-scope, end-to-end, integrated approach to human resource development. Participation of government and government agencies, and elected officials and decision makers is vital. These key individuals and organizations encourage the effort, and provide support, a voice and advocacy for NPI and its programs. 2. Critical role of vocational training. The majority of the workforce does not involve only B.S. level engineers, but are graduates from two-year programs that are developed in collaboration with industry that prepare them for careers as technologists and technicians at a nuclear power plant. 3. In education and training, education is only part of the story. Collaboration with industry results in: – curricula, material, inputs and programs, – opportunities for students to benefit from industry mentors and get onsite experience, and – work on real-world, industry defined problems. 4. Outreach is instrumental in: –engaging with the next generation both for support of nuclear power and in building the workforce, and –generating vital contacts with the community to foster public understanding and acceptance of nuclear energy

  11. Time for nuclear to hold its nerve at this pivotal time for the industry

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    Recent weeks have been tough for the world's nuclear energy industry. The nuclear industry has seen setbacks before. And it is the nature of this inter-connected global industry to find itself in the international media spotlight when ''bad news'' strikes. The task for the industry now is to pick itself up and face the economic challenges head-on. As one English proverb notes, ''fortune favours the brave''.

  12. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y.

    2010-08-01

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry

  13. Efforts for nuclear energy human resource development by industry-government-academic sectors cooperation. Nuclear Energy Human Resource Development Council Report

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2009-01-01

    The report consists of eighteen sections such as the present conditions of nuclear energy, decreasing students in the department of technology and decreasing numbers of nuclear-related subjects, The Nuclear Energy Human Resources Development Program (HRD Program), The Nuclear Energy Human Resources Development Council (HRD Council), the industry-academia partnership for human resource development, the present situation of new graduates in the nuclear field, new workers of nuclear industry, the conditions of technical experts in the nuclear energy industry, long-range forecast of human resource, increasing international efforts, nuclear energy human resources development road map, three points for HRD, six basic subjects for HRD, the specific efforts of the industrial, governmental and academic sectors, promoting a better understanding of nuclear energy and supporting job hunting and employment, students to play an active part in the world, and support of the elementary and secondary schools. Change of numbers of nuclear-related subjects of seven universities, change of number of new graduates in nuclear field of various companies from 1985 to 2006, number of people employed by nuclear industries from 1998 to 2007, number of technical experts in the electric companies and the mining and manufacturing industries and forecast of number of technical experts in total nuclear industries are illustrated. (S.Y.)

  14. Nuclear industry will soon surface

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The Japan Atomic Industrial Forum has carried out the annual survey of nuclear industry from the very inception of the development of nuclear power in Japan. The aim is to research and analyze nuclear-related expenditures, sales and manpower, as well as the future prospect of mining and manufacturing industries, electric utilities, trading companies and other related industries. The 19th fact-finding survey investigated into the actual conditions of the nuclear industry from April, 1977, to March, 1978. The number of companies surveyed increased by 75 from the previous year to 1,244, of which 883 or 71% responded to the questions. 501 companies did the business in the field of nuclear power. The first thing to be pointed out about the economic conditions of the nuclear industry is that the nuclear related expenditures increased in electric utilities, mining and manufacturing industries and trading companies, and exceeded 1 trillion yen mark for the first time in the private sector. It is likely that the current nuclear-related activities of mining and manufacturing industries will soon increase, but it will not be easy to wipe off the cumulative deficit of the industries. The employees increased by more than 7% in the nuclear-related sectors of electric utilities and mining and manufacturing industries. The facilities of nuclear supply industry were operated at the average rate of 50%. (Kako, I.)

  15. World nuclear fuel market. Seventeenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The papers presented at the seventeenth World Nuclear Fuels Market meeting are cataloged individually. This volume includes information on the following areas of interest: historical and current aspects of the uranium and plutonium market with respect to supply and demand, pricing, spot market purchasing, and other market phenomena; impact of reprocessing and recycling uranium, plutonium, and mixed oxide fuels; role of individual countries in the market: Hungary, Germany, the Soviet Union, Czechoslovakia, France, and the US; the impact of public opinion and radioactive waste management on the nuclear industry, and a debate regarding long term versus short term contracting by electric utilities for uranium and enrichment services

  16. The nuclear industry and its markets in Europe. 1996, strategic and financial future prospects. Synthesis

    International Nuclear Information System (INIS)

    1996-01-01

    This synthesis report assesses the strategic and financial future prospects of the nuclear industry. It includes in particular the future prospects of the nuclear energy demand increase in the world and compares the nuclear power production with the electric power production due to other energy sources. The different markets of the nuclear industry are detailed. At last are given the main European manufacturers of the nuclear sector. (O.M.)

  17. Promoting nuclear power, achieving sustainable development of nuclear industry in China

    International Nuclear Information System (INIS)

    Kang, R.

    2006-01-01

    The past 5 decades witnessed the rapid growth of China's nuclear industry. The sustained and rapid economic growth and continuous improvement of people's living standards have placed higher requirements for energy and power supplies. As a safe and clean energy source, nuclear energy has been gradually and widely accepted by the Chinese government and the public. The Chinese government has adopted the policy a ctively pushing forward the nuclear power development , set up the target to reach 40GWe of nuclear power installed capacity by 2020, accounting for about 4% of the total installed capacity in China. In this regard, this paper presents the China's nuclear program to illustrate how China is going to achieve the target. The paper is composed of 3 parts. The first part gives a review of the achievements in nuclear power in the last 20 years. The second part presents China's ''three approach'' strategy for furthering the nuclear power development: carrying out duplication projects at the existing plant sites; introducing GUI technology via international bidding; developing the brand C NP1000 , i.e. Chinese Nuclear Power lOOOMwe class, with China's own intellectual property. This part also explores the ways of securing the fuel supply for nuclear power development. The third part concludes with CNNC's ''3221'' strategy which aims at building a world class conglomerate, and expresses its sincere wish to work with the nuclear community to push the nuclear industry worldwide by strengthening international cooperation

  18. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  19. Corrosion issues in nuclear industry today

    International Nuclear Information System (INIS)

    Cattant, F.; Crusset, D.; Feron, D.

    2008-01-01

    In the context of global warming, nuclear energy is a carbon-free source of power and so is a meaningful option for energy production without CO 2 emissions. Currently, there are more than 440 commercial nuclear reactors, accounting for about 15% of electric power generation in the world, and there has not been a major accident in over 20 years. The world's fleet of nuclear power plants is, on average, more than 20 years old. Even though the design life of a nuclear power plant is typically 30 or 40 years, it is quite feasible that many nuclear power plants will be able to operate for longer than this. The re-emergence of nuclear power today is founded on the present generation of nuclear reactors meeting the demands of extended service life, ensuring the cost competitiveness of nuclear power and matching enhanced safety requirements. Nuclear power plant engineers should be able to demonstrate such integrity and reliability of their system materials and components as to enable nuclear power plants to operate beyond their initial design life. Effective waste management is another challenge for sustainable nuclear energy today; more precisely, a solution is needed for the management of high-level and long-lived intermediate-level radioactive waste over the very long term. Most nuclear countries are currently gathering the data needed to assess the feasibility of a deep geological waste repository, including the prediction of the behaviour of materials over several thousands of years. The extended service life of nuclear power plants and the need for permanent disposal for nuclear waste are today's key issues in the nuclear industry. We focus here on the major role that corrosion plays in these two factors, and on the French approaches to these two issues. (authors)

  20. World energy needs and their impact on nuclear reactor development

    International Nuclear Information System (INIS)

    Foell, W.K.

    1977-01-01

    This presentation will place primary emphasis upon energy demand. The presentation will cover the following areas: energy reserves and resources; energy demand: past and future (mid-and long-term); industrialized regions of the world; developing countries: Mexico and Iran as examples; and potential impact on nuclear development

  1. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  2. The nuclear industry's communication efforts viewed from outside the industry

    International Nuclear Information System (INIS)

    Tuck, Moira

    1995-01-01

    This paper describes the attitude towards nuclear power of a company specialised in behavioural communication, not employed exclusively by the nuclear power industry. Only one of it's clients has a nuclear interest and that is Eskom, South Africa electricity utility which runs 21 active power stations of which 13 are fossil-fueled, 2 hydro, 2 pump storage stations, 3 gas turbine stations and 1 nuclear. This company is a firm believer in the nuclear energy option for some very practical reasons and one or two abstract reasons. The practical reasons are the ones well known, the world needs ever-increasing amounts of base load energy in order to increase the quality of life. The world also needs clean energy so that the planet can be preserved beyond the next generation. The abstract reasons are perhaps 'not so often' thought about by nuclear, communication practitioners: in harnessing nuclear energy for the service of mankind humans have captured a miracle. The harnessing of nuclear energy is a mark of man's ability to think conceptually, to walk in the realms of the unseen and bring back from those realms a tool of progress. In more prosaic terms, the loss of nuclear expertise would, very simply be a retrogression of the human race. As behavioural communication specialist it s our job to find ways for our clients to speak truthfully about their endeavours to the hearts of their audience. It is not our job to (nor will we) either lie or cover up for our clients. That which is wrong is wrong and cannot be painted rightly spoken words or clever videos or ingenious advertising. In all cases our advice to our clients has been to assume that people will not argue against the greater good of humanity. And there is much about nuclear power that contributes to the greater good: of humanity. 'That is the factor that, is common to all of us in this room today and all our colleagues in the industry. W have only to tell the truth with words that our target audiences can

  3. Time for nuclear to hold its nerve at this pivotal time for the industry

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Redditch (United Kingdom)

    2017-05-15

    Recent weeks have been tough for the world's nuclear energy industry. The nuclear industry has seen setbacks before. And it is the nature of this inter-connected global industry to find itself in the international media spotlight when ''bad news'' strikes. The task for the industry now is to pick itself up and face the economic challenges head-on. As one English proverb notes, ''fortune favours the brave''.

  4. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry.

  5. Worst accident in the world. Chernobyl: the end of the nuclear dream

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N; Lean, G; Leigh, D; McKie, R; Pringle, P; Wilson, A

    1986-01-01

    This is the full story of Chernobyl, before, during and after the reactor accident in April 1986. The scene is set at Chernobyl in the Ukraine. The nature of radioactivity, the risks and the health hazards posed by radioactivity and the world-wide nuclear energy scene are then discussed, followed by the particular nuclear situation in Russia. This includes the background to the nuclear power industry in Russia - its history, personnel and management, and ultimately the building of the Chernobyl nuclear power plant. The accident itself is then explained, minute by minute. The consequences, both short-term and long-term, on the immediate area and the rest of Europe are discussed. These are the medical effects on humans, the effects on the environment and the effect on the nuclear policies of the whole world.

  6. Investigation on Current Status of World Nuclear Education and Training

    International Nuclear Information System (INIS)

    Shin, J. Y.; Min, M. J.; Noh, B. C.

    2010-04-01

    All over the world, the interest of nuclear energy is increasing and the expectations of it are getting more as one of the most practical alternative energy resources. However, since 1990s, as a lot of nuclear specialists are being retired, now the problem of manpower shortage is taken into consideration for all of us and will be continued until 2011. In this point of view, the good quality of the professional nuclear training and education systems and the nuclear education centers are requested in order to breed and supply the next generation nuclear scientists and engineers. Thus, the objective of this study is to explore the current status of world nuclear education for both of nuclear power countries and potential nuclear power utilization countries in the near future. This report introduces the importance of nuclear energy, the current status of world nuclear power plants operation and the contribution of nuclear energy. Besides, it also includes the nuclear energy development plan of potential nuclear developing countries in the near future. In addition, this study also explores the nuclear training and education systems of the nuclear development countries and the current status of nuclear education in various fields such as government, industries, nuclear power plants ect. Especially, as considering the status of nuclear education classified such as Asia, the Americas, East and West Europe, the Middle East and Africa, it shows the different characteristics of nuclear education systems in each regions aimed to identify the good practices on the nuclear education systems. Finally, through observation of international cooperation and networks of the various nuclear organizations, this will be contributed to the development of nuclear education for member states and be suggested the various of the direction of development for nuclear education in Korea. The report presents in the basis of the recent status data of the world nuclear education systems collected

  7. The structure of the nuclear industry

    International Nuclear Information System (INIS)

    Leaist, G.T.; Morisette, E.F.

    1981-01-01

    Since 1952, when Canadians began to study the application of reactors to power generation, the CANDU reactor design and the manufacturing and and engineering capability supporting it have evolved into a world-class technology. At present, Atomic Energy of Canada Ltd. works directly with provincial electrical utilities in developing their power reactor requirements. It assumes responsibility for the detailed design of the nuclear steam supply system of stations, undertakes some procurement activities, and may represent the utilities in licensing applications. The detailed design and supply of components for the remainder of the nuclear steam plant, as well as for the secondary plant, are provided in Ontario by Ontario Hydro together with manufacturers, and in Quebec and New Brunswick by private firms. Canadian utilities have always assumed the project managment function themselves, but with export sales AECL has taken turnkey responsiblity for either the nuclear steam plant or the complete power station. AECL owns design specifications and other documentation, the use of which it can license, but manufacturing technology resides with Canadian industry. Canadian manufacturers have supported AECL design licensing initiatives overseas. The Canadian nuclear industry's major problem is the current lack of a vigorous domestic market combined with an uncertain international one

  8. The French electromechanical industry in the nuclear sector

    International Nuclear Information System (INIS)

    Barrau, M. de.

    1981-02-01

    A brief paper recounting the extensive changes brought about in electromechanics further to the implementation of the large French nuclear programme and the experience that its implementation has given to this industry, in particular at ALSTHOM-ATLANTIQUE, the only French manufacturer of high power turbo-generating units rated among the big world manufacturers [fr

  9. Nuclear: Energy of the World

    International Nuclear Information System (INIS)

    Thailand Institute of Nuclear Technology

    2007-08-01

    Full text: The 10 t h conference on the nuclear science and technology was held on 16-17 August 2007 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestation tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  10. Prospects for revitalization of the U.S. nuclear energy industry

    International Nuclear Information System (INIS)

    Colvin, Joe F.

    1998-01-01

    Today I want to make two key points about the U.S. nuclear energy industry. First, key policy issues are beginning to converge in a way that is very positive for our industry - and for society as a whole. And Second, the industry has worked hard to prepare for the future - and we are ready to make the most of these positive developments. Nuclear energy's prospects are the brightest they have been at any time in history. The plan identifies the building blocks that must be in place before utilities start building the next generation of nuclear plants. One, we wanted to improve the efficiency and reliability of our operating nuclear plants. Two, we wanted to establish a regulatory framework for license renewal. Three, we wanted to develop a more efficient licensing process for new plants. In closing, I am confident that the 21st century will bring a renaissance for nuclear energy-in the United States and around the world. The U.S. nuclear energy industry has a renewed vitality and sense of mission today. We've worked hard preparing for the future- and we will continue to be strong players in worldwide energy policy development in the 21st century. (Cho, G. S.)

  11. Nuclear English: Language skills for a globalizing industry

    International Nuclear Information System (INIS)

    Gorlin, S.

    2005-01-01

    Nuclear English is a new course designed for English language learners working in the nuclear industry and in other fields of nuclear science and technology. The textbook is composed of 12 units, each covering a different aspect of the nuclear fuel cycle or a relevant topic such as non-proliferation, safety and the use of radioisotopes in medicine. Nuclear English offers a flexible approach, allowing learners to: Study the units in any order according to professional need or interest; Focus on listening, grammar and pronunciation tasks, which are clearly signposted; Work independently or with other students in a classroom. The other main features of the course are: A audio CD containing authentic interviews with industry specialists. The course covers various accents, including British, American, Australian, South African and Indian; Transcripts of the listening materials; A language orientation test, which learners can take at the start of the course to identify their grammar weaknesses; Teacher-led exercises for working in pairs or groups; A glossary of key terms; An answer key; a downloadable teacher's guide to help teachers maximize the learning potential of the materials (available at: www.world-nuclear-university.org)

  12. Nuclear English: Language skills for a globalizing industry

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, S

    2005-07-01

    Nuclear English is a new course designed for English language learners working in the nuclear industry and in other fields of nuclear science and technology. The textbook is composed of 12 units, each covering a different aspect of the nuclear fuel cycle or a relevant topic such as non-proliferation, safety and the use of radioisotopes in medicine. Nuclear English offers a flexible approach, allowing learners to: Study the units in any order according to professional need or interest; Focus on listening, grammar and pronunciation tasks, which are clearly signposted; Work independently or with other students in a classroom. The other main features of the course are: A audio CD containing authentic interviews with industry specialists. The course covers various accents, including British, American, Australian, South African and Indian; Transcripts of the listening materials; A language orientation test, which learners can take at the start of the course to identify their grammar weaknesses; Teacher-led exercises for working in pairs or groups; A glossary of key terms; An answer key; a downloadable teacher's guide to help teachers maximize the learning potential of the materials (available at: www.world-nuclear-university.org)

  13. World's trends in nuclear education

    International Nuclear Information System (INIS)

    Lartigue, J.; Martinez, T.

    2005-01-01

    Since the exhort of the International Atomic Energy Agency, in 1955, to promote the pacific uses of nuclear energy, countries that had developed military nuclear programs extended their research and training programs to cover pacific uses. Consequently, many programs on Nuclear Engineering and Nuclear Chemistry were established in those countries as well as in many others interested exclusively in the civil applications. Obviously, the new graduated curricula had the purpose to fulfil the manpower requirements of the growing nuclear market, so much in the power as in the applications fields, always keeping the high academic level required by the research and development of this technology. The slowing down in the nuclear power demand, evident in the nineties, caused a diminution in the matriculation in Nuclear Engineering degrees while that in Nuclear and Radiochemistry remained almost constant. Anyway, countries with defined nucleo electric programs took the necessary steps calling, frequently, for foreign personnel. Besides the nuclear power stagnation, the global growing of environmental pollution compelled several countries to transform their old Nuclear Centers in new Centers for Energy and Environmental Research, with the purpose to promote the research and development of all types of primary energy; in general, these new centers maintain their support to Nuclear and Radiochemistry activities. An important characteristic of these organisations (discussed in this work) is the collaboration they offer to universities for thesis work and experimental courses in these increasingly related fields. In fact, before the immediate world's problems of greenhouse and water scarcity, as well as the future demand of electricity, nuclear power returns as the long term solution and a bridge toward the Hydrogen Economy; however, better reactor's designs are required to fulfil such objectives. By now, analytical nuclear methods have proved their usefulness for pollutants

  14. Situation and development trend of nuclear power and uranium industry in the united states and Russia

    International Nuclear Information System (INIS)

    Tan Chenglong

    2005-01-01

    This paper introduces the situation, trend of nuclear electrical and uranium industry in the United States and Russia. The United States and Russia are the two biggest countries in the world which generated nuclear power earliest. After 40 years' development, nuclear power in the United States and Russia are approximately 20%, 11% respectively of the total generation capacity in 2001. In the United States, only 6% of the nuclear power consumed uranium resource is domestic, in Russia about half of its uranium production is for export. Due to the collision between the energy development and environment protection, nuclear power in USA is still strong, but the uranium industry declines. In the future, uranium production for nuclear power in the United States will depend on the international market and the uranium storage of different levels. On the basis of pacifying people and making the country prosper, Russia has established their great plans for nuclear power with their substantial uranium resources. The author considers the supply and demand of uranium industry will remain balanced in the future decade on the whole, despite the United States and Russia's trend of uranium industry could take a major effect on uranium industry to the world. (authors)

  15. Nuclear industry and territories

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    Nuclear industry being composed of plants, laboratories, nuclear power stations, uranium mines, power lines and fluxes of materials from one facility to another is a strong shaper of the national territory. Contrary to other European countries, French nuclear industry is present all over the national territory. In 64 departments out of 101 there is at least one enterprise whose half of the revenues depends on nuclear activities. The advantage of such a geographical dispersion is when a nuclear activity is given up the social impact is less important: people tend to find a new job in the same region. French Nuclear power plants are generally set in remote places where population density is low and being the first employer by far of the area and being a major contributor to the city revenues, they are perceived as a key element the local population is proud of. In Germany, nuclear power plants are set inside dense industrial regions and appear as an industry just like any other.(A.C.)

  16. Talking my language [As the nuclear industry goes global, communication becomes a bigger challenge

    International Nuclear Information System (INIS)

    Gorlin, S.

    2007-01-01

    'It's like the United Nations here' has become a familiar cry in offices and industrial plants around the world. Today, companies competing in global marketplaces seek the most talented staff and local knowledge by employing from an international rather than a local labour pool. This shift towards multinational personnel has been facilitated by the emergence of English as a global common language, which, unlike previous 'world languages', has penetrated all continents and all levels of society. The nuclear industry has been no exception to this internationalizing trend, despite its roots in many countries in national military programmes. Contributory factors have been the worldwide liberalization of energy markets and the slowdown in nuclear power development during the 1980s and 1990s, following the Three Mile Island and Chernobyl accidents. With economic pressures driving the globalization of the nuclear industry, and with internationalization of certain proliferation sensitive fuel cycle facilities being strongly advocated, cross-cultural and English-language competence will become evermore important for managers and engineers at nuclear facilities. This is related to economic pressures driving the globalization of the nuclear industry, and the strong advocacy for internationalization of certain proliferation-sensitive fuel cycle facilities. Those working in international organizations sometimes forget that such competences are still not the norm in industry, and can be difficult to acquire working on an isolated nuclear facility, remote from multicultural urban centres. They will become more common, as the English language assumes the importance of a basic skill alongside numeracy and literacy in education systems, and foreign travel and migration become more common. In the interim, it is essential that human resource managers offer appropriate training, and that professional translation and interpreting services be provided where necessary. A good way for

  17. Status of Korean nuclear industry and Romania-Korea cooperation in the field of nuclear power

    International Nuclear Information System (INIS)

    Lee, Myung Key

    2005-01-01

    The Kyoto Protocol on climate change has urged the world to explore ways of cutting down the greenhouse emissions, and it also boosted a number of nuclear power projects that is so-called the renaissance of nuclear power. Nuclear power has proven to be the cleanest energy source and one of the cheapest types of energies, compared with other energy sources. Korea began developing its nuclear power projects from the early 1970's. Since the first nuclear power plant Kori Unit 1, started commercial operation in 1978, Korea has continuously promoted the development of nuclear power projects, and today it operates 20 nuclear power units (17,716 MW), including 4 units of CANDU plants. Korea ranked No. 6 in the world in terms of installed capacity of nuclear power plants, and 40% of its domestic electricity generation comes from nuclear power plants. The average plant capacity factor was 95.5% in 2005, which is about 16% than the world average of around 79%. All the Korean nuclear power projects are led and implemented by Korea Hydro and Nuclear Power Co. (KHNP) which is the sole state-owned nuclear power project company spun off from Korea Electric Power Corporation (KEPCO) in 2001 as part of the government's program for electric industry restructuring. The cooperation between Romania and Korea in the nuclear power field began in March 2001. At industrial level a technical agreement between the Romanian Company Nuclearelectrica S.A. (SNN) and KHNP was signed in July 2003 for cooperation in Cernavoda NPP projects. The joint development of the Cernavoda NPP unit 3 was one of the major topics. Heavy water produced by Romanian Heavy Water plant at Drobeta Turnu Severin was supplied to KHNP (16 tones in 2001 and another 16 tones in 2004). The feasibility study for units 3 and 4 is being performed in two phases under leadership of SNN in cooperation with KHNP, AECL, ANSALDO and Deloitte and Touche as a financial advisor in Phase 2. It is expected that the appropriate securities

  18. Cooperation ability of Japan to China in nuclear power industries. Present status and future

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2006-01-01

    Japan is superior to China in the field of LWR plant operation and maintenance, FBR cycle included operation and control of reactor and reprocessing facility, and measures of safeguards and non-proliferation of all commercial nuclear power facilities from the point of view that Japanese technologies are better than the other countries and China needs the technologies. It is important that Japanese electric power companies, plant makers, fuel industries and research organizations developed their business in China in the above fields on the basis of their knowledge, strategies and/or trough network of negotiation of two governments such as forum for nuclear cooperation in Asia (FNCA)·Generation IV International Forum (GIF), and World Association of Nuclear Operators (WANO)·World Nuclear Association (WNA). Outline of finding new market and technical cooperation in the industry and future of nuclear power industry in China are stated. As the supplementary materials, table of operating, building and planning nuclear power plants, estimation of demand for uranium enrichment on the basis of estimation and plans of expansion of power plant facilities, and results of calculation of Separative Work Unit (SWU) from demand for uranium are illustrated. (S.Y.)

  19. The 19th KAIF/KNS annual conference growth of nuclear industry and its current issues

    International Nuclear Information System (INIS)

    Juhn, Poong Eil

    2004-01-01

    After the president Eisenhower's 'Atoms for Peace' speech at the UN general Conference in December 1953, nuclear industry for peaceful uses of nuclear energy has been developed steadily worldwide through international co-operation and collaboration during last half a century. However, from late 1980s, in particular, after Chernobyl nuclear accident in 1986 and growing public opposition on nuclear waste management and disposal, the growth of nuclear power plants worldwide, except some Asian countries, has been slowed down. Nuclear power currently supplies about 16 % of the world's electricity. In the next 50 years, it is expected that the world energy demand will increase about two times comparing current level while electricity demand will be tripled. Therefore, the nuclear industry should be expanded significantly in the next 50 years to meet the role for 'Prosperity beyond Peace'. The main issues for nuclear industry to take this important role are to increase in economics of nuclear power, and to resolve nuclear waste management and disposal. Some of these issues have been resolved mainly through international co-operation. For example, there are significant efforts to improve economics of nuclear power. This paper reviews worldwide efforts to resolve these issues and mentions what are the remaining ones

  20. China in World Industrialization

    NARCIS (Netherlands)

    XU, Yi; van Leeuwen, Bas

    2016-01-01

    Combining the sectoral accounting method of the System of National Accounts (SNA) with new statistical materials from the United Nations, as well as historical research into various countries around the world, this paper arrives at an estimate of value added of Chinese and world industries between

  1. Women in the new era of nuclear power industry

    International Nuclear Information System (INIS)

    Junko Ogawa

    2009-01-01

    In modern society, it is important that men and women share and equally participate in every aspect of society. Nevertheless the field of nuclear energy and radiation technology is traditionally a man-centric?industry, so women make up very small minority. However, recently even in this nuclear industry, we can sometimes see the phenomena that women are playing an active part.The nuclear industry has a big impact on society. It is necessary that we are accountable for all information given out to the public and we listen and respond to the public's concern. We do this so that nuclear technology will be able to grow and develop smoothly. In such area as better understanding, women working as nuclear engineers, scientists or communicators will be able to act in a significant role because women in general have excellent ability in communication and networking. Women in Nuclear, WiN is a worldwide association for the professional women working in the nuclear energy and radiation applications. WiN was founded in 1993, by European women involved in nuclear industry among the mood of anti-nuclear movement after the Chernobyl accident. The goals of WIN are to improve proper understanding of nuclear energy among the general public by presenting the factual information and to empower members' ability by world-wide exchange of lessons and human relationship. According to the recent data, there are 74 countries with at least one WiN member. and 38 chapters (countries/regions/organizations) that have WiN formal chapter like WIN-Japan, WIN-Korea, WIN-US, for examples. The registered members of WiN Global is about 2500. My presentation will introduce recent activities and topics of WiN Global and WiN Japan. I hope this will be able to convey that women working in nuclear field are indeed gaining in their brilliance and carrying out their mission steadily in our industry now and in the future. (Author)

  2. Necessity of nuclear energy in energetic world context

    International Nuclear Information System (INIS)

    Lopez Rodriguez, M.

    1981-01-01

    Different opinions on nuclear energy make the middle citizen feel confounded and wonder hundreds of questions to wwhich an easy reply is not found. May be if nuclear energy is really necessary, the first of these questions, without noticing that necessity is a vague concept with a double interpretation. To some, those support a total change in the actual society into more primitive situations, the energy pattern the world has chosen -both the East and West models- is annoying, and they consider a pattern based on ''soft energies''to be the solution to the social scheme they imagined. To others, those who think on an economic, industrial and social development in the countries, it should be based on a strong energy pattern, which could supply what the world needs more and more, nuclear energy is, at least nowadays, an unavoidable necessity and an inevitable option. The document shown has been prepared on the conclusions of the most recent works on the subject, and it is deduced from all of them what everybody considers to be the future energy demand for the year 2000 and its distribution into energy sources, nuclear energy includes. The two basic parameters for tAe valuation of this demand are the increasing of population and gross national product. Available energy resources are mentioned on the document and, mainly, the nuclear capacity of each country. (author) [es

  3. Nuclear danger in the modern world

    International Nuclear Information System (INIS)

    Sulejmenov, O.O.

    2000-01-01

    It is noted, that nowadays a nuclear danger proceeds from nuclear depositions of countries having own nuclear weapons. Since Kazakhstan is one of the first country in the world which fulfilled regulations of Lisbon Protocol and liquidated own nuclear potential, author regards that Kazakhstan have moral right for initiating process of attachment to Comprehensive Nuclear Test Ban Treaty by countries having nuclear weapon. Now for Kazakhstan there are urgent problems: financing of post-conversion processes; re-cultivation of territory contaminated by residuals from nuclear weapons test; rehabilitation of population health, damaged from test of mass destruction weapon. Scientists of Kazakhstan estimated damage from nuclear test on Kazakstan territory in 10 billion dollars. It is necessary international efforts of all public organizations of the world for all world sites. One of the financing source could be means from reduction of nuclear arms production

  4. Data feature: World nuclear power plant capacity 1991

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    At this point, the future of the nuclear power industry remains largely in doubt. The gloomy predictions about global warming have done little to convince politicians and the public of the benefits of nuclear power. Meanwhile, the setbacks to nuclear have continued apace: The United States has failed to take the expected lead in ordering new nuclear plants. And President-elect Bill Clinton does not consider nuclear a major part of his energy strategy. The situation looks equally bleak in other countries. Canada's biggest utility, Ontario Hydro, was forced under intense political pressure to defer its ambitious nuclear expansion program until after the year 2010. In Europe, the suspension of France's Superphenix fast-breeder reactor in June could stop progress on the technology indefinitely. And the Finnish parliament dropped plans for expansion of nuclear power from its national energy strategy. Developing and semi-industrialized countries, such as Brazil and Argentina, have shown little progress, taking upwards of twenty years to complete plants already under construction. Nuclear's problems seem always to hinge on economics. Nuclear has little chance of revival during the current global recession, especially in countries fighting for their long-term economic survival. That is why NUKEM believes nuclear power will not grow much in the CIS and Eastern Europe beyond the projects already in the advanced stages of construction. What's more, the longer countries such as Italy, the Netherlands, Spain, Switzerland and Finland keep their nuclear expansion plans on hold, the harder it will be to get the political support to restart them. So far in 1992, only two nuclear plants, with a combined capacity of 1,520 MWe, have gone into commercial operation. One more 1,330 MWe reactor may start up by year's end. By then, NUKEM expects world nuclear plant capacity to stand at 330.3 GWe

  5. Nuclear measurements in industry

    International Nuclear Information System (INIS)

    Rozsa, S.

    1989-01-01

    In this book the author provides a description of nuclear measurements in industry, covering the physical principles, methods, instruments and equipment, and industrial applications. One of the great advantages of industrial nuclear measurements is that their use ensures the optimum use of raw material. The increasing cost of raw materials makes it essential to adhere strictly to the standards and prescriptions related to the product and this is possible only by the application of continuous and accurate measurements. As a result, the importance of nuclear instruments is rapidly growing particularly in fields where the application of alternative methods is not possible. This is illustrated by several practical examples described in the book. Similarly important are nuclear measuring the process control equipment which serve to optimize the use of energy in industrial processes

  6. Industrial Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides a detailed overview of the potential use of nuclear energy for industrial systems and/or processes which have a strong demand for process heat/steam and power, and on the mapping of nuclear power reactors proposed for various industrial applications. It describes the technical concepts for combined nuclear-industrial complexes that are being pursued in various Member States, and presents the concepts that were developed in the past to be applied in connection with some major industries. It also provides an analysis of the energy demand in various industries and outlines the potential that nuclear energy may have in major industrial applications such as process steam for oil recovery and refineries, hydrogen generation, and steel and aluminium production. The audience for this publication includes academia, industry, and government agencies.

  7. Nuclear desalination in the Arab world - Part II: Advanced inherent and passive safe nuclear reactors

    International Nuclear Information System (INIS)

    Karameldin, A.; Samer S. Mekhemar

    2004-01-01

    Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive. (author)

  8. The unstoppable world nuclear development

    International Nuclear Information System (INIS)

    Dominguez, M. T.

    2009-01-01

    To meet energy needs and curb climate change, the number of reactors will continue to increase because more and more countries are going the need nuclear power. At present, there are 436 nuclear reactors in the world that produce 16% of the electricity, and another 48 units are under construction in all, 31 countries in the world use nuclear power to produce electricity, and some countries that do not have reactors, e.g. Poland and Italy, are seriously planning to include nuclear power in their energy mix. Global nuclear development is a reality; energy and environmental challenges have led to new support for nuclear power, which is a safe, stable emission-free source. (Author)

  9. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  10. Nuclear industry technology boomerang

    International Nuclear Information System (INIS)

    Scholler, R.W.

    1987-01-01

    The benefits to the medical, pharmaceutical, semiconductor, computer, video, bioscience, laser, defense, and numerous high-tech industries from nuclear technology development fallout are indeed numerous and increase every day. Now those industries have made further progress and improvements that, in return, benefit the nuclear industry. The clean-air and particle-free devices and enclosures needed for protection and decontamination are excellent examples

  11. Nuclear industry almanac v.1

    International Nuclear Information System (INIS)

    Greenhalgh, G.; Jeffs, E.

    1982-01-01

    Nuclear Industry Almanac. National energy profiles of 17 Western European countries are given, concentrating on electricity supply and the role nuclear power plays in meeting the demand for electric power. The nuclear industries of Austria, Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden, Switzerland and the United Kingdom are described and addresses of establishments and industries are listed. (U.K.)

  12. The World Nuclear University: New partnership in nuclear education

    International Nuclear Information System (INIS)

    2007-07-01

    The important role which the IAEA plays in assisting Member States in the preservation and enhancement of nuclear knowledge and in facilitating international collaboration in this area has been recognized by the General Conference of the International Atomic Energy Agency in resolutions GC(46)/RES/11B, GC(47)/RES/10B, GC(48)/RES/13 and GC(50)/RES/13. A continued focus of IAEA activities in managing nuclear knowledge is to support Member States to secure and sustain human resources for the nuclear sector, comprising both the replacement of retiring staff and building of new capacity. The IAEA assists Member States, particularly developing ones, in their efforts to sustain nuclear education and training in all areas of nuclear technology for peaceful purposes, which is a necessary prerequisite for succession planning, in particular through the networking of nuclear education and training, including activities of the World Nuclear University (WNU) and the Asian Network for Education in Nuclear Technology (ANENT). The report on the attached CD-ROM, The World Nuclear University: New Partnership in Nuclear Education, gives an overview of the history of the development of the World Nuclear University and related IAEA activities and contains an analysis and recommendations from the first WNU Summer Institute, held in 2005 in the USA

  13. The nuclear industry and its markets in Europe. 1996, strategic and financial future prospects

    International Nuclear Information System (INIS)

    1996-01-01

    This work deals with the strategic and financial future prospects of the nuclear industry. It is divided into four parts. The first one gives the explanatory factors of the nuclear energy demand (economic and non-economic factors, energy policy..) and the future prospects of the nuclear energy demand increase in the world. It compares the nuclear power production with the electric power production due to other energy sources too. The second part details the different markets of the nuclear industry. The main markets are the extraction and concentration of natural uranium, its enrichment and conversion, the fuel production and the reactors designs. The growth markets are the spent fuels reprocessing and the nuclear energy services (maintenance, nuclear safety, radioactive materials transport..). The new markets are the nuclear wastes and the sites remedial action. The third part deals with the manufacturers responses as for the markets of the nuclear industry. The last part gives the reactors designers and the fuel cycle firms. (O.M.)

  14. Nuclear power plants in the world as of June 30, 1982

    International Nuclear Information System (INIS)

    1982-01-01

    In this list of nuclear power plants, the result is summarized when Japan Atomic Industrial Forum, Inc., performed the survey of the nuclear power plants in operation, under construction, ordered and at planning stage in the world, which is the first survey of twice a year. The nuclear power plants in operation in the world were 267, amounting to the total capacity of more than 168 million kWe, those under construction were 243 and more than 232 million kWe, those ordered were 32 and more than 31 million kWe, and those at the planning stage were 137 and more than 138 million kWe. The total was 679 and more than 570 million kWe. In this half year, 3 plants with 2651 MWe capacity started operation, while two shut down plants were removed from the list. The People's Republic of China was added, but Norway was removed, accordingly 41 countries engaged in nuclear power generation. Due to the stagnation of world economy and the relaxation in the demand and supply of petroleum, the future progress of nuclear power generation is uncertain. In light water reactors, the trend toward PWRs in future is observed. FBRs are still slight but tend to increase. The situation of nuclear power generation in Japan and main foreign countries is reported. (Kako, I.)

  15. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    This document gathers pieces of information concerning nuclear industry worldwide. The most relevant are the following ones. CGN (China General Nuclear) will launched in 2017 the construction of a prototype of a small transportable modular reactor whose purpose is to produce electricity on a remote place like an island or aboard a boat for long-term missions. The Wylfa reactor (490 MWe) was decommissioned on December 30., 2015. Wylfa was the last Magnox type reactor operating in the world. In France a campaign of information and iodine drug dispatching has been launched for people living near nuclear power plants. The global cost of the CIGEO project whose aim is the disposal of high-level radioactive wastes has been estimated to 25 billions euros including construction costs, operating costs over a 100 year period and dismantling costs. The European Commission has warned France that the financial provisions made for the dismantling of nuclear facilities and the processing of the consequent wastes are not sufficient to cover the future costs. 4 reactors with a power of 1400 MWe each, are being built on the Barakah site in Abu Dhabi, works are on time and the first unit may operate end 2016. Wikileaks has accused AREVA of not taking all necessary measures for the protection of its employees at the Bakouma mine. AREVA denies the charges and affirms that regulations and safety requirements are the same as for its French sites whatever the country. The initiative 'Nuclear for Climate' gathering pro-nuclear associations worldwide, intends to remind the international community that nuclear energy is an important tool to fight climate change. The French site for the disposal of low-level radioactive wastes is facing saturation in the very short term while the volume of such wastes is expected to soar in the next decades as the dismantling programmes will gain in importance. A new policy for the management of such wastes is needed. (A.C.)

  16. U.S. nuclear industry

    International Nuclear Information System (INIS)

    Sherman, R.

    1979-01-01

    At present, 72 power reactors are in the condition of being able to operate in U.S., and the total installation capacity has reached 55 million kW, which is equivalent to about 9.5% of the total power generation capacity in U.S. The nuclear power stations produced 12.5% of the total electricity consumption in 1978. Especially in the north eastern part of the U.S., the nuclear power generation occupied 42% of the total power generation at the time of recent peak load, and 47 million barrels of crude oil and 517 million dollars of foreign currency were able to be saved. Moreover, 96 plants amounting to 105 million kW are under construction, and 30 plants of 35 million kW were ordered. Electric power companies, nuclear reactor makers, nuclear fuel and other related industries believe the merits of nuclear power generation and expect that it will flourish if a certain problem is solved. Especially serious problem to which the U.S. nuclear industry is facing now is the problem of uncertainty. Many orders of nuclear power plants have been canceled, and the constructions have been postponed. The capability of the U.S. nuclear industry to construct more than the required facilities, and its extent and the necessary conditions have been investigated by the Atomic Industrial Forum. The important national and international problems of atomic energy are discussed. (Kako, I.)

  17. US nuclear industry plans squeeze on O and M costs

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United States nuclear industry, still the largest in the world with 107 operating commercial plants, wants to squeeze still more fat out of operation and maintenance costs. Success or failure could decide whether many operating units remain competitive with other forms of baseload electricity generation over the coming decade. (Author)

  18. Nuclear desalination in the Arab world. Part I: Relevant data

    International Nuclear Information System (INIS)

    Mekhemar, S.; Karameldin, A.

    2003-01-01

    Middle Eastern and North African countries suffer from a shortage of fresh water resources. Statistical analysis shows that fresh water resources in these countries constitute less than 13% of the average world resources per capita. In the Arab world, the rapid increase in population and an increase in living standards led to a greater demand for fresh water and electricity. Accordingly, the Arab world has assumed (a leading role in the) desalination industry, contributing about 60% of total world production. Desalination processes are highly power intensive. Thus, different types of energies are used to bridge the gap between these processes and the general increased demand in production. Projections for water and electricity demand in the Arab world, up to 2030, are made according to population and its growth rates. The present study (according to these projections) indicates that population in the Arab world will double by the year 2030. At that time, domestic and industrial water demand will be 360 million m 3 d -1 ; meanwhile, electrical power consumption will be 4.5 trillion kWh d -1 . Accordingly, the Advanced Inherent Safe Nuclear Power Plants adapted for water-electricity co-generation could meet the demand, as a clean energy source. (author)

  19. Nuclear industry powering up to tackle potential threats from cyberspace

    International Nuclear Information System (INIS)

    Shepherd, John

    2015-01-01

    In June 2015, the International Atomic Energy Agency (IAEA), in cooperation with international agencies including the crime-fighting organisation Interpol, will host a major conference on the protection of computer systems and networks that support operations at the world's nuclear facilities. According to the IAEA, the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, ''continues to grow and presents an ever more likely target for cyber-attack''. The international nuclear industry is right to take heed of ever-evolving security threats, deal with them accordingly, and be as open and transparent as security allows about what is being done, which will reassure the general public. However, the potential menace of cyberspace should not be allowed to become such a distraction that it gives those who are ideologically opposed to nuclear another stick with which to beat the industry.

  20. Nuclear industry powering up to tackle potential threats from cyberspace

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Brighton (United Kingdom)

    2015-06-15

    In June 2015, the International Atomic Energy Agency (IAEA), in cooperation with international agencies including the crime-fighting organisation Interpol, will host a major conference on the protection of computer systems and networks that support operations at the world's nuclear facilities. According to the IAEA, the use of computers and other digital electronic equipment in physical protection systems at nuclear facilities, as well as in facility safety systems, instrumentation, information processing and communication, ''continues to grow and presents an ever more likely target for cyber-attack''. The international nuclear industry is right to take heed of ever-evolving security threats, deal with them accordingly, and be as open and transparent as security allows about what is being done, which will reassure the general public. However, the potential menace of cyberspace should not be allowed to become such a distraction that it gives those who are ideologically opposed to nuclear another stick with which to beat the industry.

  1. Development and management of world nuclear power in 2012

    International Nuclear Information System (INIS)

    2012-01-01

    It deals with development and management of nuclear power of foreign countries by the 1st of January 2012 with tables and figures, which includes outline of investigation, operation experience of nuclear power plant of the world, the cardinal number according to the type of operating power plant of the world, using Mox of the world and site of nuclear power plant of the world. There are list of world nuclear power plant, explanation of abbreviations, address book of nuclear power plant of the world and table and figure of major nuclear fuel cycle.

  2. Directory of the French nuclear industry

    International Nuclear Information System (INIS)

    2002-10-01

    This directory includes data sheets on the French companies operating in the nuclear industry. It begins with an introduction containing information on the French nuclear industry: 1 - nuclear power development in France (national energy plan, history, organization, economic advantages, reactors); 2 - French operator: Electricite de France (EdF); 3 - the industry (Areva, Cogema, mining activities, uranium chemistry and enrichment, processing, recycling, engineering, services, Framatome ANP); 4 - R and D and knowledge dissemination: French atomic energy commission (CEA); 5 - nuclear safety, security, control and regulation: nuclear safety authority (ASN), general direction of nuclear safety and radioprotection (DGSNR), institute of radioprotection and nuclear safety (IRSN), radioactive wastes, ANDRA's role; 6 - associations: French atomic forum (FAF), French nuclear industry trade association (GIIN), French nuclear energy society (SFEN), French radiation protection society (SFRP). Then, the data sheets of the directory follows. (J.S.)

  3. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  4. The Importance of Enhancing Worldwide Industry Cooperation in Radiological Protection, Waste Management and Decommissioning - Views from the Global Nuclear Industry

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2008-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of great relevance.This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of Summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry's involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  5. Responsability of nuclear industry

    International Nuclear Information System (INIS)

    Cadiz Deleito, J.C.

    1985-01-01

    Since the beginning of nuclear industry, civil responsibility with damages to the public health and properties was a critical problem, because the special conditions of this industry (nuclear accident, damages could be very high but probability of these events is very low). Legal precepts, universally accepted, in the first 60 years for all countries interested in nuclear energy are being revised, then 20 years of experience. The civil responsibility limited is being questioned and indemnities updated. (author)

  6. A World Nuclear University

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    The paper discusses the mission and tasks of the World Nuclear University (WNU) established to build worldwide knowledge and support the effective use of nuclear techniques for solving the global human and environmental problems of 21 century and thereby support the global sustainable development. In this respect the WNU would build Human resources, Technical knowledge and Public Support. A Network of educational and research institutions with strong programmes in nuclear science and engineering will be created. The WNU Head quarters and Regional Centers will: 1) Facilitate agreement on curriculum and WNU certification curriculum 2) Develop and administer scholarships; 3) Foster educational exchanges within WNU family institutions; 4) Build core faculty for summer 1/2 year Masters degrees; 5) Co-ordinate research, grants and knowledge management research; 6) Operate think tank and public information service; 7) Emphasise key areas such as safeguards systems and the nuclear-renewable-hydrogen economy; 8) Oversee world-wide human resources pool; 9) Orchestrate alumni support for nuclear technology. The possible participants and possible location of the Regional Centres are given

  7. Risk management of knowledge loss in nuclear industry organizations

    International Nuclear Information System (INIS)

    2006-07-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  8. Industrial nuclear property

    International Nuclear Information System (INIS)

    Lepetre, M.

    1976-01-01

    The first requests for patents for the use of nuclear power filed in France in 1939. This paper reviews the regulations on industrial nuclear property in various countries. The patenting system in several socialist countries is characterized by the fact that inventions on the production and use of radioactive materials may not be patented. This equally applies in India. In the United States, this type of invention may be patented except for those involving military uses and which must be notified to the federal authorities. In France, all industrial nuclear property is grouped under the same body, Brevatome, created in 1958, which enables the allocation of rights to be negotiated between the different interested parties, the Atomic Energy Commission (CEA), Electricite de France (EDF) and private industry. Under the Euratom Treaty, all inventions, even those governed by secrecy in Member countries, must be communicated to the Commission of the European Communities. (NEA) [fr

  9. Is a nuclear weapon-free world desirable?

    International Nuclear Information System (INIS)

    Tertrais, Bruno

    2009-01-01

    In this article, the author shows that a nuclear weapon-free world would probably be more dangerous than today's world because benefits of the existence of nuclear weapons are probably more important that the risks related to their existence. He outlines that nuclear deterrence has been very efficient for these last 65 years. He states that the disappearance of nuclear weapons could be envisaged only after a large transformation of safety conditions, but that such transformations are actually not at all under way. It would indeed require peaceful and democratic world governance

  10. Nuclear challenges in Asia, an industrial perception

    International Nuclear Information System (INIS)

    Tiffou, Jean-Pierre

    2015-01-01

    The author first gives a brief overview of military programmes implemented by India, China, Pakistan and North Korea to develop and manufacture the various vectors of nuclear weapons (submarines, missiles, bombers), the objective being (not always reached) to possess a nuclear triad (intercontinental ground-based missiles, submarines, and bombers). In this respect, the author briefly comments the evolutions of defence budgets, discusses the evolutions of the Chinese defence industry since the end of World War II (strong relationship with USSR, emergence of other various trade relationships, a more independent production but with a search for new technological partnerships). The author then discusses whether China is a threatening military power, more particularly for some Asian countries like Japan and South Korea

  11. After the world court opinion: Towards a world without nuclear weapons

    International Nuclear Information System (INIS)

    Roche, D.

    1998-01-01

    With the World Court advisory opinion on the treat or use of nuclear weapons, a new moment has arrived in the 51-year history of atomic bomb. The highest legal body in the world has said that governments must not only pursue but conclude negotiations leading to total nuclear disarmament. Both a sharp focus and a comprehensive action are required in developing public support and political action towards a safer, more peaceful world. Three-pronged interrelated course of action is proposed: a Nuclear Weapon Convention; reduction in conventional arms and control of arms trade; and new spending priorities or sustainable development

  12. INTERNET and information about nuclear sciences. The world wide web virtual library: nuclear sciences

    International Nuclear Information System (INIS)

    Kuruc, J.

    1999-01-01

    In this work author proposes to constitute new virtual library which should centralize the information from nuclear disciplines on the INTERNET, in order to them to give first and foremost the connection on the most important links in set nuclear sciences. The author has entitled this new virtual library The World Wide Web Library: Nuclear Sciences. By constitution of this virtual library next basic principles were chosen: home pages of international organizations important from point of view of nuclear disciplines; home pages of the National Nuclear Commissions and governments; home pages of nuclear scientific societies; web-pages specialized on nuclear problematic, in general; periodical tables of elements and isotopes; web-pages aimed on Chernobyl crash and consequences; web-pages with antinuclear aim. Now continue the links grouped on web-pages according to single nuclear areas: nuclear arsenals; nuclear astrophysics; nuclear aspects of biology (radiobiology); nuclear chemistry; nuclear company; nuclear data centres; nuclear energy; nuclear energy, environmental aspects of (radioecology); nuclear energy info centres; nuclear engineering; nuclear industries; nuclear magnetic resonance; nuclear material monitoring; nuclear medicine and radiology; nuclear physics; nuclear power (plants); nuclear reactors; nuclear risk; nuclear technologies and defence; nuclear testing; nuclear tourism; nuclear wastes; nuclear wastes. In these single groups web-links will be concentrated into following groups: virtual libraries and specialized servers; science; nuclear societies; nuclear departments of the academic institutes; nuclear research institutes and laboratories; centres, info links

  13. Gradually, the industry world opens for transparency

    International Nuclear Information System (INIS)

    2016-01-01

    This article comments some noticeable evolutions of various industrial sectors towards information transparency. It indicates the four types of structures which exist in France for local information on nuclear installations (CLI and CI), on waste processing installations (CSS), and on industrial pollutions (SPPPI), comments the efforts made by the different actors and industries of the French nuclear sector (public debates, visits, legal framework, local commissions of information, authorities like ASN and IRSN), addresses the case of chemical industry (a slow implementation of transparency due to a different and more spread organisation), and outlines that the oil and gas industry presents less opportunities for a dialogue

  14. Transition in the nuclear industry

    International Nuclear Information System (INIS)

    Olyniec, J.H.

    1985-01-01

    Not long ago, nuclear energy was forecast to be the dominant force in the utility industry. An environmentally safe clean and inexpensive way to produce electricity would be welcomed by all. Civil engineering challenges on the leading edge of technology awaited the designer and constructor. As we now know, changes within the past 10 years have taken place that radically alter this outlook. Energy demand, thought to be ever increasing, was shocked by the rising costs. Plant construction delays, coupled with ever increasing regulatory requirements and higher interest rates, fueled the spiral or more cost. Economy of operation became overwhelmed by utility debt burden. Where is the nuclear utility industry now and what direction can we foresee. this symposium addresses the nuclear industry past, present, and future. The first session highlights some lessons learned from past experiences that must be applied in the future to be beneficial. Existing and future challenges are presented in the sessions on plant modifications and nuclear waste and decommissioning. The final session looks at the nuclear industry in transition from the perspectives of the different segments that make up the industry

  15. Nuclear technology and beekeeping industry: much more than atoms and bees

    International Nuclear Information System (INIS)

    Rapisarda, Vicenzo M.; Hussein, Ana M.

    2002-01-01

    Argentine beekeeping industry is the first honey world exporter and the third honey world producer. At the present work, the authors try to show why nuclear technology is one of the best tools for beekeepers to reach health and quality standards required by national and international organisations. Irradiation from Cobalt 60 aim to fight against American foul brood, European foul brood and Chalk brood, besides it is such a good mechanism to degradate acaricides residuals in wax which were used in order to kill Varroa jacobsoni Oud. During the last 30 years, studies have demonstrated honey bees are wonderful sentinel species which represent an incomparable help to nuclear activity through environmental monitoring. Nuclear energy, health care, commercial affairs and environment meet together at Ezeiza Atomic Center, where many developments have been done and new projects are carried out. (author)

  16. Perspectives of nuclear energy in the view of the World Energy Council

    International Nuclear Information System (INIS)

    Doucet, G.

    2003-01-01

    Since 1930, the World Energy Council (WEC) has been closely involved in problems associated with the use of nuclear power. At the meeting then held by the WEC Executive Committee in Berlin, Albert Einstein drew the attention of power utilities to this new source of energy. In addition to optimized use, technical progress, and waste management, the WEC regards aspects of safety, proliferation, and sustainability of nuclear power as matters of special importance. In the energy scenarios elaborated by the WEC since the 1980s, nuclear power plays one of the leading roles in the future energy mix. The sustainable management of energy resources, worldwide climate protection, but also equal access to energy for all people, require the use of nuclear power and the furtherance of its options. Moreover, the use of nuclear power in the industrialized countries helps to stabilize energy prices worldwide. This is in the interest especially of developing countries, for which low-cost, accessible energy sources are vital factors. The electricity supply crisis in California in 2001 has shown the continuity of supply to be one of the factors important in the deregulation of energy markets. Bottlenecks in electricity supply because of a lack of acceptance of electricity generation are problems affecting the future of industrialized countries. For instance, the increasing digitization of every-day life demands reliable power supply. In its studies of all available energy sources the WEC found no alternative to nuclear power. Factors of importance in the future development and use of nuclear power are public acceptance and the ability, and willingness, to take decisions in economic issues. Waste management, proliferation, safety, and research and development are other priorities. As a source of power protecting the climate, stabilizing costs, and offering a considerable potential, nuclear power is compatible with the objectives of sustainable development for the world of tomorrow

  17. World nuclear performance report 2017

    International Nuclear Information System (INIS)

    Cobb, Jonathan

    2017-01-01

    World Nuclear Association recently published the 2017 edition of the World Nuclear Performance Report. The report presents key metrics that illustrate current performance, both of reactors currently operating and those under construction. The article highlights some of the most important findings of the report. The pace of new build will need to accelerate if nuclear energy is going to make a growing contribution to the global electricity generation mix, a requirement of many projections of future scenarios that aim to meet the objective of limiting the rise average temperatures to below two degrees Celsius, while at the same time meeting the growing worldwide demand for electricity.

  18. World nuclear performance report 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-08-15

    World Nuclear Association recently published the 2017 edition of the World Nuclear Performance Report. The report presents key metrics that illustrate current performance, both of reactors currently operating and those under construction. The article highlights some of the most important findings of the report. The pace of new build will need to accelerate if nuclear energy is going to make a growing contribution to the global electricity generation mix, a requirement of many projections of future scenarios that aim to meet the objective of limiting the rise average temperatures to below two degrees Celsius, while at the same time meeting the growing worldwide demand for electricity.

  19. The Application of Nuclear Technology for a Better World

    International Nuclear Information System (INIS)

    Ita, E.B.

    2015-01-01

    Nuclear Technology is widely used in different areas and sector of our economy to better man kind and his environment. Peaceful applications of nuclear technology have several benefits to the world today. It is widely believed that nuclear technology is mainly used mainly for the production of electricity (Nuclear Power Plants – NPPs). Many are not aware of the other numerous benefits of nuclear technology. Nuclear technology can be applied in different fields for numerous benefits. Different sectors Nuclear Technology application can improve the living standard of man and his environment: – Food and Agriculture; – Medicine; – Industrial; – Energy; – Education; — Research and Development; – Environment. The benefits of the application of nuclear technology cannot be over emphasised. These benefits range from the improved quality of purified water we drink, the textiles we wear, improved quality of stored grains for preservation of foods, water analyses, improved transportation system work, drugs production, medical tests and analysis, clean environment through radioisotope techniques etc. The application of nuclear technology also gives a safer, greener, healthier and pollution free environment and atmosphere for human habitation. In my poster, the numerous benefits of the various applications of Nuclear Technology will be clearly enumerated and heighted. (author)

  20. Government intervention in the Canadian nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Doern, G B [Carleton Univ., Ottawa, Ontario (Canada). School of Public Administration

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors.

  1. Capitalizing the contribution of the nuclear industry

    International Nuclear Information System (INIS)

    Donnadieu, G.

    1984-01-01

    The main contributions of the French nuclear industry to the country, and ways to make the most of them are presented. The advantages acquired include the nuclear power stations built; mastering of the combustion cycle; a powerful, well structured nuclear construction industry; and a nuclear-industrial complex giving France an important industrial potential. It is recommended that the industrial and research effort be maintained. The proposed strategy consists of defining an electronuclear program and associated economic development program and sticking to them; promoting exports; possibly merging certain industrial capacities; and strengthening the national position and independence concerning the fuel cycle [fr

  2. Trend of nuclear power development in main countries and perspective of nuclear industry after the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2011-01-01

    Fukushima Daiichi Accident occurred in March 11, 2011 was of highest interest in the world and had been reported worldwide from relevant Japanese organizations almost in real time just after happened. This article overviewed five month's response of government and energy related organization of each country and international agency and summarized effects of the accident on nuclear power in energy policy of each country as well as perspective of nuclear industry responded to change of market trend. After the accident, basic policy to regard nuclear power as important was maintained with enhancing reactor safety against extreme events in countries choosing nuclear power as important and requisite energy and there appeared such a trend of nuclear power phase-out in countries promoting nuclear power prudently. Choice of nuclear power would be decided on energy state of each country and was not affected before and after the accident. Trend of nuclear business was closely related with that of market and no fundamental change was observed although some industries with revenue from business in nuclear power phase-out country or cancelled project after the accident were obliged to be affected. (T. Tanaka)

  3. Enhanced security in the nuclear industry

    International Nuclear Information System (INIS)

    Frappier, G.

    2007-01-01

    This article describes the security in the nuclear industry. After 9/11, Canada's nuclear regulator - the Canadian Nuclear Safety Commission (CNSC) - determined that the entire industry (including its own organization) faced a need for significant enhancements in their approach to security.

  4. Nuclear industry chart

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    As part of a survey on Switzerland a pull-out organisation chart is presented of the nuclear industry showing Swiss government bodies and industrial concerns. Their interests, connections with each other and their associations with international and other national organizations and firms are indicated. (U.K.)

  5. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  6. Organization of the German nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Corporate ownership within the German nuclear industry has evolved constantly during the last decade, and recent acquisitions and mergers, reunification of the country, as well as preparation for a unified European power market, have led to many significant changes during the past two years. The country's nuclear industry continues to struggle under an increasingly anti-nuclear political environment, yet nuclear power provided more than one-third of Germany's total electricity generation in 1991. As in many countries, particularly in western Europe, many German companies involved in different facets of the nuclear industry are interrelated. Usually as a means of horizontal or vertical integration, the country's nuclear utilities own, directly or indirectly, shares in uranium mining projects; conversion, enrichment, and fabrication companies; or other utilities' nuclear power plants. The utilities own partial interests in companies in supporting industries as well, including transportation firms, waste management companies, uranium broker/traders, and nuclear equipment manufacturers. While the majority of the companies owned are German, numerous investments are made in non-German firms also

  7. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  8. A view from the nuclear industry

    International Nuclear Information System (INIS)

    Berry, R.J.

    1989-01-01

    The Conference is reminded that the nuclear industry regards occupational radiation-induced cancer as a putative rather than a demonstrated hazard at current dose levels. Although epidemiological studies have shown possible dose-response correlation, all such studies of nuclear industry personnel show an overall risk of malignant disease lower than that for the general public. Doses to workers in the nuclear industry have been reducing since the 1970s, largely in consequence of the optimisation of radiation protection and the injunction ''to keep doses as low as reasonably achievable'' without reduction in occupational dose limits over this period. It is argued that further reduction in individual dose limits will act to increase collective dose. The nuclear industry no longer has either the highest individual average or collective radiation doses to its workforce within British industry; higher average individual doses occur in the non-coal mining industry and the collective dose to coal miners is greater than that of nuclear fuel cycle workers and comparable to the sum of collective doses to fuel cycle and power generation workers. (author)

  9. Scenarios for 14C release to the atmosphere by the world nuclear industry and estimated radiological impacts

    International Nuclear Information System (INIS)

    Till, J.E.; Killough, G.G.

    1978-01-01

    This paper presents an assessment of the radiation dose to the world population and the associated potential health effects from three scenarios of 14 C releases by the nuclear industry between 1975 and 2020. Measures of health impact are derived from source terms through the use of a multicompartment model of the global carbon cycle, dose-rate factors based on 14 C specific activity in various organs of man, and health-effect incidence factors recently recommended by the International Commission on Radiological Protection. The scenarios for worldwide 14 C releases considered are (1) a pessimistic scenario in which all the 14 C projected to be produced in fuel cycles is released, (2) an optimistic scenario that assumes a decontamination factor of 100 for fuel reprocessing, and (3) an intermediate scenario that simulates a phased improvement in effluent treatment technology at reprocessing plants. The estimates of cumulative potential health effects are based on integrations over infinite time. Comparisons with estimated effects from naturally formed 14 C are shown

  10. Current status and prospects of France's nuclear sector and France's vision of the nuclear renaissance throughout the world

    International Nuclear Information System (INIS)

    Bugat, Alain

    2007-01-01

    Industrial companies are merging of forging alliances, and are competing for the securing of a stable supply of uranium resources; different states are discussing in order to establish partnership or cooperation agreements, on both the bilateral or multilateral side. in other words, the nuclear scene is more changing and active than ever. This burst of activity is motivated by the renewed interest in the nuclear energy throughout the world. In order to meet the expectation of more and more people wanting to have access to energy, nuclear energy has to face important challenges: the highest level of safety is required, the nuclear waste must be dealt with in a responsible and sustainable way, and the trust and acceptance of the public must be consolidated. France, being a long time supporter of nuclear energy is of course an actor of this Renaissance, and is strengthening its nuclear sector in order to meet the criteria expressed above. i will detail in my speech what are the steps taken in france in order to do so, and share my view of what should be a sustainable development of nuclear energy in the world, providing electricity while keeping a clean record on safety and non proliferation matters. We are clearly at a turning point in the history of nuclear energy, perfectly illustrated by the shift in the position of a quite large number of environmentalists, considering now nuclear as a sound option in order to produce base load energy without emitting greenhouse effect gas. Given the constraints at stake, it seems clear that more and more countries will turn to nuclear for their energy needs. It is up to us, the advanced countries in this field, gathered here today in Korea, to help this happen. It is up to us to lead the way, and show the world that electricity can be produced from nuclear with the highest standards of safety at competitive come along with no additional threat regarding non proliferation issues. All the major nuclear countries, including of

  11. The Economic Value of Korean Nuclear Power Industry in the National Economy: An Input-Output Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. K.; Kim, S. S.; Lee, J. H.; Kim, S. H. [Nuclear Policy Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In 1978, Korea introduced the first nuclear power plant, Kori-1 unit, in parallel with the nation's industrialization policy. Thereafter, Korea has carried out a very ambitious nuclear power program and sustained a strong commitment to nuclear power development. Thus, nuclear is a prime energy source which presently meets about 30 percent of Korea's power demands. Also, Korea won a contract for APR-1400 NPPs to the UAE in 2009 which led to Korea as a significant exporter in the world nuclear market. Recently, the new government of Korea has been launching 'Creative Economy', from this perspective, the quantitative contributions of nuclear sector to the national economic growth are required to be estimated. This paper is to estimate quantitatively the economic values created by nuclear power industry in the framework of national economy. The total economic values created by nuclear power industry are estimated to be 63.6 trillion won for the study period.

  12. The trilogy nuclear technology-quality-reliability in nuclear energy: the interface technical regulation/industrial norm in the nuclear industry

    International Nuclear Information System (INIS)

    Costa, Jose Ribeiro da

    1995-01-01

    In this paper, it is tried to find out a compatibility among Regulations (mandatory) documents governing Quality Assurance Requirements for the Nuclear Industry (like IAEA/50-C-QA, IAEA/50-SG-QA1, IAEA/50-SG-QA7, and others), with similar documents prescribing same requirements for COnventional Industry (like ISO/900 Series), using the technical support of the prescriptions contained in the IAEA/TR-328 documents. Harmonization and compatibility of these documents is a great deal for Industries engaged -directly or indirectly - in the Nuclear Technology, taking into account that such compatibility can avoid troubles for already ISO/9000 Series Certified Industries in the fulfillment of its contract requirements in the nuclear field. Its also represents in that field a symbiosis between Technical Regulations (mandatory) and Voluntary Standards (Industrial, Consensual Standards). (author). 7 refs., 1 fig., 1 tab

  13. Discussion on life extension of nuclear power plant around the world

    International Nuclear Information System (INIS)

    Chen Ming; Zhang Yuansi

    2010-01-01

    The very Paper introduces the concept, basic working flow and fundamental elements of the life extension of nuclear power plant (NPP) around the world; and it generally collects and summarizes the status datum of life extension of NPPs. Afterwards, the Paper analyses the present status of life extension of NPP in various countries with strong nuclear power industry, i.e. the United States, France, Germany, Russia Federation, Japan, South Korea and Canada. At the end, the Paper make a conclusion that whether an operating NPP will adopt life extension at the end of its design life, this issue depends on the factor of economy, safety and technical feasibility of life extension on the NPP. According to latest datum collected in 2009, the nuclear power units around the world, which have exceeded the design lives or are close to design life ends, most of them (about 64%) have selected to extend their service lives; based on this statistical data, we concludes that when an operating nuclear unit is facing with the issue of to extend life or to retire itself, it will be apt to make life extension. (authors)

  14. Special issue: the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This special issue contains papers on the following topics: French nuclear policy; nuclear energy development in Europe; nuclear diversification; Alsthom-Atlantique in the nuclear field; 1981 nuclear electricity generation; EDF siting policy; the N4 model of the 1300 MW series; Creys-Malville; the nuclear industry in Europe; pumps in the nuclear industry [fr

  15. Emerging nuclear suppliers in the Third World

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The emergence of new supplier states of nuclear technology within the Third World has raised concern, if those nuclear supplier states will promote an unrestricted and uncontrolled transfer of nuclear technology to developing countries and augment the risk of nuclear weapons proliferation. The article analyses the nuclear export capacities, nuclear exports and the export policy of Argentina, Brazil and India. Argentina is considered as the most important emerging nuclear supplier state in the Third World. Nuclear exports have to be authorisized by the government in all three states and will be covered by IAEA-safeguards in the recipient country. The three states will exercise restraint in the transfer of sensitive nuclear technology. Nuclear exports of Argentina, Brazil and India so far will not augment the danger of nuclear weapons proliferation. (orig./HSCH) [de

  16. Nuclear security in a transformed world

    International Nuclear Information System (INIS)

    Gottfried, K.; Dean, J.

    1991-01-01

    In the wake of the failed coup attempt in the Soviet Union, the world stands hopeful that a new era of international peace and cooperation lies ahead. President Bush's unilateral reductions in tactical nuclear weapons and in the alert levels of US forces, coupled with President Gorbachev's largely reciprocal actions, are important steps toward realizing that hope. While bold in the context of recent arms control history, however, these actions are modest in the face of the current enormous opportunity and the shifting threats the world now faces. Even with these welcome unilateral actions, the likely continued presence of thousands of nuclear weapons throughout many of the Soviet republics, the temporary uncertainty over central government command during the coup, and fuller knowledge of Iraq's aggressive efforts to build a nuclear bomb serve as stark reminders that the danger of nuclear catastrophe has not disappeared. Although a deliberate attack by the Soviet Union against the US or Europe is now almost inconceivable, nuclear weapons continue to pose significant threats to US security and world peace. These threats fall into three broad categories: a persistent risk of regional nuclear war involving countries other than the Soviet Union that are already in possession of nuclear weapons or capable of building them; the spread of nuclear weapons to other countries; accidental or unauthorized use. To meet this new challenge, three key steps must be taken: reduce dramatically Soviet and US nuclear arsenals; negotiate restrictions on the arsenals of other nuclear powers; strengthen the nuclear nonproliferation regime

  17. Overview of the Russian nuclear industry

    International Nuclear Information System (INIS)

    2008-02-01

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  18. Nuclear energy in Europe and the world

    International Nuclear Information System (INIS)

    Koenig, H.H.; Brown, Boveri und Cie A.G., Mannheim

    1982-01-01

    The author provides an account of opinions expressed at the 1982 Euratom Congress on the world's economical situation, public views on nuclear energy, the energy problem of the third world an on the development status of nuclear technology. (orig.) [de

  19. Current status of nuclear power in the United States and around the world.

    Science.gov (United States)

    McKlveen, J W

    1990-09-01

    Nuclear energy's share of the world electricity market has been growing over the past 35 years. In 1989, eight generating units entered commercial operation abroad and three new units were licensed in the U.S. In early 1990, Mexico became the 26th country to produce electricity from nuclear power. Currently the 426 operating reactors supply one sixth of the world's total electrical capacity. Fourteen countries have now operated nuclear plants for 20 or more years. Since 1980, France has been the leader in the use of nuclear power and currently generates three quarters of its electricity from 54 nuclear plants. The U.S. has 112 nuclear plants, the largest number of any country in the world. These plants satisfy almost 20 percent of U.S. electrical energy requirements. Last year Three Mile Island, the would-be icon for everything that is wrong with the nuclear industry was rated as the most efficient nuclear plant in the world. The worldwide trend toward acceptance of nuclear is improving slightly, but many political and societal issues need to be resolved. Whereas recent polls indicate that a majority of the people realize nuclear must be a major contributor to the energy mix of the future, many are reluctant to support the technology until the issue of waste disposal has been resolved. Fears of another Chernobyl, lack of capital, and a new anti-nuclear campaign by Greenpeace will keep the nuclear debate alive in many countries. Additional stumbling blocks in the U.S. include the need to develop a new generation of improved reactor designs which emphasize passive safety features, standardized designs and a stream-lined federal licensing process. Nuclear power is really not dead. Even environmentalists are starting to give it another look. A nuclear renaissance will occur in the U.S. How soon or under what conditions remain to be seen. The next crisis in the U.S. will not be a shortage of energy, rather a shortage of electricity.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Changes to Regulatory Systems for more Efficient Nuclear Energy Deployment: An Industry Viewpoint

    International Nuclear Information System (INIS)

    Pelin, H.

    2016-01-01

    Nuclear energy is required to play a much larger role in the energy mix in most credible energy scenarios that address climate change (680 GW additional capacity by 2050 according to IEA, 1000 GW according to World Nuclear Association). To reach these ambitious targets, a concerted effort will be required involving industry, governments and regulators. Changes to regulatory systems and processes – including licensing (design, site, operation), export control, security and waste - is one important area that can stimulate faster and more cost effective development of nuclear capacity. In the past, regulators were mainly concerned with authorizing a limited number of reactors from a limited number of designs under a national standard. Today regulators need resources to assess a wider range of designs, while each licensee needs to complete a thorough safety assessment even if the design has been assessed and approved elsewhere. These developments are the inevitable consequence of globalization and competition within the industry. This paper examines the current state of nuclear regulation in relation to the main attributes of good regulation as defined by the OECD. It further looks at ongoing efforts among regulators to share experience or harmonize requirements, such as within MDEP, or to agree common safety levels, such as in WENRA, in order to reach common positions and improve their regulatory approaches. Finally, it will assess the work of industry to demonstrate the benefits – both in terms of efficiency as well as safety – of harmonised regulations notably through the activities of the World Nuclear Association/CORDEL Working Group. (author)

  1. Nuclear energy in a nuclear weapon free world

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, Joseph [Los Alamos National Laboratory

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  2. Topics on Education Activities in Japanese Nuclear Industries

    International Nuclear Information System (INIS)

    Kuroiwa, Haruko

    2008-01-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  3. Topics on Education Activities in Japanese Nuclear Industries

    Energy Technology Data Exchange (ETDEWEB)

    Kuroiwa, Haruko [Mitsubishi Heavy Industries, LTD - MHI, 2-16-5 Kona Minato-K 108-8215 Tokyo (Japan)

    2008-07-01

    The progression of an aging society with fewer children or a foreseeable decrease in population has caused the nuclear power plants under planning canceled or delayed. As a result, the number of students graduating with a nuclear degree began to decrease, while the development of the next generation light water reactor or of the practical use of the fast breeder reactor requires many skilled engineers. Atomic Energy Commission of Japan realized this potential impact of human resources. The Commission submitted the Framework for Nuclear Energy Policy including this issue to the government. The report says that without future talent development, Japan will lose its competitiveness against other industrialized countries, and that without replenishment after a large number of baby boomers retire, the shortage of specialists in the radiation field will occur. In conjunction with the Framework for Nuclear Energy Policy, the Ministry of Education, Culture, Sports, Science and Technology and the Ministry of Economy, Trade and Industry carried out the Nuclear Power Human Resources Development Program in 2007 fiscal year. The program focused on i) Support of educational activities, such as basic nuclear education and research, internship, and preparation of core curriculums and texts for nuclear power, ii) Implementation of research in the basic and infrastructure technology fields supporting the nuclear power (ex. structural strength, material strength, welding, erosion/corrosion, heat transfer, radiation safety). This program will continue till the end of 2009 fiscal year. Besides in order to promote nuclear power acceptance and to secure diversity, effective measures should be taken to support young, women, and foreign researchers and to promote their utilization. Mitsubishi accepts overseas students and researchers as an internship every year, and accelerates the safety architecture in the world. (author)

  4. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  5. The evolution of nuclear energy Opportunities for the industry

    International Nuclear Information System (INIS)

    Dominguez, M. T.

    2013-01-01

    At the turn of the XXI century, the world energy context underwent a significant change due mainly to the increases in the demand for energy in the developing countries, a rise in gas prices and increased government support of clean energies in response to environmental issues. these boundary conditions led rapidly to renewed interest in nuclear energy worldwide. The phrase a Renaissance in nuclear energy was included in almost all energy forecasts. Unexpectedly, however, just then years later the panorama changed once again: unconventional gas appeared as new energy source, the world financial crisis hampered investment, and the demand for energy fell. This panorama has lowered expectations with regard to the size of the nuclear energy renaissance to a less buoyant but more balance scenario of nuclear energy deployment that we could now dub as the evolution of nuclear energy. This article describes how fission nuclear energy has continuously been evolving to adjust itself to these changing scenarios, and, in particular, how it is being adapted itself to todays vision of the role of the nuclear energy in the long term. The analysis in this paper focuses on those programs that could bring opportunities for Spanish nuclear industry participation. Starting with the development programs affecting existing reactors already in operation, the analysis moves on the new builds of Light Water Reactors (LWR) Generation III+, to then address, in two sections, Research Reactors and finally, the opportunities presented by Generation IV technologies. The development of fusion technology is not covered in this paper. (Author)

  6. US nuclear policy and business trend of Japan's nuclear industries

    International Nuclear Information System (INIS)

    Matsuo, Yuji

    2010-01-01

    As several countries in the east-Asia and middle-east area have been taking an increasing interest in the deployment of nuclear power generation, Japan's nuclear industries have promoted international business activities including the success in the bid of second nuclear power plants in Vietnam. While there are plans for more than thirty of new reactors in the US, the lifetime extension of existing aged reactors, development of non-existing natural gas and trend of greenhouse gases reduction measures have dampened these plans and probably most of new units will not start construction by 2030. This article reviewed the details of US's new nuclear power introduction, trend of recent government's policies, future perspective of nuclear power construction and business trend of Japan's nuclear industries. Japan's industries should be flexible regarding nuclear power as one option to realize low-carbon society. (T. Tanaka)

  7. The nuclear industry in France

    International Nuclear Information System (INIS)

    Degot, D.

    1981-02-01

    The French nuclear industry is organized around the following main participants: - The E.D.F., owners, industrial architects and operators of the power stations, - The C.E.A. for research and development, with its subsidiary the COGEMA, who deal with all problems involving the fuel cycle, - The Industry with FRAMATOME in charge of the manufacture of nuclear boilers, and ALSTHOM-ATLANTIQUE in charge of turbo-generator units. This paper deals with the activities covered by FRAMATOME and its industrial environment. The standardization of PWR power stations built by French industry and the possibilities of exporting PWR power stations are given a brief mention [fr

  8. World nuclear developments after Chernobyl

    International Nuclear Information System (INIS)

    Rippon, S.

    1987-01-01

    1986 will inevitably go down in history as the year of Chernobyl, the consequences of which must be delays in and even withdrawals from the development of nuclear power. On the credit side, the Soviet Union has done a rapid and remarkable job in sealing the damaged reactor and rehabilitating the station and the area while improving the safety of its total program. Equally effective has been the response of the IAEA. In terms of nuclear power's claim as a major source of energy, nothing has changed as a result of Chernobyl. 15% of the world's electricity is now produced from nearly 400 power reactors. In comparison with any other energy form nuclear energy must rank high in terms of economy, safety and environmental effects. What has changed is the public perception of nuclear power, and the effort world-wide which will need to be made to restore public confidence

  9. Obsolescence in nuclear industry

    International Nuclear Information System (INIS)

    Mondal, U.

    2000-01-01

    Most nuclear plants around the world are roughly 15 to 30 years old. The design and procurement of CANDU plants took place from the late 60's to mid 80's (i.e., 20 to 30 years vintage). Most equipment originally installed in these plants is obsolete or the manufactures are out of business or their production has been discontinued due to technological evolution. In order to maintain operation of nuclear plants with safety integrity and commercial viability, certain spare parts must be available at the plant all the time. The objective of this paper is to identify an optimum, cost-effective approach that solves obsolescence problem efficiently and without duplicating efforts. The Nuclear Utility Obsolescence Group (NUOG) has embarked upon the following major tasks: Developing a Guideline for use by the utilities that addresses obsolescence; Collection of obsolescence data in a database (Web-based) to be shared by all members; Motivation of the suppliers to engage them in obsolescence solutions; Increase in awareness among the utility management to consider obsolescence as a priority issue and allocate funds to address them pro-actively; and Coordination with other industry groups (EPRI, INPO, NEI, BWROG etc.) to avoid duplication of effort in obsolescence resolution process. The NUOG strategy is based upon the principles of sharing. It advocates sharing of obsolescence solutions and concerns among the utilities. Candu Owners Group Inc. (COG) has initiated self-assessment of obsolescence in the members' plants. The purpose of self-assessment is to provide baseline information that would help identification of obsolescence and coordination of their solutions. The following areas are covered in the self-assessment initiative: Identification of obsolete components in selected systems in the plant. Assess effectiveness of the current obsolescence identification process and in resolution of obsolescence Issues in the plant. Identification of common Candu plant design

  10. What nuclear industry can learn from the digital transformation of high-tech industries

    International Nuclear Information System (INIS)

    Confais, E.

    2017-01-01

    The aircraft industry, the oil industry and the shipbuilding industry share with nuclear industry common issues like the importance of security and safety, long investment cycles and a fierce worldwide competition. All these industries can inspire one another to face these challenges with their own use of digital technologies. A common use of digital technologies is to favor innovation and accelerate its implementation in the industrial cycle through the shortening of both the certification step and the upgrading-time of the production line. Innovation requires creativity and creativity needs freedom, digital technologies can favor initiatives by shadowing the traditional hierarchy at opening the company to a new world of ideas. It also appears that digital technologies allows the quick processing of massive volumes of data that could be used for preventive maintenance and the optimization of the equipment. The broad digitalization of the economy has a dark side: the rising of cyber risks and enterprises have to face them which generally implies to rethink security inside the enterprise. Some companies have overhauled their IT department and have segregated and monitored the access to data. (A.C.)

  11. Government intervention in the Canadian nuclear industry

    International Nuclear Information System (INIS)

    Doern, G.B.

    1980-01-01

    Several facets of government intervention in the Canadian nuclear industry are examined by reviewing the general historical evolution of intervention since the Second World War and by a more detailed analysis of three case studies. The case studies are the public sector - private sector content of the initial CANDU reactor program in the 1950's, the regulation of the health and safety of uranium miners in the late 1960's and early 1970's, and the Ontario Hydro decision in 1978 to enter into longer-term (40 year) contracts for uranium for its power reactors. (auth)

  12. Nuclear power plants in the world as of June 30, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The Japan Atomic Industrial Forum, Inc., has carried out the survey twice every year on the nuclear power stations in operation, under construction, ordered and in planning stage in the world, and this report is the summary of the results. In this survey as of June 30, 1980, the nuclear power stations in operation in the world were 233 plants, those under construction were 229 plants, those ordered were 52 plants, and those in planning stage were 130 plants. The total was 644 plants with the total capacity of 542.2 million kWe. As compared with the number at the end of 1979, 8 nuclear power stations with 5.79 million kWe capacity started the operation in six months. The cancellation of nuclear power station projects occurred only in U.S.A., and 3 plants under construction and 5 ordered plants were cancelled. It was decided to close down one plant each in West Germany, France and U.S.A. The countries surveyed this time were 41, same as before. The countries where nuclear power stations have been operated were 22. In terms of the installed capacity of nuclear power stations in operation, U.S.A. was the leader, followed by Japan, USSR, France, West Germany and Great Britain in this order. Communist countries have strong ambition to construct nuclear power stations. On the trend of respective countries in the first half of 1980, the outline is described. (Kako, I.)

  13. Spain's nuclear components industry

    International Nuclear Information System (INIS)

    Kaibel, E.

    1985-01-01

    Spanish industrial participation in supply of components for nuclear power plants has grown steadily over the last fifteen years. The share of Spanish companies in work for the five second generation nuclear power plants increased to 50% of total capital investments. The necessity to maintain Spanish technology and production in the nuclear field is emphasized

  14. Industry plots nuclear revival

    International Nuclear Information System (INIS)

    Nogee, A.

    1984-01-01

    A successful revival of the nuclear power industry will require standardization and a reduction in the number of companies managing construction, according to Atomic Industrial Forum spokesmen. In describing the concept of a few superutilities to build nuclear plants, they emphasize the need for a nuclear culture among construction management. Future plant designs emphasize small scale, with design, engineering, licensing, financing, operator training, and paperwork completed before the sale. Utilities continue to pursue economy-of-scale despite the evidence that small-scale reactors can be economical and are more appropriate for fluctuating demand growth. Financiers want more say in construction plans in the future, while utilities want to establish generating subsidiaries for wholesale power sales

  15. Importance of marketing management in the world pfarmaceutical industry

    Directory of Open Access Journals (Sweden)

    Dragan Kesič

    2008-07-01

    Full Text Available The world pharmaceutical industry has changed tremendously in the last decade. Globalization processes reinforce a consolidation of the world pharmaceutical industry. Mergers and acquisitions prevail more and more as a strategic orientation of numerous world pharmaceutical companies. In our research we found out that marketing management has been playing an increasingly important or even a crucial role in day-today activities and strategic business operations of the world pharmaceutical companies. We may point out that a rapid consolidation of the world pharmaceutical industry is definitely a market-driven process, one conditioned by typical strategic marketing management issues, such as a lack of brand new products, intense competitiveness, globalization processes, increased global marketing and sales activities, changing structure of global competitors as well as a furious fight for global market shares and customers’ loyalty. We estimate that marketing management is to play an even more important and, especially, the top priority strategic role in the future globalization and concentration processes of the world pharmaceutical industry. Some experiences and lessons from the global perspective of the world pharmaceutical industry could also be useful to the management of pharmaceutical companies in the transition countries of the Central and Eastern European region. Taking into consideration the current market position of these companies, some marketing management guidelines for their marketing management policies and strategies could be suggested. We conclude that underestimating, or even complete neglect of the importance of marketing management issues may pose the greatest threat to the future strategic orientation and performance of the world pharmaceutical industry.

  16. Human resources in the Japanese nuclear industry

    International Nuclear Information System (INIS)

    Katayama, M.

    1995-01-01

    Japan is becoming rapidly a nation with an elderly population. Japanese students are turning away from the manufacturing industries, including the nuclear industry, and turning towards more service oriented industries that are considered to be cleaner and to pay better. Studies have been performed to devise ways to attract young workers to the nuclear industry, which is projected to continue to grown under the current long range energy plants. The paper summarizes the findings and recommendations of the recent studies conducted by the nuclear industry and academic circles. All studies point out that insufficient emphasis is placed on science in the present Japanese educational programme and that implementation of effective programmes to revitalize education in science is most urgently needed to keep Japan in the forefront of high technology. Utilization of advanced computer technology and automation is promoted to improve working conditions and efficiency in the nuclear industry. In addition, the establishment of a professional status of engineers and technicians will be vital for an effective utilization of qualified workers in the nuclear industry. (author). 3 refs, 1 tab

  17. State-of-the-art of world nuclear power

    International Nuclear Information System (INIS)

    Margulova, T.Kh.

    1987-01-01

    World-wide development of nuclear power is reviewed in short. It noted, that by the 1970 the overall capacity of world nuclear power plants have been reached 24 GW and the cost of nuclear power became equal the cost of power generated at coal-fired stations. By the end of 1985 the LWR-type reactors generated 87 per sent of overale nuclear capacity. Especially considerable developmet of nuclear power have been achieved in France, where 50 per sent of power consumption is provided with nuclear power

  18. Human capital in nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    On June 7, 2010, as part of the Atomexpo 2010 exhibition, a round-table discussion took place on the topic Human capital in the nuclear industry: challenges and solutions. The article summarizes reports made during the meeting. Tatiana Kozhevnikova, deputy director general of the Rosatom Corporation, made a report about the strategy and best human resource management practices in member companies of the Corporation. She briefly described the state of the human capital in the Russian nuclear industry and outlined the key provisions of the human resource management strategy. Attendees to the round-table discussion elaborated further on the key statements of the report. The discussion has given an evidence that the Russian nuclear industry is giving an enormous importance to human resource management and is firmly intended on successfully tacking the issues associated with the provision of sufficient staff for the industry's safe and efficient development [ru

  19. Industrial prospects for the optimized use of U, Pu and Th for sustainable nuclear energy deployment

    International Nuclear Information System (INIS)

    Durpel, Luc Van Den; Guesdon, Bernard; Lecomte, Michel; Greneche, Dominique

    2010-01-01

    'Nuclear energy is part of a sustainable energy future' is a conclusion which is increasingly reached by a variety of energy scenario studies by world-renown institutions such as the IAEA, OECD/IEA and OECD/NEA, World Energy Council, and also reached by different national energy assessment reports. Nuclear does own various unique features that make this energy technology a prime candidate to fulfill a large part of our energy needs, beyond today's use of nuclear energy for our electricity needs. The previous 'wave' of nuclear energy deployment since the 1970's was, and still is, governed by the use of 235 U as main driver to spur this deployment of nuclear energy with gradually the introduction of the U/Pu -cycle in the thermal neutron spectrum reactor park (essentially LWR-technology). Technological progress and good economics of the U/Pu - cycle and especially the economic competitiveness of the LWR's have made this U/Pu-cycle essentially the standard worldwide. Fast spectrum reactors (FRs) haven't yet been developed at sufficient large and industrial scale to make full benefit of the U/Pu-cycle and there are no prospects that the world would massively turn to such FRs in the immediate future. On the verge of a second wave of nuclear deployment, increasing interest is and has to be given to synergies between various nuclear reactor technologies and especially the global nuclear fuel cycle as enabler towards sustainable nuclear energy deployment. Those synergies aim at a reduced reliance on natural uranium resources, continued good economic competitiveness of nuclear energy in local markets, safe and nonproliferant use of nuclear energy, and a reduction of ultimate wastes to be disposed of. This paper provides an overview of various avenues towards sustainable nuclear energy deployment and perspectives from the nuclear industry leader AREVA. (author)

  20. The alternative strategies of the development of the nuclear power industry in the 21st century

    Science.gov (United States)

    Goverdovskii, A. A.; Kalyakin, S. G.; Rachkov, V. I.

    2014-05-01

    This paper emphasizes the urgency of scientific-and-technical and sociopolitical problems of the modern nuclear power industry without solving of which the transition from local nuclear power systems now in operation to a large-scale nuclear power industry would be impossible. The existing concepts of the longterm strategy of the development of the nuclear power industry have been analyzed. On the basis of the scenarios having been developed it was shown that the most promising alternative is the orientation towards the closed nuclear fuel cycle with fast neutron reactors (hereinafter referred to as fast reactors) that would meet the requirements on the acceptable safety. It was concluded that the main provisions of "The Strategy of the Development of the Nuclear Power Industry of Russia for the First Half of the 21st Century" approved by the Government of the Russian Federation in the year 2000 remain the same at present as well, although they require to be elaborated with due regard for new realities in the market for fossil fuels, the state of both the Russian and the world economy, as well as tightening of requirements related to safe operation of nuclear power stations (NPSs) (for example, after the severe accident at the Fukushima nuclear power station, Japan) and nonproliferation of nuclear weapons.

  1. Would the re-structuration of the French nuclear industry be necessary?

    International Nuclear Information System (INIS)

    Finon, D.

    2011-04-01

    In this paper we analyze the recent propositions to reorganize the French industry of reactors in view to increase its efficiency on the export markets. Based on a critic of the choices of reactor technologies offered to export market, the Roussely report published on June 2010 recommends to crown the French electricity utility as the leader of a so-called 'French team' and to let him free to negotiate the sale of reactor of any technology that it would prefer as a Gen-2 reactor for example, and to place the French nuclear reactor constructor in a position of sub-contractor. The government has not followed this recommendation rightly. Based on an analysis of the changing world market of reactors, we defuse the criticism addressed to Areva on his choice, as well as the recommendation to open the present catalog of reactors to other models. The analysis leads to underline the importance of Areva's technological and industrial resources and the limited advantages of the EDF's skills in matter of architect-engineering and nuclear operation for winning export contracts. At the end of the day the mercantile approach which motivates the promoters of this tentative reform for competing with entrants prosing low cost nuclear reactors has been disapproved by the government, and that before the Fukushima accidents. We conclude by observing that only a flexible coordination between French industrial players would be useful for improving export performances of the French nuclear industry. (author)

  2. Importance of marketing management in the world pfarmaceutical industry

    OpenAIRE

    Dragan Kesič; Andrej Bertoncelj

    2008-01-01

    The world pharmaceutical industry has changed tremendously in the last decade. Globalization processes reinforce a consolidation of the world pharmaceutical industry. Mergers and acquisitions prevail more and more as a strategic orientation of numerous world pharmaceutical companies. In our research we found out that marketing management has been playing an increasingly important or even a crucial role in day-today activities and strategic business operations of the world pharmaceutical compa...

  3. Health and safety record of the nuclear industry

    International Nuclear Information System (INIS)

    Carter, M.W.; Carruthers, E.; Button, J.C.E.

    1975-09-01

    This paper examines the claim of the nuclear industry to have an excellent safety record, in terms of health and accident records of workers in the industry. It does not consider accidents which have not resulted in harm to the workers' health. The nuclear industry is considered to include all work with ionising radiations and radioactive materials, in education, research, medicine and industry. Since 'safety' is not an absolute concept, comparisons are made with the published records of other industries, and a study is made of the performance of the nuclear industry in relation to its own safety criteria. Data are presented on the radiation exposure of nuclear workers in Europe, America, India and Australia, in relation to the internationally recommended limits, and there is some discussion of the risks involved in these limits. The death rate in parts of the nuclear industry in America, the United Kingdom, and Australia is presented and compared with the death rate for other industries in those countries, and a listing is made of deaths caused by radiation in the period 1945 to 1968. Injury rates for the US and Australian nuclear industries are also compared with the injury rates for other industries in these countries. Consideration is given to the safety record of individual components of the nuclear industry (using the wide definition of this industry given above), special attention being given to health records of uranium miners, plutonium workers and radiologists. Although there are difficulties in obtaining sufficiently detailed information of this kind it is considered that the data presented, relative to any reasonable standard, demonstrate that the nuclear industry has a safety record to be proud of. (author)

  4. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  5. A nuclear-weapon-free world and true disarmament

    International Nuclear Information System (INIS)

    Salvini, G.

    1999-01-01

    This preliminary note about is important to consider when discussing hopes of achieving a nuclear-weapon-free world. Without a serious effort to establish intelligent, powerful bodies to control and judge the behavior of the nations on Earth, whatever they future weapons may be, the objective to reach a nuclear-weapon-free world may even succeed, but it is not enough to stop wars and death. Even more than that: if taken alone, as the 'Great Way', it could prove negative, for it could slow down the general effort to achieve peace on out planet. A nuclear-weapon-free world is of course a very good idea but two points must be discussed: how to achieve the nuclear-weapon-free world; and what will happen afterwards. Some considerations on the second point are made

  6. Market-sharing approach to the world nuclear sales problem

    International Nuclear Information System (INIS)

    Ribicoff, A.A.

    1976-01-01

    The recent decisions by West Germany and France to sell nuclear fuel facilities to Brazil and Pakistan, respectively, mark the first sharp divergence by major industrial nations from long-established U.S. nonproliferation policy. Thus far, the U.S. has been ineffective in seeking to persuade Germany and France not to proceed with them. This indicates a serious weakness in the execution of American nonproliferation policy, which if left uncorrected, could result in the rapid spread of nuclear weapons material and capability around the world. It is clear that complex problems are raised by the concept of market-sharing. A principal advocate, Dr. Lawrence Scheinman from ERDA, says that traditional arguments against market-sharing do not qualify as reasons against the concept. He does identify three basic arguments against market-sharing, which the author discusses in this article, namely: (1) reactor market-sharing is contrary to U.S. anti-cartel policy and in violation of antitrust laws; (2) other nuclear supplier countries would reject a market-sharing arrangement; and (3) the recipient countries of the Third World would view it as a nuclear cartel and refuse to do business with it. The author advocates that at the very least, the U.S. should enter the next round of supplier negotiations prepared to propose multinational arrangements for closing the commercial nuclear fuel cycle and for making all weapons-grade material generated by the fuel cycle unavailable to any nation on a sovereign basis. The U.S. should also make clear that it would view with the gravest concern the continuation of the present export policies of West Germany and France

  7. The role of nuclear power in the world

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The role of nuclear energy in the world is discussed from the near term and long term. For the period through the mid 1980s sufficient nuclear capacity is considered critical to forestall serious shortages of oil and possible high prices leading to economic stagnation. Over the next 30-35 years it is estimated that world nuclear power will reach a capacity of approx. 3 million megawatts electrical when world electrical capacity will be about 8 million megawatts. With this nuclear capacity and if a annual growth rate of 5% is achieved for coal, oil and gas would remain at their present rate of consumption and would be increasingly reserved for specialized uses where substitution is not feasible. Caution is stressed, however, especially in using long term forecasts except for overall guidance and even in short term projections frequent up-dating and revision is recommended. The factors which have inhibited nuclear power growth are discussed including: 1) rapidly rising capital costs and financing problems, 2) rising and uncertain fuel cycle costs, 3) uncertainties in licensing and public acceptance. Despite the foregoing, nuclear power still retains an economic edge over fossil-fired units in substantial portions of the world. Assuming satisfactory solution of its major problems it is estimated that about 27-40% of the electrical capacity of developing countries will be nuclear by the year 2000. This nuclear capacity will comprise approx. 20% of the world's total nuclear power capacity around the turn of the century. (orig.) [de

  8. Risk management of knowledge loss in nuclear industry organizations (Russian edition)

    International Nuclear Information System (INIS)

    2012-08-01

    Maintaining nuclear competencies in the nuclear industry and nuclear regulatory authorities will be one of the most critical challenges in the near future. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear facilities. This publication is intended for senior and middle level managers of nuclear industry operating organizations and provides practical information on knowledge loss risk management. The information provided in this it is based upon the actual experiences of Member State operating organizations and is intended to increase awareness of the need to: develop a strategic approach and action plans to address the potential loss of critical knowledge and skills; provide processes and in conducting risk assessments to determine the potential for loss of critical knowledge caused by the loss of experienced workers; and enable nuclear organizations to utilize this knowledge to improve the skill and competence of new and existing workers In 2004, the IAEA published a report entitled The Nuclear Power Industry's Ageing Workforce: Transfer of Knowledge to the Next Generation (IAEA-TECDOC-1399). That report highlighted some of the knowledge management issues in Member States resulting from the large number of retiring nuclear power plant personnel who had been involved with the commissioning and initial operation of nuclear power plants. This publication complements that report by providing a practical methodology on knowledge loss risk management as one element of an overall strategic approach to workforce management which includes work force planning, recruitment, training, leadership development and knowledge retention

  9. Industry based performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Connelly, E.M.; Van Hemel, S.B.; Haas, P.M.

    1990-07-01

    This report presents the results of the first phase of a two-phase study, performed with the goal of developing indirect (leading) indicators of nuclear power plant safety, using other industries as a model. It was hypothesized that other industries with similar public safety concerns could serve as analogs to the nuclear power industry. Many process industries have many more years of operating experience, and many more plants than the nuclear power industry, and thus should have accumulated much useful safety data. In Phase 1, the investigators screened a variety of potential industry analogs and chose the chemical/petrochemical manufacturing industry as the primary analog for further study. Information was gathered on safety programs and indicators in the chemical industry, as well as in the nuclear power industry. Frameworks were selected for the development of indicators which could be transferred from the chemical to the nuclear power environment, and candidate sets of direct and indirect safety indicators were developed. Estimates were made of the availability and quality of data in the chemical industry, and plans were developed for further investigating and testing these candidate indicators against safety data in both the chemical and nuclear power industries in Phase 2. 38 refs., 4 figs., 7 tabs

  10. The Canadian nuclear power industry. Background paper

    International Nuclear Information System (INIS)

    Nixon, A.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab

  11. The Canadian nuclear power industry. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, A [Library of Parliament, Ottawa, ON (Canada). Science and Technology Div.

    1993-12-01

    Nuclear power, the production of electricity from uranium through nuclear fission, is by far the most prominent segment of the nuclear industry. The value of the electricity produced, $3.7 billion in Canada in 1992, far exceeds the value of any other product of the civilian nuclear industry. Power production employs many more people than any other sector, the capital investment is much greater, and nuclear power plants are much larger and more visible than uranium mining and processing facilities. They are also often located close to large population centres. This paper provides an overview of some of the enormously complex issues surrounding nuclear power. It describes the Canadian nuclear power industry, addressing i particular its performance so far and future prospects. (author). 1 tab.

  12. The nuclear fuel elements' world market and the position of the Argentine Republic as producer

    International Nuclear Information System (INIS)

    Biondo, C.D.

    1983-01-01

    The development of the nuclear fuel elements' industry is analyzed, both in the present and projected world market, up to the year 2000, in the light of the situation affecting the nucleoelectric industry. By means of the offer/demand function, an analysis is made of the behaviour of the fuel elements' market throughout the fuel cycle structure. The regional unbalances between availability and demand of uranium resources are considered, as well as the factors having an unfavorable incidence on the fuel cycle's economic equation. The economic structure to be used for the calculation of the nucleoelectric generating cost is presented, in order to situate, within said nuclear economy, the component corresponding to the fuel cycle cost. Emphasis is placed on the 'front end' stages of the fuel cycle, but also considering those stages belonging to the 'back end'. Argentina's fuel elements market and its present and projected nucleoelectric park are analyzed, indicating their relative position in the world market. (R.J.S.) [es

  13. Market competition in the nuclear industry

    International Nuclear Information System (INIS)

    Taylor, M.

    2008-01-01

    The nuclear industry provides a wide variety of specialized equipment and services to support the construction and operation of nuclear power plants (NPPs). This includes the supply of NPPs themselves, the range of materials and services required in the nuclear fuel cycle, and the services and equipment needed for maintenance and upgrading. The markets to provide these have changed substantially as they have evolved from the government-led early stages of the nuclear industry to predominantly competitive, commercial markets today. (author)

  14. Performances of nuclear installations in the world

    International Nuclear Information System (INIS)

    Pate, Z.T.

    1999-01-01

    During the last years the operators of nuclear power plants in the world, have realized numerous improvements. This success is imputable to several factors, especially an important data exchange. The Chernobyl accident, in 1986, provoked the creation of the World Association of Nuclear Operators (W.A.N.O.). It allowed to exchange information and to develop cooperation in order to go beyond cultural barriers, linguistics and policies. Then, operators in the world have brought important improvements in matter of safety, reliability. (N.C.)

  15. The political economy of the nuclear industry

    International Nuclear Information System (INIS)

    Falk, J.

    1981-01-01

    The changing international context, in particular declining estimates of nuclear capacity and a depression in the nuclear reactor market will influence prospects for a nuclear industry in Australia. Effects of the opposition by trade unions and community groups to uranium mining are discussed. The relationship between political decisions and the economics of the nuclear power industry is stressed

  16. World nuclear outlook 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-29

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  17. World nuclear outlook 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy`s Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries.

  18. World nuclear outlook 1994

    International Nuclear Information System (INIS)

    1994-12-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2010 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for three different scenarios through 2040 are developed for the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries

  19. World nuclear outlook 1995

    International Nuclear Information System (INIS)

    1995-01-01

    As part of the EIA program to provide energy information, this analysis report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the uranium market. Long-term projections of US nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed for the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM). In turn, the OCRWM provides partial funding for preparation of this report. The projections of uranium requirements are provided to the Organization for Economic Cooperation and Development (OECD) for preparation of the Nuclear Energy Agency/OECD report, Summary of Nuclear Power and Fuel Cycle Data in OECD Member Countries

  20. The world's nuclear future - built on material success

    Science.gov (United States)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  1. The world nuclear market and its prospects

    International Nuclear Information System (INIS)

    Anon.

    2010-07-01

    This market study of the nuclear industry presents: 1 - the dynamics of nuclear markets: organisation of the nuclear industry (fuel cycle, reactors), market analysis and key figures (uranium production, conversion and enrichment, fuel fabrication, reactor manufacturing, spent fuel reprocessing), strengths in presence and competition structure (companies ranking, market shares, positioning); 2 - nuclear renaissance and its basis: a suitable answer to the present day energy and environmental challenges (carbon-free energy and low volatility of fuel price), conjunction of favourable conditions (security of fuel supplies, political support, necessity of plants renewal), three main uncertainties (waste management, safety aspect, public opinion weight); 3 - perspectives of development at the 2030 prospects: data (scope of renaissance, market size), sector reconfiguration scenarios (evolution of competition, reconfiguration paths, concentration trend); 4 - analysis of the strategy of 13 companies, suppliers of the nuclear industry, with their key figures, positioning and strategy (production capacity, partnerships, external growth investments, new technical developments etc.). (J.S.)

  2. The Strategic Involvement of Women in Nigeria Nuclear Industry: A Case of Nigeria Atomic Energy Commission (NAEC) and Nigerian Nuclear Regulatory Authority (NNRA)

    International Nuclear Information System (INIS)

    Aina, F.; Ala, A.

    2015-01-01

    The involvement of women in the nuclear industry can not be over emphasised as the western world has gone beyond the barrier of gender imbalance. This barrier, I think should be abolished in developing countries so as to help encourage more women to contribute and help build a strong nuclear industry. In Nigeria, the Nigeria Atomic Energy Commission executes a deliberate strategy to address gender imbalance in its activities. Although the nuclear industry is just beginning to evolve, the major organizations namely Nigeria Atomic Energy Commission (NAEC) and Nigerian Nuclear Regulatory Authority (NNRA) have encouraged females to take key positions in the organizations. NAEC has performed better than the national average in achieving gender balance. In a country that has a goal of having women in 35% of her elective and appointed offices, the legal department of NAEC is 100% female. Women have been educated and trained in technical areas such as nuclear engineering, nuclear law, nuclear security, radiation protection and non-proliferation. This paper reviews the strategic approach of these Commissions in engaging women, the profile of some of the leading women and the contribution of the female dominated departments to male dominated departments. (author)

  3. Nuclear Power, Nuclear Fuel Cycle and Sustainable Development in a Changing World

    International Nuclear Information System (INIS)

    Arakawa, Yoshitaka

    2000-01-01

    Important changes concerning nuclear energy are coming to the fore, such as economic competitiveness compared to other energy resources, requirement for severe measures to mitigate man-made greenhouse gas (GHG) emission, due to the rise of energy demand in Central and Eastern Europe and Asia and to the greater public concern with respect to the nuclear safety, particularly related to spent fuel and radioactive waste disposal. Global safety culture, as well as well focused nuclear research and development programs for safer and more efficient nuclear technology manifest themselves in a stronger and effective way. Information and data on nuclear technology and safety are disseminated to the public in timely, accurate and understandable fashion. Nuclear power is an important contributor to the world's electricity needs. In 1999, it supplied roughly one sixth of global electricity. The largest regional percentage of electricity generated through nuclear power last year was in western Europe (30%). The nuclear power shares in France, Belgium and Sweden were 75%, 58% and 47%, respectively. In North America, the nuclear share was 20% for the USA and 12% for Canada. In Asia, the highest figures were 43% for the Republic of Korea and 36% for Japan. In 1998, twenty-three nations produced uranium of which, the ten biggest producers (Australia, Canada, Kazakhstan, Namibia, Niger, the Russian Federation, South Africa, Ukraine, USA and Uzbekistan) supplied over 90% of the world's output. In 1998, world uranium production provided only about 59% of world reactor requirements. In OECD countries, the 1998 production could only satisfy 39% of the demand. The rest of the requirements were satisfied by secondary sources including civilian and military stockpiles, uranium reprocessing and re-enrichment of depleted uranium. With regard to the nuclear fuel industry, an increase in fuel burnup, higher thermal rates, longer fuel cycle and the use of mixed uranium-plutonium oxide (MOX

  4. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Poneman, D.

    1982-01-01

    This book explores the increasingly urgent issue of nuclear power policies in developing countries. It examines the motives which drive nuclear policies in the developing world and explores how security and economic objectives, domestic politics, and foreign influence shape nuclear policies, enriching the analysis with examples from South American, African and Asian experiences. (author)

  5. Education for the nuclear power industry: Swedish perspective

    International Nuclear Information System (INIS)

    Blomgren, J.

    2005-01-01

    In the Swedish nuclear power industry staff, very few newly employed have a deep education in reactor technology. To remedy this, a joint education company, Nuclear Training and Safety Center (KSU), has been formed. To ensure that nuclear competence will be available also in a long-term perspective, the Swedish nuclear power industry and the Swedish Nuclear Power Inspectorate (SKI) have formed a joint center for support of universities, the Swedish Nuclear Technology Center (SKC). The activities of these organisations, their links to universities, and their impact on the competence development for the nuclear power industry will be outlined. (author)

  6. JAIF's 23rd nuclear industry survey: strengthening industrial foundations under low economic growth

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Each year since the beginning of nuclear development in Japan, Japan Atomic Industrial Forum has conducted the survey of the nuclear-related aspects in mining and manufacturing industries, electric utilities, trading firms, etc., regarding their expenditures, sales and personnel. The results of the 23rd survey for fiscal 1981 (April, 1981, to March, 1982,) are described. The salient points in the year, as compared with fiscal 1980, are as follows: (trend in expenditures) nuclear-related expenditures exceeded yen2 trillion, up 12 %; the operation and maintenance costs of electric utilities varied, but overall, up 25 %; the nuclear-related expenditures of mining and manufacturing industries were up 34 %; (trend in sales) the new record in mining and manufacturing industries - the sales topped yen1 trillion; the sales of reactor equipments rose by 59 %; the sales by mining and manufacturing industries to electric utilities up 42 %; the nuclear-related exports of mining and manufacturing industries grew by 13 %; the revenues and sales exceeded the expenditures in mining and manufacturing industries. (Mori, K.)

  7. Nuclear weapons industry

    International Nuclear Information System (INIS)

    Bertsch, K.A.; Shaw, L.S.

    1984-01-01

    This unique study was written specifically as a reference source for institutional investors concerned about the threat posed to their stock portfolios by the debate over nuclear arms production. The authors focus their analysis on the 26 leading companies in the field. The perspective is neutral and refreshing. Background information on strategic policy, arms control and disarmament, and the influence of the industry on defense policy and the economy is presented rationally. The study also discusses the economic significance of both the conversion from military to civilian production and nuclear freeze initiatives. An appendix contains a fact-filled guide to nuclear weapon systems

  8. The current status and future prospects of the Korean nuclear power industry

    International Nuclear Information System (INIS)

    Lee, J. J.

    2006-01-01

    Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Since 1978, when Kori Unit 1(587MW), opened the nuclear generation era as a semi-domestic energy resource in Korea which is absolutely in short supply of energy, nuclear power generation in Korea has developed continuously for the past 28 years. Four new units including the Yonggwang 5 and 6 and Ulchin 5 and 6 have been successfully completed, raising the total nuclear installed capacity to 17,716MW from 20 units. At present, the nuclear generation in Korea is stably supplying about 40% of total electric generation, which is the fundamental energy of the nation, supporting the dynamic economic growth of Korea. In particular, Korean nuclear industry has been achieving excellent performance in nuclear power plant operation. The average capacity factor in 2005 hit the record of 95.5%, surpassing the previous record of 94.2% in 2003 in two years. Kori Unit 4 and another four units were listed at the top five in the capacity factor rating list of 2005 released by Nucleonics Week. In 2005, the site for radioactive waste disposal, which had been a long-cherished hope and the largest pending issue of the nuclear industry, was successfully selected in Korea through resident ballot as the first case of a national policy project, and as such, a national agenda was solved after 19 long years. Such a method in site selection has a significant meaning and establishes an excellent precedence; a large national policy project was decided upon by the residents themselves. As one of the model countries of building and operating nuclear power plants and technological independence, Korea is willing to contribute to the common goals of the world nuclear circle which can be summarized into energy security and environment preservation, by sharing accumulated

  9. JAIF formulates policy for strengthening foundation of nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    With recognition that conditions surrounding the nuclear industry are becoming severe with the slowdown in the growth of the Japanese economy, the Japan Atomic Industrial Forum has been discussing ways and means of strengthening the foundations of the nuclear industry. A subcommittee of the Power Reactor Development Committee has been formed. It comprizes two divisions. The first division focused on economic and social prospects for the future and other basic questions. The second division dealt with specific problems viewed from the position of the nuclear quipment supply industry and measures to resolve them. The report was prepared based on the studies done by the two divisions, and focusing on the strengthening of the basis of the nuclear industry through the year 2010. The report estimates that construction of nuclear power plants will be less than 2 units a year in the coming five year period, and will continue at about 2 units a year until about the year 2000. From this outlook, it discusses the work facing the nuclear industry and the steps to be taken to reduce nuclear power generation costs, efficient research and development and the promotion of international cooperation. The report covers four sections: the position of nuclear power development in the national economy; the present state and tasks of the nuclear industry and the nuclear equipment supply industry; measures for maintaining and strengthening the foundations of the nuclear industry, and the tasks to be done. (Nogami, K.)

  10. Localization and indigenization of China nuclear power industry

    International Nuclear Information System (INIS)

    Zhang Xingfa

    2009-01-01

    It points out that China needs to develop nuclear power to solve the shortage of energy source. Localization and independence is the key for the development of nuclear power industry. Localized and independent nuclear power possesses economical competitiveness. China has the condition and capability to realize localization and independence of nuclear power industry. Technology introduction, adaptation and assimilation can enhance the R and D capability of China's nuclear power industry, and speed up the process of localization and independence. (authors)

  11. Comparison between worker-deaths in modern industries and in nuclear activities

    International Nuclear Information System (INIS)

    Failla, L.

    1977-01-01

    The statistical data related to the deaths of workers in modern industries, are examined. This analysis regards deaths by accident. It regards some particular countries in the world; these particular countries have been selected because their data are comparable. The analysis in modern industry regards different years. For the worker deaths caused by professional diseases, some particular considerations are made. Due to the fact that international statistics for worker deaths due to professional diseases don't exist, it was necessary to resort to the existing corollation between professional diseases and accidents in industry, to extrapolate, with some approximation, the number of deaths due to professional disease. Using these considerations it is possible to find some interesting data. The statistics are examined in order to compare them with those pertinent to nuclear energy. With regard to this topic, the mortal-risks from radiation exposures are considered. The philosophies used in modern industry and in the nuclear energy field, are compared. A special discussion is carried on about ICRP conception, expressed in Publication 22: 'Implications of Commission Recommendations that Doses be kept as Low as Readily Achievable'

  12. Comparison between worker-deaths in modern industries and in nuclear activities

    International Nuclear Information System (INIS)

    Failla, L.

    1977-01-01

    The author examines the statistical data related to the deaths of workers in modern industries. This analysis regards deaths by accident. It regards some particular countries in the world; these particular countries have been selected because their data are comparable. The analysis in modern industry regards different years (1965 - 1974). For the worker deaths caused by professional diseases, some particular considerations are made in this paper. Due to the fact that international statistics for worker deaths due to professional diseases don't exist, it was necessary to resort to the existing correllation between professional diseases and accidents in industry, to extrapolate, with some approximation, the number of deaths due to professional disease. Using these considerations it is possible to find some interesting data. Then the author examines the statistics in order to compare them with those pertinent to nuclear energy. With regard to this topic, the author considers the mortal-risks from radiation exposures. Then the author compares the philosophy that is used in modern industry and in the nuclear energy field. A special discussion is carried on about ICRP conception, expressed in Publication 22; ''Implications of Commission Recommendations that Doses be kept as Low as Readily Achievable''

  13. Nuclear techniques for on-line analysis in the mineral and energy industries

    International Nuclear Information System (INIS)

    Sowerby, B.D.; Watt, J.S.

    1994-01-01

    Nuclear techniques are the basis of many on-line analysis systems which are now widely used in the mineral and energy industries. Some of the systems developed by the CSIRO depend entirely on nuclear techniques; others use a combination of nuclear techniques and microwave, capacitance, or ultrasonic techniques. The continuous analysis and rapid response of these CSIRO systems has led to improved control of mining, processing and blending operations, with increased productivity valued at A$50 million per year to Australia, and $90 million per year world wide. This paper reviews developments in nuclear on-line analysis systems by the On-Line Analysis Group in CSIRO at Lucas Heights. Commercialised systems based on this work analyse mineral and coal slurries and determine the ash and moisture contents of coal and coke on conveyors. This paper also reviews two on-line nuclear analysis systems recently developed and licensed to industry, firstly for the determination of the mass flow rates of oil/water/gas mixtures in pipelines, and secondly for determination of the moisture, specific energy, ash and fouling index in low rank coals. 8 refs., 3 tabs., 4 figs

  14. World nuclear fuel market. Eighteenth annual meeting

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The papers presented at the eighteenth World Nuclear Fuels Market meeting are cataloged separately. This volume includes information on the following areas of interest: world uranium enrichment capacity and enriched uranium inventories; the impact of new enrichment technologies; predictions of future market trends; non-proliferation aspects of nuclear trade; and a debate as to whether uranium can be successfully traded on a commodities exchange

  15. Nuclear industry project audit and countermeasures

    International Nuclear Information System (INIS)

    Li Yongxin; Zhang Jian

    2012-01-01

    With China's increasing use of nuclear energy, nuclear power related construction projects related to the deepening of the audit, some of the nuclear industry in construction field of the dominant issues have been more effective containment, such as inflated workload, high-set fixed standards, to improve billing unit price, which overestimate the risk calculation tools and behavior completed audit of the accounts have been able to escape his stuff. However, some nuclear industry construction field with a hidden problem because of its hidden nature, not easily found, and some even have intensified the trend. Construction funds to the country such problems caused by the loss of waste is enormous, to the breeding of corruption provided the soil is fertile, if not promptly and effectively to stop the breeding will spread. This paper on the current construction of the nuclear industry in several major areas of the hidden problems are discussed, and the angle from the audit of appropriate countermeasures. (authors)

  16. The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World

    Science.gov (United States)

    Middleton, Tiffany Willey

    2010-01-01

    In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…

  17. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  18. Role of Halden Reactor Project for world-wide nuclear energy development

    International Nuclear Information System (INIS)

    McGrath, M.A.; Volkov, B.

    2011-01-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  19. Changing world of nuclear power

    International Nuclear Information System (INIS)

    Godlewski, N.Z.; Payne, J.; Tompkins, B.

    1987-01-01

    Efforts to integrate the Washington meetings of the American Nuclear Society and the Atomic Industrial Forum included joint plenary sessions and combined criticism of DOE actions regarding the selection of a second repository for radioactive wastes. The meetings also looked beyond the Chernobyl accident to point out that some countries can no longer reject nuclear power, but the industry must develop post-accident plans for plants in order to reduce risks. Speakers warned against over-reacting and the need to keep emergency planning flexible. Other speakers concluded that the Chernobyl design was not so much at fault as the decision to build larger versions of the standardized design. The pursuit of excellence in plant design and performance, the need to resolve regulatory problems involving the inclusion of nuclear plants in utility rate bases, and the economics of low-level waste disposal, were other topics covered

  20. Nuclear energy and the developing world

    International Nuclear Information System (INIS)

    Mustafa, A.

    1982-01-01

    The importance of cooperation between the developed and developing countries with regard to nuclear power is discussed. Moves towards global interdependence were strengthened when OAPEC was set up with proposals for cooperation and depletion of world reserves of gas and oil will encourage this. Developing countries will increasingly look to nuclear power to meet their energy needs, particularly in the light of depleting oil and gas reserves, their increasing cost and the possible 'greenhouse effect' produced by fossil fuels. International cooperation concerning uranium reserves, reprocessing and technology transfer may need World Bank funding. (U.K.)

  1. Government perspective on current and likely future developments affecting the nuclear industry

    International Nuclear Information System (INIS)

    Walker, A.

    2000-01-01

    In October 1998 the Government published its Energy Sources White Paper, making it clear that what it wanted was an energy policy developed in a competitive market framework. The Government considers a competitive market is absolutely essential for both industrial and domestic energy users but the challenge for energy in the twenty-first century, not only in the UK but increasingly the world over, is how to deliver a competitive market and at the same time fulfil broader expectations for energy, particularly social, environmental, security and diversity objectives. Quite clearly, the nuclear industry needs to fit into this policy and the Government recognizes that it is a key player in achieving these goals. But it must be the industry itself, not the Government, that is the driver for change. The DTI believes that if the current and future economic opportunities in the nuclear industry are to be realized then there are challenges to be met in three areas: cost; waste management; and safety, environment and public confidence. This paper discusses the ways in which the industry can, with the Government's help, successfully meet these challenges. (author)

  2. Nuclear industry and radioecological safety

    International Nuclear Information System (INIS)

    Semenov, V. G.

    2006-01-01

    The beginning of XXI century is marked with increasing public concern over impact of man-made activity, including nuclear technologies, on the environment. Currently, the anthropocentric principle is applied in the course of the radioecological safety guaranteeing for the environment, which postulates that human protectability serves as guarantee of the environmental one. However, this principle correctness is called in question recently. The ecocentric principle is proposed as an alternative doctrine, defining balance between human importance and that of any other elements of biota. The system recommended isn't intended for the regulatory standards development yet, because of substantial gaps in scientific knowledge. Nevertheless, renunciation of the anthropocentric principle can result in unwarranted tightened regulatory basis, decreasing of nuclear industry evolution rates, and, consequently, breaching of societal and economical priorities. It is obvious that for the safety guaranteeing, nuclear industry shouldn't stand out against a background of other fields of human activity involved hazard factors. Therefore, new conceptions applying within the regulatory system is to be weighted and exclude formal using of discussion theses. More than semi-centennial experience of the anthropocentric approach applying serves as an evidence of safe protection of ecosystems against radiation exposure that ensures safe ecological development of nuclear power industry and other fields of nuclear technologies application. (author)

  3. Major changes in the world's nuclear power at the beginning of the new century

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2002-01-01

    In the last decade of the 20th century the world nuclear power recorded some characteristic trends among which one can mention the following: - Almost total absence of investments in new NPPs in the industrialized countries except Japan and South Korea; - Policy of some governments to decrease the nuclear power sector in their countries up to a complete stop of electricity production in a foreseeable future (as in case of Sweden, Germany, Nederland and Belgium); - Projections indicating a steady decline of nuclear share in the national power production as for instance in USA, Germany, Great Britain, and other industrialized countries; - pressures upon countries late owners of soviet type NPPs in order to shut down completely the RBMK and WWER reactors; - a drastic reduction of the funds afforded for research dedicated to fission reactors of new concept, except Japan and South Korea; - almost negligible effects of the Kyoto protocol upon nuclear power, hopes being directed towards renewable energy sources. After second half of the year 1998 modest signals of future changes in the energy policy occurred. The US government admitted on basis of performance assessments and projections that the important role of nuclear power in US will be extended still for long after the years 2020-2030. Consequently, research concerning the future demand for fission based power began be financed. Gradually the countries of EU and Canada modified also their official position towards the role of nuclear fission in ensuring the electric energy needs of the future. The beginning of the new century was marked by a significant acceleration of changes of opinions in favor of nuclear power. Japan and South Korea stated that at least in the first half of the 21th century the fission NPP's will play a major role. Russia promoted new WWER reactor types of safety standards equivalent or higher than the western ones. Also China and India launched ambitious plans for building new NPPs. These new

  4. Manpower development in the US nuclear power industry

    International Nuclear Information System (INIS)

    Todreas, N.E.; Foulke, L.R.

    1985-01-01

    This paper reviews the history and current status of the university nuclear education sector and the utility training sector of the United States (US) nuclear power industry. Recently, the number of programs in the university nuclear education sector has declined, and the remaining programs are in need of both strong governmental and industrial assistance if they are to remain a stable source for educating nuclear engineers and health physicists to staff the resurgence of the nuclear power industry. The utility training sector has undergone remarkable development since the TMI-2 accident. Programs to recruit, train, and qualify the variety of personnel needed, as well as the steps to accredit these programs, are being developed on a systematic, industry-wide basis. A number of new technologies for educating and training personnel are emerging which may be used to create or improve learning environments. Manpower development for the US nuclear power industry is a shared responsibility among the universities, the nuclear utilities, and the nuclear suppliers. This shared responsibility can continue to be best discharged by enhancement of the interaction among all parties with respect to evaluating the proper level of cognitive development within the utility training program

  5. Nuclear technology and beekeeping industry: much more than atoms and bees; Tecnologia nuclear y apicultura: mucho mas que atomos y abejas

    Energy Technology Data Exchange (ETDEWEB)

    Rapisarda, Vicenzo M; Hussein, Ana M [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Dept. de Aplicaciones Tecnologicas y Agropecuarias

    2002-06-01

    Argentine beekeeping industry is the first honey world exporter and the third honey world producer. At the present work, the authors try to show why nuclear technology is one of the best tools for beekeepers to reach health and quality standards required by national and international organisations. Irradiation from Cobalt 60 aim to fight against American foul brood, European foul brood and Chalk brood, besides it is such a good mechanism to degradate acaricides residuals in wax which were used in order to kill Varroa jacobsoni Oud. During the last 30 years, studies have demonstrated honey bees are wonderful sentinel species which represent an incomparable help to nuclear activity through environmental monitoring. Nuclear energy, health care, commercial affairs and environment meet together at Ezeiza Atomic Center, where many developments have been done and new projects are carried out. (author)

  6. Nuclear weapons and the World Court ruling

    International Nuclear Information System (INIS)

    Singh, J.

    1998-01-01

    based on the initiatives by non-governmental organizations, the World Health Organisation (WHO) Assembly asked the International Court of Justice for an advisory opinion in 1993 whether, considering the environmental and health consequences, the use of nuclear weapons by a state in war or other armed conflict would be a breach of its obligations under international law. The World Court decided that it was not able to give an advisory opinion as requested, because of the fact that questions of use of force and such like were beyond the scope of specialized agencies like the WHO. The Court has ruled that the international community, especially the five nuclear weapon states have not only an obligation to negotiate a treaty for total nuclear disarmament, but also have an obligation to conclude such treaty. We may expect that the nuclear weapon states will cynically disregard the ruling of the World Court as they have been doing to the basic obligation itself in pursuit of nuclear hegemony. But the remaining 150 countries or so also bear a responsibility to keep nudging the recalcitrant states into implementing their commitments to disarm

  7. CO2 and the world energy system: The role of nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Jones, J.E. Jr.

    1989-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be developed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. 14 refs., 4 figs., 1 tab

  8. CO2 and the world energy system: the role of nuclear power

    International Nuclear Information System (INIS)

    Fulkerson, W.; Jones, J.E. Jr.

    1992-01-01

    The greenhouse effect, and other transnational and global environment, health and safety issues, require energy system planning on an international scale. Consideration of equity between nations and regions, particularly between the industrialized and developing countries, is an essential ingredient. For the immediate future, the next several decades at least, fossil fuels will remain the predominant energy sources. More efficient use of energy seems to be the only feasible strategy for the near to mid-term to provide growing energy services for the world economy while moderating the increasing demand for fossil fuels. In the longer term, nonfossil sources are essential for a sustainable world energy system, and nuclear power can play an important, if not dominant, role. The challenge is to design and implement a safe and economic nuclear power world enterprise which is socially acceptable and is complimentary to other nonfossil sources. The elements of such an enterprise seem clear and include: much safer reactors, preferably passively safe, which can be deployed at various scales; development of economic resource extension technologies; effective and permanent waste management strategies; and strengthened safeguards against diversion of nuclear materials to weapons. All of these elements can best be developed as cooperative international efforts. In the process, institutional improvements are equally as important as technological improvements; the two must proceed hand-in-hand. (orig.)

  9. List of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Kempken, M.

    1984-01-01

    This list published once a year presents, subdivided into countries, data on all nuclear power plants in operation, under construction, or for which a contract has been placed, referring to the following aspects: Year the contract has been placed, name and/or size, owner or operator, design type, manufacturers, net output, first year of commercial operation, and total electricity output up to the data June 30, 1984. Two additional tables present a survey on the world's nuclear power plants, also grouped by countries, and the largest commercially used nuclear power plants of the world. (UA) [de

  10. The information of the nuclear industry before and during the nuclear debate

    International Nuclear Information System (INIS)

    Borgstroem, P.

    1978-10-01

    A review of the organization and resources for information and public relations, which the nuclear industry have at its disposal in Sweden as well as in other countries. Furthermore, pre-nuclear organizations in the Northern Countries, which are not financed by the nuclear industry are discussed. (E.R.)

  11. Nuclear energy for technology and industry

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    1987-01-01

    It is a sad commentary on the complete lack of informed realism of the Government and people of Australia that, after thirty years of vacillation and political chicanery, nuclear technology, one of this nation's potential ''sunrise industries'' is in its death throes. Whilst our third world neighbours, in particular Indonesia, Malaysia, the Philippines, the People's Republic of China and even impoverished Bangladesh are making giant strides to develop an autonomous expertise Australia's potential has been dissipated and its opportunities for leadership and technology transfer lost. By chance this paper was written some weeks before the nuclear accident at Chernobyl (U.S.S.R.) and many years after accidents at the Three Mile Island nuclear power plant (U.S.A.) and the plutonium production reactor at Windscale (U.K.). None of these incidents alter the basic arguments or conclusions contained in this manuscript. (See Appendix). The year 1986 might represent the final opportunity for concerned professionals to seek to improve the quality of public education and information to end ''the war against the atom''. It will be necessary to re-motivate the public and private sector of a demoralised technology and to launch it on a road of responsible and successful expansion unshackled by beaurocratic interference. It is the purpose of this paper to examine why the first three decades of nuclear technology in Australia have been so singularly unsuccessful and to discuss a coherent and rational implementation of plans and policies for the future. (author)

  12. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  13. Hazard and safety in the nuclear industry

    International Nuclear Information System (INIS)

    Tadmor, J.

    1978-01-01

    Although the number of victims in the nuclear industry has been extremely low as compared with the number of victims in other spheres of human activity society has been willing to put up with a high number of accidents resulting in few victims per accident but refuses to accept an extremely rare accident resulting in a high number of victims. The U.S. nuclear industry is spending almost 2000 dollars for each reduction of a man x rem unit and this investment raises the ''man-life value'' in the nuclear industry to 10 million dollars as compared with 10,000 to 20,000 dollars spent in other activities (roentgen, early cancer detection, etc.). To reduce the exaggerated burden placed on the nuclear industry the safety expenditures should be spread over a maximum possible range of human activities. (B.G.)

  14. Dismantling of nuclear facilities: the industrial know-how

    International Nuclear Information System (INIS)

    Lellament, R.

    2004-01-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  15. Nuclear physics in colourful worlds. Quantumchromodynamics and nuclear binding

    International Nuclear Information System (INIS)

    Muether, H.; Engelbrecht, C.A.; Brown, G.E.

    1987-01-01

    When quantumchromodynamics (QCD) is generalized from SU(3) to an SU(N c ) gauge theory, where N c is the number of colours, it depends on only two parameters: N c and the bare quark mass m q . A more general understanding of nuclear physics can be achieved by considering what it would be like in worlds with the number of colours different from 3, and bare quark masses different from the 'empirical' ones. Such an investigation can be carried out within a framework of meson-exchange interactions. The empirical binding energy of nuclear matter results from a very near cancellation between attractive and repulsive terms which are two orders of magnitude larger and may be expected to depend sensitively on the parameters of QCD. It is indeed found that our world is wedged into a small corner of the two-dimensional manifold of m q versus N c . If the number of colours were decreased by one, or the bare quark masses raised by more than 20%, nuclear matter would become unbound. By tracing the origin of this state of affairs, one obtains a clearer picture of the relative importance of various effects on the behaviour of the bulk nuclear matter. In particular, correlations like those embodied in the Coester band of saturation points appear to have a broader degree of validity than is implied by fits to the actual physical world only. (orig.)

  16. Europairs project: creating an alliance of nuclear and non-nuclear industries for developing nuclear cogeneration

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Viala, Celine; Angulo, Carmen; Chauvet, Vincent; Fuetterer, Michael A.; De Groot, Sander; Von Lensa, Werner; Ruer, Jacques; Griffay, Gerard; Baaten, Anton

    2010-01-01

    Developers of High Temperature Reactors (HTR) worldwide acknowledge that the main asset for market breakthrough is its unique ability to address growing needs for industrial cogeneration of heat and power (CHP) owing to its high operating temperature and flexibility, adapted power level, modularity and robust safety features. HTR are thus well suited to most of the non-electric applications of nuclear energy, which represent about 80% of total energy consumption. This opens opportunities for reducing CO 2 emissions and securing energy supply which are complementary to those provided by systems dedicated to electricity generation. A strong alliance between nuclear and process heat user industries is a necessity for developing a nuclear system for the conventional process heat market, much in the same way as the electronuclear development required a close partnership with utilities. Initiating such an alliance is one of the objectives of the EUROPAIRS project just started in the frame of the EURATOM 7. Framework Programme (FP7) under AREVA coordination. Within EUROPAIRS, process heat user industries express their requirements whereas nuclear industry will provide the performance window of HTR. Starting from this shared information, an alliance will be forged by assessing the feasibility and impact of nuclear CHP from technical, industrial, economical, licensing and sustainability perspectives. This assessment work will allow pointing out the main issues and challenges for coupling an HTR with industrial process heat applications. On this basis, a Road-map will be elaborated for achieving an industrially relevant demonstration of such a coupling. This Road-map will not only take into consideration the necessary nuclear developments, but also the required adaptations of industrial application processes and the possible development of heat transport technologies from the nuclear heat source to application processes. Although only a small and short project (21 months

  17. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  18. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  19. On the state of the art and some trends in industrial utilization of nuclear power

    International Nuclear Information System (INIS)

    Rockstroh, R.

    1980-01-01

    The status achieved in nuclear power utilization in the world and the prospects of further development are presented. Concerning the technological maturity as well as the economy and the environmental aspects the experience hitherto obtained enables the conclusion that nuclear plants have not to fear any comparison with conventional power stations. The social difficulties in the industrially developed capitalist countries in managing the complex problems of utilizing nuclear power are described and commented. Some political aspects of further nuclear power development are also indicated. Information is given about the measures and some objectives for acceleration of nuclear power utilization in the CMEA member states. (author)

  20. World nuclear directory. 6. ed.

    International Nuclear Information System (INIS)

    Wilson, C.W.J.

    1981-01-01

    The purpose of the directory is to provide a comprehensive, worldwide guide to organizations which conduct, promote, or encourage research into atomic energy. The term research is interpreted fairly generously. The directory is intended to be a reference source useful to scientists and administrators in the nuclear field, to information workers, librarians, journalists, market researchers, and others. It therefore includes nuclear research institutes; government departments; public corporations; industrial firms; electricity generating boards; learned and professional societies; and universities, polytechnics, and other institutes of higher education with nuclear departments. (author)

  1. The Canadian nuclear industry - a national asset

    International Nuclear Information System (INIS)

    1985-03-01

    The economic importance of the Canadian nuclear industry in saving costs and creating jobs is expounded. The medical work of Atomic Energy of Canada Limited is also extolled. The Canadian Nuclear Association urges the federal government to continue to support the industry at home, and to continue to promote nuclear exports. This report was prepared in response to the Federal Finance Minister's 'A New Direction for Canada'

  2. Nuclear industry is ready for digitalization

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Nuclear industry is now embracing the digital revolution by adapting existing digital technologies concerning big data, additive manufacturing, connected objects or enhanced reality to the constraints of nuclear industry. The expected benefits will be manifold: to assure and improve the competitiveness of new reactors, to accelerate the implementation of innovations, to develop preventive maintenance, and to allow a better communication between teams working on the same project. In some big enterprises a chief digital officer has been commissioned to prioritize the introduction of digital technologies in industrial projects. (A.C.)

  3. Environmental impact of the nuclear industry in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Zhibo; Chen Zhuzhou; Zhang Yongxing; Xie Jianlun

    1996-01-01

    Since its foundation in 1955, the nuclear industry has become a comprehensive industrial, scientific and technical system in China. The nuclear industry has obviously brought great profit to the country, but how much environmental effect it has caused is a question of common interest which we should answer. This report shows the environmental assessment of the nuclear fuel cycle in China. (author). 4 refs, 1 fig., 22 tabs

  4. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  5. Hosting and operation of world nuclear University Radiation School

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. J.; Nam, Y. M.; Sun, J. B.; Lee, B. J.; Kim, H. J.; Yoo, B. D.; Noh, S. P.; Lee, Y. K.

    2012-07-15

    The purpose of this project is to cultivate new-generation global leaders in the radiation fields through hosting and managing WNU RT School and create globalization foundation in the radiation technology and industry. The scope of this project is to develop the WNU RT school programme, strengthen the promotion for oversea participants' involvement, open the WNU RT School on the endeavor, and thus analyze and evaluate the result of the WNU RT School. The WNU RT school, so as to change radiation-field young scientists in the world to new global leaders in the future, successfully opened from May 12 to June 1 at Deajeon. The WNU, WNA(World Nuclear Association) leads, managed the event, and KAERI, KINS, KHNP, and KRA co-holded the event as well. Many 39 scientists from Russia, Australia, Netherlands, and other 16 countries joined in the event and they were satisfied with a lot of lectures, practices, lab-training, etc.

  6. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  7. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  8. The nuclear industry - pollution and risks

    International Nuclear Information System (INIS)

    Fremlin, J.H.

    1985-01-01

    Unlike other power sources, the only pollution from the nuclear industry is radioactive pollution, which on average in Britain represents 0.2% of the annual dose due to natural background radiation. This 0.2% is not spread uniformly over the population and there is genuine concern about its effects where it is most concentrated. The only significant doses of radiation to the general public due to the nuclear industry are derived from the spent-fuel reprocessing plant at Sellafield, and in particular from the concentration of Caesium-134 and Caesium-137 in fish, Ruthenium-106 in edible seaweeds and plutonium in shellfish and in silt. The concern about the possible escape of high-level wastes stored at the Sellafield site is discussed, and the hazard compared with that dangerous chemicals stored at other industrial sites. The effects of pollution by the nuclear industry, based on the conventional and generally accepted view of radiation risks, add up to a few deaths per year in the 50 million population of England and Wales from an industry producing 15% of the electricity needs of those countries. When this is compared with the risk associated with other methods of electricity production, the author concludes that replacement by nuclear power of any major source of power using fossil fuel, with the possible exception of natural gas, would save lives

  9. World nuclear generating capacity 1993/94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the annual summary of world nuclear generating capacity for 1994. A global summary is first provided, reviewing total installed capacity and growth in installed capacity over the next five years. A more detailed discussion of the nuclear efforts in 34 countries follows, with a tabular listing of nuclear projects in each of these countries. The listing includes reactor supplier, reactor type, size, current status, and date of commercial operation

  10. Nuclear technology in the measurement and control of industrial processes: Pt. 1

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1987-01-01

    The industrial sector was amongst the first to exploit the use of radioisotopes as production and research tools when they became available in significant quantities for industrial use during the early fifties. The following three decades have seen, throughout the world and in South Africa as well, a large and continuing growth in the application of radioisotopes and related technology. In parallel with their nuclear energy research program, the Atomic Energy Corporation of South Africa (AEC), have laid heavy emphasis on developing a considerable pool of expertise specifically oriented to satisfying South African industrial needs. In this article some of the investigations conducted for industry are briefly described: assessment of gold purity, boron distribution in steel, casting-powder inclusions in steel, behaviour of potassium in a blast furnace and fast determination of fluorspar in tailings

  11. Artificial intelligence applications in the nuclear industry: An international view

    International Nuclear Information System (INIS)

    Majumdar, D.

    1989-01-01

    For AI work in particular, proprietary needs have sometimes kept people from reporting on the progress of AI applications in the nuclear industry. Consequently, some duplicate work is being performed by several groups in different countries. Nevertheless, sharing the knowledge gained from the experiences in several countries is still fruitful; success in one country may benefit another. With this view in mind, we have gathered here, to the best of our knowledge, what is going on in different countries in the world. (orig./GL)

  12. The nuclear power industry: financial considerations

    International Nuclear Information System (INIS)

    Leward, S.J.

    1984-01-01

    It is important not to allow the present liquidity crisis to escalate into economic and political dislocations that could result in a prolonged cessation of necessary capital investment. In assessing the future growth of nuclear power in other parts of the world, it may be instructive to consider the plight of the U.S. industry and the parallels that are apparent. In the United States, electric utility debt is growing too fast; a structural imbalance has developed even on the better corporate balance sheets; and cash flow or internal generation has diminished, particularly as the time needed to complete nuclear plants has extended, thereby precluding revenue production for as long as 10 to 15 years from the beginning of construction. Newcomers to the lending business may have little appetite to lend in unfavorable climates, and regulatory (political) bodies may irresponsibly allow unproductive use of resources and refuse to adopt difficult but essential economic policies to preserve the financial integrity of the borrower. These issues are relevant in the examination of any lender/borrower relationship, whether it be between sovereign nations, banker and borrower, or vendor and vendee. (author)

  13. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  14. Industrial nuclear gauges

    International Nuclear Information System (INIS)

    Bennerstedt, T.

    1986-01-01

    A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)

  15. Preliminary cost estimating for the nuclear industry

    International Nuclear Information System (INIS)

    Klumpar, I.V.; Soltz, K.M.

    1985-01-01

    The nuclear industry has higher costs for personnel, equipment, construction, and engineering than conventional industry, which means that cost estimation procedures may need adjustment. The authors account for the special technical and labor requirements of the nuclear industry in making adjustments to equipment and installation cost estimations. Using illustrative examples, they show that conventional methods of preliminary cost estimation are flexible enough for application to emerging industries if their cost structure is similar to that of the process industries. If not, modifications can provide enough engineering and cost data for a statistical analysis. 9 references, 14 figures, 4 tables

  16. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  17. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  18. The future of the nuclear industry in the United States

    International Nuclear Information System (INIS)

    Rosa Marina Bilbao y Leon

    1999-01-01

    This paper investigates the future role of nuclear power as most utilities face the deregulation of the electric power industry with a movement towards a competitive market and as the Kyoto Protocol calls for a significant cut in greenhouse gas emissions for most of the industrialized nations in the world. There is a full spectrum of opinions in the matter and there are no correct answers to the questions. We can only speculate about what is likely to happen, and how it is going to happen. In addition to a review of the available literature, and in an attempt to make a complete and balanced review of all the issues and implications of future choices, a survey was submitted to several experts in energy related issues in the U.S. These experts came from different backgrounds and professional status, and it was intended to have a balance between nuclear-related experts and all others. This paper collects and summarizes the responses to the survey in an ordered and objective manner. (author)

  19. NIASA: Nuclear Industry Association of South Africa

    International Nuclear Information System (INIS)

    Mollard, P.; Louf, P.H.; Gentet, G.; Doix, G.

    2015-01-01

    NIASA (Nuclear Industry Association of South Africa) aims at promoting the highest standards in the development and use of nuclear technologies. NIASA was founded in 2007. South-Africa has a long history in nuclear activity since the construction of the first nuclear power plant ever built on African soil was commissioned in 1984 in South-Africa (Koeberg plant equipped with two 900 MW reactors). There is also an important center for nuclear research near Pretoria that was founded in 1948 to regulate the prospecting for uranium. NECSA (South African Nuclear Energy Corporation is a state-owned public company) that manages nuclear research, operates the Safari-1 (2 MWe - commissioned in 1965) research reactor and manages the national radioactive waste center located at Vaalputs. The South African nuclear industry employs about 4000 people. (A.C.)

  20. Prospects of uranium supply-demand situation in world nuclear power development

    International Nuclear Information System (INIS)

    Chen Zuyi; Wang Xingwu

    2010-01-01

    Based on the newest materials and data published by authoritative organizations, this paper introduces the near-term and medium to long-term development situation of world nuclear power, summarizes the main characteristics of recent world uranium production, preliminarily analyses the relationship between uranium supply and demand to 2030. It is suggested that from the view-point of whole world, uranium resources are fully sufficient for the near-term and medium to long-term world uranium production and uranium demand of nuclear power. World uranium production can meet the near-term uranium demand for nuclear power. However, a big supply-demand gap may exist after 2015 as world nuclear power will be developed with high speed. In case if all const ruction plans of new uranium mines and production- expansion plans of existing uranium mines will be completed on time, it is quite possible for the world uranium production to meet the long-term uranium demand of nuclear power development. (authors)

  1. Japan's nuclear industry; taking off in the mist

    International Nuclear Information System (INIS)

    1979-01-01

    This survey of the nuclear industry aimed at investigating the results and prospects of nuclear energy-related sales, expenditures and manpower in electric utilities, mining and manufacturing industries and trading companies in Japan, so that the study of the economic aspects of the nuclear industry and the analysis of problems may contribute to the sound development of the industry and provide with fundamental informations for interested persons in all sectors. It covers the fiscal year 1978, and is the 20th of a series of annual investigations. The fiscal year 1978 began with the court ruling on the Ikata case, and ended with the impact of the accident in the Three Mile Island plant, USA. As for the results of survey, the answers to questionnaire, the trend of expenditures, the trend of sales, the trend of manpower, the prospects for the future, and the flow of money in the nuclear industry are reported. The gross expenditures in private industries increased by 41% to 1,450 billion yen in comparison with the previous fiscal year. Sales exceeded expenditures by 12,600 million yen in mining and manufacturing industries. Manpower increased by 9% in electric utilities and 7% in mining and manufacturing industries. The construction of 3 nuclear power plants is due to start in fiscal 1978. (Kako, I.)

  2. Radiation safety in nuclear industry in retrospect and perspective

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1993-01-01

    More than 30 years have passed since the starting up of nuclear industry in China from the early 1950's. Over the past 30-odd years, nuclear industry has always kept a good record in China thanks to the policy of 'quality first, safety first' clearly put forward for nuclear industry from the outset and a lot of suitable effective measures taken over that period. Internationally, there is rapid progress in radiation protection and nuclear safety (hereafter refereed to as radiation safety) and a number of new concepts in the field of radiation protection have been advanced. Nuclear industry is developing based on the international standardization. To ensure the further development of nuclear utility, radiation safety needs to be further strengthened

  3. International Seminar on Nuclear policy in Argentina and the world: present and perspectives

    International Nuclear Information System (INIS)

    2012-01-01

    The 25 and April 26, 2013 was held in Buenos Aires the International Seminar 'Nuclear Politics in Argentina and the world: present and perspectives', organized by the Nuclear Regulatory Authority (ARN), the National University of San Martin (UNSAM) and University of San Andres (UdeSA). With the main objective of creating an area for reflection and discussion on the state of the global nuclear policy, its impact on the region and in our country, and raised as an area of interaction between the academic and those working in the sector policies. The seminar consisted of six thematic panels, in addition to the opening session, in which academics and researchers exposed renowned in dialogue with officials and professionals of the nuclear sector. In this seminar were presented some papers of the following topics: historical approaches to nuclear policy in emerging contexts; nuclear policy and civil society; discussion and perspectives on proliferation and non-proliferation, security in the post-Fukushima: discussion and perspectives; Argentina-Brazil: from competition to cooperation, present and prospects for the nuclear industry.

  4. World electricity: will nuclear doubts affect growth

    International Nuclear Information System (INIS)

    Baum, Vladimir.

    1986-01-01

    The world has shown a healthy appetite for electricity even during the years of high energy prices. Between 1970 and 1985 worldwide electricity production increased by 92%, from 4,906.7 terawatt hours (TWh) to 9,421.7 TWh (1TWh = 10 9 KWh). In the same period total world energy consumption rose by 44.8% from 220.2 exajoules to 318.8 EJ (1 EJ = 23.88 million tonnes of oil equivalent). The major part of this growth occurred in the 1970s. Over the last five years, from 1980 to 1985, world energy consumption inched forward only by 7.2%, while notwithstanding widespread economic recession, electricity production advanced by 16.1%, with nuclear power responsible for an increasing share. These figures are tabulated and analysed on a worldwide regional basis. The amount of electricity produced by nuclear power plants is given, and the situation in particular countries noted. The projected future electricity demand and future nuclear electricity generating capacity are given. The effect of the Chernobyl incident is assessed. It may prove to be the beginning of the end of nuclear energy or just an unfortunate hiccough in its progress. (U.K.)

  5. Organisational, technological and economic innovations: the nuclear industry reinvents itself to face 2030 challenges

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2016-06-01

    As the French nuclear industry is facing a major challenge (financial weakness, an electric power market in crisis, 15 years without building any reactor, delayed works), this report first outlines why innovation is necessary to guarantee a low carbon and competitive electricity, to comfort the leadership position of this sector in the world, and to respond to expectations of civil society. Then, it describes how the French nuclear industry is already implementing organisational, technological and social innovations, notably through the development of digital technologies. The third part identifies priorities of new public policies: to imagine a new business model for nuclear (a better visibility for investors, taking all induced costs in the power system into account in a diversified mix, reform of the carbon market, taking avoided atmospheric pollution into account), to rethink regulation in order to free innovation spirit, and to prepare the future by investing in research

  6. Electric industry man of the year: Rossin dedicated to winning more than the nuclear generation war of words

    International Nuclear Information System (INIS)

    Minner, D.

    1982-01-01

    The Electric Industry Man of the Year is A. David Rossin, who thinks the public should have enough information to make rational energy decisions. He feels this approach is especially crucial for nuclear energy. Rossin sees hope for the nuclear industry because the country can't afford to reject it, and the rest of the world is developing a nuclear capability. He blames Carter's decisions to jeopardize the waste-disposal program by blocking reprocessing and the breeder reactor and to relegate nuclear energy to a last-choice option for the lack of growth in the industry. Regulatory uncertainties and financing problems must be resolved if it is to revive. Rossin has used public debates and forums to help improve public acceptance and to increase the level of understanding. He places more importance on regulatory stability than on plant design simplicity in the effort to streamline government policies

  7. A world's waste

    International Nuclear Information System (INIS)

    Carr, Kevin; Rugg, Judith; Palmer, Roger

    1987-01-01

    A World's Waste·An Exhibition that challenges a number of preconceptions about the nuclear industry and the environment while at the same time pushing back the limits of conventional uses of photography and the visual arts. Drawing on a variety of disciplines and utilising means of visual presentation beyond the scope of many exhibitions, this in-depth look at the impact of Sellafield and the nuclear industry on life in Cumbria and beyond attempts through a variety of media from painting through photography to video, performance and installation work, to picture the invisible: radiation and its consequences for the world. Through varied approaches the work selected for exhibition adds a number of voices to a discussion divided between knowledge based on over complex information pitted against opinion reacting from emotion. The catalogue to the exhibition adds a series of articles which go with the art work. The anti-nuclear articles are balanced by BNFLs contributions which put forward the pro-nuclear viewpoint. (author)

  8. Development and issues of nuclear industry in Taiwan

    International Nuclear Information System (INIS)

    Kuangchi Liu

    1994-01-01

    Industrial and economic developments in Taiwan have achieved a so-called 'miracle' in the last decades. Endeavors by the private enterprise, prudent planning by the government, and the devoted efforts by the diligent and creative labor forces have been credited jointly with the result. To develop a sustainable nuclear industry in support of an efficient and safe power generation and other applications of nuclear energy in Taiwan, continuing efforts from the private industry, government and each individual of the nuclear industry will be required. In this paper, milestones of the past and major issues for future developments will be discussed

  9. A virtual nuclear world?

    International Nuclear Information System (INIS)

    Salve, R.

    1998-01-01

    The way in which virtual reality technology has so dramatically developed over the last few years has opened up the possibility of its application to various industrial processes. This article describes the possible uses of such a technique in nuclear power plants in various phases such as design, construction, operation or dismantling. (Author)

  10. Nuclear standardization development study

    International Nuclear Information System (INIS)

    Pan Jianjun

    2010-01-01

    Nuclear industry is the important part of national security and national economic development is key area of national new energy supported by government. nuclear standardization is the important force for nuclear industry development, is the fundamental guarantee of nuclear safe production, is the valuable means of China's nuclear industry technology to the world market. Now nuclear standardization faces to the new development opportunity, nuclear standardization should implement strategy in standard system building, foreign standard research, company standard building, and talented people building to meet the requirement of nuclear industry development. (author)

  11. Nuclear technology and the developing world

    International Nuclear Information System (INIS)

    Walsh, Kathleen

    2005-01-01

    The early 21st century has magnified the dangers posed by proliferation of weapons of mass destruction (WMD). Nonetheless, cooperative efforts to thwart this trade have grown considerably more difficult and the challenges more complicated. The ubiquitous nature of dual-use technology, the application of terrorist tactics for mass destruction on 9/11, the emergence of a more unilateralist US foreign policy, and the world's ever-expanding economic relations have all made more arduous the task of stemming proliferation of WMD, their precursors, and delivery systems. All of these challenges have been highlighted in recent years, but it is the last of these - the changing nature of the global economy- that is perhaps least analyzed but also most essential to improving international cooperation on nonproliferation. Many of today's proliferation concerns are familiar problems exacerbated by accelerating levels of international trade and investment. For example, controlling sensitive exports has become more complicated as officials, industry leaders, and nonproliferation experts must struggle simultaneously to find ways to ensure the flow of exports to legitimate buyers and supply chain partners who increasingly span the globe. Similarly, competitive enterprises today place a premium on rapid delivery and the speed of transactions. This in turn has increased pressures placed on officials around the world to reduce the time they spend evaluating each licensing decision, even as these assessments become more difficult as global investors move deeper into the developing world. Furthermore, the emergence of developing economies as second-tier suppliers with the potential to transship critically sensitive technologies to third parties is another complicating factor and a consequence of the globalizing economy. Science, technology, and industry research and development activities with dual-use applications are also becoming increasingly international endeavors, facilitated

  12. Scenarios of 14C releases from the World Nuclear Power Industry from 1975 to 2020 and the estimated radiological impact

    International Nuclear Information System (INIS)

    Killough, G.G.; Till, J.E.

    1978-01-01

    This article presents an assessment of the radiation dose to the world population and the associated potential health effects from three scenarios of 14 C releases by the nuclear industry between 1975 and 2020. Measures of health impact are derived from source terms through the use of a multicompartment model of the global carbon cycle, dose-rate factors based on 14 C specific activity in various organs of man, and health-effect incidence factors recently recommended by the International Commission on Radiological Protection (ICRP). The three scenarios for worldwide 14 C releases considered are (1) a pessimistic scenario in which all the 14 C projected to be produced in fuel cycles is released (2) an optimistic scenario that assumes a decontamination factor of 100 for fuel reprocessing, and (3) an intermediate scenario that simulates a phased improvement in the effluent treatment technology at reprocessing plants. The estimates of cumulative potential health effects based on integration over infinite time (effectively 46,000 years or about 8 half-lives of 14 C) are as follows: 110,000 cancers and 75,000 genetic effects from the pessimistic scenario; 21,000 cancers and 14,000 genetic effects from the optimistic scenario; 22,000 cancers and 15,000 genetic effects from the intermediate scenario; 100,000 cancers and 68,000 genetic effects from the 14 C formed in nature between 1975 and 2020; and 380,000 cancers and 250,000 genetic effects from the 14 C formed by the detonation of nuclear explosives from 1945 to 1974. Comparable effects from the naturally formed 14 C in steady state in the environment, also integrated over 46,000 years, are approximately 66 million cancers and 43 million genetic effects. These estimates are based on a world population that is assumed to remain stationary at 12.2 billion after 2075

  13. Personal radiation protection in nuclear industry

    International Nuclear Information System (INIS)

    Gol'dshtejn, D.S.; Koshcheev, V.S.

    1983-01-01

    Specific peculiarities of organization of personal radiation protection at various nuclear industry enterprises when dealing with radioactive and other toxic substances are illuminated. Effect of heatin.g and cooling microclimate is discussed. Medical and technical requirements for personal protection means and tasks of personal protection in the field of nuclear industry are considered in short along with some peculiarities of application of different kinds of personal protection means and psychological aspects of personnel protection

  14. Improving Industry-Relevant Nuclear-Knowledge Development through Special Partnerships

    International Nuclear Information System (INIS)

    Cilliers, A.

    2016-01-01

    Full text: South African Network for Nuclear Education Science and Technology (SAN NEST) has the objective to develop the nuclear education system in South Africa to a point where suitably qualified and experienced nuclear personnel employed by nuclear science and technology programmes in South Africa are predominantly produced by the South African education system. This is done to strengthen the nuclear science and technology education programmes to better meet future demands in terms of quality, capacity and relevance. To ensure sustainable relevance, it is important to develop special partnerships with industry. This paper describes unique partnerships that were developed with nuclear industry partners. The success of these partnerships has ensured more industry partners to embrace the model which has proven to develop relevant knowledge, support research and provide innovative solutions for industry. (author

  15. Current status and prospects of the nuclear industry in the U.S

    International Nuclear Information System (INIS)

    Foulke, Larry

    2004-01-01

    On December 8, 1953, President Dwight D. Eisenhower captured the desires and hopes of the nations of the world in his 'Atoms for Peace' speech to the United Nations General Assembly. In the last 50 years, many nations have transformed Eisenhower's General Assembly. In the last 50 years, many nations have transformed Eisenhower's dream of the future the peaceful power of the atom into everyday reality. Civilian nuclear power reactors provide electricity without adding to global warming or air pollution. Radioisotopes have proven to be invaluable in medicine, agriculture, industry, and space exploration. It is not coincidental that the origin of the American Nuclear Society (ANS) is closely related to the 'Atoms for Peace' initiative. Two days after the Atoms for Peace address, asmall group of engineers and scientists from the infant atomic energy field met in New York City. They were to consider forming what they were calling an institute of Nuclear Science and Engineering. Such an organization--they would write in the invitation for the next meeting--would, in part, stimulate the declassification of nuclear information, in line with Eisenhower's plan. The next year, on October 11, 1954, after a heated discussion, the group settled on a name: the American Nuclear Society. The ANS treasures its association with the Korean Atomic Industrial Forum and the Korean Nuclear Societuy in mutual efforts to extend the benefits of nuclear science and technology

  16. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  17. Discussion of fostering strong nuclear safety culture in nuclear power plants in China

    International Nuclear Information System (INIS)

    Jiang Fuming

    2011-01-01

    This paper described the most recent development of nuclear safety culture in the world nuclear industry. Focus areas are recommended to foster a strong nuclear safety culture (SNSC) in Chinese nuclear industry with the view of our current development, aiming to accelerate the formation of SNSC. (author)

  18. The first Summer Institute of the World Nuclear University - a personal record

    International Nuclear Information System (INIS)

    Denk, W.; Fischer, C.; Seidl, M.

    2005-01-01

    The first World Nuclear University Summer Institute was held at Idaho Falls, USA, between July 9 and August 20, 2005. The event was hosted by the Institute of Nuclear Science and Engineering of Idaho State University (ISU) and by the Idaho National Laboratory (INL), which has been planned to be the central nuclear technology research institution in the United States. The World Nuclear University (WNU) was founded in 2003 by the International Atomic Energy Agency (IAEA), the OECD Nuclear Energy Agency (OECD-NEA), the World Association of Nuclear Operators (WANO), and the World Nuclear Association (WNA) as a global association fo scientific and educational institutions in the nuclear field. The first WNU Summer Institute was designed at IAEA in Vienna in the course of the following year and planned by the WNU Coordinating Centre in London. The six weeks of lectures and presentations arranged by the World nuclear University in Idaho Falls are described in detail from the participants' perspective. (orig.)

  19. Business environment of nuclear power industry in Korea

    International Nuclear Information System (INIS)

    Lee, Yoon Young

    2003-01-01

    In Korea, there are total of 18 Nuclear Power Plants in operation as of the end of 2002 and 6 more plants are under construction. The first project for the Advanced Power Reactor (APR) 1400 nuclear power plant is being launched to provide reliable electricity economical competitiveness in Korea. The competitive business environment both globally and in Korea, where the power industry is undergoing significant restructuring, is requiring the Korean nuclear industry to continually improve the economic associated with nuclear power. Introduction of the APR 1400 design and continued improvement of local capabilities are two of the ways that the industry is responding to the challenge. (author)

  20. The world nuclear power engineering. 1998 year

    International Nuclear Information System (INIS)

    Preobrazhenskaya, L.B.

    2000-01-01

    The purpose of this article consists in the analysis of the state and prospects of the world nuclear power engineering development. The data on the ratio and value of electrical energy obtained at the NPPs in the world in 1998, the specific capital expenditures on the NPPs construction by 2005, the forecast for the capacity of all NPPs by 2020 are presented. The progress in developing nuclear power engineering conditioned by improvement of the NPPs operation, optimization of their life-cycle and developing of new NPPs projects is noted [ru

  1. Nuclear Industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Cong, W., E-mail: eweike@263.net.cn [Bureau of Geology, China National Nuclear Corporation, Beijing (China)

    2014-05-15

    The paper presents an overview of the present situation and future plans for the development of nuclear power in China. In particular it looks at the present electricity generation system, future demand and plans for nuclear power plants to meet the increasing demands for electrical power in the country. It summarizes the state of uranium exploration activities and planned production of uranium resources, both nationally and internationally. In addition, it provides a brief overview of the existing administrative situation in the nuclear power industry in China and sets out the main challenges to future development. (author)

  2. The nuclear industries in the European community

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The paper discusses the nuclear industries within the European Community. The strategic importance of nuclear energy is outlined, along with the economic benefits of nuclear power. The objectives of the Community's nuclear programme are described, and include nuclear requirements in Europe, uranium supplies and management of radioactive waste. (UK)

  3. Nuclear techniques in industry

    International Nuclear Information System (INIS)

    Hammad, F.H.

    1994-01-01

    Nuclear techniques are utilized in almost every industry. The discussion in this paper includes discussions on tracer methods and uses nucleonic control systems technology; non-destructive testing techniques and radiation technology. 1 fig., 2 tabs

  4. Nuclear dual-purpose plants for industrial energy

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1976-01-01

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as ten miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations

  5. Is it possible to recycle nuclear wastes? Costs, risks and stakes of the plutonium industry

    International Nuclear Information System (INIS)

    2009-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on the chain reaction from uranium to plutonium, the difference between reprocessing (which does not reduce waste volumes but multiply waste types) and recycling, the high risks associated with plutonium transport, La Hague as the most dangerous nuclear site in France, reprocessing as the alibi for the French nuclear industry, Areva as an expert in propaganda, reprocessing as an absurd world strategy, plutonium as a fuel for proliferation, the myth of unlimited energy with the breeder reactors, and so on

  6. Prospects of nuclear industry in Latin American

    International Nuclear Information System (INIS)

    Brito, S.; Consentino, J.; Eibenschuts, J.; Gasparian, A.E.; Lepecki, W.; Mueller, A.E.F.; Spitalnik, J.

    1984-01-01

    The prospects of nuclear generation in Latin America are presented. It is mentioned that prior to the implementation of a nuclear power programme a legal, organizational and industrial infrastructure has to be developed as a condition for an effetive technology transfer. It is also mentioned that by the expansion of regional cooperation, existing experience and know-how in Latin America nuclear industry, specially regarding small and medium power reactors, could become an important development factor for the whole region. (R.S.) [pt

  7. Nuclear power plants in the world, as of December 31, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This list of nuclear power plants is published twice every year by the Japan Atomic Industrial Forum, Inc. As of the end of 1986, the nuclear power plants in operation in the world were 376 plants of 276.975 million kW capacity, those under construction were 153 plants of 146.931 million kW capacity, and those in planning stage were 124 plants of 121.89 million kW capacity. The total was 653 plants of 545.796 million kW capacity. During the last one year, 25 plants of 22.955 million kW started the operation, and the construction of 7 plants of 5.872 million kW was begun. The operational experience of nuclear power plants in the world reached about 4050 reactor-year. The nuclear power plants which started the operation in 1986 were 6 plants of 7.311 million kW in USA, 3 plants each of 4.032 million kW in France, 1.992 million kW in UK, and 1.32 million kW in Czechoslovakia, 2 plants each of 1.9 million kW in ROK, 2 million kW in USSR, and 1.43 million kW in Canada, and one plant each in FRG, Spain, Hungary and India. 7 plants in USSR, 3 plants in USA, 2 plants in China and one plant in Philippines were removed from the list due to cancel or postponement. In Japan, 33 plants of 24.686 million kW were in operation, and the average capacity factor was 76.2 %. (Kako, I.)

  8. Dialogue between the nuclear industry and environmentalists is the key

    International Nuclear Information System (INIS)

    Padley, P.J.

    1987-01-01

    'Nuclear energy - the good news for British Industry' was the title of a meeting organised by the Confederation of British Industry in July 1987. This article summarizes the contributions of each of the speakers. Between them they produced figures on the importance of the nuclear industry in various countries including the USA, France and the United Kingdom. The risks were mentioned, also the public fears following the accident at Chernobyl. The UK policy on the disposal of nuclear waste is summarized. The disposal is not technically difficult, only politically so because of adverse public opinion. These points also emerged; the nuclear industry must liaise with environmentalists and the UK manufacturing industry needs low cost energy which the nuclear industry could supply. However, the long-term development of nuclear power is only possible if there are no more reactor accidents leading to injury by radioactivity. (U.K.)

  9. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  10. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  11. Status of Korean nuclear industry and Romania-Korea cooperation in nuclear field

    International Nuclear Information System (INIS)

    Myung-Key, Lee

    2005-01-01

    , constructed by AECL turnkey contract, started commercial operations in 1983. Units 2,3 and 4 were constructed by a non turn-key contract scheme, which was constructed by KHNP with assistance from AECL for some areas. The second part of the paper deals with the Romania-Korea cooperation status. The cooperation between Romania-Korea in the nuclear power field got into stride in March 2001. A technical agreement was signed between Romanian Company SNN and KHNP in March 2002 for cooperation in the Cernavoda projects. An amount of 32 tones of Romanian heavy water was supplied to KHNP, The Technical Assistance Agreement between SNN and KHNP stipulates provisions for technical services for operation of Unit 1, construction and commissioning of Cernavoda Unit 2. This Technical Assistance Agreement will be the basis to enhance economy and safety of Cernavoda Units 1,2 and 3. In the frame of the cooperation in Cernavoda Unit 3 Project Romania can enjoy benefits from Korea's world-top class technologies and experience. Korea can support Romania utilizing the systematically established nuclear infrastructure. Korea, both government and nuclear power industry represented by KHNP, will fully support Romania so that new feasibility study may proceed in accordance with the required schedule. The paper has the following structure: Part 1- Korean nuclear industry status: 1. Current status of electric power in Korea; 2. Long term energy plan; 3. Status of nuclear power projects; 4. Operational performance; 5. Outlines of Wolsong CANDU units; Part 2 - Romania-Korea cooperation status: 1. History for cooperation; 2. Technical assistance for Cernavoda Units 1 and 2; 3. Joint development of Cernavoda Unit 3 Project; 4. Cooperation in Cernavoda Unit 3 Project

  12. Nuclear weapons proliferation as a world order problem

    International Nuclear Information System (INIS)

    Falk, R.

    1977-01-01

    World-order concerns have intensified recently in light of mounting evidence that a weapons capability will soon be within easy reach of more and more governments and of certain nongovernmental groupings as well. One reliable source estimates that by 1985 as many as fifty countries could ''produce enough plutonium each year for at least several dozen nuclear explosives.'' In an even more immediate sense, ''economic competition among nuclear suppliers today could soon lead to a world in which twenty or more nations are but a few months from a nuclear weapons force.'' Three developments have created this ''world order'' sense of concern: (1) increased pace of civilian nuclear power deployment globally as a consequence of rising oil prices, unreliability of oil supplies, and reality of dwindling oil reserves in any case; (2) actuality of India's nuclear explosion in May 1974 which demonstrated vividly how any state that pursues a ''civilian'' program can also develop its own weapons capability; and (3) the intensification of competition for international nuclear sales which makes it increasingly evident that nonproliferation goals are no longer compatible with the pursuit of national commercial advantage; essentially, this reality has emerged from a break in the American monopoly over civilian nuclear technology and the willingness of French and German suppliers to provide all elements of the nuclear fuel cycle, including enrichment and reprocessing facilities,to any nation that feels it can afford to buy them; the German-Brazilian deal (worth at least $4 billion) has proven to be the equivalent in the commercial realm of India's ''peaceful'' nuclear explosion. Such developments disclose the alarming prospect that easier access to nuclear technology will make it relatively simple and thus more likely for a beleaguered government or a desperate political actor of any sort to acquire and possibly use nuclear weapons

  13. New competition in the world market of nuclear reactors

    International Nuclear Information System (INIS)

    Finon, D.

    2005-01-01

    As nuclear orders are picking up a little, there are strengths competing against one another in the world industry of reactors, an industry that has been deeply affected for twenty years, by the smallness of the market and the reorganization of the electromechanical industry. Competition remains particularly difficult, even though, in terms of exports, national markets in industrialized countries such as the American market and European market are now open to foreign newcomers. One of the reasons of the difficulty is the increased commercial competition based on advanced reactor techniques untested due to strong faith in technology leading to forget the learning difficulties of older reactor types. On a narrow market, demanding and with very specific political interference, the reasoning is not like on an ordinary capital equipment market. Each builder tries to sell by relying on the assets it has in addition to the offered price and related services: industrial reputation and experience that play confusedly when untested advanced reactors are competing with one another, credit terms offered by the State and the government's influence on the market of emerging economies, the backing o the State's financial insurance in the event of risks taken in the sale of turnkey untested reactors. In the competition of the five manufacturers in the export market, American builders do not seem to have the best place, though even the leading position of Framatome ANP shows some limits. (author)

  14. Nuclear safeguards and security in a changing world

    International Nuclear Information System (INIS)

    Badolato, E.V.

    1986-01-01

    Two major crises of 1986 - the Chernobyl nuclear accident and international terrorism have had the effect of making what everyone does even more critically important for U.S. national security and for the security of the world. Chernobyl can be a starting point for efforts to make nuclear power systems safer and more benign. It also poses very basic questions for nuclear arms control activities. A fundamental objective of the Administration's arms control policy is to achieve substantial and equitable reductions in U.S. and Soviet nuclear forces with effective verification. However, Chernobyl served to remind the U.S. once again of the obsessive secretiveness of the Soviet Union and the difficulties of obtaining information on Soviet nuclear weapon activities. All of this points to the importance of developing improved monitoring technologies and obtaining Soviet agreement on on-site inspection. Nuclear safeguards and security developments in response to a changing world are the topic of discussion in this paper

  15. The nuclear industry in the European Community

    International Nuclear Information System (INIS)

    Gasterstaedt, N.

    1990-01-01

    In its reference program of 1984, the Commission presented the guidelines for the objectives in the field of nuclear electricity production within the Community. In addition, the effects have been investigated which concern the realization of these objectives for all persons involved in nuclear energy: local government, utility companies and industry. The question of nuclear energy is part of the general energy policy. Therefore, the reference program of 1984 was one of the elements which has been considered up to 1995 by the Council when defining the objectives for energy economy. The guidelines of the Commission in the reference program of 1984 are still valid today. It is important, however, to check the effects of the completion of the internal market on nuclear industry. Therefore, the Commission announced in its working program of 1989 that it will revise the reference nuclear program with regard to the prospects of the European internal market. The present document fulfills this obligation. The problems of the industry for the design and construction of nuclear power plants are treated intentionally. After the Commission for Economic and Social Affairs has given its statement, the commission will publish the document officially. (orig./UA) [de

  16. World Health Organization on nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A report published by the World Health Organization in cooperation with, and at the instigation of, the Belgian authorities, is summarised. The report was prepared by an international multidisciplinary working group, and concentrated on the somatic and genetic risks from ionising radiation, the environmental effects of nuclear power from the mining of uranium to the disposal of waste and the probability and consequences of accidents, sabotage and theft of nuclear materials. In general positive to nuclear power, the report nevertheless recommends for RESEARCH AND EVALUATION IN SEVERAL SECTORS: The duties of the authorities in providing full and open information on the consequences of the exploitation of nuclear power are emphasised. (JIW)

  17. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    As chemical engineering processes and operations are closely involved in many areas of nuclear industry, the chemical engineer has a vital role to play in its growth and development. An account of the major achievements of the Indian chemical engineers in this field is given with view of impressing upon the faculty members of the Indian universities the need for taking appropriate steps to prepare chemical engineers suitable for nuclear industry. Some of the major achievements of the Indian chemical engineers in this field are : (1) separation of useful minerals from beach sand, (2) preparation of thorium nitrate of nuclear purity from monazite, (3) processing of zircon sand to obtain nuclear grade zirconium and its separation from hafnium to obtain zirconium metal sponge, (4) recovery of uranium from copper tailings, (5) economic recovery of nuclear grade uranium from low grade uranium ores found in India, (6) fuel reprocessing, (7) chemical processing of both low and high level radioactive wastes. (M.G.B.)

  18. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  19. Industrial applications of nuclear technology

    International Nuclear Information System (INIS)

    Vargas, Celso

    2010-01-01

    Industrial applications of nuclear technology have been very diverse worldwide. This type of technology has begun to introduce in Costa Rica to evaluate and improve different industrial processes. These applications have been classified into two or three categories, according to the criteria used. Nucleonic control systems, the gamma logging and radiotracers are determined. (author) [es

  20. Sustaining the future: the role of nuclear power in meeting future world energy needs

    International Nuclear Information System (INIS)

    Duffey, R.; Sun, Y.

    2003-01-01

    A description is given of recently informed analyses showing the potential that nuclear power has in meeting global energy demands. For both the electricity and transportation sectors, we can quantify the beneficial effects on the environment, and we show how nuclear power deserves credit for its role in assisting future world energy, environmental and economic sustainability. The continuing expansion of the world's and Asia's energy needs, coupled with the need to reduce greenhouse gas (GHG) and other emissions, will require new approaches for large scale energy production and use. This is particularly important for China and Asia with respect to meeting both the energy demand and sustainability challenges. We show and explore the role of nuclear power for large-scale energy applications, including electricity production and hydrogen for transportation. Advanced nuclear technologies, such as those like CANDU's next generation ACR, can meet future global energy market needs, avoid emissions, and mitigate the potential for global climate change. We use the latest IPCC Scenarios out to the year 2100 as a base case, but correct them to examine the sensitivity to large scale nuclear and hydrogen fuel penetration. We show a significant impact of nuclear energy on energy market penetration, and in reducing GHGs and other emissions in the coming century, particularly in the industrial developing world and in Asia. This is achieved without needing emissions credits, as are used or needed as economic support for other sources, or for subsidies via emissions trading schemes. Nuclear power offers the relatively emissions-free means, both to provide electricity for traditional applications and, by electrolytic production of hydrogen, to extend its use deep into the transportation sector. For the published IPCC Marker Scenarios for Asia we show the reduction in GHG emissions when electrolysis using electricity from nuclear power assists the introduction of hydrogen as a fuel

  1. International development of Japan's Nuclear Industry. Indispensable Japan-U.S. cooperation

    International Nuclear Information System (INIS)

    Saigo, Masao

    2006-01-01

    It is significant to internationally develop the nuclear power plants technology that has been fostered by Japan's nuclear industry. It is also important to work with taking the degree of development of nuclear power plants of the recipient country into consideration. ''Forum on International Development of Nuclear Industry'' organized by the Japan Atomic Industrial Forum, Inc. (JAIF) proposed it would be indispensable for a Japan's nuclear industry to establish a Japan-U.S. Cooperation with the support of Government in order to develop the nuclear technology internationally. In November 2005, the investigating team including utilities and nuclear industry visited U.S. and exchanged opinions on its possibility. Investigating results and their evaluation were described. (T.Tanaka)

  2. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  3. The situation of the nuclear energy in the world

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1996-12-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  4. Managing nuclear knowledge and expertise - An industry perspective

    International Nuclear Information System (INIS)

    Garderet, Ph.

    2002-01-01

    Full text: The industrial demand for expertise and qualified personnel in nuclear sciences and technologies will obviously continue to be strong during the next decades: in all cases, a high level of competence will necessarily continue to be required to maintain high performances in operating current nuclear facilities (up to decommissioning) ; moreover, additional skills are to be engaged to conceive new projects or to propose new services for new industrial customers. The industrial needs evidently show some quantitative or qualitative specificities according to the strategy each country has adopted in the past or is adopting now for the use of nuclear power or other nuclear technologies. But the general trends concerning the access to qualified knowledge in nuclear sciences and technologies are globally the same, so concrete actions have to be taken as soon as possible to anticipate difficult situations and overcome the problems. In the countries where nuclear industry has been strongly developed during the past decades (for example France) the problem chiefly concerns the relative ageing of the human workforce and the ability to maintain the accumulated knowledge and replace technical expertise at the very moment when all the technological companies show a significant decline in the number of entrants in all the domain of science and engineering. The problem is reinforced by the fact that (strictly for the same reasons) this phenomenon is observed concurrently within the research laboratories, among the staff of the safety authorities and, more generally, in all the offices engaged in the decision making process about nuclear affairs. Part of the solution to these serious problems stands in the human resources policy that the main nuclear industries have to achieve : internal training through enterprise universities, auto-formation, tutorage of young scientists by seniors, programs of knowledge preservation, international mobility when possible. But more

  5. Can world answer the new nuclear necessity?

    International Nuclear Information System (INIS)

    Finon, D.

    2003-09-01

    Thanks to climatic change policies and to the prospective studies about the depletion of oil and gas reserves, a new chance will be given to nuclear energy. However, even if the nuclear industry has become more transparent, more attentive to the public preoccupations, and permanently looking for a demonstration of its safety, the institutional bases of its re-start up (the participating decision processes and the competing framework of electric markets) are much less favourable than those of its initial technological development. The future of nuclear energy is not warranted except if a strong consensus happens in dominating countries about the real or assumed catastrophic consequences of the greenhouse effect and if this sudden awareness changes the public opinion about the specific risks of nuclear energy and radioactive wastes. The uncertainty which will remain during, at least, the next 15 years will greatly complicate the choices of the nuclear industry and of the governments. For this reason, a paradoxical effort has to be made for the promotion of energy efficiency and renewable energy sources. (J.S.)

  6. Nuclear power in the developing world

    International Nuclear Information System (INIS)

    Sokolov, Y.

    2005-01-01

    Current trends in the interest in nuclear power development confirm important changes in opinions around the world about nuclear power's future. Much of the expansion of nuclear power in the sustainable development scenarios takes place in developing countries. For these countries to introduce nuclear power, they need to pass through three main steps: energy planning, infrastructure development and then deployment. The paper gives an overview of the IAEA's activity in this area. In order to meeting the energy needs of developed and developing countries, developing a global vision for nuclear energy, assessing and clarifying the afford ability and acceptability requirements for large-scale nuclear energy use in the 21st century in both developed and developed countries, facilitating international cooperation in developing different types of new generation nuclear energy systems which meet these requirement, and facilitating international discussions aimed at establishing enhanced institutional system acceptable to both developed and developing countries

  7. Managing nuclear weapons in a changing world: Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL's Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents

  8. Managing nuclear weapons in a changing world: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  9. South Korea's nuclear fuel industry

    International Nuclear Information System (INIS)

    Clark, R.G.

    1990-01-01

    March 1990 marked a major milestone for South Korea's nuclear power program, as the country became self-sufficient in nuclear fuel fabrication. The reconversion line (UF 6 to UO 2 ) came into full operation at the Korea Nuclear Fuel Company's fabrication plant, as the last step in South Korea's program, initiated in the mid-1970s, to localize fuel fabrication. Thus, South Korea now has the capability to produce both CANDU and pressurized water reactor (PWR) fuel assemblies. This article covers the nuclear fuel industry in South Korea-how it is structures, its current capabilities, and its outlook for the future

  10. EBSD applications in the steel and nuclear industries

    International Nuclear Information System (INIS)

    Nave, M.D.

    2005-01-01

    EBSD has established itself as an invaluable tool for materials science problem-solving in the steel and nuclear industries. In the steel industry, it increases our understanding of the deformation and recrystallization processes that influence the formability of steel sheets. It is also used to improve welding procedures and identify phases that accelerate corrosion. In the nuclear industry, EBSD plays a central role in extending the life of fuel cladding materials by shedding new light on the mechanisms of hydride formation. It is also used in efforts to improve the processing of material used for the storage of nuclear waste. This presentation provides an overview of EBSD applications within these two industries, emphasizing the broad applicability and practical usefulness of the technique. (author)

  11. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  12. 2004 world nuclear power report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, 439 nuclear power plants were available for electricity generation in 31 countries of the world. With an aggregate gross capacity of 380,489 MWe and an aggregate net capacity of 361,476MWe, nuclear generating capacity reached its highest level so far. Nine different reactor lines are operated in the commercial nuclear power plants. Light water reactors (PWR and BWR) continue to be in the lead with 355 plants. Twenty-nine nuclear power plants with an aggregate gross capacity of 24,222 MWe and an aggregate net capacity of 23,066 MWe were under construction in eleven countries. Of these, twenty are light water reactors, and seven are CANDU-type reactors. Ninety-nine commercial reactors with a capacity in excess of 5 MWe have so far been decommissioned in eighteen countries, most of them prototype plants of low power. 228 plants, i. e. slightly more than half of the number of plants currently in operation, were commissioned in the 1980s. The oldest commercial nuclear power plant in the world, Calder Hall unit 1, was disconnected from the power grid for good in its 48th year of operation in 2003. For the first time in ten years, the availability in terms of time and capacity of nuclear power plants has decreased from 83,80% in 2002 to 80.50%, and from 84.60% to 81.50%, respectively, in 2003. The main causes are prolonged outages of high-capacity plants in Japan as a consequence of administrative restrictions. The four nuclear power plants in Finland continue to be at the top of the list worldwide with a cumulated average availability of capacity of 90.30%. (orig.)

  13. 2002 Nuclear Power World Report - Evaluation

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Last year, in 2002, 441 nuclear power plants were available for power supply in 31 countries in the world. With an aggregate gross power of 377,359 MWe, and an aggregate net power of 359,429 MWe, respectively, the nuclear generating capacity reached its highest level so far. Nine different reactor lines are used in commercial facilities. Light water reactors (PWR and BWR) contribute 355 plants, which makes them the most common reactor line. In twelve countries, 32 nuclear power plants with an aggregate gross power of 26,842 MWe and an aggregate net power of 25,546 MWe, respectively, are under construction. Of these, 25 units are light water reactors while eight are CANDU-type plants. In eighteen countries, 94 commercial reactors with more than 5 MWe power have been decommissioned so far. Most of these plants are prototypes with low powers. 228 of the nuclear power plants currently in operation, i.e. slightly more than half of them, were commissioned in the eighties. The oldest commercial nuclear power plant, Calder Hall unit 1, supplied power into the public grid in its 47th year of operation in 2002. The availability in terms of time and capacity of nuclear power plants rose from 74.23% in 1991 to 83.40% in 2001. A continued rise to approx. 85% is expected for 2002. In the same way, the non-availability in terms of time (unscheduled) dropped from 6.90% to 3.48%. The four nuclear power plants in Finland are the world's leaders with a cumulated average capacity availability of 90.00%. (orig.) [de

  14. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  15. WANO to increase focus on new nuclear as industry's centre of gravity shifts towards Asia

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet The Independent Global Nuclear News Agency, Brussels (Belgium)

    2018-02-15

    The World Association of Nuclear Operators (WANO) intends to focus more on new nuclear units coming into operation around the world as the ''centre of gravity'' in the industry shifts from the US and Europe to the Middle East and Asia. The organisation's chief executive officer, Peter Prozesky, told NucNet that new-build projects in China, India, Turkey and the United Arab Emirates are giving WANO the opportunity to make sure those countries start the operational life of their new units ''in a very positive way''. In supporting countries with new units beginning operation, WANO is working more closely with the International Atomic Energy Agency (IAEA). One of the IAEA's tasks is to help emerging nuclear countries develop the infrastructure and capability they need to have nuclear power as part of their energy mix.

  16. The outlook for nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article takes a look at the present conditions and prospects of the world's nuclear energy industry. The high hopes that attended its beginning a quarter of a century ago have for many been clouded. The most dramatic setback to the industry was the accident at the Three Mile Island station. Apart from the emotional opposition, another more basic reason for the slump in the industry in the USA, is the sharp decline in the growth of electricity demand in that country. American experience has an immense impact on world opinion. However, it seems as if the nuclear power industry worldwide is in a better shape than in America. In many industrialized countries the nuclear component of the national electricity need is estimated to rise. Japan produces nuclear energy cheaper than coal- or oil-generated electricity while in France 48% of its electricity is produced by nuclear reactors

  17. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  18. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  19. The World Power Conference and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    The possibility that emerged after the last World War that useful power could be produced from nuclear fission led to optimistic estimates that nuclear power would prove to be the solution to the world's energy problems. The possible advantages of nuclear methods of power production compared with conventional means are discussed at the World Power Conference. The 1962 Conference with its theme 'The Changing Pattern of Power' will undoubtedly attract great interest in a world where the change-over from conventional to nuclear fuels for power production has started in some countries and is being actively examined in others. It is generally being realized that even though a country may possess indigenous supplies of uranium or thorium minerals, the building up of a nuclear industry i s a long and expensive process and the alternative of depending on countries more advanced in nuclear technology for the supply of materials, skill and know-how is costly in foreign exchange and international prestige. Many of the industrialized countries, still possessing supplies of conventional fuels, are preparing for the day when their reserves will become depleted and are embarking on training schemes to ensure a continuing supply of engineers and scientists skilled in nuclear arts

  20. Nuclear: the decline of the French empire

    International Nuclear Information System (INIS)

    2011-01-01

    This issue first proposes critical articles which address the stumped revival of the world nuclear energy: overview of the world nuclear industry, a critic of the IAEA and NEA predictions, discussion of the financial risk, consequences of Chernobyl. A second set of articles comments the role and position of the French nuclear industry in the world. The authors outline the strong but fragile position of this self-declared leader (overview of the activities, abroad interests, mining activities abroad, and the end of foreign fuel processing activities) and discuss the diplomatic and commercial policy. Then, several articles discuss different aspects of the nuclear program in France: a climatic and energy policy transition impeded by the nuclear, an electric system under the nuclear constraint, an industrial policy characterized by an EPR monomania and stake holder concurrence, a nuclear safety put into question again, an always heavier weight of waste management, a dismantling industrialization which is a long time coming, the bad example of proliferation, and the secrets, uncertainty and spiral of the nuclear costs

  1. EPRI expert system activities for nuclear utility industry application

    International Nuclear Information System (INIS)

    Naser, J.A.

    1990-01-01

    This paper reports on expert systems which have reached a level of maturity where they offer considerable benefits for the nuclear utility industry. The ability of expert systems to enhance expertise makes them an important tool for the nuclear utility industry in the areas of engineering, operations and maintenance. Benefits of expert system applications include comprehensive and consistent reasoning, reduction of time required for activities, retention of human expertise and ability to utilize multiple experts knowledge for an activity. The Electric Power Research Institute (EPRI) has been performing four basic activities to help the nuclear industry take advantage of this expert system technology. The first is the development of expert system building tools which are tailored to nuclear utility industry applications. The second is the development of expert system applications. The third is work in developing a methodology for verification and validation of expert systems. The last is technology transfer activities to help the nuclear utility industry benefit from expert systems. The purpose of this paper is to describe the EPRI activities

  2. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  3. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  4. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  5. Nuclear industry chart no. 20 - Sweden

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A folding chart is presented of the Swedish nuclear industry, which shows the government bodies, companies, utilities and other groups who participate in the nuclear field. Their special interests and activities and affiliations with each other and with international organisations are indicated. (U.K.)

  6. Preservation and re-use of nuclear knowledge in the UK nuclear industry

    International Nuclear Information System (INIS)

    Workman, R.

    2004-01-01

    This paper addresses the need for the UK nuclear industry to preserve knowledge generated during the 6 decades of its existence for re-use by future generations. It outlines the major government restructuring of the industry and its impact on knowledge preservation. Work within British Nuclear Fuels plc to meet the knowledge preservation requirements of its business is described. The focus is shown to be the alignment of tacit knowledge - gained through interviews with key specialists - with the explicit knowledge contained within the major knowledge base (Corporate Memory). The creation of knowledge packages to hold key knowledge on core technologies and nuclear plants is described. The paper also covers developments in securing the nuclear skill base through University Research Alliances and the Dalton Nuclear Institute. Returning to the major new challenges ahead it is shown how a knowledge portal could be implemented, linking the knowledge repositories present within the organisations that will feature in the restructured UK nuclear industry in 2005. The UK nuclear industry is facing its greatest challenge in terms of its organisation and commercial interests, at a time when the technical challenges presented by the decommissioning of old nuclear plants and the remediation of its nuclear sites are building up. In terms of knowledge preservation there has never been a greater need to ensure that knowledge associated with the key technologies that underpin the nuclear plants, and the plants themselves, is made available for use now and in the future. The Nuclear Decommissioning Authority [NDA] - a new government body that will come into being in April 2005 - will own the liabilities (the nuclear plants). Those organisations bidding to operate and decommission plants on the UK nuclear sites will utilise the assets to best effect as Site Licensing Companies [SLC] under contract to the NDA. The key asset is knowledge. Knowledge is present in explicit forms within

  7. Options contracts in the nuclear fuel industry

    International Nuclear Information System (INIS)

    Fuller, D.M.

    1995-01-01

    This article discusses options trading in the nuclear fuels industry. Although there now exists no formal options market in the nuclear industry, flexibilities, or embedded options, are actually quite common in the long-term supply contracts. The value of these flexibilities can be estimated by applying the methods used to evaluate options. The method used is the Black-Scholes Model, and it is applied to a number of examples

  8. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  9. The internationalization of nuclear industry: state and capital in atomic relations

    International Nuclear Information System (INIS)

    Ferreira Junior, Evaristo Santiago

    1986-03-01

    This paper analyzes the causes and scope of the nuclear energy diffusion process in the capitalist world. It also aims at explaining Brazil's role in this process. The study contemplates two main concepts that are, here, considered to be driving and directing vectors: the World Capital and the Capitalist State. According to the expanded reproduction logic, World Capital forms the world nuclear productive subsystem, which commands and directs, in this process, hundreds (or thousands) of productive units, regardless of their geographical location, nationality or capital control. Thru the utilization of available public intervention tools, the Capitalist state has favored the formation of the world nuclear productive subsystem, thus guiding the accumulation process in the interior of this system. Therefore, the conclusion of the Nuclear Cooperation Agreement between Brazil and Germany and the resultant establishment of the Brazilian Nuclear Program (following the authoritarian model of public administration), is well fitted in the general dynamics of subordination/articulation of the Brazilian economy to the world economy and, particularly, to the world nuclear productive subsystem. (author)

  10. The American nuclear power industry. A handbook

    International Nuclear Information System (INIS)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index

  11. Implementation of Industry Experience at Nuclear Power Plant Krsko

    International Nuclear Information System (INIS)

    Heruc, Z.; Kavsek, D.

    2002-01-01

    Being a standalone comparatively small unit NPP Krsko has adopted a business philosophy to incorporate industry experience into its daily operations. The continuos and safe operation of the unit is supported through feedback from other utilities (lessons learned) and equipment vendors and manufacturers. A permanent proactive approach in monitoring the international nuclear technology practices, standards changes and improvements, and upon feasibility review, introducing them into processes and equipment upgrades, is applied. As a member of the most important international integrations, NPP Krsko has benefited from the opportunity of sharing its experience with others (World Association of Nuclear Operators -WANO, Institute of Nuclear Power Operations - INPO, International Atomic Energy Agency - IAEA, Nuclear Operations Maintenance Information Service - NOMIS, Nuclear Maintenance Experience Exchange - NUMEX, Electric Power Research Institute - EPRI, Westinghouse Owners Group - WOG, etc.). Voluntary activities and good practices related to safety are achieved by international missions (IAEA Assessment of Safety Significant Events Team - ASSET, IAEA Operational Safety Review Team - OSART, WANO Peer Review, International Commission for Independent Safety Analysis - ICISA) and operating experience exchange programs through international organizations. These missions are promoting the highest levels of excellence in nuclear power plant operation, maintenance and support. With time, the practices described in this paper presented themselves as most contributing to safe and reliable operation of our power plant and at the same time supporting cost optimization making it a viable and reliable source of electrical energy in the more and more deregulated market. (author)

  12. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Batters, S.; Benovich, I.; Gerchikov, M. [AMEC NSS Ltd., Toronto, ON (Canada)

    2011-07-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  13. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    International Nuclear Information System (INIS)

    Batters, S.; Benovich, I.; Gerchikov, M.

    2011-01-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  14. Nuclear power and carbon dioxide; The fallacy of the nuclear industry's new propaganda

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, N. (Sheffield City Polytechnic (UK). School of Urban and Regional Studies)

    The increasingly beleaguered nuclear industry is now highlighting the threat of global warming as a justification for its continued expansion. The industry argues that it produces no carbon dioxide and that nuclear power is therefore a key element in any plan to reduce emissions of this greenhouse gas. However an analysis of the entire nuclear fuel cycle shows that nuclear power is responsible for much larger carbon dioxide emissions than several renewable energy options and efficiency measures. Furthermore, a major expansion of nuclear generating capacity would result in huge increases in CO{sub 2} emissions from the nuclear industry due to the need to mine and process progressively lower quality uranium ores. Nuclear power is an expensive, unsustainable, dangerous and ineffective option in any realistic strategy to combat global warming. (Author).

  15. Uranium mining, atomic weapons testing, nuclear waste storage: A global survey. World Uranium Hearing grey book 1992

    International Nuclear Information System (INIS)

    Krumbholz, E.; Kressing, F.

    1992-09-01

    The first edition of the 'World Uranium Hearing Grey Book' for the World Uranium Hearing in Salzburg, 13-19 September 1992 is meant to be a reference for people involved in the World Uranium Hearing. It is mostly made up to country by country surveys giving background information on the testimonies presented at the Hearing, and on many more cases. Included are two short articles: One on 'nukespeak' to make the reader aware of how the language of the nuclear industry influences our speaking and thinking; and an article on the wastes produced by uranium mines. Due to limited time and resources this documentation is not complete. Many questions remain. For example, information is rare about conditions in Eastern Europe. Also, some countries are given much more space than others, which does not indicate importance or seriousness of implications of uranium mining, weapons testing or nuclear waste storage in this particular country. (orig./HP)

  16. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  17. Nuclear power and international cooperation - perceptions of the third world

    International Nuclear Information System (INIS)

    Khan, M.A.

    1983-01-01

    The views of the Third World that need to be given consideration in international nuclear policy-making are presented in the following topical sections: background summary of developing countries energy needs and sources, incentives for nuclear power development in developing countries, the need for nuclear cooperation, the Non-proliferation Treaty, erosion of confidence of the recipient states in the reliability of international cooperation agreements, and perceptions of the Third World regarding energy and proliferation

  18. A practicable signal processing algorithm for industrial nuclear instrument

    International Nuclear Information System (INIS)

    Tang Yaogeng; Gao Song; Yang Wujiao

    2006-01-01

    In order to reduce the statistical error and to improve dynamic performances of the industrial nuclear instrument, a practicable method of nuclear measurement signal processing is developed according to industrial nuclear measurement features. The algorithm designed is implemented with a single-chip microcomputer. The results of application in (radiation level gauge has proved the effectiveness of this method). (authors)

  19. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  20. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  1. Nuclear industrial and power complex of Kazakhstan

    International Nuclear Information System (INIS)

    Shemanskiy, V.A.; Cherepnin, Yu.S.; Zelenski, D.I.; Papafanasopulo, G.A.

    1997-01-01

    While selecting the national power supply strategy of economic potential development four factors are laid in the basis of discussions and technical and economic decisions: effect either power complexes on people health, consequences environmental, economics and resources existence. Atomic power requires the balanced approach to power politics which, by that, avoids the dependence on any energy source. The existing electric power generation structure in Kazakhstan is Featured by the following numbers: -TEPP on coal - 79%; - TEPP on gas-black-oil fuel - 12-13%; - HEPP - 6-7%; - Atomic PP - about 0.7%. The ground for nuclear power development is considerable uranium deposits and rather developed atomic industry. Kazakhstan atomic industry includes: - uranium extractive enterprise - State Holding Company 'Tselinnyi Mining-Chemical Plant' (SHC 'TCMP'), Stepnoy Ore Division (SOD), Central ore Division 6 (COD 6), KASKOR (Aktau); - plant on fuel pellets production for APP (JSC 'UMP'); - plants on production of rare and rare-earth metals - Irtysh Chemical and Metallurgical (JSC 'CMP') and Ulba Metallurgical Plant (JSC 'UMP'); - Mangyshlak Power Plant (MAEK); - Scientific Complex of NNC RK of Ministry of Science-Academy of Science. About 25% of world deposits and uranium resources are concentrated in Kazakhstan bowels. The scientific potential of atomic production complex of the Republic of Kazakhstan is concentrated in NNC RK divisions (IAE and INP) and at JSC 'UMP' and MAEK enterprises. Ministry Energy and Nature Resources is a Board responsible for the development of atomic industry and power branches. Atomic Energy Agency of the Republic Kazakhstan performs the independent effective state supervision and control providing safety of atomic industry power installations operation

  2. A telerobot for the nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Industrial robots are not widely used in the nuclear industry. More use is made of telemanipulators, in which tasks are performed under total human control via a master-slave actuation system. AEA Technology have developed a Nuclear Engineered Advanced TEle Robot (NEATER), a telerobot which combines industrial robot technology with the skills of a human operator. It has been designed for use in radioactive decommissioning work and has a number of radiation tolerant properties. NEATER can be operated in a pure robotic mode using a standard computer controller and software. Or it can operate as a telerobot in a remote control mode via a television input. In this mode the operator controls the robot's movement by using a joystick or a simple six degrees of freedom input device. (UK)

  3. Russian nuclear industry exports

    International Nuclear Information System (INIS)

    Gorbatchev, A.

    2016-01-01

    Rosatom is the world leader for the export of nuclear technologies. 34 reactors of Russian technology are being built or planned worldwide. Most reactors proposed by Rosatom are third generation VVER-1200 units with an electric power output of 1200 MWe. Although the nuclear island is always built by Rosatom, the remain of the plant can be subcontracted to other enterprises and European companies are sought because they would bring a european quality touch to Russian works. One of the main assets of Rosatom is to propose an integrated offer from supplying nuclear fuel to managing nuclear waste via the turnkey building of nuclear power plants. Another important asset is the financial assistance of the Russian state through state credit or the support from Russian national banks that appears to be a decisive advantage in the international competition to win markets. We have to temper the Russian export perspectives by noting that most projects are set in countries that are prone to instabilities and that the economic crisis affecting Russia has a negative impact on its financial means. (A.C.)

  4. Nuclear Groups - World. Market Analysis - 2016-2019 Trends - Corporate Strategies

    International Nuclear Information System (INIS)

    2016-03-01

    This study presents: The medium-term and mega trends of the industry market developments and geographical segments; The competitive landscape and the main corporate rankings; The main conclusions of the report, summarised in 10 analytical slides. Content: 1. Market Fundamentals: Overview, The Industry; 2. Market Environment and Prospects: Market Overview, Macroeconomic Environment, Supply, Demand, Industry Structure, Energy costs and prices, Market Prospects, Regional Overview; 3. Corporate Strategies and Competition: Competitive Environment, Corporate Strategies and Competition, Structure of Competition, Corporate Strategies; 4. Case Studies; 5. Company Profiles: Toshiba, KEPCO, Mitsubishi Heavy Industries, Areva, GE-Hitachi Nuclear Energy, Cameco, Urenco, Engie, EDF, Rosatom, China National Nuclear Power, KazAtomProm, China General Nuclear Power Corporation; 6. Statistical Appendix; 7. Sources; 8. Annexes

  5. The partnership with other nuclear industries is important for the French industry

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    After the French bid for the construction of a nuclear power plant in the United Arab Emirates (AE) failed in 2011, Assystem, a French engineering company decided to develop in the Middle-East and now has become one of the most important partners of KEPCO, the company in charge of constructing the Barakah plant in AE. In Turkey, Assystem has bought a Turkish enterprise to back the Franco-Japanese SINOP project and to initiate a partnership with Rosatom building the Akkuyu plant. Today Assystem has become an important player in nuclear industry and has been able to bring back to French nuclear industry its experience of different practices and know-how in international nuclear markets. Assystem employs 12.200 staff worldwide and realized a 908 Meuros turnover in 2015. (A.C.)

  6. Nuclear accident: the EPR, the most dangerous reactor in the world

    International Nuclear Information System (INIS)

    Large, John

    2007-02-01

    After a brief description of the operation of a nuclear reactor, this document outlines the complexity of this machine and the problems which may happen and result in radioactive releases. It also briefly recalls past accidents (Chernobyl, Three Mile Island) and serious incidents (Fosmark in Sweden, Blayais in France). The author then describes how the nuclear industry and nuclear safety authorities tend to deny the risk, notably as far as the EPR is concerned. He outlines that the hypotheses retained by EDF and safety authorities for the quantity of radioactivity released in case of accident might be under-assessed as it appears when they are compared with data obtained by different models and in reality. The author considers that the use of MOX introduces difficulties to ensure nuclear safety, and that the EPR will therefore be the most dangerous nuclear reactor in the world. Based on a simulation, he shows that, in case of accident in of the EPR in Flamanville, radioactive fallouts will occur at the continental scale in less than two days. He proposes an assessment of consequences for the population in terms of deaths, cancers, evacuation. He indicates the different exposure modes for the population, and the countermeasures to be implemented in case of accident (he proposes an assessment of consequences in terms of morbidity with or without countermeasures)

  7. Reviewing industrial safety in nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    This document contains guidance and reference materials for Operational Safety Review Team (OSART) experts, in addition to the OSART Guidelines (TECDOC-449), for use in the review of industrial safety activities at nuclear power plants. It sets out objectives for an excellent industrial safety programme, and suggests investigations which should be made in evaluating industrial safety programmes. The attributes of an excellent industrial safety programme are listed as examples for comparison. Practical hints for reviewing industrial safety are discussed, so that the necessary information can be obtained effectively through a review of documents and records, discussions with counterparts, and field observations. There are several annexes. These deal with major features of industrial safety programmes such as safety committees, reporting and investigation systems and first aid and medical facilities. They include some examples which are considered commendable. The document should be taken into account not only when reviewing management, organization and administration but also in the review of related areas, such as maintenance and operations, so that all aspects of industrial safety in an operating nuclear power plant are covered

  8. Competency assessments for nuclear industry personnel

    International Nuclear Information System (INIS)

    2004-04-01

    In 1996, the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation: A Guidebook. This publication provides guidance for the development, implementation and evaluation of training programmes for all nuclear power plant personnel using the systematic approach to training (SAT) methodology. The SAT methodology has since been adopted and used for the development and implementation of training programmes for all types of nuclear facility and activities in the nuclear industry. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further guidance concerning competency assessments used for measuring the knowledge, skills and attitudes of personnel as the result of training. This publication has been prepared in response to that recommendation. A critical component of SAT (as part of the implementation phase) is the assessment of whether personnel have achieved the standards identified in the training objectives. The nuclear industry spends a significant amount of resources conducting competency assessments. Competency assessments are used for employee selection, trainee assessment, qualification, requalification and authorization (in some Member States the terminology may be 'certification' or 'licensing'), and job advancement and promotion. Ineffective testing methods and procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and nuclear safety. Test development requires unique skills and, as with any skill, training and experience are needed to develop and improve them. Test item and examination development, use, interpretation of results and examination refinement, like all other aspects of SAT, should be part of an ongoing, systematic process. This publication is primarily intended for use by personnel responsible for developing and administering

  9. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  10. Analysis of World Nuclear Market and Strategy of Korean NPP's Competitiveness Improvement for Exportation

    International Nuclear Information System (INIS)

    Choi, Jae Young; Jeong, Yong Hoon; Roh, Seungkook; Chang, Soon Heung

    2016-01-01

    China, India and USA (nuclear adopted countries) are planning tremendous number of NPPs to meet their increasing electricity demand and Saudi Arabia, Vietnam (nuclear adopting countries) are also planning to include nuclear power in their energy mix as a long-term plan. Korea has exported 4 units of APR1400 to the UAE in December, 2009. Korea became sixth NPP supplier country and our economic feasibility and safety features were started to evaluate worldwide. Nuclear industries became a new driver of Korea’s export and nuclear industries in Korea are now expecting another NPP export to Middle-eastern countries, including UAE and Saudi Arabia, based on the first-mover’s advantage at the UAE. In 2000s, five countries (Japan, USA, France, Russia and Korea), which are able to build NPP, focused on NPP export more than domestic construction. Global trend of world nuclear market changed rapidly, especially after NPP export to the UAE. By the global trend, hegemony of nuclear market migrated from supplier country to buyer country. Nuclear companies started cooperating rather than competing. Financing to developing countries become more important. In general, one of the considerable combinations is Korea-Japan-USA alliance. Korea is in charge of EPC, Japan supports financing and deficient technology (with USA partner), and Japan-USA handles fuel supply and back-end fuel cycle based on new agreed terms of ROK-US Nuclear Cooperation Agreement. This combination was judged to best way to collaborate with global companies. Paying attention to many delayed (or potentially delayed) constructions from Russia, intercepting the construction work will be available in case of contracted countries. Korea can emphasize the short construction time, high responsiveness and mild/equal diplomatic position to the target countries

  11. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  12. Progress to a nuclear-weapon-free world through tactical nuclear arms control

    International Nuclear Information System (INIS)

    Matseiko, Youri

    1999-01-01

    At a time when, after some years of passivity, nuclear disarmament is becoming more of an urgent item on the international agenda and receiving accordingly more attention on the part of politicians and non-governmental experts. This is partly reflected in the Report of the Canberra Commission, and the statement on nuclear weapons by international generals and admirals. At the same time some developments such as uncertainties with START II ratification and the process of NATO enlargement make the task of nuclear arms control even more demanding. What is needed now is to pursue at last without any further delay negotiations on effective measures relating to the cessation of the nuclear arms race and to nuclear disarmament. And these effective measures must include both strategic and tactical nuclear weapons. Only a sustained commitment at the highest political level will legitimate serious discussions of the elimination option and ensure that resources and personnel are devoted to finding solutions to the problems associated with moving to zero, and to crafting appropriate transition strategies. In the absence of such a commitment, the nations of the world may never reach the point at which the desirability and feasibility of a nuclear-free world can be evaluated with greater certainty. This Pugwash Conference is trying to make a modest contribution in helping to make possible such a vitally important commitment

  13. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  14. Westinghouse support for Spanish nuclear industry

    International Nuclear Information System (INIS)

    Rebollo, R.

    1999-01-01

    One of the major commitments Westinghouse has with the nuclear industry is to provide to the utilities the support necessary to have their nuclear units operating at optimum levels of availability and safety. This article outlines the organization the Energy Systems Business Unit of Westinghouse has in place to fulfill this commitment and describes the evolution of the support Westinghouse is providing to the operation o f the Spanish Nuclear Power plants. (Author)

  15. Nuclear fuel industry of the republic of Kazakhstan

    International Nuclear Information System (INIS)

    Parfenov, D.; Dara, S.

    2001-01-01

    National Atomic Company Kazatomprom has been established in 1997 by special presidential decree with the purpose to coordinate the former USSR Nuclear Industry enterprises located on the territory of Kazakhstan. The Government of Kazakhstan entrusts the republican nuclear sector's future to Kazatomprom. Although Kazatomprom is a state-owned company and operates on behalf of the government, it is private in terms of ownership, being organized in a form of a closed type joint stock company, and within its structure there are daughter companies with a certain share of private capital. Formally Kazatomprom has started only a few years ago, but it should not create confusion. Because Kazatomprom has only united the USSR traditional nuclear cycle units, which, I want to emphasize for, count as long history as that of the nuclear industry itself. This fact is the guarantee of high quality production culture inherent to the former USSR Defense Industry

  16. Long-range goal setting in the nuclear utility industry

    International Nuclear Information System (INIS)

    Beard, P.M.

    1986-01-01

    The Institute of Nuclear Power Operation's (INPO's) programs support the industry's efforts to improve performance in nuclear plant safety and reliability. The success of these programs can best be measured by the progress of the industry. As utilities focused their attention on nuclear plant performance, the Institute's goal was to make sure its programs and activities provided the best possible support for these efforts. INPO continues to coordinate an industry-wide plant performance indicator program to assist member utilities in assessing station performance. Closely related to this effort is the nuclear industry's establishment of long-range plant performance goals. The US nuclear utility industry currently sends INPO quarterly data on 28 key performance indicators. INPO analyzes these data and provides periodic reports to its members and participants. Selected highlights of INPO's Performance Indicators for the US Nuclear Utility, dated June 1986, are discussed. Throughout 1985, INPO interacted with members, participants, and three external ad hoc review groups to refine the overall performance indicators and to develop background for each unit. By April 1986, each utility had developed long-term goals for each unit. By April 1986, each utility had developed long-term goals for most of the overall indicators. These goals represent a commitment to achievement of excellence when applied to the day-to-day conduct of plant operations, and provide a framework for action

  17. The bomb, the dark side of the nuclear world

    International Nuclear Information System (INIS)

    Collin, J.M.

    2009-01-01

    The reality of the nuclear world can be summarized in few words: a world arsenal of 26000 bombs, enough uranium and plutonium and the know-how to make much more, multiple non-proliferation and weapons limitation treaties which have troubles regulating the diffusion of this technology, indelible environmental and sanitary marks left by 2059 tests, governments secretly wishing to assume this supreme power attribute, a black market, spies and dealers, but also: opponents, political leaders, local representatives and non-governmental organizations who militate for a nuclear weapon-free world. However, this burning question paradoxically remains obscure to citizens and its obscure aspect is relayed by media and politicians. This book aims at decoding the wheels of the international nuclear weapons situation: from the five official nuclear powers to the proliferation actors, from the defense policies to the risks of accidents and the stakes of disarmament, from the bomb fabrication to its devastating effects. It shows how this ultimate weapon has durably pervaded the defense policies and strategies of countries who own it, and how difficult it will be to reconsider this situation

  18. UK strategy for nuclear industry LLW - 16393

    International Nuclear Information System (INIS)

    Clark, Matthew; Fisher, Joanne

    2009-01-01

    In March 2007 the UK Government and devolved administrations (for Scotland, Wales and Northern Ireland, from here on referred to as 'Government') published their policy for the management of solid low level waste ('the Policy'). The Policy sets out a number of core principles for the management of low level waste (LLW) and charges the Nuclear Decommissioning Authority with developing a UK-wide strategy in the case of LLW from nuclear sites. The UK Nuclear Industry LLW Strategy has been developed within the framework of the principles set out in the policy. A key factor in the development of this strategy has been the strategic partnership the NDA shares with the Low Level Waste Repository near Drigg (LLWR), who now have a role in developing strategy as well as delivering an optimised waste management service at the LLWR. The strategy aims to support continued hazard reduction and decommissioning by ensuring uninterrupted capability and capacity for the management and disposal of LLW in the UK. The continued availability of a disposal route for LLW is considered vital by both the nuclear industry and non-nuclear industry low level waste producers. Given that the UK will generate significantly more low level waste (∼ 3.1 million m 3 ) than there is capacity at the LLWR (∼0.75 million m 3 ), developing alternative effective ways to manage LLW is critical. The waste management hierarchy is central to the strategy, which includes strategic goals at all levels of the hierarchy to improve its application across the industry. (authors)

  19. From the nuclear stalemate to a nuclear-weapon free world. In memory of Klaus Fuchs

    International Nuclear Information System (INIS)

    Flach, Guenter; Fuchs-Kittowski, Klaus

    2012-01-01

    The following topics were dealt with: The first soviet atomic bomb and Klaus Fuchs, in illusory worlds of Andrei Sakharov, Edward Teller, and Klaus Fuchs, Klaus Fuchs as grandfather of the hydrogen bomb, memories of and thinking about Klaus Fuchs, the Scottish years of Klaus Fuchs 1937-1941, Klaus Fuchs in the mirror of the Venona documents, Gernot Zippe and the ultracentrifuge or east-west technology transfer in the cold war, secret impulses for the soviet nuclear project, responsibility of knowledge with anti-facism, philosophy, and science as well as peace as the first human right in the work of Klaus Fuchs, the request of Klaus Fuchs for a lasting peace, Klaus Fuchs in Daniel Granin's roman ''Escape to Russia'', ways to a nuclear-weapon free world, Otto Hahn and the declarations of Mainau and Goettingen, nuclear winter, initiatives of the GDR for the prohibition of weapons of mass destruction, nuclear weapons in negative entropy, militarism and antimilitarism of the nuclear age, contributions of the young Klaus Fuchs to statistical physics, nuclear disarmament and the peaceful use of nuclear energy, the responsibility of the scientists for a socially effective and efficient energy change, Berlin-Bucher contributions to a world free of biological weapons. (HSI)

  20. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  1. Trouble at the world's nuclear dustbin

    International Nuclear Information System (INIS)

    Adkins, J.

    1984-01-01

    Radioactive discharges from the Windscale nuclear fuel reprocessing plant in England's lake district temporarily closed 15 miles of shoreline and continues to raise safety questions in this recreational area. The plant receives high-level radioactive wastes and spent fuel from 36 power plants around the world for reprocessing. The site is also a storage point for 1550 tons of oxide waste waiting for additional reprocessing capacity. Pipelines carry 2.2 million gallons of low-level wastes into the Irish Sea each day. Five hundred pounds of weapons grade plutonium also entered the sea from a World War II munitions depot. Accidents have also contributed to the radioactive debris that has accumulated on sandy beaches. Pressure from Greenpeace and the Barrow Action Group helped to expedite an extensive cleanup program, but activity on the beaches is still highly restricted. British Nuclear Fuels remains undaunted by its negative public relations problems. 4 figures

  2. SOVT analysis of the nuclear industry in Mexico

    International Nuclear Information System (INIS)

    Fernandez R, E.; Hernandez B, M. C.

    2011-11-01

    In this work the analysis of strengths, opportunities, vulnerabilities and threats (SOVT) of the nuclear industry in Mexico is presented. This industry presents among its strengths that Mexico is a highly electrified country and has a good established normative mark of nuclear security. Although the Secretaria de Energia in Mexico, with base to the exposed in the Programa Sectorial de Energia 2007-2012, is analyzing the convenience of the generation starting from this source, considering the strong technological dependence of the exterior and the limited federal budget dedicated to this field. As a result of the analysis of the SOVT matrix, were found a great number of strengths that threats, although the vulnerabilities list is major to the strengths, the opportunities list is the bigger. Therefore, the nuclear industry can be a sustainable industry, taking the necessary decisions and taking advantage of the detected opportunities. (Author)

  3. The financing of nuclear industry

    International Nuclear Information System (INIS)

    Cazauran, B.

    1978-01-01

    Having first recalled the usual financing rules related to the economic activities, the author analyses the applying of those rules in the nuclear field, taking into account the specific characteristics of this industrial branch [fr

  4. Future global manpower shortages in nuclear industries with special reference to india including remedial measures

    International Nuclear Information System (INIS)

    Ghosh Hazra, G.S.

    2008-01-01

    Full text: The Radiation Protection Program of the Environmental Protection Agencies of countries employ scientists, engineers, statisticians, economists, lawyers, policy analysts, and public affairs professionals amongst others. These professionals aim to protect workers, the general public, and the environment from harmful radiation exposures and to provide the technical basis for radiation protection policies and regulations. Professionals include Health physicists, Bio statistician, Radio chemist, Radio ecologist, Radio biologist etc. With a large proportion of the population of the nuclear workforce of many countries now approaching retirement age, existing power plants of these countries will be hard pressed to find enough qualified professionals to support their operations. The potential shortage of skilled manpower not only affects utilities, but also impacts the entire nuclear infrastructure, including national laboratories, federal and state agencies, nuclear technology vendors and manufacturing companies, nuclear construction companies, and university nuclear engineering departments. Manpower requirements exist in the nuclear power industry, universities and research establishments, hospitals, government departments, general industry e.g. radiography, transport, instrumentation etc., specialist contractors, agencies and consultancies serving radiation protection. India is no exception. India has the world's 12 th largest economy. Assuming India's average growth rate p.a. of more than 5%, total GDP by 2050 will increase substantially which will require proportionate increase of manpower for all industries. Also chance of brain drain is very high from developing countries e.g. from India to developed countries because of much higher pay and better lifestyle as there will be shortage of manpower in developed countries as explained above. With population growth to be stabilized in future in India, the working age population may not increase in the year 2030

  5. 1984 availability of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Szeless, A.; Oszuszky, F.

    1985-01-01

    This survey of the availability of the world's nuclear power plants in 1984 coveres 250 units (the CMEA countries excluded) with an aggregate 184,500 MWe, which are arranged by types of reactor and geographic distribution. The utilization of nuclear power plant capacity attained an average of 66% in 1984, which is an increase by 3 percentage points in the utilization of capacity over the previous year's level (63%). Capacity utilization in pressurized water reactors 1984 (69%) was 4 percentage points higher than it was in boiling water reactors (65%). The ranking list of the world's nuclear power plants is headed by one heavy water reactor and one gas cooled reactor each (98%), followed by five generating units, i.e., two pressurized water reactors, two boiling water reactors, and one heavy water reactor (all 95%). The best German nuclear power plants were Grafenrheinfeld (89%, position No. 20) and Unterweser and Stade (88%, position No. 25). (orig.) [de

  6. Nuclear Power Reactors in the World. 2013 Ed

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-third edition of Reference Data Series No. 2 provides a detailed comparison of various statistics through 31 December 2012. The tables and figures contain the following information: - General statistics on nuclear reactors in IAEA Member States; - Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; - Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA's Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects data through designated national correspondents in Member States

  7. A. The nuclear power industry in U.S.A

    International Nuclear Information System (INIS)

    1976-01-01

    The nuclear industry in the USA at present is on the defensive - opposition to nuclear power is growing, costs are escalating, new orders are outweighed by cancellations and spent fuel is accumulating as no commercial fuel reprocessing plants are operating. This latter is probably the greatest problem facing the industry and the lack of a decision on the use of mixed oxide fuel is a complicating factor. Other controversial subjects are the safety of power plants, the long term disposal of high level waste, the supply of uranium, enrichment facilities and safeguards. However nuclear power is already supplying 10% of the nations electricity and it may be that some of the current problems stem directly from the rapid growth of the industry. Thus, the current slowing of the growth rate could be advantageous. The industry has an enviable safety record and referenda held in a number of states on various nuclear issues have all suggested that in spite of the well-publicised problems, the public does not want nuclear power to be abandoned or too seriously constrained

  8. Continuous improvement methods in the nuclear industry

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1995-01-01

    The purpose of this paper is to investigate management methods for improved safety in the nuclear power industry. Process improvement management, methods of business process reengineering, total quality management, and continued process improvement (KAIZEN) are explored. The anticipated advantages of extensive use of improved process oriented management methods in the nuclear industry are increased effectiveness and efficiency in virtually all tasks of plant operation and maintenance. Important spin off include increased plant safety and economy. (author). 6 refs., 1 fig

  9. Overview of the Russian nuclear industry; Le panorama nucleaire russe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-02-15

    In 2004, President Poutine decided to replace the atomic energy ministry (Minatom) by the federal atomic energy agency (Rosatom). Several projects were launched during the next two years which aimed at bringing back Russia to the fore front of the world leaders of nuclear energy use and nuclear technology export. In 2007, Rosatom agency was changed to a public holding company and a new company, named Atomenergoprom, was created which gathers all civil nuclear companies (AtomEnergoMash for the exploitation of power plants, Technabsexport (Tenex) specialized in enrichment or Atomstryexport in charge of export activities). Thus, Rosatom is at the head of all civilian and military nuclear companies, of all research centers, and of all nuclear and radiological safety facilities. In 2006, Russian nuclear power plants supplied 15.8% of the whole power consumption. Russia wishes to develop its nuclear program with the construction of new reactors in order to reach a nuclear electricity share of 25% from now to 2020. This paper presents first the 2007 institutional reform of the Russian atomic sector, and the three sectorial federal programmes: 1 - development of the nuclear energy industrial complex for the 2007-2010 era and up to 2015 (future power plants, nuclear fuel centers and reactor prototypes), 2 - nuclear safety and radioprotection for the 2008-2015 era (waste management, remedial actions, radiation protection), 3 - military program (confidential). Then, the paper presents: the international actions (export of Russian technology, cooperation agreements, non-proliferation), the situation of the existing nuclear park (reactors in operation, stopped, under construction and in project), the fuel cycle activities (production of natural uranium, enrichment, fuel fabrication, spent fuel storage, reprocessing, waste management), the nuclear R and D in Russia, and the nuclear safety authority. (J.S.)

  10. Lessons and future prospects for the nuclear industry in the USA

    International Nuclear Information System (INIS)

    Graham, John

    1995-01-01

    The most visible portion of the nuclear industry in the United States is its ongoing electrical generation program, in which 109 nuclear plants provide 21% of the nations electrical needs. However, the nuclear industry also includes nuclear medicine, agricultural uses of radiation sources, food irradiation, research, industrial applications of radiation sources, and even nuclear waste clean-up from old facilities and sites. Nuclear proponents need to be far more active in demonstrating to the public the wealth, and breadth, of all of the benefits that accrue from nuclear radiation even beyond the generation of electricity. We should also make known the damage that would be done to everyday lives if we were to lose the nuclear industry. There are certain issues which cut across all nuclear industries: the regulation of nuclear facilities, the disposal of wastes, the provision of isotopes, and the attitude and policy of the U. S. Government. It is necessary to understand these issues in order to formulate a proactive policy and a manner in which to conduct our advocacy of the beneficial uses of nuclear science and technology. The economic benefits, in terms of dollars and jobs, of the nuclear industry in sectors other than the power program are much larger than in the power program, and are not subject to the same hysterical opposition that has affected the power sector for the past twenty years. Moreover, industrial applications of nuclear radiation are so pervasive throughout the U. S. economy that they affect everyone. These applications have much less visibility than the power program, but they have some of the same problems. The non-power nuclear industry dose have its detractors, and, for example, the issue of low-level waste disposal, in particular, cuts across all sectors of the industry -- potentially damaging to a wide-ranging set of economic factors. Headlines seem to indicate that the end of the nuclear industry is at hand. Yet, public opinion polls

  11. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  12. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2002-08-01

    This document is a reprint of a note published by the nuclear service of the French embassy in Japan. It evokes the present day situation of nuclear facilities in Japan, the public acceptance and its attitude in front of accidents, the national energy program, the deregulation and competitiveness of nuclear power, the carrying out of the nuclear program, the future reactors, the fast neutron reactors, the dismantling activities, the fuel enrichment and reprocessing of spent fuels, the use of MOX fuel, the off-site storage, the vitrified and radiological wastes, the geological disposal of wastes, the prospects of the nuclear program, the companies involved in the Japan nuclear industry, the French-Japanese bilateral cooperation, and the ITER project in the domain of nuclear fusion. (J.S.)

  13. Report of nuclear utility industry responses to Kemeny Commission recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-02-15

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  14. Report of nuclear utility industry responses to Kemeny Commission recommendations

    International Nuclear Information System (INIS)

    1989-02-01

    The purpose of this paper is to provide a report of nuclear utility industry progress in responding to the recommendations of the President's Commission on the Accident at Three Mile Island (The Kemeny Commission). On April 11, 1979, in response to TMI, President Carter established a Commission to conduct '.... a comprehensive study and investigation of the recent accident involving the nuclear power facility on Three Mile Island in Pennsylvania'. The Commission was chaired by Dr. John G. Kemeny, then President of Dartmouth College. (A list of all members of The Kemeny Commission is provided in Attachment to the Appendix ). The report of the commission's findings and recommendations was transmitted to the President in October 1979. During this same period, the nuclear utility industry responded to TMI by creating the Institute of Nuclear Power Operations (INPO) with a mission to promote the highest levels of safety and reliability - to promote excellence - in the operation of nuclear electric generating plants. In addition, the Nuclear Safety Analysis Center (NSAC) was established at the Electric Power Research Institute (EPRI to evaluate the accident and assist in determining the best industry response. In a White House paper (and press release) of December 7 1979, the President announced that he agreed fully with the spirit and intent of al the Kemeny Commission recommendations and requested that the industry and The Nuclear Regulatory Commission (NRC) comply with the recommendations. The President also recognized the industry initiative in establishing INPO and called for several actions involving the Institute; the President directed the Department of Energy and other government agencies to provide assistance to INPO and the industry. An overall status of the nuclear utility industry responses to Kemeny Commission recommendations in the key areas directly related to nuclear plant operations is provided below. A more detailed status of industry responses to the

  15. Rise and fall of the German nuclear industry; Aufstieg und Fall der deutschen Atomwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Radkau, Joachim [Bielefeld Univ. (Germany). Neuere Geschichte; Hahn, Lothar

    2013-02-01

    The book on the rise and fall of the German nuclear industry includes five chapters: (1) From the atomic project of the second world war to the ''peaceful atom''. (2) The ''peaceful atom'' as vision: the phase of speculations. (3) Achieved facts: the unplanned triumph of the light water reactor. (4) The internally suppressed risk excites the public. (5) From the creeping to the open fall.

  16. Situation of nuclear industry in Japan

    International Nuclear Information System (INIS)

    2004-03-01

    This document presents the situation of nuclear industry in Japan: cooperation with France in the domain of the fuel cycle (in particular the back-end) and of for the industrial R and D about fast reactors and nuclear safety; present day situation characterized by a series of incidents in the domain of nuclear safety and by an administrative reorganization of the research and safety organizations; power of local representatives, results of April 2003 elections, liberalization of the electric power sector, impact of the TEPCO affair (falsification of safety reports) on the nuclear credibility, re-start up of the Monju reactor delayed by judicial procedures, stopping of the program of MOX fuel loading in Tepco's reactors, discovery of weld defects in the newly built Rokkasho-mura reprocessing plant, an ambitious program of reactors construction, the opportunity of Russian weapons dismantling for the re-launching of sodium-cooled fast reactors; the competition between France and Japan for the setting up of ITER reactor and its impact of the French/Japanese partnership. (J.S.)

  17. Future trends for electrolysers in nuclear industry

    International Nuclear Information System (INIS)

    Manifar, T.; Robinson, J.; Ozemoyah, P.; Robinson, V.; Suppiah, S.; Boniface, H.

    2011-01-01

    The nuclear industry, through the application of electrolysers, can provide a solution to energy shortage with its competitive cost and can be one of the major future sources of hydrogen production with zero carbon emission. In addition, development of complementary, yet critical processes for upgrading or detritiation of the heavy water in the nuclear industry can be advanced with the application of electrolysers. Regardless of the technology, the electrolyser's development and application are facing many technical challenges including radiation and catalysis. In this paper, three main types of electrolysers are discussed along with their advantages and disadvantages. Proton Exchange Membrane (PEM) electrolysers look promising for hydrogen (or its isotopes) production. For this reason, Atomic Energy of Canada Limited (AECL) in collaboration with Tyne Engineering has started design and fabrication of PEM electrolysers with more than 60 Nm 3 /hr hydrogen production capacity for the application in nuclear industry. This electrolyser is being designed to withstand high concentrations of tritium. (author)

  18. Technology transfer by industry for the construction of nuclear power plants

    International Nuclear Information System (INIS)

    Frewer, H.; Altvater, W.

    1977-01-01

    The construction of nuclear power plants call for a wide sphere of industrial activities, nuclear as well as conventional. For a specific country the ways and methods of developing an industrial nuclear power program and reaching the target of independence, will widely differ, depending on the size of the country, the economic situation, the already existing industrial manufacturing and engineering capacities, the time schedule of the program and the type of contracting. The experience in effective technology transfer for the strengthening and setting up the national industry, and the engineering capacities, needed for the construction of nuclear power plants up to the largest size existing today are considered. The German nuclear power industry gained this experience in connection with the turn-key supply of the first units in various countries. The prerequisites and national nuclear power programs were different. Based on a successful technological development, including standardization, the German nuclear power industry could meet the demand and different approaches in these countries. The main features and practices followed for the transfer of technology is described for three different cases, namely Argentina, Brazil and Iran. (author)

  19. Nuclear benefits and risks

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, P

    1987-03-01

    The paper reviews the broader issues that affect nuclear power in a world energy context. The importance of nuclear power as an energy source is described, as well as the environmental effects of different energy sources. The risks associated with the nuclear industry are discussed with respect to: risks due to radiation exposure, risks to workers in the nuclear industry, and risks to the public due to discharges from nuclear installations. (U.K.).

  20. World market survey: Emerging industrial countries provide the sales opportunities

    International Nuclear Information System (INIS)

    Jeffs, E.; Greenhalgh, G.

    1981-01-01

    The prospects for nuclear power around the world are reviewed. The sharp contrast in attitudes between the Western industrialised countries and developing countries is highlighted. In the West, political uncertainty and economic conditions have retarded implementation of nuclear programmes. The underdeveloped countries, with a desperate need to cut oil consumption and stimulate economic and social development, are persuing nuclear power energetically. Nuclear power programmes from selected countries are described to illustrate these themes. (U.K.)

  1. Diffusion of information about the nuclear industry

    International Nuclear Information System (INIS)

    Galvan, C.G.

    1983-01-01

    The diffusion of nuclear technology means a development of a large network of activities (e.g. capital goods, construction, metallurgical and chemical industries) than a path for solving energy problems. Its ties with the arms race cause specific non-proliferation problems. A close state-capital articulation emerges, which strengthens the subsumption of labour and introduces new processes of social control. Already fulfilled investments give impulse to this tendency. The Tlatelolco regime, banishing nuclear weapons from Latin America, seems to establish a pre-condition for a regional solution to the problems thus arising. But, besides the imperfect adhesion to the Treaty, technical and political reasons obstruct a regional integration of the nuclear fuel cycle. Among other things, a lack of regional integration in other industries makes nuclear expansion more dependent on extra-regional technological ties. (Author) [pt

  2. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  3. Nuclear power: which industrial approach will preserve a French asset?

    International Nuclear Information System (INIS)

    Machenaud, H.

    2012-01-01

    France's strategic decision in favor of nuclear energy in the 1970's has given rise to an organization of this industry with clearly defined roles and responsibilities for all parties. This has led to the mastering of industrial production of the whole chain from mining to fuel reprocessing and to waste disposal. Nuclear safety was at any stage of the chain the priority number one. The French nuclear industry is present on the international scene and thus maintain its know-how and capacities despite the ups and downs of the nuclear market. Today 240.000 people work in France in the nuclear sector. France has followed a consistent energy policy during the last 50 years and benefits from an important and homogeneous fleet of reactors which has generated a rich feedback experience on reactor operation. The tasks that face the French nuclear industry are: -) to comply with the requirements of the Complementary Safety Assessments that have been performed on all French nuclear facilities, -) to maintain and upgrade the power plants (most of them are facing their 3. decennial overhaul), -) to prepare the nuclear systems of tomorrow, and -) to export the French know-how

  4. A revolution is underway, nuclear industry will be transformed

    International Nuclear Information System (INIS)

    Le Ngo, B.

    2016-01-01

    Nuclear industry is the third industrial sector in France but it has to cope with a difficult financial situation and internal difficulties. We have to turn these difficulties into an opportunity to re-invent nuclear industry itself. Digit tools concerning 'product life management', big-data or 3-dimension simulations must be fully used to reduce construction or maintenance costs. Tomorrow's nuclear industry will use the additive manufacturing that consists in building 3-dimension objects by adding layer-upon-layer of material and that will reduce by a factor 5 the quantity of materials used in production. A new work organizing including a better cooperation between all the links of a chain of suppliers in order to detect and develop new ideas or find new solutions. (A.C.)

  5. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  6. Status and Trends of Nuclear Power World-wide

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Spiegelberg-Planer, R.

    1996-01-01

    The reliable and adequate supply of energy, especially electricity, is necessary not only for economic development but to enhance the quality of life. Nuclear power is a proven technology which already supplies about 17% of the world''s electricity generation. In 1995, seven countries produce more than 40% of their electricity from nuclear power plants: Lithuanian, France, Belgium, Sweden, Bulgaria, Slovak and Hungary. It is quite clear that many countries are heavily reliant on nuclear power and are well beyond the point where nuclear power could be replaced by some other source, so, nuclear power remains one of the few technologically proven, economically promising and environmentally benign energy sources. An important factor in the continued development of nuclear power is the extent to which nuclear generated electricity remains economically competitive. Factors such as plant availability, standardisation of systems, components and equipment, as well as the cost of equipment to meet safety and environmental regulations play also an important role in determining the relative competitiveness of nuclear power plants. Many operating organizations have already impressive results in the reduction of plant unavailability. The number of nuclear power plants currently operating with annual availability factor exceeding 85% is increasing. Good performance of some operators should establish performance targets for operators everywhere. The International Atomic Energy Agency (IAEA) has the only international and almost complete information system, the Power Reactor Information System (PRIS) with nuclear power plant status and performance data. This paper presents the current status of nuclear power plants, according to information contained in the IAEA. It discusses the plant performance indicators available in PRIS and the improvement trend in the performance of nuclear power plants based on these indicators. It also presents the future trends of nuclear power focusing

  7. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  8. nuclea'10. Third industry meeting of the Swiss nuclear forum. Framework conditions for the renaissance of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The Swiss government and the Swiss power industry agree: Switzerland will have to renew its nuclear power plant park in a foreseeable time frame so as to prevent a threatenting gap in electricity supply. At the same time, the present lowest-CO 2 electricity mix in any industrialized country ensured by hydroelectric power and nuclear power must be safeguarded. The power industry is meeting these challenges by actively planning the replacement of existing nuclear power plants and the construction of new ones. Three framework applications for permits have been filed, and the first tenders connected to the new construction projects have been invited. This raises the question not only whether Switzerland is willing to embark on this project of a century, but also whether the country is able to do so. What are the factors helping nuclear power to achieve a breakthrough in Switzerland and its neighboring countries, provided there is public acceptance? Besides providing the necessary technical and economic resources it is the need for political and economic acceptance of nuclear power which constitutes an ongoing task for nuclear industry. nuclea is considered the meeting point of the nuclear industry in Switzerland. nuclea'10, held on November 11, 2010, served for exchanges of information between the nuclear industry and other stakeholders in nuclear power. More than 200 participants from public authorities, politics, the power industry, research and development, and vendors and service providers attended the informative and always interesting event accompanied by an industrial exhibition. (orig.)

  9. Manipulating meanings. [Advertising by the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J. (University College, London (United Kingdom). Dept. of Geography)

    Nuclear industry advertising in the United Kingdom is becoming more and more frequent, and is often controversial. The content and impact of recent campaigns are considered, especially the advertisement which portrays nuclear power as beneficial to the greenhouse effect. (author).

  10. Enhancing Safety Culture in Complex Nuclear Industry Projects

    International Nuclear Information System (INIS)

    Gotcheva, N.

    2016-01-01

    This paper presents an on-going research project “Management principles and safety culture in complex projects” (MAPS), supported by the Finnish Research Programme on Nuclear Power Plant Safety 2015-2018. The project aims at enhancing safety culture and nuclear safety by supporting high quality execution of complex projects in the nuclear industry. Safety-critical industries are facing new challenges, related to increased outsourcing and complexity in technology, work tasks and organizational structures (Milch and Laumann, 2016). In the nuclear industry, new build projects, as well as modernisation projects are temporary undertakings often carried out by networks of companies. Some companies may have little experience in the nuclear industry practices or consideration of specific national regulatory requirements. In large multinational subcontractor networks, the challenge for assuring nuclear safety arises partly from the need to ensure that safety and quality requirements are adequately understood and fulfilled by each partner. Deficient project management practices and unsatisfactory nuclear safety culture in project networks have been recognised as contributing factors to these challenges (INPO, 2010). Prior evidence indicated that many recent major projects have experienced schedule, quality and financial challenges both in the nuclear industry (STUK, 2011) and in the non-nuclear domain (Ahola et al., 2014; Brady and Davies, 2010). Since project delays and quality issues have been perceived mainly as economic problems, project management issues remain largely understudied in safety research. However, safety cannot be separated from other performance aspects if a systemic view is applied. Schedule and quality challenges may reflect deficiencies in coordination, knowledge and competence, distribution of roles and responsibilities or attitudes among the project participants. It is increasingly understood that the performance of the project network in all

  11. Fukushima two years after: the 'irresponsible' nuclear industry

    International Nuclear Information System (INIS)

    Froggatt, Antony; McNeill, David; Thomas, Stephen; Teule, Rianne; Blomme, Brian; Erwood, Steve; Schulz, Nina; Encina, Delphine de la; Beranek, Jan; Casper, Kristin; Haverkamp, Jan; Higashizawa, Yasushi; McNevin, Greg; Riccio, Jim; Sekine, Ayako; Stensil, Shawn-Patrick; Suzuki, Kazue; Takada, Hisayo; Tumer, Aslihan; Cowell, Sue

    2013-03-01

    This report demonstrates how the nuclear sector evades responsibility for its failures. The nuclear industry is unlike any other industry: it is not required to fully compensate its victims for the effects of its large, long-lasting, and trans-boundary disasters. In this report, the current status of compensation for victims of the Fukushima disaster is analysed as an example of the serious problems due to lack of accountability for nuclear accidents. The report also looks into the role of nuclear suppliers in the failure of the Fukushima reactors. In addition, this report addresses two main protections for the industry: - Liability conventions and national laws limit the total amount of compensation available and protect nuclear suppliers, the companies that profit from the construction and operation of reactors, from any liability. This caps the funds available for victims at a fraction of real costs and removes incentives for supplier companies to take measures to reduce nuclear risks. - The complexity of and multiple layers in the nuclear supply chain exacerbate the lack of accountability for nuclear suppliers. Even though hundreds of different suppliers are providing components and services that are critical for reactor safety, these companies cannot be held accountable in case of problems. Chapter 1 of this report details the struggle of nuclear victims for fair compensation. Chapter 1 also investigates the role of the nuclear supplier companies in the Fukushima reactors. Chapter 2 gives an overview of the existing international nuclear liability conventions, and maps the impact of these problematic rules, such as capping total compensation, excluding suppliers from accountability, and allowing operators not to have sufficient financial security to cover the damages. Chapter 3 explores the involvement of suppliers throughout the lifetime of a nuclear reactor, and their responsibilities in terms of nuclear risks

  12. Nuclear power : world and Australia - a long-term view

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G W.K.

    1989-01-01

    Developments in world and Australian activities relating to nuclear power and the nuclear fuel cycle are reviewed. Main issues addressed include environment, energy sources, uranium mining, enrichment, reactor design, fuel reprocessing and waste disposal. The benefits for Australia through its involvement in all stages of the nuclear fuel cycle are also discussed.

  13. Nuclear astrophysics of worlds in the string landscape

    International Nuclear Information System (INIS)

    Hogan, Craig J.

    2006-01-01

    Motivated by landscape models in string theory, cosmic nuclear evolution is analyzed allowing the standard model Higgs expectation value w to take values different from that in our world (w≡1), while holding the Yukawa couplings fixed. Thresholds are estimated, and astrophysical consequences are described, for several sensitive dependences of nuclear behavior on w. The dependence of the neutron-proton mass difference on w is estimated based on recent calculations of strong isospin symmetry breaking, and is used to derive the threshold of neutron-stable worlds, w≅0.6±0.2. The effect of a stable neutron on nuclear evolution in the big bang and stars is shown to lead to radical differences from our world, such as a predominance of heavy r-process and s-process nuclei and a lack of normal galaxies, stars, and planets. Rough estimates are reviewed of w thresholds for deuteron stability and the pp and pep reactions dominant in many stars. A simple model of nuclear resonances is used to estimate the w dependence of overall carbon and oxygen production during normal stellar nucleosynthesis; carbon production is estimated to change by a fraction ≅15(1-w). Radical changes in astrophysical behavior seem to require changes in w of more than a few percent, even for the most sensitive phenomena

  14. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  15. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  16. Risk in Nuclear Industry. Liability for Nuclear Damage. Status of the Problem in the Russian Federation

    International Nuclear Information System (INIS)

    Kovalevich, Oleg M.; Gavrilov, Sergey D.; Voronov, Dmitry B.

    2001-01-01

    Russia is one of a few nuclear power states obtaining the whole number of nuclear fuel cycle (NFC) components - from mining of uranium and on-site electricity production, from NPP spent nuclear fuel processing and extracted fissile materials and radionuclides, which are available in industry, in medicine and in other relevant areas, to radioactive waste processing and disposal. For this reason it is very important to solve the problem of nuclear fuel cycle safety as it is a single system task with an adequate approach for all cycle components. The problem is that NFC facilities are technologically various and refer to different industries (mining, machinery engineering, power engineering, chemistry, etc.). Besides, the above facilities need the development of various scientific bases. The most NFC facilities is directly connected with peaceful use of nuclear energy and with military nuclear industry, as the defense orders stimulated the development of NFC. The specific attention to safety problems at the beginning of nuclear complex foundation adversely affected the state attitude towards the risk in nuclear industry, it has left the traces at present. In our paper we touch upon the problems of risk and the liability for nuclear damage for the third persons. The problems of nuclear damage compensation for nuclear facilities personnel and for the owners (operating organizations) are beyond our subject

  17. ISO 9000 for the U.S. nuclear industry? Why not?

    International Nuclear Information System (INIS)

    Wilson, R.B.

    1993-01-01

    The growing popularity of the recently developed International Standard for Quality, ISO 9000, is challenging the traditional approach to ensuring quality in the nuclear industry and raising new questions as to whether this standard with its likely worldwide acceptance could become a successor to 10CFR50, Appendix B. The experience of a jointly owned British-American engineering consulting firm may be a harbinger of the future. Halcrow Gilbert Associates, Limited (HGA), was established in the fall of 1988 as a joint venture between two of the world's largest consulting engineering firms, Sir William Halcrow ampersand Partners, Ltd., of the United Kingdom and Gilbert/Commonwealth, Inc., of the United States. Although it initially concentrated on nonpower infrastructure markets, such as environmental, transportation, and alternative energy systems, it has broadened its focus to include the electric power industry over the past 2 yr and expects to play a major role in the U.K. market for this sector

  18. The human factor in the nuclear industry

    International Nuclear Information System (INIS)

    Colas, Armand

    1998-01-01

    After having evoked the progressive reduction and stabilization of significant incidents occurring every year in French nuclear power plants, and the challenges faced by nuclear energy (loss of public confidence, loss of competitiveness), and then outlined the importance of safety to overcome these challenges, the author comments EDF's approach to the human factor. He first highlights the importance of information and communication towards the population. He briefly discusses the meaning of human factors for the nuclear industry, sometimes perceived as the contribution people to the company's safety and performance. He comments the evolution observed in the perception of human error in different industrial or technical environments and situations, and outlines what is at stake to reduce the production of faults and organize a 'hunt for latent defects'

  19. Supplier quality assurance systems: a study in the nuclear industry

    International Nuclear Information System (INIS)

    Singer, A.J.; Churchill, G.F.; Dale, B.G.

    1988-01-01

    The results are reported of a study which investigated the impact of quality assurance on 13 suppliers to the nuclear industry. The purpose of the study was to determine the benefits and problems of applying quality assurance in the supply of high risk plant items and material for nuclear installations. The paper discusses the problems facing the industry including: multiple audits and inspections, the irritation with having to contend with two quality system standards (namely BS 5750 and BS 5882) and the cost effectiveness of the more stringent quality system and quality control surveillance requirements imposed by the nuclear industry. It is also pointed out that companies supplying non-nuclear industrial customers were dissatisfied with the qualifications, experience and professional competence of some auditors and many inspectors. (author)

  20. Environmental management in nuclear industry

    International Nuclear Information System (INIS)

    Pillai, K.C.; Bhat, I.S.

    1988-01-01

    Safety of the environment is given due attention right at the design state of nuclear energy installations. Besides this engineered safety environmental protection measures are taken on (a) site selection criteria (b) waste management practices (c) prescribing dose limits for the public (d) having intensive environmental surveillance programme and (e) emergency preparedness. The paper enumerates the application of these protection measures in the environmental management to make the nuclear industry as an example to follow in the goal of environmental safety. (author)

  1. The nuclear industry and communication: a personal view

    International Nuclear Information System (INIS)

    Morvan, P.

    1989-01-01

    The nuclear industry should not be hesitant in proclaiming its belief that nuclear energy is justifiable politically, economically and ecologically. Some of the basic principles of company communication with the public as they apply to the nuclear industry, are examined. Security is of the utmost importance at all nuclear sites. The commitment to security must be based on mutual confidence between specialists and the public particularly those living in the vicinity of a nuclear plant. A precise scale by which nuclear incidents can be measured must be defined, indicating their degree of seriousness and consequently what should be done. The public must be immediately informed about nuclear accidents by specialists as unequivocally as possible. It is essential that those who work at nuclear plants be confident and proud of their jobs and the company that employs them. It is impossible to establish and maintain good public relations without a permanent flow of information within the company at all levels. The economic factors, such as increased employment opportunities, must not be overlooked either. (author)

  2. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  3. Nuclear engineering. Stable industry for bright minds

    International Nuclear Information System (INIS)

    Geisler, Maja

    2009-01-01

    The Deutsches Atomforum (DAtF) invited 35 students and graduate students for 'colloquies for professional orientation' to Luenen on March 8-11, 2009. Another 39 students were guests in Speyer between March 15 and 18 this year. Participants included graduates in physics, chemistry, radiation protection, and mechanical engineering as well as students of process engineering, electrical engineering and environmental technology. The colloquies for professional orientation are a service provided by the Informationskreis Kernenergie (IK) to member firms of DAtF. At the same time, the IK in this way fulfils its duty to promote young scientists and engineers within the framework of the DAtF's basic public relations activities. After all, nuclear technology in Germany is not about to end its life. Firms with international activities are in urgent need of highly qualified young staff members. Personnel is needed for a variety of activities ranging from nuclear power plant construction to fuel fabrication to waste management and the demolition and disposal of nuclear power plants. All these areas are in need of new qualified staff. Some 750 students so far have attended the DAtF colloquies for professional orientation since 2002. Many participants were hired by industries straight away or were given opportunities as trainees or students preparing their diploma theses in the nuclear industry. These contacts with the nuclear industry should not remain a one-off experience for the students. For this reason, the IK invites the participants in colloquies again this year to attend the Annual Meeting on Nuclear Technology in Dresden on May 12-14, 2009. (orig.)

  4. The development process and tendency of nuclear instruments applied in industry

    International Nuclear Information System (INIS)

    Ji Changsong

    2005-01-01

    The development process of nuclear technique application in industry may be divided into three stages: early stage--density, thickness and level measurement; middle stage--neutron moisture, ash content and X-ray fluorescence analysis; recent state--container inspection and industrial CT, nuclear magnetic resonance, neutron capture and non-elastic collision analysis techniques. The development tendency of nuclear instruments applied in industry is: spectrum measurement; detector array and image technique; nuclide analysis and new kinds of nuclear detectors are widely adopted. (authors)

  5. Cooperative Security: A New Paradigm For A World Without Nuclear Weapons?

    Directory of Open Access Journals (Sweden)

    Marc Finaud

    2013-11-01

    Full Text Available If there is a loose consensus on aiming at a world free of nuclear weapons in the future, there are clear oppositions as to the timeframe as well as the means for achieving this goal. The approach to nuclear disarmament followed to date has only yielded limited success because it has been conceived in isolation from global and regional security environments and threat perceptions. A new paradigm should thus be sought in order to reconcile nuclear powers’ security doctrines with global aspirations for a safer world, and ensure that nuclear powers derive their security less from others’ insecurity but from mutually beneficial cooperative security. This should not become a pretext for preserving nuclear weapons for ever. It will on the contrary require parallel tracks addressing the initial motivations for acquiring nuclear weapons and other weapons of mass destruction (WMD, in particular in the context of regional conflicts, as well as dealing with the current issues necessarily related to nuclear disarmament (missile defence, weaponization of space, conventional imbalances and future weapon systems. Ultimately, in a globalised nuclear-weapon free world, state security will not require nuclear weapons because it will be inserted into a broader network encompass­ing all aspects of security addressed in cooperative and multilateral approaches.

  6. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  7. Deregulation and internationalisation - impact on the Swedish nuclear industry

    International Nuclear Information System (INIS)

    Haukeland, Sverre R.

    2010-01-01

    The deregulation of the Swedish electricity market in 1996 was well known in advance, and the nuclear power plants in Sweden, as well as their main suppliers, made early preparations for a this new situation. In a study - performed by the author at Malardalen University in Sweden - it is concluded that the electricity industry, including the nuclear power plants, was fundamentally transformed in conjunction with market liberalisation. Two large foreign companies, E-on and Fortum, entered the Swedish market and became part-owners of the nuclear plants. After deregulation, the electricity market in Sweden is dominated by these two companies and the large national company Vattenfall. Similarly, Vattenfall has recently grown into an international energy company, acquiring generation capacity in Northern Europe outside of Sweden, including nuclear power plants in Germany. Restructuring of the nuclear industry on the supplier side started in the 1980's, when the Swedish company ASEA and BBC of Switzerland merged to become ABB. Several years later the Swedish nuclear plant supplier ABB-Atom became part of Westinghouse Electric Company, today owned by Toshiba. The Swedish experience thus confirms an international trend of mergers and consolidation in the nuclear industry. (authors)

  8. World-wide termination of nuclear energy application

    International Nuclear Information System (INIS)

    Quirin, W.

    1991-01-01

    It is easy to require the widely discussed termination of nuclear energy application, but it is hardly possible to realise it, unless one is prepared to accept enormous economic and ecological problems. The article investigates, whether the other energy carriers or energy saving methods, respectively, would be in a position to replace the nuclear energy. Thereby the aspects of securing the supply and its economy are of considerable importance. The author describes furthermore the effects of terminating nuclear energy on the growing world population and the economy of trading countries. Ecological problems that may also be aggravated are dealt with, too. (orig.) [de

  9. Quality management certification for the nuclear industry

    International Nuclear Information System (INIS)

    Wilmer, T.J.

    1993-01-01

    Historically for safety critical items, the United Kingdom nuclear companies either conducted their own inspection and audit of suppliers or sub-contracted staff to do so on their behalf. However, it is becoming unrealistic for these services to be undertaken in-house for economic reasons. The power industry is looking outside its own immediate expertise to that of 3rd Party Certification Bodies. There is a danger of introducing an element of risk unless the Certification Body really does understand the industry and its requirements. The Nuclear Installations Inspectorate (NII) makes it mandatory for nuclear installations to have in place Quality management systems that meet the requirements of BS 5882. This standard requires the use of quality assurance programmes and a greater degree of understanding of nuclear regulations and codes of practice than is required by BS 5750. This is a very significant factor, recognising as it does the need to harmonise the management interface between an operator of a nuclear installation and suppliers to that same installation. (author)

  10. Nuclear Power Reactors in the World. 2014 Ed

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Power Reactors in the World is an annual publication that presents the most recent data pertaining to nuclear power reactors in IAEA Member States. This thirty-fourth edition of Reference Data Series No. 2 provides a detailed comparison of various statistics up to and including 31 December 2013. The tables and figures contain the following information: — General statistics on nuclear reactors in IAEA Member States; — Technical data on specific reactors that are either planned, under construction or operational, or that have been shut down or decommissioned; — Performance data on reactors operating in IAEA Member States, as reported to the IAEA. The data compiled in this publication is a product of the IAEA’s Power Reactor Information System (PRIS). The PRIS database is a comprehensive source of data on all nuclear power reactors in the world. It includes specification and performance history data on operational reactors as well as on reactors under construction or in the decommissioning process. The IAEA collects this data through designated national correspondents in Member States

  11. The eyes, ears and collective voice for nuclear transport

    International Nuclear Information System (INIS)

    Green, L.

    2000-01-01

    Transport is a vital part of the nuclear industry and the safety record of radioactive materials transport across the world is excellent. This record is due primarily to well-founded regulations developed by such intergovernmental organisations as the International Atomic Energy Agency and the International Maritime Organisation. It is due, also, to the professionalism of those in the industry. Attitudes to nuclear transport are important. They have the potential, if not heeded, and not responded to sensitively and convincingly to make life very much more difficult for those committed to the safe, reliable and efficient transport of nuclear materials. What is required is a balanced situation, which takes account both of the public's attitudes and industry's need for an efficient operation. The voices of the nuclear transport industry and those who value the industry need to be heard. The World Nuclear Transport Institute was established to provide the nuclear transport industry with the collective eyes, ears and voice in the key intergovernmental organisations which are so important to it. The nuclear transport industry has a safety record which could be regarded as a model for the transport of dangerous goods of all kinds. The industry is situated within a comprehensive and strict regime of national and international standards and regulations. That is the message to be disseminated, and that is the commitment of the World Nuclear Transport Institute as it works to protect and to promote the safe, efficient and reliable transport of radioactive materials. (author)

  12. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  13. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).

  14. Laser robot in the nuclear industry

    International Nuclear Information System (INIS)

    Contre, M.

    1987-05-01

    Possibilities of power lasers for welding, cutting, drilling, plugging surface treatment and hard-facing are reviewed. CO 2 and Nd:YAG lasers only have adequate power for nuclear applications. Radiation effects on lasers and contamination problems are examined. Then examples of applications to nuclear industry are given: PWR fuel fabrication, oxide thickness measurement in Magnox reactors, laser cutting of a cylindrical piece of steel on the bottom of a fuel channel in a gas graphite reactor, nuclear plant dismantling and fuel reprocessing. 51 refs [fr

  15. Difficult to foresee tomorrow's world

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    Some countries like Italy or Kazakhstan have given up nuclear power but others (Viet-Nam, Bangladesh, Egypt, Turkey) have the willingness to enter the nuclear world to sustain their development while complying with their environmental obligations. Others like United Arab Emirates, Belarus have their first reactor being built and other countries like France, Finland, United States, Slovakia, Brazil, Pakistan, India, Taiwan, South-Korea, China, Russia, Ukraine are reinforcing their reactor fleet by building new reactors. A total of 62 reactors is being built throughout the world with 22 in China. New construction of reactors, the dismantling of decommissioned installations and the integration of nuclear power in new economic models make the future brighter for nuclear industry. (A.C.)

  16. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H S; Yang, M H; Kim, H J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  17. Analysis on Japanese nuclear industrial technologies and their military implications

    International Nuclear Information System (INIS)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months

  18. Qualification of NDE personnel in the nuclear industry

    International Nuclear Information System (INIS)

    Epps, T.N.

    1984-01-01

    There has been evidence of ineffective programs for certifying nondestructive examination (NDE) personnel who conduct periodic inservice examinations in nuclear power plants under ASME Section XI Code requirements. This was brought to the attention of a group from the electric utility industry, the Electric Power Research Institute (EPRI), some NDE consultants and representatives from the American Society of Mechanical Engineers (ASME) by the Nuclear Regulatory Commission (NRC) in a May, 1982 meeting in Bethesda, Maryland. One problem pointed out by the NRC was the lack of a clear definition of qualification requirements for certification of NDE personnel who conduct ASME Section XI Inservice Inspection work in nuclear power plants. The NRC requested that the nuclear industry resolve this problem by formulating definitive qualification requirements for personnel certification that could be made an industry requirement. In June, 1982 the EPRI NDE Subcommittee held a general meeting for utility representatives to discuss the results of the May, 1982 meeting to develop a plan for industry response to the issue. The consensus was that an Ad Hoc Committee of utility representatives be convened to develop a document outlining qualification requirements for vertification of NDE personnel. The Ad Hoc Committee was formally convened on September 29, 1982

  19. The industrial problems raised by the building of the new nuclear power plant system

    International Nuclear Information System (INIS)

    Gangloff, P.; Hillairet, J.

    1975-01-01

    The decision made by France to build within 10 years a number of nuclear power plants of an importance unequalled in Europe and in the world has created for the industry involved in this gigantic enterprise problems of growth and adaptation of considerable magnitude. In a first part, the general analysis of needs reveals the breadth of the phenomenon the industry is facing with respect to its capacity of production. This original study, the first synthesis of this kind, could be the starting point of overall industrial planning at the national level. The second part, dealing more particularly with turbogenerator units, shows in its true perspective the magnitude of the material and how the equipment has developed. It recalls how the industrial problem has been approached in order to meet the need for expansion of one of the most important French electromechanical manufacturing plants [fr

  20. Subcontracting in nuclear industry - legal aspects

    International Nuclear Information System (INIS)

    Leger, M.

    2012-01-01

    This article describes the legal framework of subcontracting in France. Subcontracting is considered as a normal mode of functioning for an enterprise: an enterprise contracts another enterprise to do what it can not do itself or does not want to do. According to the 1975 law, cascade subcontracting is allowed but subcontractors have to be accepted by the payer. In some cases the payer can share responsibility when the subcontracting enterprises do not comply to obligations like the payment of some taxes. The main subcontractor who is the one who contracted with the payer is the only one responsible for the right execution of the whole contract. In nuclear industry there are 2 exceptions to the freedom of subcontracting. The first one concerns radiation protection: in a nuclear facility the person in charge of radioprotection must be chosen among the staff. The second concerns the operations and activities that are considered important for radiation protection, it is forbidden to subcontract them. In some cases like maintenance in nuclear sector the law imposes some qualification certification for subcontracting enterprises. The end of the article challenges the common belief about subcontracting in nuclear industry. (A.C.)

  1. Further activities of safety culture toward nuclear transportation industry

    International Nuclear Information System (INIS)

    Machida, Y.; Shimakura, D.

    2004-01-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power

  2. The nuclear power industry in the Asia-Pacific region

    International Nuclear Information System (INIS)

    Lester, R.K.

    1984-01-01

    The development of the nuclear reactor industry in the Pacific Basin began in the United States and Canada and spread to Japan and, more recently, to South Korea and Taiwan. The American and Canadian industries face serious economic and political difficulties; indeed, their current plight is so severe that their survival no longer seems assured. Because of the key regional role played up to now by the North American industries, and by the U.S. industry in particular, the realization of this scenario would have important repercussions for nuclear trade and investment throughout the region. In the longer run some basic structural changes would seem likely, with the focal point of industrial strength and technological leadership in the region shifting to Northeast Asia, and to Japan in particular. Already there is evidence of this shift. But the prospect of a smooth, gradual transition toward a new regional industrial structure centered on Japan may be misleading. What is missing from this picture is a full measure of the extent to which nuclear industrial development elsewhere in the region is positively correlated with the trend in the United States. (author)

  3. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  4. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  5. Intelligent robotics and remote systems for the nuclear industry

    International Nuclear Information System (INIS)

    Wehe, D.K.; Lee, J.C.; Martin, W.R.; Tulenko, J.

    1989-01-01

    The nuclear industry has a recognized need for intelligent, multitask robots to carry out tasks in harsh environments. From 1986 to the present, the number of robotic systems available or under development for use in the nuclear industry has more than doubled. Presently, artificial intelligence (AI) plays a relatively small role in existing robots used in the nuclear industry. Indeed, the lack of intelligence has been labeled the ''Achilles heel'' of all current robotic technology. However, larger-scale efforts are underway to make the multitask robot more sensitive to its environment, more capable to move and perform useful work, and more fully autonomous via the use of AI. In this paper, we review the terminology, the history, and the factors which are motivating the development of robotics and remove systems; discuss the applications related to the nuclear industry; and, finally, examine the state of the art of the technologies being applied to introduce more autonomous capabilities. Much of this latter work can be classified as within the artificial intelligence framework. (orig.)

  6. Big problems for Swedish nuclear industry

    International Nuclear Information System (INIS)

    Holmstroem, Anton; Runesson, Linda

    2006-01-01

    A report of the problems for Swedish nuclear industry the summer of 2006. A detailed description of the 25th of July incident at Forsmark 1 is provided. The incident was classified as level two on the INIS scale. The other Swedish nuclear plants were subject to security evaluations in the aftermath, and at Forsmark 2 similar weaknesses were found in the security system (ml)

  7. New contractual trends in world petroleum industry

    International Nuclear Information System (INIS)

    Arzu, M.; Clerici, C.

    1992-01-01

    Oil industry contractual practices have gone through a rapid evolution starting from the 1970's, mainly determined by a change in the relationship between producer and consumer countries. Current steady price trends have led to a new equilibrium causing the petroleum companies and producer countries to re-examine their contractual strategies. This article highlights the new contractual trends in the petroleum industry by tracing the evolution of international business relationships and by comparing the main types of contractual schemes, e.g., concession, production sharing, services and services support, adopted today by the key hydrocarbon producing countries of the world

  8. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  9. The changing structure of the international commercial nuclear power reactor industry

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Hill, L.J.; Reich, W.J.; Rowan, W.J.

    1992-12-01

    The objective of this report is to provide an understanding of the international commercial nuclear power industry today and how the industry is evolving. This industry includes reactor vendors, product lines, and utility customers. The evolving structure of the international nuclear power reactor industry implies different organizations making decisions within the nuclear power industry, different outside constraints on those decisions, and different priorities than with the previous structure. At the same time, cultural factors, technical constraints, and historical business relationships allow for an understanding of the organization of the industry, what is likely, and what is unlikely. With such a frame of reference, current trends and future directions can be more readily understood

  10. Nuclear industry - challenges in chemical engineering

    International Nuclear Information System (INIS)

    Sen, S.; Sunder Rajan, N.S.; Balu, K.; Garg, R.K.; Murthy, L.G.K.; Ramani, M.P.S.; Rao, M.K.; Sadhukhan, H.K.; Venkat Raj, V.

    1978-01-01

    Chemical engineering processes and operations are closely involved in every step of the nuclear fuel cycle. Starting from mining and milling of the ore through the production of fuel and other materials and their use in nuclear reactors, fuel reprocessing, fissile material recycle and treatment and disposal of fission product wastes, each step presents a challenge to the chemical engineer to evolve and innovate processes and techniques for more efficient utilization of the energy in the atom. The requirement of high recovery of the desired components at high purity levels is in itself a challenge. ''Nuclear Grade'' specifications for materials put a requirement which very few industries can satisfy. Recovery of uranium and thorium from low grade ores, of heavy water from raw water, etc. are examples. Economical and large scale separation of isotopes particularly those of heavy elements is a task for which processess are under various stages of development. Further design of chemical plants such as fuel reprocessing plants and high level waste treatment plants, which are to be operated and maintained remotely due to the high levels of radio-activity call for engineering skills which are being continually evolved. In the reactor, analysis of the fluid mechanics and optimum design of heat removal system are other examples where a chemical engineer can play a useful role. In addition to the above, the activities in the nuclear industry cover a very wide range of chemical engineering applications, such as desalination and other energy intensive processes, radioisotope and radiation applications in industry, medicine and agriculture. (auth.)

  11. U.S. congressional attitudes and policies affecting nuclear power development in the world

    International Nuclear Information System (INIS)

    McCormack, M.

    1976-01-01

    The world future for nuclear power is even now being formed by policies and decisions of many governments and international organizations. Congressman McCormack looks to the United States for revived and stronger leadership in strengthening the web of institutions and international relations to permit the world to reap the benefits of nuclear power without a destabilizing spread of nuclear weapons. He says Congress will have a major role in shaping that nuclear future. The tensions between Congress and the executive branch that are part of the U.S. system of separation of powers can help to test and strengthen future policy on international nuclear power. The point of no return along the course of nuclear evolution is approaching and the author asks: will we press on to create an acceptable balance between benefits of nuclear power and the risk that expanded use may increase proliferation--or will we turn back toward nuclear isolationism. Mr. McCormack opts for vigorous legislative, executive and diplomatic initiatives to sustain U.S. nuclear leadership so that we can accelerate and influence world measures to prevent proliferation while developing uranium and thorium as future world energy resources

  12. Advances in chemical engineering in nuclear and process industries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately.

  13. Advances in chemical engineering in nuclear and process industries

    International Nuclear Information System (INIS)

    1994-06-01

    Symposium on Advances in Chemical Engineering in Nuclear and Process Industries dealt with a wide spectrum of areas encompassing various industries such as nuclear, fertilizer, petrochemical, refinery and cement. The topics covered in the symposium dealt with the advancements in the existing fields of science and technologies as well as in some of the emerging technologies such as membrane technology, bio-chemical and photo-chemical engineering etc. with a special emphasis on nuclear related aspects. Papers relevant to INIS are indexed separately

  14. The European nuclear power industry: Restructuring for combined strength and worldwide leadership

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

    1993-01-01

    The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards

  15. The European nuclear power industry: Restructuring for combined strength and worldwide leadership

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Norman, R.E.; Reich, W.J.; Hill, L.J.

    1993-06-18

    The European nuclear power industry is being restructured from an industry drawn along national lines to a European-wide industry. This, in part, reflects growth of the European Economic Community, but it also reflects changes in the international nuclear power industry. The objectives of the participants, beyond better integration of the nuclear industry in Western Europe, are to (1) obtain European leadership of the worldwide commercial nuclear power industry, (2) improve medium- and long-term safety of Eastern Europe and the former Soviet Union (FSU) power reactors, and (3) reduce domestic concerns about nuclear power. The activities to achieve these goals include (1) formation of Nuclear Power International (a joint venture of the German and French nuclear power plant vendors for design and construction of nuclear power plants), (2) formation of a utility group to forge agreement throughout Europe on what the requirements are for the next generation of nuclear power plants, and (3) agreement by regulators in multiple European countries to harmonize regulations. This is to be achieved before the end of the decade. These changes would allow a single design of nuclear power plant to be built anywhere in Europe. The creation of European-wide rules (utility requirements, engineering standards, and national regulations) would create strong economic and political forces for other European countries (Eastern Europe and FSU) to meet these standards.

  16. Chernobyl coverage: how the US media treated the nuclear industry

    International Nuclear Information System (INIS)

    Friedman, S.M.; Gorney, C.M.; Egolf, B.P.

    1992-01-01

    This study attempted to uncover whether enough background information about nuclear power and the nuclear industries in the USA, USSR and Eastern and Western Europe had been included during the first two weeks of US coverage of the Chernobyl accident so that Americans would not be misled in their understanding of and attitudes toward nuclear power in general. It also sought to determine if reporters took advantage of the Chernobyl accident to attack nuclear technology or the nuclear industry in general. Coverage was analysed in five US newspapers and on the evening newscasts of the three major US television networks. Despite heavy coverage of the accident, no more than 25% of the coverage was devoted to information on safety records, history of accidents and current status of nuclear industries. Not enough information was provided to help the public's level of understanding of nuclear power or to put the Chernobyl accident in context. However, articles and newscasts generally balanced use of pro- and anti-nuclear statements, and did not include excessive amounts of fear-inducing and negative information. (author)

  17. National standards for the nuclear industry

    International Nuclear Information System (INIS)

    Laing, W.R.; Corbin, L.T.

    1981-01-01

    Standards needs for the nuclear industry are being met by a number of voluntary organizations, such as ANS, ASTM, AWS, ASME, and IEEE. The American National Standards Institute (ANSI) coordinates these activities and approves completed standards as American National Standards. ASTM has two all-nuclear committees, E-10 and C-26. A C-26 subcommittee, Test Methods, has been active in writing analytical chemistry standards for twelve years. Thirteen have been approved as ANSI standards and others are ready for ballot. Work is continuing in all areas of the nuclear fuel cycle

  18. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  19. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  20. Risk assessment and nuclear insurance: an overview

    International Nuclear Information System (INIS)

    Deitchman, J.V.; King, W.T. Jr.; Olding, R.P.

    1976-01-01

    In the nascent years of commercial nuclear power, the insurance industry expressed confidence in the safety of nuclear operations by committing unprecedented insurance capacity to nuclear risks. As the nuclear industry has developed, it has compiled an enviable safety record. The initial confidence of the insurance industry has thus been justified and an ever-increasing portion of the financial liability associated with nuclear operations has been accepted by the world-wide insurance markets. This increasing acceptance and understanding of nuclear risks by the insurance industry has resulted in significantly reduced rates and large premium refunds for nuclear operators

  1. Development present situation analysis of nuclear power industry in China and South Korea

    International Nuclear Information System (INIS)

    Huang Gang

    2011-01-01

    This paper introduces the present state and primary development experiences of South Korean nuclear power industry and the present state of Chinese nuclear power industry development, and comparatively analyzes and researches the differences between China and South Korea in nuclear power industry. At last, we come up with some suggestions and ideas to refer the follow-up development of Chinese nuclear power industry. (author)

  2. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  3. Analysis on Japanese nuclear industrial technologies and their military implications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Yang, M. H.; Kim, H. J. and others

    2000-10-01

    This study covered the following scopes : analysis of Japan's policy trend on the development and utilization of nuclear energy, international and domestic viewpoint of Japan's nuclear weapon capability, Japan's foreign affairs and international cooperation, status of Japan's nuclear technology development and its level, status and level of nuclear core technologies such as nuclear reactor and related fuel cycle technologies. Japan secures the whole spectrum of nuclear technologies including core technologies through the active implementation of nuclear policy for the peaceful uses of nuclear energy during the past five decades. Futhermore, as the result of the active cultivation of nuclear industry, Japan has most nuclear-related facilities and highly advanced nuclear industrial technologies. Therefore, it is reasonable that Japan might be recognized as one of countries having capability to get nuclear capability in several months.

  4. NIC (Nuclear Industry in China) exhibition. Press file

    International Nuclear Information System (INIS)

    1998-01-01

    Framatome participated to the NIC exhibition which took place in Beijing (China) on March 1998. This press dossier was distributed to visitors. It presents in a first part the activities of the Framatome group in people's republic of China (new constructions (Daya Bay, Ling Ao project), technological cooperation and contracts in the nuclear domain, technology transfers in the domain of nuclear fuels, activities and daughter companies in the domain of industrial equipments, Framatome Connectors International (FCI) daughter company in the domain of connectors engineering). Then, the general activities of Framatome in the nuclear, industrial equipment, and connectors engineering domains are summarized in the next 3 parts. (J.S.)

  5. News from nuclear industry

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    A cooperation agreement has been signed between Indian and French governments concerning energy and research. This agreement opens the Indian market to Areva for the supply of power reactors. Areva will face Russian and American competitors. Areva is already present in India in the sectors of power transmission and distribution, it employs 3500 people and operates 8 industrial plants. Areva and Northrop Grumman have signed an agreement to build the biggest site on American soil dedicated to the manufacturing of big nuclear components like reactor vessels, steam generators and pressurizers. An opinion poll shows that 78% Americans favor the use of nuclear energy for producing electricity, while 24% are opposed to it and that nuclear power plants are considered safe by 78% of the population. The Areva-Bechtel corporation has signed an agreement with Unistar Nuclear Energy for doing the preliminary studies for the construction of an EPR near the Calvert Cliffs site. More than 500 engineers are working on the project that benefit from the feedback experience of 4 EPR that are presently being built in Finland, France and China. The European Commission wants the European Union to play a major role in nuclear safety, a task group has been created whose purpose is to define new regulations illustrating common priorities and approaches for unifying national nuclear safety standards among the member states. (A.C.)

  6. International Atomic Energy Agency (IAEA) and its role in world-wide security of nuclear fuels and facilities and non-proliferation

    International Nuclear Information System (INIS)

    Eklund, S.

    1976-01-01

    This article outlines the wide range of the Agency's concerns in both promoting the peaceful uses of nuclear energy and ensuring that it is safely used with minimal risk of damage to man and his environment. This latter aspect includes measures against diversion to military purposes, theft or sabotage. There is a marked tendency to leave the promotion of nuclear energy to industry and commerce, and for many regional and national nuclear energy authorities to become increasingly absorbed in its safety and regulatory aspects--the ultimate aim being the establishment of a world nuclear law. This trend will certainly also be reflected in the Agency's program and will gain strength as time goes on. However, the International Atomic Energy Agency is sharply differentiated from national authorities in the industrial countries and from most regional nuclear energy authorities by the fact that its program must continue to reflect the needs of the developing nations which constitute a majority of its Member States. These nations--most of which are ''energy hungry''--need the Agency's help to benefit from the peaceful applications of nuclear science and technology

  7. Activities of Japan Nuclear Technology Institute Japanese TSO of Industry

    International Nuclear Information System (INIS)

    Nagata, T.

    2010-01-01

    Nuclear energy is a superior form of energy in that it delivers stable power supplies and counters global warming, and it is important to promote nuclear power generation as the core power sources for a nation. However, the Japanese environment surrounding nuclear energy is changing drastically, following the liberalization of market and recent series of troubles or falsifications shaking public confidence in nuclear energy. In the above mentioned situation, nuclear industries and organizations must fulfill their individual roles, and amass its strength to work toward enhancing industry initiatives for safety activities, securing safe / stable plant operations, restoring public confidence and initiate revitalization of nuclear energy operations. The Japan Nuclear Technology Institute (JANTI) has been established as a new entity for supporting and leading the industry's further progress in March 2005. Members of JANTI are not only utilities but also component manufacturers and constructors. JANTI enhance the technological foundation of nuclear energy based on scientific and rational data, coordinates its use among a wide range of relevant organizations, and helps members enhance their voluntary safety activities. At the same time, it is independent of utilities, and exercises a function of checking industry at the objective, third-party standpoint. As for the activities of JANTI itself, information disclosure and the establishment of a council comprising external members will enhance administration transparency. (author)

  8. The future of the nuclear industry: a matter of communication

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, H S

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about `divine secrets`, mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to `vagueness`. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs.

  9. The future of the nuclear industry: a matter of communication

    International Nuclear Information System (INIS)

    De Waal, H.S.

    1993-11-01

    Since the very first successes achieved by the early scientists the infant nuclear industry was plagued by an atmosphere of uncertainty, conflict, anxiety and expectations. After the initial euphoria the Chernobyl accident shocked public opinion and perspectives changed. Nuclear energy is experience by the public in three dimensions. Firstly there are the technical realities of the reactor and its fantastically reduced source of power. Secondly, there is a psychological and political meaning, including the association of modern technology with authority, government, and control. The third dimension is the product of old myths about 'divine secrets', mad scientists dreadful pollution and cosmic apocalypse. To a large extent the nuclear industry is at fault for these emotional connotations. An early lapse in the communication process can be blamed for many of the misconceptions. The nuclear industry lost an opportunity by sticking to 'vagueness'. Recent trends show that a pattern of conditional acceptance is present in public opinion with regard to the nuclear industry. Possible solutions, including better communication, aggressive marketing, and the training of scientists to become communicators, are discussed. A study was done of community attitudes around Koeberg, and it is concluded that the public must be convinced of the fact that nuclear power is clean, safe, cheap and accepted as such by the industrially developed word. 62 refs., 13 figs

  10. Current nuclear programmes in third world countries

    International Nuclear Information System (INIS)

    Gillespie, Anna.

    1992-01-01

    Since 1964, when China became the fifth declared nuclear weapons state NWS (joining the US, Soviet Union, Britain and France), no other state has openly declared a nuclear capacity. But four states - Israel, South Africa, India and Pakistan - are now believed to have such a capacity. This chapter will briefly document the nuclear weapons programmes of these four 'threshold' countries which possess the industrial infrastructure to enable them to produce nuclear weapons' but assiduously refrain from publicly expressing any interest in acquiring such weapons. The chapter will go on to discuss those states which are not on the threshold but which are attempting to become nuclear-capable through building the necessary technology or acquiring it on the international market. The political motivation for these countries to 'go nuclear', and the assistance they have received in this endeavour from the NWSs themselves, will also be discussed. (author)

  11. The situation of the nuclear energy in the world (Oct. 1991)

    International Nuclear Information System (INIS)

    1991-10-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  12. The situation of the nuclear energy in the world (Sep. 1992)

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-09-01

    This work presents an overview of the nuclear energy in the world. It approaches the following main topics: kinds of nuclear power plants; operation experience of the nuclear plants; environmental and social aspects of the nuclear energy; economic aspects of the nuclear energy; development of the reactors technology and supply of the nuclear fuel

  13. Nuclear power: a route out of world crisis

    International Nuclear Information System (INIS)

    Jeffs, Eric.

    1981-01-01

    Presentations at the Eleventh World Energy Conference in September 1980 are highlighted, with the emphasis on nuclear energy. High oil prices have adversely affected the economies of many countries, but especially the less developed countries (LDC). The extent to which nuclear power can help the LDCs in the near future is limited by the size of their electricity grids. In the more developed countries, the discussion of nuclear energy is dominated by perceived need and public acceptance. The crisis of confidence in nuclear energy is not completely global. Both France and the COMECON countries have ambitious long-range plans, including nuclear combined heat and power units, and the more advanced developing countries, such as Argentina, Brazil, Korea and Mexico, are also pressing ahead with nuclear programs. (NDH)

  14. Stability of transition to a world without nuclear weapons: Technical problems of verification

    International Nuclear Information System (INIS)

    Zhigalov, V.

    1998-01-01

    A serious psychological barrier to acceptance of the concept for achieving the nuclear-weapon-free world is fear of facing the prospect that one or more nations or extremist political groups might develop their own nuclear weapons. Actually this is a question of stability of the nuclear-weapon-free world. From this point of view the most effective system of verification is an absolute necessity. This system must ensure detection of so called undeclared nuclear activity at early stage. Scientists of Russian nuclear centers are working today on solving this problem. This paper is considered to be a comprehensive attempt to analyze the technical and organizational aspects of the problems of transition to a nuclear-weapons-free world, setting aside the difficulties of resolving purely political problems

  15. Nuclear industry strategic asset management: Managing nuclear assets in a competitive environment

    International Nuclear Information System (INIS)

    Mueller, H.; Hunt, E.W. Jr.; Oatman, E.N.

    1999-01-01

    The former Electric Power Research Institute took the lead in developing an approach now widely known as strategic asset management (SAM). The SAM methodology applies the tools of decision/risk analysis used in the financial community to clarify effective use of physical assets and resources to create value: to build a clear line of sight to value creation. SAM processes have been used in both the power and other industries. The rapid change taking place in the nuclear business creates the need for competitive decision making regarding the management of nuclear assets. The nuclear industry is moving into an era in which shareholder value is determined by the net revenues earned on power marketed in a highly competitive and frequently low-priced power market environment

  16. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  17. Nuclear Industry Family Study

    International Nuclear Information System (INIS)

    1993-01-01

    This is a copy of the U.K.A.E.A. Question and Answer brief concerning an epidemiological study entitled the Nuclear Industry Family Study, to investigate the health of children of AEA, AWE, and BNFL Workers. The study is being carried out by an independent team of medical research workers from the London School of Hygiene and Tropical Medicine, and the Imperial Cancer Research Fund. (UK)

  18. World Nuclear University School of Uranium Production: Eight years' experience

    International Nuclear Information System (INIS)

    Trojacek, J.

    2014-01-01

    The World Nuclear University School of Uranium Production was established by DIAMO, state enterprise in 2006 year under the auspices of the World Nuclear University in London in partnership with international nuclear organizations – OECD/NEA and IAEA. Using the expertise and infrastructure of DIAMO State Enterprise, in conjuction with national and international universities, scientific institutions, regulatory authorities and other individual experts, the “school” covers its mission with the aim to provide world-class training on all aspects of uranium production cycle to equip operators, regulators and executives with the knowledge and expertise needed to provide expanded, environmentally-sound uranium mining throughout the world: • to educate students on all aspects of uranium production cycle including exploration, planning, development, operation, remediation and closure of uranium production facilities; • to improve the state of the art of uranium exploration, mining and mine remediation through research and development; • to provide a forum for the exchange of information on the latest uranium mining technologies and experiences – best practices.

  19. Industry, university and government partnership to address research, education and human resource challenges for nuclear industry in Canada

    International Nuclear Information System (INIS)

    Mathur, R.M.

    2004-01-01

    Full text: This paper describes the outcome of an important recent initiative of Canadian nuclear industry to reinvigorate interest in education and collaborative research in prominent Canadian universities. This initiative has led to the formation of the University Network of Excellence in Nuclear Engineering (UNENE), incorporated in 2002. During the recent past, the slowdown in nuclear power development in Canada has curtailed the demand for new nuclear professionals down to a trickle. Without exciting job opportunities in sight the interest of prospective students in nuclear education and research has plunged. Consequently, with declining enrolment in nuclear studies and higher demand from competing disciplines, most universities have found it difficult to sustain nuclear programs. As such the available pool of graduating students is small and insufficient to meet emerging industry demand. With nuclear industry employees' average age hovering around mid-forties and practically no younger cohort to back up, nuclear industry faces the risk of knowledge loss and significant difficulty in recruiting new employees to replenish its depleting workforce. It is, therefore, justifiably concerned. Also, since nuclear generation is now the purview of smaller companies, their in-house capability for mid- to longer-term research is becoming inadequate. Recognizing the above challenges, Ontario Power Generation, Bruce Power and Atomic Energy of Canada Limited have formed an alliance with prominent Canadian universities and undertaken to invest money and offer in-kind support to accomplish three main objectives: Reinvigorate university-based nuclear engineering research by augmenting university resources by creating new industry supported research professorships and supporting research of other professors; Promote enrolment in graduate programs by supporting students and making use of a course-based Master of Engineering (M.Eng.) Program that is taught collectively by

  20. The nuclear spread: a Third World view

    International Nuclear Information System (INIS)

    Kapur, A.

    1980-01-01

    The view of the Third World of nuclear power and international relations is contrasted with that of the superpowers. Aspects considered include the Non-Proliferation Treaty, factors for and against proliferation, regional and international environments, vertical versus horizontal proliferation. (U.K.)

  1. The adventure of nuclear energy: a scientifical and industrial history

    International Nuclear Information System (INIS)

    Reuss, P.

    2007-01-01

    The nuclear energy history is one of the most exciting scientifical and industrial adventure. In France, in a few decades, nuclear energy has become the main energy source for power generation. The aim of this book is to present the stakes of this challenge, to better outline the difficulties that have been encountered all along its development in order to better understand the complexness of such a development. After an overview of the successive advances of atomic and nuclear physics since more than a century, the book describes the genesis of nuclear energy, its industrial developments and its still wide open perspectives. The conclusions makes a status of the advantages and risks linked with this energy source. The book contains also the testimonies of two French nuclear actors: P. Benoist and S. David. The forewords by H. Langevin, daughter of F. and I. Joliot-Curie, stresses on the past and future role of nuclear energy in the live synergy between research and industry. (J.S.)

  2. Nuclear power supply. The future perspective; services industries: scope and opportunities

    International Nuclear Information System (INIS)

    Tilbe, H.E.

    1984-01-01

    The Canadian nuclear industry seems not to have recognized the opportunities that exist in the nuclear service industries. The total market in this area ranges from $1 to $4 billion in the United States alone. The author describes briefly the experiences of his company, London Nuclear. (L.L.)

  3. Further activities of safety culture toward nuclear transportation industry

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Y.; Shimakura, D. [NSnet, Tokyo (Japan)

    2004-07-01

    On September 30, 1999, a criticality accident occurred at the uranium processing facility of the JCO Co. Ltd. (hereinafter referred to as ''JCO'') Tokai plant, located in Tokaimura, Ibaraki Prefecture. This was an unprecedented accident in Japan's history of peaceful use of nuclear power, resulting in three workers exposed to severe radiation, two of whom died, and the evacuation and enforced indoor confinement of local residents. Nuclear power suppliers must take personal responsibility for ensuring safety. In this connection, the electric power industry, heavy electric machinery manufacturers, fuel fabricators, and nuclear power research organizations gathered together to establish the Nuclear Safety Network (NSnet) in December 1999, based on the resolve to share and improve the level of the safety culture across the entire nuclear power industry and to assure that such an accident never occurs again. NSnet serves as a link between nuclear power enterprises, research organizations, and other bodies, based on the principles of equality and reciprocity. A variety of activities are pursued, such as diffusing a safety culture, implementing mutual evaluation among members, and exchanging safety-related information. Aiming to share and improve the safety culture throughout the entire nuclear power industry, NSnet thoroughly implements the principle of safety first, while at the same time making efforts to restore trust in nuclear power.

  4. Plasma technology in support of a growing nuclear power industry

    International Nuclear Information System (INIS)

    Camacho, J.; Camacho, S. L.; Park, J. H.

    2005-01-01

    Plasma pyrolysis / vitrification, otherwise known as PPV, is a thermal waste treatment process that offers a wide variety of advantages to owner/operators of modern waste disposal and WTE facilities. Operating cost, or perceived operating cost has so far been a major issue preventing plasma from gaining wide-spread acceptance in world markets of waste disposal. The interesting thing about plasma is the paradox of its current state in its development as a strong industry. On one hand, plasma has proven itself to be the most adaptable, easiest controlled thermal process, with the least emissions, and the safest solid by-product (slag). Plasma offers the ideal characteristics for process control of any waste, yet awaits real investment . How can this be happening? Several factors have created the current situation. First, governments and citizens have not demanded that nuclear facilities have complete and self-contained, on-site waste treatment systems in place to reduce the need for regional facilities and trucking. Second, organizations with a real need like nuclear power plant operators have found it difficult to make contact with reliable vendors, capable of providing high quality plasma recycling systems. Third, inferior equipment vendors have successfully sold equipment not designed for production waste treatment, but rather lab-scale systems with too few features to demonstrate reliable waste treatment with confidence. Many stories of poorly working equipment that was expensive has left big business with bad taste regarding plasma, except the steel industry, and the Japanese ash vitrification industry, where plasma does the difficult work every day. During the 1990s through today in 2005, the few plasma vendors have experienced almost no market demand for their products. In contrast, ever larger ash vitrification plants have been built recently in Japan and plasma torches are being applied routinely in the 1-3 mw range to production-scale facilities. Based on

  5. Can Australia become the Saudi Arabia of Uranium? The debate about Australia's role in the global nuclear power industry is about to heat up, with pressure mounting to expand the country's involvement

    International Nuclear Information System (INIS)

    Brenchley, Fred

    2006-01-01

    Australia has a vast uranium reserve and can play an important role in the world's nuclear power industry. Australia also has a huge natural gas and coal reserves. Australia is an in excellent position to have a word wide business in nuclear power generation to its return for waste storage. Nuclear energy is more efficient as compared to gas and coal. The world is becoming anxious about the effects of greenhouse gases. Clean nuclear power is the answer

  6. A new context for the nuclear research and industry

    International Nuclear Information System (INIS)

    2000-01-01

    Pascal Colombani, general administrator of the CEA, develops in this presentation the situation of the nuclear industry to introduce the new orientations of the CEA group. The energy context, the deregulation impacts, the energy dependence and the greenhouse effect project are discussed before the presentation of the research programs and the necessary reorganizing of the nuclear industry. (A.L.B.)

  7. Trend of use and development of nuclear power in USA. Movement of recovery from 'winter age' of nuclear power

    International Nuclear Information System (INIS)

    Yamada, Eiji

    2005-01-01

    The winter age of nuclear power industry in USA has begun since the accident of Three Mile Island Nuclear Power Plant, 1979. However, the rate of operation of nuclear power plants has get better since in the middle of 1990s by these factors such as extension of operation cycle, shortening period of the periodic inspection, increase of rated output, extension of approval operating period and change of nuclear power industries. The Department of Energy (DOE) makes budget about 1.9 hundreds million dollars for 2006. The subjects, cooperation between DOE and industry and movement of private enterprise in USA are stated. 434 reactors are operating in the world in 2004. French and Finland decided to build EPR in 2004. China and Korea in The East Asia become the growth market, but Japan enters the winter age. Reorganization of nuclear power industry in the world is explained. (S.Y.)

  8. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    International Nuclear Information System (INIS)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is, providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century

  9. Have Third-World Arms Industries Reduced Arms Imports?

    OpenAIRE

    Looney, R.E.

    1989-01-01

    Current Research on Peace and Violence, no. 1, 1989. Refereed Journal Article In 1945 only Argentina, Brazil, India and South Africa in the Third World possessed domestic arms industries which produced weapons systems other than small arms and ammunition (SIPRI, 1987, 76).

  10. Development and future perspective of nuclear power plants. Current status and future prospect of world nuclear power plants

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2013-01-01

    Fukushima Daiichi NPS accidents occurred on 11 March 2011 brought about great effects on nuclear development not only in Japan but also in the world. In Japan restart of operation of periodically inspected nuclear power plants (NPPs) could not be allowed except Oi NPPs two units and most parties except Liberal Democratic Party (LDP) pledged to possibly phasing out nuclear power at House of Councillors election in July and public opinion was mostly against nuclear power after the accident. LDP clearly stated that, with the inauguration of new government last December, Japan would not pursuing the policy of the prior government of possibly phasing out nuclear power by the 2030s, but would instead make a 'zero-base' review of energy policy. Germany decided to close eight reactors immediately and remaining nine by the end of 2022. For many countries, nuclear power would play an important role in achieving energy security and sustainable development goals. In 2011 NPPs 6 units started operation with 2 units under construction, and in 2012 NPPs 3 units started operation with 7 units under construction. At present there are now over 400 NPPs operating in 31 countries and world trend seemed nuclear development was continued and number of countries newly deploying NPPs was increasing as much as eighteen. This article presented current status and future prospect of world NPPs in details. Japan would like to share its experiences and information obtained from the accident with the world and also promote NPPs overseas to meet the world's expectations. (T. Tanaka)

  11. Great expectations. Projections of nuclear power around the world

    International Nuclear Information System (INIS)

    McDonald, Alan; Rogner, Hans-Holger; Gritsevskyi, Andrii

    2009-01-01

    In its 2008 edition of Energy, Electricity and Nuclear Power Estimates for the Period to 2030, the International Atomic Energy Agency (IAEA) has again revised its projections for nuclear power upwards. Every year since 1981 the IAEA has published 2 updated projections for the world's nuclear power generating capacity, a low projection and a high projection. The low projection is a down to earth, business-as-usual projection. The high projection takes into account government and corporate announcements about longer-term plans for nuclear investments as well as potential new national policies, e.g., to combat climate change. The results for the 2008 projections are presented. In the low projection, the projected nuclear power capacity in 2030 is 473 GW(e), some 27% higher than today's 372 GW(e). In the high projection, nuclear capacity in 2030 is 748 GW(e), double today's capacity. But while projections for nuclear power's future rose, its share of the world's electricity generation today dropped from 15% in 2006 to 14% in 2007. The main reason is that while total global electricity generation rose 4.8% from 2007 to 2008, nuclear electricity actually dropped slightly. The overall message from the IAEA's 2008 edition of Energy, Electricity and Nuclear Power Estimates for the Period to 2030 is that global electricity use will grow significantly, that nuclear power will have to expand more rapidly than it has done recently in order to maintain its share, and that nuclear power can meet the challenge. (orig.)

  12. Organization, structure, and performance in the US nuclear power industry

    International Nuclear Information System (INIS)

    Lester, R.K.

    1986-01-01

    Several propositions are advanced concerning the effects of industry organization and structure on the economic performance of the American commercial nuclear power industry. Both the electric utility industry and the nuclear power plant supply industry are relatively high degree of horizontal disaggregation. The latter is also characterized by an absence of vertical integration. The impact of each of these factors on construction and operating performance is discussed. Evidence is presented suggesting that the combination of horizontal and vertical disaggregation in the industry has had a significant adverse effect on economic performance. The relationship between industrial structure and regulatory behavior is also discussed. 43 references, 4 figures, 9 tables

  13. Study on the Application of PSA Method on Non-Nuclear Industry Facilities

    International Nuclear Information System (INIS)

    Andi Sofrany E; Anhar R Antariksawan; Sony T, D.T.; Puradwi IW; Sugiyanto; Giarno

    2003-01-01

    A preliminary study related to utilization of probabilistic method in non-nuclear industry facilities has been conducted The study has been performed by examining literature studies and results of research paper related to the topic. The objective of this study is to know how far the method, which is a standard in the nuclear industry, is applied in the non-nuclear fields. The PSA application in the non-nuclear process industry is mainly performed as risk management. The concept of risk management enables a systematic and realistic framework to be established for accident prevention as a whole process of hazard identification, risk estimation, risk evaluation, control measures establishment, its implementation. The most important part of this study is indeed the hazard identification and risk estimation in order to assess the consequences and to estimate event probability. The risk assessment methodology, which is also used in the probabilistic assessment of nuclear and non-nuclear industry, is performed both quantitatively and qualitatively approached by several technique analysis. Based on literature and research paper study, there are 3 main technique analysis, which can be applied in the risk management of non-nuclear industry, which are fault tree analysis (FTA), event tree analysis (ETA), and Hazard and Operability Studies (HAZOPS). The potential hazard arise in the non-nuclear process industry are flammability hazard; toxicity hazard; reactivity hazard; and elevated pressure hazard The fault tree analysis has been practically applied in the petroleum industry, chemical industry, and also other industry for improvement of safety installation by modification in the installation design or operation procedures. The event tree analysis has been applied only limited in the chemical process industry or other process industry. On the other application, HAZOPS technique can be combined with the event tree analysis with approach of accident scenario identification

  14. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  15. Cyber security best practices for the nuclear industry

    International Nuclear Information System (INIS)

    Badr, I.

    2012-01-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  16. Cyber security best practices for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Badr, I. [Rational IBM Software Group, IBM Corporation, Evanston, IL 60201 (United States)

    2012-07-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  17. Highlights of the IAEA scientific forum: Nuclear science: Physics helping the world

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    The conclusions drawn at the Scientific Forum during the 49th regular Session of the IAEA General Conference entitled 'Nuclear Physics: Helping the World' are as follows. Physics is indeed helping the world and the IAEA, applications of nuclear are continuing to grow, nuclear power is likely to increase dramatically, work on 'Beyond Kyoto' should begin and nuclear should be part of any 'Clean Development Mechanism'. IAEA should look again at the role of R and D in safeguards, IAEA should look at safety issues in newly nuclear countries, internationalizing the fuel cycle is right IF one can do it

  18. Nuclear power for Third World countries: A necessary evil

    International Nuclear Information System (INIS)

    Ratsch, U.

    1984-01-01

    The possible role of nuclear energy for typical spheres of life and energy-related services in the Third World is discussed, starting alternatives to nuclear energy in each case. The sequence of the life spheres shows a categorization of the energy need as rural and urban. (DG) [de

  19. Crisis in the French nuclear industry

    International Nuclear Information System (INIS)

    Nectoux, F.

    1991-02-01

    This report discusses the economics of the French nuclear power industry. It considers the dominant position of nuclear power in the French energy system, stresses the scale and causes of the current (1990) economic crisis and dispels the popular misconceptions on the cost efficiency of the French programme. The evidence is based on widely available French documents and articles. The report begins by looking at the background of nuclear power in France then discusses the problem of overcapacity, the technical problems and fall in load factors, generating costs and electricity prices and finally, strategic issues are considered. (UK)

  20. 2009 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the end of 2009, 437 nuclear power plants were available for energy supply in 30 countries of the world. This is 1 plant less than at the end of 2008. The aggregate gross power of the plants amounted to approx. 391.5 GWe, the aggregate net power, to 371.3 GWe. This capacity numbers are a little bit less than one year before (gross: 392.6 GWe, net: 372.2 GWe). Two units were commissioned in 2009; 1 unit in India (Rajasthan 5) and 1 unit in Japan (Tomari 3). Three nuclear power plant were shut down permanently in 2009 in Japan (Hamaoka 1 and Hamaoka 2) and in Lithuania (Ignalina 2). 52 nuclear generating units, i.e. 9 plants more than at the end of 2008, were under construction in late 2009 in 14 countries with an aggregate gross power of approx. 51.2 GWe. Worldwide, some 80 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 130 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2009 achieved another reasonable ranking level of approx. 2,558 billion kWh (2008: approx. 2,628 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 60,500 billion kWh, and operating experience has grown to some 13,950 reactor years. (orig.)