WorldWideScience

Sample records for working memory deficit

  1. Working and strategic memory deficits in schizophrenia

    Science.gov (United States)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  2. Measuring Working Memory Deficits in Aphasia

    Science.gov (United States)

    Mayer, Jamie F.; Murray, Laura L.

    2012-01-01

    Purpose: Many adults with aphasia demonstrate concomitant deficits in working memory (WM), but such deficits are difficult to quantify because of a lack of validated measures as well as the complex interdependence between language and WM. We examined the feasibility, reliability, and internal consistency of an "n"-back task for…

  3. Working memory deficits of reading disabled children.

    Science.gov (United States)

    de Jong, P F

    1998-08-01

    Aims of the study were to investigate the specificity of reading disabled childrens deficits in working memory capacity and to pursue whether their deficits could be accounted for by deficient processing or impairments in verbal short-term storage capacity. A group of 10-year-old reading disabled children was compared with two groups of normal reading children, matched for chronological age and reading age, respectively. Measures for working memory capacity, short-term capacity and processing speed related to the language and to the numerical domain were administered. Results indicated that reading disabled children performed worse on all measures of working memory capacity, irrespective of the domain which these measures reflected. Their poorer performance could neither be explained by inefficient processing nor to their deficits in verbal short-term storage capacity. Reading disabled children seem to have a general lack of capacity for the concurrent processing and storage of verbal information. Copyright 1998 Academic Press.

  4. A heuristic model for working memory deficit in schizophrenia.

    Science.gov (United States)

    Qi, Zhen; Yu, Gina P; Tretter, Felix; Pogarell, Oliver; Grace, Anthony A; Voit, Eberhard O

    2016-11-01

    The life of schizophrenia patients is severely affected by deficits in working memory. In various brain regions, the reciprocal interactions between excitatory glutamatergic neurons and inhibitory GABAergic neurons are crucial. Other neurotransmitters, in particular dopamine, serotonin, acetylcholine, and norepinephrine, modulate the local balance between glutamate and GABA and therefore regulate the function of brain regions. Persistent alterations in the balances between the neurotransmitters can result in working memory deficits. Here we present a heuristic computational model that accounts for interactions among neurotransmitters across various brain regions. The model is based on the concept of a neurochemical interaction matrix at the biochemical level and combines this matrix with a mobile model representing physiological dynamic balances among neurotransmitter systems associated with working memory. The comparison of clinical and simulation results demonstrates that the model output is qualitatively very consistent with the available data. In addition, the model captured how perturbations migrated through different neurotransmitters and brain regions. Results showed that chronic administration of ketamine can cause a variety of imbalances, and application of an antagonist of the D2 receptor in PFC can also induce imbalances but in a very different manner. The heuristic computational model permits a variety of assessments of genetic, biochemical, and pharmacological perturbations and serves as an intuitive tool for explaining clinical and biological observations. The heuristic model is more intuitive than biophysically detailed models. It can serve as an important tool for interdisciplinary communication and even for psychiatric education of patients and relatives. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    Science.gov (United States)

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  6. Hippocampal physiology, structure and function and the neuroscience of schizophrenia: a unified account of declarative memory deficits, working memory deficits and schizophrenic symptoms.

    Science.gov (United States)

    Wible, Cynthia G

    2013-06-01

    Memory impairment is a consistent feature of the schizophrenic syndrome. Hippocampal dysfunction has also been consistently demonstrated. This review will discuss neurophysiological and neuroanatomical aspects of memory formation and how they relate to memory impairment in schizophrenia. An understanding of the cellular physiology and connectivity of the hippocampus with other regions can also aid in understanding the relationship between schizophrenic declarative or relational memory deficits, working memory deficits and the clinical symptoms of the syndrome.

  7. Hippocampal Physiology, Structure and Function and the Neuroscience of Schizophrenia: A Unified Account of Declarative Memory Deficits, Working Memory Deficits and Schizophrenic Symptoms

    Directory of Open Access Journals (Sweden)

    Cynthia G. Wible

    2013-06-01

    Full Text Available Memory impairment is a consistent feature of the schizophrenic syndrome. Hippocampal dysfunction has also been consistently demonstrated. This review will discuss neurophysiological and neuroanatomical aspects of memory formation and how they relate to memory impairment in schizophrenia. An understanding of the cellular physiology and connectivity of the hippocampus with other regions can also aid in understanding the relationship between schizophrenic declarative or relational memory deficits, working memory deficits and the clinical symptoms of the syndrome.

  8. Age-Related Declines in Visuospatial Working Memory Correlate With Deficits in Explicit Motor Sequence Learning

    OpenAIRE

    Bo, J; Borza, V.; Seidler, R. D.

    2009-01-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adul...

  9. The role of executive processes in working memory deficits in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Gruszka Aleksandra

    2016-04-01

    Full Text Available Idiopathic Parkinson’s disease (PD impairs working memory, but the exact nature of this deficit in terms of the underlying cognitive mechanisms is not well understood. In this study patients with mild clinical symptoms of PD were compared with matched healthy control subjects on a computerized battery of tests designed to assess spatial working memory and verbal working memory. In the spatial working memory task, subjects were required to recall a sequence of four locations. The verbal working memory task was methodologically identical except for the modality of the stimuli used, requiring subjects to orally recall a sequence of six digits. In either case, half of the sequences were structured in a way that allowed ‘chunking’, while others were unstructured. This manipulation was designed to dissociate the strategic component of task performance from the memory-load component. Mild medicated patients with PD were impaired only on the structured versions of the verbal working memory tasks. The analogous deficit in the spatial working memory was less pronounced. These findings are in agreement with the hypothesis that working memory deficits in PD reflect mainly the executive component of the tasks and that the deficits may be at least partly modality-independent.

  10. Working Memory Deficits in Children with Specific Learning Disorders

    Science.gov (United States)

    Schuchardt, Kirsten; Maehler, Claudia; Hasselhorn, Marcus

    2008-01-01

    This article examines working memory functioning in children with specific developmental disorders of scholastic skills as defined by ICD-10. Ninety-seven second to fourth graders with a minimum IQ of 80 are compared using a 2 x 2 factorial (dyscalculia vs. no dyscalculia; dyslexia vs. no dyslexia) design. An extensive test battery assesses the…

  11. Visual working memory and number sense: Testing the double deficit hypothesis in mathematics

    NARCIS (Netherlands)

    Toll, S.W.M.; Kroesbergen, E.H.; Luit, J.E.H. van

    2016-01-01

    Background: Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD)

  12. Visual working memory and number sense : Testing the double deficit hypothesis in mathematics

    NARCIS (Netherlands)

    Toll, Sylke; Kroesbergen, Evelyn; Van Luit, Johannes E H

    2016-01-01

    Background: Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD)

  13. Visual Working Memory and Number Sense: Testing the Double Deficit Hypothesis in Mathematics

    Science.gov (United States)

    Toll, Sylke W. M.; Kroesbergen, Evelyn H.; Van Luit, Johannes E. H.

    2016-01-01

    Background: Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. Aims: The aim of this study was to test the DD…

  14. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    Science.gov (United States)

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  15. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    Science.gov (United States)

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  16. Transcranial Stimulation of the Dorsolateral Prefrontal Cortex Prevents Stress-Induced Working Memory Deficits.

    Science.gov (United States)

    Bogdanov, Mario; Schwabe, Lars

    2016-01-27

    Stress is known to impair working memory performance. This disruptive effect of stress on working memory has been linked to a decrease in the activity of the dorsolateral prefrontal cortex (dlPFC). In the present experiment, we tested whether transcranial direct current stimulation (tDCS) of the dlPFC can prevent stress-induced working memory impairments. We tested 120 healthy participants in a 2 d, sham-controlled, double-blind between-subjects design. Participants completed a test of their individual baseline working memory capacity on day 1. On day 2, participants were exposed to either a stressor or a control manipulation before they performed a visuospatial and a verbal working memory task. While participants completed the tasks, anodal, cathodal, or sham tDCS was applied over the right dlPFC. Stress impaired working memory performance in both tasks, albeit to a lesser extent in the verbal compared with the visuospatial working memory task. This stress-induced working memory impairment was prevented by anodal, but not sham or cathodal, stimulation of the dlPFC. Compared with sham or cathodal stimulation, anodal tDCS led to significantly better working memory performance in both tasks after stress. Our findings indicate a causal role of the dlPFC in working memory impairments after acute stress and point to anodal tDCS as a promising tool to reduce cognitive deficits related to working memory in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Working memory deficits are prominent in stress-related mental disorders, such as depression, schizophrenia, or post-traumatic stress disorder. Similar working memory impairments have been observed in healthy individuals exposed to acute stress. So far, attempts to prevent such stress-induced working memory deficits focused mainly on pharmacological interventions. Here, we tested the idea that transcranial direct current stimulation of the dorsolateral prefrontal

  17. Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls

    NARCIS (Netherlands)

    Ewijk, H. van; Weeda, W.D.; Heslenfeld, D.J.; Luman, M.; Hartman, C.A.; Hoekstra, P.J.; Faraone, S.V.; Franke, B.; Buitelaar, J.K.; Oosterlaan, J.

    2015-01-01

    Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in

  18. Learning Difficulties and Working Memory Deficits among Primary School Students in Jakarta, Indonesia.

    Science.gov (United States)

    Wiguna, Tjhin; Setyawati Wr, Noorhana; Kaligis, Fransiska; Belfer, Myron L

    2012-08-01

    There are multiple possible etiologies for learning difficulties in children. There is growing evidence that many students identified as having learning difficulties have significant working memory deficits. To determine, in a sample of primary school students in Jakarta, Indonesia, the prevalence of learning difficulties and learning difficulties co-morbid with working memory deficits. Subjects (N=423) were recruited via proportional random sampling from 27 primary schools. The first stage was a cross-sectional study of these students, while the second stage was a case-control study comparing all students with learning difficulties and working memory deficits with controls matched by school type, grade level, and gender. Among the students, whose mean age was 9.34 years (1.78), 13.7% had a learning difficulty, while 8.04% had a learning difficulty with working memory deficit. The odds ratio of comorbid working memory deficit (in the face of a learning difficulty) was 7.0 (χ(2)= 35.96, pmemory deficits were relatively common among primary school students. Efforts should be made to identify these students and provide timely assistance, in order to optimize their educational success and mental health outcomes.

  19. Exploring the Effects of Working Memory on Time Perception in Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Lee, Hom-Yi; Yang, En-Lin

    2018-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are often reported to have deficits of time perception. However, there is a strong relation between performance on tasks of working memory and time perception. Thus, it is possible that the poor performance of children with ADHD on time perception results from their deficit of working memory. In this study, the working memory of participants was separately assessed; therefore, we could explore the relationship between working memory and time perception of children with ADHD. Fifty-six children with ADHD and those of healthy controls completed tasks measuring working memory and time perception. The results showed that the time discrimination ability of children with ADHD was poorer than that of controls. However, there was a strong association between time perception and working memory. After controlling working memory and intelligence, the time discrimination ability of children with ADHD was not significantly poorer than that of controls. We suggest that there is an interdependent relationship between time perception and working memory for children with ADHD.

  20. Verbal declarative memory impairments in specific language impairment are related to working memory deficits

    OpenAIRE

    Lum, Jarrad A. G.; Michael T Ullman; Conti-Ramsden, Gina

    2015-01-01

    This study examined verbal declarative memory functioning in SLI and its relationship to working memory. Encoding, recall, and recognition of verbal information was examined in children with SLI who had below average working memory (SLILow WM), children with SLI who had average working memory (SLIAvg. WM) and, a group of non-language impaired children with average working memory (TDAvg. WM). The SLILow WM group was significantly worse than both the SLIAvg. WM and TDAvg. WM groups at encoding ...

  1. Deficit of the "primacy effect" in parkinsonians interpreted by means of the working memory model.

    Science.gov (United States)

    Della Sala, S; Pasetti, C; Sempio, P

    1987-01-01

    29 Parkinsonians and 29 controls matched for age and schooling were tested for memory by means of a free recall test (serial position curve) and two spans (verbal and non-verbal). The free recall test yields three measures: primacy (item 1); secondary memory (items 2-7) and recency (items 8-12). The Parkinsonians displayed a selective deficit of primacy, which is taken to be evidence of defective functioning of the Central Executive in the Working Memory model.

  2. Do binding deficits account for age-related decline in visual working memory?

    Science.gov (United States)

    Brockmole, James R; Parra, Mario A; Della Sala, Sergio; Logie, Robert H

    2008-06-01

    Remembering visual material, such as objects, faces, and spatial locations, over a short period of time (seconds) becomes more difficult as we age. We investigated whether these deficits could be explained by a simple reduction in visual working memory capacity or by an impairment in one's ability to form or maintain appropriate associations among pieces of related information. In three experiments, we used recognition and recall tests to address the efficacy with which older adults can create bound object representations by varying the number of features of each object that had to be remembered for a subsequent memory test. Results demonstrated that whereas older adults exhibited reduced memory capacity as compared with that of younger adults, both groups stored integrated object representations in visual working memory. These results are contrasted with other work that suggests that age-related memory decline is due, at least in part, to associative deficits.

  3. Working memory deficits in adults with ADHD: is there evidence for subtype differences?

    Directory of Open Access Journals (Sweden)

    Medoff Deborah R

    2006-12-01

    Full Text Available Abstract Background Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD. There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. Methods This study assessed differences in working memory functioning between Normal Control (NC adults (N = 18; patients with ADHD, Combined (ADHD-CT Type ADHD (N = 17; and ADHD, Inattentive (ADHD-IA Type (N = 16 using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT. Results The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. Conclusion In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD.

  4. Working memory deficits in adults with ADHD: is there evidence for subtype differences?

    Science.gov (United States)

    Schweitzer, Julie B; Hanford, Russell B; Medoff, Deborah R

    2006-12-15

    Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD). There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. This study assessed differences in working memory functioning between Normal Control (NC) adults (N = 18); patients with ADHD, Combined (ADHD-CT) Type ADHD (N = 17); and ADHD, Inattentive (ADHD-IA) Type (N = 16) using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT). The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD.

  5. Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: comparing vulnerability markers.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Goradia, Dhruman; Hosanagar, Avinash; Mermon, Diana; Montrose, Debra M; Birmaher, Boris; Axelson, David; Rajarathinem, R; Haddad, Luay; Amirsadri, Ali; Zajac-Benitez, Caroline; Rajan, Usha; Keshavan, Matcheri S

    2011-07-01

    Working memory deficits abound in schizophrenia and attention deficits have been documented in schizophrenia and bipolar disorder. Adolescent offspring of patients may inherit vulnerabilities in brain circuits that subserve these cognitive domains. Here we assess impairments in offspring of schizophrenia (SCZ-Offspring) or bipolar (BP-Offspring) patients compared to controls (HC) with no family history of mood or psychotic disorders to the second degree. Three groups (n=100 subjects; range: 10-20 yrs) of HC, SCZ-Offspring and BP-Offspring gave informed consent. Working memory was assessed using a delayed spatial memory paradigm with two levels of delay (2s & 12s); sustained attention processing was assessed using the Continuous Performance Task-Identical Pairs version. SCZ-Offspring (but not BP-Offspring) showed impairments in working memory (relative to HC) at the longer memory delay indicating a unique deficit. Both groups showed reduced sensitivity during attention but only BP-Offspring significantly differed from controls. These results suggest unique (working memory/dorsal frontal cortex) and potentially overlapping (attention/fronto-striatal cortex) vulnerability pathways in adolescent offspring of patients with schizophrenia and bipolar disorder. Working memory and attention assessments in these offspring may assist in the clinical characterization of the adolescents vulnerable to SCZ or BP. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning.

    Science.gov (United States)

    Bo, J; Borza, V; Seidler, R D

    2009-11-01

    Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning.

  7. Agrammatism in a case of formal thought disorder: Beyond intellectual decline and working memory deficit.

    LENUS (Irish Health Repository)

    Semkovska, Maria

    2010-02-01

    Previous studies have suggested that naming and syntactic deficits in formal thought disorder may be related to global cognitive decline. This article reports the case of a patient, FM, with formal thought disorder schizophrenia who presents disproportionate deficits in receptive and expressive grammar with respect to his intellectual level of functioning. Syntactic and morphologic components of expressive grammar appeared equally impaired. Deficits in language comprehension were observed independently from working memory limitations. FM showed preserved grammaticality judgment, but defective sentence comprehension where semantic context does not provide heuristics for assigning thematic roles, but syntactic knowledge is essential. These atypical results are discussed within a neurodevelopmental aetiological model of formal thought disorder.

  8. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  9. The Deficit Profile of Working Memory, Inhibition, and Updating in Chinese Children with Reading Difficulties

    Science.gov (United States)

    Peng, Peng; Sha, Tao; Li, Beilei

    2013-01-01

    This study investigated executive function deficits among Chinese children with reading difficulties. Verbal and numerical measures of working memory, inhibition, updating, and processing speed were examined among children with only reading difficulties (RD), children with reading and mathematics difficulties (RDMD), and typically developing peers…

  10. Theory of mind and verbal working memory deficits in parents of autistic children.

    Science.gov (United States)

    Gokcen, Sezen; Bora, Emre; Erermis, Serpil; Kesikci, Hande; Aydin, Cahide

    2009-03-31

    The objective of this study was to investigate the potential values of executive function and social cognition deficits as endophenotypes of autism. While theory of mind (ToM) is generally accepted as a unitary concept, some have suggested that ToM may be separated into two components (mental state reasoning and decoding). In this study, both aspects of ToM and verbal working memory abilities were investigated with relatively demanding tasks. The authors used a neurocognitive battery to compare the executive function and social cognition skills of 76 parents of autistic probands with 41 parents of healthy children. Both groups were matched for IQ, age and gender. Index parents had verbal working memory deficits. They had also low performance on a mental state reasoning task. Index parents had difficulties in reasoning about others' emotions. In contrast to findings in the control group, low performance of mental state reasoning ability was not associated with working memory deficit in index parents. Social cognition and working memory impairments may represent potential endophenotypes, related to an underlying vulnerability for autistic spectrum disorders.

  11. Persistent spatial working memory deficits in rats with bilateral cortical microgyria

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2008-10-01

    Full Text Available Abstract Background Anomalies of cortical neuronal migration (e.g., microgyria (MG and/or ectopias are associated with a variety of language and cognitive deficits in human populations. In rodents, postnatal focal freezing lesions lead to the formation of cortical microgyria similar to those seen in human dyslexic brains, and also cause subsequent deficits in rapid auditory processing similar to those reported in human language impaired populations. Thus convergent findings support the ongoing study of disruptions in neuronal migration in rats as a putative model to provide insight on human language disability. Since deficits in working memory using both verbal and non-verbal tasks also characterize dyslexic populations, the present study examined the effects of neonatally induced bilateral cortical microgyria (MG on working memory in adult male rats. Methods A delayed match-to-sample radial water maze task, in which the goal arm was altered among eight locations on a daily basis, was used to assess working memory performance in MG (n = 8 and sham (n = 10 littermates. Results Over a period of 60 sessions of testing (each session comprising one pre-delay sample trial, and one post-delay test trial, all rats showed learning as evidenced by a significant decrease in overall test errors. However, MG rats made significantly more errors than shams during initial testing, and this memory deficit was still evident after 60 days (12 weeks of testing. Analyses performed on daily error patterns showed that over the course of testing, MG rats utilized a strategy similar to shams (but with less effectiveness, as indicated by more errors. Conclusion These results indicate persistent abnormalities in the spatial working memory system in rats with induced disruptions of neocortical neuronal migration.

  12. Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol

    Directory of Open Access Journals (Sweden)

    Jaylyn Waddell

    2017-09-01

    Full Text Available Prenatal ethanol exposure is associated with deficits in executive function such as working memory, reversal learning and attentional set shifting in humans and animals. These behaviors are dependent on normal structure and function in cholinergic brain regions. Supplementation with choline can improve many behaviors in rodent models of fetal alcohol spectrum disorders and also improves working memory function in normal rats. We tested the hypothesis that supplementation with choline in the postnatal period will improve working memory during adolescence in normal and ethanol-exposed animals, and that working memory engagement during adolescence will transfer to other cognitive domains and have lasting effects on executive function in adulthood. Male and female offspring of rats fed an ethanol-containing liquid diet (ET; 3% v/v or control dams given a non-ethanol liquid diet (CT were injected with choline (Cho; 100 mg/kg or saline (Sal once per day from postnatal day (P 16–P30. Animals were trained/tested on a working memory test in adolescence and then underwent attentional set shifting and reversal learning in young adulthood. In adolescence, ET rats required more training to reach criterion than CT-Sal. Choline improved working memory performance for both CT and ET animals. In young adulthood, ET animals also performed poorly on the set shifting and reversal tasks. Deficits were more robust in ET male rats than female ET rats, but Cho improved performance in both sexes. ET male rats given a combination of Cho and working memory training in adolescence required significantly fewer trials to achieve criterion than any other ET group, suggesting that early interventions can cause a persistent improvement.

  13. Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol.

    Science.gov (United States)

    Waddell, Jaylyn; Mooney, Sandra M

    2017-09-29

    Prenatal ethanol exposure is associated with deficits in executive function such as working memory, reversal learning and attentional set shifting in humans and animals. These behaviors are dependent on normal structure and function in cholinergic brain regions. Supplementation with choline can improve many behaviors in rodent models of fetal alcohol spectrum disorders and also improves working memory function in normal rats. We tested the hypothesis that supplementation with choline in the postnatal period will improve working memory during adolescence in normal and ethanol-exposed animals, and that working memory engagement during adolescence will transfer to other cognitive domains and have lasting effects on executive function in adulthood. Male and female offspring of rats fed an ethanol-containing liquid diet (ET; 3% v / v ) or control dams given a non-ethanol liquid diet (CT) were injected with choline (Cho; 100 mg/kg) or saline (Sal) once per day from postnatal day (P) 16-P30. Animals were trained/tested on a working memory test in adolescence and then underwent attentional set shifting and reversal learning in young adulthood. In adolescence, ET rats required more training to reach criterion than CT-Sal. Choline improved working memory performance for both CT and ET animals. In young adulthood, ET animals also performed poorly on the set shifting and reversal tasks. Deficits were more robust in ET male rats than female ET rats, but Cho improved performance in both sexes. ET male rats given a combination of Cho and working memory training in adolescence required significantly fewer trials to achieve criterion than any other ET group, suggesting that early interventions can cause a persistent improvement.

  14. Verbal working memory deficits in current and previous users of MDMA.

    Science.gov (United States)

    Wareing, Michelle; Fisk, John E; Murphy, Philip; Montgomery, Catharine

    2004-06-01

    Previous research suggests that MDMA users are impaired in various aspects of cognitive functioning, however, it remains unclear whether they might experience deficits in established measures of verbal working memory functioning. In the present study current and previous MDMA users were compared with non-users on verbal working memory measures including reading and computation span. Both user groups were found to be impaired on the computation span measure while current users also exhibited impairment in reading span. The MDMA-related deficit on the computation span measure remained significant following the introduction of statistical controls for the potentially confounding effects of cannabis and other drugs. The results are discussed in the context of recent research on executive processes. It is suggested that MDMA may produce differential effects on specific components within a fractionated executive system. Copyright 2004 John Wiley & Sons, Ltd.

  15. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups.

  16. Neural hyperactivity related to working memory in drug-naive boys with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Li, Yuanyuan; Li, Fei; He, Ning; Guo, Lanting; Huang, Xiaoqi; Lui, Su; Gong, Qiyong

    2014-08-04

    Impaired working memory is thought to be a core feature of attention deficit hyperactivity disorder (ADHD). Previous imaging studies investigating working memory in ADHD have used tasks involving different cognitive resources and ignoring the categorical judgments about objects that are essential parts of performance in visual working memory tasks, thus complicating the interpretation of their findings. In the present study, we explored differential neural activation in children and adolescents with ADHD and in healthy controls using functional magnetic resonance imaging (fMRI) with the categorical n-back task (CN-BT), which maximized demands for executive reasoning while holding memory demands constant. A total of 33 drug-naive, right-handed male ADHD without comorbidity (mean age 9.9±2.4 years) and 27 right-handed, healthy male controls (mean age 10.9±2.7 years) were recruited in the present study. Event-related fMRI was used to study differences in brain activity during the CN-BT between the two groups. The two groups did not differ in their accuracy in the CN-BT, although the ADHD patients showed significantly shorter reaction times to correct responses than did the controls. During the CN-BT, both ADHD patients and controls showed significant positive and negative activations by the correct responses, mainly in the sensory-motor pathways and the striato-cerebellum circuit. Additionally, the ADHD patients showed significantly higher activation in the bilateral globus pallidus and the right hippocampus compared with the controls. There was also a positive correlation between hyperactivation of the left globus pallidus and the reaction time to correct responses in ADHD. In contrast to controls, ADHD patients showed neural hyperactivation in the striatum and mediotemporal areas during a working memory task involving categorization. Hyperfunction in these areas might be the pathophysiological foundation of ADHD, related to the deficits of working memory and the

  17. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p 100 voxels). Reanalysis using a more conservative statistical approach (p 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Spatial working memory deficits represent a core challenge for rehabilitating neglect.

    Directory of Open Access Journals (Sweden)

    Christopher eStriemer

    2013-06-01

    Full Text Available Left neglect following right hemisphere injury is a debilitating disorder that has proven extremely difficult to rehabilitate. Traditional models of neglect have focused on impaired spatial attention as the core deficit and as such, most rehabilitation methods have tried to improve attentional processes. However, many of these techniques (e.g., visual scanning training, caloric stimulation, neck muscle vibration produce only short-lived effects, or are too uncomfortable to use as a routine treatment. More recently, many investigators have begun examining the beneficial effects of prism adaptation for the treatment of neglect. Although prism adaptation has been shown to have some beneficial effects on both overt and covert spatial attention, it does not reliably alter many of the perceptual biases evident in neglect. One of the challenges of neglect rehabilitation may lie in the heterogeneous nature of the deficits. Most notably, a number of researchers have shown that neglect patients present with severe deficits in spatial working memory (SWM in addition to their attentional impairment. Given that SWM can be seen as a foundational cognitive mechanism, critical for a wide range of other functions, any deficit in SWM memory will undoubtedly have severe consequences. In the current review we examine the evidence for SWM deficits in neglect and propose that it constitutes a core component of the syndrome. We present preliminary data which suggest that at least one current rehabilitation method (prism adaptation has no effect on SWM deficits in neglect. Finally, we end by reviewing recent work that examines the effectiveness of SWM training and how SWM training may prove to be a useful avenue for future rehabilitative efforts in patients with neglect.

  19. Spatial working memory deficits represent a core challenge for rehabilitating neglect.

    Science.gov (United States)

    Striemer, Christopher L; Ferber, Susanne; Danckert, James

    2013-01-01

    Left neglect following right hemisphere injury is a debilitating disorder that has proven extremely difficult to rehabilitate. Traditional models of neglect have focused on impaired spatial attention as the core deficit and as such, most rehabilitation methods have tried to improve attentional processes. However, many of these techniques (e.g., visual scanning training, caloric stimulation, neck muscle vibration) produce only short-lived effects, or are too uncomfortable to use as a routine treatment. More recently, many investigators have begun examining the beneficial effects of prism adaptation for the treatment of neglect. Although prism adaptation has been shown to have some beneficial effects on both overt and covert spatial attention, it does not reliably alter many of the perceptual biases evident in neglect. One of the challenges of neglect rehabilitation may lie in the heterogeneous nature of the deficits. Most notably, a number of researchers have shown that neglect patients present with severe deficits in spatial working memory (SWM) in addition to their attentional impairments. Given that SWM can be seen as a foundational cognitive mechanism, critical for a wide range of other functions, any deficit in SWM memory will undoubtedly have severe consequences. In the current review we examine the evidence for SWM deficits in neglect and propose that it constitutes a core component of the syndrome. We present preliminary data which suggest that at least one current rehabilitation method (prism adaptation) has no effect on SWM deficits in neglect. Finally, we end by reviewing recent work that examines the effectiveness of SWM training and how SWM training may prove to be a useful avenue for future rehabilitative efforts in patients with neglect.

  20. Working Memory Deficits in Children with Reading Difficulties: Memory Span and Dual Task Coordination

    Science.gov (United States)

    Wang, Shinmin; Gathercole, Susan E.

    2013-01-01

    The current study investigated the cause of the reported problems in working memory in children with reading difficulties. Verbal and visuospatial simple and complex span tasks, and digit span and reaction times tasks performed singly and in combination, were administered to 46 children with single word reading difficulties and 45 typically…

  1. Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls.

    Science.gov (United States)

    van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap

    2015-08-30

    Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  3. Working memory deficit in patients with restless legs syndrome: an event-related potential study.

    Science.gov (United States)

    Kim, Sung Min; Choi, Jeong Woo; Lee, Chany; Lee, Byeong Uk; Koo, Yong Seo; Kim, Kyung Hwan; Jung, Ki-Young

    2014-07-01

    The aim of this study was to investigate whether there is a working memory (WM) deficit in restless legs syndrome (RLS) patients, by studying the Sternberg WM task of event-related potential (ERP). Thirteen drug-naive RLS patients and 13 healthy age-matched controls with no sleep disturbances participated in the present study. P300 ERP was recorded during Sternberg WM task using digits as mnemonic items. P300 amplitudes and reaction times were compared between groups (RLS vs. control) considering brain regions (frontal, central, and parietal) and memory load sizes (two, three, and four) as within-subject factors. Clinical and sleep-related variables were correlated with P300 amplitude. The reaction time in RLS patients was significantly longer than controls over all memory load sizes. The P300 amplitude at parietal regions in RLS patients was significantly lower than in controls regardless of memory load sizes, which was significantly negatively correlated with duration of RLS history in RLS patients. Our study suggests that patients with severe RLS have WM deficits. Furthermore, negative correlation of P300 amplitudes with the duration of RLS illness suggests that cerebral cortical dysfunction in RLS patients results from repeated RLS symptom attacks. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hyperactivity in boys with attention-deficit/hyperactivity disorder (ADHD): a ubiquitous core symptom or manifestation of working memory deficits?

    Science.gov (United States)

    Rapport, Mark D; Bolden, Jennifer; Kofler, Michael J; Sarver, Dustin E; Raiker, Joseph S; Alderson, R Matt

    2009-05-01

    Hyperactivity is currently considered a core and ubiquitous feature of attention-deficit/hyperactivity disorder (ADHD); however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory (WM) and activity level. The current study investigated whether children's activity level is functionally related to WM demands associated with the domain-general central executive and subsidiary storage/rehearsal components using tasks based on Baddeley's (Working memory, thought, and action. New York: Oxford University Press 2007) WM model. Activity level was objectively measured 16 times per second using wrist- and ankle-worn actigraphs while 23 boys between 8 and 12 years of age completed control tasks and visuospatial/phonological WM tasks of increasing memory demands. All children exhibited significantly higher activity rates under all WM relative to control conditions, and children with ADHD (n = 12) moved significantly more than typically developing children (n = 11) under all conditions. Activity level in all children was associated with central executive but not storage/rehearsal functioning, and higher activity rates exhibited by children with ADHD under control conditions were fully attenuated by removing variance directly related to central executive processes.

  5. Adenomatous polyposis coli heterozygous knockout mice display hypoactivity and age-dependent working memory deficits

    Directory of Open Access Journals (Sweden)

    Hisatsugu eKoshimizu

    2011-12-01

    Full Text Available A tumor suppressor gene, Adenomatous polyposis coli (Apc, is expressed in the nervous system from embryonic to adulthood stage, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4 and calcineurin (CN, are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc+/− mice. Apc+/− mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc+/− mice exhibited hypoactivity. In the eight-arm radial maze, Apc+/− mice 7 to 11 weeks of age displayed almost normal performance, whereas those 11 to 14 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc+/− mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance.

  6. The effectiveness of neurofeedback with computrized training in improving working memory in adults with attention deficit disorder/ hyperactivity

    Directory of Open Access Journals (Sweden)

    lila Heydarinasab

    2016-05-01

    Full Text Available Background : Attention deficit / hyperactivity disorder, is a common psychological disorder in persons, that continues from childhood into adulthood and leads to problem in various aspects of  their  life, such as personal, social, professional, and executive function such as working memory. Several studies indicate a close relationship between working memory deficits and attention deficit / hyperactivity disorder. Given the lack of studies on the effectiveness of neurofeedback in improving working memory in adults with ADHD, this study was designed to evaluate the effectiveness of neurofeedback in working memory. Materials and Methods: Research design was experimental with pre-test and post-test and control group and carried out on adults with attention deficit / hyperactivity disorder referred to the Atieh clinic in Tehran .After reviewing inclusion and exclusion criteria,16 persons based on purposive sampling were selected in 2 groups of 8 cases as experimental and control groups. The research instruments were the Beck Anxiety Inventory, Beck Depression Inventory, Inventory adult attention deficit/ hyperactivity disorder of Barkley, vital cns test, auditory and visual integrated test signs. Data analysis, through SPSS software using U Mann-Whitney, was performed. The independent t-test, Wilcoxon and Kruskal-Wallis tests were used also for complementary results. The protocol  used in this study, was increasing of beta waves on FZ. Results: The results showed that neurofeedback was led to a significant increase in working memory in experimental group. Conclusion: According to the results of this study, which is consistent with results of the researches done in this field, neurofeedback increases frontal lobe activity and activation of neural circuits involved in executive function and working memory, and improve executive function and working memory deficits in patients with attention deficit / hyperactivity disorder. As a result, given the

  7. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    Science.gov (United States)

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Working memory deficits in developmental dyscalculia: The importance of serial order.

    Science.gov (United States)

    Attout, Lucie; Majerus, Steve

    2015-01-01

    Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.

  9. Age and individual differences in visual working memory deficit induced by overload

    Directory of Open Access Journals (Sweden)

    Daisuke eMatsuyoshi

    2014-05-01

    Full Text Available It has been assumed that one can determine the particular, fixed memory capacity for each person in many working memory literatures. In the study reported here, we investigated whether visual working memory (VWM capacity was stable irrespective of the number of to-be-remembered objects and ages using an individual-differences approach. Younger and older adult participants performed a change detection task using many objects defined by color. We found wide variability in the VWM capacity estimated by the change detection task, across memory set sizes, ages, and individuals. A marked drop in the number of objects held in VWM was observed in both younger and older adults with low memory capacity, but was not in high-capacity individuals, when set size went well beyond the limits of VWM capacity. In addition, a drop in the number of objects held in VWM was prevented in low-capacity younger adults by increasing time for VWM encoding, whereas a drop was still observed in low-capacity older adults. These findings suggest that low-capacity individuals are subject to a drop in VWM capacity induced by overload, and that aging exacerbates this deficit such that it cannot be recovered by simply increasing the encoding time for objects. Overall, our findings challenge the prevailing assumption that VWM capacity is fixed and stable, and call for a revision of the strict view that VWM capacity is constrained by a fixed number of distinct slots in which high-resolution object representations are stored.

  10. Working memory and visuospatial deficits correlate with oculomotor control in children with fetal alcohol spectrum disorder.

    Science.gov (United States)

    Paolozza, Angelina; Rasmussen, Carmen; Pei, Jacqueline; Hanlon-Dearman, Ana; Nikkel, Sarah M; Andrew, Gail; McFarlane, Audrey; Samdup, Dawa; Reynolds, James N

    2014-04-15

    Previous studies have demonstrated that children with Fetal Alcohol Spectrum Disorder (FASD) exhibit deficits in measures of eye movement control that probe aspects of visuospatial processing and working memory. The goal of the present study was to examine, in a large cohort of children with FASD, prenatal alcohol exposure (PAE) but not FASD, and typically developing control children, the relationship between performance in eye movement tasks and standardized psychometric tests that assess visuospatial processing and working memory. Participants for this dataset were drawn from a large, multi-site investigation, and included children and adolescents aged 5-17 years diagnosed with an FASD (n=71), those with PAE but no clinical FASD diagnosis (n=20), and typically developing controls (n=111). Participants completed a neurobehavioral test battery and a series of saccadic eye movement tasks. The FASD group performed worse than controls on the psychometric and eye movement measures of working memory and visuospatial skills. Within the FASD group, digit recall, block recall, and animal sorting were negatively correlated with sequence errors on the memory-guided task, and arrows was negatively correlated with prosaccade endpoint error. There were no significant correlations in the control group. These data suggest that psychometric tests and eye movement control tasks may assess similar domains of cognitive function, and these assessment tools may be measuring overlapping brain regions damaged due to prenatal alcohol exposure. The results of this study demonstrate that eye movement control tasks directly relate to outcome measures obtained with psychometric tests and are able to assess multiple domains of cognition simultaneously, thereby allowing for an efficient and accurate assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Deficits in visual working-memory capacity and general cognition in African Americans with psychosis.

    Science.gov (United States)

    Mathias, Samuel R; Knowles, Emma E M; Barrett, Jennifer; Beetham, Tamara; Leach, Olivia; Buccheri, Sebastiano; Aberizk, Katrina; Blangero, John; Poldrack, Russell A; Glahn, David C

    2017-08-23

    On average, patients with psychosis perform worse than controls on visual change-detection tasks, implying that psychosis is associated with reduced capacity of visual working memory (WM). In the present study, 79 patients diagnosed with various psychotic disorders and 166 controls, all African Americans, completed a change-detection task and several other neurocognitive measures. The aims of the study were to (1) determine whether we could observe a between-group difference in performance on the change-detection task in this sample; (2) establish whether such a difference could be specifically attributed to reduced WM capacity (k); and (3) estimate k in the context of the general cognitive deficit in psychosis. Consistent with previous studies, patients performed worse than controls on the change-detection task, on average. Bayesian hierarchical cognitive modeling of the data suggested that this between-group difference was driven by reduced k in patients, rather than differences in other psychologically meaningful model parameters (guessing behavior and lapse rate). Using the same modeling framework, we estimated the effect of psychosis on k while controlling for general intellectual ability (g, obtained from the other neurocognitive measures). The results suggested that reduced k in patients was stronger than predicted by the between-group difference in g. Moreover, a mediation analysis suggested that the relationship between psychosis and g (i.e., the general cognitive deficit) was mediated by k. The results were consistent with the idea that reduced k is a specific deficit in psychosis, which contributes to the general cognitive deficit. Copyright © 2017. Published by Elsevier B.V.

  12. Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function.

    Directory of Open Access Journals (Sweden)

    Catherine Fassbender

    Full Text Available Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT and functional magnetic resonance imaging (fMRI to explore working memory processes in thirteen typically developing (TD control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6 and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity.

  13. Working memory in attention deficit/hyperactivity disorder is characterized by a lack of specialization of brain function.

    Science.gov (United States)

    Fassbender, Catherine; Schweitzer, Julie B; Cortes, Carlos R; Tagamets, Malle A; Windsor, T Andrew; Reeves, Gloria M; Gullapalli, Rao

    2011-01-01

    Working memory impairments are frequent in Attention Deficit/Hyperactivity Disorder (ADHD) and create problems along numerous functional dimensions. The present study utilized the Visual Serial Addition Task (VSAT) and functional magnetic resonance imaging (fMRI) to explore working memory processes in thirteen typically developing (TD) control and thirteen children with ADHD, Combined type. Analysis of Variance (ANOVA) was used to examine both main effects and interactions. Working memory-specific activity was found in TD children in the bilateral prefrontal cortex. In contrast the within-group map in ADHD did not reveal any working-memory specific regions. Main effects of condition suggested that the right middle frontal gyrus (BA6) and the right precuneus were engaged by both groups during working memory processing. Group differences were driven by significantly greater, non-working memory-specific, activation in the ADHD relative to TD group in the bilateral insula extending into basal ganglia and the medial prefrontal cortex. A region of interest analysis revealed a region in left middle frontal gyrus that was more active during working memory in TD controls. Thus, only the TD group appeared to display working memory-modulated brain activation. In conclusion, children with ADHD demonstrated reduced working memory task specific brain activation in comparison to their peers. These data suggest inefficiency in functional recruitment by individuals with ADHD represented by a poor match between task demands and appropriate levels of brain activity.

  14. Combination of attentional and spatial working memory deficits in Bálint-Holmes syndrome.

    Science.gov (United States)

    Pisella, Laure; Biotti, Damien; Vighetto, Alain

    2015-03-01

    This study aims to investigate whether attention and spatiotemporal integration deficits are dissociated in patients with bilateral posterior cortical atrophy (PCA), and whether it is their combination that leads to a severe clinical handicap. We recorded performance and ocular behavior of four PCA patients and four age-matched controls in visual search and counting tasks. We measured the percentage of targets detected and the mean detection time in a "pop-out" search. We also compared counting ability when a set of dots is presented briefly (in healthy individuals, the automatic deployment of attention over space allows a fast estimation of quantity) or for unlimited duration (favoring sequential counting, hence spatiotemporal integration). All patients showed reduced deployment of attention over space (simultanagnosia), resulting in increased visual search times and underestimations of the number of briefly presented dots. Only two patients showed ocular revisiting behavior that caused frequent omissions in visual search and overestimations of the number of dots presented for unlimited duration. The impairment to deploy attention is considered here as a bilateral covert attention deficit. Disorganized ocular exploration appears to be independent and is hypothesized to result from processes maintaining a salience map over time (spatial working memory) and especially across saccades. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  15. Combination of attentional and spatial working memory deficits in Bálint–Holmes syndrome

    Science.gov (United States)

    Pisella, Laure; Biotti, Damien; Vighetto, Alain

    2015-01-01

    This study aims to investigate whether attention and spatiotemporal integration deficits are dissociated in patients with bilateral posterior cortical atrophy (PCA), and whether it is their combination that leads to a severe clinical handicap. We recorded performance and ocular behavior of four PCA patients and four age-matched controls in visual search and counting tasks. We measured the percentage of targets detected and the mean detection time in a “pop-out” search. We also compared counting ability when a set of dots is presented briefly (in healthy individuals, the automatic deployment of attention over space allows a fast estimation of quantity) or for unlimited duration (favoring sequential counting, hence spatiotemporal integration). All patients showed reduced deployment of attention over space (simultanagnosia), resulting in increased visual search times and underestimations of the number of briefly presented dots. Only two patients showed ocular revisiting behavior that caused frequent omissions in visual search and overestimations of the number of dots presented for unlimited duration. The impairment to deploy attention is considered here as a bilateral covert attention deficit. Disorganized ocular exploration appears to be independent and is hypothesized to result from processes maintaining a salience map over time (spatial working memory) and especially across saccades. PMID:25708555

  16. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    Directory of Open Access Journals (Sweden)

    Eraldo Paulesu

    2017-05-01

    Full Text Available Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971, a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain

  17. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    Science.gov (United States)

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S. J.; Frith, Chris D.

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional

  18. Working memory deficits in boys with attention deficit/hyperactivity disorder (ADHD): An examination of orthographic coding and episodic buffer processes.

    Science.gov (United States)

    Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E

    2015-01-01

    The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.

  19. Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts.

    Science.gov (United States)

    Fadda, Paola; Robinson, Lianne; Fratta, Walter; Pertwee, Roger G; Riedel, Gernot

    2006-04-03

    Smoking marijuana causes working and short-term memory deficits, an effect that is mediated by cannabinoid receptor (CB1) activation in the brain. While this may be due to the main psychoactive constituent Delta9-tetrahydrocannabinol (Delta9-THC), plant extracts also contain other cannabinoid and terpenoid compounds with unknown properties. Towards this end, we have recently shown that high concentrations of plant extracts rich in cannabidiol (CBD) can reverse working memory deficits induced by Delta9-THC which is a remaining contaminant of this extract [Fadda P, Robinson L, Fratta W, Pertwee RG, Riedel G. Differential effects of THC- and CBD-rich cannabis-extracts on working memory in rats. Neuropahrmacology 2004;47:1170-9]. Since this effect was dose-dependent and indicative of memory enhancing qualities of the CBD-rich extract, this prompted a wider investigation into the effects of CBD on other forms of amnesia in order to determine the mechanism of action and to reveal its potency against anticholinergic and antiglutamatergic agents. We employed a spatial delayed matching to position task in the open-field water maze. Both scopolamine (0.2 mg/kg i.p.) and dizocilpine (MK801: 0.1mg/kg i.p.) impaired working memory at delays of 30 s and 4 h. Two doses of CBD-rich extracts (5 and 10 mg/kg), which did not affect working memory when given alone, were unable to reverse these deficits when co-administered with scopolamine or MK801. These data suggest that reversal of working memory deficits by CBD-rich extracts are specific to the cannabinoid system and do not compensate for acutely induced cholinergic or glutamatergic receptor hypoactivity.

  20. Elements of Working Memory as Predictors of Goal-Setting Skills in Children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Nyman, Anna; Taskinen, Taina; Gronroos, Matti; Haataja, Leena; Lahdetie, Jaana; Korhonen, Tapio

    2010-01-01

    The aim of the study was to examine how goal-setting skills of children with attention-deficit/hyperactivity disorder (ADHD) can be predicted with elements of working memory. The study involved 30 children with an ADHD diagnosis and 30 healthy volunteers. The IQ of the participants was assessed, and ADHD symptoms were evaluated by parents. Each of…

  1. Creativity and Working Memory in Gifted Students with and without Characteristics of Attention Deficit Hyperactive Disorder: Lifting the Mask

    Science.gov (United States)

    Fugate, C. Matthew; Zentall, Sydney S.; Gentry, Marcia

    2013-01-01

    There have been some behavioral indicators and some types of task performance that suggest greater creativity in students with attention deficit hyperactive disorder (ADHD). This evidence would appear counterintuitive given that lower working memory (i.e., holding information in mind for novel recombinations) has often been documented in students…

  2. Anxiety modulates the relation between attention-deficit/hyperactivity disorder severity and working memory-related brain activity

    NARCIS (Netherlands)

    van der Meer, D.; Hoekstra, P.J.; van Rooij, D.; Winkler, A.M.; van Ewijk, H.; Heslenfeld, D.J.; Oosterlaan, J.; Faraone, S.V.; Franke, B.; Buitelaar, J.K.; Hartman, C.A.

    2017-01-01

    Objectives: Individuals with attention-deficit/hyperactivity disorder (ADHD) often have heightened levels of anxiety, which has been associated with worse performance on working memory tasks. Knowledge of the neural pathways underlying the combined presence of ADHD and anxiety may aid in a better

  3. Working Memory Training in the Form of Structured Games in Children with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Khalili Kermani, Fatemeh; Mohammadi, Mohammad Reza; Yadegari, Fariba; Haresabadi, Fatemeh; Sadeghi, Seyed Mehdi

    2016-01-01

    Objective: In this study, a new training method of working memory (WM) was used in the form of structured games, and the effect of training was evaluated with a controlled design. The training method of WM in the form of structured games includes 20 sets of structured games that can improve WM and performance of executive functions. Method: Sixty children with attention deficit hyperactivity disorder (ADHD) aged 8.5 to 11.2 years (35 boys), using no stimulant medication were selected. We randomly assigned 30 participants to the experimental group and provided them with WM training. The training was in the form of structured games and was offered to the participants in two 60-minute sessions weekly for 12 weeks. Other participants were assigned to the control group, receiving no treatment. All the participants were also evaluated at follow-up 6 months later. The main measures were the Child Behavior Checklist (CBCL), the Digit Span and Symbol Search B subscale of the Wechsler Intelligence Scale for Children (WISC-IV); and scores of dictation and mathematics were used in terms of pre and post-test. Results: The results of the t-test revealed a significant improvement in the post-test measures as well as a significant reduction of parents’ reports of inattentiveness, and improvement in academic performance in the experimental group. However, no significant changes were found in the control group. Conclusion: The academic and working memory improvements were primarily due to the training method of WM. Our findings suggest that the training method of WM in the form of structured games may be a practical method for treating children with ADHD, but it needs to be further investigated. PMID:28050182

  4. Working Memory Training in the Form of Structured Games in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Fatemeh Khalili Kermani

    2016-12-01

    Full Text Available Objective: In this study, a new training method of working memory (WM was used in the form of structured games, and the effect of training was evaluated with a controlled design. The training method of WM in the form of structured games includes 20 sets of structured games that can improve WM and performance of executive functions.Method: Sixty children with attention deficit hyperactivity disorder (ADHD aged 8.5 to 11.2 years (35 boys, using no stimulant medication were selected. We randomly assigned 30 participants to the experimental group and provided them with WM training. The training was in the form of structured games and was offered to the participants in two 60-minute sessions weekly for 12 weeks. Other participants were assigned to the control group, receiving no treatment. All the participants were also evaluated at follow-up 6 months later. The main measures were the Child Behavior Checklist (CBCL, the Digit Span and Symbol Search B subscale of the Wechsler Intelligence Scale for Children (WISC-IV; and scores of dictation and mathematics were used in terms of pre and post-test.Results: The results of the t-test revealed a significant improvement in the post-test measures as well as a significant reduction of parents’ reports of inattentiveness, and improvement in academic performance in the experimental group. However, no significant changes were found in the control group.Conclusion: The academic and working memory improvements were primarily due to the training method of WM. Our findings suggest that the training method of WM in the form of structured games may be a practical method for treating children with ADHD, but it needs to be further investigated.

  5. Emotion Processing Influences Working Memory Circuits in Pediatric Bipolar Disorder and Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Passarotti, Alessandra M.; Sweeney, John A.; Pavuluri, Mani N.

    2010-01-01

    Objective This fMRI study examined how working memory circuits are affected by face emotion processing in pediatric bipolar disorder (PBD) and attention-deficit hyperactivity disorder (ADHD). Methods Twenty-three patients with bipolar disorder, 14 patients with ADHD and 19 healthy controls (HC) (mean age = 13.36 ± 2.55) underwent an affective 2-back fMRI task with blocks of happy, angry and neutral faces. Results For angry vs neutral faces PBD patients, relative to ADHD patients, exhibited increased activation in subgenual anterior cingulate cortex (ACC) and orbitofrontal cortex, and reduced activation in dorsolateral prefrontal cortex (DLPFC) and premotor cortex. Relative to HC the PBD group showed no increased activation and reduced activation at the junction of DLPFC and ventrolateral prefrontal cortex (VLPFC). Relative to HC the ADHD patients exhibited greater activation in DLPFC and reduced activation in ventral and medial PFC, pregenual ACC, striatum and temporo-parietal regions. For happy vs neutral faces, relative to ADHD the PBD group exhibited greater activation in bilateral caudate, and relative to HC it showed increased activation in DLPFC, striatal and parietal regions, and no reduced activation. The ADHD group, compared to HC, showed no reduced activation and increased activation in regions that were under-active for the angry face condition. Conclusions Relative to the ADHD group the PBD group exhibited greater deployment of the emotion processing circuitry and reduced deployment of working memory circuitry. Commonalities across PBD and ADHD patients, relative to HC, entailed cortico-subcortical activity that is reduced under negative emotional challenge, and increased under positive emotional challenge. PMID:20855051

  6. Serotonin Transporter and Tryptophan Hydroxylase Gene Variations Mediate Working Memory Deficits of Cocaine Users.

    Science.gov (United States)

    Havranek, Michael M; Vonmoos, Matthias; Müller, Christian P; Büetiger, Jessica R; Tasiudi, Eve; Hulka, Lea M; Preller, Katrin H; Mössner, Rainald; Grünblatt, Edna; Seifritz, Erich; Quednow, Boris B

    2015-12-01

    Cocaine users consistently develop working memory (WM) impairments but the mediating molecular mechanisms are unknown so far. Recent evidence suggests that the serotonin (5-HT) system is altered by chronic cocaine use, while also being involved in WM processing. Thus, we investigated the effects of genetic variations impacting 5-HT activity and of peripheral 5-HT transporter (5-HTT) mRNA expression on WM performance in cocaine users and stimulant naive controls. Two hundred twenty participants (126 cocaine users, 94 controls) were assessed with visuospatial, spatial, and verbal WM tasks, genotyped for the length polymorphism in the promoter region of the 5-HTT (5-HTTLPR), the variable number of tandem repeats in the second intron of the 5-HTT (VNTR In2), two single-nucleotide polymorphisms (rs4570625 and rs1386497) in the tryptophan hydroxylase-2 (TPH2) gene and quantified for peripheral 5-HTT mRNA expression in whole-blood samples. Several significant gene × environment interactions between 5-HT genotypes and cocaine use on WM emerged: in cocaine users, the long/long (5-HTTLPR), 9+10/9+10 (VNTR In2) and C/C (TPH2 rs1386497) genotypes were risk alleles for WM impairments, whereas in healthy controls these polymorphisms were associated with improved WM performance. Analogously, high 5-HTT mRNA levels were associated with worse executive WM performance in cocaine users but with increased performance in controls. These gene × environment interactions suggest that the 5-HT system has an important role in the development of cognitive deficits in chronic cocaine users. Hence, pharmacological compounds targeting 5-HT neurotransmission might be promising for the treatment of cognitive deficits in cocaine dependence.

  7. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Rubi Hammer

    2015-01-01

    Full Text Available Finding neurobiological markers for neurodevelopmental disorders, such as attention deficit and hyperactivity disorder (ADHD, is a major objective of clinicians and neuroscientists. We examined if functional Magnetic Resonance Imaging (fMRI data from a few distinct visuospatial working memory (VSWM tasks enables accurately detecting cases with ADHD. We tested 20 boys with ADHD combined type and 20 typically developed (TD boys in four VSWM tasks that differed in feedback availability (feedback, no-feedback and reward size (large, small. We used a multimodal analysis based on brain activity in 16 regions of interest, significantly activated or deactivated in the four VSWM tasks (based on the entire participants' sample. Dimensionality of the data was reduced into 10 principal components that were used as the input variables to a logistic regression classifier. fMRI data from the four VSWM tasks enabled a classification accuracy of 92.5%, with high predicted ADHD probability values for most clinical cases, and low predicted ADHD probabilities for most TDs. This accuracy level was higher than those achieved by using the fMRI data of any single task, or the respective behavioral data. This indicates that task-based fMRI data acquired while participants perform a few distinct VSWM tasks enables improved detection of clinical cases.

  8. The impact of region-specific leukoaraiosis on working memory deficits in dementia.

    Science.gov (United States)

    Lamar, Melissa; Catani, Marco; Price, Catherine C; Heilman, Kenneth M; Libon, David J

    2008-08-01

    MRI leukoaraiosis (LA) is less likely to interfere with simple compared to more complex working memory (WM) skills. We hypothesize that LA within the left hemisphere negatively impacts higher-level WM processes in dementia. Participants with dementia (n=64; MMSE=22.0+/-3.4) performed a Backward Digit Task measuring simple storage/rehearsal (ANY-ORDER) and complex disengagement/temporal re-ordering (SERIAL-ORDER) recall. A visual rating scale categorized MRI-LA in five regions per hemisphere: frontal and parietal centrum semiovale, white matter around the frontal horns, body of the lateral ventricles and posterior horns. Amidst equivalent hemispheric LA scores [t(62)=-1.12, p>0.05], correlations revealed an association between left-sided LA and SERIAL-ORDER recall (r=-0.31, p=0.007) with LA around the posterior horn (rho=-0.30, p=0.008) and frontal centrum semiovale (rho=-0.29, p=0.01) showing the greatest association. Regression modeling confirmed the left posterior horn contribution to SERIAL-ORDER performance variance. Results suggest involvement of anterior (fronto-striatal) and more posterior (inferior parietal) white matter tracts in higher order WM deficits in dementia.

  9. Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Tibu, F; Sheridan, M A; McLaughlin, K A; Nelson, C A; Fox, N A; Zeanah, C H

    2016-02-01

    Young children raised in institutions are exposed to extreme psychosocial deprivation that is associated with elevated risk for psychopathology and other adverse developmental outcomes. The prevalence of attention deficit hyperactivity disorder (ADHD) is particularly high in previously institutionalized children, yet the mechanisms underlying this association are poorly understood. We investigated whether deficits in executive functioning (EF) explain the link between institutionalization and ADHD. A sample of 136 children (aged 6-30 months) was recruited from institutions in Bucharest, Romania, and 72 never institutionalized community children matched for age and gender were recruited through general practitioners' offices. At 8 years of age, children's performance on a number of EF components (working memory, response inhibition and planning) was evaluated. Teachers completed the Health and Behavior Questionnaire, which assesses two core features of ADHD, inattention and impulsivity. Children with history of institutionalization had higher inattention and impulsivity than community controls, and exhibited worse performance on working memory, response inhibition and planning tasks. Lower performances on working memory and response inhibition, but not planning, partially mediated the association between early institutionalization and inattention and impulsivity symptom scales at age 8 years. Institutionalization was associated with decreased EF performance and increased ADHD symptoms. Deficits in working memory and response inhibition were specific mechanisms leading to ADHD in previously institutionalized children. These findings suggest that interventions that foster the development of EF might reduce risk for psychiatric problems in children exposed to early deprivation.

  10. A simple spatial working memory and attention test on paired symbols shows developmental deficits in schizophrenia patients.

    Science.gov (United States)

    Song, Wei; Zhang, Kai; Sun, Jinhua; Ma, Lina; Jesse, Forrest Fabian; Teng, Xiaochun; Zhou, Ying; Bao, Hechen; Chen, Shiqing; Wang, Shuai; Yang, Beimeng; Chu, Xixia; Ding, Wenhua; Du, Yasong; Cheng, Zaohuo; Wu, Bin; Chen, Shanguang; He, Guang; He, Lin; Chen, Xiaoping; Li, Weidong

    2013-01-01

    People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer's judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20-27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders.

  11. Do Children with Phonological Delay Have Phonological Short-Term and Phonological Working Memory Deficits?

    Science.gov (United States)

    Waring, Rebecca; Eadie, Patricia; Liow, Susan Rickard; Dodd, Barbara

    2017-01-01

    While little is known about why children make speech errors, it has been hypothesized that cognitive-linguistic factors may underlie phonological speech sound disorders. This study compared the phonological short-term and phonological working memory abilities (using immediate memory tasks) and receptive vocabulary size of 14 monolingual preschool…

  12. Anxiety modulates the relation between attention-deficit/hyperactivity disorder severity and working memory-related brain activity.

    Science.gov (United States)

    van der Meer, Dennis; Hoekstra, Pieter J; van Rooij, Daan; Winkler, Anderson M; van Ewijk, Hanneke; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Hartman, Catharina A

    2017-03-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) often have heightened levels of anxiety, which has been associated with worse performance on working memory tasks. Knowledge of the neural pathways underlying the combined presence of ADHD and anxiety may aid in a better understanding of their co-occurrence. Therefore, we investigated how anxiety modulates the effect of ADHD severity on neural activity during a visuospatial working memory (VSWM) task. Neuroimaging data were available for 371 adolescents and young adults participating in the multicentre cohort study NeuroIMAGE (average age 17.1 years). We analysed the effects of ADHD severity, anxiety severity and their interaction on-task accuracy, and on neural activity associated with working memory (VSWM trials minus baseline), and memory load (high memory load trials minus low load trials). Anxiety significantly modulated the relation between ADHD severity and neural activity in the cerebellum for the working memory contrast, and bilaterally in the striatum and thalamus for the memory load contrast. We found that ADHD with co-occurring anxiety is associated with lowered neural activity during a VSWM task in regions important for information gating. This fits well with previous theorising on ADHD with co-occurring anxiety, and illustrates the neurobiological heterogeneity of ADHD.

  13. Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming

    Science.gov (United States)

    Dovis, Sebastiaan; van der Oord, Saskia; Wiers, Reinout W.; Prins, Pier J. M.

    2012-01-01

    Visual-spatial "Working Memory" (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with-…

  14. Can motivation normalize working memory and task persistence in children with attention-deficit/hyperactivity disorder? The effects of money and computer-gaming

    NARCIS (Netherlands)

    Dovis, S.; van der Oord, S.; Wiers, R.W.; Prins, P.J.M.

    2012-01-01

    Visual-spatial Working Memory (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of

  15. Efficacy of Medication and Nonmedication Methods on Working Memory of Children With Attention Deficit and Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Ahmadpanah

    2015-05-01

    Full Text Available Background Working memory is the ability to keep and manipulate information in a short time. Children with attention deficit and hyperactivity disorder (ADHD are among the people suffering from deficiency in the active memory, and this deficiency has been attributed to the problem of frontal lobe. This study utilized a new approach with suitable tasks and methods for training active memory and assessment of its effects. Objectives This study aimed to investigate the effectiveness of medicinal and behavioral therapies on working memory of children with attention deficit and hyperactivity disorder. Patients and Methods The children participating in this study were 7 - 15 years old, and were diagnosed with ADHD by the psychiatrist and psychologist based on DSM-IV criteria. The intervention group comprised 8 boys and 6 girls with the average age of 11 (± 2 years, and the control group comprised 2 girls and 5 boys with an average age of 11.4 (± 3. Three children in the test group and 2 in the control group were under medicinal therapy. Results Training of working memory significantly improved the performance in nontrained areas as visual-spatial working memory as well as the performance in Raven progressive tests which are a perfect example of nonverbal, complicated reasoning tasks. Conclusions The performance of working memory improved through training, and these trainings extended to other areas of cognition functions not receiving any training. Trainings resulted in the improvement of performance in the tasks related to prefrontal area. They had also a positive and significant impact on the movement activities of hyperactive children.

  16. A comparison of effectiveness of regulation of working memory function and methylphenidate on remediation of attention deficit hyperactivity disorder (ADHD.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mohammadi

    2014-03-01

    Full Text Available Attention Deficit/Hyperactivity Disorder (ADHD is a prevalent and serious disorder affecting such key cognitive components as working memory. Working memory serves to facilitate and check attention in any individual and to focus on those affairs that need to be retained in mind. This study examines whether a combination of the two therapeutic methods of working memory training and Methylphenidate might be more effective in treating ADHD in children aged 6 to 12 years of age than when methylphenidate is applied alone.Subjects of the study are 48 children suffering from ADHD. They were selected by random sampling. The experimental group included 23 children with ADHD who received a combination of working memory training and Methylphenidate, and the control group which included 25 children with ADHD received Methylphenidate only. To check the effects of the intervention, Conners' Parent Rating Scale (CPRS-48 was applied before and after the intervention. After intervention, data were collected from the remaining samples in the two groups. Data were examined both through descriptive statistical methods and analytic statistical methods, including T-student test and Quantile-Quantile Plots diagram.The study demonstrated that a combination of the cognitive intervention of working memory training and methylphenidate is more effective in alleviating ADHD symptoms rather than when methylphenidate is applied in isolation. In the CPRS pre-test and post-test, the mean difference of the experimental and the control group was 8.39 and 1.88 respectively, indicating that the working memory group has improved more than the control group.The study reveals that the ADHD symptoms were more contained in the test group than the control group due to working memory training. The cognitive intervention through working memory training may be effective in alleviating the severity of disorder measured in the pre-test.

  17. fMRI working memory hypo-activations in schizophrenia come with a coupling deficit between arousal and cognition.

    Science.gov (United States)

    Foucher, Jack R; Luck, David; Marrer, Corinne; Pham, Bich-Thuy; Gounot, Daniel; Vidailhet, Pierre; Otzenberger, Helene

    2011-10-31

    Cognition has become a target for therapeutic intervention and favoring arousal could be a way to help patients. Working memory is an arousal dependent cognitive function. This study used functional MRI (fMRI) as a surrogate marker of working memory to evaluate the sensitivity of patients' hypoactive regions to arousal in a subpopulation of rehabilitated patients. Are hypoactive regions sensitive to arousal? Does the deficit result from arousal deficit or improper coupling with cognitive activity? Eighteen patients and matched controls were recruited. Participants performed a working memory task during combined electroencephalographic (EEG) and fMRI measurements. Cortical regions sensitive to arousal were defined as those which were inversely correlated with low EEG frequencies. Overlap between the arousal-sensitive and hypoactive regions was assessed by mutual information. Arousal-cognitive coupling was evaluated by the correlation between the arousal effect and the task effect. In the patient group, most hypoactive voxels were sensitive to arousal and corresponded to the prefronto-parietal network. But patients had no arousal deficit. Although arousal seems to improve cognitive activity in most of the patients' cortical areas, this coupling appears to be specifically disturbed in their hypoactive regions. In conclusion, although increasing arousal may help cognition, it may do so in an unspecific way. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Deficits in Verbal Working Memory among College Students with Attention-Deficit/Hyperactivity Disorder Traits: An Event-related Potential Study.

    Science.gov (United States)

    Kim, Seulki; Kim, Myung-Sun

    2016-02-29

    This study investigated verbal working memory in college students with traits of attention-deficit/hyperactivity disorder (ADHD) using event-related potentials and the 2-back task. Based on scores on the Adult ADHD Self-Report Scale and Conners' Adult ADHD Rating Scale, participants were assigned to the normal control (n=28) or ADHD-trait (n=29) group. The 2-back task, which was administered to evaluate working memory, consists of a congruent condition, under which the current stimulus is the same as the one presented two trials earlier, and an incongruent condition, under which the current stimulus is not the same as the one presented two trials earlier. The numbers 1, 2, 3, and 4 were used as stimuli. On the 2-back task, the ADHD-trait group committed significantly more errors in response to congruent stimuli and showed a smaller P300 amplitude than did the control group. These results indicate that college students with ADHD traits have deficits in verbal working memory, possibly due to difficulties in memory updating or attentional allocation.

  19. Ameliorative effect of lithium chloride on working and spatial memory deficit in a PTZ-induced seizure model

    Directory of Open Access Journals (Sweden)

    Marzieh Yazdani

    2017-06-01

    Full Text Available Background: The repetitive seizure attacks lead to widespread neuronal damage and cognitive deficit, e.g. memory and learning impairment. The single or repeated administration of pentylenetetrazole (PTZ can induce seizure in rat. This study evaluates the neuroprotective effect of lithium chloride (LiCl on PTZ-induced working and spatial memory deficit. Materials and Methods: To induce the PTZ-kindling model, repeated doses of PTZ (40mg/kg/BW/ip were injected for 5 consecutive days. After observing five stages of seizure, the PTZ+Li20, PTZ+Li40 and PTZ+Li80 groups received 20, 40 and 80 mg/kg/BW of LiCl, respectively and the PTZ+Saline group, received Saline for 14 days. The Morris water maze (MWM and Y maze tests were conducted in order to investigate the spatial and working memory. Results: Compared to Control group, the PTZ+Saline group showed a decrease in alteration behavior in Y maze and an increase in latency time and distance to hidden platform in MWM. LiCl-treated rats, especially in the lowest dose, showed a significant higher alteration behavior in Y maze and the lower latency time and distance to hidden platform in MWM than the PTZ+Saline group. Conclusion: The neuroprotective effects of LiCl can ameliorate the spatial and working memory impairment in a PTZ-kindling model.

  20. Memory functioning in children with reading disabilities and/or attention deficit/hyperactivity disorder: a clinical investigation of their working memory and long-term memory functioning.

    Science.gov (United States)

    Kibby, Michelle Y; Cohen, Morris J

    2008-11-01

    We examined memory functioning in children with reading disabilities (RD), Attention deficit/hyperactivity disorder (ADHD), and RD/ADHD using a clinic sample with a clinical instrument: the Children's Memory Scale, enhancing its generalizability. Participants included 23 children with RD, 30 with ADHD, 30 with RD/ADHD, and 30 controls. Children with RD presented with reduced verbal short-term memory (STM) but intact visual STM, central executive (CE), and long-term memory (LTM) functioning. Their deficit in STM appeared specific to tasks requiring phonetic coding of material. Children with ADHD displayed intact CE and LTM functioning but reduced visual-spatial STM, especially when off stimulant medication. Children with RD/ADHD had deficits consistent with both disorders.

  1. Cognitive Training and Work Therapy for the Treatment of Verbal Learning and Memory Deficits in Veterans With Alcohol Use Disorders.

    Science.gov (United States)

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-01-01

    This study focused on the efficacy of cognitive training for verbal learning and memory deficits in a population of older veterans with alcohol use disorders. Veterans with alcohol use disorders, who were in outpatient treatment at VA facilities and in early-phase recovery (N = 31), were randomized to receive a three-month trial of daily cognitive training plus work therapy (n = 15) or work therapy alone (n = 16), along with treatment as usual. Participants completed assessments at baseline and at three- and six-month follow-ups; the Hopkins Verbal Learning Task (HVLT) was the primary outcome measure. Participants were primarily male (97%) and in their mid-50s (M = 55.16, SD = 5.16) and had been sober for 1.64 (SD = 2.81) months. Study retention was excellent (91% at three-month follow-up) and adherence to treatment in both conditions was very good. On average, participants in the cognitive training condition had more than 41 hours of cognitive training, and both conditions had more than 230 hours of productive activity. HVLT results at three-month follow-up revealed significant condition effects favoring cognitive training for verbal learning (HVLT Trial-3 T-score, p memory (HVLT Total T-score, p memory and 58.8% showed a deficit in verbal learning compared with a premorbid estimate of verbal IQ. At three-month follow-up there was a significant reduction in the number of participants in the cognitive training condition with clinically significant verbal memory deficits (p work therapy alone condition and a trend toward significance for verbal learning deficits, which was not sustained at six-month follow-up. This National Institute on Drug Abuse-funded pilot study demonstrates that cognitive training within the context of another activating intervention (work therapy) may have efficacy in remediating verbal learning and memory deficits in patients with alcohol use disorder. Findings indicate a large effect for cognitive training in this pilot study, which

  2. Barkley's Parent Training Program, Working Memory Training and their Combination for Children with ADHD: Attention Deficit Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Zahra Hosainzadeh Maleki

    2014-06-01

    Full Text Available The aim of the current study was to examine the effectiveness of Barkley's parent training program, working memory training and the combination of these two interventions for children with Attention deficit hyperactivity disorder (ADHD.In this study, 36 participants with ADHD (aged 6 to 12 years were selected by convenience sampling. Revision of the Swanson, Nolan and Pelham (SNAP questionnaire (SNAP-IV, Child Behavior Checklist (CBCL and clinical interviews were employed to diagnose ADHD. Wechsler Intelligence Scale for Children-Fourth Edition was also implemented. The participants were randomly assigned to the three intervention groups of Barkley's parent training program, working memory training and the combined group. SNAP-IV and CBCL were used as pre-tests and post-tests across all three groups. Data were analyzed using MANCOVA (SPSS version18.There was a significant difference (p< 0.05 in the decline of attention deficit and hyperactivity /impulsivity symptoms between the combined treatment group and working memory training group and also between the combined treatment group and the parent training group in SNAP. In terms of attention problems (experience-based subscales of CBCL, there was a significant difference (p< 0.001 between the combined treatment group and working memory training group. Furthermore, compared to the working memory training and parent training groups, the combined group demonstrated a significant decline (p< 0.01 in clinical symptoms of ADHD (based on DSM.It was revealed that combined treatment in comparison with the other two methods suppressed the clinical symptoms of ADHD more significantly.

  3. Working Memory Deficits in Retinoid X receptor [gamma]-Deficient Mice

    Science.gov (United States)

    Wietrzych, Marta; Meziane, Hamid; Sutter, Anne; Ghyselinck, Norbert; Chapman, Paul F.; Chambon, Pierre; Krezel, Wojciech

    2005-01-01

    Retinoid signaling has been recently shown to be required for mnemonic functions in rodents. To dissect the behavioral and molecular mechanisms involved in this requirement, we have analyzed the spatial and recognition working memory in mice carrying null mutations of retinoid receptors RAR[subscript [beta

  4. Working Memory Deficits, Increased Anxiety-Like Traits, and Seizure Susceptibility in BDNF Overexpressing Mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher…

  5. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    Directory of Open Access Journals (Sweden)

    Amanda L. Smith

    2014-04-01

    Full Text Available Hypoxia-ischemia (HI; reduction in blood/oxygen supply is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA. Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P7, an age comparable to a term (GA 36–38 human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are

  6. Spatial and object working memory deficits in Parkinson's disease are due to impairment in different underlying processes.

    Science.gov (United States)

    Possin, Katherine L; Filoteo, J Vincent; Song, David D; Salmon, David P

    2008-09-01

    Working memory maintenance processes for visual-spatial and visual-object information were evaluated in patients with Parkinson's disease (PD). PD patients and controls performed a working memory task with two conditions that differed only in the aspect of the stimuli that the participant was instructed to remember: their locations or shapes. Maintenance processes were investigated by measuring accuracy over 1-s, 5-s, and 10-s delays. Results indicated that patients were impaired in maintaining object information over the delay. In contrast, the patients showed impairment on the spatial condition only when the to-be-remembered stimulus was highly similar in location to the probe, but this impairment was equivalent across the delays, suggesting that this deficit was not due to maintenance impairment. These results suggest that deficits in working memory for spatial and object information are mediated by distinct cognitive processes in nondemented patients with PD and may differ in their pathophysiological basis. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  7. Attention-deficit/hyperactivity disorder: the impact of methylphenidate on working memory, inhibition capacity and mental flexibility.

    Science.gov (United States)

    Bolfer, Cristiana; Pacheco, Sandra Pasquali; Tsunemi, Miriam Harumi; Carreira, Walter Souza; Casella, Beatriz Borba; Casella, Erasmo Barbante

    2017-04-01

    To compare children with attention-deficit/hyperactivity disorder (ADHD), before and after the use of methylphenidate, and a control group, using tests of working memory, inhibition capacity and mental flexibility. Neuropsychological tests were administrated to 53 boys, 9-12 years old: the WISC-III digit span backward, and arithmetic; Stroop Color; and Trail Making Tests. The case group included 23 boys with ADHD, who were combined type, treatment-naive, and with normal intelligence without comorbidities. The control group (n = 30) were age and gender matched. After three months on methylphenidate, the ADHD children were retested. The control group was also retested after three months. Before treatment, ADHD children had lower scores than the control group on the tests (p ≤ 0.001) and after methylphenidate had fewer test errors than before (p ≤ 0.001). Methylphenidate treatment improves the working memory, inhibitory control and mental flexibility of ADHD boys.

  8. Working Memory Arrest in Children with High-Functioning Autism Compared to Children with Attention-Deficit/Hyperactivity Disorder: Results from a 2-Year Longitudinal Study

    Science.gov (United States)

    Andersen, Per N.; Skogli, Erik W.; Hovik, Kjell T.; Geurts, Hilde; Egeland, Jens; Øie, Merete

    2015-01-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with attention-deficit/hyperactivity disorder and 45 typically…

  9. Improving Working Memory in Children with Attention-Deficit/Hyperactivity Disorder: The Separate and Combined Effects of Incentives and Stimulant Medication

    Science.gov (United States)

    Strand, Michael T.; Hawk, Larry W., Jr.; Bubnik, Michelle; Shiels, Keri; Pelham, William E., Jr.; Waxmonsky, James G.

    2012-01-01

    Working memory (WM) is considered a core deficit in Attention-Deficit/Hyperactivity Disorder (ADHD), with numerous studies demonstrating impaired WM among children with ADHD. We tested the degree to which WM in children with ADHD was improved by performance-based incentives, an analog of behavioral intervention. In two studies, WM performance was…

  10. Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence.

    Science.gov (United States)

    Roman-Urrestarazu, Andres; Lindholm, Päivi; Moilanen, Irma; Kiviniemi, Vesa; Miettunen, Jouko; Jääskeläinen, Erika; Mäki, Pirjo; Hurtig, Tuula; Ebeling, Hanna; Barnett, Jennifer H; Nikkinen, Juha; Suckling, John; Jones, Peter B; Veijola, Juha; Murray, Graham K

    2016-05-01

    When adolescents with ADHD enter adulthood, some no longer meet disorder diagnostic criteria but it is unknown if biological and cognitive abnorma lities persist. We tested the hypothesis that people diagnosed with ADHD during adolescence present residual brain abnormalities both in brain structure and in working memory brain function. 83 young adults (aged 20-24 years) from the Northern Finland 1986 Birth Cohort were classified as diagnosed with ADHD in adolescence (adolescence ADHD, n = 49) or a control group (n = 34). Only one patient had received medication for ADHD. T1-weighted brain scans were acquired and processed in a voxel-based analysis using permutation-based statistics. A sub-sample of both groups (ADHD, n = 21; controls n = 23) also performed a Sternberg working memory task whilst acquiring fMRI data. Areas of structural difference were used as a region of interest to evaluate the implications that structural abnormalities found in the ADHD group might have on working memory function. There was lower grey matter volume bilaterally in adolescence ADHD participants in the caudate (p brain) at age 20-24. Working memory was poorer in adolescence ADHD participants, with associated failure to show normal load-dependent caudate activation. Young adults diagnosed with ADHD in adolescence have structural and functional deficits in the caudate associated with abnormal working memory function. These findings are not secondary to stimulant treatment, and emphasise the importance of taking a wider perspective on ADHD outcomes than simply whether or not a particular patient meets diagnostic criteria at any given point in time.

  11. Pharmacological blockade of serotonin 5-HT₇ receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission.

    Directory of Open Access Journals (Sweden)

    Pascal Bonaventure

    Full Text Available The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg significantly reversed the deficits induced by MK-801 (0.1 mg/kg but augmented the deficit induced by scopolamine (0.06 mg/kg. The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT₇ receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.

  12. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Reference and working memory deficits in the 3xTg-AD mouse between 2 and 15-months of age: a cross-sectional study.

    Science.gov (United States)

    Stevens, Leanne M; Brown, Richard E

    2015-02-01

    Impairments in working memory (WM) can predict the shift from mild cognitive impairment (MCI) to Alzheimer's disease (AD) and the rate at which AD progresses with age. The 3xTg-AD mouse model develops both Aβ plaques and neurofibrillary tangles, the neuro-pathological hallmarks of AD, by 6 months of age, but no research has investigated the age-related changes in WM in these mice. Using a cross-sectional design, we tested male and female 3xTg-AD and wildtype control (B6129SF2/J) mice between 2 and 15 months of age for reference and working memory errors in the 8-arm radial maze. The 3xTg-AD mice had deficits in both working and reference memory across the ages tested, rather than showing the predicted age-related memory deficits. Male 3xTg-AD mice showed more working and reference memory errors than females, but there were no sex differences in wildtype control mice. These results indicate that the 3xTg-AD mouse replicates the impairments in WM found in patients with AD. However, these mice show memory deficits as early as two months of age, suggesting that the genes underlying reference and working memory in these mice cause deficits from an early age. The finding that males were affected more than females suggests that more attention should be paid to sex differences in transgenic AD mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Subtle persistent working memory and selective attention deficits in women with premenstrual syndrome.

    Science.gov (United States)

    Slyepchenko, Anastasiya; Lokuge, Sonali; Nicholls, Brianne; Steiner, Meir; Hall, Geoffrey B C; Soares, Claudio N; Frey, Benicio N

    2017-03-01

    As a recurrent, cyclical phenomenon, premenstrual syndrome (PMS) affects a significant proportion of women of the reproductive age, and leads to regular monthly days of functional impairment. Symptoms of PMS include somatic and psychological symptoms, such as headaches, sleep disturbances, social withdrawal and mood changes, during the late luteal phase of the menstrual cycle, which alleviate during the follicular phase. This study investigated neurocognitive functioning in women with moderate to severe PMS symptoms (n=13) compared to women with mild/no PMS (n=27) through administration of a battery of neuropsychological tests during the asymptomatic follicular phase of the menstrual cycle. Relative to women with mild/no PMS symptoms, women with moderate to severe PMS showed significantly poorer accuracy and more errors of omission on the N-0-back, as well as more errors of omission on the N-2-back task, indicating the presence of impairment in selective attention and working memory. This study provides evidence of persistent, subtle working memory and selective attention difficulties in those with moderate to severe PMS during the follicular phase of the menstrual cycle. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Working memory.

    Science.gov (United States)

    Baddeley, A

    1992-01-31

    The term working memory refers to a brain system that provides temporary storage and manipulation of the information necessary for such complex cognitive tasks as language comprehension, learning, and reasoning. This definition has evolved from the concept of a unitary short-term memory system. Working memory has been found to require the simultaneous storage and processing of information. It can be divided into the following three subcomponents: (i) the central executive, which is assumed to be an attentional-controlling system, is important in skills such as chess playing and is particularly susceptible to the effects of Alzheimer's disease; and two slave systems, namely (ii) the visuospatial sketch pad, which manipulates visual images and (iii) the phonological loop, which stores and rehearses speech-based information and is necessary for the acquisition of both native and second-language vocabulary.

  16. Associative working memory and subsequent episodic memory in Alzheimer's disease.

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.; Tilborg, I.A. Van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  17. Associative working memory and subsequent episodic memory in Alzheimer's disease

    NARCIS (Netherlands)

    Geldorp, B. van; Konings, E.P.C.; Tilborg, I.A.D.A. van; Kessels, R.P.C.

    2012-01-01

    Recent studies indicate deficits in associative working memory in patients with medial-temporal lobe amnesia. However, it is unclear whether these deficits reflect working memory processing or are due to hippocampally mediated long-term memory impairment. We investigated associative working memory

  18. Origins of spatial working memory deficits in schizophrenia: an event-related FMRI and near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Junghee Lee

    2008-03-01

    Full Text Available Abnormal prefrontal functioning plays a central role in the working memory (WM deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI. We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased 'false memory' errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased "false memory" errors and accompanying bilateral prefrontal activation in schizophrenia suggest

  19. No age deficits in the ability to use attention to improve visual working memory.

    Science.gov (United States)

    Souza, Alessandra S

    2016-08-01

    Maintenance of information in mind to the moment-to-moment cognition is accomplished by working memory (WM). WM capacity is reduced in old age, but the nature of this decline is yet not clear. The current study examined the hypothesis that the decline in visual WM performance with age is related to a reduced ability to use attention to control the contents of WM. Young (M = 26 years) and old (M = 71 years) adults performed a color reproduction task in which the precise color of a set of dots had to be maintained in mind over a brief interval and later reproduced using a continuous color wheel. Attention was manipulated by presenting a spatial cue before the onset of the memory array (a precue) or during the maintenance phase (retro-cue). The cue indicated with 100% certainty the item to be tested at the end of the trial. A precue allows the selective encoding of only the relevant item to WM, whereas a retro-cue allows WM contents to be updated by refreshing the relevant (cued) item and removing nonrelevant (noncued) items. Aging was associated with a lower capacity in the baseline (no-cue) condition. Precues and (to a smaller extent) retro-cues improved WM performance (in terms of probability of recall and memory precision). Critically, the benefits of cueing were of similar magnitude in young and older adults showing that the ability to use attention to selectively encode and update the contents of WM is preserved with aging. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder?

    Science.gov (United States)

    Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B

    2012-07-01

    Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD.

  1. Intermittent binge alcohol exposure during the periadolescent period induces spatial working memory deficits in young adult rats.

    Science.gov (United States)

    Schulteis, Gery; Archer, Clay; Tapert, Susan F; Frank, Lawrence R

    2008-09-01

    Human and animal studies suggest adolescence is a period of heightened sensitivity to adverse cognitive sequelae of alcohol exposure. The present study assessed the effects of intermittent binge ethanol intoxication during the periadolescent period of Wistar rats on subsequent performance in a Morris water maze spatial navigation task. On postnatal days 32-56, rats were exposed to ethanol or air 3 days/week via vapor inhalation chambers. Acquisition of spatial navigation was assessed beginning 5 days after the final day of exposure, with 3 days of training in the Morris Water maze (four trials per day spaced at 90-s intertrial intervals [ITIs]). Rats were placed into the water maze at one of four positions along the perimeter, with a different release position to begin each trial. A probe trial assessed retention of platform location on the day after the final set of training trials. Four days after this probe trial, rats entered a working memory phase in which the platform was in a new location each day and a variable ITI of 1, 2, or 4 h was inserted between Trials 1 and 2; Trials 3 and 4 followed at 90-s intervals after Trial 2 on each day. The "savings" in latency to find the platform and distance traveled before finding it from Trial 1 to Trial 2 on each day served as an index of working memory. Ethanol-exposed rats showed similar acquisition of spatial navigation as control rats during training, as well as similar retention of platform location during the probe trial. However, rats exposed to average blood alcohol level (BAL) >200 mg% showed accelerated forgetting, with decreased retention of platform location at the 2-h ITI (P memory deficit in young adult rats, demonstrated by accelerated forgetting of novel information. These behavioral data are consistent with findings from adolescent human studies, indicating that binge-style alcohol exposure during the periadolescent stage of development is associated with deficits in retention of information.

  2. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice

    Science.gov (United States)

    Papaleo, Francesco; Silverman, Jill L.; Aney, Jordan; Tian, Qingjun; Barkan, Charlotte L.; Chadman, Kathryn K.; Crawley, Jacqueline N.

    2011-01-01

    BDNF regulates components of cognitive processes and has been implicated in psychiatric disorders. Here we report that genetic overexpression of the BDNF mature isoform (BDNF-tg) in female mice impaired working memory functions while sparing components of fear conditioning. BDNF-tg mice also displayed reduced breeding efficiency, higher anxiety-like scores, high self-grooming, impaired prepulse inhibition, and higher susceptibility to seizures when placed in a new empty cage, as compared with wild-type (WT) littermate controls. Control measures of general health, locomotor activity, motor coordination, depression-related behaviors, and sociability did not differ between genotypes. The present findings, indicating detrimental effects of life-long increased BDNF in mice, may inform human studies evaluating the role of BDNF functional genetic variations on cognitive abilities and vulnerability to psychiatric disorders. PMID:21791566

  3. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol During the Third Trimester Equivalent.

    Science.gov (United States)

    Schneider, Ronald D; Thomas, Jennifer D

    2016-04-01

    Children exposed to alcohol prenatally may suffer from behavioral and cognitive alterations that adversely affect their quality of life. Animal studies have shown that perinatal supplementation with the nutrient choline can attenuate ethanol's adverse effects on development; however, it is not clear how late in development choline can be administered and still effectively reduce the consequences of prenatal alcohol exposure. Using a rodent model, this study examined whether choline supplementation is effective in mitigating alcohol's teratogenic effects when administered during adolescence/young adulthood. Sprague-Dawley rats were exposed to alcohol (5.25 g/kg/d) during the third trimester equivalent brain growth spurt, which occurs from postnatal day (PD) 4 to 9, via oral intubation. Sham-intubated and nontreated controls were included. Subjects were treated with 100 mg/kg/d choline chloride or vehicle from PD 40 to 60, a period equivalent to young adulthood in the rat. After the choline treatment had ceased, subjects were tested on a series of behavioral tasks: open field activity (PD 61 to 64), Morris water maze spatial learning (PD 65 to 73), and spatial working memory (PD 87 to 91). Ethanol-exposed subjects were overactive in the activity chambers and impaired on both the spatial and the working memory versions of the Morris water maze. Choline treatment failed to attenuate alcohol-related overactivity in the open field and deficits in Morris water maze performance. In contrast, choline supplementation significantly mitigated alcohol-related deficits in working memory, which may suggest that choline administration at this later developmental time affects functioning of the prefrontal cortex. The results indicate that adolescent choline supplementation can attenuate some, but not all, of the behavioral deficits associated with early developmental alcohol exposure. The results of this study indicate that dietary intervention may reduce some fetal alcohol effects

  4. Working memory impairment in probands with schizoaffective disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by generalized neuropsychological impairment.

    Science.gov (United States)

    Kristian Hill, S; Buchholz, Alison; Amsbaugh, Hayley; Reilly, James L; Rubin, Leah H; Gold, James M; Keefe, Richard S E; Pearlson, Godfrey D; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A

    2015-08-01

    Working memory impairment is well established in psychotic disorders. However, the relative magnitude, diagnostic specificity, familiality pattern, and degree of independence from generalized cognitive deficits across psychotic disorders remain unclear. Participants from the Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study included probands with schizophrenia (N=289), psychotic bipolar disorder (N=227), schizoaffective disorder (N=165), their first-degree relatives (N=315, N=259, N=193, respectively), and healthy controls (N=289). All were administered the WMS-III Spatial Span working memory test and the Brief Assessment of Cognition in Schizophrenia (BACS) battery. All proband groups displayed significant deficits for both forward and backward span compared to controls. However, after covarying for generalized cognitive impairments (BACS composite), all proband groups showed a 74% or greater effect size reduction with only schizoaffective probands showing residual backward span deficits compared to controls. Significant familiality was seen in schizophrenia and bipolar pedigrees. In relatives, both forward and backward span deficits were again attenuated after covarying BACS scores and residual backward span deficits were seen in relatives of schizophrenia patients. Overall, both probands and relatives showed a similar pattern of robust working memory deficits that were largely attenuated when controlling for generalized cognitive deficits. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.

    Science.gov (United States)

    Dossat, Amanda M; Jourdi, Hussam; Wright, Katherine N; Strong, Caroline E; Sarkar, Ambalika; Kabbaj, Mohamed

    2017-01-06

    In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Chronic N-acetylcysteine treatment alleviates acute lipopolysaccharide-induced working memory deficit through upregulating caveolin-1 and synaptophysin in mice.

    Science.gov (United States)

    Shen, Xianzhi; Sun, Yanyun; Wang, Mengwei; Shu, Hui; Zhu, Li-Juan; Yan, Pei-Yun; Zhang, Jun-Fang; Jin, Xinchun

    2017-10-23

    Working memory (WM) is a dynamic encoding process and an active representation of information over a short time. The ability to guide forthcoming behavior would be disrupted if WM was impaired by various factors including inflammation, stress, free radicals, and disease states such as schizophrenia. However, the mechanism underlying acute working memory impairment remains to be defined. In this study, we tested the hypothesis that decreased caveolin-1 (Cav-1) and synaptophysin (SYP) accounted for the WM impairment challenged with acute intraperitoneally lipopolysaccharide (LPS), which mimicked neuroinflammation. Delayed alternation T-maze task (DAT) was used to assess working memory of adult male C57BL/6 mice, and western blot and immunostaining were used to detect protein expression and distribution in medial prefrontal cortex (mPFC) and hippocampus. Our results showed that LPS dose-dependently induced working memory deficit accompanied by the decrease of Cav-1 and SYP in mPFC but not hippocampus. In addition, LPS significantly decreased protein level of Cav-1 and SYP in neurons by activating microglia cells. More important, 2-week N-acetylcysteine (NAC) treatment dose-dependently inhibited LPS-induced working memory deficit by improving the ability to use Lose-shift but not Win-shift strategy and significantly inhibited LPS-induced downregulation of Cav-1 and SYP in mPFC. Taken together, our findings demonstrate that chronic NAC treatment alleviates acute LPS-induced working memory deficit through upregulating Cav-1 and SYP in mice.

  7. CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Arias Vasquez, A.; Altink, M.E.; Lambregts-Rommelse, N.N.J.; Slaats-Willemse, D.I.E.; Buschgens, C.J.M.; Fliers, E.A.; Faraone, S.V.; Sergeant, J.A.; Oosterlaan, J.; Franke, B.; Buitelaar, J.K.

    2011-01-01

    Different analytic strategies, including linkage, association and meta-analysis support a role of CDH13 in the susceptibility to attention deficit/hyperactivity disorder (ADHD). CDH13 codes for cadherin 13 (or H-cadherin), which is a member of a family of calcium-dependent cell-cell adhesion

  8. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  9. Do complaints of everyday cognitive failures in high schizotypy relate to emotional working memory deficits in the lab?

    Science.gov (United States)

    Carrigan, Nicole; Barkus, Emma; Ong, Adriel; Wei, Maryann

    2017-10-01

    Individuals high on schizotypy complain of increased cognitive failures in everyday life. However, the neuropsychological performance of this group does not consistently indicate underlying ability deficits. It is possible that current neuropsychological tests lack ecological validity. Given the increased affective reactivity of high schizotypes, they may be more sensitive to emotional content interfering with cognitive ability. This study sought to explore whether an affective n-back working memory task would elicit impaired performance in schizotypy, echoing complaints concerning real world cognition. 127 healthy participants completed self-report measures of schizotypy and cognitive failures and an affective n-back working memory task. This task was varied across three levels of load (1- to 3-back) and four types of stimulus emotion (neutral, fearful, happy, sad). Differences between high (n=39) and low (n=48) schizotypy groups on performance outcomes of hits and false alarms were examined, with emotion and load as within-groups variables. As expected, high schizotypes reported heightened vulnerability to cognitive failures. They also demonstrated a relative working memory impairment for emotional versus neutral stimuli, whereas low schizotypes did not. High schizotypes performed most poorly in response to fearful stimuli. For false alarms, there was an interaction between schizotypy, load, and emotion, such that high schizotypy was associated with deficits in response to fearful stimuli only at higher levels of task difficulty. Inclusion of self-reported cognitive failures did not account for this. These findings suggest that the "gap" between subjective and objective cognition in schizotypy may reflect the heightened emotional demands associated with cognitive functioning in the real world, although other factors also seem to play a role. There is a need to improve the ecological validity of objective assessments, whilst also recognizing that self

  10. Working Memory and Neurofeedback.

    Science.gov (United States)

    YuLeung To, Eric; Abbott, Kathy; Foster, Dale S; Helmer, D'Arcy

    2016-01-01

    Impairments in working memory are typically associated with impairments in other cognitive faculties such as attentional processes and short-term memory. This paper briefly introduces neurofeedback as a treatment modality in general, and, more specifically, we review several of the current modalities successfully used in neurofeedback (NF) for the treatment of working memory deficits. Two case studies are presented to illustrate how neurofeedback is applied in treatment. The development of Low Resolution Electromagnetic Tomography (LORETA) and its application in neurofeedback now makes it possible to specifically target deep cortical/subcortical brain structures. Developments in neuroscience concerning neural networks, combined with highly specific yet practical NF technologies, makes neurofeedback of particular interest to neuropsychological practice, including the emergence of specific methodologies for treating very difficult working memory (WM) problems.

  11. Working memory arrest in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder: results from a 2-year longitudinal study.

    Science.gov (United States)

    Andersen, Per N; Skogli, Erik W; Hovik, Kjell T; Geurts, Hilde; Egeland, Jens; Øie, Merete

    2015-05-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with attention-deficit/hyperactivity disorder and 45 typically developing children (age 9-16 years) were included at baseline and followed up approximately 25 months later. The children were given a letter/number sequencing task to assess verbal working memory. The performance of children with high-functioning autism on verbal working memory did not improve after 2 years, while improvement was observed in children with attention-deficit/hyperactivity disorder and typically developing children. The results indicate a different developmental trajectory for verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. More research is needed to construct a developmental framework more suitable for children with autism spectrum disorder. © The Author(s) 2014.

  12. Working memory arrest in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder: Results from a 2-year longitudinal study

    NARCIS (Netherlands)

    Andersen, P.N.; Skogli, E.W.; Hovik, K.T.; Geurts, H.; Egeland, J.; Øie, M.

    2015-01-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with

  13. Application of the dual-component model of working memory to ADHD:Greater secondary memory deficit despite confounded cognitive differences.

    Science.gov (United States)

    Gibson, Bradley S; Gondoli, Dawn M; Ralph, Kathryn J; Sztybel, Pedro

    2018-01-01

    The dual-component model postulates that working memory capacity consists of two dissociable components: maintenance in primary memory (PM) and retrieval from secondary memory (SM). Recent application of this model to attention-deficit/hyperactivity disorder (ADHD) has revealed that the SM component is more deficient than the PM component across both verbal and spatial modalities. The present study attempts to strengthen this conclusion by addressing two weaknesses in the previous study. First, the present study shows that the SM component continues to be more deficient than the PM component across both modalities under conditions in which (1) all participants were instructed to use the same recall strategy (resulting in the exclusion of fewer participants); and, (2) individual differences in this strategy were controlled. Second, the present study also documents a group difference in word reading efficiency that is confounded with diagnostic status and that might have influenced estimates of PM and SM capacities in the verbal modality. However, although the SM component is more deficient than the PM component in the ADHD group, the magnitude of this interaction does not vary as a function task modality. These findings are interpreted to suggest that the pattern of WM deficiencies observed are part of a causal pathway that can lead to the symptoms of ADHD, as well as to impairments in reading (and intelligence) due to overlapping cue-dependent retrieval mechanisms. These findings provide additional support for the notion that the SM component of WM is an important and neglected target for treatment.

  14. Working Memory Training and the Effect on Mathematical Achievement in Children with Attention Deficits and Special Needs

    Science.gov (United States)

    Dahlin, Karin I. E.

    2013-01-01

    Working Memory (WM) has a central role in learning. It is suggested to be malleable and is considered necessary for several aspects of mathematical functioning. This study investigated whether work with an interactive computerised working memory training programme at school could affect the mathematical performance of young children. Fifty-seven…

  15. A preliminary study of the effects of working memory training on brain function in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Stevens, Michael C.; Gaynor, Alexandra; Bessette, Katie L.; Pearlson, Godfrey D.

    2015-01-01

    Working memory (WM) training improves WM ability in Attention-Deficit/Hyperactivity Disorder (ADHD), but its efficacy for non-cognitive ADHD impairments ADHD has been sharply debated. The purpose of this preliminary study was to characterize WM training-related changes in ADHD brain function and see if they were linked to clinical improvement. We examined 18 adolescents diagnosed with DSM-IV Combined-subtype ADHD before and after 25 sessions of WM training using a frequently employed approach (CogmedTM) using a nonverbal Sternberg WM fMRI task, neuropsychological tests, and participant- and parent-reports of ADHD symptom severity and associated functional impairment. Whole brain SPM8 analyses identified ADHD activation deficits compared to 18 non-ADHD control participants, then tested whether impaired ADHD frontoparietal brain activation would increase following WM training. Post hoc tests examined the relationships between neural changes and neurocognitive or clinical improvements. As predicted, WM training increased WM performance, ADHD clinical functioning, and WM-related ADHD brain activity in several frontal, parietal and temporal lobe regions. Increased left inferior frontal sulcus region activity was seen in all Encoding, Maintenance, and Retrieval Sternberg task phases. ADHD symptom severity improvements were most often positively correlated with activation gains in brain regions known to be engaged for WM-related executive processing; improvement of different symptom types had different neural correlates. The responsiveness of both amodal WM frontoparietal circuits and executive process-specific WM brain regions was altered by WM training. The latter might represent a promising, relatively unexplored treatment target for researchers seeking to optimize clinical response in ongoing ADHD WM training development efforts. PMID:26138580

  16. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats

    Directory of Open Access Journals (Sweden)

    Mayako Yamazaki

    2015-03-01

    Full Text Available Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD. Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%–50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia.

  17. Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Luber, Bruce; Steffener, Jason; Tucker, Adrienne; Habeck, Christian; Peterchev, Angel V.; Deng, Zhi-De; Basner, Robert C.; Stern, Yaakov; Lisanby, Sarah H.

    2013-01-01

    Study Objectives: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. Design: Between-groups mixed model. Setting: TMS, MRI, and sleep laboratory study. Participants: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. Interventions: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. Measurements and Results: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. Conclusions: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact. Citation: Luber B; Steffener J; Tucker A; Habeck C; Peterchev AV; Deng ZD; Basner RC; Stern Y; Lisanby SH. Extended remediation of sleep deprived-induced working memory deficits using f

  18. Adrenocortical status predicts the degree of age-related deficits in prefrontal structural plasticity and working memory.

    Science.gov (United States)

    Anderson, Rachel M; Birnie, Andrew K; Koblesky, Norah K; Romig-Martin, Sara A; Radley, Jason J

    2014-06-18

    Cognitive decline in aging is marked by considerable variability, with some individuals experiencing significant impairments and others retaining intact functioning. Whereas previous studies have linked elevated hypothalamo-pituitary-adrenal (HPA) axis activity with impaired hippocampal function during aging, the idea has languished regarding whether such differences may underlie the deterioration of other cognitive functions. Here we investigate whether endogenous differences in HPA activity are predictive of age-related impairments in prefrontal structural and behavioral plasticity. Young and aged rats (4 and 21 months, respectively) were partitioned into low or high HPA activity, based upon averaged values of corticosterone release from each animal obtained from repeated sampling across a 24 h period. Pyramidal neurons in the prelimbic area of medial prefrontal cortex were selected for intracellular dye filling, followed by 3D imaging and analysis of dendritic spine morphometry. Aged animals displayed dendritic spine loss and altered geometric characteristics; however, these decrements were largely accounted for by the subgroup bearing elevated corticosterone. Moreover, high adrenocortical activity in aging was associated with downward shifts in frequency distributions for spine head diameter and length, whereas aged animals with low corticosterone showed an upward shift in these indices. Follow-up behavioral experiments revealed that age-related spatial working memory deficits were exacerbated by increased HPA activity. By contrast, variations in HPA activity in young animals failed to impact structural or behavioral plasticity. These data implicate the cumulative exposure to glucocorticoids as a central underlying process in age-related prefrontal impairment and define synaptic features accounting for different trajectories in age-related cognitive function. Copyright © 2014 the authors 0270-6474/14/348387-11$15.00/0.

  19. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects.

    Science.gov (United States)

    Smith, Matthew J; Cobia, Derin J; Wang, Lei; Alpert, Kathryn I; Cronenwett, Will J; Goldman, Morris B; Mamah, Daniel; Barch, Deanna M; Breiter, Hans C; Csernansky, John G

    2014-03-01

    Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.

  20. Cannabis-Related Working Memory Deficits and Associated Subcortical Morphological Differences in Healthy Individuals and Schizophrenia Subjects

    Science.gov (United States)

    Smith, Matthew J.

    2014-01-01

    Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse. PMID:24342821

  1. Hippocampal Injections of oligomeric amyloid β-peptide (1-42 induce selective working memory deficits and long-lasting alterations of ERK signaling pathway.

    Directory of Open Access Journals (Sweden)

    Pierre eFaucher

    2016-01-01

    Full Text Available Increasing evidence suggests that abnormal brain accumulation of soluble rather than aggregated amyloid-β1-42 oligomers (Aβo(1-42 plays a causal role in Alzheimer’s disease (AD. However, as yet, animal’s models of AD based on oligomeric amyloid-β1-42 injections in the brain have not investigated their long-lasting impacts on molecular and cognitive functions. In addition, the injections have been most often performed in ventricles, but not in the hippocampus, in spite of the fact that the hippocampus is importantly involved in memory processes and is strongly and precociously affected during the early stages of AD. Thus, in the present study, we investigated the long-lasting impacts of intra-hippocampal injections of oligomeric forms of Aβo(1-42 on working and spatial memory and on the related activation of ERK1/2. Indeed, the extracellular signal-regulated kinase (ERK which is involved in memory function had been found to be activated by amyloid peptides. We found that repeated bilateral injections (1injection/day over 4 successive days of oligomeric forms of Aβo(1-42 into the dorsal hippocampus lead to long-lasting impairments in two working memory tasks, these deficits being observed seven days after the last injection, while spatial memory remained unaffected. Moreover, the working memory deficits were correlated with sustained impairments of ERK1/2 activation in the medial prefrontal cortex and the septum, two brain areas tightly connected with the hippocampus and involved in working memory. Thus, our study is first to evidence that sub-chronic injections of oligomeric forms of Aβo(1-42 into the dorsal hippocampus produces the main sign of cognitive impairments corresponding to the early stages of AD, via long-lasting alterations of an ERK/MAPK pathway in an interconnected brain networks.

  2. Impaired inhibition and working memory in response to internet-related words among adolescents with internet addiction: A comparison with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Nie, Jia; Zhang, Wei; Chen, Jia; Li, Wendi

    2016-02-28

    Impairments in response inhibition and working memory functions have been found to be closely associated with internet addiction (IA) symptoms and attention-deficit/hyperactivity disorder (ADHD) symptoms. In this study, we examined response inhibition and working memory processes with two different materials (internet-related and internet-unrelated stimuli) among adolescents with IA, ADHD and co-morbid IA/ADHD. Twenty-four individuals with IA, 28 individuals with ADHD, 17 individuals with IA/ADHD, and 26 matched normal controls (NC) individuals were recruited. All participants were measured with a Stop-Signal Task and 2-Back Task under the same experimental conditions. In comparison to the NC group, subjects with IA, ADHD and IA/ADHD demonstrated impaired inhibition and working memory. In addition, in comparison to internet-unrelated conditions, IA and co-morbid subjects performed worse on the internet-related condition in the Stop trials during the stop-signal task, and they showed better working memory on the internet-related condition in the 2-Back Task. The findings of our study suggest individuals with IA and IA/ADHD may be impaired in inhibition and working memory functions that might be linked to poor inhibition specifically related to internet-related stimuli, which will advance our understanding of IA and contribute to prevention and intervention strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner's dual-process memory model

    Science.gov (United States)

    Sanderson, David J.; McHugh, Stephen B.; Good, Mark A.; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2010-01-01

    Genetically modified mice, lacking the GluA1 AMPA receptor subunit, are impaired on spatial working memory tasks, but display normal acquisition of spatial reference memory tasks. One explanation for this dissociation is that working memory, win-shift performance engages a GluA1-dependent, non-associative, short-term memory process through which animals choose relatively novel arms in preference to relatively familiar options. In contrast, spatial reference memory, as exemplified by the Morris water maze task, reflects a GluA1-independent, associative, long-term memory mechanism. These results can be accommodated by Wagner's dual-process model of memory in which short and long-term memory mechanisms exist in parallel and, under certain circumstances, compete with each other. According to our analysis, GluA1−/− mice lack short-term memory for recently experienced spatial stimuli. One consequence of this impairment is that these stimuli should remain surprising and thus be better able to form long-term associative representations. Consistent with this hypothesis, we have recently shown that long-term spatial memory for recently visited locations is enhanced in GluA1−/− mice, despite impairments in hippocampal synaptic plasticity. Taken together, these results support a role for GluA1-containing AMPA receptors in short-term habituation, and in modulating the intensity or perceived salience of stimuli. PMID:20350557

  4. The longitudinal study of rat hippocampus influenced by stress: early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats.

    Science.gov (United States)

    Jin, Fengkui; Li, Lei; Shi, Mei; Li, Zhenzi; Zhou, Jinghua; Chen, Li

    2013-06-01

    Epidemiologic studies indicate that early adverse experience is related to learning disabilities in adults, but the neurobiological mechanisms have not yet been identified. We used longitudinal animal experiments to test the hypothesis that early life stress enhances hippocampal vulnerability and working memory deficit in adult rats. The expression of Synaptophysin (SYN) and apoptosis (Apo) in hippocampal CA3 and dentate gyrus (DG) regions were examined to evaluate the effects of environmental factors on the hippocampus. The working memory errors via radial 8-arm maze were studied to evaluate the long-term effect of early stress on rats' spatial learning ability. Our results indicated that chronic restraint stress in early life and forced cold water swimming stress in adulthood reduced SYN expression and increased Apo levels in rat hippocampus, but the hippocampal damage tended to recover when rats returned to a non-stress environment. In addition, when the rats were exposed to forced cold water swimming stress during adulthood, SYN expression (CA3 and DG regions) and Apo levels (CA3 region) in rat hippocampus showed statistical difference between early restraint stress group and non-early restraint stress group (rats exposed to stress in adulthood only). One month after the two groups of rats returned to non-stress environment, this difference of SYN expression (CA3 and DG regions) and working memory deficit between the two groups was still statistically significant. Our study findings suggested that early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats, and reduces structural plasticity of hippocampus. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    National Research Council Canada - National Science Library

    Teri Lawton; John Shelley-Tremblay

    2017-01-01

    ... (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory...

  6. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice.

    Science.gov (United States)

    Grizzell, J Alex; Iarkov, Alexandre; Holmes, Rosalee; Mori, Takahashi; Echeverria, Valentina

    2014-07-15

    Chronic stress underlies and/or exacerbates many psychiatric conditions and often results in memory impairment as well as depressive symptoms. Such afflicted individuals use tobacco more than the general population and this has been suggested as a form of self-medication. Cotinine, the predominant metabolite of nicotine, may underlie such behavior as it has been shown to ameliorate anxiety and memory loss in animal models. In this study, we sought to investigate the effects of cotinine on working memory and depressive-like behavior in mice subjected to prolonged restraint. Cotinine-treated mice displayed better performance than vehicle-treated cohorts on the working memory task, the radial arm water maze test. In addition, with or without chronic stress exposure, cotinine-treated mice engaged in fewer depressive-like behaviors as assessed using the tail suspension and Porsolt's forced swim tests. These antidepressant and nootropic effects of cotinine were associated with an increase in the synaptophysin expression, a commonly used marker of synaptic density, in the hippocampus as well as the prefrontal and entorhinal cortices of restrained mice. The beneficial effects of cotinine in preventing various consequences of chronic stress were underscored by the inhibition of the glycogen synthase kinase 3 β in the hippocampus and prefrontal cortex. Taken together, our results show for the first time that cotinine reduces the negative effects of stress on mood, memory, and the synapse. Published by Elsevier B.V.

  7. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study

    Directory of Open Access Journals (Sweden)

    Rita Cristina Sadako Kuroishi

    Full Text Available CONTEXT AND OBJECTIVE: Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. DESIGN AND SETTING: Analytical cross-sectional study with control group conducted in a public university hospital. METHODS: 42 children (mean age = 8.7 years who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords, reading comprehension and arithmetic skills. RESULTS: Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006, arithmetic (P = 0.025 and working memory for pseudowords (P = 0.002, but not for numbers (P = 0.76. CONCLUSION: Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  8. Deficits in working memory, reading comprehension and arithmetic skills in children with mouth breathing syndrome: analytical cross-sectional study.

    Science.gov (United States)

    Kuroishi, Rita Cristina Sadako; Garcia, Ricardo Basso; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma Terezinha; Fukuda, Marisa Tomoe Hebihara

    2015-01-01

    Mouth breathing syndrome is very common among school-age children, and it is possibly related to learning difficulties and low academic achievement. In this study, we investigated working memory, reading comprehension and arithmetic skills in children with nasal and mouth breathing. Analytical cross-sectional study with control group conducted in a public university hospital. 42 children (mean age = 8.7 years) who had been identified as mouth breathers were compared with a control group (mean age = 8.4 years) matched for age and schooling. All the participants underwent a clinical interview, tone audiometry, otorhinolaryngological evaluation and cognitive assessment of phonological working memory (numbers and pseudowords), reading comprehension and arithmetic skills. Children with mouth breathing had poorer performance than controls, regarding reading comprehension (P = 0.006), arithmetic (P = 0.025) and working memory for pseudowords (P = 0.002), but not for numbers (P = 0.76). Children with mouth breathing have low academic achievement and poorer phonological working memory than controls. Teachers and healthcare professionals should be aware of the association of mouth breathing with children's physical and cognitive health.

  9. Cannabis-Related Working Memory Deficits and Associated Subcortical Morphological Differences in Healthy Individuals and Schizophrenia Subjects

    OpenAIRE

    Smith, Matthew J.; Cobia, Derin J.; Wang, Lei; Alpert, Kathryn I.; Cronenwett, Will J.; Goldman, Morris B.; Mamah, Daniel; Barch, Deanna M.; Breiter, Hans C.; Csernansky, John G.

    2013-01-01

    Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subject...

  10. White matter integrity of the medial forebrain bundle and attention and working memory deficits following traumatic brain injury.

    Science.gov (United States)

    Owens, Jacqueline A; Spitz, Gershon; Ponsford, Jennie L; Dymowski, Alicia R; Ferris, Nicholas; Willmott, Catherine

    2017-02-01

    The medial forebrain bundle (MFB) contains ascending catecholamine fibers that project to the prefrontal cortex (PFC). Damage to these fibers following traumatic brain injury (TBI) may alter extracellular catecholamine levels in the PFC and impede attention and working memory ability. This study investigated white matter microstructure of the medial MFB, specifically the supero-lateral branch (slMFB), following TBI, and its association with performance on attention and working memory tasks. Neuropsychological measures of attention and working memory were administered to 20 moderate-severe participants with TBI (posttraumatic amnesia M = 40.05 ± 37.10 days, median time since injury 10.48 months, range 3.72-87.49) and 20 healthy controls. Probabilistic tractography was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) values for 17 participants with TBI and 20 healthy controls. When compared to controls, participants with TBI were found to have significantly lower FA (p attention task, n-back, and Symbol Digit Modalities Test. This study was the first to demonstrate microstructural white matter damage within the slMFB following TBI. However, no evidence was found for an association of alterations to this tract and performance on attentional tasks.

  11. Abnormal Resting-State Functional Connectivity of Insular Subregions and Disrupted Correlation with Working Memory in Adults with Attention Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Qihua Zhao

    2017-10-01

    Full Text Available ObjectivesExecutive function (EF deficits are major impairments in adults with attention deficit/hyperactivity disorder (ADHD. Previous studies have shown that the insula is involved in cognitive and EFs. However, the insula is highly heterogeneous in function, and few studies have focused on functional networks which related to specific insular subregions in adults with ADHD. We explored the functional networks of the insular subregions [anterior insula (AI, mid-insula (MI, and posterior insula (PI]. Furthermore, their correlations with self-ratings of ecological EFs, including inhibition, shifting, and working memory were investigated.MethodsResting-state functional magnetic resonance imaging data in 28 adults with ADHD and 30 matched healthy controls (HCs were analyzed. The seed-based resting-state functional connectivity (RSFC of the insular subregions was evaluated. We also investigated their associations with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A inhibition, working memory, and shifting factor scores.ResultsCompared with HCs, adults with ADHD showed altered RSFC of the AI, with the precuneus, precentral gyrus, and inferior temporal gyrus extended to the middle temporal gyrus, lingual gyrus, and superior occipital gyrus, respectively. There were no significant differences in RSFC of the MI and PI between the two groups. Within the HC group, working memory scores were associated with the RSFC of AI with precuneus and temporal gyrus. However, there was no correlation between these variables in the ADHD group.ConclusionThe study evaluated RSFC patterns of the insular subregions in adults with ADHD for the first time. Altered RSFC of the AI which is a crucial region of salience network (SN and part of regions in default mode network (DMN, were detected in adults with ADHD in both results with and without global signal regression (GSR, suggesting that disrupted SN-DMN functional connectivity may be involved

  12. A working memory deficit among dyslexic readers with no phonological impairment as measured using the n-back task: an fNIR study.

    Directory of Open Access Journals (Sweden)

    Itamar Sela

    Full Text Available Data indicated that dyslexic individuals exhibited difficulties on tasks involving Working Memory (WM. Previous studies have suggested that these deficits stem from impaired processing in the Phonological Loop (PL. The PL impairment was connected to poor phonological processing. However, recent data has pointed to the Central Executive (CE system as another source of WM deficit in dyslexic readers. This opened a debate whether the WM deficit stems solely from PL or can also be seen as an outcome of poor CE processing. In an attempt to verify this question, the current study compared adult skilled and compensated dyslexic readers with no impairment of phonological skills. The participants' PL and CE processing were tested by using the fNIR device attached to the frontal lobe and measured the changes in brain oxygen values when performing N-back task. As it was previously suggested, the N = 0 represented PL and N = 1 to 3 represent CE processing. It was hypothesized that dyslexic readers who show non-impaired phonological skills will exhibit deficits mainly in the CE subsystem and to a lesser extent in the PL. Results indicated that the two reading level groups did not differ in their accuracy and reaction times in any of the N-Back conditions. However, the dyslexic readers demonstrated significant lower maximum oxyHb values in the upper left frontal lobe, mainly caused due to a significant lower activity under the N = 1 condition. Significant task effects were found in the medial left hemisphere, and the high medial right hemisphere. In addition, significant correlations between fNIR-features, reading performance and speed of processing were found. The higher oxyHb values, the better reading and speed of processing performance obtained. The results of the current study support the hypothesis that at least for the group of dyslexics with non-impaired PL, WM deficit stems from poor CE activity.

  13. Working Memory Deficit as a Risk Factor for Severe Apathy in Schizophrenia: A 1-Year Longitudinal Study.

    Science.gov (United States)

    Raffard, Stéphane; Gutierrez, Laure-Anne; Yazbek, Hanan; Larue, Aurore; Boulenger, Jean-Philippe; Lançon, Christophe; Benoit, Michel; Faget, Catherine; Norton, Joanna; Capdevielle, Delphine

    2016-05-01

    Apathy, described as impaired motivation and goal-directed behavior, is a common yet often overlooked multidimensional psychopathological state in schizophrenia. Its underlying cognitive processes remain largely unexplored. Data was drawn from a longitudinal hospital study of patients with a DSM-IV diagnosis of schizophrenia; 137 (82.5%) participated at the 1-month follow-up and 81 (59.1%) at the 1-year follow-up. Apathy was assessed with the Lille Apathy Rating Scale, validated in French and in schizophrenia. Severe apathy, overall (total score > -13) and on 4 previously identified distinct dimensions, was considered. Episodic verbal learning was assessed with the California Verbal Learning Test, executive functioning with the Trail Making Test, the Six Element Test and the Stop Signal Paradigm and working memory with the Letter-Number Sequencing Test. After controlling for confounding variables, only episodic verbal learning was associated with severe overall apathy in the cross-sectional study. At 1 year, working memory was associated with an increased risk of severe overall apathy, adjusting for baseline apathy. Using a dimensional approach to apathy, specific types of cognition were found to be associated with specific dimensions of apathy. Our findings confirm the need for a multidimensional approach of negative symptoms in schizophrenia. Moreover, cognitive functioning could be a risk factor for developing severe apathy. Cognitive remediation may thus be a useful non-pharmacological intervention for treating apathy in schizophrenia patients. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children – Working Memory (CABC-WM)

    OpenAIRE

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P.

    2017-01-01

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia1 2 and language impairment3 4, but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The C...

  15. Recognition memory deficits in mild cognitive impairment

    OpenAIRE

    Algarabel González, Salvador; Fuentes, Manuel; Escudero, Joaquín; Pitarque, Alfonso; Peset, Vicente; Mazón Herrero, José Francisco; Meléndez Moral, Juan Carlos

    2012-01-01

    There is no agreement on the pattern of recognition memory deficits characteristic of patients diagnosed with mild cognitive impairment (Mel). Whereas lower performance in recollection is the hallmark of Mel, there is a strong controversy about possible deficits in familiarity estimates when using recognition memory tasks. The aim of this research is to shed Iight on the pattern of responding in recollection and familiarity in MCl. Five groups of participants were tested. The main participant...

  16. Working, declarative and procedural memory in specific language impairment

    DEFF Research Database (Denmark)

    Lum, J. A. G.; Conti-Ramsden, G.; Page, D.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which...... for Children, declarative memory with the Children's Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared...... at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed...

  17. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  18. Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided transcranial magnetic stimulation.

    Science.gov (United States)

    Luber, Bruce; Steffener, Jason; Tucker, Adrienne; Habeck, Christian; Peterchev, Angel V; Deng, Zhi-De; Basner, Robert C; Stern, Yaakov; Lisanby, Sarah H

    2013-06-01

    We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. Between-groups mixed model. TMS, MRI, and sleep laboratory study. 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact.

  19. High Suicide Risk after the Development of Cognitive and Working Memory Deficits Caused by Cannabis, Cocaine and Ecstasy Use

    Science.gov (United States)

    Pompili, Maurizio; Lester, David; Girardi, Paolo; Tatarelli, Roberto

    2007-01-01

    We report the case of attempted suicide by a 30-year-old man who had significant cognitive deficits that developed after at least three years of polysubstance use with cannabis, methylenedioxymethamphetamine (MDMA, "ecstasy") and cocaine. The patient reported increasing difficulties in his professional and interpersonal life which may have been…

  20. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Directory of Open Access Journals (Sweden)

    Pablo eGaleano

    2015-01-01

    Full Text Available Continuous environmental stimulation induced by exposure to enriched environment (EE has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL, by cesarean section (C+, or by C+ following 19 min of asphyxia at birth (PA. At weaning, rats were assigned to standard (SE or enriched environment (EE for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM. Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia.

  1. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    Science.gov (United States)

    Galeano, Pablo; Blanco, Eduardo; Logica Tornatore, Tamara M. A.; Romero, Juan I.; Holubiec, Mariana I.; Rodríguez de Fonseca, Fernando; Capani, Francisco

    2015-01-01

    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia. PMID:25601829

  2. Evolution of working memory

    National Research Council Canada - National Science Library

    Peter Carruthers

    2013-01-01

    Working memory (WM) is fundamental to many aspects of human life, including learning, speech and text comprehension, prospection and future planning, and explicit "system 2" forms of reasoning, as well as overlapping...

  3. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.

    Science.gov (United States)

    Collins, Anne G E; Albrecht, Matthew A; Waltz, James A; Gold, James M; Frank, Michael J

    2017-09-15

    When studying learning, researchers directly observe only the participants' choices, which are often assumed to arise from a unitary learning process. However, a number of separable systems, such as working memory (WM) and reinforcement learning (RL), contribute simultaneously to human learning. Identifying each system's contributions is essential for mapping the neural substrates contributing in parallel to behavior; computational modeling can help to design tasks that allow such a separable identification of processes and infer their contributions in individuals. We present a new experimental protocol that separately identifies the contributions of RL and WM to learning, is sensitive to parametric variations in both, and allows us to investigate whether the processes interact. In experiments 1 and 2, we tested this protocol with healthy young adults (n = 29 and n = 52, respectively). In experiment 3, we used it to investigate learning deficits in medicated individuals with schizophrenia (n = 49 patients, n = 32 control subjects). Experiments 1 and 2 established WM and RL contributions to learning, as evidenced by parametric modulations of choice by load and delay and reward history, respectively. They also showed interactions between WM and RL, where RL was enhanced under high WM load. Moreover, we observed a cost of mental effort when controlling for reinforcement history: participants preferred stimuli they encountered under low WM load. Experiment 3 revealed selective deficits in WM contributions and preserved RL value learning in individuals with schizophrenia compared with control subjects. Computational approaches allow us to disentangle contributions of multiple systems to learning and, consequently, to further our understanding of psychiatric diseases. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Hyperactivity in boys with attention-deficit/hyperactivity disorder: The influence of underlying visuospatial working memory and self-control processes.

    Science.gov (United States)

    Patros, Connor H G; Alderson, R Matt; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E

    2017-02-01

    Changes in motor activity were examined across control and executive function (EF) tasks that differ with regard to demands placed on visuospatial working memory (VS-WM) and self-control processes. Motor activity was measured via actigraphy in 8- to 12-year-old boys with (n=15) and without (n=17) attention-deficit/hyperactivity disorder (ADHD) during the completion of VS-WM, self-control, and control tasks. Results indicated that boys with ADHD, relative to typically developing boys, exhibited greater motor activity across tasks, and both groups' activity was greater during EF tasks relative to control tasks. Lastly, VS-WM performance, relative to self-control performance, accounted for significantly more variance in activity across both VS-WM and self-control tasks. Collectively, findings suggest that ADHD-related hyperactivity is positively related to increased cognitive demands and appears to be better explained by deficient VS-WM rather than insufficient self-control. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The neural bases of orthographic working memory

    Directory of Open Access Journals (Sweden)

    Jeremy Purcell

    2014-04-01

    First, these results reveal a neurotopography of OWM lesion sites that is well-aligned with results from neuroimaging of orthographic working memory in neurally intact participants (Rapp & Dufor, 2011. Second, the dorsal neurotopography of the OWM lesion overlap is clearly distinct from what has been reported for lesions associated with either lexical or sublexical deficits (e.g., Henry, Beeson, Stark, & Rapcsak, 2007; Rapcsak & Beeson, 2004; these have, respectively, been identified with the inferior occipital/temporal and superior temporal/inferior parietal regions. These neurotopographic distinctions support the claims of the computational distinctiveness of long-term vs. working memory operations. The specific lesion loci raise a number of questions to be discussed regarding: (a the selectivity of these regions and associated deficits to orthographic working memory vs. working memory more generally (b the possibility that different lesion sub-regions may correspond to different components of the OWM system.

  6. Working, declarative and procedural memory in specific language impairment

    Science.gov (United States)

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  7. Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits.

    Science.gov (United States)

    Fletcher, Paul C; Honey, Garry D

    2006-04-01

    Drug models of mental illness are considered useful if they provoke its characteristic symptoms. In this respect, ketamine and tetrahydrocannabinol (cannabis) are coming under increasing scrutiny as models for schizophrenia. However, although both undoubtedly produce psychotic symptoms characteristic of the disorder, we argue here that, because schizophrenia is also accompanied by cognitive deficits, a full understanding of the impact of these drugs on cognition will be crucial in taking these models further. Memory deficits are pronounced in schizophrenia and we focus upon patterns of working and episodic memory impairment produced by ketamine and cannabis, identifying overlaps between drug and illness. We suggest that close attention to these deficits can offer insights into core pathophysiology of schizophrenia.

  8. Effects of Attention-Deficit/Hyperactivity Disorder and Anxiety on Attention, Working Memory, and Academic Achievement in Children and Adolescents: A Structural Equation Modeling Approach

    OpenAIRE

    Sturm, Alexandra Noelle

    2013-01-01

    Attention and working memory, two constructs that affect youth who have ADHD and anxiety, are essential in establishing automaticity and success in academic achievement. Using data from a large study involving 502 children and adolescents (332 diagnosed with ADHD, 145 diagnosed with anxiety disorder, and 126 diagnosed with neither), ages 7 to 15 years, this paper applies structural equation modeling to test the sequential relationship between the latent constructs of attention, working memory...

  9. Quantifiers and working memory

    NARCIS (Netherlands)

    Szymanik, J.; Zajenkowski, M.

    2010-01-01

    The paper presents a study examining the role of working memory in quantifier verification. We created situations similar to the span task to compare numerical quantifiers of low and high rank, parity quantifiers and proportional quantifiers. The results enrich and support the data obtained

  10. Disorder-dissociated effects of fluoxetine on brain function of working memory in attention deficit hyperactivity disorder and autism spectrum disorder.

    Science.gov (United States)

    Chantiluke, K; Barrett, N; Giampietro, V; Brammer, M; Simmons, A; Rubia, K

    2015-04-01

    Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are often co-morbid and share performance and brain dysfunctions during working memory (WM). Serotonin agonists modulate WM and there is evidence of positive behavioural effects in both disorders. We therefore used functional magnetic resonance imaging (fMRI) to investigate shared and disorder-specific brain dysfunctions of WM in these disorders, and the effects of a single dose of the selective serotonin reuptake inhibitor (SSRI) fluoxetine. Age-matched boys with ADHD (n = 17), ASD (n = 17) and controls (n = 22) were compared using fMRI during an N-back WM task. Patients were scanned twice, under either an acute dose of fluoxetine or placebo in a double-blind, placebo-controlled randomized design. Repeated-measures analyses within patients assessed drug effects on performance and brain function. To test for normalization effects of brain dysfunctions, patients under each drug condition were compared to controls. Under placebo, relative to controls, both ADHD and ASD boys shared underactivation in the right dorsolateral prefrontal cortex (DLPFC). Fluoxetine significantly normalized the DLPFC underactivation in ASD relative to controls whereas it increased posterior cingulate cortex (PCC) deactivation in ADHD relative to control boys. Within-patient analyses showed inverse effects of fluoxetine on PCC deactivation, which it enhanced in ADHD and decreased in ASD. The findings show that fluoxetine modulates brain activation during WM in a disorder-specific manner by normalizing task-positive DLPFC dysfunction in ASD boys and enhancing task-negative default mode network (DMN) deactivation in ADHD.

  11. Everyday memory deficits in ecstasy-polydrug users.

    Science.gov (United States)

    Montgomery, Catharine; Fisk, John E

    2007-09-01

    Recent research suggests that not only does the use of recreational drugs impact on working memory functioning, but more ;everyday' aspects of memory (e.g. remembering to do something in the future) are also affected. Forty-three ecstasy-polydrug users and 51 non-ecstasy users were recruited from a university population. Each participant completed the Cognitive Failures Questionnaire (CFQ) and Everyday Memory Questionnaire (EMQ). Of these, 28 ecstasy-polydrug users and 35 non-ecstasy users completed the Prospective Memory Questionnaire (PMQ). In addition, an objective measure of cognitive failures (the CFQ-for-others) was completed by friends of participants. With the exception of the CFQ-for-others, in each regression equation, cannabis emerged as the only significant predictor of everyday and prospective memory deficits. Significant correlations were found between the different indicators of everyday memory and various measures of illicit drug use. Cannabis featured prominently in this respect. The present study provides further support for cannabis related deficits in aspects of everyday memory functioning. Ecstasy may aLso be associated with cognitive slips, but not to the same extent as cannabis.

  12. Rethinking the Connection between Working Memory and Language Impairment

    Science.gov (United States)

    Archibald, Lisa M. D.; Harder Griebeling, Katherine

    2016-01-01

    Background: Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. Aims: To examine the processing function of working memory in children with low language (LL) by employing tasks imposing…

  13. Excitotoxic median raphe lesions aggravate working memory storage performance deficits caused by scopolamine infusion into the dentate gyrus of the hippocampus in the inhibitory avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Babar E.

    2002-01-01

    Full Text Available The interactions between the median raphe nucleus (MRN serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.

  14. Neurocognitive architecture of working memory

    Science.gov (United States)

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  15. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    Science.gov (United States)

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  16. Visual perception and working memory in schizotypal personality disorder.

    Science.gov (United States)

    Farmer, C M; O'Donnell, B F; Niznikiewicz, M A; Voglmaier, M M; McCarley, R W; Shenton, M E

    2000-05-01

    Patients affected by schizophrenia show deficits in both visual perception and working memory. The authors tested early-stage vision and working memory in subjects with schizotypal personality disorder, which has been biologically associated with schizophrenia. Eleven subjects who met DSM-III-R criteria for schizotypal personality disorder and 12 normal comparison subjects were evaluated. Performance thresholds were obtained for tests of visual discrimination and working memory. Both form and trajectory processing were evaluated for each task. Subjects with schizotypal personality disorder showed intact discrimination of form and trajectory but were impaired on working memory tasks. These data suggest that subjects with schizotypal personality disorder, unlike patients affected by schizophrenia, have relatively intact visual perception. Subjects with schizotypal personality disorder do show specific deficits on tasks of comparable difficulty when working memory demands are imposed. Schizotypal personality disorder may be associated with a more specific visual processing deficit than schizophrenia, possibly reflecting disruption of frontal lobe systems subserving visual working memory operations.

  17. Objectively-Measured Impulsivity and Attention-Deficit/Hyperactivity Disorder (ADHD): Testing Competing Predictions from the Working Memory and Behavioral Inhibition Models of ADHD

    Science.gov (United States)

    Raiker, Joseph S.; Rapport, Mark D.; Kofler, Michael J.; Sarver, Dustin E.

    2012-01-01

    Impulsivity is a hallmark of two of the three DSM-IV ADHD subtypes and is associated with myriad adverse outcomes. Limited research, however, is available concerning the mechanisms and processes that contribute to impulsive responding by children with ADHD. The current study tested predictions from two competing models of ADHD--working memory (WM)…

  18. Examining procedural working memory processing in obsessive-compulsive disorder.

    Science.gov (United States)

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    Science.gov (United States)

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement

  20. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    Science.gov (United States)

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement

  1. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    Directory of Open Access Journals (Sweden)

    Teri Lawton

    2017-05-01

    Full Text Available The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK. The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual

  2. What part of working memory is not working in ADHD? Short-term memory, the central executive and effects of reinforcement

    NARCIS (Netherlands)

    Dovis, S.; van der Oord, S.; Wiers, R.W.; Prins, P.J.M.

    2013-01-01

    Deficits in Working Memory (WM) are related to symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD). In children with ADHD visuospatial WM is most impaired. WM is composed of Short-Term Memory (STM) and a Central Executive (CE). Therefore, deficits in either or both STM and the CE may account

  3. FMRI of visual working memory in high school football players.

    Science.gov (United States)

    Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M

    2015-01-01

    Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.

  4. Working Memory Weaknesses in Students with ADHD: Implications for Instruction

    Science.gov (United States)

    Martinussen, Rhonda; Major, Ashley

    2011-01-01

    Students with attention deficit hyperactivity disorder (ADHD) are at risk for academic underachievement. Children and youth with ADHD have been found to exhibit impairments on neuropsychological measures of executive functions, including working memory. Working memory is important to attentional control and learning. This article defines working…

  5. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM).

    Science.gov (United States)

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P

    2017-06-12

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia1,2 and language impairment3,4, but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.

  6. Autobiographical and episodic memory deficits in mild traumatic brain injury.

    Science.gov (United States)

    Wammes, Jeffrey D; Good, Tyler J; Fernandes, Myra A

    2017-02-01

    Those who have suffered a concussion, otherwise known as a mild traumatic brain injury (mTBI), often complain of lingering memory problems. However, there is little evidence in the behavioral literature reliably demonstrating memory deficits. Thus, in the present study, cognitive profiles including measures of general executive functioning and processing speed, as well as episodic and semantic memory were collected in younger and older adult participants with or without a remote (>1year prior to testing) mTBI. We first investigated whether there were observable episodic and autobiographical memory impairments associated with mTBI within an otherwise healthy young group. Next, because previous work had demonstrated some overlap in patterns of behavioral impairment in normally aging adults and younger adults with a history of mTBI (e.g. Ozen, Fernandes, Clark, & Roy, 2015), we sought to determine whether these groups displayed similar cognitive profiles. Lastly, we conducted an exploratory analysis to test whether having suffered an mTBI might exacerbate age-related cognitive decline. Results showed the expected age-related decline in episodic memory performance, coupled with a relative preservation of semantic memory in older adults. Importantly, this pattern was also present in younger adults with a history of remote mTBI. No differences were observed across older adult groups based on mTBI status. Logistic regression analyses, using each measure in our battery as a predictor, successfully classified mTBI status in younger participants with a high degree of specificity (79.5%). These results indicate that those who have had an mTBI demonstrate a distinct cognitive signature, characterized by impairment in episodic and autobiographical memory, coupled with a relative preservation of semantic memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Neural correlates of working memory deficits in schizophrenic patients. Ways to establish neurocognitive endophenotypes of psychiatric disorders; Neuronale Korrelate gestoerter Arbeitsgedaechtnisfunktionen bei schizophrenen Patienten. Ansaetze zur Etablierung neurokognitiver Endophaenotypen psychiatrischer Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, O. [Universitaet des Saarlandes, Klinik fuer Psychiatrie und Psychotherapie, Homburg (Saar) (Germany); Max-Planck-Institut fuer Kognitions- und Neurowissenschaften, Leipzig (Germany); Gruber, E.; Falkai, P. [Universitaet des Saarlandes, Klinik fuer Psychiatrie und Psychotherapie, Homburg (Saar) (Germany)

    2005-02-01

    This article briefly reviews some methodological limitations of functional neuroimaging studies in psychiatric patients. We argue that the investigation of the neural substrates of cognitive deficits in psychiatric disorders requires a combination of functional neuroimaging studies in healthy subjects with corresponding behavioral experiments in patients. In order to exemplify this methodological approach we review recent findings regarding the functional neuroanatomy of distinct components of human working memory and provide evidence for selective dysfunctions of cortical networks that underlie specific working memory deficits in schizophrenia. This identification of subgroups of schizophrenic patients according to neurocognitive parameters may facilitate the establishment of behavioral and neurophysiological endophenotypes and the development of a neurobiological classification of psychiatric disorders. (orig.) [German] Dieser Beitrag befasst sich mit einigen methodischen Problemen funktionell-bildgebender Studien mit psychiatrischen Patienten, aufgrund derer die Untersuchung der neuronalen Korrelate kognitiver Defizite bei psychiatrischen Erkrankungen einer Kombination funktionell-bildgebender Studien bei gesunden Normalprobanden mit Verhaltensuntersuchungen bei Patienten bedarf. Dieser methodische Ansatz wird am Beispiel von Arbeitsgedaechtnisfunktionen erlaeutert, wobei zunaechst neuere Erkenntnisse zur funktionellen Neuroanatomie verschiedener Komponenten des menschlichen Arbeitsgedaechtnisses referiert werden. Anschliessend werden bei schizophrenen Patienten erhobene Befunde vorgestellt, die auf spezifische Stoerungen der funktionellen Integritaet neuronaler Netzwerke mit Arbeitsgedaechtnisfunktionen hinweisen. Die damit verbundene Identifikation von Subgruppen schizophrener Patienten koennte zur Etablierung verhaltensneurophysiologisch definierter Endophaenotypen psychiatrischer Stoerungsbilder fuehren und die Entwicklung einer neurowissenschaftlich

  8. Changing concepts of working memory

    Science.gov (United States)

    Ma, Wei Ji; Husain, Masud; Bays, Paul M

    2014-01-01

    Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's ‘magical number’ seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal. PMID:24569831

  9. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia.

    Science.gov (United States)

    Paspalas, Constantinos D; Wang, Min; Arnsten, Amy F T

    2013-07-01

    Schizophrenia associates with impaired prefrontal cortical (PFC) function and alterations in cyclic AMP (cAMP) signaling pathways. These include genetic insults to disrupted-in-schizophrenia (DISC1) and phosphodiesterases (PDE4s) regulating cAMP hydrolysis, and increased dopamine D1 receptor (D1R) expression that elevates cAMP. We used immunoelectron microscopy to localize DISC1, PDE4A, PDE4B, and D1R in monkey PFC and to view spatial interactions with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that gate network inputs when opened by cAMP. Physiological interactions between PDE4s and HCN channels were tested in recordings of PFC neurons in monkeys performing a spatial working memory task. The study reveals a constellation of cAMP-related proteins (DISC1, PDE4A, and D1R) and HCN channels next to excitatory synapses and the spine neck in thin spines of superficial PFC, where working memory microcircuits interconnect and spine loss is most evident in schizophrenia. In contrast, channels in dendrites were distant from synapses and cAMP-related proteins, and were associated with endosomal trafficking. The data suggest that a cAMP signalplex is selectively positioned in the spines to gate PFC pyramidal cell microcircuits. Single-unit recordings confirmed physiological interactions between cAMP and HCN channels, consistent with gating actions. These data may explain why PFC networks are especially vulnerable to genetic insults that dysregulate cAMP signaling.

  10. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    Directory of Open Access Journals (Sweden)

    Oluwabusayo Folarin

    2016-01-01

    Full Text Available Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  11. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.

    Science.gov (United States)

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  12. Neural bases of orthographic long-term memory and working memory in dysgraphia

    Science.gov (United States)

    Purcell, Jeremy; Hillis, Argye E.; Capasso, Rita; Miceli, Gabriele

    2016-01-01

    Spelling a word involves the retrieval of information about the word’s letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. PMID:26685156

  13. Working Memory Involved in Predicting Future Outcomes Based on Past Experiences

    Science.gov (United States)

    Dretsch, Michael N.; Tipples, Jason

    2008-01-01

    Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). "Impaired decision making related to working memory deficits in individuals with substance addictions." "Neuropsychology," 18, 152-162]. Similarly, a secondary memory load task has been shown to impair…

  14. Working Memory, Reading, and Mathematical Skills in Children with Developmental Coordination Disorder

    Science.gov (United States)

    Alloway, Tracy Packiam

    2007-01-01

    The aim of the present study was investigate the relationship between working memory and reading and mathematical skills in 55 children diagnosed with developmental coordination disorder (DCD). The findings indicate a pervasive memory deficit in all memory measures. In particular, deficits observed in visuospatial short-term and working memory…

  15. Sleep Restores Daytime Deficits in Procedural Memory in Children with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Prehn-Kristensen, Alexander; Molzow, Ina; Munz, Manuel; Wilhelm, Ines; Muller, Kathrin; Freytag, Damaris; Wiesner, Christian D.; Baving, Lioba

    2011-01-01

    Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD)…

  16. ADHD subtype differences in reinforcement sensitivity and visuospatial working memory

    NARCIS (Netherlands)

    Dovis, S.; van der Oord, S.; Wiers, R.W.; Prins, P.J.M.

    2015-01-01

    Both cognitive and motivational deficits are thought to give rise to the problems in the combined (ADHD-C) and inattentive subtype (ADHD-I) of attention-deficit hyperactivity disorder (ADHD). In both subtypes one of the most prominent cognitive weaknesses appears to be in visuospatial working memory

  17. A Comprehensive Investigation of Memory Impairment in Attention Deficit Hyperactivity Disorder and Oppositional Defiant Disorder

    Science.gov (United States)

    Rhodes, Sinead M.; Park, Joanne; Seth, Sarah; Coghill, David R.

    2012-01-01

    Background: We conducted a comprehensive and systematic assessment of memory functioning in drug-naive boys with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Methods: Boys performed verbal and spatial working memory (WM) component (storage and central executive) and verbal and spatial storage load tasks,…

  18. Working memory in social anxiety disorder: better manipulation of emotional versus neutral material in working memory.

    Science.gov (United States)

    Yoon, K Lira; Kutz, Amanda M; LeMoult, Joelle; Joormann, Jutta

    2017-12-01

    Individuals with social anxiety disorder (SAD) engage in post-event processing, a form of perseverative thinking. Given that deficits in working memory might underlie perseverative thinking, we examined working memory in SAD with a particular focus on the effects of stimulus valence. SAD (n = 31) and healthy control (n = 20) participants either maintained (forward trials) or reversed (backward trials) in working memory the order of four emotional or four neutral pictures, and we examined sorting costs, which reflect the extent to which performance deteriorated on the backward trials compared to the forward trials. Emotionality of stimuli affected performance of the two groups differently. Whereas control participants exhibited higher sorting costs for emotional stimuli compared to neutral stimuli, SAD participants exhibited the opposite pattern. Greater attention to emotional stimuli in SAD might facilitate the processing of emotional (vs. neutral) stimuli in working memory.

  19. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  20. Complex Prospective Memory in Adults with Attention Deficit Hyperactivity Disorder

    NARCIS (Netherlands)

    Fuermaier, Anselm B. M.; Tucha, Lara; Koerts, Janneke; Aschenbrenner, Steffen; Westermann, Celina; Weisbrod, Matthias; Lange, Klaus W.; Tucha, Oliver

    2013-01-01

    Objectives: Attention deficit hyperactivity disorder (ADHD) in adults has been associated with disturbances of attention and executive functions. Furthermore, impairments of verbal and figural retrospective memory were reported. However, little is known about the effects of ADHD on prospective

  1. Visual working memory contaminates perception.

    Science.gov (United States)

    Kang, Min-Suk; Hong, Sang Wook; Blake, Randolph; Woodman, Geoffrey F

    2011-10-01

    Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different motion direction in visual working memory. Control experiments showed that none of a variety of alternative explanations could account for this repulsion effect induced by working memory. Our findings provide compelling evidence that visual working memory representations directly interact with the same neural mechanisms as those involved in processing basic sensory events.

  2. What Is Not Working in Working Memory of Children with Literacy Disorders? Evidence from a Three-Year-Longitudinal Study

    Science.gov (United States)

    Fischbach, Anne; Könen, Tanja; Rietz, Chantal S.; Hasselhorn, Marcus

    2014-01-01

    The goals of this study were to explore the deficits in working memory associated with literacy disorders (i.e. developmental disorders of reading and/or spelling) and the developmental trajectories of these working memory deficits. The performance of 28 children with literacy disorders was compared to a non-disabled control group with the same…

  3. Caffeine, extraversion and working memory.

    Science.gov (United States)

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  4. Visual Perception and Working Memory in Schizotypal Personality Disorder

    OpenAIRE

    Farmer, Carrie M.; O?Donnell, Brian F.; Niznikiewicz, Margaret A.; Voglmaier, Martina M.; McCarley, Robert William; Shenton, Martha Elizabeth

    2000-01-01

    Objective: Patients affected by schizophrenia show deficits in both visual perception and working memory. The authors tested early-stage vision and working memory in subjects with schizotypal personality disorder, which has been biologically associated with schizophrenia. Method: Eleven subjects who met DSM-III-R criteria for schizotypal personality disorder and 12 normal comparison subjects were evaluated. Performance thresholds were obtained for tests of visual discrimination and working me...

  5. Working Memory Deficits in Dynamic Sport Athletes with a History of Concussion Revealed by A Visual-Auditory Dual-Task Paradigm

    National Research Council Canada - National Science Library

    Tapper, Anthony; Niechwiej-Szwedo, Ewa; Gonzalez, David; Roy, Eric

    2015-01-01

    .... It is important to understand information processing capacity in dynamic sports because athletes must divide their attention between visual and auditory stimuli and hold that information in memory to guide actions...

  6. Prefrontal activation deficits during episodic memory in schizophrenia.

    Science.gov (United States)

    Ragland, John D; Laird, Angela R; Ranganath, Charan; Blumenfeld, Robert S; Gonzales, Sabina M; Glahn, David C

    2009-08-01

    Episodic memory impairments represent a core deficit in schizophrenia that severely limits patients' functional outcome. This quantitative meta-analysis of functional imaging studies of episodic encoding and retrieval tests the prediction that these deficits are most consistently associated with dysfunction in the prefrontal cortex. Activation likelihood estimation (ALE) was used to perform a quantitative meta-analysis of functional imaging studies that contrasted patients with schizophrenia and healthy volunteers during episodic encoding and retrieval. From a pool of 36 potential studies, 18 whole-brain studies in standard space that included a healthy comparison sample and low-level baseline contrast were selected. As predicted, patients showed less prefrontal activation than comparison subjects in the frontal pole, dorsolateral and ventrolateral prefrontal cortex during encoding, and the dorsolateral prefrontal cortex and ventrolateral prefrontal cortex during retrieval. The ventrolateral prefrontal cortex encoding deficits were not present in studies that provided patients with encoding strategies, but dorsolateral prefrontal cortex deficits remained and were not secondary to group performance differences. The only medial temporal lobe finding was relatively greater patient versus comparison subject activation in the parahippocampal gyrus during encoding and retrieval. The finding of prominent prefrontal dysfunction suggests that cognitive control deficits strongly contribute to episodic memory impairment in schizophrenia. Memory rehabilitation approaches developed for patients with frontal lobe lesions and pharmacotherapy approaches designed to improve prefrontal cortex function may therefore hold special promise for remediating memory deficits in patients with schizophrenia.

  7. The Impact of Visual Memory Deficits on Academic Achievement in Children and Adolescents

    Science.gov (United States)

    Larsen, Jessica Maria

    2011-01-01

    Memory assessment can often alert practitioners and educators to learning problems children may be experiencing. Results of a memory assessment may indicate that a child has a specific memory deficit in verbal memory, visual memory, or both. Deficits in visual or verbal modes of memory could potentially have adverse effects on academic…

  8. Working memory and organizational skills problems in ADHD.

    Science.gov (United States)

    Kofler, Michael J; Sarver, Dustin E; Harmon, Sherelle L; Moltisanti, Allison; Aduen, Paula A; Soto, Elia F; Ferretti, Nicole

    2018-01-01

    This study tested model-driven predictions regarding working memory's role in the organizational problems associated with ADHD. Children aged 8-13 (M = 10.33, SD = 1.42) with and without ADHD (N = 103; 39 girls; 73% Caucasian/Non-Hispanic) were assessed on multiple, counterbalanced working memory tasks. Parents and teachers completed norm-referenced measures of organizational problems (Children's Organizational Skills Scale; COSS). Results confirmed large magnitude working memory deficits (d = 1.24) and organizational problems in ADHD (d = 0.85). Bias-corrected, bootstrapped conditional effects models linked impaired working memory with greater parent- and teacher-reported inattention, hyperactivity/impulsivity, and organizational problems. Working memory predicted organization problems across all parent and teacher COSS subscales (R2  = .19-.23). Approximately 38%-57% of working memory's effect on organization problems was conveyed by working memory's association with inattentive behavior. Unique effects of working memory remained significant for both parent- and teacher-reported task planning, as well as for teacher-reported memory/materials management and overall organization problems. Attention problems uniquely predicted worse organizational skills. Hyperactivity was unrelated to parent-reported organizational skills, but predicted better teacher-reported task planning. Children with ADHD exhibit multisetting, broad-based organizational impairment. These impaired organizational skills are attributable in part to performance deficits secondary to working memory dysfunction, both directly and indirectly via working memory's role in regulating attention. Impaired working memory in ADHD renders it extraordinarily difficult for these children to consistently anticipate, plan, enact, and maintain goal-directed actions. © 2017 Association for Child and Adolescent Mental Health.

  9. The Relationships of Working Memory, Secondary Memory, and General Fluid Intelligence: Working Memory Is Special

    Science.gov (United States)

    Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew

    2010-01-01

    Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…

  10. FMRI of working memory impairment after recovery from subarachnoid hemorrhage.

    Science.gov (United States)

    Ellmore, Timothy M; Rohlffs, Fiona; Khursheed, Faraz

    2013-01-01

    Recovery from aneurysmal subarachnoid hemorrhage (SAH) is often incomplete and accompanied by subtle but persistent cognitive deficits. Previous neuropsychological reports indicate these deficits include most prominently memory impairment, with working memory particularly affected. The neural basis of these memory deficits remains unknown and unexplored by functional magnetic resonance imaging (fMRI). In the present study, patients who experienced (SAH) underwent fMRI during the performance of a verbal working memory paradigm. Behavioral results indicated a subtle but statistically significant impairment relative to healthy subjects in working memory performance accuracy, which was accompanied by relatively increased blood-oxygen level dependent signal in widespread left and right hemisphere cortical areas during periods of encoding, maintenance, and retrieval. Activity increases remained after factoring out inter-individual differences in age and task performance, and included most notably left hemisphere regions associated with phonological loop processing, bilateral sensorimotor regions, and right hemisphere dorsolateral prefrontal cortex. We conclude that deficits in verbal working memory following recovery from (SAH) are accompanied by widespread differences in hemodynamic correlates of neural activity. These differences are discussed with respect to the immediate and delayed focal and global brain damage that can occur following (SAH), and the possibility that this damage induces subcortical disconnection and subsequent decreased efficiency in neural processing.

  11. Green tea protects against memory deficits related to maternal deprivation.

    Science.gov (United States)

    Menezes, Jefferson; Neves, Ben-Hur; Souza, Mauren; Mello-Carpes, Pâmela Billig

    2017-12-01

    Maternal deprivation (MD) in early life affects the development of the brain, causing cognitive losses in adulthood. Oxidative imbalance may be one of the factors that trigger these deficits. Therapies with antioxidant components, like green tea from Camellia sinensis (GT) has been used to treat or prevent memory deficits in a variety of conditions related to oxidative stress. Here we demonstrate that memory deficits caused by MD can be prevented by GT antioxidant activity in hippocampus. Pregnant female rats were used. Her puppies were submitted to MD and intake of GT. Recognition and aversive memory were evaluated, as well as hippocampal oxidative status. Data showed that MD prejudice short and long-term recognition and aversive memory and that GT protected memory. Hippocampal reactive oxygen species levels were increased in MD rats; this increase was avoided by GT supplementation. GSH was decreased on hippocampus MD rats. GT did not avoid GSH decrease, but promote the increase of total antioxidant capacity in MD rats' hippocampus. In conclusion, GT protects against memory deficits related to MD, and one of the implicated mechanism seems to be the antioxidant effects of GT. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Memory systems interaction in the pigeon: working and reference memory.

    Science.gov (United States)

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. Memory-guided saccades in youth-onset psychosis and attention deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    White, Tonya; Mous, Sabine; Karatekin, Canan

    2014-08-01

    Working memory deficits have been shown to be present in children and adolescents with schizophrenia and attention deficit hyperactivity disorder. Considering the differences in clinical characteristics between these disorders, it was the goal of this study to assess differences in the specific components of working memory in children and adolescents with psychosis and attention deficit hyperactivity disorder. Children and adolescents (age range 8-20 years) with either a non-affective psychotic disorder (n = 25), attention deficit hyperactivity disorder (n = 33) and controls (n = 58) were administered an oculomotor delayed-response task using both a recall and a control condition. Memory-guided saccades were measured during delay periods of 2, 8 and 20 s. Although both clinical groups were less accurate than controls, there was no evidence of a disproportionate impairment in recall. In addition, there was no evidence of a delay-dependent impairment in psychosis; however, there was a delay-dependent impairment in attention deficit hyperactivity disorder when corrective saccades were included. Speed of information processing was correlated with distance errors in psychosis, suggesting that speed of encoding the stimulus location may have constrained the accuracy of the saccades. Our findings support impairments during encoding in the psychosis group and a delay-dependent deficit in the attention deficit hyperactivity disorder group. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Childhood Obesity and Academic Performance: The Role of Working Memory.

    Science.gov (United States)

    Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei

    2017-01-01

    The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10-13 years were analyzed for weight and height, of which 159 children (44 "obese," 23 "overweight," and 92 "normal weight") filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink.

  15. Childhood Obesity and Academic Performance: The Role of Working Memory

    Science.gov (United States)

    Wu, Nan; Chen, Yulu; Yang, Jinhua; Li, Fei

    2017-01-01

    The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10–13 years were analyzed for weight and height, of which 159 children (44 “obese,” 23 “overweight,” and 92 “normal weight”) filled out questionnaires on school performance and socioeconomic status. And then, all subjects finished three kinds of working memory tasks based on the digit memory task in 30 trials, which were image-generated with a series of numbers recall trial sets. After each trial set, subjects were given 5 s to recall and write down the numbers which hand appeared in the trial, in the inverse order in which they had appeared. The results showed there were significant academic performance differences among the three groups, with normal-weight children scoring higher than overweight and obese children after Bonferroni correction. A mediation model revealed a partial indirect effect of working memory in the relationship between obesity and academic performance. Although the performance of obese children in basic working memory tests was poorer than that of normal-weight children, they recalled more items than normal-weight children in working memory tasks involving with food/drink. Working memory deficits partially explain the poor academic performance of obese children. Those results indicated the obese children show domain-specific working memory deficits, whereas they recall more items than normal-weight children in working memory tasks associated with food/drink. PMID:28469593

  16. Glucocorticoid therapy-induced memory deficits: acute versus chronic effects.

    Science.gov (United States)

    Coluccia, Daniel; Wolf, Oliver T; Kollias, Spyros; Roozendaal, Benno; Forster, Adrian; de Quervain, Dominique J-F

    2008-03-26

    Conditions with chronically elevated glucocorticoid levels are usually associated with declarative memory deficits. Considerable evidence suggests that long-term glucocorticoid exposure may cause cognitive impairment via cumulative and long-lasting influences on hippocampal function and morphology. However, because elevated glucocorticoid levels at the time of retention testing are also known to have direct impairing effects on memory retrieval, it is possible that such acute hormonal influences on retrieval processes contribute to the memory deficits found with chronic glucocorticoid exposure. To investigate this issue, we examined memory functions and hippocampal volume in 24 patients with rheumatoid arthritis who were treated either chronically (5.3 +/- 1.0 years, mean +/- SE) with low to moderate doses of prednisone (7.5 +/- 0.8 mg, mean +/- SE) or without glucocorticoids. In both groups, delayed recall of words learned 24 h earlier was assessed under conditions of either elevated or basal glucocorticoid levels in a double-blind, placebo-controlled crossover design. Although the findings in this patient population did not provide evidence for harmful effects of a history of chronic prednisone treatment on memory performance or hippocampal volume per se, acute prednisone administration 1 h before retention testing to either the steroid or nonsteroid group impaired word recall. Thus, these findings indicate that memory deficits observed under chronically elevated glucocorticoid levels result, at least in part, from acute and reversible glucocorticoid effects on memory retrieval.

  17. Literacy: Exploring working memory systems.

    Science.gov (United States)

    Silva, Catarina; Faísca, Luís; Ingvar, Martin; Petersson, Karl Magnus; Reis, Alexandra

    2012-01-01

    Previous research showed an important association between reading and writing skills (literacy) and the phonological loop. However, the effects of literacy on other working memory components remain unclear. In this study, we investigated performance of illiterate subjects and their matched literate controls on verbal and nonverbal working memory tasks. Results revealed that the phonological loop is significantly influenced by literacy, while the visuospatial sketchpad appears to be less affected or not at all. Results also suggest that the central executive might be influenced by literacy, possibly as an expression of cognitive reserve.

  18. Can Interactive Working Memory Training Improve Learning?

    Science.gov (United States)

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  19. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Visual Perception and Working Memory in Schizotypal Personality Disorder

    Science.gov (United States)

    Farmer, Carrie M.; O’Donnell, Brian F.; Niznikiewicz, Margaret A.; Voglmaier, Martina M.; McCarley, Robert W.; Shenton, Martha E.

    2010-01-01

    Objective Patients affected by schizophrenia show deficits in both visual perception and working memory. The authors tested early-stage vision and working memory in subjects with schizotypal personality disorder, which has been biologically associated with schizophrenia. Method Eleven subjects who met DSM-III-R criteria for schizotypal personality disorder and 12 normal comparison subjects were evaluated. Performance thresholds were obtained for tests of visual discrimination and working memory. Both form and trajectory processing were evaluated for each task. Results Subjects with schizotypal personality disorder showed intact discrimination of form and trajectory but were impaired on working memory tasks. Conclusions These data suggest that subjects with schizotypal personality disorder, unlike patients affected by schizophrenia, have relatively intact visual perception. Subjects with schizotypal personality disorder do show specific deficits on tasks of comparable difficulty when working memory demands are imposed. Schizotypal personality disorder may be associated with a more specific visual processing deficit than schizophrenia, possibly reflecting disruption of frontal lobe systems subserving visual working memory operations. PMID:10784472

  1. Can verbal working memory training improve reading?

    Science.gov (United States)

    Banales, Erin; Kohnen, Saskia; McArthur, Genevieve

    2015-01-01

    The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.

  2. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men.

    Science.gov (United States)

    Luethi, Mathias; Meier, Beat; Sandi, Carmen

    2008-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult male students were randomly assigned to either the stress or the control group, with stress being induced by the Trier Social Stress Test (TSST). Salivary cortisol levels were assessed repeatedly throughout the experiment to validate stress effects. The results support previous evidence indicating complex effects of stress on different types of memory: A pronounced working memory deficit was associated with exposure to stress. No performance differences between groups of stressed and unstressed subjects were observed in verbal explicit memory (but note that learning and recall took place within 1 h and immediately following stress) or in implicit memory for neutral stimuli. Stress enhanced classical conditioning for negative but not positive stimuli. In addition, stress improved spatial explicit memory. These results reinforce the view that acute stress can be highly disruptive for working memory processing. They provide new evidence for the facilitating effects of stress on implicit memory for negative emotional materials. Our findings are discussed with respect to their potential relevance for psychiatric disorders, such as post traumatic stress disorder.

  3. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men

    Directory of Open Access Journals (Sweden)

    Mathias Luethi

    2009-01-01

    Full Text Available Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials, as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli. A total of 35 young adult male students were randomly assigned to either the stress or the control group, with stress being induced by the Trier Social Stress Test (TSST. Salivary cortisol levels were assessed repeatedly throughout the experiment to validate stress effects. The results support previous evidence indicating complex effects of stress on different types of memory: A pronounced working memory deficit was associated with exposure to stress. No performance differences between groups of stressed and unstressed subjects were observed in verbal explicit memory (but note that learning and recall took place within 1 hour and immediately following stress or in implicit memory for neutral stimuli. Stress enhanced classical conditioning for negative but not positive stimuli. In addition, stress improved spatial explicit memory. These results reinforce the view that acute stress can be highly disruptive for working memory processing. They provide new evidence for the facilitating effects of stress on implicit memory for negative emotional materials. Our findings are discussed with respect to their potential relevance for psychiatric disorders, such as post traumatic stress disorder.

  4. Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment

    Science.gov (United States)

    Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia

    2013-01-01

    Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…

  5. Working Memory Systems in the Rat.

    Science.gov (United States)

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Working Memory in Aphasia: Considering Discourse Processing and Treatment Implications.

    Science.gov (United States)

    Henderson, Amy; Kim, Hana; Kintz, Stephen; Frisco, Nicole; Wright, Heather Harris

    2017-02-01

    Evidence suggests that persons with aphasia (PWAs) present with working memory impairments that affect a variety of language tasks. Most of these studies have focused on the phonological loop component of working memory and little attention has been paid to the episodic buffer component. The episodic buffer, as a limited capacity, multimodal system that binds and integrates information from the phonological loop, visuospatial sketchpad, and long-term memory would likely be involved in discourse processing. The purposes of this article were to (1) review discourse level deficits associated with aphasia, (2) describe how a deficit at the level of the episodic buffer could cause such deficits, (3) to review discourse treatment approaches for PWAs, and (4) present preliminary results from a novel discourse treatment study for PWAs. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    Science.gov (United States)

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Adolescent social defeat decreases spatial working memory performance in adulthood.

    Science.gov (United States)

    Novick, Andrew M; Miiller, Leah C; Forster, Gina L; Watt, Michael J

    2013-10-17

    Adolescent social stress is associated with increased incidence of mental illnesses in adulthood that are characterized by deficits in cognitive focus and flexibility. Such enhanced vulnerability may be due to psychosocial stress-induced disruption of the developing mesocortical dopamine system, which plays a fundamental role in facilitating complex cognitive processes such as spatial working memory. Adolescent rats exposed to repeated social defeat as a model of social stress develop dopaminergic hypofunction in the medial prefrontal cortex as adults. To evaluate a direct link between adolescent social stress and later deficits in cognitive function, the present study tested the effects of adolescent social defeat on two separate tests of spatial working memory performance. Adult rats exposed to adolescent social defeat and their controls were trained on either the delayed win-shift task or the delayed alternating T-Maze task and then challenged with various delay periods. To evaluate potential differences in motivation for the food reward used in memory tasks, consumption and conditioned place preference for sweetened condensed milk were tested in a separate cohort of previously defeated rats and controls. Compared to controls, adult rats defeated in adolescence showed a delay-dependent deficit in spatial working memory performance, committing more errors at a 90 s and 5 min delay period on the T-maze and win-shift tasks, respectively. Observed memory deficits were likely independent of differences in reward motivation, as conditioned place preference for the palatable food used on both tasks was similar between the adolescent social defeat group and control. The results demonstrate that severe social stressors during adolescence can produce long term deficits in aspects of cognitive function. Given the dependence of spatial working memory on prefrontal dopamine, pharmacologically reversing dopaminergic deficiencies caused by adolescent social stress has the

  9. The neuroscience of positive memory deficits in depression

    Science.gov (United States)

    Dillon, Daniel G.

    2015-01-01

    Adults with unipolar depression typically show poor episodic memory for positive material, but the neuroscientific mechanisms responsible for this deficit have not been characterized. I suggest a simple hypothesis: weak memory for positive material in depression reflects disrupted communication between the mesolimbic dopamine pathway and medial temporal lobe (MTL) memory systems during encoding. This proposal draws on basic research showing that dopamine release in the hippocampus is critical for the transition from early- to late-phase long-term potentiation (LTP) that marks the conversion of labile, short-term memories into stable, long-term memories. Neuroimaging and pharmacological data from healthy humans paint a similar picture: activation of the mesolimbic reward circuit enhances encoding and boosts retention. Unipolar depression is characterized by anhedonia–loss of pleasure–and reward circuit dysfunction, which is believed to reflect negative effects of stress on the mesolimbic dopamine pathway. Thus, I propose that the MTL is deprived of strengthening reward signals in depressed adults and memory for positive events suffers accordingly. Although other mechanisms are important, this hypothesis holds promise as an explanation for positive memory deficits in depression. PMID:26441703

  10. Visual memory deficits in temporal lobe epilepsy: toward a multifactorial approach.

    Science.gov (United States)

    Vannucci, M

    2007-01-01

    Temporal lobe epilepsies (TLE) are associated with material-specific memory deficits depending on the side of seizure origin. However, while verbal memory deficits have been consistently reported in patients with left-sided TLE, the relationship between visual memory deficits and right-sided TLE is more complex. Here, we review factors that influence the pattern of lateralization and the nature of visual memory impairments in TLE and discuss the possible relationship between these deficits and perceptual impairments in TLE patients.

  11. Working Memory and Behavioural Problems in Relation to Malay Writing of Primary School Children

    Science.gov (United States)

    Ling, Teo-Sieak; Jiar, Yeo-Kee

    2017-01-01

    Deficit in working memory is common among young children across multiple abilities. Teachers have pointed to poor memory as one contributing factor to inattentiveness and short attention spans as well as some behavioural problems among students. This study aimed to explore the relationship among working memory, externalizing and internalizing…

  12. Research Paper Working memory functioning in children with ...

    African Journals Online (AJOL)

    Objective: Children with attention-deficit/hyperactivity disorder (ADHD) often experience working memory difficulties. However, research findings are inconsistent, making it difficult to compare results across studies. There are several reasons for this inconsistency. Firstly, most studies make no distinction between ADHD ...

  13. Effects of ¿9-Tetrahydrocannabinol on human working memory function

    NARCIS (Netherlands)

    Bossong, M.G.; Jansma, J.M.; Hell, van H.H.; Jager, G.; Oudman, E.; Saliasi, E.; Kahn, R.S.; Ramsey, N.F.

    2012-01-01

    Background Evidence indicates involvement of the endocannabinoid (eCB) system in both the pathophysiology of schizophrenia and working memory (WM) function. Additionally, schizophrenia patients exhibit relatively strong WM deficits. These findings suggest the possibility that the eCB system is also

  14. Is Working Memory Training Effective? A Meta-Analytic Review

    Science.gov (United States)

    Melby-Lervag, Monica; Hulme, Charles

    2013-01-01

    It has been suggested that working memory training programs are effective both as treatments for attention-deficit/hyperactivity disorder (ADHD) and other cognitive disorders in children and as a tool to improve cognitive ability and scholastic attainment in typically developing children and adults. However, effects across studies appear to be…

  15. Verbal Working Memory in Children With Cochlear Implants.

    Science.gov (United States)

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Low, Keri E; Lowenstein, Joanna H

    2017-11-09

    Verbal working memory in children with cochlear implants and children with normal hearing was examined. Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code.

  16. GABA level, gamma oscillation, and working memory performance in schizophrenia

    Directory of Open Access Journals (Sweden)

    Chi-Ming A. Chen

    2014-01-01

    Full Text Available A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24 compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC, and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7 had significantly lower amplitudes in gamma oscillations than controls (n = 9. However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16 significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  17. Does Working Memory Impact Functional Outcomes in Individuals With ADHD: A Qualitative and Comprehensive Literature Review.

    Science.gov (United States)

    Fried, Ronna; Abrams, Jessica; Hall, Anna; Feinberg, Leah; Pope, Amanda; Biederman, Joseph

    2017-09-01

    Working Memory (WM) is a domain of executive functioning often impaired in individuals with ADHD. Although assumed to cause difficulties across functioning, the scope of impairments from WM deficits in ADHD has not been investigated. The aim of this study was to examine outcomes associated with WM deficits in ADHD. We conducted a search of the scientific literature on WM deficits, and Freedom From Distractibility (FFD), in ADHD using PubMed and PsycInfo databases. The final sample included 11 controlled studies of WM/FFD deficits in ADHD with operationalized assessment of outcomes in academic, social, and emotional areas. WM assessment was divided into auditory-verbal memory (AVM) and spatial-visual memory (SWM). Seven studies examined WM deficits in academic functioning, eight studies assessed WM deficits in social functioning, and three assessed WM deficits in psychopathology. The majority of the literature suggests that WM deficits affect primarily academic functioning.

  18. Working Memory Influences on Long-Term Memory and Comprehension

    National Research Council Canada - National Science Library

    Radvansky, Gabriel

    2004-01-01

    .... This study looked at how comprehension and memory processing at the mental model level is related to traditional measures of working memory capacity, including the word span, reading span, operation...

  19. Aging-associated excess formaldehyde leads to spatial memory deficits

    Science.gov (United States)

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Li, Hui; Luo, Hongjun; Qiang, Min; Su, Tao; Wu, Beibei; Liu, Ying; Yang, Xu; Wan, You; Cui, Dehua; He, Rongqiao

    2013-01-01

    Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging. PMID:23657727

  20. Brain areas involved in spatial working memory.

    NARCIS (Netherlands)

    Asselen, M. van; Kessels, R.P.C.; Neggers, S.F.W.; Kappelle, L.J.; Frijns, C.J.M.; Postma, A.

    2006-01-01

    Spatial working memory entails the ability to keep spatial information active in working memory over a short period of time. To study the areas of the brain that are involved in spatial working memory, a group of stroke patients was tested with a spatial search task. Patients and healthy controls

  1. Working Memory in Children With Neurocognitive Effects From Sickle Cell Disease: Contributions of the Central Executive and Processing Speed.

    Science.gov (United States)

    Smith, Kelsey E; Schatz, Jeffrey

    2016-01-01

    Children with sickle cell disease (SCD) are at risk for working memory deficits due to multiple disease processes. We assessed working memory abilities and related functions in 32 school-age children with SCD and 85 matched comparison children using Baddeley's working memory model as a framework. Children with SCD performed worse than controls for working memory, central executive function, and processing/rehearsal speed. Central executive function was found to mediate the relationship between SCD status and working memory, but processing speed did not. Cognitive remediation strategies that focus on central executive processes may be important for remediating working memory deficits in SCD.

  2. Working memory influences processing speed and reading fluency in ADHD.

    Science.gov (United States)

    Jacobson, Lisa A; Ryan, Matthew; Martin, Rebecca B; Ewen, Joshua; Mostofsky, Stewart H; Denckla, Martha B; Mahone, E Mark

    2011-01-01

    Processing-speed deficits affect reading efficiency, even among individuals who recognize and decode words accurately. Children with ADHD who decode words accurately can still have inefficient reading fluency, leading to a bottleneck in other cognitive processes. This "slowing" in ADHD is associated with deficits in fundamental components of executive function underlying processing speed, including response selection. The purpose of the present study was to deconstruct processing speed in order to determine which components of executive control best explain the "processing" speed deficits related to reading fluency in ADHD. Participants (41 ADHD, 21 controls), ages 9-14 years, screened for language disorders, word reading deficits, and psychiatric disorders, were administered measures of copying speed, processing speed, reading fluency, working memory, reaction time, inhibition, and auditory attention span. Compared to controls, children with ADHD showed reduced oral and silent reading fluency and reduced processing speed-driven primarily by deficits on WISC-IV Coding. In contrast, groups did not differ on copying speed. After controlling for copying speed, sex, severity of ADHD-related symptomatology, and GAI, slowed "processing" speed (i.e., Coding) was significantly associated with verbal span and measures of working memory but not with measures of response control/inhibition, lexical retrieval speed, reaction time, or intrasubject variability. Further, "processing" speed (i.e., Coding, residualized for copying speed) and working memory were significant predictors of oral reading fluency. Abnormalities in working memory and response selection (which are frontally mediated and enter into the output side of processing speed) may play an important role in deficits in reading fluency in ADHD, potentially more than posteriorally mediated problems with orienting of attention or perceiving the stimulus.

  3. Emotional Working Memory and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Nicola Mammarella

    2014-01-01

    Full Text Available A number of recent studies have reported that working memory does not seem to show typical age-related deficits in healthy older adults when emotional information is involved. Differently, studies about the short-term ability to encode and actively manipulate emotional information in dementia of Alzheimer’s type are few and have yielded mixed results. Here, we review behavioural and neuroimaging evidence that points to a complex interaction between emotion modulation and working memory in Alzheimer’s. In fact, depending on the function involved, patients may or may not show an emotional benefit in their working memory performance. In addition, this benefit is not always clearly biased (e.g., towards negative or positive information. We interpret this complex pattern of results as a consequence of the interaction between multiple factors including the severity of Alzheimer’s disease, the nature of affective stimuli, and type of working memory task.

  4. Individual differences in children's memory and reading comprehension: an investigation of semantic and inhibitory deficits.

    Science.gov (United States)

    Cain, Kate

    2006-07-01

    Three experiments compared the verbal memory skills of children with poor reading comprehension with that of same-age good comprehenders. The aims were to determine if semantic and/or inhibitory deficits explained comprehenders' problems on measures of verbal short-term memory and verbal working memory. In Experiment 1 there were no group differences on word- and number-based measures of short-term storage and no evidence that semantic knowledge mediated word recall. In Experiment 2 poor comprehenders were impaired on word- and number-based assessments of working memory, the greatest deficit found on the word-based task. Error analysis of both word-based tasks revealed that poor comprehenders were more likely to recall items that should have been inhibited than were good comprehenders. Experiment 3 extended this finding: Poor comprehenders were less able to inhibit information that was no longer relevant. Together, these findings suggest that individual differences in inhibitory processing influence the ability to regulate the contents of working memory, which may contribute to the differential memory performance of good and poor comprehenders.

  5. What can research on schizophrenia tell us about the cognitive neuroscience of working memory?

    Science.gov (United States)

    Barch, D M

    2006-04-28

    Work with individuals with lesions to specific brain regions has long been used to test or even generate theories regarding the neural systems that support specific cognitive processes. Work with individuals who have neuropsychiatric disorders that also involve neurobiological disturbances may be able to play a similar role in theory testing and building. For example, schizophrenia is a psychiatric disorder thought to involve a range of neurobiological disturbances. Further, individuals with schizophrenia are known to suffer from deficits in working memory, meaning that examining the work on the neurobiology of working memory deficits in schizophrenia may help to further our understanding of the cognitive neuroscience of working memory. This article discusses the pros and cons of extrapolating from work in schizophrenia to models of healthy working memory function, and reviews the literature on working memory function in schizophrenia in relationship to existing human and non-human primate models of the cognitive neuroscience of working memory.

  6. Working memory impairment in children with developmental dyslexia: is it just a phonological deficity?

    Science.gov (United States)

    Menghini, Deny; Finzi, Alessandra; Carlesimo, Giovanni Augusto; Vicari, Stefano

    2011-01-01

    Although reduced verbal span is well documented in individuals with developmental dyslexia, the existing data on visual-spatial span are inconclusive. The aim of the present study was to ascertain whether the working memory deficit in developmental dyslexia is confined to verbal material or whether it also involves visual-object and visual-spatial information. Results document deficits on span tasks tapping verbal, visual-spatial, and visual-object working memory in dyslexic children and indicate that the working memory deficit in developmental dyslexia is not limited to dysfunction of phonological components but also involves visual-object and visual-spatial information.

  7. Rethinking the connection between working memory and language impairment.

    Science.gov (United States)

    Archibald, Lisa M D; Harder Griebeling, Katherine

    2016-05-01

    Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. To examine the processing function of working memory in children with low language (LL) by employing tasks imposing increasing processing loads with constant storage demands individually adjusted based on each participant's short-term memory capacity. School-age groups with LL (n = 17) and typical language with either average (n = 28) or above-average nonverbal intelligence (n = 15) completed complex working memory-span tasks varying processing load while keeping storage demands constant, varying storage demands while keeping processing load constant, simple storage-span tasks, and measures of language and nonverbal intelligence. Teachers completed questionnaires about cognition and learning. Significantly lower scores were found for the LL than either matched group on storage-based tasks, but no group differences were found on the tasks varying processing load. Teachers' ratings of oral expression and mathematics abilities discriminated those who did or did not complete the most challenging cognitive tasks. The results implicate a deficit in the phonological storage but not in the central executive component of working memory for children with LL. Teacher ratings may reveal personality traits related to perseverance of effort in cognitive research. © 2015 Royal College of Speech and Language Therapists.

  8. Working Memory, Language Skills, and Autism Symptomatology

    Directory of Open Access Journals (Sweden)

    Jillian M. Schuh

    2012-11-01

    Full Text Available While many studies have reported working memory (WM impairments in autism spectrum disorders, others do not. Sample characteristics, WM domain, and task complexity likely contribute to these discrepancies. Although deficits in visuospatial WM have been more consistently documented, there is much controversy regarding verbal WM in autism. The goal of the current study was to explore visuospatial and verbal WM in a well-controlled sample of children with high-functioning autism (HFA and typical development. Individuals ages 9–17 with HFA (n = 18 and typical development (n = 18, were carefully matched on gender, age, IQ, and language, and were administered a series of standardized visuospatial and verbal WM tasks. The HFA group displayed significant impairment across WM domains. No differences in performance were noted across WM tasks for either the HFA or typically developing groups. Over and above nonverbal cognition, WM abilities accounted for significant variance in language skills and symptom severity. The current study suggests broad WM limitations in HFA. We further suggest that deficits in verbal WM are observed in more complex tasks, as well as in simpler tasks, such as phonological WM. Increased task complexity and linguistic demands may influence WM abilities.

  9. Improving Children's Working Memory and Classroom Performance

    Science.gov (United States)

    St Clair-Thompson, Helen; Stevens, Ruth; Hunt, Alexandra; Bolder, Emma

    2010-01-01

    Previous research has demonstrated close relationships between working memory and children's scholastic attainment. The aim of the present study was to explore a method of improving working memory, using memory strategy training. Two hundred and fifty-four children aged five to eight years were tested on measures of the phonological loop,…

  10. Visual imagery deficits, impaired strategic retrieval, or memory loss: disentangling the nature of an amnesic person's autobiographical memory deficit.

    Science.gov (United States)

    Rosenbaum, R Shayna; McKinnon, Margaret C; Levine, Brian; Moscovitch, Morris

    2004-01-01

    Conclusions about the duration of hippocampal contributions to our autobiographical record of personal episodes have come under intense scrutiny in recent years. Interpretation is complicated by such factors as extent and site of lesions as well as test sensitivity. We describe the case of an amnesic person, K.C., with large, bilateral hippocampal lesions who figured prominently in the development of theories of remote memory due to his severely impoverished autobiographical memory extending across his entire lifetime. However, the presence of lesions in higher-order visual cortex raises the possibility that K.C.'s retrograde autobiographical amnesia is mediated by loss of long-term visual images, whereas widespread frontal lesions suggest that his impairment may relate to deficits in strategic retrieval rather than storage. Normal performance on an extensive battery of visual imagery tests refutes the imagery loss interpretation. To test for deficits in strategic retrieval, we used a more formal autobiographical memory test requiring generation of personal events under varying levels of retrieval support. However, even with rigorous contextual prompting, K.C. produced few pre-injury recollections; all were schematic, lacking the richness of detail produced by control participants, raising doubt that his deficit is one of retrieval. Findings are discussed in the context of theories concerning the duration of hippocampal-neocortical interactions in supporting autobiographical re-experiencing. The approach we used to investigate the effects of different lesions on memory provides a framework for dealing with other patients who present with an interesting functional deficit whose neuroanatomical source is difficult to specify due to widespread lesions.

  11. Effects of a Computerized Working Memory Training Program on Working Memory, Attention, and Academics in Adolescents with Severe LD and Comorbid ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Gray, S. A.; Chaban, P.; Martinussen, R.; Goldberg, R.; Gotlieb, H.; Kronitz, R.; Hockenberry, M.; Tannock, R.

    2012-01-01

    Background: Youths with coexisting learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) are at risk for poor academic and social outcomes. The underlying cognitive deficits, such as poor working memory (WM), are not well targeted by current treatments for either LD or ADHD. Emerging evidence suggests that WM might be…

  12. Working memory for meaningless manual gestures.

    Science.gov (United States)

    Rudner, Mary

    2015-03-01

    Effects on working memory performance relating to item similarity have been linked to prior categorisation of representations in long-term memory. However, there is evidence from gesture processing that this link may not be obligatory. The present study investigated whether working memory for incidentally generated meaningless manual gestures is influenced by formational similarity and whether this effect is modulated by working-memory load. Results showed that formational similarity did lower performance, demonstrating that similarity effects are not dependent on prior categorisation. However, this effect was only found when working-memory load was low, supporting a flexible resource allocation model according to which it is the quality rather than quantity of working memory representations that determines performance. This interpretation is in line with proposals suggesting language modality specific allocation of resources in working memory. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  13. What works in auditory working memory? A neural oscillations perspective.

    Science.gov (United States)

    Wilsch, Anna; Obleser, Jonas

    2016-06-01

    Working memory is a limited resource: brains can only maintain small amounts of sensory input (memory load) over a brief period of time (memory decay). The dynamics of slow neural oscillations as recorded using magneto- and electroencephalography (M/EEG) provide a window into the neural mechanics of these limitations. Especially oscillations in the alpha range (8-13Hz) are a sensitive marker for memory load. Moreover, according to current models, the resultant working memory load is determined by the relative noise in the neural representation of maintained information. The auditory domain allows memory researchers to apply and test the concept of noise quite literally: Employing degraded stimulus acoustics increases memory load and, at the same time, allows assessing the cognitive resources required to process speech in noise in an ecologically valid and clinically relevant way. The present review first summarizes recent findings on neural oscillations, especially alpha power, and how they reflect memory load and memory decay in auditory working memory. The focus is specifically on memory load resulting from acoustic degradation. These findings are then contrasted with contextual factors that benefit neural as well as behavioral markers of memory performance, by reducing representational noise. We end on discussing the functional role of alpha power in auditory working memory and suggest extensions of the current methodological toolkit. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  14. Grammatical sensitivity and working memory in children with language impairment.

    Science.gov (United States)

    Marton, Klara; Campanelli, Luca; Farkas, Lajos

    2011-12-01

    Children with primary language impairment (LI) show a deficit in processing different grammatical structures, verb inflections, and syntactically complex sentences among other things (Clahsen-Hansen 1997; Leonard et al. 1997). Cross-linguistic research has shown that the pattern of performance is language-specific. We examined grammatical sensitivity to word order and agreement violations in 50 Hungarian-speaking children with and without LI. The findings suggest a strong association between sensitivity to grammatical violations and working memory capacity. Variations in working memory performance predicted grammatical sensitivity. Hungarian participants with LI exhibited a weakness in detecting both agreement and word order violations.

  15. Transfer after Working Memory Updating Training.

    Science.gov (United States)

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.

  16. Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions.

    Science.gov (United States)

    Kofler, Michael J; Alderson, R Matt; Raiker, Joseph S; Bolden, Jennifer; Sarver, Dustin E; Rapport, Mark D

    2014-05-01

    The current study examined competing predictions of the default mode, cognitive neuroenergetic, and functional working memory models of attention-deficit/hyperactivity disorder (ADHD) regarding the relation between neurocognitive impairments in working memory and intraindividual variability. Twenty-two children with ADHD and 15 typically developing children were assessed on multiple tasks measuring intraindividual reaction time (RT) variability (ex-Gaussian: tau, sigma) and central executive (CE) working memory. Latent factor scores based on multiple, counterbalanced tasks were created for each construct of interest (CE, tau, sigma) to reflect reliable variance associated with each construct and remove task-specific, test-retest, and random error. Bias-corrected, bootstrapped mediation analyses revealed that CE working memory accounted for 88% to 100% of ADHD-related RT variability across models, and between-group differences in RT variability were no longer detectable after accounting for the mediating role of CE working memory. In contrast, RT variability accounted for 10% to 29% of between-group differences in CE working memory, and large magnitude CE working memory deficits remained after accounting for this partial mediation. Statistical comparison of effect size estimates across models suggests directionality of effects, such that the mediation effects of CE working memory on RT variability were significantly greater than the mediation effects of RT variability on CE working memory. The current findings question the role of RT variability as a primary neurocognitive indicator in ADHD and suggest that ADHD-related RT variability may be secondary to underlying deficits in CE working memory.

  17. Impact of Education on Memory Deficits in Subclinical Depression.

    Science.gov (United States)

    McLaren, Molly E; Szymkowicz, Sarah M; Kirton, Joshua W; Dotson, Vonetta M

    2015-08-01

    Elevated depressive symptoms are associated with cognitive deficits, while higher education protects against cognitive decline. This study was conducted to test if education level moderates the relationship between depressive symptoms and cognitive function. Seventy-three healthy, dementia-free adults aged 18-81 completed neuropsychological tests, as well as depression and anxiety questionnaires. Controlling for age, sex, and state anxiety, we found a significant interaction of depressive symptoms and education for immediate and delayed verbal memory, such that those with a higher education level performed well regardless of depressive symptomatology, whereas those with lower education and high depressive symptoms had worse performance. No effects were found for executive functioning or processing speed. Results suggest that education protects against verbal memory deficits in individuals with elevated depressive symptoms. Further research on cognitive reserve in depression-related cognitive deficits and decline is needed to understand the mechanisms behind this phenomenon. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Working memory load attenuates emotional enhancement in recognition memory

    OpenAIRE

    Ewa Aurelia Miendlarzewska; Gijs eVan Elswijk; Carlo Vittorio Cannistraci; Raymond evan Ee

    2013-01-01

    Emotionally arousing stimuli are perceived and remembered better than neutral stimuli. Under threat, this negativity bias is further increased. We investigated whether working memory load can attenuate incidental memory for emotional images. Two groups of participants performed the N-back task with two working memory load levels. In one group, we induced anxiety using a threat-of-shock paradigm to increase attentional processing of negative information. During task performance we incidentally...

  19. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  20. Working memory and the memory distortion component of hindsight bias.

    Science.gov (United States)

    Calvillo, Dustin P

    2012-01-01

    One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.

  1. Working memory, reading, and mathematical skills in children with developmental coordination disorder.

    Science.gov (United States)

    Alloway, Tracy Packiam

    2007-01-01

    The aim of the present study was investigate the relationship between working memory and reading and mathematical skills in 55 children diagnosed with developmental coordination disorder (DCD). The findings indicate a pervasive memory deficit in all memory measures. In particular, deficits observed in visuospatial short-term and working memory tasks were significantly worse than in the verbal short-term memory ones. On the basis of these deficits, the sample was divided into high and low visuospatial memory ability groups. The low visuospatial memory group performed significantly worse on the attainment measures compared to the high visuospatial memory group, even when the contribution of IQ was taken into account. When the sample was divided into high and low verbal working memory ability groups, verbal working memory skills made a unique contribution to attainment only when verbal IQ was taken into account, but not when performance IQ was statistically controlled. It is possible that the processing demands of the working memory tasks together with the active motor component reflected in the visuospatial memory tasks and performance IQ subtest both play a crucial role in learning in children with DCD.

  2. Working Memory in Children with Developmental Disorders

    Science.gov (United States)

    Alloway, Tracy Packiam; Rajendran, Gnanathusharan; Archibald, Lisa M. D.

    2009-01-01

    The aim of the present study was to directly compare working memory skills across students with different developmental disorders to investigate whether the uniqueness of their diagnosis would impact memory skills. The authors report findings confirming differential memory profiles on the basis of the following developmental disorders: Specific…

  3. Working Memory in Children with Reading Disabilities

    Science.gov (United States)

    Gathercole, Susan Elizabeth; Alloway, Tracy Packiam; Willis, Catherine; Adams, Anne-Marie

    2006-01-01

    This study investigated associations between working memory (measured by complex memory tasks) and both reading and mathematics abilities, as well as the possible mediating factors of fluid intelligence, verbal abilities, short-term memory (STM), and phonological awareness, in a sample of 46 6- to 11-year-olds with reading disabilities. As a…

  4. Working memory load attenuates emotional enhancement in recognition memory

    Directory of Open Access Journals (Sweden)

    Ewa Aurelia Miendlarzewska

    2013-03-01

    Full Text Available Emotionally arousing stimuli are perceived and remembered better than neutral stimuli. Under threat, this negativity bias is further increased. We investigated whether working memory load can attenuate incidental memory for emotional images. Two groups of participants performed the N-back task with two working memory load levels. In one group, we induced anxiety using a threat-of-shock paradigm to increase attentional processing of negative information. During task performance we incidentally and briefly flashed emotional distracter images which prolonged response times in both load conditions. A subsequent unannounced immediate recognition memory test revealed that when load at exposure had been low, recognition was better for negative items in both participant groups. This enhancement, however, was attenuated under high load, leaving performance on neutral items unchanged regardless of the threat-of-shock manipulation. We conclude that both in threat and in normal states working memory load at exposure can attenuate immediate emotional memory enhancement.

  5. Incoordination between Spikes and LFPs in Aβ1–42-mediated Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Wenwen eBai

    2014-11-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease that gradually induces cognitive deficits. Impairments of working memory have been typically observed in AD. It is well known that spikes and local field potentials (LFPs as well as the coordination between them encode information in normal brain function. However, the abnormal coordination between spikes and LFPs in the cognitive deficits of AD has remained largely unexplored. As amyloid-β peptide (Aβ is a causative factor for the cognitive impairments of AD, developing a mechanistic understanding of the contribution of Aβ to cognitive impairments may yield important insights into the pathophysiology of AD. In the present study, we simultaneously recorded spikes and LFPs from multiple electrodes implanted in the prefrontal cortex of rats (control and intra-hippocampal Aβ injection group that performed a Y-maze working memory task. The information changes in spikes and LFPs during the task were assessed by calculation of entropy. Then the coordination between spikes and LFPs was estimated by the correlation of LFP entropy and spike entropy. Compared with the control group, the Aβ group showed significantly weaker coordination between spikes and LFPs. Our results indicate that the incoordination between spikes and LFPs may provide a potential mechanism for the cognitive deficits in working memory of AD.

  6. Predictors of Memory Deficits in Adolescents and Young Adults with Congenital Heart Disease Compared to Healthy Controls

    Directory of Open Access Journals (Sweden)

    Nancy A. Pike

    2016-10-01

    Full Text Available Introduction: Adolescents and young adults with congenital heart disease [CHD] show a range of memory deficits, which can dramatically impact their clinical outcomes and quality of life. However, few studies have identified predictors of these memory changes. The purpose of this investigation was to identify predictors of memory deficits in adolescents and young adults with CHD after surgical palliation compared to healthy controls. Method: 156 adolescents and young adults [80 CHD and 76 controls; age 14-21 years] were recruited and administered an instrument to assess memory [Wide Range Assessment of Memory and Learning 2nd Edition – general memory index (GMI score] and completed questionnaires that measure anxiety, depression, sleepiness, health status, and self-efficacy. Descriptive and non-parametric statistics were used to assess group differences, and logistic regression to identify predictors of memory deficits. Results: CHD subjects consisted of 58% males, median age 17 years, 41% Hispanic, and medians of 2 previous heart surgeries and 14 years since last surgery. Memory deficits [GMI < 85] were identified in 50% CHD compared to 4% healthy controls [median GMI 85 vs. 108, p <0.001]. Of GMI subscale medians, CHD subjects had significantly worse memory performance vs. healthy controls [verbal 88 vs. 105, p <0.001; attention 88 vs. 109, p<0.001; working memory 86 vs. 108, p <0.001]. No significant differences appeared between groups for visual memory. Multiple clinical and psychosocial factors were identified which were statistically different on bivariate analyses between the subjects with and without memory deficits. By multivariate analysis, male gender, number of surgeries, anxiety, and self-efficacy emerged as independent predictors of memory deficits. Conclusion: Adolescents and young adults with CHD, more than a decade since their last surgery, show significant verbal, attention and working memory deficits over controls. To enhance

  7. Relating color working memory and color perception.

    Science.gov (United States)

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Transfer after Working Memory Updating Training

    OpenAIRE

    Otto Waris; Anna Soveri; Matti Laine

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active cont...

  9. Working Memory Capacity, Confidence and Scientific Thinking

    Science.gov (United States)

    Al-Ahmadi, Fatheya; Oraif, Fatima

    2009-01-01

    Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…

  10. Visual working memory capacity and proactive interference.

    Directory of Open Access Journals (Sweden)

    Joshua K Hartshorne

    Full Text Available BACKGROUND: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. METHODOLOGY/PRINCIPAL FINDINGS: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. CONCLUSIONS/SIGNIFICANCE: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  11. How Human Memory and Working Memory Work in Second Language Acquisition

    OpenAIRE

    小那覇, 洋子; Onaha, Hiroko

    2014-01-01

    We often draw an analogy between human memory and computers. Information around us is taken into our memory storage first, and then we use the information in storage whatever we need it in our daily life. Linguistic information is also in storage and we process our thoughts based on the memory that is stored. Memory storage consists of multiple memory systems; one of which is called working memory that includes short-term memory. Working memory is the central system that underpins the process...

  12. Memory deficits at 0.6 MPa ambient air pressure.

    Science.gov (United States)

    Tetzlaff, K; Leplow, B; Deistler, I; Ramm, G; Fehm-Wolfsdorf, G; Warninghoff, V; Bettinghausen, E

    1998-01-01

    We investigated the effects of an elevated ambient air pressure of 0.6 MPa on verbal memory performance. Twenty-four experienced divers were compressed in a dry hyperbaric chamber to pressures equivalent to 0.5 meters of seawater (msw) (n = 12) and 50 msw (n = 12). Verbal memory was assessed by free recall and recognition of visually presented word lists. The testing procedure specified learning and testing at surface, learning at surface and testing at depth, learning and testing at depth, and learning at depth and testing at surface. Non-specific stress was assessed by measurement of salivary cortisol, heart rate, and subjective stress before, during, and after the dives. The 50-msw dive group showed a significant decrease of free recall performance when the material was learned at depth (P stressors in the hyperbaric environment contributed to these deficits cannot be eliminated entirely.

  13. Dysgraphia for letters: a form of motor memory deficit?

    Science.gov (United States)

    Kapur, N; Lawton, N F

    1983-01-01

    A case of pure dysgraphia is presented in which the patient could accurately copy letters which she could not write. The patient did not show any evidence of significant reading or speech impairment or any buccofacial or limb apraxia. Both oral and "block spelling" performance were intact. The writing impairment, which was bilateral, appeared to consist of a memory difficulty for the motor movements associated with letters. The dysgraphia was shown to be specific to letters as the patient was able to transcribe certain numbers and patterns which were similar to letters in their visuospatial complexity. It is suggested that dysgraphia for letters may represent a specific type of motor memory deficit, dissociable from copying skills and the ability to draw letter-like forms. PMID:6875593

  14. Mental Imagery and Visual Working Memory

    Science.gov (United States)

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  15. Allocentric spatial learning and memory deficits in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Pamela A Banta Lavenex

    2015-02-01

    Full Text Available Studies have shown that persons with Down Syndrome (DS exhibit relatively poor language capacities, and impaired verbal and visuoperceptual memory, whereas their visuospatial memory capacities appear comparatively spared. Individuals with DS recall better where an object was previously seen than what object was previously seen. However, most of the evidence concerning preserved visuospatial memory comes from tabletop or computerized experiments which are biased towards testing egocentric (viewpoint-dependent spatial representations. Accordingly, allocentric (viewpoint-independent spatial learning and memory capacities may not be necessary to perform these tasks. Thus, in order to more fully characterize the spatial capacities of individuals with DS, allocentric processes underlying real-world navigation must also be investigated. We tested 20 participants with DS and 16 mental age-matched, typically developing (TD children in a real-world, allocentric spatial memory task. During local cue (LC trials, participants had to locate three rewards marked by local color cues, among 12 locations distributed in a 4 m X 4 m arena. During allocentric spatial (AS trials, participants had to locate the same three rewards, in absence of local cues, based on their relations to distal environmental cues. All TD participants chose rewarded locations in LC and AS trials at above chance level. In contrast, although all but one of the participants with DS exhibited a preference for the rewarded locations in LC trials, only 50% of participants with DS chose the rewarded locations at above chance level in AS trials. As a group, participants with DS performed worse than TD children on all measures of task performance. These findings demonstrate that individuals with DS are impaired at using an allocentric spatial representation to learn and remember discrete locations in a controlled environment, suggesting persistent and pervasive deficits in hippocampus

  16. Bombesin administration impairs memory and does not reverse memory deficit caused by sleep deprivation.

    Science.gov (United States)

    Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C

    2017-07-28

    Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Childhood Obesity and Academic Performance: The Role of Working Memory

    OpenAIRE

    Wu, Nan; Chen, Yulu; YANG, JINHUA; Li, Fei

    2017-01-01

    The present study examined the role of working memory in the association between childhood obesity and academic performance, and further determined whether memory deficits in obese children are domain-specific to certain tasks or domain-general. A total of 227 primary school students aged 10–13 years were analyzed for weight and height, of which 159 children (44 “obese,” 23 “overweight,” and 92 “normal weight”) filled out questionnaires on school performance and socioeconomic status. And then...

  18. Working memory effects in speeded RSVP tasks.

    Science.gov (United States)

    Gil-Gómez de Liaño, Beatriz; Potter, Mary C; Rodríguez, Carmen

    2014-01-01

    The present paper examines the effects of memory contents and memory load in rapid serial visual presentation (RSVP) speeded tasks, trying to explain previous inconsistent results. We used a one target (Experiment 1) and a two-target (Experiment 2) RSVP task with a concurrent memory load of one or four items, in a dual-task paradigm. A relation between material in working memory and the target in the RSVP impaired the identification of the target. In Experiments 3 and 4, the single task was to determine whether any information in memory matched the target in the RSVP, while varying the memory load. A match was detected faster than a non-match, although only when there was some distance between targets in the RSVP (Experiment 4). The results suggest that memory contents automatically capture attention, slowing processing when the memory contents are irrelevant to the task, and speeding processing when they are relevant.

  19. Poor frequency discrimination probes dyslexics with particularly impaired working memory.

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2004-01-01

    Substantial difficulties in performing simple auditory discriminations were previously found in some individuals with a specific reading disability but not in others. This high variability in psychoacoustic performance raises the question of whether this difficulty is related to the reading deficit. Addressing this question, we compared adult dyslexics with and without difficulty in simple auditory discriminations, using 2-tone frequency discrimination as our probe. The distribution of their frequency discrimination scores was bimodal. On this basis, we divided our participants into subgroups having either poor or adequate psychoacoustic performance. Only dyslexics with poor psychoacoustic scores had significantly impaired verbal working memory compared to their matched controls. Furthermore, and only in this subgroup, working memory scores were correlated with both cognitive abilities and reading-related tasks. Consistent with the hypothesis that in this subgroup poor working memory impedes performance in a broad range of academically related tasks, we found that the majority of dyslexics in this subgroup had more extensive academic difficulties and consequently needed special support in schools. We propose that dyslexics with poor psychoacoustic abilities form a distinct subtype of dyslexia in which the core deficit is not specific to phonological components. For these individuals, poor verbal working memory may be the main impediment to success in academic environments. Copyright (c) 2004 S. Karger AG, Basel.

  20. Neuropsychological performance in schizotypal personality disorder: importance of working memory.

    Science.gov (United States)

    Mitropoulou, Vivian; Harvey, Phillip D; Zegarelli, Gayle; New, Antonia S; Silverman, Jeremy M; Siever, Larry J

    2005-10-01

    Cognitive deficits consistently have been reported in schizophrenia patients and in patients with schizotypal personality disorder. For this study, the authors wanted to identify which of the domains of cognitive impairment represent "core" deficits of schizophrenia, comparing subjects with schizotypal personality disorder to two comparison groups: healthy volunteers and patients with personality disorders unrelated to schizophrenia. Three groups completed a neuropsychological battery: patients with DSM-III-R schizotypal personality disorder (N=82); patients with DSM-III-R personality disorders unrelated to schizophrenia (i.e., a personality disorder other than schizotypal, schizoid, or paranoid [N=44]); and healthy volunteers (N=63). The battery included the California Verbal Learning Test, Trailmaking Test parts A and B, the Dot test of working memory, the Stroop Color and Word Test, the Paced Auditory Serial Addition Test, the WMS visual reproduction test, and the WAIS-R vocabulary and block design. Normative standards for performance that controlled for age, gender, and education were created from the scores of the healthy volunteers. Overall, schizotypal personality disorder patients performed significantly worse than the healthy volunteers and those with personality disorders unrelated to schizophrenia. Specifically, patients with schizotypal personality disorder demonstrated impaired performance on the Paced Auditory Serial Addition Test, WMS visual reproduction test, Dot test, and California Verbal Learning Test. In addition, in a regression analysis, performance on the Paced Auditory Serial Addition Test demonstrated the largest effect size. Indeed, it accounted for unique variance above and beyond all other cognitive measures, since controlling for Paced Auditory Serial Addition Test performance abolished group differences across all other measures. Patients with schizotypal personality disorder demonstrated moderate cognitive impairment compared with

  1. Antioxidant vitamins reduce acute meal-induced memory deficits in adults with type 2 diabetes.

    Science.gov (United States)

    Chui, Michael Herman; Greenwood, Carol E

    2008-07-01

    Memory impairment is observed in adults with type 2 diabetes mellitus (T2DM), with further acute deficits after meal ingestion. This study explored whether postprandial oxidative stress was a contributor to these meal-induced memory deficits. Sixteen adults with T2DM (mean age, 63.5 +/- 2.1 years) who were not regularly taking high-dose antioxidant supplements were fed a high-fat meal, the same test meal with vitamins C (1000 mg) and E (800 IU) tablets, or water on 3 separate occasions. After meal ingestion, a battery of cognitive tests were administered, which included measures of delayed verbal memory, assessed at 60 and 105 minutes after meal ingestion. Relative to water consumption, the high-fat meal resulted in poorer performance at 105 minutes postingestion on measures of delayed verbal recall (word list and paragraph recall) and working memory (Digit-Span Forward). Coconsumption of antioxidant vitamins and high-fat meal prevented this meal-induced deficit such that performance on these tasks was indistinguishable from that after water intake. At the same time point, a small but significant improvement on the word-naming and color-naming components of Stroop was observed after meal ingestion, relative to water, irrespective of whether antioxidants were consumed, demonstrating the specificity of meal-induced impairments to memory function. Executive function, assessed by Trails Parts A and B, was not influenced by meal or antioxidant ingestion. In adults with T2DM, coconsumption of antioxidant vitamins minimizes meal-induced memory impairment, implicating oxidative stress as a potential contributor to these decrements.

  2. Impaired retention is responsible for temporal order memory deficits in mild cognitive impairment.

    Science.gov (United States)

    Gillis, M Meredith; Quinn, Kristen M; Phillips, Pamela A T; Hampstead, Benjamin M

    2013-05-01

    Temporal order memory, or remembering the order of events, is critical for everyday functioning and is difficult for patients with mild cognitive impairment (MCI). It is currently unclear whether these patients have difficulty acquiring and/or retaining such information and whether deficits in these patients are in excess of "normal" age-related declines. Therefore, the current study examined age and disease-related changes in temporal order memory as well as whether memory load played a role in such changes. Young controls (n=25), older controls (n=34), and MCI patients (n=32) completed an experimental task that required the reconstruction of sequences that were 3, 4, or 5 items in length both immediately after presentation (i.e., immediate recall) and again after a 10-min delay (i.e., delayed recall). During the immediate recall phase, there was an effect of age largely due to reduced performance at the two longest span lengths. Older controls and MCI patients only differed during the five span (controls>MCI). During the delayed recall, however, there were significant effects of both age and MCI regardless of span length. In MCI patients, immediate recall was significantly correlated with measures of executive functioning, whereas delayed recall performance was only related to other memory tests. These findings suggest that MCI patients experience initial temporal order memory deficits at the point when information begins to exceed working memory capacity and become dependent on medial temporal lobe functioning. Longer-term deficits are due to an inability to retain information, consistent with the characteristic medial temporal lobe dysfunction in MCI. Published by Elsevier B.V.

  3. Dimensions of working memory dysfunction in schizophrenia.

    NARCIS (Netherlands)

    Pukrop, R.; Matuschek, E.; Ruhrmann, S.; Brockhaus, A.; Tendolkar, I.; Bertsch, A.; Klosterkötter, J.

    2003-01-01

    The aim of this study was to investigate the underlying structure of eight working memory tests used to assess prefrontal dysfunction in schizophrenia research [Letter-Number Span (LNS), Digit-Symbol Test (DST), Trail-Making Test B (TMT-B), Delayed Response Task (DRT) for spatial working memory,

  4. Working Memory and Developmental Language Impairments

    Science.gov (United States)

    Henry, Lucy A.; Botting, Nicola

    2017-01-01

    Children with developmental language impairments (DLI) are often reported to show difficulties with working memory. This review describes the four components of the well-established working memory model, and considers whether there is convincing evidence for difficulties within each component in children with DLI. The emphasis is on the most…

  5. Working Memory Intervention: A Reading Comprehension Approach

    Science.gov (United States)

    Perry, Tracy L.; Malaia, Evguenia

    2013-01-01

    For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…

  6. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  7. Differential working memory performance as support for the Kraepelinian dichotomy between schizophrenia and bipolar disorder? An experimental neuropsychological study using circuit-specific working memory tasks.

    Science.gov (United States)

    Zilles, David; Jung, Raphael; Gruber, Eva; Falkai, Peter; Gruber, Oliver

    2013-05-01

    The traditional clinical dichotomy of schizophrenia and bipolar disorder has been challenged by recent findings of an at least in part common genetic basis. The investigation of neurocognitive functions like working memory may thereby contribute to elucidate common versus distinct pathophysiological processes of the major psychoses. To date direct comparisons of working memory functioning in schizophrenia and bipolar disorder have been rare and moreover have revealed inconsistent findings. In this study we aimed to further clarify the diagnostic specificity of working memory deficits in schizophrenia and bipolar disorder. Fifty patients with schizophrenia, 23 patients with bipolar disorder and 53 healthy controls were tested with regard to specific dysfunctions of verbal and visuospatial working memory components using a set of well-characterized, brain circuit-specific paradigms with established brain-behaviour relationships. Patients with schizophrenia showed marked deficits across different working memory domains while bipolar patients performed intermediate with no significant differences compared to the control group. Working memory performance of patients with schizophrenia and bipolar disorder significantly differed in only one particular task requiring articulatory rehearsal of verbal information. While these results do not provide unequivocal support for the Kraepelinian dichotomy, they are consistent with recent findings suggesting the existence of a specific subgroup of schizophrenia patients phenotypically characterized by selective deficits of the articulatory rehearsal mechanism of verbal working memory.

  8. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    Science.gov (United States)

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  9. Training working memory in kindergarten children: Effects on working memory and early numeracy

    NARCIS (Netherlands)

    Kroesbergen, E.H.; Noordende, J.E. van 't; Kolkman, M.E.

    2014-01-01

    This study investigated the relationship between working memory and early numeracy. It aimed toexplore the possibility of training young children's working memory and to investigate the effects ofsuch training both on working memory and on the specific domain of early numerical skills. Measuresof

  10. Dopamine, Working Memory, and Training Induced Plasticity: Implications for Developmental Research

    Science.gov (United States)

    Soderqvist, Stina; Bergman Nutley, Sissela; Peyrard-Janvid, Myriam; Matsson, Hans; Humphreys, Keith; Kere, Juha; Klingberg, Torkel

    2012-01-01

    Cognitive deficits and particularly deficits in working memory (WM) capacity are common features in neuropsychiatric disorders. Understanding the underlying mechanisms through which WM capacity can be improved is therefore of great importance. Several lines of research indicate that dopamine plays an important role not only in WM function but also…

  11. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  12. Attention and the acquisition of new knowledge: their effects on older adults' associative memory deficit.

    Science.gov (United States)

    Cooper, Crystal M; Odegard, Timothy N

    2011-12-01

    Older adults experience a selective associative memory deficit by demonstrating intact item memory relative to impaired associative memory when compared with younger adults. Age-related deficits in associative memory have been suggested to arise from declines in attentional resources, and the role of attention during encoding and retrieval in associative memory for words and their spatial locations was investigated in the current experiment. Additionally, the tendency of younger and older adults to use knowledge acquired during encoding to improve their associative memory judgments through a strategic associative memory process was also investigated. Younger and older adults studied a list of words with each word belonging to one of four categories, which followed one of four mathematical probability structures for their presentation. Older adults exhibited intact item memory and impaired associative memory relative to full attention younger adults. In addition, both older and younger adults demonstrated an ability to engage in strategic associative memory, by learning and later using the probability structure introduced at study to guide their associative memory judgments. In contrast, dividing the attention of younger adults during encoding impaired item memory, associative memory and strategic associative memory, whereas dividing attention at retrieval did not result in similar deficits. These data add to a growing body of literature demonstrating older adults to exhibit a selective associative memory deficit that is not simulated by dividing the attention of younger adults at encoding or retrieval. Furthermore, younger and older adults maintain the ability to use new knowledge to guide their associative judgments.

  13. [Working memory: neuropsychological and neurobiological issues].

    Science.gov (United States)

    Borkowska, Alina; Wiłkość, Monika; Tomaszewska, Marta; Rybakowski, Janusz

    2006-01-01

    Working memory denotes an ability to remember information for a short-time and to manipulate it. The memory allows including correct information depending on the situation, to keep the information on present activities for a while and enables changing the reaction according to new criteria. The relation between working memory and efficiency of complex cognitive processes and also with the control of emotional processes, plasticity of behaviour and consciousness was demonstrated. Working memory is connected with the activity of the dorsolateral prefrontal cortex of the brain. Recently, it has been shown, that working memory disturbances play an important role in the aetiopathogenesis of psychiatric disturbances such as schizophrenia, bipolar affective disorder or obsessive-compulsive disorder. Working memory disturbances are also shown in a proportion of healthy first-degree relatives of patients with schizophrenia or bipolar disorders. Working memory disturbances are presently regarded as a cognitive endophenotypic marker of vulnerability to these illnesses. In recent years, an association between working memory abilities and activity of different neurotransmitters, especially with the dopaminergic system in the brain, has been shown. Molecular genetic studies show an association between working memory abilities and polymorphism of the dopaminergic system genes in schizophrenia and polymorphism of BDNF gene in bipolar affective disorders. So far not much data about the genetics of working memory in healthy subjects has been gathered. Currently in Poland such research is carried on in the Clinical Neuropsychology Unit Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz in cooperation with the Department of Adult Psychiatry and Laboratory of Psychiatric Genetics University of Medical Sciences in Poznań.

  14. What's Working in Working Memory Training? An Educational Perspective

    Science.gov (United States)

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children's academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial…

  15. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    OpenAIRE

    Stone, James M.; Towse, John N.

    2015-01-01

    Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span ...

  16. Examination stress and components of working memory.

    Science.gov (United States)

    Lewis, Richard S; Nikolova, Ani; Chang, Dennis J; Weekes, Nicole Y

    2008-03-01

    Previous research suggests that stress can influence a broad range of memory functions. In this study we investigated the effect of a naturalistic stressor, examination stress, on working memory in young adults. In order to accomplish this aim, participants were tested on psychological and hormonal measures of stress and on Digit Span, once during a low stress period and once during a high stress period. The high examination stress condition was associated with an increase in cortisol and subjective impressions of stress. Although Digits Forward performance did not vary with examination stress, Digits Backward performance improved. These findings suggest that mild increases in stress are associated with improvement in the manipulation component of working memory. However, no correlations were found between working memory and either cortisol or psychological stress. Thus the mechanism by which mild naturalistic stressors improve the manipulation component of working memory needs further investigation.

  17. Spatial working memory in children with high-functioning autism: intact configural processing but impaired capacity.

    Science.gov (United States)

    Jiang, Yuhong V; Capistrano, Christian G; Palm, Bryce E

    2014-02-01

    Visual attention and visual working memory exert severe capacity limitations on cognitive processing. Impairments in both functions may exacerbate the social and communication deficits seen in children with an autism spectrum disorder (ASD). This study characterizes spatial working memory and visual attention in school-age children with high-functioning autism. Children with ASD, and age, gender, and IQ-matched typically developing (TD) children performed 2 tasks: a spatial working memory task and an attentive tracking task. Compared with TD children, children with ASD showed a more pronounced deficit in the spatial working memory task than the attentive tracking task, even though the latter placed significant demands on sustained attention, location updating, and distractor inhibition. Because both groups of children were sensitive to configuration mismatches between the sample and test arrays, the spatial working memory deficit was not because of atypical organization of spatial working memory. These findings show that attention and working memory are dissociable, and that children with ASD show a specific deficit in buffering visual information across temporal discontinuity. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Divergent trajectories in the aging mind: changes in working memory for affective versus visual information with age.

    Science.gov (United States)

    Mikels, Joseph A; Larkin, Gregory R; Reuter-Lorenz, Patricia A; Cartensen, Laura L

    2005-12-01

    Working memory mediates the short-term maintenance of information. Virtually all empirical research on working memory involves investigations of working memory for verbal and visual information. Whereas aging is typically associated with a deficit in working memory for these types of information, recent findings suggestive of relatively well-preserved long-term memory for emotional information in older adults raise questions about working memory for emotional material. This study examined age differences in working memory for emotional versus visual information. Findings demonstrate that, despite an age-related deficit for the latter, working memory for emotion was unimpaired. Further, older adults exhibited superior performance on positive relative to negative emotion trials, whereas their younger counterparts exhibited the opposite pattern. (c) 2006 APA

  19. The nature of working memory for Braille.

    Science.gov (United States)

    Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter

    2010-05-26

    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  20. The nature of working memory for Braille.

    Directory of Open Access Journals (Sweden)

    Henri Cohen

    Full Text Available Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV. In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  1. Variation in Parasympathetic Dysregulation Moderates Short-term Memory Problems in Childhood Attention-Deficit/Hyperactivity Disorder

    OpenAIRE

    Ward, Anthony R.; Alarcón, Gabriela; Nigg, Joel T.; Musser, Erica D.

    2015-01-01

    Although attention deficit/hyperactivity disorder (ADHD) is associated with impairment in working memory and short-term memory, up to half of individual children with ADHD perform within a normative range. Heterogeneity in other ADHD-related mechanisms, which may compensate for or combine with cognitive weaknesses, is a likely explanation. One candidate is the robustness of parasympathetic regulation (as indexed by respiratory sinus arrhythmia; RSA). Theory and data suggest that a common neur...

  2. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    Science.gov (United States)

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  3. Children with Specific Language Impairment and Resolved Late Talkers: Working Memory Profiles at 5 Years

    Science.gov (United States)

    Petruccelli, Nadia; Bavin, Edith L.; Bretherton, Lesley

    2012-01-01

    Purpose: The evidence of a deficit in working memory in specific language impairment (SLI) is of sufficient magnitude to suggest a primary role in developmental language disorder. However, little research has investigated memory in late talkers who recover from their early delay. Drawing on a longitudinal, community sample, this study compared the…

  4. The Influence of Working Memory on Reading Growth in Subgroups of Children with Reading Disabilities

    Science.gov (United States)

    Swanson, H. Lee; Jerman, Olga

    2007-01-01

    This 3-year longitudinal study determined whether (a) subgroups of children with reading disabilities (RD) (children with RD only, children with both reading and arithmetic deficits, and low verbal IQ readers) and skilled readers varied in working memory (WM) and short-term memory (STM) growth and (b) whether growth in an executive system and/or a…

  5. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  6. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-08-23

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.

  7. Negative Emotion Impairs Working Memory in Pediatric Patients with Bipolar Disorder Type I

    Science.gov (United States)

    Schenkel, Lindsay S.; Passarotti, Alessandra M.; Sweeney, John A.; Pavuluri, Mani N.

    2013-01-01

    Background We investigated affect recognition and the impact of emotional valence on working memory (using happy, angry, and neutral faces) in pediatric patients with bipolar disorder (BD) and healthy controls (HC). Method Subjects (N=70) consisted of unmedicated patients with BD type I (n=23) and type II (n=16) and matched HC (n=31). All subjects completed tasks of emotion recognition (Chicago Pediatric Emotional Acuity Task; Chicago PEAT) and working memory for happy, angry, and neutral faces (Affective N-Back Memory Task; ANMT). Results Compared to HC, BD patients performed significantly more poorly when identifying the intensity of happy and angry expressions on the Chicago PEAT, and demonstrated working memory impairments regardless of the type of facial emotional stimuli. Pediatric BD patients displayed the most impaired accuracy and reaction time performance with negative facial stimuli relative to neutral stimuli, but did not display this pattern with positive stimuli. Only BD type I patients displayed working memory deficits, while both type I and type II patients displayed emotion identification impairments. Results remained significant after controlling for comorbid ADHD and mood state. Conclusion Both type I and type II BD youth demonstrate emotion identification deficits. BD youth also demonstrate working memory impairments for facial stimuli irrespective of emotional valence, however, working memory deficits were the most pronounced with negative emotional stimuli. These deficits appear to be specific to BD type I patients, and suggest therefore that a more severe form of illness is characterized by more severe social-cognitive impairment. PMID:22564881

  8. Borderline personality disorder: impaired visual perception and working memory.

    Science.gov (United States)

    Stevens, Andreas; Burkhardt, Michaela; Hautzinger, Martin; Schwarz, Jürgen; Unckel, Christine

    2004-03-15

    The neurobiology of borderline personality disorder (BPD) is still elusive. There are a few studies on neuropsychological performance in BPD, which report a broad spectrum of abnormalities. The present study evaluates perception and working memory as instances of basic cognitive functions. Female subjects diagnosed with DSM-IV borderline personality disorder (n=22) were compared with age- and education-matched controls (n=25). Perception speed was assessed by a backward masking paradigm. Working memory was tested by a series of delayed matching-to-sample paradigms involving varying subsidiary functions like mental rotation, retrieval from memory, ignoring distracters, and cross-modal performance. In backward masking, BPD subjects required significantly longer stimulus onset asynchrony (SOA) than controls to identify the visual target, and there was an additional slowing of the motor response. Working memory accuracy was impaired in BPD subjects, but did not worsen when the cognitive load was increased. With increasing task difficulty, they traded off speed for accuracy similarly as the controls. Impulsivity and dissociation ratings were not correlated with performance. It is concluded that perceptional speed and working memory are impaired in BPD, but that the deficits are not augmented by increasing cognitive load.

  9. Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia.

    Science.gov (United States)

    Gold, James M; Hahn, Britta; Zhang, Wei Wei; Robinson, Benjamin M; Kappenman, Emily S; Beck, Valerie M; Luck, Steven J

    2010-06-01

    Working memory deficits are considered a core feature of schizophrenia. Several recent integrative articles have offered mechanistic computational and neurobiological models of the origins of this cognitive deficit. To test predictions of these models using a new experimental paradigm from the basic science literature that makes it possible to determine whether patients with schizophrenia show (1) deficits in working memory storage capacity, (2) deficits in the precision of working memory representations, and (3) an amplification of these deficits as the retention interval increases. Case-control design. All subjects performed a color working memory test in which they were asked to recall 3 or 4 items after a 1- or 4-second delay. All subjects also received a standard measure of intelligence and the Matrics Consensus Cognitive Battery. A tertiary care research outpatient clinic. Patients A total of 31 clinically stable patients with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder and 26 healthy volunteers participated. The 2 groups were similar in age, sex, and ethnicity distribution. (1) The number of items stored in working memory and (2) the precision of the working memory representations. Patients showed a clear reduction in the number of items stored in working memory. Patients did not differ from controls in the precision of their working memory representations. There was no evidence of delay-related amplification of impairment in either capacity or precision. Patients do not show the type of imprecision or delay-dependent amplification of impairment that is predicted on the basis of current models of the neurobiology of schizophrenia. The models need to be revised to account for a pure reduction in the number of items that patients are able to store in working memory.

  10. Is Poor Working Memory a Transdiagnostic Risk Factor for Psychopathology?

    Science.gov (United States)

    Huang-Pollock, Cynthia; Shapiro, Zvi; Galloway-Long, Hilary; Weigard, Alex

    2017-11-01

    In contrast to historical conceptualizations that framed psychological disorders as distinct, categorical conditions, it is now widely understood that co- and multi-morbidities between disorders are extensive. As a result, there has been a call to better understand the dimensional liabilities that are common to and influence the development of multiple psychopathologies, as supported and exemplified by the National Institutes of Mental Health (NIMH) Research Domain Criteria (RDoC) framework. We use a latent variable SEM approach to examine the degree to which working memory deficits represent a cognitive liability associated with the development of common and discrete dimensions of psychopathology. In a sample of 415 community recruited children aged 8-12 (n = 170 girls), we fit a bi-factor model to parent reports of behavior from the DISC-4 and BASC-2, and included a latent working memory factor as a predictor of the internalizing, externalizing, and general "p-factor." We found that both the general "p-factor" and externalizing (but not internalizing) latent factor were significantly associated with working memory. When a bi-factor model of externalizing symptomology was fit to further explore this relationship, working memory was only correlated with the general externalizing dimension; correlation with specific inattention, hyperactive/impulsive, and oppositional factors did not survive once the general externalizing dimension was taken into consideration. These findings held regardless of the sex of the child. Our results suggest that working memory deficits represent both a common cognitive liability for mental health disorders, and a specific liability for externalizing disorders.

  11. Working Memory and Binding in Sentence Recall

    Science.gov (United States)

    Baddeley, A. D.; Hitch, G. J.; Allen, R. J.

    2009-01-01

    A series of experiments explored whether chunking in short-term memory for verbal materials depends on attentionally limited executive processes. Secondary tasks were used to disrupt components of working memory and chunking was indexed by the sentence superiority effect, whereby immediate recall is better for sentences than word lists. To…

  12. Accessibility Limits Recall from Visual Working Memory

    Science.gov (United States)

    Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay

    2017-01-01

    In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…

  13. Which Working Memory Functions Predict Intelligence?

    Science.gov (United States)

    Oberauer, Klaus; Sub, Heinz-Martin; Wilhelm, Oliver; Wittmann, Werner W.

    2008-01-01

    Investigates the relationship between three factors of working memory (storage and processing, relational integration, and supervision) and four factors of intelligence (reasoning, speed, memory, and creativity) using structural equation models. Relational integration predicted reasoning ability at least as well as the storage-and-processing…

  14. EEG markers of reduced visual short-term memory capacity in adult attention deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Wiegand, Iris Michaela; Kilian, Beate; Hennig-Fast, Kristina

    2015-01-01

    Attention deficit hyperactivity disorder (ADHD) persists frequently into adulthood. The disease is associated with difficulties in many cognitive tasks, which are assumed to be caused by neurobiologically-based basal dysfunctions. A reduction in visual working memory storage capacity has recently...

  15. Working Memory in the Classroom: An Inside Look at the Central Executive.

    Science.gov (United States)

    Barker, Lauren A

    2016-01-01

    This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.

  16. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Working memory load attenuates emotional enhancement in recognition memory

    OpenAIRE

    Miendlarzewska, Ewa A.; van Elswijk, Gijs; Cannistraci, Carlo V.; van Ee, Raymond

    2013-01-01

    Emotionally arousing stimuli are perceived and remembered better than neutral stimuli. Under threat, this negativity bias is further increased. We investigated whether working memory (WM) load can attenuate incidental memory for emotional images. Two groups of participants performed the N-back task with two WM load levels. In one group, we induced anxiety using a threat of shock paradigm to increase attentional processing of negative information. During task performance we incidentally and br...

  18. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.

    Science.gov (United States)

    Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero

    2016-12-01

    Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Memory outcomes following cognitive interventions in children with neurological deficits: A review with a focus on under-studied populations.

    Science.gov (United States)

    Schaffer, Yael; Geva, Ronny

    2016-01-01

    Given the primary role of memory in children's learning and well-being, the aim of this review was to examine the outcomes of memory remediation interventions in children with neurological deficits as a function of the affected memory system and intervention method. Fifty-seven studies that evaluated the outcome of memory interventions in children were identified. Thirty-four studies met the inclusion criteria, and were included in a systematic review. Diverse rehabilitation methods for improving explicit and implicit memory in children were reviewed. The analysis indicates that teaching restoration strategies may improve, and result in the generalisation of, semantic memory and working memory performance in children older than 7 years with mild to moderate memory deficits. Factors such as longer protocols, emotional support, and personal feedback contribute to intervention efficacy. In addition, the use of compensation aids seems to be highly effective in prospective memory tasks. Finally, the review unveiled a lack of studies with young children and the absence of group interventions. These findings point to the importance of future evidence-based intervention protocols in these areas.

  20. Brain Connectivity Related to Working Memory Performance

    National Research Council Canada - National Science Library

    Hampson, Michelle; Driesen, Naomi R; Skudlarski, Pawel; Gore, John C; Constable, R. Todd

    2006-01-01

    .... This study investigated the functional connectivity between the PCC and MFG/vACC during a working memory task and at rest by examining temporal correlations in magnetic resonance signal levels between the regions...

  1. Do Computerised Training Programmes Designed to Improve Working Memory Work?

    Science.gov (United States)

    Apter, Brian J. B.

    2012-01-01

    A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…

  2. Shielding cognition from nociception with working memory.

    Science.gov (United States)

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Reducing State Anxiety Using Working Memory Maintenance

    OpenAIRE

    Balderston, Nicholas L.; Hsiung, Abigail; Liu, Jeffrey; Ernst, Monique; Grillon, Christian

    2017-01-01

    The purpose of this protocol is to explain how to examine the relationship between working memory processes and anxiety by combining the Sternberg Working Memory (WM) and the threat of shock paradigms. In the Sternberg WM paradigm, subjects are required to maintain a series of letters in the WM for a brief interval and respond by identifying whether the position of a given letter in the series matches a numerical prompt. In the threat of shock paradigm, subjects are exposed to alternating blo...

  4. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    Science.gov (United States)

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.

    Science.gov (United States)

    Zokaei, Nahid; McNeill, Alisdair; Proukakis, Christos; Beavan, Michelle; Jarman, Paul; Korlipara, Prasad; Hughes, Derralynn; Mehta, Atul; Hu, Michele T M; Schapira, Anthony H V; Husain, Masud

    2014-08-01

    Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short

  6. Working memory, situation models, and synesthesia.

    Science.gov (United States)

    Radvansky, Gabriel A; Gibson, Bradley S; McNerney, M Windy

    2014-01-01

    Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme-color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefit for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. This suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.

  7. Temporal dynamics of visual working memory.

    Science.gov (United States)

    Sobczak-Edmans, M; Ng, T H B; Chan, Y C; Chew, E; Chuang, K H; Chen, S H A

    2016-01-01

    The involvement of the human cerebellum in working memory has been well established in the last decade. However, the cerebro-cerebellar network for visual working memory is not as well defined. Our previous fMRI study showed superior and inferior cerebellar activations during a block design visual working memory task, but specific cerebellar contributions to cognitive processes in encoding, maintenance and retrieval have not yet been established. The current study examined cerebellar contributions to each of the components of visual working memory and presence of cerebellar hemispheric laterality was investigated. 40 young adults performed a Sternberg visual working memory task during fMRI scanning using a parametric paradigm. The contrast between high and low memory load during each phase was examined. We found that the most prominent activation was observed in vermal lobule VIIIb and bilateral lobule VI during encoding. Using a quantitative laterality index, we found that left-lateralized activation of lobule VIIIa was present in the encoding phase. In the maintenance phase, there was bilateral lobule VI and right-lateralized lobule VIIb activity. Changes in activation in right lobule VIIIa were present during the retrieval phase. The current results provide evidence that superior and inferior cerebellum contributes to visual working memory, with a tendency for left-lateralized activations in the inferior cerebellum during encoding and right-lateralized lobule VIIb activations during maintenance. The results of the study are in agreement with Baddeley's multi-component working memory model, but also suggest that stored visual representations are additionally supported by maintenance mechanisms that may employ verbal coding. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. Published by Elsevier Inc.

  9. Role of Working Memory in Task Switching

    Directory of Open Access Journals (Sweden)

    André Vandierendonck

    2012-09-01

    Full Text Available A review shows that task switching under memory load yields variable patterns of findings with some studies showing no interaction at all, while other studies provide evidence for an interaction. A model of working memory is presented consisting of a declarative storage component for instantiation of information and an executive storage module that contains task sets and task rules. The model is applied to two studies with very similar methodologies but yielding contrasting results, namely the task-span procedure (Logan, 2004 and the time-based resource sharing procedure (Liefooghe, Barrouillet, Vandierendonck, & Camos, 2008, when task switching is performed under a working memory load. The model accounts for the contradictory results, supporting the general hypothesis that task switching calls on working memory.

  10. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    Directory of Open Access Journals (Sweden)

    Duoduo Tao

    Full Text Available To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI users.Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a word-in-sentence recognition in quiet, (b word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c Chinese disyllable recognition in quiet, (d Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork.There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants.Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical

  11. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    Science.gov (United States)

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance

  12. Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.

    Science.gov (United States)

    Lee, Young-A; Goto, Yukiori

    2015-06-01

    Chronic stress causes deficits in cognitive function including working memory, for which transmission of such catecholamines as dopamine and noradrenaline transmission in the prefrontal cortex (PFC) are crucial. Since catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase (TH), TH is thought to play an important role in PFC function. In this study, we found that two distinct population existed in Sprague-Dawley rats in terms of working memory capacity, one with higher working memory capacity, and the other with low capacity. This distinction of working memory capacity became apparent after rats were exposed to chronic stress. In addition, such working memory capacity and alterations of working memory function by chronic stress were associated with TH expression in the PFC. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Role of Aging in Intra-Item and Item-Context Binding Processes in Visual Working Memory

    Science.gov (United States)

    Peterson, Dwight J.; Naveh-Benjamin, Moshe

    2016-01-01

    Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory…

  14. Working memory capacity predicts language comprehension in schizophrenic patients.

    Science.gov (United States)

    Condray, R; Steinhauer, S R; van Kammen, D P; Kasparek, A

    1996-05-01

    The association between language comprehension and working memory capacity was evaluated in 25 male DSM-III-R schizophrenic patients (14 inpatients; 11 outpatients), and in 11 male normal controls (no lifetime DSM-III-R disorder). Patients and controls did not differ significantly on age and education. Language comprehension was examined as a function of two types of processing demand: grammatical complexity (complex versus simple sentences) and presentation rate (accelerated versus conversational). Schizophrenic patients showed significantly reduced language comprehension and decreased working memory capacity for language, compared with controls. Patients showed general difficulty in comprehending accurately, rather than exhibiting problems with specific grammatical structures. Subject groups were highly accurate and did not differ in their ability to perceive the individual words in sentences presented at the accelerated rate (intelligibility). Presentation rate and grammatical complexity affected comprehension accuracy in all groups, however, with increases in rate and complexity producing decreases in understanding. Of most importance, theoretically, is the finding that working memory capacity predicted language comprehension accuracy in both schizophrenic patients and normal controls. Results suggest that language comprehension deficits in schizophrenic patients may involve a general dysfunction that is associated with working memory capacity for language.

  15. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    Science.gov (United States)

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.

  16. Intrahemispheric theta rhythm desynchronization impairs working memory.

    Science.gov (United States)

    Alekseichuk, Ivan; Pabel, Stefanie Corinna; Antal, Andrea; Paulus, Walter

    2017-01-01

    There is a growing interest in large-scale connectivity as one of the crucial factors in working memory. Correlative evidence has revealed the anatomical and electrophysiological players in the working memory network, but understanding of the effective role of their connectivity remains elusive. In this double-blind, placebo-controlled study we aimed to identify the causal role of theta phase connectivity in visual-spatial working memory. The frontoparietal network was over- or de-synchronized in the anterior-posterior direction by multi-electrode, 6 Hz transcranial alternating current stimulation (tACS). A decrease in memory performance and increase in reaction time was caused by frontoparietal intrahemispheric desynchronization. According to the diffusion drift model, this originated in a lower signal-to-noise ratio, known as the drift rate index, in the memory system. The EEG analysis revealed a corresponding decrease in phase connectivity between prefrontal and parietal areas after tACS-driven desynchronization. The over-synchronization did not result in any changes in either the behavioral or electrophysiological levels in healthy participants. Taken together, we demonstrate the feasibility of manipulating multi-site large-scale networks in humans, and the disruptive effect of frontoparietal desynchronization on theta phase connectivity and visual-spatial working memory.

  17. The cognitive neuroscience of working memory.

    Science.gov (United States)

    D'Esposito, Mark; Postle, Bradley R

    2015-01-03

    For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

  18. Age-Related Decline of Precision and Binding in Visual Working Memory

    Science.gov (United States)

    2013-01-01

    Working memory declines with normal aging, but the nature of this impairment is debated. Studies based on detecting changes to arrays of visual objects have identified two possible components to age-related decline: a reduction in the number of items that can be stored, or a deficit in maintaining the associations (bindings) between individual object features. However, some investigations have reported intact binding with aging, and specific deficits arising only in Alzheimer’s disease. Here, using a recently developed continuous measure of recall fidelity, we tested the precision with which adults of different ages could reproduce from memory the orientation and color of a probed array item. The results reveal a further component of cognitive decline: an age-related decrease in the resolution with which visual information can be maintained in working memory. This increase in recall variability with age was strongest under conditions of greater memory load. Moreover, analysis of the distribution of errors revealed that older participants were more likely to incorrectly report one of the unprobed items in memory, consistent with an age-related increase in misbinding. These results indicate a systematic decline with age in working memory resources that can be recruited to store visual information. The paradigm presented here provides a sensitive index of both memory resolution and feature binding, with the potential for assessing their modulation by interventions. The findings have implications for understanding the mechanisms underpinning working memory deficits in both health and disease. PMID:23978008

  19. Functional correlates of verbal memory deficits emerging during nicotine withdrawal in abstinent adolescent cannabis users.

    Science.gov (United States)

    Jacobsen, Leslie K; Pugh, Kenneth R; Constable, Robert T; Westerveld, Michael; Mencl, W Einar

    2007-01-01

    Cannabis remains the most widely used illicit substance by adolescents and is typically consumed by this population in the context of ongoing tobacco use. Human studies have shown that both cannabis and tobacco exert effects on cognitive function; however, little is known about possible interacting effects of these drugs on brain function and cognition during adolescent development. Verbal learning and memory were assessed in 20 adolescent users of tobacco and cannabis and 25 adolescent tobacco users with minimal history of cannabis use. Functional magnetic resonance imaging was used to examine brain function and functional connectivity while a subset of these subjects performed a verbal working memory task. Delayed recall of verbal stimuli deteriorated during nicotine withdrawal among cannabis users but not among comparison subjects. During high verbal working memory load, nicotine withdrawal selectively increased task-related activation of posterior cortical regions and was associated with disruption of frontoparietal connectivity in adolescent cannabis users relative to comparison subjects. These observations suggest that cannabis use during adolescent development may disrupt neurocircuitry supporting verbal memory formation and that deficits associated with disruption of these neurocircuits are unmasked during nicotine withdrawal.

  20. Working memory impairment in fibromyalgia patients associated with altered frontoparietal memory network.

    Directory of Open Access Journals (Sweden)

    Jeehye Seo

    Full Text Available BACKGROUND: Fibromyalgia (FM is a disorder characterized by chronic widespread pain and frequently associated with other symptoms. Patients with FM commonly report cognitive complaints, including memory problem. The objective of this study was to investigate the differences in neural correlates of working memory between FM patients and healthy subjects, using functional magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: Nineteen FM patients and 22 healthy subjects performed an n-back memory task during MRI scan. Functional MRI data were analyzed using within- and between-group analysis. Both activated and deactivated brain regions during n-back task were evaluated. In addition, to investigate the possible effect of depression and anxiety, group analysis was also performed with depression and anxiety level in terms of Beck depression inventory (BDI and Beck anxiety inventory (BAI as a covariate. Between-group analyses, after controlling for depression and anxiety level, revealed that within the working memory network, inferior parietal cortex was strongly associated with the mild (r = 0.309, P = 0.049 and moderate (r = 0.331, P = 0.034 pain ratings. In addition, between-group comparison revealed that within the working memory network, the left DLPFC, right VLPFC, and right inferior parietal cortex were associated with the rating of depression and anxiety? CONCLUSIONS/SIGNIFICANCE: Our results suggest that the working memory deficit found in FM patients may be attributable to differences in neural activation of the frontoparietal memory network and may result from both pain itself and depression and anxiety associated with pain.

  1. Working memory capacity in generalized social phobia.

    Science.gov (United States)

    Amir, Nader; Bomyea, Jessica

    2011-05-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with generalized social phobia. Moreover, few studies have examined the role of threat-relevant content in working memory performance in clinically anxious populations. To this end, the present study assessed working memory capacity (WMC) in individuals with generalized social phobia and nonanxious controls using an operation span task with threat-relevant and neutral stimuli. Results revealed that nonanxious individuals demonstrated better WMC than individuals with generalized social phobia for neutral words but not for social threat words. Individuals with generalized social phobia demonstrated better WMC performance for threat words relative to neutral words. These results suggest that individuals with generalized social phobia may have relatively enhanced working memory performance for salient, socially relevant information. This enhanced working memory capacity for threat-relevant information may be the result of practice with this information in generalized social phobia.

  2. An interference model of visual working memory.

    Science.gov (United States)

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Is the link from working memory to analogy causal? No analogy improvements following working memory training gains.

    Science.gov (United States)

    Richey, J Elizabeth; Phillips, Jeffrey S; Schunn, Christian D; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data, but less work has tested this relationship through experimental manipulation. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants' performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks. Participants' improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning.

  4. Impoverished rearing impairs working memory and metabotropic glutamate receptor 5 expression.

    Science.gov (United States)

    Gregory, Mary L; Szumlinski, Karen K

    2008-01-22

    Impoverished rearing conditions deregulate metabotropic glutamate receptor (mGluR) function and expression within the prefrontal cortex, which contributes to poor performance in positively reinforced spatial working memory tasks. This study extended earlier data by demonstrating that impoverished rearing conditions impair spatial working memory even under conditions of negative reinforcement, indicating a generalized deficit in working memory processing. This protracted behavioral effect was associated with reduced total prefrontal cortex levels of the active, dimerized form of mGluR 5, but there was no change in mGluR 1 or mGluR 2/3 dimer expression in any brain region examined. Thus, impoverished rearing conditions produce protracted deficits in spatial working memory, in association with reduced prefrontal mGluR 5 function that may be relevant to the etiology of several neuropsychiatric disorders.

  5. Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial

    OpenAIRE

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first randomized controlled trial with low working memory children investigated whether the benefits of training extend beyond standard working memory tasks...

  6. Working on Memories of Abuse....

    Science.gov (United States)

    Horsman, Jenny

    1994-01-01

    Through working with a woman abused as a child, a teacher concluded that the violence of sexual, physical, and psychological abuse is common among many adults who read and write poorly. Their experiences should be acknowledged in literacy programs that encourage people to develop skills with which to tell their stories. (SK)

  7. Working memory: a proposal for child evaluating

    Directory of Open Access Journals (Sweden)

    Mayra Monteiro Pires

    2015-01-01

    Full Text Available The working memory is a system with limited capacity which allows the temporary storage and manipulation of information to cognitive complex abilities like language, learning and reasoning. This study has as the objective present the construction, the adaptation and the evaluation of four psycholinguistics working memory tests in Brazilian Portuguese that were based in the English battery of tests Memory Test Battery For Children. The tests adapted were applied in a pilot investigation in a group of 15 children with learning school difficulties and compared to a group of 15 children with normal development. The adaptation of the tests was developed in the E-Prime v2.0 Professional® software. The four psycholinguistic tests access the simultaneous storage and processing capacities of information in general domain, as also specific for language information. The results suggest that the four tests are sensible instruments to detect possible difficulties in the working memory processing in children, because they could identify the different performances between the two groups in a statistical analysis. The tests developed perfectly attended their aims for evaluation and can contribute in a near future for other studies with a greater number of subjects, providing a more concrete and evidences of working memory development in children.

  8. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers

    National Research Council Canada - National Science Library

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    .... The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after...

  9. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    National Research Council Canada - National Science Library

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    .... Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation...

  10. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A

    2004-11-01

    Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.

  11. Attentional capture by working memory contents.

    Science.gov (United States)

    Pan, Yi

    2010-06-01

    There has been controversy on whether working memory (WM) contents automatically guide attention. The present study tried to replicate the effect of WM-based attentional capture using an adaption of Downing's (2000) paradigm, in which WM and attentional capture were combined. Subjects were presented with an attention display containing two objects, one of which could be precued by a matching item being held in WM. As measured by a probe discrimination task, the memory-matching object had a privileged status to capture attention regardless of the stimulus onset asynchronies between the memory cue and the attention display, even when there was absolutely no benefit for subjects to bias attention in favour of the memory match. These results suggest that WM contents guide attention in an involuntary manner. The implications of current findings for understanding of WM effects on visual selection are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  12. Working memory impairment in cannabis- and opioid-dependent adolescents.

    Science.gov (United States)

    Vo, Hoa T; Schacht, Rebecca; Mintzer, Miriam; Fishman, Marc

    2014-01-01

    Cannabis and opioid use are associated with cognitive impairment, whether preexisting or substance-induced, but there have been few substance-specific assessments of cognitive functioning in adolescent substance users. Working memory impairment may be particularly important, as it has been linked to poorer performance in substance abuse treatment. Working memory (Wechsler Intelligence Scale for Children-IV or Adult Intelligence Scale-IV) and baseline substance use were assessed in 42 youth (mean age = 17.9 years, SD = 1.3, range: 16-20; 65% Caucasian, 30% female) 1-2 weeks after admission to residential treatment with supervised abstinence, 19 for primary cannabis dependence and 23 for primary opioid dependence. There were substantial deficits in working memory in both groups, with significant differences (P cannabis (M = 16.3th%ile, SD = 13.6) groups. The primary opioid group had high rates of cannabis use, with no significant difference in past-month days of cannabis use from the primary cannabis group. The opioid group was older and had completed more years of formal education. Seventy-nine percent of the cannabis group had public health care coverage (mostly Medicaid), compared with 24% of the opioid sample. Working memory impairment was substantial in treatment-seeking youth with primary cannabis and opioid dependence (the latter actually having comparable rates of cannabis use), and significantly more pronounced in the primary cannabis-dependent group. Without an assessment of working memory prior to substance exposure, the differential contributions of substance-induced vs. preexisting impairment are unclear. Lower scores in the cannabis group may reflect lower socioeconomic status (SES), which is typically correlated with cognitive performance. These findings highlight underrecognized cognitive impairment in youth with SUDs, especially inner-city cannabis-dependent youth. Modification of treatments to account for cognitive capacity and/or cognitive

  13. Decreased cortical response to verbal working memory following sleep deprivation.

    Science.gov (United States)

    Mu, Qiwen; Nahas, Ziad; Johnson, Kevin A; Yamanaka, Kaori; Mishory, Alexander; Koola, Jejo; Hill, Sarah; Horner, Michael D; Bohning, Daryl E; George, Mark S

    2005-01-01

    To investigate the cerebral hemodynamic response to verbal working memory following sleep deprivation. Subjects were scheduled for 3 functional magnetic resonance imaging scanning visits: an initial screening day (screening state), after a normal night of sleep (rested state), and after 30 hours of sleep deprivation (sleep-deprivation state). Subjects performed the Sternberg working memory task alternated with a control task during an approximate 13-minute functional magnetic resonance imaging scan. Inpatient General Clinical Research Center and outpatient functional magnetic resonance imaging center. Results from 33 men (mean age, 28.6 +/- 6.6 years) were included in the final analyses. None. Subjects performed the same Sternberg working memory task at the 3 states within the magnetic resonance imaging scanner. Neuroimaging data revealed that, in the screening and rested states, the brain regions activated by the Sternberg working memory task were found in the left dorsolateral prefrontal cortex, Broca's area, supplementary motor area, right ventrolateral prefrontal cortex, and the bilateral posterior parietal cortexes. After 30 hours of sleep deprivation, the activations in these brain regions significantly decreased, especially in the bilateral posterior parietal cortices. Task performance also decreased. A repeated-measures analysis of variance revealed that subjects at the screening and rested states had similar activation patterns, with each having significantly more activation than during the sleep-deprivation state. These results suggest that human sleep-deprivation deficits are not caused solely or even predominantly by prefrontal cortex dysfunction and that the paretal cortex, in particular, and other brain regions involved in verbal working memory exhibit significant sleep-deprivation vulnerability.

  14. Impaired cue identification and intention retrieval underlie prospective memory deficits in patients with first-episode schizophrenia.

    Science.gov (United States)

    Liu, Dengtang; Ji, Chengfeng; Zhuo, Kaiming; Song, Zhenhua; Wang, Yingchan; Mei, Li; Zhu, Dianming; Xiang, Qiong; Chen, Tianyi; Yang, Zhilei; Zhu, Guang; Wang, Ya; Cheung, Eric Fc; Xiang, Yu-Tao; Fan, Xiaoduo; Chan, Raymond Ck; Xu, Yifeng; Jiang, Kaida

    2017-03-01

    Schizophrenia is associated with impairment in prospective memory, the ability to remember to carry out an intended action in the future. It has been established that cue identification (detection of the cue event signaling that an intended action should be performed) and intention retrieval (retrieval of an intention from long-term memory following the recognition of a prospective cue) are two important processes underlying prospective memory. The purpose of this study was to examine prospective memory deficit and underlying cognitive processes in patients with first-episode schizophrenia. This study examined cue identification and intention retrieval components of event-based prospective memory using a dual-task paradigm in 30 patients with first-episode schizophrenia and 30 healthy controls. All participants were also administered a set of tests assessing working memory and retrospective memory. Both cue identification and intention retrieval were impaired in patients with first-episode schizophrenia compared with healthy controls ( ps intention retrieval (Cohen's d = 0.62). After controlling for working memory and retrospective memory, the difference in cue identification between patients and healthy controls remained significant. However, the difference in intention retrieval between the two groups was no longer significant. In addition, there was a significant inverse relationship between cue identification and negative symptoms ( r = -0.446, p = 0.013) in the patient group. These findings suggest that both cue identification and intention retrieval in event-based prospective memory are impaired in patients with first-episode schizophrenia. Cue identification and intention retrieval could be potentially used as biomarkers for early detection and treatment prognosis of schizophrenia. In addition, addressing cue identification deficit through cognitive enhancement training may potentially improve negative symptoms as well.

  15. Effect of Xiaoyaosan Decoction on Learning and Memory Deficit in Rats Induced by Chronic Immobilization Stress

    OpenAIRE

    Meng, Zhen-Zhi; Chen, Jia-Xu; Jiang, You-Ming; Zhang, Han-Ting

    2013-01-01

    Xiaoyaosan (XYS) decoction is a famous prescription which can protect nervous system from stress and treat liver stagnation and spleen deficiency syndrome (LSSDS). In this experiment, we observed the effect of XYS decoction on chronic immobilization stress (CIS) induced learning and memory deficit in rats from behaviors and changes of proteins in hippocampus. We used XYS decoction to treat CIS induced learning and memory deficit in rats with rolipram as positive control, used change of body w...

  16. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats.

    Science.gov (United States)

    Fadda, Paola; Robinson, Lianne; Fratta, Walter; Pertwee, Roger G; Riedel, Gernot

    2004-12-01

    Cannabinoid receptors in the brain (CB(1)) take part in modulation of learning, and are particularly important for working and short-term memory. Here, we employed a delayed-matching-to-place (DMTP) task in the open-field water maze and examined the effects of cannabis plant extracts rich in either Delta(9)-tetrahydrocannabinol (Delta(9)-THC), or rich in cannabidiol (CBD), on spatial working and short-term memory formation in rats. Delta(9)-THC-rich extracts impaired performance in the memory trial (trial 2) of the DMTP task in a dose-dependent but delay-independent manner. Deficits appeared at doses of 2 or 5 mg/kg (i.p.) at both 30 s and 4 h delays and were similar in severity compared with synthetic Delta(9)-THC. Despite considerable amounts of Delta(9)-THC present, CBD-rich extracts had no effect on spatial working/short-term memory, even at doses of up to 50 mg/kg. When given concomitantly, CBD-rich extracts did not reverse memory deficits of the additional Delta(9)-THC-rich extract. CBD-rich extracts also did not alter Delta(9)-THC-rich extract-induced catalepsy as revealed by the bar test. It appears that spatial working/short-term memory is not sensitive to CBD-rich extracts and that potentiation and antagonism of Delta(9)-THC-induced spatial memory deficits is dependent on the ratio between CBD and Delta(9)-THC.

  17. Sentence Processing in Lewy Body Spectrum Disorder: The Role of Working Memory

    Science.gov (United States)

    Gross, Rachel G.; McMillan, Corey T.; Chandrasekaran, Keerthi; Dreyfuss, Michael; Ash, Sharon; Avants, Brian; Cook, Philip; Moore, Peachie; Libon, David J.; Siderowf, Andrew; Grossman, Murray

    2012-01-01

    Prior work has related sentence processing to executive deficits in non-demented patients with Parkinson's disease (PD). We extended this investigation to patients with dementia with Lewy bodies (DLB) and PD dementia (PDD) by examining grammatical and working memory components of sentence processing in the full range of patients with Lewy body…

  18. Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence.

    Science.gov (United States)

    Driesen, Naomi R; Leung, Hoi-Chung; Calhoun, Vincent D; Constable, R Todd; Gueorguieva, Ralitza; Hoffman, Ralph; Skudlarski, Pawel; Goldman-Rakic, Patricia S; Krystal, John H

    2008-12-15

    Comparing prefrontal cortical activity during particular phases of working memory in healthy subjects and individuals diagnosed with schizophrenia might help to define the phase-specific deficits in cortical function that contribute to cognitive impairments associated with schizophrenia. This study featured a spatial working memory task, similar to that used in nonhuman primates, that was designed to facilitate separating brain activation into encoding, maintenance, and response phases. Fourteen patients with schizophrenia (4 medication-free) and 12 healthy comparison participants completed functional magnetic resonance imaging while performing a spatial working memory task with two levels of memory load. Task accuracy was similar in patients and healthy participants. However, patients showed reductions in brain activation during maintenance and response phases but not during the encoding phase. The reduced prefrontal activity during the maintenance phase of working memory was attributed to a greater rate of decay of prefrontal activity over time in patients. Cortical deficits in patients did not appear to be related to antipsychotic treatment. In patients and in healthy subjects, the time-dependent reduction in prefrontal activity during working memory maintenance correlated with poorer performance on the memory task. Overall, these data highlight that basic research insights into the distinct neurobiologies of the maintenance and response phases of working memory are of potential importance for understanding the neurobiology of cognitive impairment in schizophrenia and advancing its treatment.

  19. Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.

    Science.gov (United States)

    Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S

    2017-03-16

    To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  1. Working memory binding and episodic memory formation in aging, mild cognitive impairment, and Alzheimer's dementia.

    Science.gov (United States)

    van Geldorp, Bonnie; Heringa, Sophie M; van den Berg, Esther; Olde Rikkert, Marcel G M; Biessels, Geert Jan; Kessels, Roy P C

    2015-01-01

    Recent studies indicate that in both normal and pathological aging working memory (WM) performance deteriorates, especially when associations have to be maintained. However, most studies typically do not assess the relationship between WM and episodic memory formation. In the present study, we examined WM and episodic memory formation in normal aging and in patients with early Alzheimer's disease (mild cognitive impairment, MCI; and Alzheimer's dementia, AD). In the first study, 26 young adults (mean age 29.6 years) were compared to 18 middle-aged adults (mean age 52.2 years) and 25 older adults (mean age 72.8 years). We used an associative delayed-match-to-sample WM task, which requires participants to maintain two pairs of faces and houses presented on a computer screen for short (3 s) or long (6 s) maintenance intervals. After the WM task, an unexpected subsequent associative memory task was administered (two-alternative forced choice). In the second study, 27 patients with AD and 19 patients with MCI were compared to 25 older controls, using the same paradigm as that in Experiment 1. Older adults performed worse than both middle-aged and young adults. No effect of delay was observed in the healthy adults, and pairs that were processed during long maintenance intervals were not better remembered in the subsequent memory task. In the MCI and AD patients, longer maintenance intervals hampered the task performance. Also, both patient groups performed significantly worse than controls on the episodic memory task as well as the associative WM task. Aging and AD present with a decline in WM binding, a finding that extends similar results in episodic memory. Longer delays in the WM task did not affect episodic memory formation. We conclude that WM deficits are found when WM capacity is exceeded, which may occur during associative processing.

  2. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Spike-timing theory of working memory.

    Science.gov (United States)

    Szatmáry, Botond; Izhikevich, Eugene M

    2010-08-19

    Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds.

  4. Spike-timing theory of working memory.

    Directory of Open Access Journals (Sweden)

    Botond Szatmáry

    Full Text Available Working memory (WM is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds.

  5. Basic numerical processing, calculation, and working memory in children with dyscalculia and/or ADHD symptoms.

    Science.gov (United States)

    Kuhn, Jörg-Tobias; Ise, Elena; Raddatz, Julia; Schwenk, Christin; Dobel, Christian

    2016-09-01

    Deficits in basic numerical skills, calculation, and working memory have been found in children with developmental dyscalculia (DD) as well as children with attention-deficit/hyperactivity disorder (ADHD). This paper investigates cognitive profiles of children with DD and/or ADHD symptoms (AS) in a double dissociation design to obtain a better understanding of the comorbidity of DD and ADHD. Children with DD-only (N = 33), AS-only (N = 16), comorbid DD+AS (N = 20), and typically developing controls (TD, N = 40) were assessed on measures of basic numerical processing, calculation, working memory, processing speed, and neurocognitive measures of attention. Children with DD (DD, DD+AS) showed deficits in all basic numerical skills, calculation, working memory, and sustained attention. Children with AS (AS, DD+AS) displayed more selective difficulties in dot enumeration, subtraction, verbal working memory, and processing speed. Also, they generally performed more poorly in neurocognitive measures of attention, especially alertness. Children with DD+AS mostly showed an additive combination of the deficits associated with DD-only and A_Sonly, except for subtraction tasks, in which they were less impaired than expected. DD and AS appear to be related to largely distinct patterns of cognitive deficits, which are present in combination in children with DD+AS.

  6. Working memory impairment and its associated sleep-related respiratory parameters in children with obstructive sleep apnea.

    Science.gov (United States)

    Lau, Esther Yuet Ying; Choi, Elizabeth W M; Lai, Esther S K; Lau, Kristy N T; Au, C T; Yung, W H; Li, Albert M

    2015-09-01

    Working memory deficits in children with obstructive sleep apnea (OSA) have been reported in previous studies, but the results were inconclusive. This study tried to address this issue by delineating working memory functions into executive processes and storage/maintenance components based on Baddeley's working memory model. Working memory and basic attention tasks were administered on 23 OSA children aged 8-12 years and 22 age-, education-, and general cognitive functioning-matched controls. Data on overnight polysomnographic sleep study and working memory functions were compared between the two groups. Associations between respiratory-related parameters and cognitive performance were explored in the OSA group. Compared with controls, children with OSA had poorer performance on both tasks of basic storage and central executive components in the verbal domain of working memory, above and beyond basic attention and processing speed impairments; such differences were not significant in the visuo-spatial domain. Moreover, correlational analyses and hierarchical regression analyses further suggested that obstructive apnea-hypopnea index (OAHI) and oxygen saturation (SpO2) nadir were associated with verbal working memory performance, highlighting the potential pathophysiological mechanisms of OSA-induced cognitive deficits. Verbal working memory impairments associated with OSA may compromise children's learning potentials and neurocognitive development. Early identification of OSA and assessment of the associated neurocognitive deficits are of paramount importance. Reversibility of cognitive deficits after treatment would be a critical outcome indicator. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Precision of working memory for speech sounds.

    Science.gov (United States)

    Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud

    2015-01-01

    Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.

  8. Poor comprehenders in the classroom: teacher ratings of behavior in children with poor reading comprehension and its relationship with individual differences in working memory.

    Science.gov (United States)

    Pimperton, Hannah; Nation, Kate

    2014-01-01

    Differing etiological explanations have been proposed to account for poor comprehenders' difficulties with reading comprehension, with some researchers emphasizing working memory deficits and others arguing for oral language weaknesses playing a key causal role. The authors contrasted these two theoretical accounts using data obtained from direct measures of working memory and from teacher ratings of poor comprehenders' behavior in the classroom. At the group level, poor comprehenders showed weaknesses on verbal but not nonverbal working memory tasks, in keeping with the "language account." However, they also showed evidence of elevated levels of problem behaviors specifically associated with working memory deficits. Further analysis revealed that these group differences in working-memory-related problem behaviors were carried by a small subgroup of poor comprehenders who also displayed domain-general (verbal and nonverbal) working memory problems, argued to be reflective of "genuine" underlying working memory deficits.

  9. Working Memory and Children's Mental Addition.

    Science.gov (United States)

    Adams, John W.; Hitch, Graham J.

    1997-01-01

    Two experiments investigated extent to which English- and German-speaking childrens' mental arithmetic was constrained by working memory. Found higher mental addition spans when numbers were visible throughout calculation than when not. Variation in addition span with age and arithmetical operation difficulty approximated to a linear function of…

  10. Phonological awareness and working memory: Comparisons ...

    African Journals Online (AJOL)

    The aim of this study was to compare the working memory and phonological awareness profiles of children from diverse linguistic backgrounds, as well as to investigate the constructs that underlie these skills. A total of 119 children, all in their first year of learning to read in English, were administered phonological ...

  11. The Distributed Nature of Working Memory

    NARCIS (Netherlands)

    Christophel, Thomas B.; Klink, P. Christiaan; Spitzer, Bernhard; Roelfsema, Pieter R.; Haynes, John-Dylan

    2017-01-01

    Studies in humans and non-human primates have provided evidence for storage of working memory contents in multiple regions ranging from sensory to parietal and prefrontal cortex. We discuss potential explanations for these distributed representations: (i) features in sensory regions versus

  12. Visual Working Memory for Observed Actions

    Science.gov (United States)

    Wood, Justin N.

    2007-01-01

    Human society depends on the ability to remember the actions of other individuals, which is information that must be stored in a temporary buffer to guide behavior after actions have been observed. To date, however, the storage capacity, contents, and architecture of working memory for observed actions are unknown. In this article, the author…

  13. Evidence against Decay in Verbal Working Memory

    Science.gov (United States)

    Oberauer, Klaus; Lewandowsky, Stephan

    2013-01-01

    The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which…

  14. Familiarity Enhances Visual Working Memory for Faces

    Science.gov (United States)

    Jackson, Margaret C.; Raymond, Jane E.

    2008-01-01

    Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or…

  15. Intelligence, Working Memory, and Multitasking Performance

    Science.gov (United States)

    Colom, Roberto; Martinez-Molina, Agustin; Shih, Pei Chun; Santacreu, Jose

    2010-01-01

    Multitasking performance is relevant in everyday life and job analyses highlight the influence of multitasking over several diverse occupations. Intelligence is the best single predictor of overall job performance and it is also related to individual differences in multitasking. However, it has been shown that working memory capacity (WMC) is…

  16. Reconceptualizing Working Memory in Educational Research

    Science.gov (United States)

    Fenesi, Barbara; Sana, Faria; Kim, Joseph A.; Shore, David I.

    2015-01-01

    In recent years, research from cognitive science has provided a solid theoretical framework to develop evidence-based interventions in education. In particular, research into reading, writing, language, mathematics and multimedia learning has been guided by the application of Baddeley's multicomponent model of working memory. However, an…

  17. A Neural Region of Abstract Working Memory

    Science.gov (United States)

    Cowan, Nelson; Li, Dawei; Moffitt, Amanda; Becker, Theresa M.; Martin, Elizabeth A.; Saults, J. Scott; Christ, Shawn E.

    2011-01-01

    Over 350 years ago, Descartes proposed that the neural basis of consciousness must be a brain region in which sensory inputs are combined. Using fMRI, we identified at least one such area for working memory, the limited information held in mind, described by William James as the trailing edge of consciousness. Specifically, a region in the left…

  18. Modularity, Working Memory and Language Acquisition

    Science.gov (United States)

    Baddeley, Alan D.

    2017-01-01

    The concept of modularity is used to contrast the approach to working memory proposed by Truscott with the Baddeley and Hitch multicomponent model. This proposes four sub components comprising the "central executive," an executive control system of limited attentional capacity that utilises storage based on separate but interlinked…

  19. Learning and Memory Impairments in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Andersen, Per N.; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive…

  20. Emerging Depression Is Associated with Face Memory Deficits in Adolescent Girls

    Science.gov (United States)

    Guyer, Amanda E.; Choate, Victoria R.; Grimm, Kevin J.; Pine, Daniel S.; Keenan, Kate

    2011-01-01

    Objective: To examine the association between memory for previously encoded emotional faces and depression symptoms assessed over 4 years in adolescent girls. Investigating the interface between memory deficits and depression in adolescent girls may provide clues about depression pathophysiology. Method: Participants were 213 girls recruited from…

  1. Long-term memory deficits in schizophrenia : Primary or secondary dysfunction?

    NARCIS (Netherlands)

    Holthausen, EAE; Wiersma, D; Sitskoorn, MM; Dingemans, PM; Schene, AH; van den Bosch, RJ

    2003-01-01

    Long-term memory impairment is often found in schizophrenia. The question remains whether this is caused by other cognitive deficits. One hundred eighteen first-episode patients were compared with 45 control participants on several memory tasks. The role of processing speed and central executive

  2. Long-term memory deficits in schizophrenia: Primary or secondary dysfunction?

    NARCIS (Netherlands)

    Holthausen, Esther A. E.; Wiersma, Durk; Sitskoorn, Margriet M.; Dingemans, Peter M.; Schene, Aart H.; van den Bosch, Robert J.

    2003-01-01

    Long-term memory impairment is often found in schizophrenia. The question remains whether this is caused by other cognitive deficits. One hundred eighteen first-episode patients were compared with 45 control participants on several memory tasks. The role of processing speed and central executive

  3. Hippocampal brain-derived neurotrophic factor mediates recovery from chronic stress-induced spatial reference memory deficits.

    Science.gov (United States)

    Ortiz, J Bryce; Mathewson, Coy M; Hoffman, Ann N; Hanavan, Paul D; Terwilliger, Ernest F; Conrad, Cheryl D

    2014-11-01

    Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain-derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the dorsal hippocampal cornu ammonis (CA)3 region with an adeno-associated viral vector containing the sequence for a short hairpin RNA (shRNA) directed against BDNF or a scrambled sequence (Scr). Rats were then chronically restrained (wire mesh, 6 h/day for 21 days) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trials. Rats in the Str-Imm group, regardless of adeno-associated viral contents, committed more errors in the spatial reference memory domain on the single retention trial during day 3 than did the non-stressed controls. Importantly, the typical improvement in spatial memory following the recovery from chronic stress was blocked with the shRNA against BDNF, as Str-Rec-shRNA performed worse on the RAWM compared with the non-stressed controls or Str-Rec-Scr. The stress effects were specific for the reference memory domain, but knockdown of hippocampal BDNF in unstressed controls briefly disrupted spatial working memory as measured by repeated entry errors on day 2 of training. These results demonstrated that hippocampal BDNF was necessary for the recovery from stress-induced hippocampal-dependent spatial memory deficits in the reference memory domain. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Working Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Shintaro Funahashi

    2017-04-01

    Full Text Available The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  5. Working Memory in the Prefrontal Cortex.

    Science.gov (United States)

    Funahashi, Shintaro

    2017-04-27

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley's working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  6. Working memory contributions to reinforcement learning impairments in schizophrenia.

    Science.gov (United States)

    Collins, Anne G E; Brown, Jaime K; Gold, James M; Waltz, James A; Frank, Michael J

    2014-10-08

    Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learning curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory (WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited) mechanisms in healthy adult human subjects. Here, we used this task to assess patients' specific sources of impairments in learning. In 15 separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared. These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia. Copyright © 2014 the authors 0270-6474/14/3413747-10$15.00/0.

  7. Working memory capacity in Generalized Social Phobia

    OpenAIRE

    Amir, Nader; Bomyea, Jessica

    2011-01-01

    Research suggests that understanding complex social cues depends on the availability of cognitive resources (e.g., Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). In spite of evidence suggesting that executive control functioning may impact anxiety (e.g., Eysenck, Derakshan, Santos, & Calvo, 2007), relatively few studies have examined working memory in individuals with Generalized Social Phobia (GSP). Moreover, few studies have examined the role of threat-relevant content in working ...

  8. The accessibility of memory items in children’s working memory

    OpenAIRE

    Roome, Hannah

    2016-01-01

    This thesis investigates the processes and systems that support recall in working memory. In particular it seeks to apply ideas from the adult-based dual-memory framework (Unsworth & Engle, 2007b) that claims primary memory and secondary memory are independent contributors to working memory capacity. These two memory systems are described as domain-general processes that combine control of attention and basic memory abilities to retain information. The empirical contribution comprises five ex...

  9. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    Science.gov (United States)

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  10. Selective attention, working memory, and animal intelligence.

    Science.gov (United States)

    Matzel, Louis D; Kolata, Stefan

    2010-01-01

    Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals' performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate "intelligence" and provides a framework for promoting these abilities in both young and old animals.

  11. Selective Attention, Working Memory, and Animal Intelligence

    Science.gov (United States)

    Matzel, Louis D.; Kolata, Stefan

    2009-01-01

    Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals’ performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate “intelligence” and provides a framework for promoting these abilities in both young and old animals. PMID:19607858

  12. Liar, liar, working memory on fire: Investigating the role of working memory in childhood verbal deception.

    Science.gov (United States)

    Alloway, Tracy Packiam; McCallum, Fiona; Alloway, Ross G; Hoicka, Elena

    2015-09-01

    The aim of the current study was to investigate the role of working memory in verbal deception in children. We presented 6- and 7-year-olds with a temptation resistance paradigm; they played a trivia game and were then given an opportunity to peek at the final answers on the back of a card. Measures of both verbal and visuospatial working memory were included. The good liars performed better on the verbal working memory test in both processing and recall compared with the bad liars. However, there was no difference in visuospatial working scores between good liars and bad liars. This pattern suggests that verbal working memory plays a role in processing and manipulating the multiple pieces of information involved in lie-telling. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Effects of chewing in working memory processing.

    Science.gov (United States)

    Hirano, Yoshiyuki; Obata, Takayuki; Kashikura, Kenichi; Nonaka, Hiroi; Tachibana, Atsumichi; Ikehira, Hiroo; Onozuka, Minoru

    2008-05-09

    It has been generally suggested that chewing produces an enhancing effect on cognitive performance-related aspects of memory by the test battery. Furthermore, recent studies have shown that chewing is associated with activation of various brain regions, including the prefrontal cortex. However, little is known about the relation between cognitive performances affected by chewing and the neuronal activity in specified regions in the brain. We therefore examined the effects of chewing on neuronal activities in the brain during a working memory task using fMRI. The subjects chewed gum, without odor and taste components, between continuously performed two- or three-back (n-back) working memory tasks. Chewing increased the BOLD signals in the middle frontal gyrus (Brodmann's areas 9 and 46) in the dorsolateral prefrontal cortex during the n-back tasks. Furthermore, there were more prominent activations in the right premotor cortex, precuneus, thalamus, hippocampus and inferior parietal lobe during the n-back tasks after the chewing trial. These results suggest that chewing may accelerate or recover the process of working memory besides inducing improvement in the arousal level by the chewing motion.

  14. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment.

    Science.gov (United States)

    Conti-Ramsden, Gina; Ullman, Michael T; Lum, Jarrad A G

    2015-01-01

    What memory systems underlie grammar in children, and do these differ between typically developing (TD) children and children with specific language impairment (SLI)? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females) and 46 TD children (30 males, 16 females), both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group × procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman's Declarative/Procedural model of language and procedural deficit hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children with SLI.

  16. The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment

    Directory of Open Access Journals (Sweden)

    Gina eConti-Ramsden

    2015-08-01

    Full Text Available What memory systems underlie grammar in children, and do these differ between typically developing children and children with specific language impairment (SLI? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females and 46 typically developing (TD children (30 males, 16 females, both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group x procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman’s Declarative/Procedural model of language and Procedural Deficit Hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children

  17. Effects of gender and executive function on visuospatial working memory in adult obsessive-compulsive disorder.

    Science.gov (United States)

    Martoni, Riccardo Maria; Salgari, Giulia; Galimberti, Elisa; Cavallini, Maria Cristina; O'Neill, Joseph

    2015-12-01

    Visuospatial working memory (VSWM) is the ability of the brain to transiently store and manipulate visual information. VSWM deficiencies have been reported in obsessive-compulsive disorder (OCD), but not consistently, perhaps due to variability in task design and clinical patient factors. To explore this variability, this study assessed effects of the design factors task difficulty and executive organizational strategy and of the clinical factors gender, OCD symptom dimension, and duration of illness on VSWM in OCD. The CANTAB spatial working memory, spatial recognition memory, delayed matching to sample, and stop signal tasks were administered to 42 adult OCD patients and 42 age- and sex-matched healthy controls. Aims were to detect a possible VSWM deficit in the OCD sample, to evaluate influences of the above task and patient factors, to determine the specificity of the deficit to the visuospatial subdomain, and to examine effects of sustained attention as potential neurocognitive confound. We confirmed previous findings of a VSWM deficit in OCD that was more severe for greater memory load (task difficulty) and that was affected by task strategy (executive function). We failed to demonstrate significant deficits in neighboring or confounding neurocognitive subdomains (visual object recognition or visual object short-term memory, sustained attention). Notably, the VSWM deficit was only significant for female patients, adding to evidence for sexual dimorphism in OCD. Again as in prior work, more severe OCD symptoms in the symmetry dimension (but no other dimension) significantly negatively impacted VSWM. Duration of illness had no significant effect on VSWM. VSWM deficits in OCD appear more severe with higher task load and may be mediated through poor task strategy. Such deficits may present mainly in female patients and in (male and female) patients with symmetry symptoms.

  18. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits.

    Science.gov (United States)

    Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia

    2016-01-01

    Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.

  19. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    Science.gov (United States)

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  20. Interventions to improve executive functioning and working memory in school-aged children with AD(H)D: a randomised controlled trial and stepped-care approach

    OpenAIRE

    van der Donk Marthe LA; Hiemstra-Beernink Anne-Claire; Tjeenk-Kalff Ariane C; van der Leij Aryan V; Lindauer Ramón JL

    2013-01-01

    Abstract Background Deficits in executive functioning are of great significance in attention-deficit/hyperactivity disorder (ADHD). One of these executive functions, working memory, plays an important role in academic performance and is often seen as the core deficit of this disorder. There are indications that working memory problems and academic performance can be improved by school-oriented interventions but this has not yet been studied systematically. In this study we will determine the ...

  1. Osthole Improves Spatial Memory Deficits in Rats via Hippocampal α1-Adrenergic and D1/D2 Receptors

    Directory of Open Access Journals (Sweden)

    Li-Wei Lin

    2013-01-01

    Full Text Available The present study evaluated the effect of osthole, an active ingredient isolated from Cnidium monnieri L. Cusson, on spatial memory deficits caused by central neurotoxins using the Morris water maze in rats. The involvement of catecholaminergic receptors on the memory-enhancing effect of osthole in rat hippocampus was further investigated by intrahippocampal injection of catecholaminergic receptor antagonists. Intracisternal injection of osthole (10 μg/brain improved the spatial performance and working memory impairments caused by the catecholaminergic neurotoxin 6-hydroxydopamine. No significant differences in swimming speeds were observed among sham, neurotoxin-induced, and osthole-treated groups. Intracisternal osthole injection also attenuated the spatial performance and working memory impairments caused by the α1 receptor antagonist phenoxybenzamine, the D1 receptor antagonist SCH 23390, and the D2 receptor antagonist sulpiride. Therefore, we demonstrated that the effect of osthole on improving spatial memory deficits may be related to the activation of hippocampal α1 and D1/D2 receptors.

  2. Osthole Improves Spatial Memory Deficits in Rats via Hippocampal α 1-Adrenergic and D1/D2 Receptors

    Science.gov (United States)

    Lin, Li-Wei; Kuo, Yueh-Hsiung; Hseu, You Cheng; Tsai, Chia-Wen; Hsieh, Ming-Tsuen; Chen, Shiu Ching; Wu, Chi-Rei

    2013-01-01

    The present study evaluated the effect of osthole, an active ingredient isolated from Cnidium monnieri L. Cusson, on spatial memory deficits caused by central neurotoxins using the Morris water maze in rats. The involvement of catecholaminergic receptors on the memory-enhancing effect of osthole in rat hippocampus was further investigated by intrahippocampal injection of catecholaminergic receptor antagonists. Intracisternal injection of osthole (10 μg/brain) improved the spatial performance and working memory impairments caused by the catecholaminergic neurotoxin 6-hydroxydopamine. No significant differences in swimming speeds were observed among sham, neurotoxin-induced, and osthole-treated groups. Intracisternal osthole injection also attenuated the spatial performance and working memory impairments caused by the α 1 receptor antagonist phenoxybenzamine, the D1 receptor antagonist SCH 23390, and the D2 receptor antagonist sulpiride. Therefore, we demonstrated that the effect of osthole on improving spatial memory deficits may be related to the activation of hippocampal α 1 and D1/D2 receptors. PMID:23533468

  3. Response Shifting and Inhibition, but Not Working Memory, Are Impaired After Long-Term Heavy Alcohol Consumption

    NARCIS (Netherlands)

    Hildebrandt, H.; Brokate, B.; Eling, P.A.T.M.; Lanz, M.

    2004-01-01

    Chronic alcohol abuse leads to cognitive deficits. The authors investigated whether a systematic increase of interference in a 2-back working memory paradigm would lead to cognitive deficits in alcoholic participants and compared their performance in such a task with that in all alternate-response

  4. Effects of modafinil on working memory processes in humans.

    Science.gov (United States)

    Müller, Ulrich; Steffenhagen, Nikolai; Regenthal, Ralf; Bublak, Peter

    2004-12-01

    Modafinil is a well-tolerated psychostimulant drug with low addictive potential that is used to treat patients with narcolepsy or attention deficit disorders and to enhance vigilance in sleep-deprived military personal. So far, understanding of the cognitive enhancing effects of modafinil and the relevant neurobiological mechanisms are incomplete. The aim of this study was to investigate the effects of modafinil on working memory processes in humans and how they are related to noradrenergic stimulation of the prefrontal cortex. Sixteen healthy volunteers (aged 20-29 years) received either modafinil 200 mg or placebo using a double blind crossover design. Two computerized working memory tasks were administered, a numeric manipulation task that requires short-term maintenance of digit-sequences and different degrees of manipulation as well as delayed matching task that assesses maintenance of visuo-spatial information over varying delay lengths. The battery was supplemented by standardized paper pencil tasks of attentional functions. Modafinil significantly reduced error rates in the long delay condition of the visuo-spatial task and in the manipulation conditions, but not in the maintenance condition of the numeric task. Analyses of reaction times showed no speed-accuracy trade-off. Attentional control tasks (letter cancellation, trail-making, catch trials) were not affected by modafinil. In healthy volunteers without sleep deprivation modafinil has subtle stimulating effects on maintenance and manipulation processes in relatively difficult and monotonous working memory tasks, especially in lower performing subjects. Overlapping attentional and working memory processes have to be considered when studying the noradrenergic modulation of the prefrontal cortex.

  5. Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia.

    Science.gov (United States)

    Spieker, Elena A; Astur, Robert S; West, Jeffrey T; Griego, Jacqueline A; Rowland, Laura M

    2012-03-01

    Learning and memory impairments are present in schizophrenia (SZ) throughout the illness course and predict psychosocial function. Abnormalities in prefrontal and hippocampal function are thought to contribute to SZ deficits. The radial arm maze (RAM) is a test of spatial learning and memory in rodents that relies on intact prefrontal and hippocampal function. The goal of the present study was to investigate spatial learning in SZ using a virtual RAM. Thirty-three subjects with SZ and thirty-nine healthy controls (HC) performed ten trials of a virtual RAM task. Subjects attempted to learn to retrieve four rewards each located in separate arms. As expected, subjects with SZ used more time and traveled more distance to retrieve rewards, made more reference (RM) and working memory (WM) errors, and retrieved fewer rewards than HC. It is important to note that the SZ group did learn but did not reach the level of HC. Whereas RM errors decreased across trials in the SZ group, WM errors did not. There were no significant relationships between psychiatric symptom severity and maze performance. To our knowledge, use of a virtual 8-arm radial maze task in SZ to assess spatial learning is novel. Impaired virtual RAM performance in SZ is consistent with studies that examined RAM performance in animal models of SZ. Results provide further support for compromised prefrontal and hippocampal function underlying WM and RM deficits in SZ. The virtual RAM task could help bridge preclinical and clinical research for testing novel drug treatments of SZ. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory.

    Science.gov (United States)

    Lukowski, Angela F; Koss, Marlene; Burden, Matthew J; Jonides, John; Nelson, Charles A; Kaciroti, Niko; Jimenez, Elias; Lozoff, Betsy

    2010-04-01

    Iron deficiency in infancy negatively impacts a variety of neurodevelopmental processes at the time of nutrient insufficiency, with persistent central nervous system alterations and deficits in behavioral functioning, despite iron therapy. In rodent models, early iron deficiency impairs the hippocampus and the dopamine system. We examined the possibility that young adults who had experienced chronic, severe, iron deficiency as infants would exhibit deficits on neurocognitive tests with documented frontostriatal (Trail Making Test, Intra-/Extra-dimensional Shift, Stockings of Cambridge, Spatial Working Memory, Rapid Visual Information Processing) and hippocampal specificity (Pattern Recognition Memory, Spatial Recognition Memory). Participants with chronic, severe iron deficiency in infancy performed less well on frontostriatal-mediated executive functions, including inhibitory control, set-shifting, and planning. Participants also exhibited impairment on a hippocampus-based recognition memory task. We suggest that these deficits may result from the long-term effects of early iron deficiency on the dopamine system, the hippocampus, and their interaction.

  7. Working memory capacity and the spacing effect in cued recall.

    Science.gov (United States)

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2017-12-11

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  8. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Working memory and image guided surgical simulation.

    Science.gov (United States)

    Hedman, Leif; Klingberg, Torkel; Kjellin, Ann; Wredmark, Torsten; Enochsson, Lars; Felländer-Tsai, Li

    2006-01-01

    We report on a study that investigates the relationship between visual working memory and verbal working memory and a performance measure in endoscopic instrument navigation in MIST and GI Mentor II (a simulator for gastroendoscopy). Integrated cognitive neuroscience in state-of-the-art simulator training curriculum will take safety science in health care one step ahead. Current simulator validation focuses on how to train. In the light of recent research it is now prime time to ask why in search of mechanisms rather than to repeatedly show that training has effect. This will help tailor training to maximize individual output in procedures that require a high level of dexterity. WM training is a unique learning aid in simulator training and should be used alongside clinical practice in order to improve the quality of complex clinical intervention in the field of image guided surgical simulation.

  10. A Working Memory Test Battery: Java-Based Collection of Seven Working Memory Tasks

    Directory of Open Access Journals (Sweden)

    James M Stone

    2015-06-01

    Full Text Available Working memory is a key construct within cognitive science. It is an important theory in its own right, but the influence of working memory is enriched due to the widespread evidence that measures of its capacity are linked to a variety of functions in wider cognition. To facilitate the active research environment into this topic, we describe seven computer-based tasks that provide estimates of short-term and working memory incorporating both visuospatial and verbal material. The memory span tasks provided are; digit span, matrix span, arrow span, reading span, operation span, rotation span, and symmetry span. These tasks are built to be simple to use, flexible to adapt to the specific needs of the research design, and are open source. All files can be downloaded from the project website http://www.cognitivetools.uk and the source code is available via Github.

  11. Material specificity of memory deficits in children with temporal tumors and seizures: A case series.

    Science.gov (United States)

    Whitman, Lindsay; Scharaga, Elyssa A; Blackmon, Karen; Wiener, Jennifer; Bender, Heidi Allison; Weiner, Howard L; MacAllister, William S

    2017-01-01

    In adults, left temporal lobe pathology is typically associated with verbal memory deficits, whereas right temporal lobe pathology is thought to produce visual memory deficits in right-handed individuals. However, in children and adolescents with temporal lobe pathology, conclusions regarding material specificity of memory deficits remain unclear. The goal of the present case series is to examine the profile of verbal and visual memory impairment in children with temporal lobe tumors. Three patients with identified right temporal tumors and three patients with left temporal tumors are included. The Wide Range Assessment of Memory and Learning-Second Edition (WRAML-2) was administered as part of a larger neuropsychological battery. As anticipated, participants with right temporal lesions showed impaired visual memory relative to intact verbal memory. Interestingly, although the discrepancies between verbal and visual indices were less extreme, those with left temporal lesions showed a similar memory profile. These seemingly counterintuitive findings among left temporal tumor patients likely reflect less hemispheric specialization in children in comparison to adults and the fact that early developmental lesions in the left hemisphere may lead to functional reorganization of language-based skills.

  12. Mathematical Outcomes and Working Memory in Children With TBI and Orthopedic Injury

    Science.gov (United States)

    Raghubar, Kimberly P.; Barnes, Marcia A.; Prasad, Mary; Johnson, Chad P.; Ewing-Cobbs, Linda

    2013-01-01

    This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n =50) or orthopedic injury (OI; n=47) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI. PMID:23164058

  13. Selective Attention, Working Memory, and Animal Intelligence

    OpenAIRE

    Matzel, Louis D.; Kolata, Stefan

    2009-01-01

    Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals’ performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that i...

  14. Working memory : Development, disorders and training

    OpenAIRE

    Westerberg, Helena

    2004-01-01

    Working memory (WM) is the ability to keep information online during a short period of time. Brain regions underlying WM functioning are found in the frontal and parietal cortices. It is largely unknown to what extent the neural substrates underlying WM are susceptible to training induced change. Here we investigate the development of WM capacity, if improvement by training is possible and explore the neuronal correlates for training induced change. In Study I we used fun...

  15. The Central Executive Component of Working Memory

    Science.gov (United States)

    1993-10-31

    dissimilar, concurrent tasks. We suggest that these three problems are indeed closely linked, all concerning a process of selection between alternative goals...a.AssJCATIox 20. U#ATAIION OF ABSILAC OfREPORT of THog PAGE OF ABSTRACTT TT"i rip# 1 Ti4 !ncssit f ed 2 In the working memory model of Baddeley and Hitch...have widespread difficulties with problem -solving, strategy choice etc, but preserved "intelligence". To address this paradox, we considered a

  16. The Trajectory of Mathematics Skills and Working Memory Thresholds in Girls with Fragile X Syndrome

    Science.gov (United States)

    Murphy, Melissa M.; Mazzocco, Michele M. M.

    2009-01-01

    Fragile X syndrome is a common genetic disorder associated with executive function deficits and poor mathematics achievement. In the present study, we examined changes in math performance during the elementary and middle school years in girls with fragile X syndrome, changes in the working memory loads under which children could complete a…

  17. The impact of specific language impairment on working memory in children with ADHD combined subtype

    NARCIS (Netherlands)

    Jonsdottir, S; Bouma, A; Sergeant, JA; Scherder, EJA

    The objective of this study was to examine the impact of comorbid specific language impairment (SLI) on verbal and spatial working memory in children with DSM-IV combined subtype Attention Deficit Hyperactivity Disorder (ADHD-C). Participants were a clinical sample of 8 1/2- to 12 1/2-year-old

  18. Contributions of Children's Linguistic and Working Memory Proficiencies to Their Judgments of Grammaticality

    Science.gov (United States)

    Noonan, Nicolette B.; Redmond, Sean M.; Archibald, Lisa M. D.

    2014-01-01

    Purpose: The authors explored the cognitive mechanisms involved in language processing by systematically examining the performance of children with deficits in the domains of working memory and language. Method: From a database of 370 school-age children who had completed a grammaticality judgment task, groups were identified with a co-occurring…

  19. Dynamic Testing, Working Memory, and Reading Comprehension Growth in Children with Reading Disabilities

    Science.gov (United States)

    Swanson, H. Lee

    2011-01-01

    This longitudinal study assessed (a) whether performance changes in working memory (WM) as a function of dynamic testing were related to growth in reading comprehension and (b) whether WM performance among subgroups of children with reading disabilities (RD; children with RD only, children with both reading and arithmetic deficits, and low verbal…

  20. Gender Differences in Self-Reported Symptomatology and Working Memory in College Students with ADHD

    Science.gov (United States)

    Kercood, Suneeta; Lineweaver, Tara T.; Kugler, Jennifer

    2015-01-01

    The purpose of this study was to examine gender differences in self-reported symptomatology and working memory (visuospatial and auditory) in college students with Attention Deficit Hyperactivity Disorder (ADHD). Forty-seven college students with ADHD and 44 non-affected control participants completed two self-report questionnaires and six tests…

  1. Working Memory Modulation of Frontoparietal Network Connectivity in First-Episode Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Jesper Duemose; Madsen, Kristoffer Hougaard; Wang, Zheng

    2017-01-01

    Working memory (WM) impairment is regarded as a core aspect of schizophrenia. However, the neural mechanisms behind this cognitive deficit remain unclear. The connectivity of a frontoparietal network is known to be important for subserving WM. Using functional magnetic resonance imaging...

  2. Early Adolescent Sexual Debut: The Mediating Role of Working Memory Ability, Sensation Seeking, and Impulsivity

    Science.gov (United States)

    Khurana, Atika; Romer, Daniel; Betancourt, Laura M.; Brodsky, Nancy L.; Giannetta, Joan M.; Hurt, Hallam

    2012-01-01

    Although deficits in working memory ability have been implicated in suboptimal decision making and risk taking among adolescents, its influence on early sexual initiation has so far not been examined. Analyzing 2 waves of panel data from a community sample of adolescents (N = 347; Mean age[subscript baseline] = 13.4 years), assessed 1 year apart,…

  3. Supramodal parametric working memory processing in humans.

    Science.gov (United States)

    Spitzer, Bernhard; Blankenburg, Felix

    2012-03-07

    Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory.

  4. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men

    OpenAIRE

    Lüthi, Mathias; Meier, Beat; Sandi, Carmen

    2008-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  5. Anosognosia for memory deficit in amnestic mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Galeone, Filomena; Pappalardo, Stella; Chieffi, Sergio; Iavarone, Alessandro; Carlomagno, Sergio

    2011-07-01

    to investigate patterns of anosognosia for memory deficit in subjects with amnestic mild cognitive impairment (MCI) and Alzheimer's disease (AD). the study involved twenty-five subjects with MCI, 15 with mild AD and 21 normal controls (NC). Subjective rating of memory functioning was assessed with a six-items questionnaire that was administered before and after memory testing; an informant version from caregivers gave a discrepancy score (SRD). In the Objective Judgement (OJ) task, aiming to evaluate memory-monitoring abilities, subjects were requested three times to predict their memory performance in recalling words from a list of ten. Then they had to recall the words. Prediction accuracy was computed by subtracting the predicted performance from the actual performance. MCI and AD showed reduced awareness of memory difficulties at the SRD and did not change their rating of these difficulties after memory testing. At the OJ task, MCI and AD consistently overestimated their memory performances as compared with NC. The SRD and OJ measures were not correlated with some patients being impaired on only one measure. Only the OJ measure was significantly related to executive functioning. AD and MCI subjects show unawareness for memory deficit and significant memory-monitoring disorder. This confirms that anosognosia is an important symptom of MCI. Similarities of patterns of impaired awareness between AD and MCI supports the view of a continuum of the anosognosia phenomenon in MCI and AD. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors.

    Science.gov (United States)

    King, Tricia Z; Na, Sabrina; Mao, Hui

    2015-08-01

    Adult survivors of childhood brain tumors are at risk for cognitive performance deficits that require the core cognitive skill of working memory. Our goal was to examine the neural mechanisms underlying working memory performance in survivors. We studied the working memory of adult survivors of pediatric posterior fossa brain tumors using a letter n-back paradigm with varying cognitive workload (0-, 1-, 2-, and 3-back) and functional magnetic resonance imaging as well as neuropsychological measures. Survivors of childhood brain tumors evidenced lower working memory performance than demographically matched healthy controls. Whole-brain analyses revealed significantly greater blood-oxygen level dependent (BOLD) activation in the left superior / middle frontal gyri and left parietal lobe during working memory (2-back versus 0-back contrast) in survivors. Left frontal BOLD response negatively correlated with 2- and 3-back working memory performance, Auditory Consonant Trigrams (ACT), and Digit Span Backwards. In contrast, parietal lobe BOLD response negatively correlated with 0-back (vigilance task) and ACT. The results revealed that adult survivors of childhood posterior fossa brain tumors recruited additional cognitive control resources in the prefrontal lobe during increased working memory demands. This increased prefrontal activation is associated with lower working memory performance and is consistent with the allocation of latent resources theory.

  7. The effects of presentation rate and retention interval on memory for items and associations in younger adults: a simulation of older adults' associative memory deficit.

    Science.gov (United States)

    Brubaker, Matthew S; Naveh-Benjamin, Moshe

    2014-01-01

    Older adults show an associative deficit in episodic memory compared to younger adults. Previous research suggests both strategic and automatic binding deficits contribute to older adults' poorer memory performance. Using behavioral manipulations designed to affect strategic and automatic binding of associations, three experiments attempted to simulate an associative deficit in younger adults. In these experiments participants learned face-scene pairs and then were given item and associative recognition memory tests. We manipulated the time allotted at encoding and retrieval to simulate strategic deficits, and the length of the retention interval to simulate automatic deficits. Results indicate that both manipulations separately contribute to a differential decline in associative memory, similar to the one shown by older adults, especially as reflected in the differential increase in false alarm rate in the associative memory test more than in the item memory test. Considerations of possible underlying brain mechanisms are discussed.

  8. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    Science.gov (United States)

    Sanders, Ashley F.; Hobbs, Diana A.; Stephenson, David D.; Laird, Robert D.; Beaton, Elliott A.

    2017-01-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial…

  9. Event-related potentials elicited during working memory are altered in mild cognitive impairment.

    Science.gov (United States)

    López Zunini, Rocío A; Knoefel, Frank; Lord, Courtney; Dzuali, Fiatsogbe; Breau, Michael; Sweet, Lisa; Goubran, Rafik; Taler, Vanessa

    2016-11-01

    Persons with Mild Cognitive Impairment (MCI) can experience deficits in working memory. In the present study, we investigated working memory in persons with MCI and cognitively healthy older adults using event-related potentials (ERPs). Participants performed an n-back working memory task with baseline (0-back), low load (1-back), and high load (2-back) working memory conditions. MCI participants' performance was less accurate than that of healthy older adults in both the 1-back and 2-back conditions, and reaction times were longer in MCI than control participants in the 0-back, 1-back and 2-back conditions. ERP analyses revealed delayed P200 and N200 latencies and smaller P300 amplitudes in MCI relative to control participants in the 0-back, 1-back and 2-back conditions. Deterioration in working memory performance concomitant with marked electrophysiological alterations suggests that persons with MCI exhibit deficits in several cognitive processes that include early attention, stimulus discrimination and classification, and updating and manipulation of information held in working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Auditory Memory deficit in Elderly People with Hearing Loss.

    Science.gov (United States)

    Shahidipour, Zahra; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Khosravifard, Elham

    2013-06-01

    Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory. Dichotic Auditory Memory Test (DVMT) was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders. Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (Pauditory verbal memory. This result depicts the importance of auditory intervention to make better communicational skills and therefore auditory memory in this population.

  11. Depressive Symptoms Affect Working Memory in Healthy Older Adult Hispanics.

    Science.gov (United States)

    Salazar-Villanea, Monica; Liebmann, Edward; Garnier-Villarreal, Mauricio; Montenegro-Montenegro, Esteban; Johnson, David K

    2015-10-01

    Low and middle income nations will experience an unprecedented growth of the elderly population and subsequent increase in age-related neurological disorders. Worldwide prevalence and incidence of all-types of neurological disorders with serious mental health complications will increase with life expectancy across the globe. One-in- ten individuals over 75 has at least moderate cognitive impairment. Prevalence of cognitive impairment doubles every 5 years thereafter. Latin America's population of older adult's 65 years and older is growing rapidly, yet little is known about cognitive aging among healthy older Latinos. Clinically significant depressive symptomatology is common among community-dwelling older adults and is associated with deficits across multiple cognitive domains, however much of the literature has not modeled the unique effects of depression distinct from negative and low positive affect. Our objective was to understand how mental health affects cognitive health in healthy aging Latinos. The present study used confirmatory factor analysis (CFA) and structural equation modeling (SEM) to examine the relative effects of Negative Affect, Positive Affect and Geriatric Depression on Verbal Memory, Verbal Reasoning, Processing Speed, and Working Memory in healthy aging Latinos. Data was collected from a sample of healthy community dwelling older adults living in San Jose, Costa Rica. Modeling of latent variables attenuated error and improved measurement reliability of cognition, affect, and depression variables. Costa Ricans enjoy a notoriety for being much happier than US citizens and are renowned as one of the happiest nations in the world in global surveys. This was born out in these data. Costa Rican affective profiles differed substantively from US profiles. Levels of negative affect and depression were similar to US samples, but their levels of positive affect were much higher. Cognitive performance of these Costa Rican older adults was similar to US

  12. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions

    DEFF Research Database (Denmark)

    Reimers, Tonny Solveig; Mortensen, Erik Lykke; Schmiegelow, Kjeld

    2007-01-01

    To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction.......To analyze the impact of potential predictors on memory performance in survivors of childhood brain tumors and to examine whether deficits in memory after radiotherapy (RT) should be considered part of a more global mental dysfunction....

  13. Is selective mutism associated with deficits in memory span and visual memory?: An exploratory case-control study.

    Science.gov (United States)

    Kristensen, Hanne; Oerbeck, Beate

    2006-01-01

    Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.

  14. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    Science.gov (United States)

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  15. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    Science.gov (United States)

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Longitudinal tDCS: Consistency across Working Memory Training Studies

    National Research Council Canada - National Science Library

    Marian E. Berryhill

    2017-01-01

    ...), have targeted working memory in particular. Despite controversy surrounding outcomes of single-session studies, a growing field of working memory training studies incorporate multiple sessions of tDCS...

  17. Postural responses to specific types of working memory tasks

    NARCIS (Netherlands)

    Ramenzoni, V.C.; Riley, M.A.; Shockley, K.; Chiu, C.Y.P.

    2007-01-01

    Standing participants performed working memory tasks that varied along three dimensions: (1) type of information presented (verbal or visual); (2) the primary cognitive process engaged (encoding or rehearsal); and (3) interference that targeted the working memory components (phonological loop and

  18. Use of an eight-arm radial water maze to assess working and reference memory following neonatal brain injury.

    Science.gov (United States)

    Penley, Stephanie C; Gaudet, Cynthia M; Threlkeld, Steven W

    2013-12-04

    Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.

  19. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    OpenAIRE

    Teri Lawton; John Shelley-Tremblay

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed...

  20. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    Science.gov (United States)

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    Science.gov (United States)

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder.

    Science.gov (United States)

    Zlomuzica, Armin; Woud, Marcella L; Machulska, Alla; Kleimt, Katharina; Dietrich, Lisa; Wolf, Oliver T; Assion, Hans-Joerg; Huston, Joseph P; De Souza Silva, Maria A; Dere, Ekrem; Margraf, Jürgen

    2018-04-20

    Post-traumatic stress disorder (PTSD) is characterized by impairments in mnestic functions, especially in the domain of episodic memory. These alterations might affect different aspects of episodic memory functioning. Here we tested PTSD patients and healthy controls (matched for age, sex and education) in a newly developed virtual reality episodic memory test (VR-EMT), a test for mental time travel, episodic future thinking, and prospective memory (M3xT). In a cross-validation experiment, their performance was further evaluated in the Rivermead Behavioral Memory Test (RBMT). PTSD patients demonstrated impairments in episodic memory formation and mental time travel and showed difficulties in utilizing information from episodic memory to solve problems. Diminished attention and concentration in PTSD did not account for performance deficits in these tasks but higher levels of negative arousal were found in PTSD patients. Furthermore, performance in the VR-EMT and RBMT in PTSD patients correlated negatively with self-reported measures of stress and depression. Our results suggest that deficits in episodic memory formation and mental time travel in PTSD lead to difficulties in utilizing the content of episodic memories for solving problems in the present or to plan future behavior. Clinical implications of these findings and suggestions for cognitive-behavioral treatment of PTSD are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Breaking cycles of risk: The mitigating role of maternal working memory in associations among socioeconomic status, early caregiving, and children's working memory.

    Science.gov (United States)

    Suor, Jennifer H; Sturge-Apple, Melissa L; Skibo, Michael A

    2017-10-01

    Previous research has documented socioeconomic-related disparities in children's working memory; however, the putative proximal caregiving mechanisms that underlie these effects are less known. The present study sought to examine whether the effects of early family socioeconomic status on children's working memory were mediated through experiences of caregiving, specifically maternal harsh discipline and responsiveness. Utilizing a psychobiological framework of parenting, the present study also tested whether maternal working memory moderated the initial paths between the family socioeconomic context and maternal harsh discipline and responsiveness in the mediation model. The sample included 185 socioeconomically diverse mother-child dyads assessed when children were 3.5 and 5 years old. Results demonstrated that maternal harsh discipline was a unique mediator of the relation between early experiences of family socioeconomic adversity and lower working memory outcomes in children. Individual differences in maternal working memory emerged as a potent individual difference factor that specifically moderated the mediating influence of harsh discipline within low socioeconomic contexts. The findings have implications for early risk processes underlying deficits in child working memory outcomes and potential targets for parent-child interventions.

  4. Amodal completion in visual working memory.

    Science.gov (United States)

    Chen, Siyi; Müller, Hermann J; Conci, Markus

    2016-09-01

    Amodal completion refers to the perceptual "filling-in" of partly occluded object fragments. Previous work has shown that object completion occurs efficiently, at early perceptual stages of processing. However, despite efficient early completion, at a later stage, the maintenance of complete-object representations in visual working memory (VWM) may be severely restricted due to limited mnemonic resources being available. To examine for such a limitation, we investigated whether the structure of to-be-remembered objects influences what is encoded and maintained in VWM using a change detection paradigm. Participants were presented with a memory display that contained either "composite" objects, that is, notched shapes abutting an occluding square, or equivalent unoccluded, "simple" objects. The results showed overall increased memory performance for simple relative to composite objects. Moreover, evidence for completion in VWM was found for composite objects that were interpreted as globally completed wholes, relative to local completions or an uncompleted mosaic (baseline) condition. This global completion advantage was obtained only when the "context" of simple objects also supported a global object interpretation. Finally, with an increase in memory set size, the global object advantage decreased substantially. These findings indicate that processes of amodal completion influence VWM performance until some overall-capacity limitation prevents completion. VWM completion processes do not operate automatically; rather, the representation format is determined top-down based on the simple object context provided. Overall, these findings support the notion of VWM as a capacity-limited resource, with storage capacity depending on the structured representation of to-be-remembered objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Differential Effects of Alcohol Consumption Behaviours on Working Memory Processes

    OpenAIRE

    Shaunak Sanjay Deshpande

    2015-01-01

    Alcohol exposure in a clinical population impairs working memory. In order to establish the effects of alcohol on working memory in typical young adults, this study looked at their alcohol consumption behaviours and how they predict working memory. A battery of cognitive tasks and a recreational drug use questionnaire assessed working memory and alcohol consumption of 100 participants. The results revealed that alcohol abstinence predicted set-shifting, verbal executive, phonological loop, sp...

  6. Sleep problems across development: a pathway to adolescent risk taking through working memory.

    Science.gov (United States)

    Thomas, April Gile; Monahan, Kathryn C; Lukowski, Angela F; Cauffman, Elizabeth

    2015-02-01

    Problematic sleep can be detrimental to the development of important cognitive functions, such as working memory, and may have the potential for negative behavioral consequences, such as risk-taking. In this way, sleep problems may be particularly harmful for youth-whose cognitive abilities are still developing and who are more susceptible to risky behavior. Using data from a large, national, longitudinal study, continuity and change in sleep problems were examined from 2 to 15 years of age and associated with deficits in working memory at age 15 and risk taking behaviors at age 18. Participants (N = 1,364 children; 48.3% female) were assessed for sleep problems (parent-report), working memory (behavioral task), and risk taking behavior (youth self-report). The sample was predominantly White (80.4%); additional races represented in the sample included Black/African American (12.9%), Asian/Pacific Islander (1.6%), American Indian/Eskimo/Aleut (.4%), and Other (4.7%). The findings suggest that sleep problems are likely to cascade across development, with sleep problems demonstrating continuity from infancy to early childhood, early childhood to middle childhood, and middle childhood to adolescence. Although sleep problems in infancy, early childhood, and middle childhood were not directly related to adolescent working memory, sleep problems during adolescence were associated with poorer adolescent working memory. In turn, these deficits in working memory were related to greater risk taking in late adolescence. In summary, the present results suggest that sleep problems in earlier periods are indicative of risk for sleep problems later in development, but that sleep problems in adolescence contribute uniquely to deficits in working memory that, in turn, lead to risky behavior during late adolescence.

  7. The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia.

    Science.gov (United States)

    Barch, Deanna M; Smith, Ed

    2008-07-01

    Working memory is one of the central constructs in cognitive science and has received enormous attention in the theoretical and empirical literature. Similarly, working memory deficits have long been thought to be among the core cognitive deficits in schizophrenia, making it a ripe area for translation. This article provides a brief overview of the current theories and data on the psychological and neural mechanisms involved in working memory, which is a summary of the presentation and discussion on working memory that occurred at the first Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) meeting (Washington, D.C.). At this meeting, the consensus was that the constructs of goal maintenance and interference control were the most ready to be pursued as part of a translational cognitive neuroscience effort at future CNTRICS meetings. The constructs of long-term memory reactivation, capacity, and strategic encoding were felt to be of great clinical interest but requiring more basic research. In addition, the group felt that the constructs of maintenance over time and updating in working memory had growing construct validity at the psychological and neural levels but required more research in schizophrenia before these should be considered as targets for a clinical trials setting.

  8. Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited.

    Science.gov (United States)

    Brønnick, Kolbjørn; Alves, Guido; Aarsland, Dag; Tysnes, Ole-Bjørn; Larsen, Jan Petter

    2011-01-01

    The retrieval deficit hypothesis on memory impairment in patients with Parkinson's disease (PD) implies a selective impairment in recall of learned material with normal encoding, retention, and recognition. This hypothesis has been challenged by new data. We have therefore investigated verbal memory and learning in a large sample of newly diagnosed, drug naïve, non-demented patients with PD. From a sample of patients with PD from the Norwegian ParkWest study, 133 PD patients and 133 controls matched on sex, age, and education were included. The California Verbal Learning Test-2 (CVLT-2) was used to assess verbal memory. Patients performed significantly worse than controls on free and cued recall as well as on recognition memory. Patients used the semantic clustering learning strategy significantly less extensively than the controls and the learning slope of the PD patients was significantly less steep. There was no difference in retention when controlling for encoding. Patients did not perform better on the recognition measure or on cued recall (d-prime), as compared to free recall. Executive functions explained a substantial part of the memory deficits. This study suggests that memory impairment in drug naïve early PD to a large degree is a deficit of learning/ encoding and not of retention or retrieval. An implication is that the retrieval deficit hypothesis should be moderated in its general form. Executive deficits and less extensive use of the efficient semantic clustering learning strategy had a strong impact on learning and memory. (c) 2010 APA, all rights reserved.

  9. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  11. Predictors of Verbal Working Memory in Children with Cerebral Palsy

    Science.gov (United States)

    Peeters, Marieke; Verhoeven, Ludo; de Moor, Jan

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by means of a forced-recognition task. As precursors…

  12. Working Memory and Learning: A Practical Guide for Teachers

    Science.gov (United States)

    Gathercole, Susan E.; Alloway, Tracy Packiam

    2008-01-01

    A good working memory is crucial to becoming a successful leaner, yet there is very little material available in an easy-to-use format that explains the concept and offers practitioners ways to support children with poor working memory in the classroom. This book provides a coherent overview of the role played by working memory in learning during…

  13. Predictors of verbal working memory in children with cerebral palsy.

    NARCIS (Netherlands)

    Peeters, M.; Verhoeven, L.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  14. Spatial Working Memory Effects in Early Visual Cortex

    Science.gov (United States)

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  15. Working Memory Interventions with Children: Classrooms or Computers?

    Science.gov (United States)

    Colmar, Susan; Double, Kit

    2017-01-01

    The importance of working memory to classroom functioning and academic outcomes has led to the development of many interventions designed to enhance students' working memory. In this article we briefly review the evidence for the relative effectiveness of classroom and computerised working memory interventions in bringing about measurable and…

  16. Past Experience Influences Object Representation in Working Memory

    Science.gov (United States)

    Wagar, B.M.; Dixon, M.J.

    2005-01-01

    The nature of object representation in working memory is vital to establishing the capacity of working memory, which in turn shapes the limits of visual cognition and awareness. Although current theories discuss whether representations in working memory are feature-based or object-based, no theory has considered the role of past experience.…

  17. Differential Age Effects on Spatial and Visual Working Memory

    Science.gov (United States)

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  18. Teachers' Perceptions of Classroom Behaviour and Working Memory

    Science.gov (United States)

    Alloway, Tracy Packiam

    2012-01-01

    Working memory, ability to remember and manipulate information, is crucial to academic attainment. The aim of the present study was to understand teachers' perception of working memory and how it impacts classroom behaviour. A semi-structured interview was used to explore teachers' ability to define working memory, identify these difficulties in…

  19. Predictors of verbal working memory in children with cerebral palsy

    NARCIS (Netherlands)

    Peeters, M.H.J.; Verhoeven, L.T.W.; Moor, J.M.H. de

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by

  20. Spatial working memory maintenance: does attention play a role?

    NARCIS (Netherlands)

    Chan, L.K.; Hayward, W.G.; Theeuwes, J.

    2009-01-01

    Recent studies have proposed that a common mechanism may underlie spatial attention and spatial working memory. One proposal is that spatial working memory is maintained by attention-based rehearsal [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of

  1. Episodic Memory Decline in Huntington's Disease, A Binding Deficit?

    NARCIS (Netherlands)

    El Haj, M.; Caillaud, M.; Fasotti, L.; Verny, C.; Allain, P.

    2013-01-01

    Background: Huntington's disease (HD) is characterized by episodic memory deterioration. Objective: Our paper investigates the cognitive mechanisms that might underlie this decline. To this aim, we tested two executive hypotheses, the binding and the inhibition hypotheses. Methods: Fifteen HD

  2. Effects of concomitant methylphenidate and ethanol administration on working and reference memory in rats.

    Science.gov (United States)

    Sloan, Anthony R; McGovern, Robin; Buffalari, Deanne M

    Recent studies have suggested that college students are heavily engaged in non-medical use of stimulant drugs prescribed to treat attention deficit hyperactivity disorder. This age group is also at high risk for alcohol use. Despite their potential co-abuse, little work has examined how these drugs interact to affect cognitive abilities. In fact, these drugs have opposing effects on working memory, which brings into question how they may interact to affect this particular behavior. The purpose of this research was to examine the concomitant effects of methylphenidate (MPH) and ethanol (EtOH) on working and reference memory. Rats were first trained on the radial arm maze task to establish a baseline performance rate measured as average number of reference and working memory errors. Performance was then assessed after injections of saline, MPH alone, EtOH alone, and MPH+EtOH combined. While both doses of MPH caused nonsignificant improvements in working memory, when combined with EtOH, there was an overall impairment in working and reference memory compared to other conditions. EtOH alone also decreased memory. These data indicate increased impairment of memory function with combined MPH and EtOH use. By understanding how the combination of methylphenidate and alcohol affects memory, we can better assess the risks of taking both substances simultaneously. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of xiaoyaosan decoction on learning and memory deficit in rats induced by chronic immobilization stress.

    Science.gov (United States)

    Meng, Zhen-Zhi; Chen, Jia-Xu; Jiang, You-Ming; Zhang, Han-Ting

    2013-01-01

    Xiaoyaosan (XYS) decoction is a famous prescription which can protect nervous system from stress and treat liver stagnation and spleen deficiency syndrome (LSSDS). In this experiment, we observed the effect of XYS decoction on chronic immobilization stress (CIS) induced learning and memory deficit in rats from behaviors and changes of proteins in hippocampus. We used XYS decoction to treat CIS induced learning and memory deficit in rats with rolipram as positive control, used change of body weight and behavioral tests to determine whether the rats have LSSDS and have learning and memory deficit or not. We used Western blotting to determine the content of postsynaptic density protein 95 (PSD-95) and synaptophysin (SYP) in hippocampus. Results showed that XYS could improve the situation of slow weight gain induced by CIS, improve the ability of learning and memory, reverse the symptom of liver stagnation and spleen deficiency syndrome (LSSDS) in rats, and increase the levels of PSD-95 and SYP on the hippocampal nerve synapses. These findings suggested that XYS decoction may be helpful in reversing CIS induced learning and memory deficit by increasing the levels of PSD-95 and SYP on the hippocampal nerve synapses and improving synaptic plasticity.

  4. Effect of Xiaoyaosan Decoction on Learning and Memory Deficit in Rats Induced by Chronic Immobilization Stress

    Directory of Open Access Journals (Sweden)

    Zhen-Zhi Meng

    2013-01-01

    Full Text Available Xiaoyaosan (XYS decoction is a famous prescription which can protect nervous system from stress and treat liver stagnation and spleen deficiency syndrome (LSSDS. In this experiment, we observed the effect of XYS decoction on chronic immobilization stress (CIS induced learning and memory deficit in rats from behaviors and changes of proteins in hippocampus. We used XYS decoction to treat CIS induced learning and memory deficit in rats with rolipram as positive control, used change of body weight and behavioral tests to determine whether the rats have LSSDS and have learning and memory deficit or not. We used Western blotting to determine the content of postsynaptic density protein 95 (PSD-95 and synaptophysin (SYP in hippocampus. Results showed that XYS could improve the situation of slow weight gain induced by CIS, improve the ability of learning and memory, reverse the symptom of liver stagnation and spleen deficiency syndrome (LSSDS in rats, and increase the levels of PSD-95 and SYP on the hippocampal nerve synapses. These findings suggested that XYS decoction may be helpful in reversing CIS induced learning and memory deficit by increasing the levels of PSD-95 and SYP on the hippocampal nerve synapses and improving synaptic plasticity.

  5. Study of memory deficit in Alzheimer's disease by means of complexity analysis of fNIRS signal.

    Science.gov (United States)

    Perpetuini, David; Bucco, Roberta; Zito, Michele; Merla, Arcangelo

    2018-01-01

    Working memory deficit is a signature of Alzheimer's disease (AD). The free and cued selective reminding test (FCSRT) is a clinical test that quantifies memory deficit for AD diagnosis. However, the diagnostic accuracy of FCSRT may be increased by accompanying it with neuroimaging. Since the test requires doctor-patient interaction, brain monitoring is challenging. Functional near-infrared spectroscopy (fNIRS) could be suited for such a purpose because of the fNIRS flexibility. We investigated whether the complexity, based on sample entropy and multiscale entropy metrics, of the fNIRS signal during FCSRT was correlated with memory deficit in early AD. fNIRS signals were recorded over the prefrontal cortex of healthy and early AD participants. Group differences were tested through Wilcoxon-Mann-Whitney test ([Formula: see text]). At group level, we found significant differences for Brodmann areas 9 and 46. The results, although preliminary, demonstrate the feasibility of performing ecological studies on early AD with fNIRS. This approach may provide a potential neuroimaging-based method for diagnosis of early AD, viable at the doctor's office level, improving test-based diagnosis. The increased entropy of the fNIRS signal in early AD suggests the opportunity for further research on the neurophysiological status in AD and its relevance for clinical symptoms.

  6. Curcumin Improves Amyloid β-Peptide (1-42 Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD. However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42, representing a rodent model of Alzheimer's disease (AD. The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day but not acute (once a day curcumin treatments (50, 100, and 200 mg/kg improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  7. Working memory in the aged Ts65Dn mouse, a model for Down syndrome.

    Science.gov (United States)

    Whitney, Katharine N; Wenger, Galen R

    2012-06-15

    The Ts65Dn mouse displays several phenotypic abnormalities that parallel characteristics found in Down syndrome. One important characteristic associated with Down syndrome is an increased incidence of early-onset Alzheimer's disease. Since Alzheimer's disease is characterized largely by progressive memory loss, it is of interest to study working memory in the Ts65Dn mouse. Previous research in our lab using a titrating, delayed matching-to-position schedule of reinforcement has demonstrated that young, adult male Ts65Dn mice do not display a working memory deficit when compared to age-matched littermate controls. However, there have been no studies examining the working memory of these mice as they age. Due to the correlation between Down syndrome and Alzheimer's disease, and as part of a larger effort to further characterize the phenotype of the Ts65Dn mouse, the purpose of this study was to determine whether aged Ts65Dn mice possess a working memory deficit when compared to age-matched littermate controls. In order to study working memory, two groups of mice were trained under a titrating, delayed matching-to-position schedule of reinforcement. The first group was trained beginning at 3 months of age, and the second group began training at 15 months of age. Both groups were studied to 24 months of age. Initially, both groups of Ts65Dn mice performed at a lower level of accuracy than the control mice; however, this difference disappeared with further practice. The results from these lifespan studies indicate that the aged Ts65Dn mouse does not possess a working memory deficit when compared to age-matched controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Vagus nerve stimulation improves working memory performance.

    Science.gov (United States)

    Sun, Lihua; Peräkylä, Jari; Holm, Katri; Haapasalo, Joonas; Lehtimäki, Kai; Ogawa, Keith H; Peltola, Jukka; Hartikainen, Kaisa M

    2017-12-01

    Vagus nerve stimulation (VNS) is used for treating refractory epilepsy and major depression. While the impact of this treatment on seizures has been established, its impact on human cognition remains equivocal. The goal of this study is to elucidate the immediate effects of vagus nerve stimulation on attention, cognition, and emotional reactivity in patients with epilepsy. Twenty patients (12 male and 8 female; 45 ± 13 years old) treated with VNS due to refractory epilepsy participated in the study. Subjects performed a computer-based test of executive functions embedded with emotional distractors while their brain activity was recorded with electroencephalography. Subjects' cognitive performance, early visual event-related potential N1, and frontal alpha asymmetry were studied when cyclic vagus nerve stimulation was on and when it was off. We found that vagus nerve stimulation improved working memory performance as seen in reduced errors on a subtask that relied on working memory, odds ratio (OR) = 0.63 (95% confidence interval, CI [0.47, 0.85]) and increased N1 amplitude, F(1, 15) = 10.17, p = .006. In addition, vagus nerve stimulation resulted in longer reaction time, F(1, 16) = 8.23, p = .019, and greater frontal alpha asymmetry, F(1, 16) = 11.79, p = .003, in response to threat-related distractors. This is the first study to show immediate improvement in working memory performance in humans with clinically relevant vagus nerve stimulation. Furthermore, vagus nerve stimulation had immediate effects on emotional reactivity evidenced in behavior and brain physiology.

  9. Dissociation of Procedural and Working Memory in Pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    Walter T. Herbranson

    2016-07-01

    Full Text Available A new method was developed to concurrently investigate procedural memory and working memory in pigeons. Pigeons performed a sequence of keypecks across 3 response keys in a serial response task, with periodic choice probes for the location of a recently produced response. Procedural memory was operationally defined as decreasing response times to predictable cues in the sequence. Working memory was reflected by accurate responses to the choice probes. Changing the sequence of required keypecks to a random sequence interfered with procedural memory in the form of slowed response times, but did not prevent pigeons from effectively using working memory to remember specific cue locations. Conversely, changing exposure duration of to a cue location influenced working memory but had no effect on procedural memory. Double dissociations such as this have supported the multiple systems approach to the study of memory in cognitive psychology and neuroscience, and they encourage a similar approach in comparative psychology.

  10. Caffeine enhances working memory for extraverts.

    Science.gov (United States)

    Smillie, Luke D; Gökçen, Elif

    2010-12-01

    Using a randomized double-blind placebo-controlled design we examined the effects of caffeine on working memory (WM) as a function of extraverted personality. Participants (N=59) received 200mg of caffeine and placebo in counterbalanced-order over two sessions prior to completing a 'N-Back' WM paradigm. Findings revealed that caffeine administration relative to the placebo condition resulted in heightened WM performance, but only for extraverted participants. We suggest based on previous theory and research that dopamine function (DA) may be the most plausible mechanism underlying this finding. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  11. Higher body mass index is associated with episodic memory deficits in young adults.

    Science.gov (United States)

    Cheke, Lucy G; Simons, Jon S; Clayton, Nicola S

    2016-11-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18-35 years, with BMIs ranging from 18 to 51, were tested on a novel what-where-when style episodic memory test: the "Treasure-Hunt Task". This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what-where-when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation.

  12. Contextual recognition memory deficits in major depression are suppressed by cognitive support at encoding.

    Science.gov (United States)

    Corrêa, Márcio Silveira; Balardin, Joana Bisol; Caldieraro, Marco Antônio Knob; Fleck, Marcelo Pio; Argimon, Irani; Luz, Clarice; Bromberg, Elke

    2012-02-01

    To investigate the effect of cognitive support (an associative orienting instruction at encoding) on contextual memory in depressed patients. Seventeen patients (age 20-40 years, 14 women) diagnosed with major depressive disorder (MDD) and 22 healthy controls matched for age, gender and education completed a recognition memory task for item (object) and context (location), with or without an incidental binding cue at encoding. In addition, participants completed the vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS III) and the Wisconsin Card Sorting Test (WCST). Salivary samples were collected at 7 AM, 4 PM and 10 PM on the day of testing for cortisol and DHEA level measurement. Depressed patients showed a deficit in contextual memory in the absence of a binding cue but did not differ from healthy controls in item memory or when a binding cue was present. Cortisol and cortisol/DHEA ratios were lower in depressed patients compared to healthy controls and correlated with memory deficits. Contextual memory deficits in MDD patients can be reduced by providing cognitive support at encoding. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Association between Early Attention-Deficit/Hyperactivity Symptoms and Current Verbal and Visuo-Spatial Short-Term Memory

    Science.gov (United States)

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…

  14. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  15. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Science.gov (United States)

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  16. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Directory of Open Access Journals (Sweden)

    Rainer Stollhoff

    Full Text Available The study investigates long-term recognition memory in congenital prosopagnosia (CP, a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs. In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  17. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Science.gov (United States)

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  18. Computerized working memory training has positive long-term effect in very low birthweight preschool children.

    Science.gov (United States)

    Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C

    2016-02-01

    Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.

  19. Ageing and feature binding in visual working memory: The role of presentation time.

    Science.gov (United States)

    Rhodes, Stephen; Parra, Mario A; Logie, Robert H

    2016-01-01

    A large body of research has clearly demonstrated that healthy ageing is accompanied by an associative memory deficit. Older adults exhibit disproportionately poor performance on memory tasks requiring the retention of associations between items (e.g., pairs of unrelated words). In contrast to this robust deficit, older adults' ability to form and temporarily hold bound representations of an object's surface features, such as colour and shape, appears to be relatively well preserved. However, the findings of one set of experiments suggest that older adults may struggle to form temporary bound representations in visual working memory when given more time to study objects. However, these findings were based on between-participant comparisons across experimental paradigms. The present study directly assesses the role of presentation time in the ability of younger and older adults to bind shape and colour in visual working memory using a within-participant design. We report new evidence that giving older adults longer to study memory objects does not differentially affect their immediate memory for feature combinations relative to individual features. This is in line with a growing body of research suggesting that there is no age-related impairment in immediate memory for colour-shape binding.

  20. Memory – what is it and how it works?

    Directory of Open Access Journals (Sweden)

    Sanja Šešok

    2006-02-01

    Full Text Available Abstract: Memory system presents a basis for many cognitive functions and at the same time it itself depends on their normal function. The purpose of the article is to show how it works as an array of interacting systems, each capable of registring information, storing it, and making available by retrieval. In the case of the psychological study of memory, the most common model used for understanding memory functions is the time based model, which presume that memory can be divided into sensory memory, short-term or working memory and long-term memory. Memory is a process and the information processing approach to memory suggests that there are five processes involved in any type of memory: attention, encoding, storage, consolidation and retrieval. Several most common explanations of forgetting are described.

  1. Auditory Memory deficit in Elderly People with Hearing Loss

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2013-06-01

    Full Text Available Introduction: Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory.   Materials and Methods: Dichotic Auditory Memory Test (DVMT was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders.   Results: Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (P

  2. WORKING MEMORY IMPAIRMENT AS AN ENDOPHENOTYPIC MARKER OF A SCHIZOPHRENIA DIATHESIS

    Science.gov (United States)

    Park, Sohee; Gooding, Diane C.

    2014-01-01

    This chapter focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a review of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation), in terms of which aspects are likely to be the best candidates for endophenotypes. We consider the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this chapter, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia. PMID:25414816

  3. Working memory impairment as an endophenotypic marker of a schizophrenia diathesis

    Directory of Open Access Journals (Sweden)

    Sohee Park

    2014-09-01

    Full Text Available This review focuses on the viability of working memory impairment as an endophenotypic marker of a schizophrenia diathesis. It begins with an introduction of the construct of working memory. It follows with a consideration of the operational criteria for defining an endophenotype. Research findings regarding the working memory performance of schizophrenia and schizophrenia-spectrum patients, first-degree relatives of schizophrenia patients and healthy controls, are reviewed in terms of the criteria for being considered an endophenotypic marker. Special attention is paid to specific components of the working memory deficit (namely, encoding, maintenance, and manipulation, in terms of which aspects are likely to be the best candidates for endophenotypes. We examine the extant literature regarding working memory performance in bipolar disorder and major depression in order to address the issue of relative specificity to schizophrenia. Despite some unresolved issues, it appears that working memory impairment is a very promising candidate for an endophenotypic marker of a schizophrenia diathesis but not for mood disorders. Throughout this review, we identify future directions for research in this exciting and dynamic area of research and evaluate the contribution of working memory research to our understanding of schizophrenia.

  4. Working Memory Load Strengthens Reward Prediction Errors.

    Science.gov (United States)

    Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David

    2017-04-19

    Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning.SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.

  5. Dynamic visual noise interferes with storage in visual working memory.

    Science.gov (United States)

    Dean, Graham M; Dewhurst, Stephen A; Whittaker, Annalise

    2008-01-01

    Several studies have demonstrated that dynamic visual noise (DVN) does not interfere with memory for random matrices. This has led to suggestions that (a) visual working memory is distinct from imagery, and (b) visual working memory is not a gateway between sensory input and long-term storage. A comparison of the interference effects of DVN with memory for matrices and colored textures shows that DVN can interfere with visual working memory, probably at a level of visual detail not easily supported by long-term memory structures or the recoding of the visual pattern elements. The results support a gateway model of visuospatial working memory and raise questions about the most appropriate ways to measure and model the different levels of representation of information that can be held in visual working memory.

  6. A neurodevelopmental approach to understanding memory processes among intellectually gifted youth with attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Whitaker, Ashley M; Bell, Terece S; Houskamp, Beth M; O'Callaghan, Erin T

    2015-01-01

    Intellectual giftedness is associated with strong strategic verbal memory while attention-deficit hyperactivity disorder (ADHD) is associated with strategic verbal memory deficits; however, no previous research has explored how this contradiction manifests in gifted populations with diagnoses of ADHD. The purpose of this study was to explore strategic verbal memory processes among intellectually gifted youth with and without ADHD to provide clarification regarding this specific aspect of neuropsychological functioning within this population. One hundred twenty-five youth completed neuropsychological evaluations including the Wechsler Intelligence Scale for Children-Fourth Edition and California Verbal Learning Test-Children's Version (CVLT-C). Results revealed significant differences between groups, with intellectually gifted youth with ADHD achieving lower T scores on CVLT-C Trials 1 through 5 compared with intellectually gifted youth without ADHD, and intellectually gifted youth with ADHD achieving higher T scores than youth of average intellectual abilities with ADHD. Additionally, repeated-measures analysis of variance revealed a main effect improvement among gifted youth with ADHD in short-delay recall when provided with organizational cues. Findings revealed new evidence about the role of twice exceptionality (specifically intellectual giftedness and ADHD) in strategic verbal memory and have important implications for parents, educators, psychologists and neuropsychologists, and other mental health professionals working with this population.

  7. Reducing State Anxiety Using Working Memory Maintenance.

    Science.gov (United States)

    Balderston, Nicholas L; Hsiung, Abigail; Liu, Jeffrey; Ernst, Monique; Grillon, Christian

    2017-07-19

    The purpose of this protocol is to explain how to examine the relationship between working memory processes and anxiety by combining the Sternberg Working Memory (WM) and the threat of shock paradigms. In the Sternberg WM paradigm, subjects are required to maintain a series of letters in the WM for a brief interval and respond by identifying whether the position of a given letter in the series matches a numerical prompt. In the threat of shock paradigm, subjects are exposed to alternating blocks where they are either at risk of receiving unpredictable presentations of a mild electric shock or are safe from the shock. Anxiety is probed throughout the safe and threat blocks using the acoustic startle reflex, which is potentiated under threat (Anxiety-Potentiated Startle (APS)). By conducting the Sternberg WM paradigm during the threat of shock and probing the startle response during either the WM maintenance interval or the intertrial interval, it is possible to determine the effect of WM maintenance on APS.

  8. Impaired retrieval processes evident during visual working memory in schizophrenia

    Directory of Open Access Journals (Sweden)

    Peter A. Lynn

    2016-09-01

    Full Text Available Prominent working memory (WM deficits have been observed in people with schizophrenia (PSZ across multiple sensory modalities, including the visuospatial realm. Electrophysiological abnormalities noted during early visual processing as well as later cognitive functions in PSZ may underlie deficiencies in WM ability, though the mechanisms linking behavior to neural responses are not well understood. WM dysfunction has also been observed in biological relatives of PSZ (REL and therefore may be a manifestation of genetic liability for the disorder. We administered a delayed response visuospatial WM task to 23 PSZ, 30 of their REL, and 37 healthy controls (CTRL to better understand the contributions of neural abnormalities to WM performance deficits associated with schizophrenia. PSZ performed more poorly on the WM task and failed to effectively process distractor stimuli as well as CTRL and REL. N1 electrophysiological responses to probes during retrieval differentiated the type and locations of stimuli presented during encoding in CTRL. Retrieval N1 responses in PSZ, however, failed to do so, while retrieval responses in REL showed more pronounced differentiation of stimulus features during encoding. Furthermore, neural responses during retrieval predicted behavioral performance in PSZ and REL, but not CTRL. These results suggest that retrieval processes are particularly important to efficient visuospatial WM function in PSZ and REL, and support further investigation of WM retrieval as a potential target for improving overall WM function through clinical intervention.

  9. Mental rotation and working memory in musicians' dystonia.

    Science.gov (United States)

    Erro, Roberto; Hirschbichler, Stephanie T; Ricciardi, Lucia; Ryterska, Agata; Antelmi, Elena; Ganos, Christos; Cordivari, Carla; Tinazzi, Michele; Edwards, Mark J; Bhatia, Kailash P

    2016-11-01

    Mental rotation of body parts engages cortical-subcortical areas that are actually involved in the execution of a movement. Musicians' dystonia is a type of focal hand dystonia that is grouped together with writer's cramp under the rubric of "occupational dystonia", but it is unclear to which extent these two disorders share common pathophysiological mechanisms. Previous research has demonstrated patients with writer's cramp to have deficits in mental rotation of body parts. It is unknown whether patients with musicians' dystonia would display similar deficits, reinforcing the concept of shared pathophysiology. Eight patients with musicians' dystonia and eight healthy musicians matched for age, gender and musical education, performed a number of tasks assessing mental rotation of body parts and objects as well as verbal and spatial working memories abilities. There were no differences between patients and healthy musicians as to accuracy and reaction times in any of the tasks. Patients with musicians' dystonia have intact abilities in mentally rotating body parts, suggesting that this disorder relies on a highly selective disruption of movement planning and execution that manifests only upon playing a specific instrument. We further demonstrated that mental rotation of body parts and objects engages, at least partially, different cognitive networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Training Planning and Working Memory in Third Graders

    Science.gov (United States)

    Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano

    2013-01-01

    Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…

  11. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    Science.gov (United States)

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  12. Memory in Early Onset Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder: Similarities and Differences

    Science.gov (United States)

    Udal, Anne H.; Oygarden, Bjorg; Egeland, Jens; Malt, Ulrik F.; Groholt, Berit

    2012-01-01

    Differentiating between early-onset bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) can be difficult. Memory problems are commonly reported in BD, and forgetfulness is among the diagnostic criteria for ADHD. We compared children and adolescents with BD (n = 23), ADHD combined type (ADHD-C; n = 26), BD + ADHD-C (n = 15),…

  13. Executive function and memory in relation to olfactory deficits in alcohol-dependent patients.

    Science.gov (United States)

    Rupp, Claudia I; Fleischhacker, W Wolfgang; Drexler, Arthur; Hausmann, Armand; Hinterhuber, Hartmann; Kurz, Martin

    2006-08-01

    Prior research indicates that chronic alcoholism is accompanied by olfactory deficits. These have been suggested to reflect dysfunctions in olfactory brain regions. The present study investigated the role of neurocognitive functioning in tests (executive function and memory) sensitive to the functional integrity of brain areas that are crucial to olfactory processing in patients with alcohol dependence. Performance on olfactory functions (detection threshold, quality discrimination, identification), executive function (Wisconsin Card Sorting Test), and memory (German version of the California Verbal Learning Test) was assessed in 32 alcohol-dependent patients and 30 healthy comparison subjects, comparable in age, gender, and smoking status. Compared with controls, alcohol-dependent patients were impaired in all 3 domains, olfactory functions, executive function, and memory. In patients, olfactory discrimination ability was positively correlated with executive function performance. Regression analyses conducted to clarify the relation between group (patients vs controls), executive function, memory, and olfactory functions indicated that group was the only significant predictor of olfactory detection threshold and identification, and both group and executive function were found to be the significant predictors of olfactory discrimination. Olfactory deficits in alcohol dependence appear to be associated with prefrontal cognitive dysfunction. Results indicate that olfactory quality discrimination deficits are related to executive function impairment. These findings add to the available research on frontal lobe dysfunction in alcoholism, suggesting that alcohol-related olfactory discrimination deficits may be associated with impairment in the functional integrity of the prefrontal lobe.

  14. Congenital Amusia: A Short-Term Memory Deficit for Non-Verbal, but Not Verbal Sounds

    Science.gov (United States)

    Tillmann, Barbara; Schulze, Katrin; Foxton, Jessica M.

    2009-01-01

    Congenital amusia refers to a lifelong disorder of music processing and is linked to pitch-processing deficits. The present study investigated congenital amusics' short-term memory for tones, musical timbres and words. Sequences of five events (tones, timbres or words) were presented in pairs and participants had to indicate whether the sequences…

  15. SPARED RECOGNITION CAPACITY IN ELDERLY AND CLOSED-HEAD-INJURY SUBJECTS WITH CLINICAL MEMORY DEFICITS

    NARCIS (Netherlands)

    Spikman, J.M.; Berg, I.J.; Deelman, B.G.

    This study describes the performance of three groups of subjects on a pictorial forced-recognition task, the Hundred Pictures Test. The aim was to determine whether subjects with memory deficits (elderly and closed-head-injured subjects) would perform as well as healthy young subjects, both on

  16. The effects of working memory resource availability on prospective memory: a formal modeling approach.

    Science.gov (United States)

    Smith, Rebekah E; Bayen, Ute J

    2005-01-01

    The PAM theory of event-based prospective memory (Smith, 2003; Smith & Bayen, 2004a) proposes that successful prospective memory performance demands upon the interaction of preparatory attentional processes and retrospective memory processes. The two experiments in the current study represent the first application of a formal model to investigate the sensitivity of these underlying processes to variations in working memory resource availability. Multinomial modeling of data from prospective-memory tasks showed that working memory span influenced preparatory attentional processes and retrospective-memory processes.

  17. Combined exposure to tobacco smoke and ethanol in adolescent mice elicits memory and learning deficits both during exposure and withdrawal.

    Science.gov (United States)

    Abreu-Villaça, Yael; de Carvalho Graça, Anna Caroline; Ribeiro-Carvalho, Anderson; Naiff, Victor de Freitas; Manhães, Alex C; Filgueiras, Cláudio C

    2013-07-01

    Adolescents often associate tobacco smoking and consumption of alcoholic beverages. In spite of that, little is known about the neurobehavioral consequences of the dual exposure in the adolescent brain. In the present work, we assessed the effects of tobacco smoke and/or ethanol exposure during adolescence on memory/learning. From postnatal day 30 to 45 (PN30-45), male and female Swiss mice were exposed to tobacco smoke (SMK-generated from research cigarettes type 3R4F, whole body exposure, 8hr/day) and/or ethanol (ETOH-25% solution, 2g/kg intraperitoneally injected every other day) as follows: (a) SMK+ETOH exposure; (b) SMK exposure; (c) ETOH exposure; (d) Control. Memory/learning was evaluated during exposure (PN44-45) and during short- (PN49-50) and long-standing withdrawal (PN74-75). At each timepoint, mice were trained and tested in a step-down passive avoidance task (0.3 mA, 3 s footshock). Two retention tests were carried out in each animal, one at 3hr after training to measure short-term memory and another at 24hr to measure long-term memory. During exposure, the short-term memory was impaired in all groups and the long-term memory was impaired in SMK and SMK+ETOH. During the short-standing withdrawal, a significant impairment was observed only in long-term memory of the male SMK+ETOH mice. At long-standing withdrawal, there were no significant differences between groups. Tobacco smoke and ethanol exposures during adolescence of mice negatively affect learning/memory performance. Deficits that were still present during SMK+ETOH short-standing withdrawal suggest that the combined exposure elicits a worsened memory/learning outcome and that males are more susceptible.

  18. Prospective memory in children with attention deficit hyperactivity disorder: a review.

    Science.gov (United States)

    Talbot, Karley-Dale S; Müller, Ulrich; Kerns, Kimberly A

    2017-10-24

    The objective of the paper is to synthesize the research on prospective memory (PM) in children with attention-deficit/hyperactivity disorder (ADHD). Research on PM and ADHD in youth was synthesized according to the PRISMA guidelines and a summary of the types of PM deficits typically seen in these children, as well as the methods currently available to assess and treat these deficits is provided. Suggestions on ways to better manage PM deficits in children's everyday lives are also discussed. Six studies have investigated PM in children with ADHD. The majority of these studies found a deficit in time-based PM, but not event-based PM. The mechanisms underlying this deficit, however, are still unknown. There are currently no specific measures available to clinically assess PM in children and there are no specific evidence-based interventions available that specifically target PM deficits in children with ADHD. Remediation strategies aimed at compensating for these PM deficits in daily life may be most useful. Nevertheless, more research is necessary to better understand PM in children with ADHD.

  19. Working Memory, Long-Term Memory, and Medial Temporal Lobe Function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…

  20. The Effects of Valence and Arousal on Associative Working Memory and Long-Term Memory

    NARCIS (Netherlands)

    Bergmann, H.C.; Rijpkema, M.J.P.; Fernandez, G.S.E.; Kessels, R.P.C.

    2013-01-01

    Background: Emotion can either facilitate or impair memory, depending on what, when and how memory is tested and whether the paradigm at hand is administered as a working memory (WM) or a long-term memory (LTM) task. Whereas emotionally arousing single stimuli are more likely to be remembered,

  1. Verbal memory deficits in children with less than 750 g birth weight.

    Science.gov (United States)

    Taylor, G H; Klein, N M; Minich, N M; Hack, M

    2000-03-01

    Numerous studies have documented memory deficits in very low birthweight (VLBW, Learning Test-Children's Version (CVLT-C) to a regional sample of 57 learning, delayed recall, and inaccurate recall. In addition, the percentage improvement in correct recognitions relative to long-term delayed recall was greater in the learning rate between the VLBW and term-born groups, and between high- and low-risk VLBW children, were evident even when vocabulary skill was covaried or when children with neurosensory deficits or IQ < 80 were excluded from analysis. The findings document deficits in verbal memory in the subset of VLBW children at greatest biological risk, and suggest that acquisition processes are selectively impaired.

  2. Does learning to read shape verbal working memory?

    National Research Council Canada - National Science Library

    Demoulin, Catherine; Kolinsky, Régine

    2016-01-01

    ... differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes...

  3. Asymmetric cross-domain interference between two working memory tasks : Implications for models of working memory

    NARCIS (Netherlands)

    Morey, Candice C.; Morey, Richard D.; van der Reijden, Madeleine; Holweg, Margot

    2013-01-01

    Observations of higher dual-task costs for within-domain than cross-domain task combinations constitute classic evidence for multi-component models of working memory (e.g., Baddeley, 1986; Logie, 2011). However, we report an asymmetric pattern of interference between verbal and visual-spatial tasks,

  4. Recovery after chronic stress within spatial reference and working memory domains: correspondence with hippocampal morphology.

    Science.gov (United States)

    Hoffman, A N; Krigbaum, A; Ortiz, J B; Mika, A; Hutchinson, K M; Bimonte-Nelson, H A; Conrad, C D

    2011-09-01

    Chronic stress results in reversible spatial learning impairments in the Morris water maze that correspond with hippocampal CA3 dendritic retraction in male rats. Whether chronic stress impacts different types of memory